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Abstract

Beside haptic and vision, mobile robotic platforms are equipped with audition in order to
autonomously navigate and interact with their environment. Speaker and speech recogni-
tion as well as the recognition of different kind of sounds are vital tasks for human robot
interaction. In situations where more than one sound source is active, the mixture has to
be separated before being passed to the reasoning unit. Independent Component Anal-
ysis (ICA) has been proposed to solve the blind source separation problem. For audio
signals however, ICA cannot be applied directly. Due to non-instantaneous mixtures in
the time domain, the problem is usually transferred to multiple separately performed ICAs
in the frequency domain, which causes the well-known permutation problem. For robotic
sound separation, in this paper we propose a method called Independent Vector Analysis
(IVA) to separate audio mixtures while avoiding the permutation problem. Performance
of the method is evaluated for synthetic data as well as for anechoic and echoic record-
ings. Furthermore, a new method to evaluate the separation results for real recordings is
introduced.
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1 Introduction

Humans are able to engage in conversations at a noisy cocktail party. They may under-
stand one particular speaker even though a cacophony of voices is heard around them.
This is the well-known “cocktail-party effect”[1].

Technical systems like teleconferecencing systems and mobile robots would benefit of
such capabilities in many fields. The improvement of telepresence, high-end hearing aids
or speech recognition and auditory scene analysis are areas in which the emulation of
humans’ extraordinary perception is needed, however not yet available.

To emulate some of these perception capabilities and thus enabling a technical system
to focus on one specific sound source within a mixture, source separation techniques are
required that process the observed mixture into its underlying signal parts. In literature,
this separation problem is often called Blind Source Separation (BSS), which seeks to
separate the sound sources within a mixutre. The term BSS refers to methods for the
estimation of source signals using only information acquired by the analysis of recorded
mixtures. This excludes a priori information about e.g. the frequency characteristics, the
location or the mixing process. Yet some information like the location can in some cases
be obtained by analyzing the physical properties of sound and be used to improve the
performance of BSS algorithms.

Up to now, numerous algorithms for the BSS problem have continuously evolved since
the 90s. These algorithms can be divided into two groups: The first group uses spatial
information, the second group statistical information of the signals to achieve separation.

Beamforming for example applies a spatial filter to separate signals which originate from
different locations by linearly combining spatially sampled time series of the sensor data,
similar as a FIR-Filter would do [17]. Beamforming can be combined with Direction of Ar-
rival (DOA) estimation algorithms like MUSIC [16] or ESPRIT [15] to attain segregated
signals. Another algorithm that exploits spatial information is applying spatial spectral
masking. Spatial spectral masking first finds the DOA for different sources for each fre-
quency. Afterwards, a spatial filter in the frequency domain is applied [12]. However, the
algorithms that are based on spatial information lack the possibility to separate signals that
are mixed in echoic environments (e.g. an office room).

Beside the algorithms that use spatial information, there are methods based on the
evaluation of the signals’ statistics. Independent Component Analysis (ICA) [8, 5] is one of
the most popular approach of this group of algorithms that successfully perform the BSS for
instantaneous mixtures. However, ICA cannot separate convolutive mixtures. To overcome
this problem, statistical separation methods that are based on ICA extend its capabilities to
tackle convolutive mixtures. This is usually done by transforming the convolutive mixture
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1 Introduction

into frequency domain, which results in an instantaneous mixture model per frequency
bin. Then, algorithms like Multidimensional Independent Component Analysis (MICA) [2]
or Independent Subspace Analysis (ISA, the ML-equivalent to MICA) [4] seek to group
dependent scalar mixtures and thus achieve the desired separated signals.

When using these algorithms for speech separation, several problems arise. First, the
mixing model of ISA and MICA is not designed to fit realistic mixing conditions for speech
signals in reverberant environments. For speech mixtures, the assumption holds that only
signal parts within the same frequency interval are mixed due to the signal propagation in
real environments which usually do not alter the frequency of certain signal parts. There-
fore, the mixing model of MICA/ISA does not perfectly fit for speech separation, as it allows
both for arbitrary mixing of frequencies and different numbers of scalar variables within the
outcomes. MICA/ISA is actually designed to have one large mixing layer for all frequen-
cies, i.e. the highest frequencies are allowed to mix with the lowest frequencies. Second,
due to these extensive mixture models, MICA and ISA are complex and computationally
expensive algorithms, which makes it difficult to achieve real-time speech separation on a
robot.

