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2. Abstract
Fouling is unwanted deposit which develops during product processing on heat transfer

walls. Fouling is a severe issue in many industries and plays an important role because it

leads to cleaning varying from once a year (crude oil processing) up to at least once a day

(food processing like brewing and dairy industry). This thesis focuses on dairy industry

and its applications.

In dairy industry, milk and milk products are exposed at least once to thermal treatment

for improving shelf life and reducing microbiological risks. During heating fouling develops

because proteins denaturate and agglomerate and salts precipitate. This decreases heat

exchanger performance by reduced heat transfer, equipment may be damaged by high

pressure drop, and product quality losses occur like burned particles and changed sen-

sorical impression. As a result, unsupervised cleaning is undertaken using �xed cleaning

cycles which leads to plant downtime and high costs see e.g. [8] [10] [51] [153].

Many di�erent research approaches were undertaken concerning fouling to get fouling

and cleaning under control. One approach is studying fouling and cleaning kinetics to

understand both parts better see [59] [111]. Another approach is to improve anti-fouling

strategies like coating of heat exchangers [7] [142] or improving cleaning e�ciency by ad-

apting cleaning cycles [43] [52]. Monitoring fouling will help to reduce plant downtime and

cleaning costs. To do so, several methods were developed all having di�erent advantages

and drawbacks (for an overview see [127] [165] [167]). Most of the developed methods

are applicable for fouling detection but not for monitoring cleaning success and adapt

cleaning to fouling. Here, a gap opens because monitoring cleaning and adapting it to

need will reduce production costs strongly. Thus, a method is preferable which can be

used both for fouling and cleaning monitoring.

Ultrasonic methods are a good choice to monitor fouling and cleaning online because

ultrasound is very sensitive to material changes at interfaces. Material change are e.g.

fouling development (liquid milk �> solid fouling) or cleaning (solid fouling �> liquid

water). Also, ultrasound can be used for time of �ight measurements but this was not

preferable in the work underdone here. A reason is that fouling layers during cleaning end

are very thin and high errors may occur with time of �ight measurements making meas-

urements not as accurate as necessary. Analysis and evaluation of measured ultrasonic

signals can be done using classi�cation systems like arti�cial neural networks (ANN) or

support vector machines (SVM). These systems are based on pattern recognition meth-

ods dividing between fouled and clean surfaces. They are advantageous because di�erent
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4 CHAPTER 2. ABSTRACT

features can be combined which improves detection stability as well as accuracy. Also,

simulations can be introduced for comparison and improvement.

In this work, a detection system based on the combination of ultrasonic measurements

and intelligent classi�cation systems (ANN, SVM) was developed.

The developed system can be used to detect presence and absence of dairy protein fouling

and to monitor and to improve cleaning cycles. Ultrasonic measurements were made using

a self-developed ultrasonic measuring unit attached to a planar heat exchanger. Ultrasonic

signals were read in automatically and analysed giving seven features which were sensitive

to fouling: characteristic acoustic impedance Z, short time energy STE, temporal/spectral

crest factor TCF/SCF, spectral smoothness SSMOOTH, temporal decrease TSLOPE, and

descent time TDESCENT. These features were fed together with temperature T and mass

�ow rate ṁ in an ANN and a SVM, respectively. Using several features, detection accuracy

and stability was improved. The classi�cation systems were trained o�ine using data of

clean and fouled heat exchanger and of cleaning cycles.

A multilayer perceptron was used for ANN architecture with LOGSIG, TANSIG, and

PURELIN transfer functions between input, one hidden, and output layer. For classi�c-

ation, one-class classi�cation was chosen where input and output layer were compared.

O�ine accuracy was 80 % when output was weighted using a nonlinear neuron.

For SVM, binary classi�cation was chosen where fouling and no fouling samples were

divided. Data was not linear separable in input space, thus, a radial basis function

(rbf) kernel was chosen for transformation in higher dimensional feature space. O�ine

accuracy was 94 % and much better than ANN accuracy. This is explained by the fact

that SVM �nds an absolute extremum when looking for the separating hyper plane and

is less in�uenced by data variation.

The classi�cation systems were compared by monitoring ultrasonically measured cleaning

cycles. Here, SVM showed considerably better results than ANN. A third method showed

a clean heat exchanger after 22 ± 3 min. This method was based on slope change of

the seven used features. The determined features showed constant values when surface

was either fouled or clean but changed when cleaning was conducted. This was used for

monitoring cleaning: when the features showed a change in slope (thus, in value) cleaning

was underdone. As soon as no change of the features was found surface was considered

clean. The developed ultrasonic system can be used for online monitoring of cleaning

cycles in a planar heat exchanger. Cleaning cycles are adaptable to fouling while cleaning

success is validated.

Di�erent classi�cation methods were chosen for comparison to determine if one method

is preferable above others. It has been found that all three di�erent methods have their
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advantages and drawbacks. For the developed system all three classi�cation methods can

be used while SVM and the third method based on slope change are most promising. In

future, the method dependent on the conditions has to be chosen or a combination of

several methods can be used. Using redundancy the system will be more fault-tolerant.

This work is divided in di�erent parts. First, a brief introduction to ultrasound and

hydrodynamical considerations as well as fouling and cleaning is given. Then, the work is

summarised and presented in publications. In the end, a conclusion and outlook is given.

Detailed derivation of equations, pseudo code, and more detailled information concerning

β-lactoglobulin and error analysis can be found in the Appendix.





3. Zusammenfassung
Fouling sind unerwünschte Ablagerungen, die während der Produktion auf wärmeübertra-

genden Wänden auftreten. Es ist ein globales Problem in verschiedenen Industriezweigen

und führt zu notwendigen Reinigungen. Diese werden von einmal im Jahr (ölverarbeitende

Industrie) bis zu mindestens einmal am Tag (Brau- und Milchindustrie) durchgeführt.

Diese Arbeit setzt den Fokus auf die Milchindustrie.

In der Milchindustrie werden Milch und Milchprodukte mindestens einmal thermisch be-

handelt, um die Haltbarkeit zu erhöhen und mikrobielle Risiken zu minimieren. Während

des Erhitzungsprozesses bildet sich Fouling, da Proteine denaturieren und agglomeri-

eren und Salze ausfallen. Dabei wird die Leistung von Wärmetauschern aufgrund des

geringeren Wärmeübertrags verringert. Zudem kann es zu Beschädigungen an Wär-

metauschern aufgrund erhöhten Druckverlusts und verminderter Produktqualität (an-

gebrannte Partikel, veränderte Sensorik) kommen. Daraus resultierend werden nicht über-

wachte Reinigungen mit festen Reinigungszyklen durchgeführt. Das führt zu niedrigen

Standzeiten der Anlage und hohen Kosten, z.B. [8] [10] [51] [153].

Verschiedene Vorgehensweisen wurden in der Forschung durchgeführt, um Fouling und

dessen Reinigung besser zu kontrollieren. Ein Ansatz ist dabei die Kinetiken der Foul-

ingbildung und Reinigungen besser zu verstehen, z.B. [59] [111]. Ein weiterer Ansatz

befasst sich mit Antifoulingstrategien wie das Beschichten von Wärmetauschern [7] [142]

oder die Verbesserung der Reinigungse�zienz [43] [52]. Die Detektion und Überwachung

von Fouling soll dabei helfen, die Standzeiten von Anlagen und Reinigungskosten zu ver-

ringern. Dafür wurden unterschiedliche Methoden entwickeln, die verschiedene Vorteile

und Mankos aufweisen (für eine Übersicht siehe z.B. [127] [165] [167]). Die meisten dieser

Methoden sind zwar für die Detektion von Fouling, aber nicht für die Überwachung der

Reinigung und des Reinigungserfolgs geeignet. Somit tritt eine Lücke auf, bei der die

Überwachung des Reinigungserfolgs und die Anpassung der Reinigung an Fouling die

Produktionskosten stark reduzieren kann. Daraus folgt, dass eine Methode benötigt wird,

die gleichzeitig Fouling und Reinigung überwachen kann.

Ultraschallbasierte Methoden sind eine gute Wahl, Fouling und dessen Reinigung online

zu überwachen, da Ultraschall sehr emp�ndlich auf Zustandsänderung von Materialien

an Grenz�ächen reagiert. Derartige Zustandsänderungen sind z.B. der Foulingaufbau

(�üssige Milch �> festes Fouling) oder eine Reinigung (festes Fouling �> �üssiges Wasser).

Ultraschall kann auÿerdem für Laufzeitmessungen verwendet werden. Dieses Messprin-

zip wurde in der hier durchgeführten Arbeit nicht verwendet, da die Foulingschichten
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8 CHAPTER 3. ZUSAMMENFASSUNG

insbesondere am Ende der Reinigung sehr dünn sind. Dadurch können bei Laufzeitmes-

sungen hohe Fehler auftreten und exakte Messungen erschwert werden. Auswertung und

Bewertung der aufgenommenen Ultraschallsignale kann über Klassi�zierzungsmethoden

wie künstliche neuronale Netzwerke (KNN) oder Stützvektormaschinen (support vector

machine, SVM) durchgeführt werden. Diese Methoden basieren auf Mustererkennung

und unterscheiden zwischen Ober�ächen mit und ohne Fouling. Klassi�zierungsmeth-

oden sind aus verschiedenen Gründen vorteilhaft. Zum Einen können verschiedene Fea-

ture bzw. Merkmale einfach kombiniert werden, was sowohl die Erkennungsstabilität als

auch die Genauigkeit stark erhöht. Zudem können Simulationen einfach für Abgleiche

und Verbesserungen eingefügt werden.

In dieser Arbeit wurde eine Detektionssystem entwickelt, das auf der Kombination auf

Ultraschallmessungen und intelligenten Klassi�zierungmethoden (KNN, SVM) basiert.

Das entwickelte System kann dafür verwendet werden, die An- und Abwesenheit von Pro-

teinfouling zu detektieren und Reinigungszyklen zu überwachen bzw. zu verbessern. Ul-

traschallmessungen wurden mit einer selbstentwickelten Ultraschallmesseinheit durchge-

führt, die an einem planaren Wärmetauscher angebracht wurde. Ultraschallsignale wur-

den automatisch eingelesen und sieben Merkmale wurden extrahiert, die alle auf Fouling

emp�ndlich waren: charakteristische akustische Impedanz Z, Kurzzeitenergie (short time

energy) STE, temporaler bzw. spektraler Scheitelfaktor (temporal/spectral crest factor)

TCF/SCF, spektrale Glattheit (spectral smoothnes) SSMOOTH, temporaler Abfall (tem-

poral decrease) TSLOPE und die überstrichene Zeit (descent time) TDESCENT. Diese

Merkmale wurden zusammen mit der Temperatur T und dem Massendurch�uss ṁ in

ein KNN bzw. eine SVM eingelesen. Mit der Kombination der Merkmale konnte die

Erkennungstabilität sowie die Detektionsgenauigkeit verbessert werden. KNN und SVM

wurden o�ine mit Daten von einem sauberen Wärmetauscher, Fouling und Reinigung-

szyklen trainiert.

Ein Mehrschichten-Perzeptron wurde für das KNN verwendet mit den Transferfunktionen

LOGSIG, TANSIG und PURELIN zwischen der Eingangs-, einer versteckten und der

Ausgangsschicht. Eine-Klasse-Klassi�kation (one-class classi�cation) wurde verwendet,

wobei die Eingangs- mit der Ausgangsschicht verglichen wurd. Die O�ine-Genauigkeit

betrug nach Gewichtung mit einem nichtlinearen Neuron 80 %.

