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Abstract In this work we present Snookie, an autonomous underwater ve-
hicle with an artificial lateral-line system. Integration of the artificial lateral-
line system with other sensory modalities is to enable the robot to perform
behaviours as observed in fish, such as obstacle detection and geometrical-
shape reconstruction by means of hydrodynamic images. The present paper
consists of three sections devoted to design of the robot, its lateral-line sys-
tem, and processing of the ensuing flow-sensory data. The artificial lateral-
line system of Snookie is presented in detail, together with a simple version
of a flow reconstruction algorithm applicable to both the artificial lateral-line
system and, e.g., the blind Mexican cave fish. More in particular, the first
section deals with the development of the autonomous underwater vehicle
Snookie, which provides the functionality and is tailored to the requirements
of the artificial lateral-line system. The second section is devoted to the im-
plementation of the artificial lateral-line system that consists of an array of
hot thermistor anemometers to be integrated in the nozzle. In the final sec-
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tion the information processing ensuing from the flow sensors and leading
to conclusions about the environment is presented. The measurement of the
tangential velocities at the artificial lateral-line system together with the no-
penetration condition provides the robot with Cauchy boundary conditions
so that the hydrodynamic mapping of potential flow onto the lateral line can
be inverted. Through this inversion information is accessible from the flow
around the artificial lateral line about objects in the neighbourhood, which
alter the flow field.

Key words: Artificial lateral-line system, autonomous underwater robot,
blind Mexican cave fish, flow-field reconstruction, flow sensing, highly ma-
noeuvrable AUV, hot thermistor velocimetry, hydrodynamic image, subma-
rine dynamics

1 Introduction

Even if completely blind fish are able to locate obstacles and avoid them
under poor visual conditions (Dijkgraaf, 1933, 1963). Studies on the blind
cave form of Astyanax mexicanus and the closely related Astyanax jordani
(previously known as Anoptichthys jordani) show that these fish are able to
detect and also discriminate objects, if gliding past or towards them at close
distance. The objects are perceived by means of the lateral-line organ, which
is distributed along the body of the fish and responds to the movement of the
water relative to the fish’s skin (Van Trump and McHenry, 2008; Mogdans
and Bleckmann, 2012). The presence of objects leads to an alteration of the
flow field around the fish, which creates a “hydrodynamic image” (Hassan,
1989) of the surroundings on the fish’s body.

On the basis of behavioural experiments some of the tasks the lateral sys-
tem is involved in and some of the features of stimuli that are reconstructed by
the lateral-line system have been identified. For most objects moving towards
the lateral-line system at some distances the flow field may be approximated
by that of a dipole – a moving sphere of equal volume (Howe, 2006, pp. 24) –
since higher multipoles decrease much more rapidly with increasing distance
to the moving object. It has been shown that goldfish and mottled sculpin
are able to determine the position of the dipole (Coombs, 1994). Mottled
sculpins respond to the presentation of an oscillating sphere as lowest-order
representation of the flow field of prey with hunting behaviour and a strike
towards the dipole source (Coombs and Conley, 1997a; Conley and Coombs,
1998; Coombs et al, 2001; Coombs and Patton, 2009). Experiments carried
out on goldfish (Vogel and Bleckmann, 2001) suggest that fish are in principle
also able to distinguish the direction of motion, speed, shape and size of solid
objects. As a natural example schooling can be done solely by perception of
the flow fields of neighbouring fish (Partridge and Pitcher, 1980).
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The blind cave form of Astyanax mexicanus can detect, avoid, and also
discriminate objects, when gliding past or towards them at close distance
(Teyke, 1985; Hassan, 1986; Windsor et al, 2008). For the blind Mexican
cave fish, on the basis of behavioural experiments (von Campenhausen et al,
1981; Weissert and von Campenhausen, 1981; Hassan, 1986), there is no
doubt about its elaborate capabilities sensing its environment by means of
the lateral-line system. Although it is not quite clear what the capabilities of a
lateral-line system really are and what tasks it can be used for, the example
of the blind Mexican cave fish shows that it is obviously possible to make
vital decisions based solely on information mediated by the surrounding fluid
motion.

Flow sensing is usually split up in either the reception of a vortex structure
or the reception of irrotational flow. Major objects moving in water produce
a wake provided that they are not streamlined. In a large range of Reynolds
numbers, the wake releases vortex structures, which are called von Kármán
vortex street. Especially the strokes of the tail fin of fish leave behind promi-
nent flow structures. These vortex structures mark the trace of swimming fish
for quite a while (Hanke et al, 2000; Hanke, 2004). Because of the low viscos-
ity and the high mass of water, vortices are quite stable and may remain up to
several minutes. Catfish have been shown to sense the vortex street with the
lateral-line system during prey capture (Pohlmann et al, 2001, 2004). Wake
tracking can in principle also be done by other flow sensory systems such as
the whiskers of harbour seals (Dehnhardt et al, 2001; Wieskotten et al, 2011).
While the mapping of a vortex on the fish’s lateral-line system is understood
quite well (Franosch et al, 2009), it is a non-trivial task to determine the
properties of the vortex-producing object (Akanyeti et al, 2011).

The flow field of these vortex structures – seen from the perspective of
extracting information – is completely different from the flow field, e.g., the
blind Mexican cave fish produces (Handelsman and Keller, 1967; Geer, 1975;
Hassan, 1985, 1992a,b, 1993) to sense its environment. The flow field in front
of and besides the blind Mexican cave fish may be treated irrotational as long
it is moving through nearly undisturbed water. The vorticity produced by the
action of viscosity at the surface of the fish is convected to the rear with the
incident flow. This is usually expressed by a high Reynolds number in front of
the fish resulting in a inviscid and irrotational region of flow around the snout
well described by a velocity potential Φ for the incompressible Euler equations
(Panton, 2005; Oertel and Mayes, 2004). Of course, the frequencies and the
velocities involved in the problem guarantee incompressibility at every time.

Any object in the near surrounding disturbs the flow field on the surface of
the fish compared to open water, the hydrodynamic image. The properties of
a hydrodynamic image of a moving body mapped through an incompressible
inviscid irrotational fluid are discussed in (Sichert et al, 2009) by performing
a multipole expansion of the flow field of varying shapes. The flow field is
measured by a transparent artificial lateral line, meaning that the presence
of the artificial lateral line does not disturb the flow field of the moving body.



4 Authors Suppressed Due to Excessive Length

Then from the estimated multipole moments basic information about the
shape of the moving body is extracted, e.g., the volume is represented by
the dipole moment. The conclusions are that – given a realistic resolution of
the lateral-line sensors – the upper bounds for the range of localisation and
shape reconstruction are roughly the size of the lateral-line system and the
size of the moving object. The hydrodynamic image therefore only provides
information about the environment in a very close range.

The present project of Snookie aims at the integration of an artificial
lateral-line system (ALL) to a technical system, more specifically an under-
water robot. Transferring the mentioned capabilities of the lateral-line organ
to a robotic system would be beneficial in a number of ways. It complements
existing established sensor technology. For instance, sonar sensors have a min-
imum distance at which to measure, with a blind zone within that distance,
whereas camera- or laser-based systems are dependent on visual conditions.
Its function is passive in the sense that it uses information that is present
anyway due to the physics of bodies moving in water. The motion control
of a group of several platforms equipped with flow sensory systems is pos-
sible without sensor interference or the need for data exchange. Also reflec-
tions, like with sonar systems in narrow spaces, do not interfere with the
measurement. Moreover, the mapping of the hydrodynamic properties of the
environment is enabled. As will turn out in the course of this work, recon-
struction of the environment is doable with little computational effort. An
explicit mathematical description of the underlying algorithms is presented.

From the constraints of the hydrodynamic image severe requirements fol-
low for the implementation of an ALL on a moving robot. The lateral-line
sensors must be capable of detecting small, slowly varying (Bleckmann et al,
1991) changes in the comparably strong flow field around the moving robot.
The information processing must be very fast to enable the robot to react
on detected changes of the immediate environment and the robot must be
highly manoeuvrable in order to change the state of motion appropriately
within this narrow range.

2 Related Work

Research on ALLs, the processing of the sensory data and the transfer to
technical systems is not a completely new idea, but faces some inherent chal-
lenges, which are still to be solved. The biomimetic process covered in this
work can be separated into three different stages: the development of an ALL
(Sec. 4) the design of a robot for it (Sec. 3) and the process of acquiring in-
formation about the environment for the robot (Sec. 5). Each stage has been
subject to previous or parallel research on the topic, which will be related to
the proposed approaches in the following. The first stage is to build a sensory
system that can mimic the function of the lateral-line system.
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The basic functionality and morphology of the lateral-line system is well
known (Coombs and van Netten, 2005; Bleckmann, 2008; Bleckmann and
Zelick, 2009). However, the exact transfer from the hydrodynamic stimulus
to the excitation of the sensor (Coombs et al, 1996; Curcić-Blake and van
Netten, 2005; van Netten, 2006; Goulet et al, 2008; McHenry et al, 2008),
the resulting neuronal signals (Coombs and Conley, 1997b; Engelmann et al,
2002; Chagnaud et al, 2006), and their processing is still under investiga-
tion (Kröther et al, 2002; Plachta, 2003; Engelmann and Bleckmann, 2004;
Bleckmann, 2008; Künzel et al, 2011; Meyer et al, 2012).

This means that so far attempts to rebuild the lateral-line system can
only lead to an approximation or abstraction of the biological counterpart.
For air, building biomimetic flow sensors is significantly simpler due to the
properties of the medium, especially the viscosity and conductivity. Research
in biomimetic flow sensing is driven by the upcoming interest in insect-like
microflight. A review on different technologies in this sector is given by Mo-
tamed and Yan (Motamed and Yan, 2005) highlighting sensor design and
experiments. The focus is on the determination of forces acting on the micro-
robot as a feedback for control. One step further in terms of object/stimulus
localisation are projects utilising arrays of biomimetic hair cells (cilia) as
sensors. Work by Izadi et al (2010) and Dagamseh et al (2013) shows the
localisation of a dipole source – a vibrating sphere – in air by measuring
the deflection of artificial hair sensors. The deflection of the hair induces a
capacitive change in the hair base of the sensor, which can be related to
the flow velocity. Other artificial cilia are based on the piezoelectric effect,
for example with polyvinylidene fluoride fibers (PVDF) (Li et al, 2010). The
sensors are either used as surface neuromasts (Liu, 2007; Hsieh et al, 2011;
Qualtieri et al, 2011), or integrated in a canal (Yang et al, 2011; Klein and
Bleckmann, 2011; Klein et al, 2011, 2013). Both approaches can in principle
be used for dipole localisation (Nguyen et al, 2011; Yang et al, 2011). An
extension of the cilia approach is encapsulating them with a hydrogel cupula
(Peleshanko et al, 2007). While biomimetic cilia might come close to the bi-
ological source of inspiration, the robustness, manufacturing complexity and
signal-to-noise ratio are still challenges that prevent the application in an
autonomous underwater vehicle.

