
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 1

Generation of Single Input Change Test Sequences
for Conformance Test of Programmable Logic

Controllers
Julien Provost, Member, IEEE, Jean-Marc Roussel, Jean-Marc Faure, Member, IEEE

Abstract—Conformance test is a functional test technique
which is aiming to check whether an implementation, seen as
a black-box with inputs/outputs, conforms to its specification.
Numerous theoretical worthwhile results have been obtained
in the domain of conformance test of finite state machines.
The optimization criterion which is usually selected to build
the test sequence is the minimum-length criterion. Based on
experimental results, this paper focuses on the generation of a
Single Input Change (SIC) test sequence from a specification
model represented as a Mealy machine; such a sequence is
aiming at preventing from erroneous test verdicts due to incorrect
detection of synchronous input changes by the Programmable
Logic Controller (PLC) under test. A method based on symbolic
calculus to obtain the part of the specification that can be tested
with a SIC sequence is first presented. Then, an algorithm to build
the SIC test sequence is detailed; three solutions are proposed,
according to the connectivity properties of the SIC-testable part.

Index Terms—Conformance test, Formal Methods, Pro-
grammable Logic Controller, Test Sequence, Mealy machine, Test
Verdict, Single Input Change

I. INTRODUCTION

PROGRAMMABLE LOGIC CONTROLLERS (PLCs) are
industrial automation components that are widely used

to implement control functions, even in critical systems like
power production and distribution, rail transport, chemical
processes, water distribution, etc. This explains why numerous
research works have been carried out since more than ten years
to develop methods that avoid flaws to be introduced during
the development of PLC software [1]. These researches are
based on two main approaches: model-based (model-driven)
engineering [2]–[5] and formal verification and validation
(V&V) techniques [6]–[9] or a combination of both [10].
Whatever the interest of the results obtained in these works,
it must be noted that all of them are based on models. Formal
V&V techniques for instance have been applied to models
of the specification of the control logic, in the form of IEC
60848 models, state-charts, Signal Interpreted Petri Nets, Net
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Condition Event Systems [11]–[13] or of PLC programs, in
IEC 61131-3 or IEC 61499 languages [14]–[19].

However, validation of a real PLC which executes a control
program requires the conformance test of this component be
performed, even if the specification and program models have
been verified and validated, and a certified code generator
has been used to produce the executable code. Conformance
test is a functional test, i.e. the system under test, named
implementation, is seen as a black-box (its internal structure
is unknown) with observable inputs/outputs; the overall aim
is to check whether this implementation behaves as specified
(see Fig. 1). Conformance test of PLCs is advocated by cer-
tification bodies and standards [20], [21], which explains the
growing interest of companies in several industrial domains for
efficient hardware-in-the-loop techniques [22]–[24] to improve
the existing practices.

Fig. 1. Place of the work in the life-cycle of PLC software

A promising solution to develop such techniques is to
benefit from the results of the researches of the Discrete
Event Systems community in the domain of conformance
test of formal models. In these works, the specification is
a formal model: a Mealy (or finite state) machine [25], a
transition system [26], [27], or a timed automaton [28] for
instance. The first formalism has been selected for this study
because it is well suited to the modeling of logic systems
specifications; moreover, functional correctness must be tested
before time correctness. As industrial specifications are not
expressed in formal languages but in standardized, tailored-
made languages, translation rules of industrial specification
languages into formal ones are to be developed in order to
use these theoretical results for conformance test of PLCs;
this issue has been solved in [29] where a method to obtain
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Fig. 2. Aim of the conformance test. Left part: PLC with periodic I/O scanning cycle; right part: Mealy machine describing the specification of the control.

from a Grafcet [30] an equivalent Mealy machine is presented.
Once the formal model of the specification obtained, a

test objective is to be defined. It is possible, for instance,
to test whether some particular states that correspond to
hazardous or recovery states can be reached from the initial
state or whether some state changes or transition sequences are
possible for specific input combinations. When critical systems
are considered, as this is the case in this work, a usual test
objective is to cross at least once each edge of the directed
graph that represents the structure of the machine; this permits
to check every state change from each state of the formal
model. A test sequence that meets this test objective is termed
complete.