Für die SVM wurde die binäre Klassi�zierung verwendet und zwischen Fouling und Nicht-

Fouling (sauber) unterschieden. Die Daten waren im Eingangsraum nicht linear separ-

ierbar, daher wurde eine Gauÿfunktion (radial basis function) als Kernel für die Trans-

formation in den höherdimensionalen Merkmalsraum gewählt. Die O�ine-Genauigkeit

betrug 94 % und war höher als für das KNN, da die SVM ein globales Extremum bei der
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Suche nach der Hyperebene �ndet und weniger von Datenvariationen beein�usst wird.

Die Klassi�zierungsmethoden wurden mit Reinigungen verglichen, die mit Ultraschall auf-

genommen worden waren. Dabei zeigte die SVM bessere Ergebnisse als das KNN. Eine

dritte Methoden zeigte einen sauberen Wärmetauscher nach 22± 3 min. Diese Methode

basierte auf der Änderung der Steigung der sieben aufgenommenen Merkmale. Sie war

konstant bei Fouling bzw. einem sauberenWärmetauscher (konstanter Wert), änderte sich

allerdings während einer Reinigung (variierender Wert). Sobald die Steigung wieder kon-

stant war, wurde der Wärmetauscher als sauber betrachtet. Das entwickelte System kann

für die Online-Überwachung von Reinigungen in einem planaren Wärmetauscher verwen-

det werden. Reinigungen können an das vorhandene Fouling angepasst und gleichzeitig

kann der Reinigungserfolg validiert werden.

Verschiedene Klasi�zierungsmethoden wurden miteinander verglichen, um die beste Meth-

ode für die Überwachung der Reinigung zu bestimmen. Dabei zeigte sich, dass die Meth-

ode abhängig von den Voraussetzungen gewählt werden muss, da alle untersuchten Meth-

oden verwendet werden können. Eine Kombination zweier oder aller drei Methoden ist

ebenfalls möglich. Durch diese Redundanz wird das Gesamtsystem fehlertolerant.

Die Arbeit ist in mehrere Teile geteilt. Nach einer kurzen Einführung werden die Ergeb-

nisse resümiert und in den wissenschaftlichen Artikeln präsentiert. Dann wird die Arbeit

zusammengefasst und ein Ausblick auf künftige Arbeitsfelder gegeben. Herleitungen,

Pseudocode und detaillierte Informationen �nden sich im Anhang.





4. Fundamental Framework
4.1. Fouling and Cleaning

Understanding Fouling

Fouling is unwanted deposit on heat transfer walls playing an important role particularly

in food processing and pharmaceutical industry but is also present in crude oil processing.

Fouling is divided in macro and micro fouling where the �rst includes foulants like mussels

which are present on ship hulls and the latter contains proteins and colloids. Macro fouling

will not be considered further because it was not relevant in this thesis. Micro fouling

is divided into �ve di�erent kinds (corrosion, precipitation, chemical reaction, bio�lm,

solidi�cation) which are compared in table 4.1.

Table 4.1.: Comparison between di�erent fouling types with their description and occurrence
(after [20])

Fouling type Description Occurrence Example
Corrosion Corrosion product on

a surface
Water treatment Rust

Precipitation Precipitation of salts (Dairy) heat ex-
changers, crude oil
processing

Diary fouling type
B, crude oil fouling

Chemical reac-
tion

Deposition due to
chemical reactions

Heat exchangers in
food processing

Dairy fouling type
A

Bio�lm Formation of bac-
teria, algae on sur-
faces

Food processing, wa-
ter treatment

Membranes, con-
tact lenses

Solidi�cation Freezing on a surface Water treatment Para�n wax, ice

Dairy fouling made from (skim) milk solutions is investigated where precipitation and

chemical reaction fouling plays the most important role. Milk is a complex biological �uid

composed inter alia of proteins, salts, and fat. In dairy industry, milk is heated mainly due

to microbiological and shelf life increasing reasons. Above speci�c temperatures proteins

start to denaturate and salts start to precipitate leading to deposits on heat transfer walls.

Fouling is a problem because it reduces heat transfer to the product (thorough product

heating is only ensured if heating medium temperature is increased with time) and leads to

necessary cleaning [49] [53]. Burton divided dairy fouling in two types dependent on main

composition and temperature at which it occurs calling them type A (protein fouling)

11



12 CHAPTER 4. FUNDAMENTAL FRAMEWORK

and type B (mineral fouling) [22] [23] (compare with Table 4.2). Protein fouling will be

explained in detail because mineral fouling did not play a major role in this thesis.

Table 4.2.: Comparison between type A (protein) and type B (mineral) fouling

Fouling
type

Protein
amount

Mineral
amount

Fat Temperature
range

Description

Type A
(Protein
fouling)

50 - 70 %,
mainly β-
lg, casein

30 - 40 % 4 - 6 % pasteurisation
temperature,
72 °C - 90 °C

white, soft,
spongy

Type B
(mineral
fouling)

15 - 20 % 70 - 80 %,
mainly cal-
cium phos-
phate

4 - 6 % UHT-
temperature,
above 110 °C

greyish, brittle,
hard, compact

Protein Fouling (Type A Fouling)

Protein fouling is chemical reaction fouling and consists mostly of proteins, fat, and salts

[10] [22] [23]. The most present protein in the fouling layer is β-lactoglobulin (β-lg) which

makes only 0.3 % of proteins in raw milk but accounts for 50 % of whey proteins present.

β-lg is an eight stranded β-sheet and α-helix globular protein with 162 amino acids, one

thiol, and two disul�de bonds for stabilising the globular conformation, a diameter of ca.

3 nm, and a molecular weight of 18.3 kDa [82] [102] [119]. Its isoelectric point (IEP)

is around 5.13, at pH 7 it shows amphoteric behaviour, and at this pH and ambient

temperature its electrical charge is calculated to be -8 [44]. Unlike caseins which make

up 50 % of all proteins in milk β-lg is not heat stable with its denaturation temperature

at about 72 - 75 °C [116]. Exact denaturation temperature depends on heating process,

amount of protein, and salts.

When heated at di�erent pH values β-lg aggregates as particulates as well as amyloid

�brils [83] [108] [137]. At IEP or at low/screened charge, β-lg forms particulate gels

with spherical aggregates. Far away from IEP or at high charge, β-lg forms amyloid

�bres which can assemble into supra�brillar structures. At the pH of milk (around 6.4),

usually amyloid �bres are present in the fouling layer. Heat denaturation of β-lg is

thought to follow a multistage process via dissociation, denaturation, and aggregation

steps [145] [158]. The denaturation kinetics of β-lg was investigated in detail together

with the in�uence of calcium [125] and dependent on pH and charge screening due to

salts [68] [151] [160] [174]. Recently Raman spectroscopy analysis revealed that fouling

seems to be mainly controlled by denaturated protein at the interface stainless steel-
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deposit [16]. The adhesion of fouling is not only goverened by mechanical forces but also

by molecular interactions like DLVO (Derjagiun, Landau, Verwey, and Overbeek) forces

including van der Waals and electrostatic double layer forces [47] [115] [117].

The following fouling process is agreed to be followed (Fig. 4.1): First, an induction

period at room temperature takes place where a very thin layer of fouling is conducted on

heat transfer surface [117]. This layer has negligible in�uence on heat transfer resistance

but increases surface roughness and heat transfer to the �uid. Then, fouling grows as

more proteins denaturate, agglomerate, and adsorb [10] [27] [45]. When �ow is present

fouling growth is restricted by �uid removal. It remains unclear if the induction layer is

made of proteins or salts [25] [30] even though salt is found after some time as undermost

layer. This may be explained by �rst precipitation of salts or after adsorption of proteins

salts di�use through the spongy layer.

Figure 4.1.: Fouling deposition at pH 7 (after [164]). At 32 °C �rst adsorption layers occur. β-lg
dissociates around 65 °C and denaturates at ca. 75 °C (reversible) becoming active,
aggregating with β-lgs and caseins (irreversible), and accumulating on the surface.

For negligible amount of β-lg in raw milk, the following set of rate equations with reaction

rates r of monomer B, activated monomer B∗, protein aggregates t, and deposition f and

reaction rate constant K are valid (reaction rates after [34] [35])

rB = −Kdenat[B], rB∗ = Kdenat[B]−Kagg[B
∗]2, rt = Kagg[B

∗]2, , rF = Kads[B
∗]1.2. (4.1)
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An overall reaction of di�erent steps takes place in the adsorption process (rF ) due to its

broken reaction order of 1.2. This reaction rate can be used to directly obtain concen-

tration of β-lg [124]. The reaction rate constant follows the Arrhenius relationship and

is related to absolute temperature with activation energy EA, gas constant R, and wall

temperature T.

K = K0 · exp(−EA/(R · Tsurface)) (4.2)

It remains unclear which order the overall denaturation, aggregation, and adsorption

process actually has. Some groups report second order reactions, while others �nd �rst

order reaction and others determine a reaction order of 1.5.

Discussion remains if fouling process is mainly due to bulk and surface reactions [14] [147],

reaction controlled [35] [62], or mass transfer controlled [11] [54]. While some results point

to protein denaturation as governing reaction [78] and some favour protein aggregation

[36] [59]. A lot of work is done concerning fouling, fouling models, and its governing

reactions to understand and model fouling better [10] [76] [164].

A lot of work concerning fouling was done to prevent or mitigate fouling in heat exchangers

and to understand fouling adhesion in more detail. Mitigation strategies mostly focuses

on surface treatments e.g. changing surface �nish and bulk composition [77] [88] [139],

change of surface energy due to coating [2] or using di�erent materials as heat transfer

walls [7]. Also, interaction between stainless steel and foulants [128] [141] and adhesion of

fouling was investigated [117] for better understanding. Open questions remain concerning

interactions between surfaces and fouling where answering these questions may help in

cleaning fouling layers.

Cleaning

Fouling decreases heat transfer from heating medium to product, product quality, leads

to possible damage of heat exchanger equipment due to increased pressure drop, and

increases production costs due to necessary cleaning [49] [53] [51]. Cleaning of fouling

depends on many di�erent parameters like soaking and dissolving of the layer, shear stress,

composition and temperature of cleaning agent, amount of protein, and others [3] [27] [46].

Di�erent attempts were made to reduce cleaning costs e.g. by choice of cleaning in

place (CIP) cycle used [43], developing a cleaning map for di�erent fouling types [53]

and using it to improve cleaning [51] [52]. Another way for cleaning improvement is

determination of in�uencing factors [27] [72], in�uence of surface [77] [97] [169], e�ect

of surface coating/treatment [7] [131] [140], and mathematical description of cleaning
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models [111] [170]. Cleaning is considered as one of the most important operations in

dairy processing due to its costs and daily occurance. E.g., Xin et al. developed a

cleaning model to predict removal of protein fouling using NaOH as cleaning agent [169].

Usually �xed CIP cycles are conducted in industry which are designed to cover the worst

case. These CIP cycles are not adaptable to actual fouling which remains unknown.

Sometimes changes between di�erent CIP cycles are possible but cleaning success cannot

be veri�ed if shorter cycles are used due to missing monitoring possibilites. Cleaning is

conducted usually at least once a day conducted following the steps below.

� Prerinse with water until discharge is clear

� Rinse with an alkaline solution (most often sodium hydroxide (NaOH) or compar-

able) to remove proteinaceous residues

� Second washing with water until pH is that of water

� Rinse with acid, e.g. nitric acid (HNO3) for removing mineral residues

� Third washing with water whereas cleaning agents are washed out

� Sanitise if necessary

� Fourth washing with water to remove sanitising agent

Sometimes chelates or enzymes are used for cleaning even though they may be not environ-

mental friendly [43]. In general, CIP cycles are performed in the temperature range of 65°

- 75° C and last between one and two hours. The used concentration and cleaning agents

depend on fouling type present following thumb rules. Whereas protein fouling needs

alkaline cleaning agents, acid-based cleaning is necessary for precipitated salts which may

also occur during protein fouling. For all fouling types holds: rinsing and cleaning time

a�ects e�ciency [50] [110] [111]. Usage of pulsed cleaning despite constant �ow showed an

improvement in some cases [19] [57]. Also, di�erent approaches were made to determine

cleaning kinetics in heat exchangers [40] [41] [48] [170].

