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Abstract—Pilot contamination limits the performance of a
multi-cell time division duplex system with a large number
of base station antennas. We study the potential benefits of
coordination during the training phase and we propose efficient
algorithms for practical systems. Our derivations are based on
results from asymptotic analysis and the practical relevance is
demonstrated by simulations with realistic system parameters.

I. INTRODUCTION

Recently, there has been an increasing interest in cellular
networks with a large number of base station antennas. This
so called massive MIMO concept promises high gains with
very simple signal processing methods [1], [2].

The high number of antennas makes channel estimation and
feedback very costly in a frequency division duplex (FDD)
system. Thus, most works on this topic assume time division
duplex (TDD) systems, where the estimation of the channel
takes place in an uplink training phase [1], [3]–[5]. That is,
the resources spent on pilots depend on the number of served
users, but not on the number of antennas at the base station.

For the very high antenna gains in these systems, the
performance is severely degraded by channel estimation errors
due to inter-cell interference in the training phase, so called
pilot contamination. It can be shown that this interference
ultimately limits the performance for uncoordinated base sta-
tions with a very high number of antennas and with favorable
propagation conditions, i.e., independently distributed channel
coefficients for each antenna [1], [3], [6]–[9]. A few methods
have been proposed to tackle the contamination issue in the
uncoordinated case [4], [9]–[11].

In this work, we study the coordination of pilots in the
uplink training phase. Previous work on this subject has been
done in [12], where a straightforward greedy algorithm is
proposed, based on the channel estimation error as perfor-
mance metric. This approach is based on a specific spatial
channel model that leads to low rank channel covariance
matrices. In contrast to this work, we use results from the
asymptotic analyses in [3] and [5] to formulate a combinatorial
network utility maximization (NUM) problem with respect
to the coordination strategy. Thus, our approach can handle
arbitrary covariance matrices and we can show an improved
performance even when the covariance matrices are scaled
identities. We analyze possible benefits from pilot coordination
by an optimal algorithm based on exhaustive enumeration
and provide efficient algorithms for training coordination in
practical systems.

II. SYSTEM MODEL

We consider a cellular network with L base stations, where
each base station has M transmit antennas and serves K
single antenna users. The number of base station antennas is
significantly larger than the number of simultaneously served
users per base station, i.e., K � M . We further assume that
the communication system is in TDD mode and that channel
reciprocity holds.

We consider a block fading channel model. Let hijk ∈ CM
denote the vector of complex channel gains from user k in
cell j to all antennas of base station i in one coherence block.
These vectors are pairwise statistically independent and each
vector channel is Gaussian distributed with zero mean and
covariance matrix Rijk ∈ CM×M . For ease of notation, we
collect the channel vectors of all K users in cell j to the base
station i as columns of the matrix Hij .

Let ρtr denote the effective training SNR and Ttr the number
of available pilot symbols, i.e., the available number of orthog-
onal pilot sequences. Under the assumptions that the training
takes place simultaneously in all cells and the reception is
synchronized, the received training signals at base station i
are given by

Wi =
√
ρtr

L∑
j=1

HijDj +Ni ∈ CM×Ttr (1)

where the orthonormal rows of Dj ∈ CK×Ttr contain the pilot
sequences for all K users in cell j and the entries of Ni are
assumed to be i.i.d. complex Gaussian distributed with zero
mean and unit variance.

III. CHANNEL ESTIMATION

If we reuse the same pilot sequences in all cells, i.e., Dj =
D̄ ∀j, and correlate the received training signals with the
pilots, we obtain the estimate due to D̄HD̄ = I,

Yi = Wi
1
√
ρtr
D̄H =

L∑
j=1

Hij +
1
√
ρtr
Ñi (2)

at base station i, that coincides with the least squares (LS)
estimate of the channelsHii, since the noise at the base station
antennas is white. Because of the orthonormal rows in D̄, the
transformed noise matrix Ñi = ND̄H still has i.i.d entries
with zero mean and unit variance.