A different approach for underwater sensing is to use thermal transport as
a means for detecting the flow velocity. Hot-wire anemometers have been used
for measuring flow velocities in gases and fluids (Middlebrook and Piret, 1950)
for a long time, but advances in the miniaturisation make them applicable
to ALLs. First trial runs were done by Coombs et al (1989), as a means of
“measuring water motions used in stimulating the mechanosensory lateral-line
system of a teleost fish”. Micromachined arrays of hot-wire elements show the
ability of localising dipole sources as good as biomimetic cilia (Chen et al,
2006; Yang et al, 2006; Pandya et al, 2007; Yang et al, 2010).

Only recently, there have been some works on the integration of ALLs or
comparable sensors on underwater robots. A general overview on the state
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of underwater robotics is given by Kinsey et. al. (Kinsey et al, 2006) and
Nicholson (Nicholson and Healey, 2008). Hsieh et. al. describe the implemen-
tation of PVDF sensors on a robotic fish, in which the robot is supposed to
sense pressure deviations due to the presence of a wall (Hsieh et al, 2011).
The modelling of the wall presence is done with an image charge method that
is similar to the method proposed in (Sosnowski et al, 2010). Fernandez et al
place a pressure sensor array along a submarine dummy (Fernandez et al,
2007, 2009, 2011). Using principal component analysis, two different cross
section shapes (round and square) can be classified if the object is moved
along the dummy.

Classification of a sensor reading proofs the usability of a sensory concept.
For the usage of an ALL in an a priori unknown environment a minimal
number of assumption about the environment is desirable to process the
sensory data. A much more general method is required, to extract shape and
location of unknown objects.

Studies focused on the Mexican cave fish usually only consider the for-
ward problem, modelling the stimulus that occurs from the hydrodynamic
interference with objects on the fish’s body (Hassan, 1985, 1992a,b, 1993;
Windsor et al, 2010a,b). To utilise data gathered from the sensors on the
robot and to obtain information about the environment the inverse problem
has to be solved. Attempts to reconstruct the environment from the hydro-
dynamic image so far are limited to special cases with strong assumptions or
prior knowledge about the environment.

The previously mentioned estimation of multipole moments of a 3-dimen-
sional (3D) moving body requires exactly one body moving though an un-
bounded inviscid incompressible fluid initially at rest. The flow velocities are
measured by a transparent – or more accurately, virtual – flow sensory sys-
tem, which may not disturb the flow field of the moving body by its presence.
Position and multipole moments up to order three are estimated simultane-
ously by means of a maximum-likelihood estimator given the flow velocities
measured by the virtual lateral-line system. The generalisation to further in-
corporate an estimate of the velocity of the moving object is straightforward.
The moving object may move in an arbitrary fashion.

A similar analysis has been carried out by Bouffanais et. al. (Bouffanais
et al, 2010) for the 2-dimensional (2D) pressure field of the stationary poten-
tial of one body. The pressure is successively approximated by substitution
of the leading terms of a Laurent series for the complex velocity potential in
the stationary Bernoulli equation. This allows to discuss the dependence of
pressure on distance and shape of the moving object. As an advantage, the
method provides an estimate of the position and orientation of the object
independent of its shape.

Quite often, the shape of one object – usually a sphere – moving relative
to the physical present flow sensory system is assumed to be known. The
position of the dipole can then be extracted easily from its hydrodynamic
image (Coombs and van Netten, 2005; Curcić-Blake and van Netten, 2006;
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Franosch et al, 2005; Pandya et al, 2006; Goulet et al, 2008). In Sec. 5 a more
general method is presented that can deal with arbitrary solid stationary
boundaries. The method is applicable to quasi-2D incompressible, inviscid
and irrotational flow around the lateral-line system.

3 The Autonomous Underwater Vehicle Snookie

The submarine Snookie is an autonomous underwater vehicle (AUV) specif-
ically designed as a test bed for the ALL. In this section, the concept of the
robot is presented and a brief overview of its structure is given.

Special care has to be taken of the dynamics due the limited range of view
of the lateral-line system. The robot must be capable of precise motion in the
close vicinity of other objects at a distance of typically the diameter of the
snout. Therefore, high manoeuvring capabilities are crucial. It must also be
able to react on the sudden appearance of other objects in the range of view.
A careful design of the hull, the fins, and the thruster arrangement, driven
by an accurate physical model of its dynamics is required, which also serves
the tuning of the controllers of motion.

One of the most important design considerations concerns the shape of
the robot. Not only must the components of the robot fit inside, but the
outline has direct influence on the functionality of the ALL. The expected
sensing quality is dependent on the hydrodynamic properties of the shape of
the robot, which determine the properties of the flow field of the surrounding
fluid. A good compromise between ease of realisation, a simple mathematical
treatise, and the quality of the hydrodynamic image is a cylindrical shape
with hemispheres as caps on both ends.

The sensors of the ALL are intended to be placed in a cross in allocated
mountings in the front sphere. They extend 2-3 mm above the surface to
avoid boundary layer effect introduced by the surface of the hull. The spher-
ical shape of the sensory system allows to perform approximative analytic
calculations – see Sec. 5.

3.1 The Robot

The robot consists of a cylindrical watertight main compartment, in which all
of the electronics is encapsulated, two half-spheres at the end of the cylinder
and six thrusters. It has a total length of L = 74 cm and a diameter of
2R = 25 cm. The overall mass is 32.234 kg including the flooded bow and
stern, which can be fine tuned to match the water displacement of the robot
for neutral buoyancy.
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Fig. 1: Snookie, an autonomous underwater vehicle with an artificial lateral-
line system.

To achieve high manoeuvrability, a helicopter-like multi-propeller propul-
sion system is adapted from the AMOUR V robot (Vasilescu et al, 2010).
The basic layout incorporates four thrusters arranged in a symmetric cross
in the stern pointing in forward direction – see Fig. 2. This allows direct
control over the forward/backward movement along the robot’s longitudinal
axis, the pitch angle and the yaw angle. All four motors work in combination
for acceleration/deceleration. Additionally two vertically mounted thrusters
control depth and the roll angle.

A low-level control unit, based on an autopilot board by Ascending Tech-
nologies, is the central hub for the embedded systems and controls the 6-
dimensional (6D) motion underwater. It consists of two 60 MHz ARM7 RISC
processors; one of them is freely programmable. The other one combines three
micro-electro-mechanical systems (MEMS) gyroscopes, a three-axis accelera-
tion sensor, a three-axis magnetometer, and a pressure sensor to an inertia-
force-measurement unit and pre-processes the data from these sensors.

The command unit of the high-level control can utilise this angular and
translational data over a direct on-board link. The high-level control is done
on a standard personal computer in a small form factor integrated in the
robot. It provides the Robot Operating System (ROS) infrastructure to decide
on the desired speed and direction, the processing of the sensor data, object
avoidance and recognition, data logging and interfacing to command and
control.

A land-based station can be used to monitor the status of the robot and
to give new commands. Direct control of the movement of the robot is also
possible via either a wiiMote, Joystick or keyboard. The robot can operate
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tethered via a Cat5 Ethernet cable for a high bandwidth communication.
Alternatively for untethered operation the link between command and control
and the robot can be established via an acoustic modem by Tritech.

The ALL is described in detail in Sec. 4. The flow sensors are arranged in
two equidistant array arranged to a cross on the frontal hemisphere with 17
sensors in total.

3.2 Model of the Dynamics of Snookie

As mentioned in the introduction to this section, for a proper design and
control of the robot capable of manoeuvring on the basis of flow sensing, a
careful description and analysis of the dynamics is crucial. Estimating the
forces acting on a body in a fluid is a non-trivial problem. The traditional
approach to describe the dynamics of bodies moving in fluids is an approxi-
mative analytic one. Such an approach delivers correct estimates of orders of
magnitude and reasonable bounds of the relevant forces.

To avoid both, additional contributions due to the wave drag and com-
plications in the calculation of the flow field due to a nonlinear boundary
condition at the force-free surface, the robot is assumed to dive sufficiently
deep. This condition is met in good approximation at a depth larger than
five times the diameter of the moving object (Brennen, 1982, Sec. 3.8) below
an undisturbed water surface. The forces acting on the body are empirically
split up into contributions of viscous drag, pressure drag (also called form
drag), lift, and increased inertia expressed by added masses as a consequence
of the acceleration of displaced fluid. The viscous and pressure drag contri-
butions may be considered as corrections due to viscosity of the stationary
motion of a body in an ideal fluid, which otherwise would not experience any
forces. The lift contribution stems from lifting surfaces with sharp trailing
edges such as the fins. This decomposition is actually an attempt of a low
order series approximation in velocity and acceleration of the forces acting
on a body moving in an infinite viscous fluid initially at rest. In general, the
drag as well as fluid inertia depend on the current and previous velocity and
acceleration (Obasaju et al, 1988). Additional effects like Basset forces and
drag and lift forces, arising from the shedding of vortices, which in princi-
ple can be accounted for by a semi-analytic model, are ignored throughout
this work. The velocities and time constants of the motion of the robot, of
course, guarantee incompressibility at any time. In the following subsections
the force components are described and computed for Snookie.

All quantities measured and all action performed by the robot are with
respect to the coordinate system of the robot, the body-fixed system (BFS).
However, for self localisation, path planning and navigation, the robot also
requires its own velocity and position, and the position and velocity of sur-
rounding objects in a global frame, the frame of reference (FOR). It provides
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an inertial system with the undisturbed fluid at rest. In the following sec-
tion both frames, the relevant kinematic and dynamic quantities, and their
transformations are briefly introduced.