Monitoring of CIP cycles is a challenging task because heat exchangers cannot be easily

opened or equipped with windows for visual inspection. Thus, CIP cycles are too long

for most fouling cases which adds up costs together with oversized heat exchangers. Until

now no online cleaning monitoring method is present on the market which helps to reduce

cleaning time and ensures a clean heat exchanger. Di�erent approaches for CIP monitor-

ing were developed e.g. usage of ultrasonic methods in membranes [92] [101] [171], usage
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of intelligent systems like arti�cial neural networks [138] [156], physical modelling [64],

nano-vibrations [121] [122], or monitoring of electrical or thermal properties [28] [159].

All investigated methods show di�erent advantages and disadvantages depending on re-

quirements and �elds of application.

4.2. Ultrasonic Background

Ultrasound is a pressure wave and is sensitive to materials and material changes at in-

terfaces. Ultrasound is high frequency sound (20 kHz - 2 GHz) and commonly used in

non-destrucitive testing (NDT) e.g. [100] [157], in investigation of aircrafts [21] [146] or

metal parts [175] and in medical applications like [12] [114]. Thus ultrasound is a suit-

able method to detect viscoelastic fouling and to monitor cleaning success when material

changes at an interface take place. Equations are shown in three dimensional descriptions

but are simpli�ed to one dimension when necessary.

Di�erent kinds of sound waves can be excited dependent on medium present: in liquids

and gases usually only longitudinal and surface waves are stimulated while solids also

show transversal and shear waves. Conversion from one kind to another at an interface

in�uences the ultrasonic wave and can be used for detection. Only longitudinal waves

were considered.

Continuum Mechanical Basics

Ultrasound is displacement of particles out of their position of rest resulting in pressure

wandering through material. In continuum mechanics, ultrasound can be described with

the deformation tensor ε which depends on material and is in�uenced by materials (e.g.

fouling presence) which in turn in�uences an ultrasonic wave. For small deformations,

only volume change takes place, ε gets symmetrical, and the continuity equation is valid.

ε11 + ε22 + ε33 = ∇u (4.3)

where u is the displacement vector.

Stress occurs additional to deformation and changes with material. When only stress is

present at the surface the stress tensor σ with elements σij is symmetric and independent

of time and space. The change of σ is linear for a small force perpendicular to the x-axis

and materials like fouling in�uence σ. With Newton's second law, the equation of motion

with particles displacement in direction of x is
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∂σik
∂xk

=
∂vi
dt

= ρ
∂2ui
∂t2

(4.4)

with medium density ρ = ρ0 + ∆ρ and density at rest ρ0. If both deformation and stress

occurs, σik = σik(εij), Hooke's law is valid at small deformations with Young's modulus

Enm (symmetric tensor of forth order):

σn = Enmεm , with n,m = 1...6. (4.5)

Both σ and ε are in�uenced by material state and in�uence ultrasonic waves. This can

be used for detection of fouling presence and absence. Di�erent moduli are present in

di�erent material states, e.g. Young's modulus E, shear modulus σ, compression modulus

K in solids. These moduli de�ne the velocity of propagation (sound velocity) of the sound

wave which is got from the wave equation. Changes in moduli due to material changes

can be seen in changes in di�erent ultrasonic features and used for detection. Acoustic

feature calculation is based on wave propagation described by the wave equation.

The Linear Lossless Wave Equation and Important Features

The ideal lossless wave equation is independent on material state and derived by starting

from the hydrodynamical equations. The wave equation can be used to determine features

dependent on material state which in turn can be used for measuring materials. In an ideal

�uid, no shearing takes place and pressure is perpendicular to the surface, ∇×v = 0.The

equation of motion

−∇p = ρ
dv

dt
= ρ

∂v

∂t
+ (v∇)v = ρ0

∂v

∂t
(4.6)

with velocity potential ϕ and pressure ∇p = ρ0∂ϕ/∂t, and the continuity equation

−1/ρ = div v ⇒ ∂ρ/∂t = ρ04ϕ (4.7)

are used to derive the ultrasonic wave equation. Pressure depends on density from which

it follows that a travelling pressure wave in�uences medium density and vice versa

p ≈ p0

(
dp

dρ

)
ρ=ρ0

⇒ p− p0
ρ− ρ0

≈
(
dp

dρ

)
ρ=ρ0

. (4.8)

Density and pressure changes due to a travelling sound wave are reversible and overall



18 CHAPTER 4. FUNDAMENTAL FRAMEWORK

pressure and density are considered constant if power of an ultrasonic wave is low (adia-

batic movement). Thus, changed material density can be used for e.g. detection of fouling

presenc or absence.

To derive the plane linear wave equation which describes the behaviour of an ultrasonic

wave in a medium, continuity equation (Eq. 4.7) and equation of motion (Eq. 4.6) are

evolved with respect to time t, rearranged, and result in the wave equation

4ϕ =
1

c20

∂2ϕ

∂t2
with c20 = (dp/dρ)ρ=0 ⇒ c0 =

√
K

ρ0
. (4.9)

4ϕ is the change of volume compression and c0 is medium sound velocity. Sound velocity

depends on temperature T, pressure p, density ρ, and, in a �uid, on compression modulus

K. In�uences due to refraction and particles on the wave equation can be included using

secondary sources [118] [135].

One homogeneous solution of the plane linear wave equation (4.9) describes an one di-

mensional plane wave which is divided into two waves: one incoming and one outgoing

(in x-direction). The result can be written as linear combination of cosine or exponential

functions

ϕ = Ccos(ωt+ kx) +Dsin(ωt+ kx) = Aeiωt+kx +Be−iωt+kx (4.10)

which is valid in far �eld, and can only be applied for the ideal case. In presence of

external forces a linear combination of the solution of the homogeneous wave equation

and a generic one has to be found. Introduction of losses e.g. by damping materials like

viscoelastic fouling leads to inclusion of loss terms which consider di�erent types of losses

like thermal and visco-elastic losses. Kobryn and Hirata for example derived a statistical-

mechanical theory of ultrasonic absorption in molecular liquids including losses [80].

Another way to determine the ideal lossless wave equation is to start from an inhomogen-

eous lossy wave formula (4.11 after [79]):

(
1+τ · ∂

∂t

)
∆p− 1

c2
·∂

2p

∂t2
−∇(ρ0·g)−∂G

∂t
−∇F−∂

2(ρuiuj)

∂xi∂xj
= 0with τ =

4/3 · η + ηB
ρ− 0 · c2

. (4.11)

Detailed explanation of derivation and symbols is found in Appendix A.

Sound velocity is often used for determination of e.g. changed material properties but

also characteristic acoustic impedance Z is used for material inspection. Z describes the

resistance a medium opposes to a traveling sound wave. Z is de�ned in the far �eld by
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medium density and sound velocity

Z = ρ · c. (4.12)

High Z stands for solids whereas low Z is characteristic for gases. At an interface, the

impedances of di�erent media determine how much of a sound wave is transmitted and

re�ected (Fig. 4.2). This can be applied to determine fouling presence at an interface.

Figure 4.2.: Dependent on characteristic acoustic impedances at an interface re�ection and trans-
mission at an interface changes.

Fouling and Ultrasound

The interaction between an adhered fouling layer and an ultrasonic wave was not ex-

tensively investigated. Because low power ultrasound is used in this thesis, cavitational

e�ects of air bubbles embedded in fouling layer are negligible. The fouling layer damps the

ultrasonic signal due to viscoelasticity but this is important mainly for thick layers and

transmission measurements. Solid-like fouling also in�uences the way re�ections at the

interface wall-medium takes place because interactions between wall and medium changes.

The overall spring constant of the wall-medium part is in�uenced and this in�uences the

oscillation of particles at these interface which emits the re�ected wave. Cleaning leads

also to changes of characteristic acoustic impedance and changed re�ection coe�cients at

the investigated interface which can be monitored for cleaning supervision. These consid-

erations show that fouling in�uences an ultrasonic wave strongly enough to be measured.

Thus, appropriate acoustic features have to be found to determine fouling presence and

absence.
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4.3. Piezoelectricity

The piezoelectric e�ect can be used to emit and receive ultrasonic waves due to thick-

ness variations caused by electric potential and vice versa and to determine materials like

fouling presence and absence. The piezoee�ect is linear and related to the microscopic

structure of the material. The measurable electric potential is due to macroscopic charge

displacement in crystal structure. From these conditions, it follows that such a material

must not have a centre of inversion and shows charge separation when exposed to pressure

or an electric �eld (direct/indirect piezeolectric e�ect, Fig. 4.3). Piezoelectric materials

belong to one of the 21 point groups without inversion centres and are often also ferro-

electric [6] [113]. Piezoelectricity was described by the Curie brothers in 1880 in quartz,

tourmaline, and Rochelle salt [32] [33] while Lippmann �rst described inverse piezoelectric

e�ect [96]. This e�ect was later experimentally con�rmed by the Curie brothers.

Figure 4.3.: PZT crystal in Perowskit structure. When pressure or an electric �eld is applied,
the Zr/Ti atom is displaced and a measurable charge separation takes place.

Beginning of the 20th century a macroscopic description of the piezoelectric e�ect was

developed and in 1972 Martin established a microscopic description showing that piezo-

electricity is a bulk e�ect [103]. Today, lead zirconate titanate (PZT) is one of the most

used materials crystallising in Perowskit structure (ABO3), being ferroelectric, and show-

ing a dipole momentum below Curie temperature TC . Heating to TC and applying a high

D.C. �eld Weiss domains are organised and a polarisation direction is imposed. When

used in thickness mode, the resonance frequency νres depends on ceramic thickness d,

νres ∝ d [155]. PZT ceramics can be manufactured in a wide range of forms dependent

on application and can be used in many di�erent applications like detection of fouling.
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Generation of Ultrasound

Changes of an ultrasonic wave due to travelling through material and beeing re�ected at

interfaces can be determined using piezoceramic sensors because a mechanical deform-

ation is transformed into electrical changes and vice versa. Production of ultrasound

in a piezoelectric material like PZT is described macroscopical using a combination of

continuum mechanics and electrical engineering while non-linear e�ects are neglected.

Knowledge about the interaction between the electrical and the mechanical part of an

ultrasonic transducer is crucial to understand how an ultrasonic wave is measured.

A piezoplate includes mechanical and electrical parts with piezoelectric constitutive equa-

tions between stress T, strain S, electric �eld E, and dielectric displacement D

D = d · T + εT · E (4.13)

S = sE · T + d · E (4.14)

with piezoelectric constants e and d, permittivity at constant stress εT , and elasticity

constant at constant electric �eld sE. The mechanical deformation of a piezoplate follows

the classical wave equation with plane wave solution for wave function Ψ:

Ψ(t) = Ψ0 · exp(−iωt). (4.15)

The electrical part of a piezoactive material can be described by telegrapher equations

with voltage V, current I, resistance R, inductance L, conductance G, and capacity C :

−∂V (x, t)

∂x
= R · I(x, t) + L · ∂I(x, t)

∂t
(4.16)

−∂I(x, t)

∂x
= G · V (x, t) + C · ∂V (x, t)

∂t
. (4.17)

With Gauÿ law, ∇D = 0, and Kirchho�'s rules it is found

V (x, t) = Re(V (x) · eiωt)→ −dV
dx

= (R + iωL) · I(x) (4.18)

I(x, t) = Re(I(x) · eiωt)→ −dI
dx

= (G+ iωC) · V (x). (4.19)

With propagation constant γ the equation is rewritten for V and I, respectively, and
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resembles the wave equation (4.9).

d2V (x)

dx
− γ2 · V (x) = 0 (4.20)

with γ = α + iβ =
√

(T + iωL) · (G+ iωC) a classical solution follows

V (x, t) = A · e−αx · ei(ωt−βx) +B · e−αx · expi(ωt+βx). (4.21)

Derivation for the linear case is given in more detail for example in [161] [109] [73]. Par-

enthoine also derived the equations for the non-linear case [120] where Wang et al. derived

the solution for an ultrasonic wave in composite materials (solid with liquid) [166]. Red-

wood showed that the wave equation of a planar compression wave in a piezoelectric plate

resembles the same as in a non-piezoeletric material [136]. Latter is of great importance

for piezoceramic sensors because analysis of measured signals is simpli�ed.