We note that, even if we reuse the same pilot sequences in
each cell, the assignment of the pilots to the users influences



the channel estimation. The assignment can be modeled by
Dj = PjD, whereD ∈ CTtr×Ttr is a unitary matrix containing
the pool of orthonormal pilot sequences and Pj ∈ {0, 1}K×Ttr

is a matrix which describes the assignment of pilots to the
users in cell j with PjP T

j = I.
The modified expression for the LS estimates is given by

Yi = Wi
1
√
ρtr
DHP T

i = Hii +
L∑
j=1
j 6=i

HijPjP
T
i +

1
√
ρtr
Ñi.

(3)
Now the channel estimates still depend on the assignment
matrices Pj , even if we have Ttr = K, i.e., we reuse the
same Ttr pilot sequences in every cell.

Also note that we usually have D = I in many practical
systems and the pilot sequences represent the different orthog-
onal time-frequency blocks used for training.

For a more convenient notation of the following expressions,
we let Kl denote the set of all users (i, k), i.e., user k in cell
i, which are assigned to pilot l and let µ(i, k) denote the pilot
assigned to user (i, k).

If the second order information Rijk of the channel vectors
is available, the channel estimation can be improved by using
the minimum mean squared error (MMSE) estimator. The
MMSE estimates are given by (e.g., [5])

ĥiik = Riik

(
1

ρtr
I +

∑
(j,m)∈Kµ(i,k)

Rijm

)−1
yik (4)

where yik denotes the kth column of Yi from (3). Following
the notation introduced above, the set Pµ(i,k) contains all users
in the system that are assigned the same pilot as user k in cell
i. The estimates are distributed as ĥiik ∼ CN (0,Φik,ik) where

Φik,jm = Riik

(
1

ρtr
I +

∑
(c,n)∈Kµ(i,k)

Ricn

)−1
Rijm. (5)

analogous to the definition in [5].
Using the MMSE estimate can improve performance signifi-

cantly for certain assumptions on the channel covariances (cf.
[12]) at the cost of additional computational complexity for
the estimation process.

IV. LARGE SYSTEM RESULTS

In general, rate expressions for systems with imperfect
channel state information are difficult to handle. Thus, we base
our algorithms on large system results which lead to simple
analytical expressions. These large system rates are accurate
for a sufficiently large number of base station antennas.

A. Reverse Link

In the reverse link, or uplink, we use the results from [5]
for M,K → ∞ and M/K = α adapted for arbitrary
pilot assignment. For MMSE channel estimation and a simple
matched filter, the asymptotic signal to interference and noise
ratios (SINRs) are given in (8) at the top of the next page.

If we further assume M � K, i.e., α → 0, this can be
simplified to

γul
ik =

β2
ik,ik∑

(j,m)∈Kµ(i,k)
(j,m)6=(i,k)

|βik,jm|2
(6)

where βik,jm = limM→∞
1
M tr(Φik,jm).

We note that the interference and thus the achievable SINRs
can be influenced by the pilot assignments µ(i, k).

B. Forward Link

The matched filter expression for the forward link in [5] is
given for a joint normalization of the transmit power for all
users. We alter this expression by considering a per stream
normalization with potential power allocation to the streams
instead of the joint normalization in [5].

The resulting asymptotic expression is given in (9) where
ρik denotes the fraction of the total downlink power at base
station i allocated to user k in the same cell. The user m in
the last expression in the denominator is the user for which
µ(i, k) = µ(j,m), i.e., the user in cell j which is assigned to
the same pilot as user (i, k). If there is no such user in cell j,
there is no interference from base station j to user (i, k) due
to pilot contamination.

With M � K the expression simplifies to

γdl
ik =

ρikβik,ik∑
j 6=i

m:µ(i,k)=µ(j,m)

ρjm|βjm,ik|2/βjm,jm
. (7)

V. ASSIGNMENT PROBLEM

In the following, we will formulate a NUM problem based
on the asymptotic SINR expressions presented in the previous
section. Combined optimization with respect to both, the pilot
assignment and the downlink power allocation is out of the
scope of this paper and we assume equal power allocation to
all users, i.e., ρik = ρdl/K ∀i, k.