Recently, a promising approach called Independent Vector Analysis (IVA) has been pro-
posed to inherently solve the permutation problem [10]. Although the basic ideas behind
IVA resemble MICA and ISA, its mixing model is designed especially for the task of audio
source separation, grouping dependent frequencies of sources together within the sepa-
ration step. Also, IVA is not as computationally expensive as MICA or ISA, as the mixing
model is simpler allowing for fast computation of the outcomes.

In this paper, necessary principles of IVA in sufficient detail to implement them, are dis-
cussed. Then, the performance of IVA is evaluated, which involves various cost functions,
the impact of the Short-Time Fourier Transform and computation time. IVA is tested with
real-world records in both a semi-anechoic room with low reverberations and in an echoic
classroom environment.

As we carried out the evaluation in real room environments, we also propose a new
evaluation function for the BSS evaluation toolbox that directly takes the possible distor-
tions into account that are induced by the room environment and allows for a fast an fair
comparison of separation algorithms.

The paper is organized as follows: The first section provides an overview on how to
model sound mixing. Then, the necessary preprocessing steps for source separation are
described, followed by an detailed description of IVA. The paper concludes with an expla-
nation of the usual performance criteria in the field of blind source separation and results
from our own recordings.
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2 The Sound Mixing Model

For a scenario of i active sound sources s1(t), ... , si (t) and j microphones that capture
the mixtures x1(t), ... , xj (t), the most intuitive mixture model is the Instantaneous Mixture
Model,

xj (t) =
N∑

i=1

hij · si (t), (2.1)

where, hij describes an attenuation factor due to different volumes of the sources at each
microphone. This instantaneous mixture model is one of the basic models used for Inde-
pendent Component Analysis (ICA). For these instantaneous mixtures, a huge variety of
separation algorithms exist and have been tested, for example FastICA. An overview can
be found in [8] and [3].

For audio signals however, there are better mixing models that enable superior sepa-
ration results by taking physical properties of sound into account. Besides the aforemen-
tioned volume differences, it is advantageous to also exploit time lags within the recordings,
which occur between the microphones.

Furthermore, reverberant rooms often render instantaneous mixture models useless
because of time-delayed and scaled versions (echoes) in the microphone recordings.

Scaling, time-delay and echoes can be altogether described as a linear filter which is
applied to the sound source. Applying a filter mathematically means convolving the orig-
inal sound source with the corresponding filter that is dependent on the position of the
sound source and the microphone within a reverberant room. According to our previous
instantaneous mixing model, the filter functions are denoted by hij (t). For microphone j ,
the recorded signal is the superposition of the filtered sources:

xj (t) =
N∑

i=1

hij (t) ∗ si (t), (2.2)

where ∗ denotes the convolution operation. In literature, this model is called the Convolu-
tive Mixture Model. The convolutive mixture model allows us to give a better description of
the mixing process for sound sources and consequently enables us to reach better sound
source separation results, but there are two major drawbacks of the convolutive mixture
model. One problem of the convolutive mixture model is that it omits sensor noise, as this
would require a more complex separation algorithm, which however turned out to improve
separaton performance. The other problem is that separation algorithms, like ICA, that are
designed for instantaneous noise-free mixtures could not be utilized.
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There are a number of algorithms that perform separation on the mixtures directly [13]
which are computationally quite expensive. To circumvent this problem, the convolutive
mixture model can be transformed to frequency domain, where the convolution operation
is described by a multiplication and consequently a convolutive mixture model (2.2) turns
into an instantaneous mixture model (2.1).

3 Frequency Domain Transformation

The convolutive mixture model can be transformed to a frequency domain representa-
tion by applying the Fourier Transform. Due to Fourier Transform properties, convolution
operations in time domain transform to multiplications in the frequency domain. Equation
(2.2) is thus transformed to an Instantaneous Mixture similar to Equation (2.1):

Xj (f ) = H1j (f ) · S1(f ) + · · · + HNj (f ) · SN (f ). (3.1)

In contrast to the time domain instantaneous ICA model, the mixing coefficients are also
dependent on the frequency variable, which renders the direct use of instantaneous mix-
ture algorithms such as FastICA useless. The frequency domain representation of the
model can be described by

x(f ) = H(f ) · s(f ). (3.2)

It is obvious that Equation (3.2) indeed corresponds to the Instantaneous Mixture Model
with the flaw that we do not only have one mixing matrix H, but one for each frequency bin
H(f). As shown for ICA [8], we need many sound samples to estimate one mixing matrix.
To overcome this problem, we basically assume that the mixing matrices are constant over
a certain frequency interval in order to get more than just one sample per mixing matrix.