The link between mechanical pressure waves and their electrical counterpart in a piezo-

ceramic was shown. This link is crucial for understanding generation and measuring of ul-

trasonic waves and how to build a sensor �tting for di�erent applications. These in�uence

can be determined by a piezoceramic which transforms mechanical to electrical measur-

able quantities where the electrical quantities show in�uences due to material changes like

cleaning of fouling layers. This makes piezoceramics a reliable tool for both generation

and measurement of ultrasonic waves to determine fouling. For understanding ultrasonic

generation and propagation lumped circuit description can help besides other modelling

tools.

Lumped Circuits and Other Models for Ultrasonic Generation

To model generation and reception of ultrasound di�erent models can be used. One-

dimensional models based on lumped circuits are brie�y presented which can be applied

for sensitivity analysis or implemented in SPICE (Simulation Program with Integrated

Circuit Emphasis). Including di�raction e�ects and losses this approach can be extended

to overcome some challenges concerning one-dimensionality [4] [148] [150].

First models were built 1914 by Butterworth [24] and 1928 by van Dyke [162]. van Dyke's

model is basic but still in use today for estimations close to resonance frequency (Fig.

4.4). The drawback is that far away from resonance frequency behaviour is not interpreted

correctly.

In 1935, Mason developed a more complex model which includes transformers to describe

the piezoelectric behaviour in detail (Fig. 4.5) [105]. The transformer transforms the
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Figure 4.4.: van Dyke model with capacities C1 and C2, inductance L1, and resistance R1.

electric signal into a mechanical one and vice versa. This model was revised several times

(e.g. by Redwood [136]) and criticised due to its negative capacitance. Still, it is one of

the most used lumped circuit models giving good results.

Figure 4.5.: Mason's model with voltage V, current I, capacity C0, transformer (1:N), compliances
Xa, Xb, Xc, forces F1, F2, and velocites v1 and v2.

Krimholtz, Leedom, and Mattaei extended Mason's model in 1970 (KLM model [84]) (Fig.

4.6). Besides Mason's model, it is popular to model ultrasonic transducers with lumped

circuits. Comparison of Mason's and KLM model show similar behaviour despite di�erent

circuits [149] even when losses are introduced. The biggest di�erence between Mason's

and KLM model is the exclusion of the negative resistance and a better applicability of

KLM model concerning frequency analysis. Both models are often used to describe and

model the behaviour of a piezoelectric ceramic because they combine the mechanical and

electrical part of a piezoelectric material via transformers.

Leach developed a model including controlled sources to overcome problems of negative

resistance and frequency dependent transformers of Mason's and KLM model [87]. This

model is quite complex and can be used to model in two dimensions in contrast to the

other presented models. Püttmer et al. [129] and Deventer et al. [161] included and

investigated losses while Johansson and Martinsson [75] and Aouzale et al. [5] included

and investigated di�raction e�ects using Leach's model.

Network theory can be used to make sensitivity analysis and to determine in�uences on

ultrasonic signals. An ultrasonic transducer (piezoceramic and backing) together with its
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Figure 4.6.: Model of Krimholtz, Leedom, and Mattei with voltage V, current I, capacity C0,
transformer (1:N), compliance X1, forces F1, F2, and velocites v1 and v2.

excitation electronic can be described using a port model [74] [132]. In a three port model

one port stands for the transformation of the electrical part to the mechanical part of the

ultrasonic transducer and vice versa. The remaining two ports describe the mechanical

oscillation of the piezoceramic. When the backing of the ultrasonic transducer is sheer

resistance the three port reduces to a two port corresponding to a piezoceramic which is

described by lumped circuits.

An ultrasonic setup (in re�ection and transmission) consisting of an ultrasonic transducer

together with the experimental setup can then be described as combination of two ports

with (an) electromechanical two port(s) for the transducer(s) and purely mechanical two

ports for all other setup parts. The resulting transfer function is got by multiplying the

two port matrices of all single two ports. The transfer function can be used to describe and

improve ultrasonic measurements and to make sensitivity analysis [98] [99]. This helps to

determine the in�uence of fouling and other quantities on ultrasonic measurements.

It has to be kept in mind that adsorption, re�ection, and refraction are present in material.

Including those via secondary sources the complexity of the equations increases and may

also increase computational time as well as capability to solve the equations. To overcome

this problem, �nite elements (FE) may be used for modeling [1] [168] [172]. This approach

has the advantage that detailed knowledge of the investigated problem together with its

equation is not necessary for solving the equations. Comparisons between SPICE and FE

show limitations and advantages of both methods [55].

4.4. Upscaling and Fluid Dynamics

Upscaling

Upscaling is done to compare a setup developed in laboratory scale with an industrial

setup to determine similarities and di�erences and overcome challenges. For comparison,
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�uid dynamic quantities were used: blockage factor, Reynolds number, friction coe�cient,

and pressure drop together with self-developed π-parameters were included. All chosen

quantities are presented in table 4.3 together with their equations and a brief explanation.

Table 4.3.: Fluid dynamic characteristics to compare lab and industry scale

Fluid dynamic
quantity

Equation Description

Blockage factor B A/AB Ratio between free and blocked channel
Pressure drop ∆p ∆p = (λ ρv2)/(2 ·

dh)
Ratio between pressure drop and heat ex-
changer length

Reynolds number
Re

Re = (vLρ)/η Ratio of interior forces to viscous forces in
the medium

π1 (Biot number) π1 = Rfα Ratio of the heat transfer resistance inside
and outside (at the surface) of a body

π2 π2 = (Q̇ρ)/(pṁ) Ratio between heat �ux and mass �ow rate
Friction factor λ
(after [17])

λ = 0.3164/Re0.25 Ratio of friction losses related to Reynolds
number

With A as unblocked area, AB as blocked area, v as mean velocity, L as length of heat

exchanger, ρ as �uid density, η as �uid viscosity, dh as hydraulic diameter, Rf as fouling

resistance, α as heat transfer, Q̇ as heat �ow, p as pressure, and ṁ as mass �ow rate.

Comparison of the characteristics helps to �nd out where a lab-scale setup and a heat

exchanger used in industry behave similarly and where further considerations and cal-

culations have to be done. These characteristics give an overview and a �rst impression

about comparability of lab and industrial scale e.g. fouling production to determine if

similar fouling can be expected. Most parameters are known explicitly only for ideal cases

like the used friction factor which is valid for Re < 105 and have to be assumed for other

cases.

Fouling and Fluid Dynamics

For fouling, the interaction between surface and fouling layer plays an important role.

Also, interaction between �ow �eld and fouling layer is important and �ow velocity plays

a role particularly in cleaning. Transport from detergent to fouling layer and removal of

particles as well as shear stress between fouling and �ow �eld determines growth velocity

of a layer and cleaning, respectively. Following Bott ( [20]), the generalised fouling process

with deposited mass over time dm/dt is described with �ux of deposition ΦD and �ux of

removal ΦR:
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dm

dt
= ΦD − ΦR. (4.22)

With high shear stress and high removal �ux ΦR, growth of fouling is restricted and fouling

may even decrease. This e�ect can be used when pulsed �ow is applied for cleaning where

non-uniform �ow with very high shear stresses is present. For pulsed �ow, laminar �ow

�elds are superimposed with low frequency pulsed �ow [18] [56]. Flow �eld and shear

stress varies strongly when pulsed �ow is applied and can lead to diminished deposition

rate and improved cleaning [57] [173]. This may help to clean a fouled heat exchanger

faster but it is sophisticated to obtain an evenly pulsed �ow throughout an industrial

heat exchanger. To improve cleaning it is important to determine shear stress inside an

heat exchanger. Celnik et al. developed a method to calculate shear stress and �ow rates

of incompressible Newtonian �uids under laminar �ow [26]. This may help to improve

cleaning but usually in industry turbulent �ow is used and also non-Newtonian �uids like

yoghurt are processed.

Besides �ow �eld in�uence the strength with which a fouling layer is attached to a surface

is important for cleaning. Strength and fouling composition can be investigated using a

technique called �uid dynamic gauging (e.g. [29] [58]). Shear stress to detach a fouling

layer can be determined by determining a dimensionless shear stress τ ∗ derived from

Navier-Stokes and continuity equation.

τ ∗ ≡ τwall
4ρv2c

=
ω∗
wall

Retube
(4.23)

where τwall as shear stress at the wall, ω∗
wall as dimensionless vorticity at the wall, ρ as

density, Retube as Reynolds number in the siphon tube, and vc as characteristic velocity.

Detailed investigation of forces present between fouling and surfaces can be found in

Appendix C.

When fouling is investigated under �ow conditions interactions between �ow �eld, sur-

face and fouling layer have to be considered. When laminar �ow is present in�uence on

fouling growth is much lower than with turbulent �ow. Also, cleaning will change and an

ultrasonic signal may be in�uenced di�erently. For ultrasonic measurements the follow-

ing question is of importance: how strongly is the measured ultrasonic signal in�uenced

by present �ow �eld? Is this in�uence higher than changed re�ection behaviour at the

investigated interface or not? Ultrasound used in re�ection may help to reduce �ow �eld

in�uence, still, it cannot be ruled out completely.



5. Summary of Results (Thesis Publications)
5.1. Paper Summary

"Detection methods of fouling in heat exchangers in the food industry", E.
Wallhäußer, M.A. Hussein, T. Becker; Food Control 27 (2012), 1-10

Fouling is unwanted deposit and occurs in food processing industry where most foodstu�

is heated to extend shelf life and reduce microbiological hazard. When fouling occurs it

decreases product temperature, product quality, and product safety by introducing an

extra heat transfer resistance. Also, cleaning of heat exchangers is necessary leading to

increased costs and plant downtime. Cleaning is usually not monitored but based on

experience and cleaning success cannot be evaluated without opening the equipment. It

is thus of great importance for food industry to monitor cleaning success. In particular

dairy industry has a great need because unsupervised cleaning is done at least once a day.

Monitoring fouling and cleaning requires high demands for measuring and analysing sys-

tems due to the complexity of fouling and cleaning. This paper gives an overview over

di�erent methods which can be used in heat exchangers to monitor fouling/cleaning. The

focus lies on detection of dairy protein fouling but most described methods can easily

be applied in other food or non-food areas. The described methods are divided in ex-

perimental, numerical, and computational methods. These include, e.g., measurements

of temperature, heat transfer parameters, electrical and acoustic variables as well as us-

age of decision machines like arti�cial neural networks and modelling approaches. All

methods are presented and compared with each other. Main in�uences on which method

could be used are the process where fouling should be monitored and user demands. It

seems preferable to combine di�erent methods and not only rely on experimental data

but combining experimental and numerical methods to adapt easier to changing process

parameters, enhance product quality, and reduce error proneness.