3.2.1 Coordinate Frames of Reference

A suitable coordinate system for the description of the environment of
Snookie, the FOR {eX , eY , eZ}, is fixed in space. It is an orthonormal in-
ertial system. Stationary objects like the walls of a basin, which enter the
fluid mechanics as boundary conditions, are fixed in space and therefore in-
dependent of time. The coordinate system is defined in a way, such that the
directions eX and eY are in the plane of the undisturbed water surface and
eZ is in positive direction pointing downwards into the fluid.

Fig. 2: Left : Frame of reference {eX , eY , eZ} and body-fixed system
{ex, ey, ez} with origin O at the geometric centre of the hull. Right : Ge-
ometry of the fluid-mechanically active parts of the robot with equivalent
fin and equivalent hull without the thrusters. Bottom: Arrangement of the 6
thrusters in the body-fixed system of the robot.

The second coordinate system is the BFS, see Fig. 2. It is prescribed by
the robot, a rigid body, carrying out arbitrary motion relative to the labo-
ratory system. The system is orthonormal. It is defined by the basis vectors
{ex, ey, ez}. The orientation of the basis vector ex of the BFS shall coincide
with the longitudinal axis of Snookie pointing to the bow, the ey direction
points to the starboard side, and ez is given by their cross product. The
natural choice for the position of the origin O of the BFS, expressed in co-
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ordinates of the FOR by the vector O, is the centre of mass of a rigid body,
since no coupling between rotational and translations degrees of freedom in
the equations of motion (4) occurs in this system in the sense that resultant
forces only affect the translational momentum and resultant torques only the
angular momentum. For now, the real position of the centre of mass of the
robot is unknown. A good choice for O is in the centre of volume of the
hull of the robot. All quantities measured by devices on-board of Snookie
are provided in the BFS. The state of a rigid body is fully described by the
location and orientation of the BFS relative to the FOR. In order to clearly
distinguish between a quantity expressed in the FOR and the same quantity
in the BFS, capital symbols are used for coordinate vectors and matrices in
the FOR {eX , eY , eZ} and lower symbols for the BFS {ex, ey, ez}.

The BFS may be rotated against the laboratory system, which is described
by a modified set Φ = (Φ,Θ, Ψ) of implicit Euler angles (Tait–Bryan angles).
If the orientation of the body and the body-fixed basis vectors were initially
parallel to the ones of the FOR, the following procedure describes the rotation
of the body at a given instance of time. Rotate around eZ about the yaw angle
Ψ onto {e′X , e′Y , eZ} with −π < Ψ ≤ π. Next, perform a rotation around e′Y
about the pitch angle Θ onto {ex, e′Y , e′Z} with −π2 ≤ Θ ≤ π

2 and finally
rotate around ex about the roll angle Φ onto {ex, ey, ez} with −π < Φ ≤ π.
Then, the rotation R of a vector from the FOR to the BFS is given by

R =

1 0 0
0 cosΦ sinΦ
0 − sinΦ cosΦ

cosΘ 0 − sinΘ
0 1 0

sinΘ 0 cosΘ

 cosΨ sinΨ 0
− sinΨ cosΨ 0

0 0 1

 (1)

and its inverse by R−1 = RT . The definition of the Euler angles depends
on the order in which the transformation is carried out and finite rotations
are therefore not commutative. The angular velocities are computed from the
Euler angles (Lewandowski, 2003) by

Ω =

1 0 − sinΘ
1 cosΦ sinΦ cosΘ
0 − sinΦ cosΦ cosΘ

Φ̇Θ̇
Ψ̇

 . (2)

The total time derivative of a vector-valued quantity in an accelerated system
expressed in BFS coordinates is given by

D

Dt
=

d

dt
+ ω× (3)

with ω = RΩRT . The additional term ω× stems from the time derivative
of the basis vectors of the accelerated BFS.
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3.2.2 Rigid-Body Motion

As will be seen in Sec. 3.2.4, the fluid-mechanical forces on the body due to
acceleration in an ideal fluid can be formulated in the framework of rigid body
dynamics. Before the forces on the robot exerted by the fluid are treated in
depth in the following sections, the inertial forces of the rigid body due to its
body mass in the BFS shall be briefly introduced.

The velocity V of the origin O of the BFS expressed in coordinates of the
BFS is denoted by v, the angular velocity Ω of the BFS about O by ω, the
acceleration V̇ of O by a, the angular acceleration by Ω̇ and α, the moments
of inertia I of the rigid body computed about its centre of mass by ι, and
the position of the centre of body mass relative to O by ρM . The mapping
between the two systems is given by O, Φ = (Φ,Θ, Ψ)T , (1), and (2).

Instead of formulating the inertial force f I and inertial torque tI as a sum
or integral over the inertial forces acting on each particle, especially in case of
changing masses, it is easier to take the total time derivative of the momentum
m = m (v + ω × ρM ) and the angular momentum l = ιω+m s× (ω × ρM ),
where m is the body mass and ι is the moment of inertia computed about
the centre of mass ρM relative to O, which results in(
f I

tI

)
=

(
m1 −mρM×

mρM× ι−mρM× ρM×

)(
a
α

)
+

(
ω×mv

ω × (ι−mρM× ρM×)ω

)
,

(4)
whereby the totally anti-symmetric matrix representation

c× =

 0 −c3 c2
c3 0 −c1
−c2 c1 0

 (5)

of a cross product c× is used. Any other location of the origin of the BFS
than the centre of mass couples linear and angular motion. Equation (4)
incorporates Steiner’s theorem (Meirovitch, 2004) – also called parallel axis
theorem – through the transformation of the moments of inertia ι−mρM×
ρM×. With shifted centre of mass an external force resultant not only changes
the velocity of the BFS but also induces a change in angular velocity. The same
holds true for an external torque resultant.

The equations of motion (4) describing the change of momentum and an-
gular momentum may be further unified to a single equation in a very com-
pact notation, which will be extended in the following section to incorporate
fluid-mechanical forces acting on the robot. By definition of the 6×6 mass
matrix

λ =

(
m1 −mρM×

mρM× ι−mρM× ρM×

)
, (6)

the anti-symmetric 6×6 matrix



Snookie 13

$× =

(
ω× 0
0 ω×

)
, (7)

where ω× denotes the anti-symmetric 3×3 matrix representation (5) of the
cross product, the generalised 6D velocity vector u = (v,ω), and the gener-
alised 6D force vector f =

(
f I , tI

)
, the equations of rigid body motion without

external forces then yield

fI =
Dλu

Dt
=

dλu

dt
+$ × λu = 0 . (8)

3.2.3 Motion in an Ideal Fluid

Inertia forces cannot be neglected in comparison to drag forces. However, not
only the robot itself but also the fluid displaced by the robot needs to be
accelerated. The contribution of the displaced fluid to inertia in general de-
pends on the flow field around the robot, which in turn depends on the initial
state of the surrounding fluid, the shape of the moving body, the surrounding
boundary conditions and in general on the Reynolds number. Some of the
difficulties can be rendered inactive by a proper choice of the settings. Snookie
is supposed to move through an unbounded fluid that is initially at rest. For
the almost symmetric flow field around an ellipsoid without distortion by the
thrusters, a good and straightforward mathematical description of the forces
acting on the accelerated robot is available (Lewandowski, 2003).

For the case of a rigid body moving with translational velocity V and
rotational velocity Ω through an inviscid, incompressible, and unbounded
fluid D initially at rest, the velocity U = ∇Φ of the fluid is fully described by
the velocity potential Φ fulfilling (Lamb, 1945)

∆Φ = 0 (9)

on D and the no-penetration condition

dΦ

dN

∣∣∣∣
S

= (V +Ω ×R) ·N (10)

at any point R on the surface S of the rigid body and the corresponding unit
surface normal N inward D. The velocity potential is supposed to vanish at
infinity. Following the naming conventions from Sec. 3.2.1, capital symbols
denote quantities with respect to the FOR. Therefore, R andN are functions
of time. The time course of Φ is solely given by the right hand side of (10).
The potential Φ is a linear function of the velocity of the surface of the moving
body.
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3.2.4 Added Masses

The linearity of (9) and the linearity of Φ in the translational and rotational
velocities of the body (10) allows to separate the potential into

Φ = VXϕ1 + VY ϕ2 + VZϕ3 +ΩXϕ4 +ΩY ϕ5 +ΩZϕ6 . (11)

After the separation, given the setting described in Sec. 3.2.3, the harmonic
functions ϕi do not depend on the velocity of the moving body any more,
just on its shape, since

dϕi
dN

∣∣∣∣
S

= Ni for i = 1, 2, 3 and
dϕi
dN

∣∣∣∣
S

= (R×N)i−3 for i = 4, 5, 6 , (12)

and the choice of the coordinate system they are computed in. For the a
simpler notation the translational and rotational velocities are gathered in
the 6D velocity vector U = (V ,Ω) as in Sec. 3.2.2, and the potential is given
by

Φ =

6∑
i=1

Uiϕi . (13)

The kinetic energy stored in the flow field ∇Φ around the moving body

T =
1

2
%

∫
D
|∇Φ|2 dV

can be rewritten using Green’s second identity as T = 1
2λijUiUj with the

coefficients
λij = −%

∮
S

∂ϕi
∂N

ϕjdS . (14)

The effects of the ideal incompressible irrotational fluid on the motion of
the body are fully accounted for by additional inertia λij (Kirchhoff, 1870;
Korotkin, 2010), the so called added-masses.

3.2.5 Added Mass Matrix under Coordinate Transformations

For the sake of simplicity, the added mass matrix λ is computed with respect
to the point of maximum symmetry. It is usually necessary to adapt λ to a
given geometry, e.g., shift the axis of rotation, since other constraints such as
the choice of the origin of the BFS force the body to rotate around a different
point than the one assumed for the computation of the added masses.

The kinetic energy of the flow field around the body must be invariant
under a change of the coordinate system the added masses are computed
in. All the summands are quadratic forms of the velocities. The idea of the
derivation of the transformation formulas for the added masses is to express
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the kinetic energy of the flow field in a new coordinate system and collect all
term of a certain product UiUj . The coefficients are the added masses in the
new system.