In addition, the intuitive approach of applying Fourier transform to the whole signal fails
in this case, as time information, i.e. the correspondency between time and frequency
samples is lost. Instead of Fourier transform, Short-Time Fourier Transform is usually
applied due to non-stationary of speech signals.
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4 Short-Time Fourier Transform

As we know, it is advantageous to perform the sound source separation in frequency do-
main. One popular method to obtain the frequency domain representation of the mixture is
called Short-Time Fourier Transform (STFT). The STFT divides the whole sound mixture
into blocks of an a-priori defined number of samples. Each block is individually transformed
to the frequency domain using the Discrete Fourier Transform (DFT).

Speech can be considered as a non-stationary process. Therefore, stationarity only
can be assumed in short signal blocks of about 10 − 100 ms, which roughly corresponds
to 1024 samples by a sampling rate of 16 kHz.To avoid artifacts within the blocks caused
by the fragmentation process, some issues have to be considered. Cutting the sound
mixture into blocks leads to an inaccurate frequency spectrum of the mixture due to the
so-called spectral leakage effect [7]. By windowing, this effect could be avoided, but in turn,
windowing introduces disturbances at the edge of the blocks. To overcome this problem,
overlapping window processing as illustrated in Figure 4.2 is used. This procedure allows
for an invertible signal transformation of a sound mixture.

A windowing function w(n) for the overlapping windowing process with length L, for
example a cosine window, is defined as follows:

w(n) =

{
0 |n| > L

cos(n) |n| ≤ L.
(4.1)

If we slice the mixture x(n) into blocks and apply the windowing with an overlap S < L, the
slices xi (n) can be computed by

xi (n) = x(n) · w(n − i · S). (4.2)

Subsequently, the DFT is applied to the time intervals xi (n). For each time interval (block),
a frequency representation x [t , k ] of the mixture x(n) is generated, where t corresponds to
the time index for the signal block and k to the frequencies within the mixture. This way, a
time-frequency representation of the mixture, as illustrated in Fig. 4.1, is generated. After
the separation of the mixtures, inverse STFT is applied to derive the time domain repre-
sentation of the separated mixtures. A frequently used method is the so-called overlap-add
method, which is defined as follows.
First, the sum of all squared windows W (n) is computed by

W (n) =
∞∑

i=−∞
w(n − i · S)2. (4.3)
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Figure 4.1: Spectrogram: Blue colors correspond to low absolute frequency coefficients, red colors
to large ones.

Finally, the time domain representation of the signal is derived by

x(n) =

∑∞
i=−∞ xi (n) · w(n − i · S)

W (n)
. (4.4)
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Figure 4.2: Schematic view of the overlapping window processing.

With a STFT of the mixtures, the convolutive mixture (time-domain) can be considered
as an instantaneous ICA problem in the frequency domain. For instantaneous ICA, each
sample of the observed data can be regarded as a realisation of a scalar random variable.
The estimation of the mixing matrices and consequently of the demixing matrices can
be achieved by exploiting the statistical properties of the observed mixtures over a large
number of sound samples.
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5 ICA in Frequency Domain
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Figure 4.3: STFT

The direct transformation of the convolutive mixtures to the frequency domain brings up
the problem of frequency-dependent mixing matrices, which is solved by the STFT.

5 ICA in Frequency Domain

Applying the STFT to the mixture, transforms the convolutive ICA problem into one in-
stantaneous ICA problem per frequency bin. Instantaneous ICA algorithms can unmix the
mixture for each frequency bin independently, however, there is a major drawback when
treating the convolutive frequency-domain BSS problem as multiple independent ICA prob-
lems in the frequency domain: ICA algorithms are only capable of achieving source sep-
aration up to an arbitrary permutation of the outcomes [8]. Therefore, the order of the
separeted outcomes in each frequency bin is not known which causes problems in com-
bining the individual frequency bins to one complete output signal. There are numerous
approaches which seek to align the separated frequencies after the separation, promising
good separation results, robustness, however, is an issue.
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6 IVA Frequency Domain Mixing Model

In contrast to solve the permutation problem after demixing, Independent Vector Analysis
(IVA) seeks to avoid the permutation problem within the separation process itself. IVA
is designed to separate speech mixtures and is computationally not as intense as ICA
extensions like Independent Subspace Analysis or Multidemensional ICA.