"On the usage of acoustic properties combined with an artificial neural network
- A new approach of determining presence of dairy fouling", E. Wallhäußer, W.B.
Hussein, M.A. Hussein, J. Hinrichs, T. Becker; Journal of Food Engineering 103
(2011), 449-456

Fouling is a severe challenge in dairy industry. It in�uences product quality, decreases

heat transfer, and increases production costs due to unsupervised cleaning. Monitoring
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cleaning success and adapting cleaning cycles would help to reduce costs. To do this,

dairy fouling type A was monitored in a small static setup using an ultrasonic transducer.

Dairy protein fouling (type A fouling) mainly consists of β-lactoglobulin (β-lg) and usually

occurs at temperatures above 71 °C (pasteurisation temperature). Here, in a small static

setup dairy protein fouling was produced using reconstituted milk with protein content

of ca. 6 w%. Milk was heated to 92±1 °C for 90±5 min. Then, super�uous milk was

poured and water was �lled into the setup. Measurements were done at room temperature

(20±2 °C) using an ultrasonic transducer with a center frequency of 2.1±0.2 MHz. The

transducer was excited using an in-house electronics with 20 V and measured with Virtual

Expert. As reference, water (clean surface) was measured. Five acoustic parameters were

extracted from the ultrasonic signal and analysed o�ine using Matlab. The acoustic

parameters were characteristic acoustic impedance (Z ), energy of echo 1 (E1 ) and echo

2 (E2 ), and logarithmic decrement of echo 1. Results were fed into an arti�cial neural

network (ANN) which was a multilayer perceptron based on back-propagation algorithm.

The ANN had �ve neurons in input layer, two neurons in one hidden layer, and one

neuron in output layer which displayed 1 for fouling and 0 for no fouling. As transfer

functions LOGSIG, LOGSIG, and TANSIG were chosen. The ANN was trained with 75

% of the data and tested with the remaining 25 % displaying a detection accuracy of

98.6 %. It has been shown in this paper that it is possible to determine fouling presence

and absence o�ine in a static setup using an ultrasonic based measuring method together

with a pattern recognition method like an ANN. In future, measurements under �ow shall

be done and mineral fouling shall be included.

"Detection of dairy fouling: Combining ultrasonic measurements and
classification methods", E. Wallhäußer, W.B. Hussein, M.A. Hussein, J. Hinrichs,
T. Becker; Engineering in Life Science (2013), 292-301

In the same static setup as described in the above paper protein and mineral fouling

was produced. Protein fouling was made as previously desribed. Mineral fouling consists

mainly of precipitated salts and was made from reconstituted permeate powder which was

heated to 92±2 °C for ca. 5 h. Using an ultrasonic transducer fouling layer presence and

absence was measured. Five acoustic and signal parameters were extracted using Matlab.

These features were characteristic acoustic impedance Z, short time energy STE, temporal

crest factor TCF, spectral crest factor SCF, and spectral smoothness SSMOOTH. The

results from protein and mineral fouling were investigated using arti�cial neural networks

(ANN) and support vector machines (SVM). An ANN is an emulation of a network
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like a brain which can establish di�erent connections between in- and output. Here, a

feedforward multilayer perceptron was used with �ve neurons in input layer, two neurons

in one hidden layer, and one neuron in output layer which displayed 1 for fouling and 0

for no fouling. As transfer function between the layers for all ANNs TANSIG was used.

For only protein fouling, ANN showed an accuracy of 100 %, for only mineral fouling the

detection precision was 93.49 %. When both fouling types were combined as may happen

under real conditions the accuracy dropped to 71.86 %. This may be due to highly varying

fouling layers and high variations in the data. A SVM classi�es data into di�erent groups

and divides them using a hyperplane built on support vectors from this group. If no

linear division is possible the kernel trick is applied which transfers data in feature space

where a linear division is possible. The SVM built for protein fouling showed a precision

of 100 % using 30 support vectors. For mineral fouling, 80 support vectors were used

and 98.19 % were identi�ed correctly. For combined fouling the SVM needed 116 support

vectors and showed an accuracy of 97.57 %. This is better than the ANN because SVM

was less dependent on fouling type and managed high variations in data better. It was

shown that o�ine detection of protein and mineral fouling can be done using ultrasonic

measurements combined with a classi�cation method.

"Investigating and understanding fouling in a planar setup using ultrasonic
methods", E. Wallhäußer, M.A. Hussein, T. Becker; Review of Scientific
Instruments 83 (2012), 094904-1-10

Fouling in food processes usually occurs when foodstu� is heated. Its detection is a

challenging task and di�erent methods were already applied. In this paper, a setup is

described with which it is possible to produce fouling under controlled conditions and to

measure its presence and absence under �ow using an ultrasonic measuring method. The

theoretical and experimental description of the planar setup and the ultrasonic measuring

system is given. Electrical and mechanical lumped circuits were applied for theoretical

description of the system. Sensitivity analysis (SA) was done to determine the in�uence

of di�erent quantities on the ultrasonic signal and to see feasibility of fouling detection

using ultrasound. SA was performed using central di�erence equation and high weights

were found for characteristic acoustic impedance Z, thickness θ, and real and imaginary

part of the elastic modulus E and η of delay line, stainless steel wall, material behind

the fouling, and piezoplate. During measurements, these features are nearly constant

and can thus be regarded as stable showing only a small in�uence on measured signal.

Fouling also showed high weights and does change during fouling and cleaning. It thus can
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be considered as measurable quantity. Experiments con�rmed the already theoretically

found in�uence of delay line and showed an in�uence of solid coupling material between

delay line and stainless steel wall. Solid coupling has to be included in further sensitivity

analysis. First tests to produce dairy protein fouling showed the possibility to produce it

reproducible.

Determination of in�uencing quantities on the ultrasonic signal can help to improve the

developed setup better. Also, experiments can be planned and experimental results can

be explained better. Because fouling does have a high weight it is possible to measure

cleaning success and fouling absence and so to adapt cleaning cycles to necessity.

"Determination of cleaning end of protein fouling using an online system
combining ultrasonic and classification methods", E. Wallhäußer, A. Sayed, S.
Nöbel, M.A. Hussein, J. Hinrichs, T. Becker; Food and Bioprocess Technology 6
(1) (2013), 1-10

One of the highest cost factors in dairy protein fouling is cleaning a fouled heat exchanger.

Cleaning is usually done using a �xed cleaning in place (CIP) cycle which handles the

worst case. Even if there are shorter CIP cycles it remains unkown if they are su�cient.

The crux is that until now no online monitoring method for cleaning cycles exists. There

are several possibilities to determine fouling presence (pressure drop, temperatures, heat

transfer parameters and others) but no measuring method which is easily applied to

determine the end of a CIP cycle showing a clean surface. Here, an online monitoring

method of dairy protein fouling using ultrasound in a planar test section is described.

A planar test section was used to build up dairy protein fouling in a reproducible way.

Fouling made was comparable to the one usually present in dairy industry. After detailed

investigation of di�erent temperature e�ects ultrasonic measurements of fouling presence

and absence (clean surface) were made. Based on these measurements an arti�cial neural

network (ANN) and a support vector machine (SVM), respectively, was developed and

tested o�ine using Matlab. ANN used 1-class classi�cation and existed of one input

layer with nine neurons corresponding to nine inputs characteristic acoustic impedance Z,

short time energy STE, temporal and spectral crest factor TCF, SCF, spectral smoothness

SSMOOTH, temporal decrease Tdescend, temporal slope Tslope, mass �ow rate ṁ, and

temperature in the measuring section T, one hidden layer with fourteen neurons, and one

output layer with nine neurons stating if output and input layer were the same or not. As

transfer functions, TANSIG, LOGSIG, and PURELIN were chosen. ANN training was

done using clean heat exchanger while fouled surface data was used for testing resulting
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in a detection accuracy of more than 80 %. SVM used same input as ANN but used both

fouled and clean surfaces for training and testing (50/50). As kernel function, a radial

basis function was found to represent the hyplerplane best and detection accuracy was

94 %. Both ANN and SVM were implemented in C++ to establish an online monitoring

method for cleaning of protein fouling where di�erent challenges were encountered. To

overcome them angle based outlier detection (ABOD) and exceptional handling were

implemented in the online monitoring code. ABOD is based on the fact that outliers

have small angles between them and points of a group and can be easily identi�ed by

variance. This method is stable in x- and y-direction and more reliable than simple

regression. Exceptional handling is based on windows tendency check. Here, a window

size of 10 signals were chosen. Inside the window signals were compared with each other

and dependent on the majority (n ≥ windowsize/2) all signals are transferred either to

fouling or no fouling. This makes the decision process much more stable but introduces a

time delay of window size/2 between measured and displayed signal.

A third method to monitor cleaning success, monitored the slope of the above chosen

features with cleaning success. Temperature and mass �ow rate were excluded because

they did not vary strongly. Here, slope of all features was monitored over time because

it changed during cleaning and stayed constant before and after a while. When a fouled

heat exchanger was present slope of e.g. TCF stayed nearly constant (m ≈ 0), as soon as

cleaning was started slope changed (m 6= 0), and after a while slope was nearly constant

(m ≈ 0) again. With this method the time for cleaning could directly determined to be

22± 3 min.

The methods seem to be applicable in determination of fouling presence and absence and

in monitoring cleaning success of a planar fouled heat exchanger. This may help industry

a lot to save money due to oversized cleaning cycles and cleaning can be adapted to reduce

amount of water, detergent, and time needed.

5.2. Paper Copies

5.2.1. "Detection methods of fouling in heat exchangers in the food industry - a
review", E. Wallhäußer, M.A. Hussein, T. Becker; Food Control 27 (2012),
1-10
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a b s t r a c t

Fouling is unwanted deposit on a (heat transfer) surface. In food and dairy industry it is a major problem
because heat transfer to the product is decreased resulting in reduced product quality and safety. Thus,
plant efficiency is reduced and unsupervised cleaning has to be conducted. This limits processing time
and increases plant downtime and costs. Monitoring fouling and cleaning requires high demands for the
measuring and analysing system. This paper gives an overview over different fouling monitoring
methods in heat exchangers. Experimental (pressure drop, temperature and heat transfer parameters,
electrical parameters, acoustic methods), numerical, and computational methods are presented and
compared.

� 2012 Elsevier Ltd. All rights reserved.
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1. Introduction

Fouling is unwanted deposit on (heat transfer) surfaces. When it
develops thermal performance of a heat exchanger goes off-design

and decreases due to an extra heat transfer resistance. Thorough
product heating cannot be ensured anymore in food industry if
fouling occurs. This leads to product loss and cleaning of the heat
exchanger equipment using a fixed cleaning-in-place cycle.
Cleaning is often time consuming, costly, and used cycles are
seldom adaptable to different fouling conditions. Hence, different
methods were developed to detect fouling in heat exchangers,
where e.g. Prakash, Datta, and Deeth (2005) give an overview.

Fouling is a high influence in dairy industry and lead to a lot of
research of fouling mechanisms, mitigation, and cleaning. Investi-
gated methods for fouling detection are e.g. weighing of fouled and
clean tubes and plates of heat exchangers (Burton, 1961; Tissier &
Lalande, 1986), observing disturbances in hydrodynamics

Abbrevations: ANN, artificial neural network; DEC, deposit electric conductivity;
GA, genetic algorithm; MEMS, micro-electro-mechanical system; MSS, mass surface
sensor; PHE, plate heat exchanger; QCM/QCM-D, quartz micro balance/with dissi-
pation; SMUF, simulated milk ultrafiltrate; THE, tube heat exchanger; TOF, time of
flight; UHT, ultra-high temperature; WPC/WPI, whey protein concentrate/isolate;
WT, wavelet transform.
* Corresponding author. Tel.: þ49 8161 71 2623; fax: þ49 8161 71 3883.
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(Corrieu, Lalande, & Ferret, 1986), or using heat transfer parameters
as fouling indicator (Davies, Henstridge, Gillham, & Wilson, 1997;
Ling & Lund, 1978). Also, electrical, optical, and acoustical
methods are included (Withers, 1996). But, fouling can also occur in
other places like membranes where different methods are appli-
cable like confocal laser scanning (Ferrando, Rozek, Zator, López, &
Güell, 2005), fluid dynamic gauging (Chew, Paterson, & Wilson,
2004, 2007), or ultrasonic techniques (Kujundzic, Cobry,
Greenberg, & Hernandez, 2008; Kujundzic et al., 2007).

