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Summary. This chapter is concerned with how implicit, nonverbal cues support
coordinated action between two people. Recently, neuroscientists have started un-
covering the brain mechanisms involved in how people make predictions about other
people’s behavioural goals and intentions through action observation. To date, how-
ever, only a small number of studies have addressed how the involvement of a task
partner influences the planning and control of one’s own purposeful action. Here, we
review three studies of cooperative action between human and robot partners that
address the nature of predictive and reactive motor control in cooperative action.
We conclude with a model which achieves motor coordination by task partners each
adjusting their actions on the basis of previous trial outcome.

1.1 Introduction

Social skills are what largely distinguish humans from other animals and they
are considered to underpin the development of our civilization in the process
of evolution [8][19]. It has been suggested that altruistic interaction among
organisms in kin selection or prosocial reciprocity increases the chance of ‘sur-
vival’ [5]. In particular, cooperation, an act of working towards and achieving
a shared goal with other agents, is a useful strategy to accomplish tasks that
are otherwise inefficient or impossible to complete by a single person. From a
psychological perspective, there is growing research interest in so-called joint

action, an umbrella term which covers any form of social interaction between
two or more people [41]. A series of studies on joint action has provided com-
pelling evidence that the manner in which the central nervous system (CNS)
represents the external world is constantly influenced by the presence of oth-
ers. In particular, actions performed by others elicit similar neural changes to
when the action is performed by oneself [42][49]. It has been proposed that
this alteration of neural state is evidence for emulation of others’ actions using
one’s own motor system, so assisting humans to appreciate action intentions of
others and to engage in cooperative or competitive behaviours [26][38]. While



2 Satoshi Endo, Paul Evrard, Abderrahmane Kheddar, and Alan M. Wing

these studies have advanced our understanding of the cognitive architecture of
the perceptual-motor systems that support joint action, only a small number
of studies have directly addressed how the involvement of a task partner influ-
ences the planning and control of one’s own purposeful action (e.g., [3][30][35].
In this chapter, we describe recent developments in our understanding of in-
terpersonal interaction and present new studies that highlight predictive and
reactive motor control during cooperative action.

1.2 Feedforward and Feedback Control in Single-Person

Movement

Sensory-motor systems are subject to internal errors, including inaccurate tar-
get specification due to sensory noise and faulty movement execution due to
motor noise, which manifests as fluctuations of movement over repetitions [13].
One approach to overcome such error is through on-line corrections wherein
on-going movements are continuously monitored using sensory feedback and
any difference between intended and actual movement is corrected whenever
an error is detected. A weakness in this feedback control scheme is that the
motor response is subject to a significant time delay caused by the relay of
the sensory signals from the sensors to the cerebral cortex and the subsequent
implementation of an appropriate response. In the case of object-lifting with
precision grip (opposed thumb and index finger) by a single actor, somatosen-
sory feedback about object slippage on the digits induces an adjustment of the
grasping force to prevent further slippage, which lags at least 80-100 ms be-
hind the onset of the slippage [23]. Given that the spinal reflex takes about 30
ms to trigger a reflexive response [9], the motor correction in response to slip
is considered to require supraspinal structures. Another method for overcom-
ing motor error is through learning and adaptation. In feedforward control,
the CNS implements action using a model containing information regarding
the expression of the motor commands in the environment and their action
consequences, information learned from previous interactions in the same or
similar environments [55]. An appropriate motor prediction can then be gen-
erated by inverting this internal model. Some theories of feedforward control
suggest that the CNS generates predictions about the sensory consequences
of a given action in order to help make that action become more accurate [24].
Hence, when the same movement is repeated, the CNS learns and adapts the
movement to reduce the chance of making the same error by adjusting motor
outputs [55]. It is thought that feedforward and feedback control are flexibly
integrated depending on the nature of the task and its familiarity. In general,
the CNS initially implements a control policy that is more reliant on feedback
control and it gradually shifts towards feedforward control as the actor learns
the task.
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1.3 Sensory-Motor Control in Cooperation Action