IVA uses the same mixture model as frequency domain ICA algorithms, i.e. the mixing is
restricted to each frequency bin, and different frequency bins are not allowed to be mixed
in this model. Instead of treating each frequency bin as an independent ICA problem,
IVA assumes each source to be composed of many scalar sources in the frequency bins,
that are dependent on each other, which is the reason why IVA is capable of solving the
permutation problem inherently. These sources are called vector sources.

In Figure 6.1, two sources s1, s2 and the frequency bins are illustrated. Mixing is con-
strained to the frequency slices, represented by the mixing matrices Hf . However, the
scalar components of the sources are treated as a multivariate vector source that keeps
track of the dependencies within each source.

The multivariate source vectors are assumed to be mutually independent. The crucial
point in IVA is that within one source, the components are statistically dependent. Taking
this into account with a suitable cost function, the IVA algorithm manages to identify the
dependent frequency components of each source and thus avoids the problem of finding
corresponding frequency components. In order to apply IVA, certain source priors (proba-
bility distributions) pi (si ) have to be assumed, where i refers to source i .

The vector source distributions are considered to be mutually independent, i.e.

p(s1, ..., sN ) =
N∏

i=1

pi (si ). (6.1)

The dependency among one source implies that this source cannot be factorized, i.e.

p(s) 6=
∏
∀i

p(si ). (6.2)

6.1 Whitening in IVA

Prior to the separation process, the frequency bin mixtures are whitened, i.e. they are
transformed to uncorrelated mixtures and the bins are assigned to the same variance
(power) which is one. Although zero correlation is not equal to independence, whitening
simplifies the problem. We refer to [8] for more details on whitening.
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6 IVA Frequency Domain Mixing Model
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Figure 6.1: IVA Mixture Model in accordance with [10]

For one frequency bin x f , the mixing process can be described by

xf = Hf sf . (6.3)

A whitened mixture xf
0 can be retrieved by applying the matrix Qf = (E{xf xfH})−

1
2 to x f [6]:

xf
0 = Qf xf . (6.4)

6.2 IVA Cost Functions

As we know, IVA inherently avoids the permutation problem within the frequency bins. In
[8], a maximum-likelihood approach was utilized to separate the sound mixture for ICA. The
maximum-likelihood approach seeks to find separation matrices Wf for each frequency bin
which make the separated sources most likely with respect to the assumed probability
distribution. Therefore, we need suitable source prior estimates.

It was shown that speech signals can be modeled as supergaussian, i.e. sparse distri-
butions after the STFT. Refer to [14] for further details.

For IVA, spherically symmetric Laplacian (SSL) and spherically symmetric exponential
norm (SEND) distributions were proposed as source priors. These are sparse distribu-
tions, and are mathematically easy to handle as they are based on exponentials. It was
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6 IVA Frequency Domain Mixing Model

shown in [11] that the distributions allow for good approximation of speech and are capa-
ble of keeping depending frequencies together. Recent investigations propose a Gaussian
Mixture Model (GMM) as IVA source priors [6], which is capable of modeling speech better
than SSL or SEND. However, GMMs are more complex and computationally intense than
SEND and SSL. This is why we prefer SSL and SEND cost functions for Robotic Sound
Source Separation. The SEND distribution for the sound source z(t) is given by

pSEND(s(t)) = c
e−
√

(2/F )||s||2

||s||2F−1
2

∀t , (6.5)

where F is the number of discrete frequencies, c is a normalization factor and ||s||2 de-
notes the L2-norm. The SSL distribution is computed by

pSSL(s(t)) = c · e−2·||s||2 ∀t . (6.6)

Both distributions have the property that the sources are uncorrelated, i.e., E{sisH
i } = I.

The source priors are then utilized to construct a likelihood-maximizing cost function. We
assume that the whitened mixtures x f

0 are separated by a demixing matrix Wf to yield the
estimates ŷf for each frequency bin, computed by

ŷf = Wf xf
0 (6.7)

The estimates ŷf are then combined to estimates ŷi . Then, the source distributions can be
used to calculate the likelihood of the estimates ŷi . Assuming independence among the
samples, the likelihood Ci of one separated source ŷi is computed by

Ci (W1, ..., WF ) =
T∏

n=1

p(ŷi ). (6.8)

This is only a function of the demixing matrices, as the estimates ŷi are calculated using the
observed mixtures x. The overall likelihood is thus the product of the individual likelihoods:

C(W1, ..., WF ) =
N∏

i=1

Ci (...) =
N∏

i=1

T∏
n=1

p(ŷi ) (6.9)

The probability densities are based on exponentials, which makes the mathematical treat-
ment of the log-likelihoods

L(W1, ..., WF ) = ln(C) =
N∑

i=1

T∑
n=1

ln(p(ŷi )) (6.10)

advantageous. As we are interested in the separation matrices that maximize the log-
likelihood, we can divide L by the number of available samples T , which yields

L(W1, ..., WF ) =
N∑

i=1

Ẽ{ln(p(ŷi ))} (6.11)
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6 IVA Frequency Domain Mixing Model

and does not change the matrices that maximize this expression [10]. The expectation op-
erator in this equation (6.11) is the heuristical expectation, i.e. the sum over all concerned
terms divided by their number.