To understand fouling mechanisms and improve fouling
prediction and cleaning, fouling modelling was investigated (de
Jong, te Giffel, Straatsma, & Vissers, 2002; de Jong, Waalewijn, &
van der Linden, 1993). Food processing in heat exchangers may
be optimised by developing kinetic models for dairy fouling
(Grijspeerdt, Mortier, De Block, & Van Renterghem, 2004;
Petermeier, Benning, Becker, & Delgado, 2003; Petermeier et al.,
2002). This may help to improve fouling detection and mitigation
in and cleaning of heat exchangers. An overview about different
fouling models and mitigation methods of fouling can be found in
Balasubramanian and Puri (2010).

In this review article, experimental, numerical, and computa-
tional fouling detection and monitoring methods are described and
compared. It would go beyond the scope of this paper to shine
a light on all possible methods and on all areas where fouling
occurs. Therefore, the focus lies on fouling in heat exchangers in
food processing industry and dairy fouling. In the next section,
a short overview over fouling is given. Then, selected experimental
and computational methods are presented. At the end, these
methods are compared with each other and a conclusion is drawn.

2. Fouling

Fouling is classified into macro and micro fouling. The first plays
no major role in food industry. The latter is divided into precipi-
tation, particulate fouling (colloidal particles) or sedimentation
(larger particles), corrosion, chemical reaction fouling, solidifica-
tion, and biofilms (Bott, 1995, 1997; Simões, Simões, & Vieira, 2010;
Watkinson & Wilson, 1997) which are summarised in Table 1.

In food industry, dairy industry is one of the most affected
sectors. Usually two kinds appear depending on process tempera-
ture: chemical reaction at pasteurisation (type A or protein fouling,
mainly denaturated proteins, see Fig. 1 for a sketch) and scaling at
ultra-high temperature (UHT) (type B or mineral fouling, mainly
salts) (Bansal & Chen, 2006; Burton, 1968; Changani, Belmar-Beiny,
& Fryer,1997; Visser & Jeurnink, 1997). Cleaning is conducted due to
the diminished heat transfer with fouling and the risk of unsafe
food (Bohnet, 1987; Changani et al., 1997; Fryer & Asteriadou,
2009).

Dairy industry is not the only food industry affected by different
fouling types. In beverage industry, particulate/sedimentation
fouling during membrane filtration of beer and other fermented
beverages plays an important role (Blanpain & Lalande, 1997;
Czekaj, López, & Güell, 2000). In water treatment plants, mostly
scaling and biofilms are present and can hinder processing (Laine,
Campos, Baudin, & Janex, 2003; Müller-Steinhagen, Hartnett,
Irvine, Cho, & Greene, 1999) while in crude oil processing scaling
and chemical reaction occur reducing heat exchanger performance
(Butterworth, 2002; Deshvannar, Rafeen, Ramasamy, & Subbaro,
2010).

Nomenclature

a, b, k constant
A(0) (incident) amplitude
A area
a attenuation coefficient
cp specific heat capacity at constant pressure
d (outer) pipe diameter
D dissipation factor
df fouling thickness
eE/fl electrode/fluid space
f frequency
Df frequency change
Hg Hagen number
k calibration constant
l heat exchanger length
l(f) thermal conductivity (of fouling)
_m mass flow rate
Dm mass change
m dynamic viscosity

n kinematic viscosity
p pressure
Q heat transfer
r reflection coefficient
Rel,th,dep,fluid electric, thermal, deposit, fluid resistance
Re Reynolds number
r density
S Sauerbrey constant
s(eq,p) (equivalent, product) electric conductivity
t time
tf final fouling run time
T/Tlm temperature/logarithm of mean T difference
DT temperature difference
s decay time
Dq product temperature change
U overall heat transfer coefficient
v velocity
x friction factor
z direction
Z acoustic impedance

Table 1
Comparison of different fouling types and their occurrence.

Fouling kind Short description Occurrence Example

Precipitation Precipitation/crystallisation of salts, oxides etc. Heat exchangers
Water treatment, desalination

Dairy fouling type B
Calcium, other salts

Particulate/sedimentation Deposition/accumulation of particles on surfaces Combustion systems
Food processing industry

Colloids
Dust

Corrosion Corrosion deposits on metal surfaces Water treatment Rust
Chemical reaction Decomposition/polymerisation of proteins,

hydrocarbons on heat transfer surfaces
Heat exchangers in dairy, crude oil industry
Food processing industry

Dairy fouling type A
Crude oil fouling

Solidification Freezing of components on a cooled surface Food processing industry
Fine mechanical manufacture

Ice
Paraffin wax

Biofilm Growth of algae, bacteria Water treatment Bacterial growth on membranes

E. Wallhäußer et al. / Food Control 27 (2012) 1e102
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3. Experimental methods for determining fouling

3.1. Pressure drop

In heat exchangers, the pressure between inlet and outlet is
measured regularly. When fouling develops the mean square area
in a flow channel decreases leading to a pressure drop at constant
flow rate. This method is standard and can be used as input for
other methods e.g. as input in an artificial neural network (ANN) for
fouling detection in a plate heat exchanger (PHE) (Riverol &
Napolitano, 2005). Usually, pressure drop is measured accompa-
nying to other methods like temperature measurements.

Martin connected mass and heat transfer in heat exchangers
with periodic arrangements like cross corrugated plate and tube
bundles with pressure drop via the generalised Lévêque equation
(Martin, 2002). So, the Hagen number Hg was derived which was
used to predict heat and mass transfer over a wide range of
applications and heat exchanger geometries.

�
x

2

�
Re2 ¼ Hg ¼

�
1
r

��
Dp
Dz

�
d3

n2
(1)

With x as friction factor, Re as Reynolds number, r as density, p
as pressure, z as direction of flow, d as outer tube diameter, and n as
kinematic viscosity.

An advantage is that the necessary equipment for pressure
measurement is present. Also, pressure drop measurement is
necessary to avoid excessive pressure and thus heat exchanger
damage. Disadvantageous of this method is that it is not very
sensitive to thin layers and that the place of fouling remains
unknown.

3.2. Temperature and heat transfer parameters

Inlet and outlet temperature of product and heating medium is
routinely measured. When fouling develops heat transfer is
diminished and product outlet temperature drops. If a fixed
product outlet temperature is wanted the heating medium
temperature is increased when former decreases. This can be used
to measure fouling presence and extent: the higher the increase of
the heating medium temperature the more fouling is present.

When used on its own, it is not very sensitive and gives only
overall values. Still, temperature changes can be used as input for
numerical fouling determination (Ingumundardottir & Lalot, 2009;
Lecoeuche, Lalot, & Desmet, 2005; Riverol & Napolitano, 2005).
Outlet temperature and flow parameters are also measured regu-
larly and were used to develop a computational model to control
milk sterilisation (Nema & Datta, 2005, 2006). But, fouling place is
unknown and certain thicknesses are necessary to influence the
temperature.

Heat transfer parameters like heat flux, overall heat transfer
coefficient, and fouling resistance are based on temperature
changes, mass flow rate _m, and thermal conductivity of the product,

the heating medium, and the fouling layer. Heat transfer Q is the
amount of heat transferred from heating medium to product with
the overall heat transfer coefficient U given as

U ¼ Q
ADTlm

¼ _mcpDq
ADTlm

(2)

with specific product heat capacity at constant pressure cp, product
temperature changeDq, heat transfer area A, and logarithm of mean
temperature difference between heating medium and product Tlm.
Fouling introduces an extra resistance Rdep. If the heat transfer is
monitored via DTlm and _m, fouling can be determined. Fouling
thickness df and thermal conductivity lf are related to U via

Rdep ¼ 1
UðtÞ �

1
Uð0Þ ¼ df

lf
(3)

where U(0) is the heat transfer coefficient of a clean and U(t) the
one of a fouled heat exchanger. Increasing fouling thickness
increases Rdep.

Thermal resistance Rth is a measurand for the heat lost during
heating. It is inversely proportional to the product thermal
conductivity l and is expressed as

Rth ¼ 1
l
¼ DT$A

Q$l
(4)

temperature difference between inlet and outlet DT, area A, and
heat exchanger length l. The parameters can be used to determine
fouling or as input for other methods.

The convective heat exchanger coefficient and fouling thickness
in a heat exchanger was determined via transient state estimation
by comparing the global response time of a system in fouling and
no fouling conditions (Perez, Ladevie, Tochon, & Batsale, 2009). For
this, a transient fouling probe was developed using a sensitivity
function and the probe was evaluated theoretically and experi-
mentally. Perez et al. determined the average heat transfer coeffi-
cient and fouling thickness their tests showing good agreement
with measurements. In future, the developed method shall be
extended to other heat exchangers and fouling kinds.

Adaptive observers were used to monitor the performance
degradation of the overall heat transfer coefficient U(t) with fouling
(Astorga-Zaragoza, Zavala-Río, Alvarado, Méndez, & Reyes-Reyes,
2007). An adaptive observer is a recursive algorithm estimating
the system state and unknown parameters which helps to decide if
preventive or corrective maintenance is necessary. Simulated and
experimental temperature measurements in a counter-flow heat
exchanger were used. Astorga-Zaragoza et al. monitored U(t)
continuously and related its variation with thermal performance of
heat exchanger. Thus, the decision whether maintenance was
needed or good could be made.

3.3. Electrical parameters

Electrical parameters can be used when electric heating or
electrodes are present. E.g., a change in salt concentration due to
precipitation induces a change in electric conductivity. Usually,
electrical resistance and conductivity are chosen. Former is char-
acterised by the electrical voltage over electrical current, latter
describes the material ability to conduct an electrical current.
When electric heating is applied, monitoring the heater behaviour
can be used because the electrode temperature changes with
fouling.

For determining fouling, a method was developed measuring
the electrical and the thermal resistance (heat flux) (Chen, Li, Lin, &
Özkan, 2004). Stainless steel electrodes were applied to determine

Fig. 1. Sketch of protein fouling made of proteins, salts, and fat.
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the electrical resistance Rel and the thermal resistance Rth was
calculated with heat flux, backside surface temperature of the
fouled wall, and fluid bulk temperature. The difference of Rel of
a reference (non-fouled) and a fouled section was determined and
correlated with Rth with constants a and b.

Rth ¼ aRel þ bR2el (5)

Chen et al. measured fouling build-up and cleaning with high
sensitivity and showed that electrical and thermal resistance can be
linked.

Electrical conductivity was used to determine growth rate of
fouling (Guérin, Ronse, Bouvier, Debreyne, & Delaplace, 2007).
Electrodes were implemented in a plate heat exchanger and the
effect of Reynolds number, calcium concentration, and temperature
on fouling made of whey protein concentrate (WPC) was investi-
gated. Deposit thickness was determined by weighing the plate
prior and after a fouling run and by a pneumatic lifting device.
Kirchhoff’s rule decouples fluid and deposit resistance at fixed
operating conditions:

Rel ¼ Rfluid þ 2Rdeposit (6)

The deposit electrical conductivity s with ion concentration in
the layer with space of fluid efl (distance between electrodes eE
minus deposit thickness ed), fouling run time tf, and equivalent
electrical conductivity sel is (Guérin et al., 2007)

sdtf
¼
"

eE
2edtf

$

 
1

seqtf

� 1
sp

!
þ 1
sp

#�1

(7)

with structure and volume of fouling layers dependent on Reynolds
number and calcium concentration. This results can explain some
cleaning difficulties because cleaning agents did not soak a layer
sufficiently.