Then, the test sequence that will be applied to the PLC
during the execution of the test can be constructed from the
specification model. A test sequence is an ordered list of cou-
ples (input combination, expected output combination), termed
test steps, where the input and expected output combinations
correspond respectively to the left and right elements of the
label for the considered transition of the Mealy machine; in
other words, a test sequence represents the external view of
a PLC that executes a control code in conformance with its
specification. To avoid tedious, time-consuming and error-
prone tasks, the construction of a complete test sequence must
be automated; an usual solution is to select the algorithm
presented in [31] that minimizes the length of the sequence.
A minimum-length test sequence will indeed minimize the
duration of the execution of the test, if the duration of each
test step is constant.

However, extensive experimental studies have shown in that
the execution of a conformance test with a minimum-length
test sequence may lead to erroneous test verdicts because
synchronous input changes may be detected as asynchronous
by the PLC under test [32], [33]. The aim of this paper is to
propose another algorithm to construct test sequences. Rather
than looking for a minimum-length solution, the overall idea is
to construct a test sequence that does not contain synchronous
changes of two or more inputs from one test step to the
immediately following one. Such a sequence is termed a SIC
(Single Input Change) sequence because the value of only one

input is modified between two consecutive test steps. It must
be noted that the expression SIC (or adjacent) sequence has
been already introduced in another domain: test of electronic
circuits [34]–[40]. However, the valuable results of these works
cannot be directly applied to the issue that we address because
they were not focusing on the same type of fault: hardware
faults were considered while this work focuses on errors in
the PLC code. Moreover, a white-box test was possible in
those references whereas the structure of the implementation is
unknown in this work (black-box approach); the construction
of the test sequence cannot be based on the knowledge of this
structure but only of the specification.

Nevertheless, it has not been proved that it is always
possible to construct a complete SIC sequence starting from
the initial state of the specification model; this will be the
first issue addressed in this paper. Once this issue solved, a
solution to construct the SIC sequence will be proposed.

The next section reminds the notations used in this work.
The concept of SIC-testability, feature of a Mealy machine that
represents the possibility to build an initializable, consistent
and complete SIC test sequence from this machine is intro-
duced in the third section; a method to verify whether a Mealy
machine is fully SIC-testable as well as to determine the SIC-
testable part of a non-fully testable machine is also proposed
in this section. The fourth section focuses on the generation
of this sequence and provides three solutions according to
the connectivity properties of the SIC-testable part. Last,
conclusions and prospects for further works are given.

II. BACKGROUND

The aim of the section is to define the notations used in
this paper and to remind previous results. The notations and
definitions will be illustrated through an example with 4 logic
inputs (c, o, r and v), and 2 logic outputs (OG and CG); then,
16 input combinations (cI ) and 4 output combinations (cO)
can be defined. The PLC where this control is implemented is
presented in Fig. 2, left part; the control specification in the
form of a Mealy machine is presented in Fig. 2, right part.
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A. Notations of the input and output combinations

A PLC owns n logic input variables and m logic output
variables; the value of each of them is either true or false. 2n

input (2m output) combinations can then be constructed from
this set of input (output) variables by assigning a weight to
each variable. An input combination cI will be represented in
three different manners in this paper:
‚ The first representation, noted symbol(cI ), is the more

compact one; symbol(cI ) is indeed an integer that belongs
to r0, 2n ´ 1s and is defined as follows:

symbol(cI ) =
n´1
ÿ

i“0

cI rn´ 1´ is ˆ 2pn´1´iq, where:

– cI rn´ 1´ is is an integer that belongs to r0, 1s and
is equal to 1 if the ith input variable is true and 0
otherwise,

– 2pn´1´iq is the weight of this variable1.
This representation will be used in the graphical and
tabular descriptions of a Mealy machine.

‚ The second representation, noted minterm(cI ), is a
Boolean expression. A minterm is the conjunction of all
the n logic input variables in their positive or comple-
mented form. This representation is very efficient for
symbolic calculus and will be used to check the SIC-
testability of a Mealy machine.

‚ The third representation, noted 1pcIq, is that of the
set of the only variables which are true for the given
combination and is well appropriate when defining the
SIC relation between two combinations.

The same rules apply for the output combinations cO.
Table I gives the correspondence between these representations
for the example introduced in Fig. 2.

B. Formal definition of a Mealy machine

Conformance test of Mealy machines is a mature technique
that previously yielded numerous sound theoretical results;
good syntheses on this topic are available in [25], [41]. This
explains why this formalism was selected to represent formally
the specification model.