In the most general case the new system {ex, ey, ey} is shifted by the
vector ξ, moves with velocity V , and rotates about its origin with angular
velocity Ω relative to the old system {eX , eY , eZ}. Due to the analogy to the
transformation between a FOR and a BFS, the same notation as in Sec. 3.2.2 is
used. The added masses shall be known in the system {eX , eY , eZ}, and are
supposed to be determined in {ex, ey, ey}. The velocity expressed in coordi-
nates of the new system is given by u = R(V +Ω× ξ) with rotation matrix
R as defined by (1). Again, 6D vectors are used to express the velocity of the
new system in coordinates of the old U = (V ,Ω) and new u = (v,ω) sys-
tem. Written component-wise the transformation of the velocity and angular
velocity is given by

Ui=1..3 =

3∑
m=1

umRmi − εijkΩjξk and U3+i =

3∑
m=1

umRmi for i = 1, 2, 3

with the Levi-Civita symbol εijk, and the transformation matrix Rmn =
e′m · en, where m ∈ {x, y, z} and n ∈ {X,Y, Z}.

The transformation of the added masses turns out to be quite simple, if
the coordinate transformation consists of just a shift about ξ, i.e. a shift of
the axis of rotation by −ξ, and if the added mass matrix to be transformed
has diagonal shape. This means that the original mass matrix was computed
about the centre of the fluid-mechanical forces acting on the body and the
axes of the BFS coincide with the principal axes of the moment of inertia
submatrix of the added mass tensor. The transformation directive becomes
λ′mn = λmn for m = n = 1, 2, 3; λ′15 = −λ11ξ3, λ′24 = λ22ξ3, λ

′
34 = −λ33ξ2,

λ′35 = λ33ξ1, λ′16 = λ11ξ2, and λ′26 = λ22ξ1 for m = 1, 2, 3 and n = 4, 5, 6
or m = 4, 5, 6 and n = 1, 2, 3; λ′44 = λ44 + λ22ξ

2
3 + λ33ξ

2
2 , λ′45 = −λ33ξ1ξ2,

λ′46 = −λ22ξ1ξ3, λ′55 = λ55 + λ33ξ
2
1 + λ11ξ

2
3 , λ′56 = −λ11ξ2ξ3, and λ′66 =

λ66 + λ11ξ
2
2 + λ22ξ

2
1 for m = 4, 5, 6 and n = 4, 5, 6. Any entry not covered

by the symmetry of λ and not listed vanishes. A careful comparison of the
transformed added masses with the inertia of a rigid body (4) shows, that
the added masses behave like body masses in every way. These properties of
the added masses are a consequence of the fact, that the potential of the flow
field around the moving rigid body is a linear function of the translational
and rotational velocity of the moving body.

In Sec. 3.2.9 the total inertia of Snookie will be composed from the body
mass and inertia and the added masses of independent geometrical primitives,
resembling the fluid-mechanically active parts of the robot – see Fig. 2, using
these transformation directives for added masses.
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3.2.6 Forces on the Hull

As discussed in section Sec. 3.2.4, the favourable system to compute the added
masses is a body-fixed frame of reference using all available symmetries. For
the purpose of computational simplicity we shall approximate the trunk of
Snookie by a prolate spheroid with long axis 2aH and short axis 2bH , whose
axis of revolution lies along the x-axis, with a being the semi-length of the
axis and b the radius in the equatorial plane at x = 0. Then, the added masses
with respect to the geometric centre of the ellipsoid are given by (Newman,
1977, pp 144)

mH1 : = λ11 =
4

3
π%aHb

2
H

αH
2− αH

, mH2 := λ22 = λ33 =
4

3
π%aHb

2
H

βH
2− βH

,

ιH : = λ55 =
4

3
π%aHb

2
H

(
a2H + b2H

) e4 (βH − αH)

(2− e2) [2e2 − (2− e2) (βH − αH)]
,

λ66 = λ55 , λ44 = 0 , and λij = 0 for i 6= j , (15a)

where

αH =
2(1− e2)

e3

[
1

2
ln

(
1 + e

1− e

)
− e
]
, βH =

1

e2
−
(

1− e2

2e3

)
ln

(
1 + e

1− e

)
,

e2 = 1−
(
bH
aH

)2

. (15b)

The parameters aH and bH are chosen so that, first, the volume VE =
4/3aHb

2
H of the prolate spheroid is equal to the volume of the trunk of Snookie

consisting of the water tight cylinder and the two semi-spheres at the bow
and the stern. And second, the surface of the ellipsoid

SE = 2πb2H +
2πaHbH√

1− b2H
a2H

sin−1

(√
1−

b2H
a2H

)

has to be equal to the surface of Snookie SH = 4πR2 + 2πR(L − 2R).
Numerical solution of these two conditions yields aH = 41.484 cm and
bH = 13.620 cm. The added masses aremH1 = 5.922 kg andmH2 = 23.573 kg,
the added moment of inertia ιH = 1.822 kgm2.

The viscosity induced drag on the surface of the moving body is hard to
determine analytically and usually described by empirical drag coefficients
(Panton, 2005). The main drag on Snookie stems from the separation of the
boundary layer around the hull and the breaking of the symmetry of the flow
field, which finally leads to a wake with reduced pressure at the stern. For
Snookie different drag force is expected for forward and sideward motion
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Ffd = −1

2
%CfdAH |ux|ux , F sd = −1

2
%CsdBH

(
uy
uz

)√
u2y + u2z , (16)

where Cfd and Csd are the forward and sideward drag coefficients and AH =
πR2 and AB = πR2 + 2R (L− 2R) the respective cross-sections with L =
74 cm being the overall length and R = 12.5 cm the radius of the robot. The
total pressure drag is approximated by a linear composition (Newman, 1977,
pp. 13) of forward and sideward drag. It acts on the geometric centre of the
hull, the origin O of the BFS. The drag coefficient is a non-trivial function of
the Reynolds number. It varies e.g. for a circular cylinder between C ≈ 20
at Re = 1 and C ≈ 1.1 . . . 1.3 at Re = 1000. In absence of measured data
and better assumptions, forward and sideward drag coefficients are set to
Cfd = Csd = 0.3. For the Reynolds numbers considered here, this value is a
safe estimate of the lower bound of the pressure drag coefficient of a sphere
(Oertel and Mayes, 2004, pp. 161). Overestimation of the pressure drag would
lead to underestimated thruster forces required to stop the robot when an
obstacle appears. The drag on the robot due to rotation is neglected, since
in general high angular velocities are not intended to occur. The drag force
on the hull dH = (Ffd,F sd) acts opposite to the direction of motion with
force resultant attacking at the geometric centre of the hull and does not
produce any torque. Thus, the resultant drag force vector of the hull is given
by fH = (dH ,0)

T .

3.2.7 Forces on the Fins

The motion of an elongated blunt body like Snookie in the direction of its
main axes, even if it were perfectly symmetric with respect to the main axis
and the fluid were perfectly at rest, is unstable. Any small disturbance in
pitch or yaw causes torque about the centre of mass, called Munk’s moment
(Lewandowski, 2003, pp 39), throwing the body out of the desired trajectory.
The yaw and pitch instability of forward motion is balanced by a vertical and
a horizontal fin at the stern of Snookie. The fins consist of thin plates of length
20.2 cm and height bF = 2R = 25 cm equal to the diameter of the robot, with
a cut-out for the spherical stern. This results in an effective surface of 260 cm2

per fin with a mean effective length of each fin aF = 10.4 cm. The geometric
centre of the rectangular equivalent fin is located lh = 39.3 cm behind the
geometric centre of the hull. The vertical and horizontal fin are arranged to
form a symmetric cross like shape.

The incident flow to the fins is taken to be homogeneous at large dis-
tance, and it is assumed that it is not affected by the presence of the hull
or the thrusters. The relative velocity between fin and undisturbed fluid is
approximated by the velocity uF = −v − ω × ρF of the geometric centre
of the fin. Analytic expressions are available for the lift on a 2D cross sec-
tion of a plate of zero thickness and cord length l in in an homogeneous free
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stream and angle of attack α (Breslin and Andersen, 2008, pp 66). The cir-
culation around a cross section of the fin according to the 2D theory is given
by ΓF = πaFuF sinα, which results in the total lift FF = π%AFu

2 sinα on
the fin with fin area AF = aF bF . In 3D the lift on a plate of finite length h is
overestimated depending on the ratio h/l. Due to the absence of analytic ex-
pressions for the full 3D case, the 2D expression is widely used for hydrofoils.
The section of the plate also experiences a torque TL = 1/4π%A2

F sinα per
unit length about the centre of pressure forces at the so called quarter-cord
point, located halfway between the leading edge and the centre line of the
fin. The quarter-cord point of the fins is located at ρQ = (−36.7, 0, 0)

T cm
behind the geometrical centre O of the hull on the long axis of the robot.
The occurring torques on the fin are balanced by the mounting and do not
affect the dynamics.

The z (y) component of the incident flow due to the presence of the
horizontal (vertical) fin does not significantly contribute to the lift pro-
duced by the vertical (horizontal) fin. The incident flow uF is therefore
decomposed into the lift producing components uV = uF − (uF · ez) for
the vertical and the horizontal fin uH = uF − (uF · ey). With the angles
sinαV = (uV · ey) / ‖uV ‖ and sinαH = (uH · ez) / ‖uH‖ between the fin
and the lift producing components of the incident flow an estimate of the
lift on the vertical and horizontal fin, acting on the quarter-cord point ρQ is
given by

lV = ÃF sinαV ‖uV ‖

−uV yuV x
0

 and lH = ÃF sinαH ‖uH‖

−uHz0
uHx

 (17)

with ÃF = −π%aF bF . These results are applicable within an range of α =
−10◦ . . . 10◦ (Newman, 1977, pp 20), provided the plate has a smooth surface.
The breakdown of the lift at higher angles of attack due to stall is accounted
for by an additional factor of Θ(α0 − α)Θ(α0 + α) for the respective force
components with Θ being the Heaviside step function and α0 the critical
angle. The lift forces on the quarter cord-point have the force and torque
resultants

fL = lV + lH and mL = (lV + lH)× ρQ (18)

about O, which may be combined for a compact notation to the 6D force vec-
tor fL = (fL,mL)

T . As mentioned previously, the effective lift of hydrofoils
or wings of finite length is reduced in 3D contrary to the 2D results due to
the flow over the tip of the wing. The lift therefore enters the equations of
motion in the dynamical model with an additional safety margin of 1/2 to
ensure that the stabilising effects of the fins are not overestimated.