In contrast to individual action, cooperative action between two actors in-
volves two independent sets of movements that are coordinated in time and
space. Thus, the manner in which two partners intend to perform an action
together may not at first be complementary to each other. A verbal exchange
could be sufficient to share a general motor strategy for action such as the
path to follow in picking up and moving an object together. Nevertheless,
cooperative action with another person does not necessarily require conversa-
tion; other forms of sensory input can provide sources of information enabling
prediction of a partner’s action. As noted above, sensory-motor systems are
subject to internal errors, including inaccurate target specification due to sen-
sory noise and faulty movement execution due to motor noise [13]. When the
motor outcome deviates appreciably from the intended movement, the CNS
adapts and refines the output signal to minimise the risk of making the same
error again [55]. Such adaptive behaviour can be accounted for by simple lin-
ear models [47][53]. In these models, motor output in a subsequent response
is adjusted by some proportion of the observed error from the desired state in
the previous movement. In principle, various adaptive models conform to this
structure [1] [27][36]. This ‘error-based learning’ plays a key role in optimising
anticipatory movements in individual action [47]. Similarly, evidence indicates
that interpersonal motor adaptation may be based on previous performance
error during cooperative action. In a study by Schuch and Tipper [40], par-
ticipants either performed a speeded choice-reaction-time task or observed
another person performing the same task. When a participant performed the
task and made a mistake, the reaction time in the subsequent trial was slowed,
a phenomenon termed as post-error slowing [34]. Interestingly, their results
showed that the reaction time was also slowed after observing somebody else
making the error. This study demonstrates that observing another person’s
error influences that observer’s subsequent behaviour, strengthening the argu-
ment for the existence of common mechanisms for processing one’s own errors
and the errors of others [31]. In a recent study in our own lab we have more
direct evidence of error-based learning in joint action involving cooperative
lifting of a rigid bar. We examined cooperative object lifting using a humanoid
robot as a task partner to precisely control behaviour of one of the partners
so we could understand how a particular movement characteristic of the part-
ner (i.e., robot) influences the action of the human participant. Participants
sat at a table and grasped a 6DoF force transducer attached to one end of
a bar; a robot held the other (see Fig. 4.1a). Their task was to lift the bar
so it remained horizontal throughout the lift. The robot was programmed to
produce a vertical movement trajectory based on a minimum-jerk trajectory
[15] with a target movement height and duration of 40 cm over 3 seconds. In
this, and the following studies, participants closed their eyes and wore a pair
of headphones to prevent any visual or auditory feedback during performance.
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Fig. 1.1. (a) Experimental setup. HRP-2 (Kawada Industries, Japan) is a full-sized
humanoid robot with 30 degrees of freedom (DoF). For this lifting task, only the 6
DoF of the right arm were used. A participant sat in front of the robot and jointly
lifted a bar. (b) A schematic illustration of the bar. The bar consisted of two handles
with force transducers attached onto their bases. The orientation of the transducers
was expressed in ego-centric coordinates with respect to each partner.

Wemeasured the maximum difference in the height of the two handles (i.e.,
position error), difference in the peak velocities of the partners (i.e., velocity
error), and the maximum sagittal force and frontal torque (task-relevant) in
order to study whether participants could improve cooperative performance
with practice. Fig. 4.2 shows changes in these variables over 15 repetitions
(averaged over 10 right-handed participants). Performance rapidly improved
over successive trials, as shown by the reduction over a couple of trials in
the position and velocity errors. The sagittal force reduced over trials, but
more slowly over many trials. Thus, the smaller sagittal force is unlikely to be
a simple by-product of reduced coordination error. Importantly, the sagittal
force exchange between the partners is redundant (i.e., task irrelevant) to the
primary goal of the task. Therefore, the reduction of the sagittal force may
be linked to minimising redundant interaction in cooperative action [21].

The results so far show evidence for motor adaptation to a task partner,
when the robot repetitively executes an identical motion. However, perfor-
mance of a human partner may vary from trial to trial. For example, various
factors can influence one’s action including a variety of internal factors such
as sensory and motor noises in the CNS [13], exhaustion [28], or individual
preference as well as external factors such as the presence of an obstacle in the
movement path [18].Thus, in another experiment, we investigated how peo-
ple minimise an unpredictable motor error induced by a task partner. In this
part of the study, the robot randomly introduced two perturbed trajectories
(Retarded and Advanced, Fig. 4.3a) in addition to the previously used un-
perturbed trajectory (Standard). In Retarded trajectories, there was a sudden
linear retardation in the velocity profile such that 70 ms after the perturbation
onset, the vertical position of the gripper was 1.0 cm lower than at the equiva-
lent time in the Standard trajectory. The Advanced trajectory was analogous
to the Retarded trajectory except that this perturbation caused an advance
of the time of peak velocity. The perturbation trials were randomly inserted
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Fig. 1.2. Learning cooperative lifting. The position error, velocity error, maximum
sagittal force (FS), and maximum frontal torque (TF ) of participants when interact-
ing with each trajectory type presented in the different conditions/blocks of trials.