The general NUM problem formulated with respect to the
assignment matrices Pi is given by

max
P1,...,PL∈{0,1}K×Ttr

U(rul, rdl) s.t. PiP
T
i = I ∀i (10)

where U denotes the network utility function and rul/dl ∈ RKL
is a vector of the achievable rates rul/dl

ik = log2(1 + γul/dl
ik ) of

all users in the system.
The NUM problem is a combinatorial optimization problem

and as such hard to solve optimally. Note that the problem
can be relaxed by removing the integer constraint on the
assignment matrices. This is equivalent to directly optimizing
with respect to the pilot sequences Dj . However, the resulting
problem is non-convex and additionally there are several
practical difficulties with allowing arbitrary orthogonal pilot
sequences, such as feeding back the pilot sequences to the
users. For these reasons, we focus on efficient suboptimal
solutions to the combinatorial problem formulated in (10).



γul
ik =

(
1
M tr(Φik,ik)

)2
1

ρulM
1
M tr(Φik,ik) + 1

M

∑
j,m

1
M tr(RijmΦik,ik) +

∑
(j,m)∈Kµ(i,k)
(j,m)6=(i,k)

| 1M tr(Φik,jm)|2
. (8)

γdl
ik =

ρik
1
M tr(Φik,ik)

1
ρdlM

+ 1
M

∑
j,m ρjm tr(RjikΦjm,jm)/ tr(Φjm,jm) +

∑
j 6=i

m:µ(i,k)=µ(j,m)

ρjm
1
M |tr(Φjm,ik)|2/ tr(Φjm,jm)

(9)

VI. ALGORITHMS

A. Exhaustive Enumeration

To get an idea of the potential benefits of coordination,
we solve the NUM problem in (10) optimally by exhaustive
enumeration of all possible pilot assignments. For one cell,
the number of possible assignments is

K−1∏
k=0

(Ttr − k) =
Ttr!

(Ttr −K)!
. (11)

Note that we can fix the assignment of one cell without affect-
ing the performance. The total number of possible assignments
is thus (

Ttr!

(Ttr −K)!

)L−1
. (12)

For larger systems, the enumeration of all possible assignments
quickly becomes computationally intractable. Thus, we need
efficient algorithms to manage the training coordination.

B. Degradation Based Greedy Assignment

The first greedy algorithm we introduce is based on a
degradation measure as proposed in [13]. At each iteration
of the algorithm, we have a set of users which are already
assigned to pilots and a set of free users which still have to be
assigned. Initially, the users in one cell are assigned randomly,
while all other users are free.

The first step in each iteration is to calculate the utilities that
result from adding each of the free users to the set of assigned
users for each possible pilot. Then for each user calculate the
degradation, i.e., amount of utility that is lost, when the user
only gets the second best pilot.

The user which has the highest degradation, i.e., the user
which is most sensitive to the current assignment, is then
assigned to its best pilot.

To calculate the utilities for the assigned users the utility
function has to be separable, i.e.,

U(r) =
∑
(i,k)

Uik(rik). (13)

Each of the assigned users is in one of the sets K1, . . . ,KTtr

and the partial utility is given by

Ũ(K1, . . . ,KTtr ) =
∑

(i,k)∈
⋃
p Kp

Uik(rik) (14)

where the rates rik are calculated using the assignments Kp.

Formally we have the following steps. Let F denote the
set of unassigned users. For each unassigned user (i, k) ∈ F
Calculate the optimal pilot

p?ik = arg max
p∈Pi

Ũ(K1, . . . ,Kp ∪ {(i, k)}, . . . ,KTtr ) (15)

and degradation measure

dik = Ũ(K1, . . . ,Kp?ik ∪ {(i, k)}, . . . ,KTtr )

− arg max
p∈Pi,p6=p?ik

Ũ(K1, . . . ,Kp ∪ {(i, k)}, . . . ,KTtr ) (16)

where Pi denotes the set of still available pilots in cell i.
The selected user is then given by

(i?, k?) = arg max
(i,k)∈F

dik (17)

and is assigned to its optimal pilot

Kp?
i?,k?