Viscosity induced pressure drag on the fins in x direction is modelled due
to the absence of better alternatives by the drag coefficient CP = 1.28 on a
flat plate perpendicular to the incident flow FP = 1

2CP %ÂFu
2, corrected by
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the net frontal area ÂF = aF bF sin(α) exposed to the incident flow, which is
also taken as as a rough estimate for the lift induced drag for |α| < 10◦.

Correct estimates of the drag on the fins due to sideward motion or ro-
tations are challenging. Since lift and drag scale with u2F , an error in the
estimates of these forces does not cause large effects on the dynamics, since
in general the rotational velocity of the robot is small. Drag coefficients of
similar shapes, e.g. a cube, a cube at an angle of 45◦, and a circular cylinder,
are in the range of 0.8 . . . 1.3 for Reynolds numbers Re ≈ 1000. A safe esti-
mate of the lower bound of the drag forces of the fins at sideward or vertical
motion is therefore given by the drag coefficient CF ≈ 1 of a cylinder with the
net frontal area of the fin AF with mathematically convenient independence
of the roll angle. The drag of the fin acts upon the geometric centre of the fin
located at ρF . The incident flow uF is decomposed in the x component and
the components perpendicular to the fins uFy = ey · uF and uFz = ez · uF ,
and the drag on the fins is given by

dF = −1

2
%CFAF

√
u2Fy + u2Fz

 0
uFy
uFz

 . (19)

The resulting force and torque fF = (fF ,mF )
T on the origin O of the BFS

are
fF = FPex + dF and mF = fF × ρF . (20)

The fins stabilise the forward motion. Their disadvantage are increased added
masses constraining the manoeuvrability. The added masses of the perpen-
dicular arrangement of the vertical and horizontal fin is approximated by
the 2D result of a cross-shaped section composed of plates of zero thickness.
Both the plates have a length of aF = 10.4 cm and a width of bF = 25 cm.
The added masses per unit length cross section (Newman, 1977, pp 144)
are given by λ11 = 0, λ22 = λ33 = π%(l/2)2, λ44 = 2/π%(h/2)4, and
λ55 = λ66 = 1/8π%(l/2)4, which results in the added masses

mF = λ22 = λ33 = π%
aF b

2
F

4
, ιF1 = λ44 = %

b4FaF
8π

,

ιF2 = λ55 = λ66 = %
πa4F bF

128

(21)

of the cross shaped fins computed about their common geometric centre.
Their numerical values are mF = 5.105 kg, ιF1 = 16.16 · 10−3 kg m2, and
ιF2 = 0.718 · 10−3 kg m2.

Vertical motion remains unstable since the motion in ez-direction cannot
be stabilised by fixed fins without affecting motions in ex-direction. During
submerging and descending Munk’s moment appears due to both, the round
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shape of the bow and the large angle of a attack at the tip of the fin. Since
the vertical speed is usually small, the thrust needed for balancing is also
small.

3.2.8 Thrusters

The thrusters are neglected in the computation of the added masses, the drag,
and the lift. They provide the robot with acceleration in forward / backward
and vertical direction, and also angular momentum about pitch, roll, and
yaw. The thrusters enter the equations of motions via the force generated by
the propellers.

The four horizontal thrusters are placed at ρTi = (lH ,±rH/
√

2,±rH/
√

2)
with i ∈ {1, 2, 5, 6} symmetrically in a plane lH = 22.0 cm behind the
geometric centre of the hull parallel to the ey-ez plane in ex direction
at a distance of rH = 18.5 cm to the longitudinal axis of the hull – see
Fig. 2. The two vertical thruster are located at ρT3 = (sV x, rV , 0) and
ρT4 = (sV x,−rV , 0) symmetrically in a plane parallel to the ey – ez plane at
ρV = (sV x = −6.2,±rV = ±19.0, 0) cm in ez direction. The added masses of
the hull and the fins depend of the direction of motion, therefore the total
centre of mass also depends on the direction on motion – see Sec. 3.2.9. Any
other arrangement of the vertical thrusters would effectively cause angular
momentum about the y axis at pure vertical motion.

So far, a fairly simple thruster model is used. Thrust, torque, and efficiency
not only depend on the geometry of the propeller, but also on the relative
speed uT of the incident flow and the rotation number ν of the axle, usually
expressed in terms of the advance ratio J = uT /νd with diameter d of the
propeller. The thrust T = KT (J) %ν2d4 and the torque Q = KQ(J) %ν2d5

of the propeller are determined by non-dimensional parameters, the thrust
coefficient KT and the torque coefficient KQ, both functions of J (Newman,
1977; Breslin and Andersen, 2008), representing the specific properties of the
propeller. The thrust and torque coefficient have their maximum and the
smallest slope at zero advance ratio. The focus of the robot is put on slow
motion and high acceleration. Accordingly, the coefficients were taken to be
constant. It was further assumed, that a unique relations between pulse width
and thrust force in the regime of 0 . . . 2m/s incident flow velocity exists. This
is acceptable for small advance ratios.

Figure 3 shows the measured non-linear characteristic line of thrust force
in both directions for a thruster with a three-blade 50 mm diameter propeller.
Measurements were carried out with a thruster mounted on a JR3 six axis
force-torque sensor. It automatically sweeps through the PWM of the motor
driver, which results approximately in a current control of the motor for low
advance ratios. Since the motor control is open-loop and friction of the seals,
inertia, and viscosity keep the motor on hold for small PWM signals, a dead
zone with no thrust exists, which can be clipped. The resulting characteristic
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line for forward and backward thrust is fitted with a 2nd-order polynomial
function. The forward Tf and backward Tb thrust are given by

Tf = 2 · 10−4x2 + 1.11 · 10−2x− 1.186 · 10−1 and (22)

Tb = 10−4x2 + 3.4 · 10−3x− 3.5 · 10−2 (23)

with x ∈ [0, 100] for the PWM duty cycle. Since the prediction made by
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Fig. 3: Solid line: measured forward (left) and reverse (right)) thrust. Dashed
line: 2nd order polynomial approximation.

the simple motion controller on how the pulse width will affect the state of
motion of the robot is approximated to lowest order, this approach comes
with sustaining demands for control activity and therefore increased power
supply.

The external forces and torques acting on the total centre of mass given
the current thrust Ti of the thrusters i = 1 . . . 6 are given by

fT =
∑

i∈{1,2,5,6}

Ti ex −
∑

i∈{3,4}

Ti ez and

mT =
∑

i∈{1,2,5,6}

Tiex × ρTi −
∑

i∈{3,4}

Ti ez × ρTi .
(24)

The respective 6D force vector is denoted by fT = (fT ,mT ).

3.2.9 Combination of Mass, Moment of Inertia and Added Masses

Snookie is buoyancy neutral, meaning that its mass is equal to the equivalent
volume of water. But the mass is not distributed homogeneously. Counter-
weights are mounted below the longitudinal axis so that the robot is balanced
about the pitch axis including fins and thrusters, and stable about the roll
axis. The symmetry with respect to the vertical plane is preserved. The mass
of Snookie including balancing weights and the flooded bow and stern is equal
to its water displacement, m = 32.324 kg. The actual centre of mass is shifted
below the origin O of the BFS by the vector ρM = (0, 0, ρM ). Integration
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over the mass distribution carried out by the computer aided design (CAD)
program SolidWorks leads to a centre of mass ρM = (0, 0, 1.5)

T cm and mo-
ments of inertia ι11 = 0.23, ι22 = 1.68, ι33 = 1.70, and ιij = 0 for i 6= j in
units of kg m2 computed in body-fixed coordinates about the centre of mass.
Accordingly, the axis of rotation must be shifted by −ρM ,

λ′M =

(
m1 −mρM×

mρM× ι−mρM× ρM×

)
, (25)

which was already incorporated in the inertia of the rigid body in Sec. 3.2.2.
The added mass matrices have been determined with respect to the geo-

metric centre of each shape independently and now have to be transformed
and combined according to their location in the BFS relative to O – see
Sec. 3.2.5. The added mass matrix of the hull (15a) is already computed
about the origin of the BFS and does not need any further treatment. The
coordinate systems of the added mass matrix of the fin (21) has to be shifted
by −ρF . The resulting total mass matrix is given by

λ = λ′M + λ′H + λ′F (26)

with the entries λ11 = m + mH1, λ22 = m + mH2 + mF , λ33 = λ22, λ15 =
λ51 = −λ24 = −λ42 = −mρM , λ26 = λ62 = −λ35 = −λ53 = −mF ρF ,
λ44 = ι11 + mρ2M + ιF1, λ66 = ι22 + mρ2M + mF ρ

2
F + ιH + ιF2, λ55 = ι33 +

mF ρ
2
F + ιH + ιF2. The remaining entries of λ vanish.

A closer look at the combined added masses reveals, that for example
the volume displaced by the hull, and therefore also the added mass (15a),
depends on the direction of motion. The net frontal area for forward motion is
much smaller than the net frontal area for sideward motion, and accordingly
the displaced fluid. The centre of total mass for pure forward motion for
example is given by

sF =

(
0, 0,

mρM
m+mH1

)T
, (27)

the centre of total mass for pure sideward or vertical motion by

sV = (sV x, 0, sV z)
T

=

(
mF ρF

m+mH2 +mF
, 0,

mρM
m+mH2 +mF

)T
. (28)

Obviously, the centre of total mass has its own dynamics coupled to the mo-
tion of the robot. Strictly speaking, in the presence of added masses Snookie
is not a rigid body any more. Although the position of each mass contribu-
tion, i.e. the added masses of the hull, the added mass of the fin, and body
mass is fixed in the BFS, the centre of total mass moves since the quantity of
the added masses – their relative weights in the barycentre – change with the
direction of motion. With the origin of the BFS fixed in an arbitrary point on
the rigid body, e.g. O, the location of the masses is fixed, and the equations
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of motion of the rigid body can be used, keeping in mind that the total mass
depends on the direction of motion.

3.2.10 Rigid-Body Motion with Drag, Lift and Thrust

The only thing left to do now is to balance the inertial forces of the rigid
body (8) complemented by the added masses (26) with the origin of the BFS
at the geometric centre of hull

Dλu

Dt
= Q (29)

with the external forces

Q = (fL + fF + fH + fT )
T
, (30)

consisting of lift, drag, and thrust, which results in the standard equations
of submarine motion (Newman, 1977; Feldman, 1979; Fossen, 1994). These
equations can be solved easily by numerical integration in real-time on re-
cent hardware (Sosnowski et al, 2010). The transformation of all dynamical
quantities to the FOR is given in Sec. 3.2.1.