So far, a function that measures the “quality" (in terms of likelihood) of the separation
matrices is derived, which is only dependent on the observed mixtures and the separation
matrices. Now, separation matrices that maximize this function have to be found.

6.3 Cost Function Optimization

Using the log-likelihood cost function, the optimization problem can be described by

argmax
W1,...,WF

L(W1, ..., WF ) s.t. Wf WfH = I ∀f . (6.12)

By solving the optimization problem in Equation (6.12), the demixing matrices WF to esti-
mate the source signals can be found. The optimization of the cost function can be solved
as follows: By assuming circular symmetry in the source variables, a 2nd order Taylor
Expansion of the cost function can be calculated. This allows the implementation of a
Newton optimization step, which eventually yields a fixed-point equation under some ap-
proximations that allows for an update of the demixing matrices. For further details, refer
to [10]. This fixed-point equation will be used to develop an update step that refines the
quality of the demixing matrices iteratively. Algorithm 1 summarizes the iterative separation
algorithm.

Algorithm 1 Update Step
1: for f = 1 ... F do
2: ŷf ← Wf

0xf
0 . Frequency Bin Updates

3: end for
4: Combine ŷf and yield estimates ŷi

5: for f = 1 ... F do
6: Wf ← Update(Wf

0, ŷ1, ... , ŷN , x1, ... , xN )
. Separation Matrix Update

7: Wf ← (Wf WfH )−
1
2 Wf . Decorrelation

8: end for

6.4 Iterative Separation Algorithm

Using the fixed-point equation of section 6.3, an algorithm is developed that includes all
necessary steps to improve the quality of the separation matrices iteratively. This algorithm
involves three steps:

13



6 IVA Frequency Domain Mixing Model

1. Update each separation matrix Wf .

2. Decorrelate the separation matrices Wf (make them unitary).

3. Stop algorithm if the cost function does not improve any longer.

The next sections give a detailed description of the three steps of the iterative algorithm.

6.4.1 Separation Matrix Update

The separation matrix update has to be computed for all frequency bins. Exemplarily, we
describe the update procedure for one frequency bin. Each row vector wf

i of the separation
matrix is updated by

wf
i ← Ẽ{G′(||ŷi ||22) + |ŷ f

i |2G′′(||ŷi ||22)}wf
i

− Ẽ{(ŷ f
i )∗G′(||ŷi ||22)xf

0}. (6.13)

The functions G′ and G′′ have been introduced in accordance with [10] to simplify the
derivation of the update rule and its notation. G′ and G′′ depend on whether SSL or SEND
is used, and are the first and second order derivatives of

GSSL(s) =
√

s (6.14)

and
GSEND(s) =

√
(2/L)s + (L− 0.5) ln(s) (6.15)

The current cost L can be evaluated using the G functions as

L = −
N∑

i=1

Ẽ{G(||ŷi ||22)}. (6.16)

L can be used to decide when to stop iterating: If no improvement of the cost function is
made any longer, the algorithm can be terminated.

Decorrelation

The new separation matrices that were calculated using Equation (6.13) do not fulfill the
unitary constraint, i.e. Wf WfH 6= I. There are two ways to overcome this problem: The first
is to perform a Gram-Schmidt orthogonalization, the second method is using a symmetric
decorrelation method.

The Gram-Schmidt method however is not applicable, as it performs orthogonalization
successively. Consequently each separation vector is not treated identically. The sym-
metric decorrelation yields an unitary demixing matrix that minimizes the distance to the
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6 IVA Frequency Domain Mixing Model

estimated separation matrix in Equation (6.13) with respect to the Frobenius norm [8]. The
unitary demixing matrix Ŵf is retrieved by

Ŵf ← (Wf WfH )−
1
2 Wf . (6.17)

This decorrelation procedure has to be conducted for each frequency bin.