← Kp?
i?,k?

∪ {(i?, k?)} (18)

Pi? ← Pi?\{p?i?,k?} (19)

F ← F\(i?, k?). (20)

These steps are repeated until all users are assigned, i.e., F =
∅.

C. Variance Based Greedy Assignment

The degradation based greedy algorithm still needs a lot
of SINR evaluations for each assignment. To further reduce
complexity, we propose another greedy algorithm, where we
use a heuristic to select the most sensitive user in a given
iteration. Namely, we select the unassigned user with the worst
average channel condition since this user is most likely to be
affected by inter-cell interference. Thus, we avoid the costly
selection process of the degradation based algorithm and only
have to search for the optimal pilot for the selected user.

D. Position Based Assignment

Another possible coordination strategy is based on the
observation that, with a simple geometric path-loss model,
weak users generate a large amount of interference in neigh-
boring cells, while strong users generate a small amount of
interference. This motivates a coordination strategy which is
only based on the positions of the users and that can be applied
in each cell separately.

Let us first assume we have Tp = K, a one dimensional
Wyner network where the cells are sequentially indexed with
i = 1, . . . , L and a sufficiently large number of uniformly
distributed users. The covariance matrices are scaled identities,



where the scaling factor is calculated with a simple distance
based path-loss model

σ2
ijk = σ2

0d
−α
ijk (21)

where dijk denotes the distance of user k in cell j to base
station i and α is the pathloss factor and σ2

0 is a constant
normalization factor.

Now we sort the users in each cell based on their distance
to the serving base station. In the odd cells, we assign pilot 1
to the strongest user down to pilot K for the weakest one. In
the even cells the assignment is done the other way round.

If we consider a cell edge user, the corresponding interfering
users in the two neighboring cells are approximately in the cell
center, i.e., the interfering users have twice the distance to the
serving base station compared to the cell edge user.

Let σ2
u denote the scaling factor of the user being served,

and σ2
i the scaling factor of the interfering users. Using (6)

we get the following asymptotic uplink SIR

γul
u =

σ4
u

1/ρtr+2σ2
i

2
σ2
uσ

2
i

1/ρtr+2σ2
i

=
σ2
u

2σ2
i

= 2(α−1) (22)

where we use the above approximation that di = 2du. In the
uncoordinated case, the worst case SINR is approximately 1/2
if the two interfering users of the neighboring cells are close
to the cell under consideration.

In a regular two dimensional network with hexagonal cells,
the approach has to be modified in a way that results in
three different compatible assignment strategies instead of two.
Then, we can ensure that there are no two neighboring cells
which use the same assignment strategy. The algorithm is
described in Algorithm 1. The basic idea is to divide the cells
into G disjoint sets where none of the cells in one set are
neighbors. Now, if the cells in one set put a weak user on a
certain pilot, the cells in the other groups should put a strong
user on the same pilot. That is, for every weak user we need
G− 1 strong users.

In the end, we sort the users again by channel quality
and assign to the pilots sequentially. If the pilot index is a
multiple of G plus the group index of the cell, we assign the
weakest unassigned user to this pilot. Otherwise, the strongest
unassigned user is used.

If the number of available pilots is actually larger than the
number of users per cell, we can further reduce the interference
for the weakest users by leaving the corresponding pilots
unassigned in the other cells.