3.2.11 Validity and Benefit of the Model of the Dynamics

Numerous assumptions and simplifications have been made to arrive at equa-
tion (29). The most important ones shall be briefly reviewed and discussed.
The assumptions and approximation were necessary to obtain a treatable
model of the dynamics of the robot. The model is far from being perfect
since there is no easy solution for the forces exerted on the robot by the sur-
rounding fluid. However, it provides reasonable estimates of the dynamics at
low computational efforts.

As briefly discussed in the introduction to Sec. 3.2, the model is restricted
to the motion of the robot in an unbounded inviscid irrotational fluid at
rest. No location dependent fluid-mechanical forces like additional pressure
forces due to the presence of a wall (Korotkin, 2010; Nie et al, 2013) on the
robot exist. The state of motion is fully determined by the translational and
rotational velocity. In case additional boundaries were present, the added
masses of Snookie, if computable at all, had to be adapted by an expression
dependent on the current position of the robot relative to all surrounding
boundaries (Korotkin, 2010, ch. 4 and 5). The effects of stationary walls and
a free surface are negligible at sufficiently large distances, typically larger
than 5 or 10 times the size of the robot.

While the inertia due to the physical mass of the robot are obtained di-
rectly from CAD, the estimates of the added masses are composed from the
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fluid-mechanical inertia of simple shapes resembling the shape of the robot.
Each element is treated independently of the others including the thrusters,
which means that in the model disturbances of the fluid caused by each el-
ement do not interfere. In future experiments, it is planned to determine
the coefficients of the equations of motion experimentally. The conditions for
the non-viscous estimates of the inertial forces are strictly only met e.g. at
Reynolds numbers up to 10 or 15 or during the early stages of rapid acceler-
ation from rest (Newman, 1977, pp. 34).

Especially, it is assumed that the disturbance of the flow field of the robot
due to the action of the thrusters is negligible. This assumption is justified
for small thrust values and large distances between the thruster and the
hull, which is not fulfilled very well for Snookie. If one wanted to take the
interactions of the thrusters with the hull and the fin into account, one had
to deal with added masses depending on the state of all six thrusters in the
equations of motions. The added masses could be estimated by 3D boundary-
element method (BEM) simulations or tow car experiments, with the robot
attached to a force meter as a function of the six current thrust values.

Nevertheless, as soon as additional boundaries like a free surface or a solid
wall are present, possibly significant errors are made in the estimation of the
added masses as well as in the estimates of forces generated by the thrusters
and forces that result from changing added masses. The estimates of the
order of magnitude of the thrust forces required to stop the robot due to
the appearance of an obstacle in the range of the ALL, however, remains the
same. The added masses are indeed increased in the vicinity of a stationary
obstacle. But, without further external forces, the total kinetic energy of the
robot remains constant, since the added masses are an effect of the motion
in an inviscid irrotational and inviscid fluid. The robot and the fluid moving
with the robot are decelerated to the same extent to which the add mass is
increased while approaching the stationary object. The power necessary to
reduce the kinetic energy within a certain distance remains unchanged, no
matter if the robot moves close to a wall or in open water. Due to the presence
of a wall not only decelerating forces, but also torque might be exerted onto
the robot. Therefore, it should be taken care of sufficient thrust reserve.

Viscosity is accounted for by quasi-stationary semi-empirical drag coeffi-
cients. This approximation breaks down at high accelerations. Furthermore,
the assumption that viscous drag forces just add linearly to inertial forces
and that viscous forces can be decomposed into forward and sideward forces
is only an approximation. The decomposition is correct in the special cases
that the vehicle moves forward, sideward, upward, or downward.

Even if the model of the dynamics of the robot would be perfect, due to
the a priori unknown environment of the robot, the motion controller must
be flexible enough, react fast enough, and have enough power available to
compensate for external effects such as changing boundary conditions like
the presence of a wall.
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3.3 Motor Control

The equations of motion (29) are the basis to set up a control strategy for the
robot. The equations are independent of the position and the orientation of
the robot, but nonlinearly couple the velocity in every degree of freedom. For
conventional submarines with a main propeller and steering fins, the equa-
tions of motion are usually modelled as decoupled in longitudinal, lateral,
and angular motion (Fossen, 1994). For the control of Snookie a similar ap-
proximation is used. Each degree of freedom is treated independently, since
by design the state of motion for basic operation can be reduced to a much
lower number of degrees of freedom. The decoupling of the degrees of freedom
is achieved simply by restricting the motion and by adding passive stabilising
forces due to the lift of the fins and to shift the centre of body mass below
the centre of buoyancy.

Snookie is supposed to always maintain a horizontal orientation, which
means that pitch and roll and the respective angular velocities are small. A
change in depth is supposed to happen in pure vertical motion. Snookie shall
move mainly forward. The yaw angle during forward motion is kept small
except for turns in place.

The centre of mass ρM is shifted below the centre of buoyancy. A deflection
in roll angle φ leads to a restoring force and a slowly damped oscillation
about φ0. This oscillation must be damped by a proportional–derivative (PD)
controller in φ̇. The lowered centre of mass also leads to a self-stabilisation
with a small stability margin about the pitch angle θ. Pitch θ and yaw ψ
are stabilised by the fins counteracting Munk’s moment – see Sec. 3.2.7 –
to reduce thrust forces necessary to maintain the orientation with the PD
controllers. The angular velocity ω is implicitly given by the derivative part
of the PD controllers for θ and ψ.

At pure forward motion the robot is self-stabilising in the horizontal plane
aiding the desired horizontal orientation. The shift of the centre of mass
below the geometric centre would lead to a roll motion induced for an ac-
celeration ay 6= 0 in y direction and a change in pitch for ax 6= 0, which
is counteracted by the fins, as described in Sec. 3.2.7. With the robot be-
ing kept horizontal, az is decoupled for φ ≈ 0 and θ ≈ 0, as depth change
happens solely through vertical motion. Depth control is achieved by a pro-
portional–derivative (PD) controller in z. Finally, forward velocity vx is con-
trolled by a proportional–integral (PI) controller to counteract a steady-state
error.

The control of decoupled linearised equations of motion with a helicopter-
like thruster layout has been previously demonstrated in AMOURV (Vasilescu
et al, 2010). Currently, more sophisticated control methods are investigated
to account for the nonlinear dynamics.
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4 Flow Sensing in Water

As described in Sec. 2 several groups have already used different types of
sensor concepts to realise an ALL. At present none of the sensors is com-
mercially available yet. Flow sensors available on the market, which would
promise acceptable accuracy and stability, can hardly be integrated to an
ALL and mounted on a robot. For the ALL of Snookie a very conservative
design decision was made in favour of hot thermistor velocimetry for several
reasons.

There is plenty of theory and experience with a very similar sensor con-
cept, the hot wire. Hot wires were shown to in principle provide the necessary
accuracy and temporal resolution (Coombs et al, 1989; Franosch et al, 2010).
The electronics and the sensors are relatively easy to develop and fabricate.
The energy dissipation of the smallest commercially available thermistors al-
lows high integration densities and low energy consumption. A thermistor
promises a better signal to noise ratio for small relative signal changes due to
its steeper resistance curve compared to a hot wire. And finally, a small ther-
mistor can be embedded in solid material providing the robustness necessary
for operation on a moving robot.

4.1 Physics of Hot Thermistor Velocimetry

The temperature of the heated element is given by T = T∞ + Tθ with T∞
being the ambient temperature of the fluid and Tθ the over-temperature.
The heat dissipation in a fluid from a small element P ≈ (A + Bvn)Tθ is a
function of the fluid’s relative velocity v, where n ≈ 0.5 and the constants
A and B depend on the geometry and the properties of fluid (Middlebrook
and Piret, 1950; Felix, 1962; Strickert, 1974; Emsmann and Lehmann, 1975;
Perry, 1982; Itsweire and Helland, 1983; Lomas, 1986; Eser, 1990; Bruun,
1996). For a sphere with diameter d (Emsmann and Lehmann, 1975; Eser,
1990) the dissipated power can be approximated by

P =

[
2 + 0.55

(νcpρ
k

)0.33(vd
ν

)0.5
]

4π

(
d

2

)2
k

d
Tθ (31)

with specific heat capacity cp, heat conductivity k, and kinematic viscosity
ν. Constant temperature anemometer sense the velocity of a fluid or gas
by measuring the power P necessary to keep a heated element at an over-
temperature Tθ.
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4.2 The Artificial Lateral-Line System of Snookie

Glass-coated thermistors with a diameter of 0.36mm from the Honeywell
111 series are used as heated elements for the artificial lateral-line sen-
sors of Snookie. Thermistors are semiconductors with a non-linear negative
dependency of electrical resistance upon the temperature. The resistance
Rϑ ≈ 240 Ω of a thermistor at working temperature T ≈ 80◦ C with an
over-temperature Tθ of approximately 60◦ C is

Rϑ = R0e
βϑ(1/T0−1/T ) , (32)

given the resistance 1400 Ω < R0 < 2.4 kΩ at room temperature T0 and
the constant 2000 ◦K < βϑ < 5000 ◦K. To sustain a constant thermistor
temperature the supplied electrical power P = Pel = UI = U2/Rϑ must
equal the dissipated energy, if all energy is converted to heat and no leakage
currents, e.g., due to deficient isolation appear.