between the Standard trials but they never occurred in adjacent trials. There
were 15 Advanced and 15 Retarded trials and 90 Standard trials.

Fig. 4.3b shows the averaged kinematic differences between the partici-
pants and the robot. When an unpredictable robot movement was detected
during lifting, the participants still managed to follow closely the robot’s tra-
jectory after an initial delay of approximately 150 ms (Fig. 4.3c). This is no-
ticeably longer than the 80 ms or so taken, according to the literature, by the
supraspinal reflex for movement correction via the somatosensory system [23].
Thus, in response to a sudden perturbation, the participants adjusted their
on-going action to re-synchronise their own action to their partner’s action,
though the response was delayed possibly due to complex haptic feedback un-
derlying cooperative object lifting. We recently obtained evidence of such use
of haptic feedback in a two-person object lifting study in which we removed
partners’ torque feedback by adding ball bearings at the grasp points. This sig-
nificantly disrupted motor coordination and between-trial learning compared
to two-person object lifting task with fixed grasp points (ch4-Endo-sub1). In
the human-robot cooperative lifting study, the on-line error correction was
smoothly introduced and completed at around the deceleration phase of the
lifting movement, with the Advanced trials associated with slightly faster
recovery. Taken together, the two human-robot cooperative lifting studies
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Fig. 1.3. (a) An example of movement trajectories by the robot and participant.
The robot’s control signal instead of the recorded motion data was depicted. Av-
eraged Standard, Advance, and Retardation trajectories from a single participant
are presented. (b) Kinematic divergences of averaged Perturbation trajectories from
the Standard trajectory of a single participant. The position and velocity profiles of
the Standard trajectory were subtracted from the Perturbation trajectories. (c) The
reaction time to, and recovery time from, the Advance and Retardation perturba-
tions.

demonstrate that the participants performed cooperative action using a form
of control that could be flexibly switched between predictive and reactive
modes depending on the reliability of the partner’s movement.

1.4 Mutual Error-based Learning in Cooperation

The above studies demonstrate between and within trial adaptation that peo-
ple use to cooperate with a robot task partner that did not adapt to the human
partner. Thus, in this sense at least, the partnership was asymmetric. In prac-
tice, purposeful interpersonal interaction does often involve asymmetric yet
complementary actions. Simulation studies have suggested that asymmetric
involvement in a task can effectively reduce conflict in cooperative interac-
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tion [33][51]. Furthermore, differential role assignment has been associated
with more flexible adaptation to environmental changes [45]. Behaviourally,
functional asymmetry has been demonstrated in a situation where two people
each apply force to achieve a shared goal. Reed and colleagues [35] used a
device that allowed recording of forces created by two partners, which was
a rotating table with two handles attached at each end. Using this device,
paired participants grasped and moved one handle each to meet the visual
target as quickly as possible. Even though the participants were instructed
to refrain from verbal communication, they rapidly developed a strategy such
that one was more involved in accelerating the device and the other in decel-
eration. The study by these authors, therefore, indicates that functional spe-
cialisation can be observed at an interpersonal level of action coordination.
Hence orchestrating two effectors by functionally specialising the effectors
in subtasks rather than producing identical movements may be an effective
strategy. In motor interaction between humans, the movement coordination of
two people is inter-dependent. Thus, the task partners may need to compro-
mise their own individually preferred courses of action and adapt their own
motor output to that of their task partner [10][46][48]. For example, either
intentionally or unintentionally, the presence of others influences the timing
of our behaviour. Thus, behavioural synchronicity of people, termed entrain-
ment, has been reported in various forms and sizes of interaction such as
dyadic walking rhythm [50][56], body gestures /citech4-Chartrand-1999 and
conversational pattern /citech4-Wilson-2005. In a study by Richardson and
colleagues /citech4-Richardson-2007, for example, paired participants sat on
a rocking chair side-by-side and rocked the chair at a preferred frequency.
Without instruction to do so, the participants started synchronising their
movements to each other. On a much larger scale, spontaneous interpersonal
movement synchronisation was reported in the hand clapping pattern of thou-
sands of members of the audience at a concert hall /citech4-Neda-2000. Fre-
quently, behavioural interactions of two people have been modelled in terms
of a dynamical system. Namely, it has been proposed that two different sets of
movements interact and mutually influence each other’s state in order to find
a stable solution /citech4-Oullier-2008/citech4-Schmidt-1998 or reduce their
differences /citech4-Felmlee-1999/citech4-Kon-2005 in temporal motor coor-
dination tasks. These studies provide specific predictions about how people
may coordinate their movements with each other. However, the interaction
process has not previously been studied in terms of cooperative goal-directed
action such that the mutual interaction should relate to optimal performance
of a cooperative outcome rather than merely reflect coordination of two sets of
movements. In contrast, we recently studied how adaptation by a task partner
affects own motor adaptation. In this joint adaptation task, the participant
lifted an object with the robot, but now the robot’s speed of the lifting was
determined by a simple model, which reduced the peak velocity difference
between the partners.
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ZRn+1 = ZRn + αR(ZHn − ZRn)eq.4.1 (1.1)