6.5 Spectral Compensation

In section 6.1, to yield uncorrelated mixtures, we transformed the mixtures in each fre-
quency bin using a whitening matrix. As the “real" scaling cannot be determined, variance
one is assigned to each of the mixtures. By nature, speech signals do not have the same
power in each frequency. Just consider a human speech, which contains a lot of power
in the range of 300Hz to 3000Hz and only very little in higher frequencies. Figure 6.2 il-
lustrates the STFT of female speech in both original form and whitened frequency bins.
By whitening, each row is assigned to the same spectral power density and the same

Figure 6.2: Original and Whitened Female Speech

power is assigned to all frequencies. To achieve natural sound of the separated signals,
the whitening has to be reversed by a procedure called “Spectral Compensation".

Because we cannot determine the true scaling of the sources, the true scaling of the
sources has to be estimated, whereas only the product of the diagonal elements of the
true mixing matrices and the sources is calculated [6]. Although the scaling factors of the
mixing matrix are involved, this approach results in a good spectral compensation.
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6 IVA Frequency Domain Mixing Model

In accordance with [6] the spectral compensation is conducted as follows. Although we
cannot determine the exact mixing (or demixing) matrix, it is possible to determine the
product of its diagonal elements with the true sources, which is used as compensated
outcome. Recall the mixing model of one frequency bin of Equation (3.2), where the
mixtures xf are not whitened yet. After whitening, we yield uncorrelated mixtures

xf
0 = Qf Hf sf (6.18)

with variance one. The matrix Hf can however not be determined. Thus, the whitened
mixtures are considered as the mixed signal. This way, the whitened mixtures xf

0 satisfy
also

xf
0 = Hf

0sf
0, (6.19)

where Hf
0 and sf

0 denote the whitened mixture matrix and source signals, respectively.
Combining equation (6.18) and equation (6.19) yields

Qf Hf sf = Hf
0sf

0 (6.20)

sf
0 = (Hf

0)−1Qf Hf sf . (6.21)

As the components of sf
0 and sf are independent and IVA prevents permutations, the

matrix Df = (Hf
0)−1Qf Hf must be diagonal. This allows the computation of the product of

diagonal elements of D with the sources without knowing Hf :

diag(Hf )sf = diag((Qf )−1Hf Df )sf =

= diag((Qf )−1Hf )sf
0. (6.22)

Spectral compensation can then be performed on the white demixed source estimates ŷf

using the diagonal matrix diag((Qf )−1Hf ) to yield compensated separations yf :

yf = diag((Qf )−1Hf )ŷf , Hf = WfH . (6.23)

By applying inverse STFT on yf , the time-domain representation of the separated signals
are computed.
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7 Performance Evaluation

The BSS EVAL toolbox [18] is a frequently utilized toolbox to evaluate source separation
algorithms. The evaluation by the BSS EVAL toolbox is done by decomposing the signal
into several signal parts, depending on which signal deformation is allowed. The toolbox
supports the following signal deformations:

• Signal Gain factor only

• Arbitrary linear filtering with defined filter length

• Time-Varying Gain

• Time-Varying linear filtering

A gain factor only decomposition is used for instantaneous mixtures, i.e. there are no
echoes and no delays present in the mixture.

Arbitrary linear filtering is useful for echoic environments, if the separated signals should
be compared to the original sound source.

The time-varying decompositions allow for time varying instantaneous environments
(the time-varying gain decomposition) or entirely dynamic situations in case of time-varying
linear filtering.

In our audio laboratory tests, we use sound signals that were presented by loudspeakers
and recorded by a linear microphone array in a semi-anechoic room and an echoic class-
room. Beside the mixture, each sound source is recorded individually, which is regarded
as the reference recording.

IVA is not designed to cancel out echoes or other effects, it just yields independent
outcomes. Consequently, we consider the best unmixing results to be achieved are close
to the individual reference recordings, as these contain characteristic effects of the room,
which are described by the so-called Room Impulse Responses (RIRs) beside hardware
related distortions.

Therefore, the linear-filtering allowed distortion would allow too many distortions, as the
recorded source already inherits the linear room impulse response. On the other hand,
the gain factor decomposition does not allow for a slight time shift of the signal due to time
differences between the microphones, and is thus also not suitable for our evaluation. The
relative angles and distances between the microphones of the array and the sound sources
are different due to the arrays geometry, cause time shifts as well as gain differences
between the microphone recordings which have to be considered for the evaluation.
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7 Performance Evaluation

To take the effects of real test environment into account, the BSS toolbox is enhanced
by the gain-shift decomposition function, which allows a gain factor and a time-shift of the
original signal.