VII. RESULTS

To demonstrate the potential benefit of coordinated training,
we first consider a cellular system with L = 3 cells, where
each cell serves K = Ttr = 5 users. The number of antennas
is set to M = 200, the cell radius is r = 1.6 km. The users
are uniformly distributed within the cells and the channel
covariance matrices are scaled identities. The scaling factor
is based on a geometric fading coefficient which is calculated
with the simple distance based path-loss model in (21) with a

Algorithm 1 Positioned based assignment for cell i
Require: σii,k ≤ σii,k+1 where σii,k = E[hH

iikhiik]
Require: number of groups: G
Require: group of cell i: gi
Require: number of users per cell: K
Require: number of pilots: Ttr
w ← 1 Weakest unassigned user
s← K Strongest unassigned user
o← Ttr −K
for p = 1 : Ttr do

if (p− 1) mod G = gi − 1 then
µ(i, w)← p
w ← w + 1

else if o > 0 then
o← o− 1

else
µ(i, s)← p
s← s− 1

end if
if w > s then

break
end if

end for

path-loss factor of α = 3.8. For the simulations, we consider
the uplink and downlink rates separately.

In Fig. 1, we see the empirical cumulative distribution
functions (CDF) of the users’ rates, for the uncoordinated
case (blue) and for the optimal coordination based on the
proportional fair utility (orange). In general, the coordination
increases the performance of weak users. We can see that the
asymptotic expressions from (8) and (9), which incorporate
the intra-cell interference, are very accurate for the weak
users and slightly pessimistic for the strongest users, while
the expressions for M � K are way off for the uplink case.

This is due to the large ratios of the geometric fading
coefficients between cell center and cell edge users, that can
be as high as 40dB in the considered scenario. To cancel
out intra-cell interference for cell edge users with a simple
matched filter, the number of antennas has to exceed the ratio
between the strongest interferer and the considered cell edge
user. That is, we need tens of thousands of antennas to reach
the asymptotic results of (6), which is unrealistic. This means
that pilot contamination is not actually the limiting factor in
this case.

However, if we reduce the intra-cell interference, e.g., by
not serving users with highly different channel gains simul-
taneously, by adding power allocation on the user side or by
using a more sophisticated filter, pilot contamination beomes a
significant factor again. To stay focused on the problem of pilot
coordination, we consider only the downlink in the following.

In the downlink, we do not have the same problem, i.e.,
high intra-cell interference for weak users, because the spatial
streams of all users of a base station are transmitted with equal
power following our assumptions. However, the asymptotic



0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

CDF of user downlink rates in Bit/s/Hz

results from (7)
results from (9)

system level simulation

(a) Downlink

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

CDF of user uplink rates in Bit/s/Hz

results from (6)
results from (8)

system level simulation

(b) Uplink
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results for M � K are still too optimistic for stronger
users. There is only a small gain in the average rate for the
coordinated case (around 4%), but we see that especially the
weak users benefit a lot from the coordination. For the results
shown in Fig. 1, we have a gain of around 40% for the fifth
percentile.

In Fig. 2, the simulation results are depicted for all pilot
coordination algorithms in the scenario considered above. The
performance of the greedy algorithms is close to optimal while
the position based method shows smaller gains.

In the following, we compare the proposed efficient algo-
rithms for a larger system with 21 cells in a wrap around
configuration. The other system parameters stay the same. The
greedy algorithms use the asymptotic expression in (9) and the
proportional fair utility.

In Fig. 3, we present the results for K = 10, where the
number of available pilots is the same as the number of users.
Note that the rates of the stronger users are only slightly
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affected by the coordination, i.e., the interference due to pilot
contamination is not a dominating factor for those users. In
this scenario, coordination with the variance based greedy
algorithm leads to a gain of around 50% for the fifth percentile.

In Fig. 4, we show the results for an increased number of
available pilots Ttr = 15. The position based assignment shows
significant gains in this case, but we have to keep in mind that
the additional pilot slots cannot be used for data and thus the
total throughput also depends on the coherence interval [14].

VIII. CONCLUSION

We proposed several methods to coordinate the pilot assign-
ment in a cellular network. System level simulations showed
a performance improvement as result of the coordination,
especially for weak users.

The position based assignment does not yield the best
performance. However, as the necessary computational cost
is little and the algorithm can be run independently on each
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base station, it is still worth considering. The greedy algo-
rithms offer significant gains and show the potential of pilot
coordination in larger systems.
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