where ZRn is the peak velocity of the robot at Trial n and αR is the
adaptation rate which reduces the mismatch with a human partner. Over
trials the adaptation rate of the robot was either fixed (αR = 0.8, 0.5, 0.2, or
0.0), or varied randomly between 0.0 and 1.0 in 0.1 increments. In order to
keep the bar level the human participant would need to match the velocity of
the robot. One way to do this would be to adjust the peak velocity;

ZHn+1 = ZHn + (w − αR)(ZRn − ZHn)eq.4.2 (1.2)

where w is the net adaptation rate which would be set to unity for the
most rapid reduction in error. It was therefore predicted that participants
would increase their adaptation rate when that of the robot was small, and
vice versa. In the case of the randomly varying rate it was expected the human
partner’s adaptation rate would equal the average rate of the robot. On the
other hand, if the adaptation rate of the robot was not taken into account, it
was expected that the adaptation rate of the human partner would be similar
across the different correction gains of the robot. The adaptation rate of each
participant (αH) was approximated using the slope coefficient of the linear
regression, with interpersonal difference of the peak velocity at a previous
trial and the peak velocity adjustment made from this trial to the next trial
as variables (Fig. 4.4a).
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Fig. 1.4. (a) A scatter plot of an error and subsequent adjustment in the peak
velocity from a single participant and the robot. The slope coefficient of the least-
square-error represented the adaptation rate. (b) The adaptation rates of human
participants across different rates set by the robot.

The results show that αH generally varied inversely with αR (Fig. 4.4b).
Simple linear regression analysis confirmed that there was a negative rela-
tionship between αH and αR such that the increase of αR led to a decrease
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of αH . The analyses provided clear evidence that human participants flexibly
modulated their correction gain so that the summation of αR and αH (αNET )
remained constant at around -1. This study provides clear evidence that peo-
ple can implicitly and flexibly adjust their adaptation rates with regard to
the adaptation rate of their partner in order to optimise the performance at
a cooperative level. This modulation of adaptation rate may crucially un-
derlie social interaction, which enables people to respond flexibly to other
people’s actions in a wide variety of social interactions and thus facilitate
goal-directed behaviour in joint actions. In this study, we used the regression
between the motor error and subsequent adjustments to estimate adaptation
rate. However, this method is susceptible to increasing bias as proportion of
the error (adjustment) signal over the sensory-motor noise decreases /citech4-
Vorberg-2002. However, this problem can be rectified by inserting random
perturbations and measuring resulting responses and we recently completed a
new study utilising this method /citech4-Endo-sub2. This study also showed
complementary gain setting, albeit with lower adaptation gain than seen when
cooperating with the robot.