In accordance with the BSS EVAL toolbox, the the Signal to Distortion Ratio (SDR),
Signal to Interference Ratio (SIR) and the Signal to Artifacts Ratio (SAR) are computed to
evaluate the separation performance.

7.1 Signal Decomposition

Each decomposition function calculates a target signal, an interference signal and an ar-
tifacts signal using a certain ground truth, in this case the individual reference recordings,
and the source estimates. The target signal incorporates the desired signal part with a
certain amount of allowed distortions like gain, filter and time shift. The interference and
artifacts signals incorporate the non-wanted signal parts. All three parts are then used to
calculate the SDR, SIR and SAR ratios.

For the gain-shift decomposition, we used the gain decomposition function of the BSS
toolbox and enhanced it to also incorporate time shifts of the source signal. Mathematically,
this can be described by a gain factor and a time shift of a signal filtering the signal with a
scaled Dirac impulse at the desired shift position,

sgain_shift(t) = cδ(t − n) ∗ s(t), (7.1)

where c corresponds to the gain and n is the number of samples by which the original
signal is shifted. In practice, we limit the search range for the number of shift samples to
correspond roughly to the microphone distance, which is for our experiment setup 30 to 50
samples.

The time shifts were estimated using the Generalized Cross Correlation with Phase
Transform (GCC-PHAT) algorithm [9]. We call this decomposition method the gain-shift
decomposition.

7.2 Performance Criteria

The SDR value is given by

SDR := 10 log10
||starget||22

||einterf + eartif||22
dB (7.2)

and incorporates arbitrary distortions, i.e. interference from other sources and artificial
noise that was introduced by the separation algorithm.

The SIR and SAR are computed by

SIR := 10 log10
||starget||22
||einterf||22

dB (7.3)
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7 Performance Evaluation

and

SAR := 10 log10
||starget + einterf||22
||eartif||22

dB. (7.4)

They represent two distortions separately, where the SAR value represents the ratio of all
signal parts versus artificial noise and the SIR value the signal part versus interference.
For further details, we refer to [18].

7.3 Gain shift vs. Gain only and linear filtering

In Table 7.1 the SIR, SDR and SAR values are compared, which were generated by dif-
ferent evaluation methods. The mixtures are recorded in an anechoic room. The optimal
delays estimated by the GCC-Phat for our gain-shift allowed decomposition are denoted
in brackets. The values of gain only and gain shift are nearly the same, which is due to a

Gain Only

Values in [dB] SDR SIR SAR

Source 1 2.8744 26.5070 2.9030
Source 2 7.2820 21.8537 7.4645
Source 3 3.4742 9.0139 5.4099

Gain Shift

Values in [dB] SDR SIR SAR

Source 1 [-2] 4.6773 29.3189 4.6973
Source 2 [0] 7.2820 21.8537 7.4645
Source 3 [0] 3.4742 9.0139 5.4099

Linear Filter 32 tap

Values in [dB] SDR SIR SAR

Source 1 4.4927 21.3322 4.6154
Source 2 7.7884 18.0198 8.2890
Source 3 3.6561 7.9749 6.3046

Table 7.1: Comparison of gain only, gain shift and linear filter allowed decomposition functions

time shift of maximum of two samples shift estimated by GCC-Phat. The time shift would
increase for higher distances between the microphones of the arrays. As for the linear-
filtering allowed decomposition, the values are slightly better than the values of gain only
and gain shift.
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7 Performance Evaluation

Beside the more appropriate measurement of the gain shift decomposition for real-world
audio recordings, another advantage of the gain shift decomposition is the lower complexity
compared to the linear filter decomposition, as no linear filter has to be estimated within
the decomposition.
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8 Experimental Results

In this section, we apply IVA on synthetic mixtures and audio mixtures, recorded in our
laboratory environment and a classroom environment. Performance of IVA is investigated
and discussed for different parameters of the IVA.

8.1 Experimental Setup

In this section, the different environments are described in detail. The original, unmixed
sound sources are male and female speech signals with 48 kHz sampling rate and 16 bit
quantization. Three different speech signals are played back by three loudspeakers that
are placed within a semi-anechoic chamber. The mixture is recorded by a linear array
that consists of three microphones with 5.5 cm spacing. Finally, the sound separation
experiment is conducted in the anechoic and echoic environment. For evaluation, each
source is recorded separately, before the mixture is captured by the microphones. Table
8.1 gives an overview of the environment and equipment we used for our experiments.