However, a Mealy machine is theoretically defined on two
event alphabets: the input and output alphabets. Since the
inputs and outputs of a PLC are logic variables and not events,
these two alphabets are to be built prior to defining the Mealy
machine that represents the specification of the controller. This
will be performed by considering each PLC input (respectively
output) combination as an input (resp. output) event.

Let us note I and O the non-empty sets of PLC inputs and
outputs (I and O contain logic variables). If the cardinality
of I (resp. O) is |I| (resp. |O|), there exist 2|I| (resp. 2|O|)
distinct input (resp. output) combinations cI (resp. cO). Let us
note CI the set of the input combinations and CO the set of
the output combinations.

Using this definition of input and output combinations,
the specification of a PLC that executes a control code can
be represented by a Mealy machine (S, sInit, CI , CO, δ, λ),
where:

1The weights are assigned arbitrarily to the variables.

‚ S is a non-empty set of states.
‚ sInit is the initial state, sInit P S.
‚ CI is the input alphabet, |CI | “ 2|I|.
‚ CO is the output alphabet, |CO| “ 2|O|.
‚ δ is the transition function, defined as follows:

δ : S ˆ CI Ñ S
pss, cIq ÞÑ st “ δpss, cIq

(1)

‚ λ is the output function, defined as follows:

λ : S ˆ CI Ñ CO

pss, cIq ÞÑ co “ λpss, cIq
(2)

The specification of the controller is compulsorily deter-
ministic: there is only one initial state and δ and λ are two
functions. Moreover, to avoid misinterpretation errors during
the test, the Mealy machine is:
‚ completely defined: δ and λ are total functions2;

@ps, cIq P S ˆ CI ,

"

D!δps, cIq P S
D!λps, cIq P CO

(3)

‚ limited to its reachable part;

@s P S, Drc0I , ¨ ¨ ¨ , c
n
I s P C

˚
I |

$

&

%

s1 “ δpsInit, c
0
Iq

@k ě 1, sk`1 “ δpsk, ckI q
s “ sn

(4)
‚ without transient evolution, i.e. no inputs change intro-

duces successive changes of states or emitted outputs.

@ps, cIq P S ˆ CI ,

"

δpδps, cIq, cIq “ δps, cIq
λpδps, cIq, cIq “ λps, cIq

(5)

C. Formal definition of a test sequence

A test sequence is an ordered list of couples (input com-
bination, expected output combination) which represents the
external view of the expected behavior of a PLC that executes
a correct control code. Formally, a test sequence is defined as
follows:

“

pc0I , c
0
Oq, pc

1
I , c

1
Oq, ..., pc

n
I , c

n
Oq

‰

P pCI ˆ COq
˚ (6)

However, the input combinations ckI and the expected output
combinations ckO are not independent. The expected output
combination cO is that associated to the transition which
goes from a source state ss to a target state st for the input
combination cI . Hence, an elementary conformance test step
et is defined by the following 4-tuple:

et “ pss, cI , st, cOq P S ˆ CI ˆ S ˆ CO

where
"

st “ δpss, cIq
cO “ λpss, cIq

(7)

A test sequence TS is an ordered list of elementary test
steps et which must be:
P1: initializable, i.e. the source state of the first test step is the

initial state of the PLC’s behavior model, and the input
combination c0I is such that the target state is stable:

$

’

&

’

%

s0 “ sInit

δpδps0, c0Iq, c
0
Iq “ δps0, c0Iq

λpδps0, c0Iq, c
0
Iq “ λps0, c0Iq

(8)

2D!: There exists exactly one.
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TABLE I
EQUIVALENCE BETWEEN THE DIFFERENT REPRESENTATIONS OF THE INPUT AND OUTPUT COMBINATIONS

(logic inputs,
weight)

(c,8) 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
(logic outputs,

weight)

(CG,2) 0 0 1 1(o,4) 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
(r,2) 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 (OG,1) 0 1 0 1(v,1) 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

symbol(cI ) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 symbol(cO) 0 1 2 3
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P2: consistent, i.e. the source state of the pk`1qth elementary
test step is equal to the target state of the kth elementary
test step.