1.5 Determinants of an adaptation rate

This joint adaptation study demonstrated that people can effectively accom-
modate contribution of an adaptive partner in a cooperative task so that the
summed adaptation rates of the partners are sustained at a certain level. How-
ever, it remains unclear how a dyad delegates the adaptation rates between
its respective partners. Recently, Braun and colleagues /citech4-Braun-2009
have described cooperative behaviour in terms of efficient decision making.
In their study, two participants jointly moved a handle to a target, but the
force required to move the handle in space varied. When they chose a ”coop-
erative” path, the participants both received resisting spring force of 3 N/m
towards the start position as they moved the handle to its target. When they
both chose a ”defective” path, they experienced a higher spring force of 7
N/m. When one person selected the ”cooperative” path but the other one did
not, the former received 10 N/m spring force and the latter experienced no
spring resistance (0 N/m). Under such circumstances, the participants chose
the ”defective” path whereby their partner would never be at an advantage.
When they performed the same task bimanually, in contrast, the participants
actively achieved the cooperative solution. Thus it seems that people are es-
timating costs of relying on their partner when they make a decision about
how they should perform the task. Although this study showed a tendency for
people to optimise their individual action over cooperation, there is evidence
suggesting that people do not simply discount the performance of others, but
rather track the probability of their partner’s reliability in making a decision.
In a study by Behrens and colleagues /citech4-Behrens-2008, participants per-
formed a decision-making task wherein a correct response could be predicted
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by the pattern of previous correct responses as well as by a clue provided by a
confederate. The reliabilities of the reward-based learning and confederate ad-
vice were independently varied to study how the participants’ decision-making
was influenced by the statistical properties of the reward prediction error and
confederate prediction error. The results revealed that the participants could
learn both reward and social value in a similar fashion but independently. This
study provides strong evidence that the optimal response in decision-making
is in consideration of both probability of the correct response and the prob-
ability of the correct advice by the confederate. Thus, the degree and type
of joint adaptation may depend on the cost and gain of the cooperation out-
comes as well as on other task-relevant information such as motor noise. These
issues are particularly relevant to extending the joint adaptation model to a
stochastic (i.e. probabilistic) model, and to understanding how the statistics
about a task partner are established through the course of interaction.

1.6 Social Task Partner in Cooperative Action

In order to implement a specific reference trajectory for one of the pair, the
studies from our lab that we described used a humanoid robot as a task part-
ner. There is a continuing debate about the way people interact differently
to movements of another person compared to non-biological agents. It is well
known that people are tuned to detect biological motion and can extract a
range of personal and psychological attributes from only a few points of mark-
ers representing movements of joints of a person such as the elbows and the
shoulders [6][2][43]. Previously, it has been shown that believing one is coor-
dinating an action with a human or a robotic partner can result in different
behavioural responses by the perceiver regardless of whether the action is of
human origin or a simulation of robot motion [44]. In addition, differences
in neural responses have been demonstrated during observations of biological
compared with non-biological movements, especially when the latter lacked
the natural variability of human movements [16] or the former followed a
non-Gaussian velocity profile [25]. In our study, although the robot executed
minimum-jerk movements, which are known to closely approximate simple
human arm movements, nonetheless the observer was fully aware from visual
cues that he was interacting with a robot. Thus, caution should be exercised
in generalising the conclusions regarding the results of this experiment to in-
clude natural social interaction between people. Nevertheless, it is interesting
to explore how the adaptive behaviour descried here is influenced by the so-
cial knowledge about the partner. For example, interpersonal interaction is
known to be influenced by certain attributes such as emotional states [17][22],
relative physical characteristics [20] as well as the history of interaction [32].
We therefore believe that the approach we have presented can potentially pro-
vide a useful platform for investigating social determinants of interpersonal
behaviour.
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1.7 Conclusions

While researchers have generally tackled the challenge of understanding the
human brain by focusing on a single actor interacting with a controlled en-
vironment, there is a growing appetite in neuroscience for investigating how
the CNS operates at a social level. In particular, much attention is being paid
to those studies of ’joint action’ which are laying foundations for an under-
standing of how people represent conspecifics in the CNS [41]. However, there
have been very few studies specifically focusing on the sensory-motor interac-
tions between people. In this chapter we have described an approach to the
study of joint action that focuses on the movements of the partners. In this
manner we have described how the CNS learns and controls movement with
respect to concurrent movement executed by a partner thorough feedforward
and feedback control.
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