Continuous ohmic heating was investigated using a solution
made ofWPC and xanthan gum (Ayadi, Leuliet, Chopard, Berthou, &
Lebouché, 2004). For fouling determination, dry deposit mass,
pressure drop, local temperature gradient between electrodes and
bulk, and consumed electrical power were monitored. It was found
by Ayadi et al. that an additional electric resistance emerged with
fouling lead to energy dissipation and increased temperature until
boiling point was reached while electrical power consumption
evolutionwas very sensitive to fouling. In future, Ayadi et al want to
improve local electric measurements and to develop a model for
deposition thickness dependent on electrical parameters evolution.

The temperature profile and temperature gradient between
electrode surface and bulk of non-fouling (water, water-sucrose
solution) and fouling (aqueous b-lactoglobulin solution, b-
lactoglobulinexanthan gum mixture) fluids of an ohmic cell was
studied (Ayadi, Bénézech, Chopard, & Berthou, 2008). For non-
fouling fluids, value and shape of temperature difference between
electrode and bulk depend on flow and rheological fluid behaviour.
For fouling fluids, the temperature gradient differed due to changed
Reynolds number during fouling caused by different electric
conductivities between bulk and deposit. Fouling adds an addi-
tional electric resistance to the existing one leading electrical
energy to dissipate in the layer. Energy dissipation increases elec-
trode temperature which can be used as measurand.

A chronoamperometric electrochemical method was used to
evaluate the intensity of CaSO4 scaling (Tlili, Rousseau, Ben Amor, &
Gabrielli, 2008). It is based on an oxygen-reduced cathodic reaction,
O2þ 2H2Oþ 4e�/OH�, where time variations of the electrical
current are measured and can be used as indicator for scaling rate
and to detect nucleation time. Fouling acts as insulator reducing
current intensity to zero with a compact and to very small values

with a porous layer. The probe consisted of a copper rod with
a nickel foil glued to one end with a gold layer on its top which
acted as thermocouple. It was put into an electrolyte fluid with
constant flow rate and current intensity and electrode surface
temperature were measured. The chronoamperometric curve slope
displayed growth rate and nucleation time. Layer porosity was
determined and salt concentration was found to have a stronger
influence than temperature on fouling (Tlili et al., 2008).

Electrical parameters are very sensitive to thin layers and
fouling thickness can be determined. A drawback is the invasive
implementation of the electrodes and that usage of electric heating
of food products is not widespread.

3.4. Acoustic methods

3.4.1. Ultrasound and vibrational methods
Acoustic parameters change when fouling occurs and can be

measured in transmission (one transducer as sender, one as
receiver) and in pulse-echo mode (one transducer as sender and
receiver). Often, time of flight (TOF) of the signal is determined:

TOF ¼ d
c

for transmission mode

TOF ¼ 2d
c

for reflection mode

(8)

with path length d and sound velocity c. Using TOF andwith known
c in the layer, thicknesses can be calculated. Also, characteristic
acoustic impedance Z can be used which measures the resistance
a medium opposes to a travelling sound wave and can be deter-
mined with density r and c

Z ¼ r$c (9)

or with reflection coefficient r at an interface of two different
materials

Z2 ¼ Z1

�
1� r
1þ r

�
(10)

Z is typical for a material and can be used for material identifi-
cation and fouling determination. The determination of TOF, Z, and
echo energy E together with an explanatory signal is shown in
Fig. 2.

Another parameter is signal energywhich changes when fouling
develops due to changing reflection/transmission and attenuation
coefficients. Energy can be determined in time and frequency
domain. Besides, damping and signal attenuation can be used. The
attenuation coefficient a is connected to path length x and incident
amplitude A0

AðtÞ ¼ A0 expð�axÞ (11)

Signal damping takes place because the signal is refracted and is
linked to intrinsic and thermal parameters (viscosity, thermal
conductivity).

Withers used a tubular setup measuring in transmission mode
to determine the thickness of different materials (adhesive tape,
silicone grease, tomato paste, cheese spread, gravy, chocolate)
using TOF with temperature compensation for milk and water
(Withers, 1994). He determined thicknesses between 0.5 and
6.0 mm of different fouling substances with a threshold of 100 mm
below which thickness could not be determined with high
accuracy.

Characteristic acoustic impedance Z was used already to deter-
mine solution properties, density changes, and to characterise
foodstuff (Bamberger & Greenwood, 2004; Chung, Popovics, &
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Struble, 2010; Greenwood, 2009; Greenwood, Adamson, & Bond
Leonard, 2006). Z was also applied in detection of fouling by
Wallhäußer, Hussein, Hussein, Hinrichs, and Becker (2011) where
an ultrasonic transducer of 2 MHz in pulse-echo mode in a static
setup was used together with echo energy and logarithmic decre-
ment (signal loss) of reconstituted skim milk with different protein
concentrations. Fouling developed on a stainless steel plate and the
obtained parameters were combined in an ANN showing an accu-
racy of 98.6%. They found that acoustic impedance and energy
changed significantly with protein fouling and will includes
mineral fouling and flow measurements in future experiments.

A technique based on propagation of nano- and microvibrations
along the deposition surface called mechatronic surface sensor
(MSS) was developed by Pereira, Rosmaninho, Mendes, and Melo
(2006). The MSS consisted of an actuator (piezoelectric ceramic)
and an acceleration sensor. After excitation, the acceleration sensor
measured the signal amplitude of a stainless steel plate vibration
which changed when a layer was deposited. For mineral fouling
simulated milk ultrafiltrate (SMUF) and for protein fouling whey
protein isolate (WPI) was used. For both mineral and protein
fouling SMUF and WPI were combined. Experiments took place at
50 �C in turbulent regime and the amplitude was found to change
significantly with fouling thus build-up and cleaning could be
monitored. The damping factor varied with elasticity of fouling
layer making it possible to distinguish between different layer
types.

A MSS was applied for monitoring different structural deposit
build-ups (Pereira, Mendes, & Melo, 2008). The deposits were
Pseudomonas fluorescence biofilms using laminar and turbulent
flow and silica on PVC. A correlation between deposit amount and
MSS answer was shown and confirmed by numerical simulations.
Visco-elastic properties were determined and it was distinguished
between organic/inorganic deposit and attached/sedimented
deposit. In addition, a MSS was used to detect the end of hair
shampoo removal on a stainless steel plate (Pereira, Mendes, &
Melo, 2009). Different cleaning conditions were applied with
changing temperature and Reynolds number. The signal amplitude
was chosen and visual inspection, spectrophotometry, and contact
angle measurements were applied for validation by Pereira et al.
The MSS detected cleaning end correctly with different cleaning
conditions resulting in different cleaning rates.

For observing fouling in a PHE, an acoustic sensor was devel-
oped which monitored low-frequency waves (Merheb, Nassar,
Nongaillard, Delaplace, & Leuliet, 2007) with WPC used as fouling
fluid. On one plate side, an impactor was applied and on different
places on the other side acoustic sensors were attached with

pressure drop and plate weighing used for validation. Power and
arrival time decreased strongly with fouling but changed depend-
ing on sensor location. Low-frequency waves demonstrated a good
sensitivity to fouling according to Merheb et al. In future, power
and delay measurements at different locations shall be made and
help to understand mechanisms and kinetics of fouling.

Ultrasonic measurements are very sensitive to material and
thickness changes and can be used non-invasively. These
measurements may also be used to monitor cleaning success. But,
ultrasonic parameters are temperature dependent and a tempera-
ture correction has to be included and most ultrasonic transducers
monitor only one point of a heat exchanger if not multiple trans-
ducers are used.

3.4.2. Quartz crystal microbalance (QCM)
QCM is based on the crystal oscillator principle. It consists of

a piezoelectric quartz oscillating at its resonant frequency which
frequency changes Df dependent on deposited material amount.
Usually, Df decreases when material is adsorbed (compare with
Fig. 3). Themass absorbed per unit surface areaDm is linkedwithDf
via the Sauerbrey constant S and described with the Sauerbrey
equation (Sauerbrey, 1959) with Dm�mQ (quartz mass)

Dm ¼ SDf (12)

This equation does not hold if: a) the added mass is not rigidly
deposited, b) it slips, or c) it is not deposited evenly. QCM in liquids
is calibrated due to liquid viscosity and density with well-known
masses (LangmuireBlodgett films). The change in Df of a QCM
from air into liquid is proportional to the square root of the liquid’s
densityeviscosity product (Kanazawa & Gordon, 1985).

An extension to QCM is measuring energy dissipation DD
(quartz crystal microbalance with dissipation monitoring, QCM-D).
DD of a signal is related with rigidity of the layer. Signal damping
changes when a layer attaches and viscosity and elasticity can be
derived.DD is determinedwhen the driving power is turned off and
the exponential decay of the signal is monitored. The dissipation
factor D is determined via D ¼ 1=pf s with resonant frequency f
and signal decay time s. With QCM-D, the Sauerbrey equation (Eq.
(12)) can be validated, swelling and hydration of a layer can be
monitored, and visco-elasticity can be modelled.

QCMwas used to investigate the removal of b-lactoglobulin and
commercial skim milk powder from different surfaces (Murray &
Deshaires, 2000). The quartz crystals were coated with gold and
chromium to determine the surface effect on attachment and
removal. Calibration was done in sucrose solutions with different
concentrations. Changes of Df due to viscosity changes were

Fig. 2. Ultrasonic signal displaying some acoustic parameters (TOF, Z, E) and a sketch of the pulse-echo mode.
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considered, Dfv. With calibration constant k, Dm can be calculated
with

Dm ¼ kðDfwDfvÞ (13)

The setup of Murray and Deshaires was very sensitive to protein
adsorption and desorption and to heating effects but it was difficult
to link Df to absorbed protein amount. Concentrated solutions led
to thick, coherent films and more protein was adsorbed from skim
milk compared with pure b-lactoglobulin.

QCM-D was applied to monitor the adsorption process of b-
lactoglobulin on a polyethersulfone coated surface (Kim, Weber,
Shin, Huang, & Liu, 2007). Energy dissipation takes place due to
high visco-elastic properties of the protein layer. Atomic force
microscopy imaged the protein layer showing that adsorption is
randomly distributed. Fouling was found to increase with
increasing protein amount, changed pH led to a decrease of protein
amount. Df and DD both changed rapidly when b-lactoglobulin was
introduced. According to Kim et al., Df depends on protein
concentration and pH whereof DD and the visco-elastic behaviour
depend only on protein concentration.

QCM and QCM-D is highly sensitive to material and thickness
changes and the fouling kind can be investigated using QCM-D.
Still, it is invasive and it has to be taken into account that the
Sauerbrey equation has to be adapted to fouling material and
deposition type present.

3.4.3. Guided waves
In contrast to conventional methods, guided waves travel

alongside a structure not through it. Horizontal variation leads to
signal reflection and amplitude changes. A tube is excited to
oscillate in its resonance frequency and changes in frequency,
velocity, and amplitude are determined. Wave excitation has to be
controlled due to different oscillation modes (symmetric, non-
symmetric). This can be done by mechanical impactors
(hammer), piezoceramics, or piezopolymers. Symmetric reflection
gives information about overall variations; mode conversion
contains information about fouling extent. Fouling inside a pipe
leads to a decrease inwave energy and signal arrival time. An initial
lossless signal shows losses when fouling is present due to non-
leakage modes in the layer.