The following rough estimates show that it is entirely legitimate to treat
the thermistor adiabatically in the sense that it immediately adapts its tem-
perature and thereby its resistance to changes in the transport of heat from
it as it has been implicitly assumed in the thermistor model. The voltage nec-
essary to maintain a stable resistance about 240 Ω of the thermistor in water
at rest is approximately 1.5V, though the properties of the individual sensors
are scattered. This results in a dissipated power of approximately 9mW. For
comparison, the total heat stored in a sphere of the size of the thermistor
with over-temperature 60◦ C made of silicon or glass is only less than a fac-
tor of three larger than the heat dissipated per second. Within a temperature
range of 60◦ the thermistor changes its resistance by approximately a factor
of five. A change of heat transport due to changing flow conditions must be
therefore immediately compensated by a change in the voltage supplied to
the thermistor to hold a constant temperature. The voltage

U2 ≈ Rϑ(A+Bvn)Tθ (33)

over the sensor is therefore an adiabatic measure for the fluid velocity.
The voltage to keep the thermistor at a constant resistance – and thus at

constant temperature – is provided by specially designed boards, which in-
corporate a Wheatstone bridge and a two-stage amplifier. For easy mounting
and maintenance in the snout of Snookie, the thermistor is embedded in a
bullet shaped packaging – see Fig. 4. The thermistor is placed at the tip of
the bullet.
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Fig. 4: Left : Hull integration. Middle: Close-up view of the artificial lateral-
line sensor. Right: Power dissipated by a thermistor (R0 = 1523 Ω at T0 ≈
293 K, mounted on a PCB board and coated) in water vs. over-temperature
Tθ. Black dots: Measurement of dissipated power P . Red line: Linear fit. The
relation between energy dissipation and over-temperature is perfectly linear
(1.8mW/K) as predicted by theory.

4.3 Flow Sensor Calibration

The measured power dissipation of a thermistor (Franosch et al, 2010) con-
firmed the power law (33) with n = 0.34, A = 1.03 mW/K, and B =
0.74 mW/[K(m/s)n] – see Fig. 4. The actual sensor calibration was done with
a tow car. A linear axis (thrusttube, motor 2504 from Copley Controls, en-
coder resolution 1µm) pulled the sensor through an aquarium of length 1m
and 0.5m in width and height. With constant acceleration from rest all ve-
locities from 0 to 10 cm/s were present in one measurement. The flow velocity
at the tip of the sensors was approximately given by the velocity of the lin-
ear axis. The voltage applied to the sensors was sampled with 10 kHz and
filtered with a digital low-pass filter with a cut-off frequency of 5Hz, since
higher frequencies are generally not expected to occur in the hydrodynamic
image of stationary objects. The filtered thermistor voltage at given velocity
vA of the linear axis was least-square fitted with

vA =
n

√
ÃU2 + B̃ , (34)

which can be easily derived from (33) with the substitutions Ã = RA(T −T0)

and B̃ = RB(T − T0), to obtain Ã, B̃ and n.
Figure 5 shows a sensor calibration run. For vA > 0.7 cm/s the shape

of the curve resembles very strongly the model described by (34). But for
vA < 0.7 cm/s essentially no change in the sensor readings could be observed.
This effect was present at all the sensors and calibration runs conducted.
Additional complications arise from the fact that the parameters of the model
(34) vary not only strongly between the sensors, but also for one sensor
in different trials. It was found that this is partially caused by air bubbles
generated by the sensors, which locally heat up the water. Gasses dissolved
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Fig. 5: Left : Sensor voltages plotted against velocity of the linear axis. Right :
Time course of the linear axis velocity of an exemplary calibration run.

in water and released due to heating form small bubbles and cling to the
surface of the thermistor. The bubbles partly isolate the sensor. This results
in a drift of the initial sensor offset and also in a decreased sensitivity. After
removal of the bubbles, the sensor behaviour returns to its initial state, but
the generation of the bubbles continues.

The motion of the sensors always started from a longer period at rest with
the sensors heating up the surrounding fluid and probably slowly driving
thermal convection. As the sensors move away from their resting position at
the beginning of the experiment, presumably a transition to the operating
regime as described by the theory (34) takes place. It is planned to investigate
the reason for the lower bound of velocity by a change of the settings of
the experiments. Above 10 cm/s signals from the sensors quite often become
ambiguous which probably attributes to instabilities in the flow over the tip
of the sensor.

4.4 Object Detection

For object detection experiments the sensors are placed on a test sphere with
a diameter of 15 cm and 15 sensor mountings as shown in Fig. 6(b), which
resembles the snout of Snookie. Of the 15 available slots, 7 are occupied
with sensors as indicated in Fig. 6(c). The linear axis is accelerated up to the
velocity vA = 0.05m/s. This velocity is then kept constant till the end of
the linear axis is reached. For the analysis only the constant velocity part
is considered, which can be easily compared to a fluid-dynamics simulation
of the experiment. A description of the simulation method can be found in
Sec. 5.2.

An obstacle with rectangular cross-section and rounded edges is placed
in the aquarium. The whole scenario is depicted in Fig. 6(a). At the closest
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distance between sphere and obstacle, the sensor is 3mm away from the
obstacle. Figure 6 shows the result of the experiment. The simulated velocity
at the sensor with the obstacle present is shown for each sensor in the upper
plot. The lower plots display the actual measured sensor voltages of both,
the experimental run with and without the obstacle for comparison.

The quantitative conclusions that can be drawn from this experiment are
limited in a number of ways. The circumstances in the laboratory available at
the time the experiments were carried out allowed only a very limited volume
of water. Water waves caused by the motion of the spherical mounting and
vibrations of the floor contaminated the measurements. The BEM simulation
only considered the presence of the spherical mounting and the obstacle and
not the walls and the free surface of the aquarium. For an accurate analysis
the distance of the walls of the aquarium and the free surface to the obstacle
and the sphere should be at least 5 to 10 times the diameter of the sphere.
The simulation was reduced to 2D, which is obviously not possible given the
experimental situation. The large deviations between simulation and experi-
ment shown in Fig. 6(f) demonstrate such effects. The sensors, in particular
the formation of a gas bubbles, were not accurately monitored. An initial
state with the fluid at rest in the small aquarium could not be guaranteed
given conditions in the laboratory. In any case, our experiments show that the
sensors are mechanically and electronically stable over months and that the
sensors deliver signals as expected by theory (34) in the range from 7mm/s
to 10 cm/s. Most importantly the hydrodynamic image of the obstacle shows
up in the sensory data. By improving the experimental situation and a care-
ful calibration, acceptable signal to noise ratios suitable for the arrangement
of the sensors to an useful artificial lateral line can be expected.

5 Flow-Field Reconstruction

Once the flow velocities measured by the ALL are available for further anal-
ysis, the question arises how to proceed.

Simple approximative fluid-mechanical considerations like the investiga-
tion of the flow field of a sphere approaching a solid wall (Franosch et al,
2010) by means of the mirror charge method inspire simple heuristics to con-
clude to the presence of a solid object in close neighbourhood of the ALL. The
presence of a solid object would for example increase the mean flow velocity
measured by a subset of the sensors. If the object was placed asymmetrically
with respect to the longitudinal axis of the robot, it would slightly shift the
stagnation point at the stern in dependence of its relative position. By storing
the flow patterns of a set of known objects (Fernandez et al, 2007, 2009, 2011)
and comparing these flow patterns (templates) with the actual flow velocities,
shape and distance of a known object could be identified. But, those heuris-
tics somewhat look at side effects or particular aspects of the hydrodynamic
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Fig. 6: An obstacle detection experiment with simulated flow velocity at the
sensors and actual measurements. (a) Schematic of obstacle in relation to
test sphere at the beginning of the experiment. (b) Submerged sphere. (c)
Schematic of sphere with sensor distribution. Positions with filled circles con-
tain a sensor. (d), (e), (f) Simulated flow velocity at the sensor (upper plot)
and actual measurements (lower plot). The measurements were carried out
with and without obstacle for comparison. The mean of each measurement
was subtracted to allow a better comparison between the runs. For an expla-
nation of the large deviations between simulation and experiment see Sec. 4.4
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mapping of the environment onto the flow sensory system. Accordingly, these
heuristics are not universally applicable and will suffer from ambiguities. The
question then is first, if it is possible to formulate the hydrodynamic mapping
in an as general as possible way so that its properties can be analysed, and
second, what this mapping tells about the environment without application
of prior knowledge or strong assumptions.

The most universal solution to the problem of extracting information from
the hydrodynamic image would then be the inversion of the mapping. To the
knowledge of the authors not much has been published yet on inverse prob-
lems in fluid-mechanics (Derou et al, 1995; Murray and Ukeiley, 2003; Suzuki
and Colonius, 2003). In the following the inversion of a 2D hydrodynamic im-
age is carried out from the flow velocities measured on a circle and on a
fish-like shape given incompressible inviscid and irrotational flow. In a real
fluid, these conditions are found around the front of the blind Mexican cave
fish or Snookie, where the lateral line or the ALL is placed, moving through
a fluid at rest. The vorticity produced at the surface of the moving body is
convected to the rear with the incident flow. This is usually expressed by
a high Reynolds number in front of the moving observer, resulting in a in-
viscid and irrotational flow well described by a velocity potential Φ for the
incompressible Euler equations (Lamb, 1945; Panton, 2005).

The fluid domain shall be bounded by stationary solid walls of arbitrary
geometry and number.

5.1 Properties of the Hydrodynamic Image

For the sake of simplicity the following analysis is restricted to two spa-
tial dimensions. The body is supposed to move with velocity U . As al-
ready mentioned in Sec. 3.2.3, for the aforementioned conditions the flow field
around the front of the moving body is well described by a velocity potential
V = ∇Φ(x, y) that suffices the Laplace Equation

∆Φ = 0 (35)

on the fluid domain D. The domain is bounded by the surface of the moving
body S and eventually by other stationary solid walls with surfacesW. Again,
the conventions of Sec. 3.2.1 are used to distinguish between quantities in the
FOR and in the BFS. The closed surface of the moving body is composed of the
disjoint surfaces SS , on which the flow sensory system measures the tangential
flow velocity v‖ = ∂Φ/∂t with tangent t of the surface, and the rest of the
body SB where nothing except the no-penetration condition v⊥ = ∂Φ/∂n = 0
with surface normal n is known about the flow field. Of course, the no-
penetration condition is also given on the surface SS of the sensory system.
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The tangential velocity v‖ measured by the lateral line may be integrated
to obtain the potential Φ|SS on the lateral-line system up to an irrelevant
constant. Then, together with the Neumann boundary condition given by
the no-penetration condition on the surface SS with mounted flow sensors,
Cauchy boundary conditions are obtained.

Expressed in coordinates of the FOR, which requires the knowledge of the
velocity U , the problem is to determine the reconstructed Φ̂ on D given

Φ|SS and
∂Φ

∂N

∣∣∣∣
SS

= U ·N (36)

on SS . The choice of the coordinate system – FOR or BFS – does not affect the
reconstruction. The transformation of the reconstructed flow field between
the FOR V̂ and the BFS v̂ is identical to the directives described in Sec. 3.2.1.