TS “ rps0, c0I , δps
0, c0Iq, λps

0, c0Iqq, ¨ ¨ ¨ ,

psn, cnI , δps
n, cnI q, λps

n, cnI qqs |

@k ě 0, sk`1 “ δpsk, ckI q (9)

Moreover, if the test objective is to cross at least once each
transition of the Mealy machine (usual objective when the
control of critical systems is considered), the test sequence
must be:
P3: complete, i.e. there is at least one test step for each

element of the transition function:
@ps, cIq P pSzsInitˆIq, ps, cI , δps, cIq, λps, cIqq P TS (10)

III. SIC-TESTABILITY

SIC-testability is a feature of a Mealy machine that repre-
sents the possibility to build an initializable, consistent and
complete SIC test sequence from this machine. This concept
is illustrated in Fig. 3. The example 3a) is non-SIC-testable
because the test step that corresponds to the self-loop on the
state s2 with the input combination a ¨ b cannot be preceded
by a test step with an input combination where only one of
the variables a and b is true; both possible preceding test
steps correspond to the input combination a ¨ b. This non-
SIC-testable transition may lead to a biased verdict: if the
input change from a ¨ b to a ¨ b when the machine is in the
state s2 is erroneously interpreted by the PLC, the target state
could be either s2 (as if it was correctly interpreted) or s1,
thus, potentially rejecting a correct implementation. A similar
reasoning is possible for the pinpointed transition of 3b); the
test step that corresponds to the transition from the state s2 to
the state s1 with the input combination a¨b cannot be preceded
by a test step with an input combination where only one of
the variables a and b is true; the only possible preceding test
step corresponds to the input combination a ¨ b. This non-SIC-
testable transition may lead to a non-valid verdict: whatever
the interpretation (correct or erroneous) of the input change
from a ¨b to a ¨b, the target state will be s1. Thus, it cannot be
ensured that this specific transition of the implementation has
been tested, and an incorrect implementation may be accepted.

On the opposite, the example 3c) is SIC-testable; it is possible
to find for any transition a preceding transition whose input
combination differs from only one input.

This section proposes first a formal definition of a SIC test
sequence, then presents a method to determine the SIC-testable
part of a Mealy machine, part of this machine from which
such a sequence can be built. If this part contains all test
steps that can be defined from the machine, the machine is
said fully SIC-testable, else a coverage rate of the test steps
can be defined.

A. Definition of a SIC test sequence

A SIC test sequence is an initializable and consistent
(relations (8) and (9) satisfied) test sequence that is based on
a SIC input sequence. To express formally this latter property,
the SIC relation between two input combinations must be
first defined. This definition relies on the representation of
an input combination by the subset of I that contains the only
variables which are true for this combination. Thus, two input
combinations cI and c1I satisfy a SIC relation if and only if3:

cardpp1pcIqz1pc
1
Iqq Y p1pc

1
Iqz1pcIqqq “ 1 (11)

For example, the input combinations which are represented
by the minterms c¨o¨r¨v and c¨o¨r¨v satisfy a SIC relation since
cardpptr, vuztc, r, vuqYptc, r, vuztr, vuqq “ cardp∅Ytcuq “
1

In the remainder of this paper, this symmetrical relation is
noted4: cI RGray c1I . It must be noted that n SIC relations
can be stated for each input combination cI of a PLC with n
logic inputs.

Hence, a test sequence TS is a SIC test sequence if and
only if it satisfies the following property:

P5: it is based on a SIC input sequence, i.e.:

@k ą 0, ck`1
I RGray c

k
I (12)

3cardpAq is the cardinality of set A.
1pcIqz1pc

1
Iq is the subset of I composed with the elements of 1pcIq which

are not in 1pc1
Iq.

4The subscript Gray has been introduced because two combinations that
satisfy this relation may be seen as two adjacent combinations of a Gray
code.
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Fig. 3. Examples of non-SIC-testable Mealy machines: a) and b), and a SIC-testable Mealy machine: c)

B. Computation of the SIC-testable part of a Mealy machine

The SIC-testable part of a Mealy machine may be obtained
by computing a set RSIC of couples pss, cIq, where ss is
the source state of a transition of the Mealy machine and cI
an input combination. Each element of RSIC defines also an
elementary test step pss, cI , st, cOq because the target state st
and the output combination cO are then completely known
from the structure of the machine. The set RSIC is computed
iteratively by a fixed point calculation; the set at the ith

iteration of this calculation will be noted RSICpiq.
As the SIC sequence must be initializable, the initial set

RSICp0q contains the couples psInit, cIq where sInit is the
initial state, and cI is an input combination such that, if st is
the target state of the transition psInit, cI , st, cOq, δpst, cIq “
st, i.e. there exists a self-loop on st for this input combination.