Throughout the experiment section, we use the following test data:

• Sound sources: speech of two Males and one Female

• Length: 10 s

• Mixtures recorded with 48kHz, downsampled to 16kHz for further processing

• Geometry: Loudspeakers aligned equidistant from the microphones at 40, 100 and
150 degree

8.2 IVA Cost functions and Convergence Speed

To enable a mobile robotic platform real-time sound processing, which is important for
quick responses of the robot to sound inputs, the sound source separation algorithm has
to be as fast as possible. Convergence speed of the separation algorithms therefore is an
issue. In this experiment, three sound sources were separated using SEND and SSL cost
function. In dependency of the numbers of iterations, the separation results are observed.
The results for one separated sound source is illustrated in Figure 8.1. We can see that
SSL converges very quickly and reliably, whereas SEND is slower and less reliable in terms
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8 Experimental Results

Source data 48kHz; 32bit
male and female speech
WAV-files of 10s length

Microphones (Mic) 3 x AVM MI 17/1928
Mic spacing 0.05m, uniform linear array
Amplifier MFA IV81 IEPE
Preamp GRAS-Type 26AC
Sound sources KS digital Coax C5-Tiny
DSP Hammerfall DSP Multiface II
Anechoic room (AR) 4.7 m x 3.7 m x 2.84 m
AR noise level <30 dBA
AR reverb. time t60 =0.08 s

Table 8.1: Information about the equipment used in our experiment.
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Figure 8.1: Convergence properties of SSL and SEND
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8 Experimental Results

of convergence. Concerning SDR, SIR and SAR values, SEND however enables slightly
better separation results.

Due to faster computation while reaching nearly the same separation performance, SSL
is more suitable for our scenario and thus we utilize the SSL costfunction in the following
experiments.

8.3 STFT Overlap and Window Type

To investigate the effect of the window function and the overlap within the STFT, sound
separation experiments are conducted with half-overlapping and 3

4 overplapping sine and
hann windows. As shown in Table 8.2, the results are nearly similar for the anechoic room

Sine Window, half overlapping

Values in [dB] SDR SIR SAR

Source 1 4.6773 29.3189 4.6973
Source 2 7.2820 21.8537 7.4645
Source 3 3.4742 9.0139 5.4099

Hann Window, 3
4 overlapping

Values in [dB] SDR SIR SAR

Source 1 5.4241 30.0074 5.4435
Source 2 7.4095 21.5994 7.6082
Source 3 4.1513 9.1765 6.2862

Table 8.2: STFT Impact on Separation

environment, while the sine windows benefit lower computational complexity qualifying the
sine windows for our robotic scenario.

8.4 Separation Results

In this section, we apply IVA with SSL cost function and half-overlapping sine windows on
a sound separation problem. The mixtures are recordings in an anechoic environment and
an echoic classroom environment.

The results can be seen in tables 8.3 and 8.4. We used podcast recordings of 10 s
length each from a public radio station.

Although we have negative values for the 3-source echoic case, listening tests revealed
that separation still took place for all sources which yielded positive SIR values. For nega-
tive SIRs, the outcomes mainly consisted of noise.
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8 Experimental Results

Anechoic Room

Values in [dB] SDR SIR SAR

Source 1 11.5096 40.3683 11.5156
Source 2 8.4271 25.8522 8.5176

Echoic Room

Values in [dB] SDR SIR SAR

Source 1 3.8114 14.0176 4.4156
Source 2 -2.0667 12.2217 -1.6490

Table 8.3: Separation Results for two sources

Anechoic Room

Values in [dB] SDR SIR SAR

Source 1 4.6235 28.9825 4.6450
Source 2 7.2817 21.9638 7.4595
Source 3 3.4172 8.9415 5.3670

Echoic Room

Values in [dB] SDR SIR SAR

Source 1 -2.1555 4.2178 0.3769
Source 2 -2.7026 3.3399 0.1933
Source 3 -7.1980 6.6388 -6.1624

Table 8.4: Separation Results for three sources
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9 Conclusion and Future Work

In this paper, IVA is applied on sound mixtures of anechoic and echoic recordings. In
contrast to frequency-domain ICA that treats all frequency bins separately, IVA assumes
dependence within the scalar frequency components which successfully aligns the sources
and prevents permutations with low computational complexity. Therefore, IVA is applicable
in teleconference and robotic hearing applications. Evaluation was carried out with non-
synthetic test data that was recorded in an anechoic room and an echoic seminar room.
As we consider mono-recorded sources as ground truth for the evaluation with the BSS-
Evaluation Toolbox, we propose a new decomposition function that allows for gain-shift
allowed distortions.
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