The Cauchy-Kowalevski theorem guarantees the existence and uniqueness
of the solution of the Cauchy problem in some neighbourhood of SS . The
solution of the potential problem (35) is a harmonic and analytic function
on D. Therefore, the analytic continuation of the potential to the whole fluid
domain onD (Courant and Hilbert, 1989, pp 505) and even beyond is possible.
Given the exact knowledge of the potential and the normal derivative of the
potential on SS , the reconstruction of the potential on D exists and it is
unique. But, similar to many other inverse problems, the problem is ill-posed
in the sense that any small error in determining the boundary values on SS
is amplified exponentially with the distance to SS (Hadamard, 1902; Isakov,
1998) and therefore needs regularisation.

In summary, the inversion of the hydrodynamic image exist and is unique,
but ill-posed.

A polar coordinate system is the most suitable system for the problem
raised in 2D as it is closest to the geometry of horizontal branch of the ALL
mounted on the spherical snout of Snookie. The flow-field reconstruction is
extensible to further 2D geometries by the application of conformal mapping
– see Sec. 5.4. The general solution of Laplace’s equation is known and must
be adapted to the boundary conditions on the sensory system SS to obtain
the reconstructed flow field V̂ on D.

5.2 Boundary-Element Method

Before the solution of the inverse problem is presented, the computation of
the forward problem, i.e., the hydrodynamic image on the lateral-line system,
is described. The solution of the potential flow on D can be expressed as sur-
face integral over a distribution of monopole and/or dipole sources of a priori
unknown strength distributed over SS , SB and W (Liu, 2009). In a simple
version of the so called boundary element method (BEM) – as implemented
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here – pure monopole line sources with constant strength over the line seg-
ment are assigned to each element of the discretised boundary. The strengths
are determined such that the boundary conditions on all boundary elements
are fulfilled. To be precise, to avoid further complications due to the compu-
tation of singular integrals and to precisely fulfill the boundary conditions,
the monopole line sources were placed on a second surface in the interior
of the solid bodies at close distance to the actual surface. This construction
does not affect the validity of the solution (Lamb, 1945). The resulting linear
system of equations for the monopole strengths was solved directly. Then the
flow field was evaluated at any point on D by the resulting surface integral
over the boundary elements and monopoles.

This method has several advantages. It does not require a mesh of the
fluid domain, just the boundaries need to be meshed. Independent meshes
can simply be moved against each other. The quality of the simulation can be
easily assessed by checking the boundary conditions. A major disadvantage
is its limitation to potential flow. In a simple version as used here the BEM
suffers from high memory consumption.

5.3 The Inversion of the Hydrodynamic Image

The origin of a polar coordinate system (r, φ) shall be placed in the centre
of the circular flow sensory system with radius r0 – see Fig. 7. The surface
of the moving circle is a streamline and the flow velocity component normal
to the circle is zero. Then, the Laplace equation (35) on D is solved by the
Ansatz

Φ(r, φ) =
∑
α

(
Aα

rα

rα−10

+Bα
r−α

r−α−10

)
ei α φ , (37)

and i =
√
−1. In the BFS the no-penetration condition (36) on the surface

of the moving circle requires Aα = Bα, and the radial v̂r and angular v̂φ
velocities of the flow field on D are given by

v̂r(r, φ) =
∂Φ

∂r
=
∑
α

Aαα

[(
r

r0

)α−1
−
(
r

r0

)−α−1]
ei α φ (38a)

v̂φ(r, φ) =
1

r

∂Φ

∂φ
= i
∑
α

Aαα

[(
r

r0

)α−1
+

(
r

r0

)−α−1]
ei α φ . (38b)

The coefficients Aα have to be determined from the measured tangential
velocities

v‖(r0, φ) = 2i
∑
α

αAαei α φ (39)

on the surface of the circle by the Fourier transform,
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Aa =
1

4πiα

∫ 2π

0

v‖(r0, φ) e−iαφ dφ . (40)

Figure 7 shows the flow field around a circle moving towards a wall under
an angle of 20◦. For a finite number of flow sensors the Fourier coefficients
are computed by a Fourier series. The frequency regularisation is implicitly
carried out by the finite number of sensors considered to obtain Aα by (40).
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Fig. 7: Reconstruction of the flow field around a circle. The flow velocity is
colour coded in units of the speed of the sphere, lengths are scaled by the
size of the sphere. Left : A circle with 1000 sensors equally distributed on its
surface moves towards a wall at a 20◦ angle. The flow field is plotted with
respect to the FOR. Middle: The tangential velocities on the surface of the
circle are used to determine the coefficients Aα. The measured flow velocities
are shown in the BFS (pink line) and the FOR (blue line). The middle part
illustrates the unrolling of the surface of the circle onto the x axis of the
velocity plot. Right : In the reconstructed flow field the wall can be deduced
from the parallel streamlines in front of the circle.

5.4 Flow-Field Reconstruction from a Fish-Like Shape

While the circular shape is directly applicable to the artificial lateral system
of Snookie, the Joukowski transformation allows to apply the reconstruction
to the inspiring role model, the blind Mexican cave fish. In the complex plane
z = x+ iy the circle and the surrounding flow field can be transformed into a
fish-like shape and the corresponding flow field by application of a Joukowski
transformation (Hassan, 1985)

Z (z) = z +
c2

z + s
+ s (41)

with the shape parameters c and s of the resulting aerofoil by the following
procedure: measure the velocities on surface of fish; apply the inverse of the
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Joukowski transformation (41) to obtain the corresponding flow velocities on
surface of the unit circle; reconstruct the flow field around the circle using
eqs. (40) and (38); finally, apply the Joukowski transformation (41) on the
reconstructed flow field to obtain the flow field around fish – see Fig. 8.

6 Discussion and Outlook

As soon as speed and shape of surrounding objects are available, the lat-
eral line can contribute to more complex tasks involving more than just the
detection of the pure presence and classification of an object. For the bio-
logical counterparts, some behavioural experiments about map formation of
the environment and self localisation with the lateral-line system are already
available (Teyke, 1985; Burt de Perera, 2004; Sharma et al, 2009; Patton
et al, 2010). Using a lateral-line sensor processing technique as the one de-
scribed in the previous sections, similar capabilities can be implemented on
Snookie. Snookie is equipped with an inertia sensor system – see Sec. 3.1 –
enabling the robot to estimate the current acceleration and by integration
the current speed and the relative position. One challenge is that the quality
of a map generated during motion depends on the accuracy of the position
estimate, which is subject to drift. To counteract this drift, usually exter-
nal references such as GPS are used, which is highly attenuated underwater.
A method without external signals is called simultaneous localisation and
mapping (SLAM) (Thrun et al, 2005), building up a map on the fly, which
can then be used for matches to verify a position. A method to extract walls
from the reconstructed flow field and a theoretical study of SLAM with inertial
data and the extracted walls will be published somewhere else (Lenz et al,
2013). Although the reconstruction of the environment around the robot as
described in section 5.3 is, due to its mathematical nature, restricted to a
close range, the additional matching of the reconstructed wall against the
existing continuously refined map allows to compensate for the drifts of the
inertial sensory system.

However, for a widely applicable flow sensory system useful in arbitrary
environmental condition, several problems have to be solved. First, the re-
construction due to the nature of the problem is very sensitive against small
errors in the flow velocity measurement. Any small disturbance increases
exponentially with the distance to the sensory system. Therefore, the flow
reconstruction requires strong regularisation. The easiest regularisation one
can perform is frequency regularisation, as it was carried out for Fig. 7 and
8 by a finite number of sensors used to compute the Fourier Series of the
flow velocity on the surface of the sensory system. Simply by omitting the
higher spatial frequencies from the Fourier-transform of the measured veloc-
ities along the flow sensory system (40), the reconstruction is stabilised for
the prize of resolving less details. A follow-up publication with a Thikonov-
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Fig. 8: Left column: Flow field and streamlines around a fish. Black: Solid
objects and walls, respectively, in the vicinity of the moving fish. The flow
velocity is colour coded in units of the speed of the fish, lengths are scaled by
the size of the fish. Right column: Reconstructed flow field and streamlines
in the FOR. The fish can deduce the shape of the wall from the streamlines.
The lateral-line organ, which samples the flow field on the surface of the fish,
was modelled by 1000 equally spaced sensors.
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regularised flow-field reconstruction (TFR) that allows to regularise in depen-
dence of the distance to the sensory system, is in preparation (Urban et al,
2013). While frequency regularisation cuts the fine details globally, the TFR
preserves details at least at small distances.

The next step towards a real-world application is to formulate the recon-
struction for potential flow in three spatial dimensions. While this seems to
be easily doable since it is quite clear how to proceed mathematically, the step
towards more realistic flow conditions with vorticity might be challenging.

Fish are certainly interested in the fluid motion surrounding them for
wake tracking or improved motion control. The fluid may be also considered
as the medium through which boundaries and the motion of boundaries are
mapped onto the lateral-line system. It is possible to extract the boundaries
(Lenz et al, 2013) from the reconstructed flow field. However, one could also
think of methods to directly conclude to the shape and location of bound-
aries given the hydrodynamic image on the sensory system without preceding
reconstruction of the flow field.

From the more practical side, the next steps in realising an ALL that can
actually be mounted on a swimming robot are improvements in calibration
and the experimental test conditions. For a convincing comparison with sim-
ulations a 3D BEM is desirable. For the reliable and enduring operation on
an autonomous underwater robot the formation of bubbles on the thermistor
remains an issue to be solved. Experiments with hydrophilic coatings so far
did not lead to convincing results. It has already been shown experimentally
by several groups that in principle detection (Martiny et al, 2009; Yang et al,
2011) and classification (Fernandez et al, 2011) based on an artificial lat-
eral with different sensor concepts is possible. The flow-field reconstruction
requires an albeit small but carefully calibrated set of flow sensors.

The discussion of the dynamics of the robot shows that additional forces
appear in the close vicinity of boundaries such as a free surface or solid
walls. The control of the thrusters, the correct treatment and computation of
the added masses, and incorporating corrections to the added masses in the
presence of a wall offer large space for the improvements of the dynamics of
a highly manoeuvrable robot. This also requires extending the design of the
hardware, e.g. a separate controller for each thruster surveying rotation speed
of the propeller and electric current. Of course, the flow-field reconstruction
by the ALL may also be used to improve the dynamical model used for control
online during operation.
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