RSICp0q “
 

psInit, c
0
Iq | c

0
I P CI , δpδpsInit, c

0
Iqq “ δpsInit, c

0
Iq
(

(13)

In practice, every logic input of a PLC which is connected
to a test bench can be set or reset before the initialization
of the PLC. Hence, the state st is a state that can become
and stay active when the PLC is initialized after a given input
combination has been defined.

The following sets RSICpk ` 1q are determined by using
the two following construction rules:
‚ If an elementary step pst, cI , st, cOq belongs to a SIC test

sequence, it is always possible to add to this sequence
an elementary step pst, c1I , δpst, c

1
Iq, λpst, c

1
Iqq where c1I

satisfies: c1I RGray cI .
‚ If an elementary test step pss, cI , st, cOq belongs to a SIC

test sequence, the elementary test step pst, cI , st, cOq can
be added to this sequence.

These rules can be formally expressed by the following
statement:

RSICpk ` 1q “ RSICpkq Y
#

`

sk, c
k`1
I

˘

Y
`

δ
`

sk, c
k`1
I

˘

, ck`1
I

˘

|

Dpsk, c
k
I q P RSICpkq |

"

δpsk, c
k
I q “ sk

ck`1
I RGray c

k
I

+

(14)

The computation stops when RSICpk ` 1q “ RSICpkq.
The Mealy machine is then SIC-testable if RSICpk ` 1q
contains as many couples as there are potential test steps.
Otherwise, the final set RSICpk`1q, denoted RMaxi

SIC , defines
the SIC-testable part. A SIC coverage rate, defined as follows,
permits to quantify the SIC-testability:

SIC coverage rate “
|RMaxi

SIC |

|SzsInit| ˆ |CI |
(15)

This rate can be seen as a metrics of the ability of the
specification to be used to build a complete SIC test sequence.
Improving the coverage rate requires the specification be
modified, which is not always possible for cost and time
reasons.

C. Illustration on the example

Table II presents the results of this calculation for the
example presented in Fig. 2. Each cell of the table contains the
value of the couple (δps, cIq, λps, cIq). A circled couple means
that the same state is both source and target of the transition
(self-loop structure: δps, cIq “ s). The behavior represented in
this table is deterministic and completely defined since every
cell contains one and only one state name. This behavior
does not contain any transient evolution since the value of
each cell is either a circled value or leads to a cell with a
circled value (δps, cIq “ s or δpδps, cIq, cIq “ δps, cIq). The
number k of the iteration during which the couple pss, cIq
was added to RSICpkq is at the top-left corner of each cell.
For example, the couple associated to the cell ps3, c ¨ o ¨ r ¨ vq
is obtained at iteration 0 (initialization), because s3 is reach-
able from sInit pδpsInit, c ¨ o ¨ r ¨ vq “ s3q, and this couple
corresponds to a self-loop on s3 pδps3, c ¨ o ¨ r ¨ vq “ s3q. The
couple ps3, c ¨ o ¨ r ¨ vq is obtained in the first iteration, as
c¨o¨r ¨v RGray c¨o¨r ¨v, and so on. The fixed-point calculation
stops at the third iteration, excluding the initialization. The
final set contains only 40 couples; the couples that do not
belong to this set are represented by colored cells. Hence, the
Mealy machine of Fig. 2 is not fully SIC-testable. Its SIC-
testable part RMaxi

SIC is represented by the cells that are not
colored. Its SIC coverage rate is equal to 5/6.
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TABLE II
ILLUSTRATION OF THE FIXED POINT CALCULATION. IN THIS TABLE, THE OUTPUT COMBINATIONS ARE OMITTED FOR CLARITY REASONS.
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D. Symbolic computation of the SIC-testable part

As already mentioned, the tabular representation of a Mealy
machine is appropriate to explain the principle of computations
on small-sized models but is not suitable to perform these
computations on non-trivial models. This explains why a
symbolic representation of a set of input combinations has
been introduced to avoid explicit enumeration of this set during
the fixed point calculation.

A set C of combinations c can be represented by a Boolean
expression ExppCq defined as the disjunction of the minterms
contained in C:

ExppCq “
ă

cPC

mintermpcq (16)

During the fixed-point calculation, a set of input combi-
nations C can be extended by adding all input combinations
c1I satisfying a SIC relation with at least one of the input
combinations cI in C. The extended set C 1 is defined as
follows:

C 1 “ C Y tc1I | DcI P C : c1I RGray cIu, (17)

Using symbolic notation, the Boolean expression of the
extended set C 1 is defined as follows:

ExppC 1q “
ă

iPI

`

ExppCq|iÐfalse ` ExppCq|iÐtrue

˘

(18)

The example below illustrates this operation.

C “ tc ¨ o ¨ r ¨ v , c ¨ o ¨ r ¨ v , c ¨ o ¨ r ¨ vu
ExppCq “ c ¨ o ¨ r ` c ¨ o ¨ v
ExppC 1q “ po ¨ r ` o ¨ vq ` pc ¨ r ` c ¨ vq ` pc ¨ oq

`pc ¨ oq
“ c ¨ o` c ¨ r ` c ¨ v ` o ¨ r ` o ¨ v

C 1 “ tc ¨ o ¨ r ¨ v , c ¨ o ¨ r ¨ v , c ¨ o ¨ r ¨ v ,
c ¨ o ¨ r ¨ v , c ¨ o ¨ r ¨ v , c ¨ o ¨ r ¨ v ,
c ¨ o ¨ r ¨ v , c ¨ o ¨ r ¨ v , c ¨ o ¨ r ¨ v ,
c ¨ o ¨ r ¨ vu

(19)

This symbolic representation of a set of input combinations
speeds up the computation defined in the equation (14).

IV. SIC TEST SEQUENCE GENERATION

Once RMaxi
SIC determined, a SIC test sequence can be con-

structed by using a graphical representation of this set in the
form of a graph where:

‚ each node represents a couple ps, cIq that is included in
RMaxi

SIC ;
‚ n arcs start from a node that corresponds to a couple
ps, cIq such that δps, cIq “ s. The target nodes of these
arcs represent the couples ps, c1Iq such that c1I satisfies
c1I RGray cI . These arcs correspond to input changes
between two test steps; the cost associated to these arcs
is then equal to 1;

‚ only one arc starts from a node that corresponds to a cou-
ple ps, cIq such that δps, cIq ‰ s. The target node of this
arc is the node that represents the couple pδps, cIq, cIq.
This arc corresponds to the expected evolution from a
source state to a target state during the execution of one
test step; the cost associated to this arc is then equal to
0.

Fig. 4 represents a part of this graph. Each node corresponds
to a couple pss, cIq where ss corresponds to its line and cI
corresponds to its row. Since the couples ps3, c ¨ o ¨ r ¨ vq and
ps3, c ¨o ¨r ¨vq are not in RMaxi

SIC there is no node associated to
these couples. In this figure, only the arcs related to the couple
ps3, c¨o¨r¨vq are represented. Since this couple can be tested in
the same experimental test step than psInit, c ¨o ¨r ¨vq, there is
one arc from psInit, c ¨o ¨r ¨vq leading to ps3, c ¨o ¨r ¨vq. From
this couple, there are four outgoing arcs leading to couples
ps3, c ¨o ¨r ¨vq, ps3, c ¨o ¨r ¨vq, ps3, c ¨o ¨r ¨vq and ps3, c ¨o ¨r ¨vq.
Then, since the couple δps3, c ¨ o ¨ r ¨ vq “ s2, there is one
outgoing arc from δps3, c ¨ o ¨ r ¨ vq to δps2, c ¨ o ¨ r ¨ vq. On the
opposite, since δps3, c ¨ o ¨ r ¨ vq “ s3, there are four outgoing
arcs from ps3, c ¨ o ¨ r ¨ vq.

A SIC test sequence can be then constructed by looking for
a path that traverses at least once each node of this graph.
To reduce the duration of test execution, a minimum-length
SIC test sequence can be searched; the optimization problem
to solve in this case is a particular solution of a well-known
problem in graph theory: the Travelling Salesman Problem
[42] – or pre-Hamiltonian path –. The general formulation of
this problem is the following: Find a minimum-length closed
path that traverses at least once each node of the graph. By
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Notations:

couple ps, cIq P RMaxi
SIC such that δps, cIq “ s couple ps, cIq P RMaxi

SIC such that δps, cIq ‰ s
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Fig. 4. Part of the graph used to generate a SIC test sequence

TABLE III
SIC TEST SEQUENCE FOR THE SIC-TESTABLE PART OF THE EXAMPLE

ss: s1 s1 s3 s2 s2 s3 s3 s2 s1 s1 s2 s1 s1 s2 s2 s1 s1 s2 s1 s2 s2 s1 s2 s2 s1 s3 s1 s3 s1 s2 s1 s3 s1 s3 s3
c: 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 1
o: 0 0 0 0 1 0 0 1 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 1 1 1 1 0 1 1 1 1 0 0
r: 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0
v: 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
st: s1 s3 s2 s2 s3 s3 s2 s1 s1 s2 s1 s1 s2 s2 s1 s1 s2 s1 s2 s2 s1 s2 s2 s1 s3 s1 s3 s1 s2 s1 s3 s1 s3 s3 s1

definition, the length between two nodes is equal to the sum
of the costs associated to the collection of arcs that define the
shortest path between these two nodes.

However, possible to construct a single SIC test sequence
that traverses each node at least once and starts from the initial
state with any input combination if and only if the graph
that represents RMaxi

SIC is strongly connected5. Then, a strategy
to construct SIC test sequences whatever the connectivity
of the graph has been set up (see Fig. 5). If the graph is
only connected (and not strongly connected), a single SIC
test sequence can be constructed but this sequence must start
by an elementary test step that contains a particular input
combination. When the graph is not connected, several SIC test
sequences shall be constructed; during test execution, the PLC
shall be initialized between two of these sequences because
each of them starts from the initial state by definition (relation
(8)).

For the example presented in Fig. 2 it is possible to generate
a single SIC-test sequence that covers its SIC-testable part.
This sequence is given in Table III where the top and bottom
lines have been added to relate this sequence to Fig. 2 and

5A graph is strongly connected if and only if it contains a path from ni to
nj and a path from nj to ni for every pair of nodes ni, nj

Table II. This test sequence contains 35 test steps and permits
to test the 40 couples ps, cIq of the SIC-testable part of the
specification since some test steps permit to test both couples
ps, cIq and pδps, cIq, cIq, as already mentioned; for example,
test step 2 permits to test both ps1, c¨o¨r ¨vq and ps2, c¨o¨r ¨vq,
and so on for all test steps whose source and target states are
different. The test sequence given in Table III is obtained in
approximately 4 seconds; this computation lasts longer than
that of a minimum-length sequence because the problem to
solve is harder.

V. CONCLUSION

Even if numerous theoretical results on conformance test of
Mealy machines have been published, application to confor-
mance test of PLCs is not completely straightforward because
the technological features of these industrial components are
not taken into account in the theoretical studies, as pinpointed
in [32], [33].

A promising solution to tackle out biased or non-valid test
results due to asynchronism between input events that are
assumed to be synchronous is to construct a test sequence,
termed SIC test sequence, where no synchronous input events
are present by definition. This paper has presented how the part
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Generation of a single
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psInit, cIq
?
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RMaxi
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of several
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Notation: preps, cIq “ tpss, cIq P S Y sInit ˆ CI | δpss, cIq “ su

Fig. 5. Flowchart showing the different cases to consider when generating a SIC test sequence

of the Mealy machine that can be tested with such a sequence
can be determined and how to construct this sequence.

A coverage rate has been also defined. This rate is however
not always equal to 100%. If the objective of the conformance
test is to test every transition of the Mealy machine, it will
be necessary to use a non-SIC sequence for the transitions
which cannot be tested with the SIC sequence. The following
stategies shall be then considered:
‚ test execution for the configurations of the controller that

lessen the error rate (periodic I/O scanning and no inputs
distribution) as shown in [32], [33];

‚ multiple execution of the same test sequence and statis-
tical analyses of the results.

Further works are aiming at extending the scope of this
study by considering construction of test sequences for timed
systems – the formal model that will be used to build this
sequence will be a class of timed automata – and analysis
approaches based on discrete event systems theory that are
complementary to conformance test, like identification or
enforcement, to validate the behavior of a PLC.
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