A comb sensor with a piezopolymer (2.5 MHz) was developed to
produce ultrasonic guided waves (Hay & Rose, 2003). It was applied
to a stainless steel pipe and fouling was simulated using Crisco
vegetable shortening at the pipe interior. The 4th longitudinal,
axisymmetric mode of a Lamb wave (L(0,4)) was chosen displaying
minimal radial and maximum axial displacement and high sensi-
tivity to fouling. Measurements were made using longitudinal

guided waves in transmission mode. Hay and Rose found that water
loadingdidnot change theamplitude stronglybut anamplitudedrop
of 6 dB occurred with 1 mm fouling andwill investigate the effect of
different operating temperatures andpiezopolymer ageing in future.

A piezoelectric ultrasonic transducer with 2.62 MHz was
attached to a stainless steel pipe with specially designed Plexiglas
angle beam shoes (Lohr & Rose, 2003). Measurements took place in
transmission mode and a non-leaky S0 was used with tar as foulant
showing amplitude decrease with fouling due to in-plane energy
loss. The amplitude of longitudinal guided waves of the Lambwave
mode L(0,5) decreased with fouling thickness. Guided waves seem
to differentiate between different viscous materials (Lohr & Rose,
2003). For corrosion investigations an acoustic impact method
was used with highly corroded pipes showing a strong velocity
decrease (Lohr & Rose, 2003). Future work of the group shall
improve sensor design, data analysis, and modelling.

Ultrasonic guided waves were used to detect fouling in duct
systems (Silva, Silva, Lima, & Neto, 2008). The tubes became non-
homogeneous causing non-stationary distortion with fouling.
Wavelet transform (WT) was applied for analysis. It is a time-
frequency method to analyse a signal in different frequency
ranges by dilating and translating a mother wavelet monitoring
inter alia energy distribution changes. Due to ultrasonic charac-
teristics Daubechies 4 mother wavelets were chosen by Silva, Silva,
et al. (2008). Results were analysed and 1st and 2nd scale of
discrete WT was calculated. Fouling led to a decrease in energy
spectrum due to signal leakage with thicknesses between 1 and
3 mm having the highest influence.

An electromagnetic displacement systems was used to control
and to have reproducible excitations for hammer impact tests for
fouling detection in tubes (Silva, Lima, Neff, & Neto, 2009; Silva,
Lima, Neff, & Neto, 2010; Silva, Queiroz, Lima, Neff, & Neto, 2008).
A commercial MEMS accelerometer was used as sensor showing an
amplitude reduction and less signal duration time when fouling
thickness increased (Silva, Queiroz, et al., 2008). Comparison with
finite element simulations showed signal leakage in the layer. As
detector for hammer impact tests, a microphone was applied (Silva
et al., 2009). Resonance frequency shift and signal decay time were
found to be a function of fouling thickness and resonance
frequency, 1/e attenuation time, and associated amplitude
decreased linearly with fouling thickness. Experiments done with
oil processing plant supported the lab-scale results.

Guided waves are sensitive to material changes and different
fouling layers and can be used not invasive. Cleaning of fouling can
be monitored using leakage modes and monitor amplitude. Still,
acoustic parameters are temperature dependent making it neces-
sary to do temperature correlation.

Fig. 3. QCM (a) and its frequency response (b) according to loading and no loading.
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4. Computational and numerical methods for fouling
modelling and prediction

Heat exchanger design and fouling determination benefit from
numerical methods which can be used to estimate fouling behav-
iour in a heat exchanger. For this, a model is usually built including
parameters present in real heat exchangers. Parameter evolution
with time is monitored when fouling is introduced. At the end,
a modelled and a real heat exchanger are compared and the model
can be adapted to real conditions and vice versa: parameters used
in heat exchanger design can be changed if the fouling behaviour is
improved.

The effect of fouling on heat transfer parameters was investi-
gated numerically using ANSYS with incorporated tube geometry
(Kaptan, Buyruk, & Ecder, 2008). Temperature, heat flux, and heat
transfer coefficient were chosen and single and double layer fouling
and Reynolds and Nusselt number were included. The equations for
steady, laminar, incompressible flow with constant fluid properties
were used.

Vv ¼ 0
rvVv ¼ �Vpþ mV2v
rcpVT ¼ kV2T

(14)

with velocity v, density r, pressure p, dynamic viscosity m, specific
heat at constant pressure cp, and temperature T. The parameters
were compared with literature; concentric and eccentric tube
geometries were modelled by Kaptan et al. (2008). Increasing
fouling thickness reduced heat transfer which showed higher
values in eccentric geometries. With double layer fouling (two
layers with different heat conductivity) heat flux varied though
heat transfer coefficients stayed nearly constant.

An offline method was derived to detect fouling in a cross-flow
heat exchanger (Gudmundsson, Palsson, Palsson, & Lalot, 2009).
They divided the heat exchanger in an equal number of sections on
the hot and cold side and got model parameters with Kalman
filtering. Temperatures represented the model state. Inlet and
outlet temperature and mass flow of the hot and cold fluid were
monitored using simulated data and reasonable accuracy and
consistency of fouling determination was found by Gudmundsson
et al. (2009). The researchers will include data from real heat
exchangers and develop a more detailed model in future.

A non-linear physical state model for online detection of fouling
in heat exchangers was applied (Jonsson, Lalot, Palsson, & Desmet,
2007). A cross-flow heat exchanger was split in cells and described
with inlet and outlet temperatures and mass flow rates of hot and
cold fluid which got using extended Kalman filtering. With

parameter variation with time fouling was monitored online by
Jonsson et al. (2007) using a sensitive method. Future work of the
group aims on including other heat exchanger configurations, to
compare the results with other models like ANN, and to include
experimental data.

Another way to include intelligent methods in fouling detection
is by using combinatorial decision making machines (ANN, support
vector machines). Prior extracted parameters are fed into an ANN
and used for fouling decision. An ANN is an emulation of a biolog-
ical network connecting a setup of input vectors with a set of
output vectors (Basheer & Hajmeer, 2000) with feed-forward
multilayer perceptrons with an input, an output, and one or
several hidden layers made of neurons with weights and transfer
functions. Input can be measured parameters as well as modelling
results (compare with Fig. 4). The ANN can model complex non-
linear phenomena and helps in pattern recognition and control-
ling (Egmont-Petersen, de Ridder, & Handels, 2002; Mas & Flores,
2008) and can decide after training if a clean or a fouled heat
exchanger is present.

Fouling presence in a PHE was estimated using an Adaline
network (Riverol & Napolitano, 2005) with heat transfer coefficient
as input parameter. Heat transfer over area was measured and
fouling resistance was determined using the ANN and fouling
thickness was calculated with fouling resistance. After the run it
was compared with the measured thickness and found to be pre-
dicted reliable (Riverol & Napolitano, 2005). The developedmethod
was independent on milk type because of regular ANN update with
heat flux measurements.

Fouling in coal-fired utility boilers was monitored by heat flux
measurements (Teruel, Cortés, Ignacio Díez, & Arauzo, 2005). A grey
box ANN model was used including three kinds of network: one to
predict the probability that activation of a neighbour sootblower is
effective at current conditions, one to predict the increase of
cleanliness of an occurrence at present conditions, and one to
predict the heat flux meter evolution. Very simple feed-forward
networks were applied making the computational effort efficient
and the ANNs detected cleaning effectiveness correctly. After off-
line training the grey box ANN model showed that real-time
monitoring is possible (Teruel et al., 2005). Future work will
include integration in a working plant to test longer periods of
quality prediction, the development of a model for individual
blowers, for fouling and cleaning, and of similar methods in other
sections.

Fouling determination of a numerical and an ANN basedmethod
for a triple tube heat exchanger was compared (Lecoeuche et al.,
2005). For the numerical way the heat exchanger was divided in

Fig. 4. Model for the task of a combinatorial method like an ANN. Different inputs can be included, computed and compared using weights and transfer functions and then give the
result of fouling presence (“1”) and fouling absence (“0”).
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N modules with inlet, outlet, outer surface temperature, and mass
flow rate to calculate the outlet temperature. Changes due to
fouling were detectable. Also, 50 local ANNs were coupled to
include the time delay between inlet and outlet temperature. The
numerical model and the coupled ANN showed comparable results
with latter being significant faster (Lecoeuche et al., 2005). Next
steps of Lecoeuche et al. shall consider variable mass flow for the
inner fluid and other heat exchangers.

Fouling behaviour as function of time and position in a triple
tube heat exchanger was predicted using hydrodynamics and heat
balance concept (Sahoo, Ansari, & Datta, 2005). With local fouling
rate, heated milk was simulated and fouling thickness was deter-
mined corresponding to Biot number. At the beginning of the
simulation, a uniform fouling deposit was found by Sahoo et al. due
to constant wall temperature. With growing time, fouling layer and
Biot number increased towards the outlet and stabilised after time
like expected.

ANNs with prior knowledge were included to determine inde-
pendent parameters for fouling determination and to predict
fouling resistance (Malayeri & Müller-Steinhagen, 2003, 2007b). An
increase in error of predicting fouling resistance from 38% to 15% of
was found comparing the ANN with a model from HTRI using
Reynolds number, dimensionless time, and water quality as input
(Malayeri & Müller-Steinhagen, 2003). The group also built an
integrated model of NN with genetic algorithm (GA) to determine
important variables in fouling determination of cooling water
(Malayeri & Müller-Steinhagen, 2007b). Finding best combinations
of input variables is a major problem in regression and non-
parametric methods. GAs are used as search heuristic. The combi-
nation of GA and NN was tested with fouling data from CaSO4
deposition during subcooled flow boiling with an error in training
of 8.7% and in generalization phase of 13.5%.

Initial fouling deposition under pool boiling conditions of CaSO4
was studied (Malayeri & Müller-Steinhagen, 2007a). As indepen-
dent variables, heat flux and CaSO4 concentration were chosen.
Experiments took place in a test rig with an adjustable resistance
band heater. An increase of heat flux increased the number of
nucleation sites for fouling and big bubbles broke up into smaller
ones. Increasing concentration led to lower heat transfer coefficient
at constant heat flux due to increased supersaturation of solution

resulting in bigger bubbles. To correlate experimental results, an
ANN based on radial basis function with three neurons in the input
layer and one hidden layer was used (Malayeri & Müller-
Steinhagen, 2007a). The absolute error found was 8.7 % with
higher accuracy for heat fluxes above 200 kW/m2.

An advantage of numerical and computational methods is that
they need no extra equipment but rely on measured or measurable
parameters and can be very sensitive if appropriate models and
parameters are employed. But if parameters or models are chosen
wrongly or not appropriate (high) errors can occur and first results
have to be validated with other methods.

5. Summary

An overview is given over different methods to detect and
model fouling in heat exchangers. The conclusion is drawn that
depending on the process and the requirements different methods
may be more advantageous than others. Seeking a single method
covering everything seems to be implausible. Rather, combination
of different methods and switching between is more practical. The
objectives may be besides others:

� Determination of exact place of fouling
� Determination of exact amount and/or thickness of fouling
� Determination of an overall value (fouling presence/absence)
� Monitoring and adapting of cleaning process (cleaning for how
long?)

� Monitoring of fouling development (when does it start?, when
is it gone?)

A combination of different methods may enhance both detec-
tion stability and the probability to reach the objectives. The first
step is to determine the goals and the detection limit of the
methods, and to know the fouling type(s) which may be present. It
is important for industry to have a non-invasive, fast, reliable,
robust and not expensive method. Several presented methods are
non-invasive but cannot easily be applied to existing heat
exchangers. Others are very sensitive and invasive but could be
included in new heat exchangers. Thus, the different methods
according to their applicability are summarised:

Table 2
Comparison of different detection methods together with their advantages and limitations.

Method Short description Advantages Limitations

Pressure drop Pressure between inlet and outlet measured No extra equipment
Usually measured
Caution of excessive
pressures

Not very sensitive
More sensitive for PHE
Fouling place unknown

Temperature Product outlet/heating medium temperature
measured

No extra equipment
Usually measured

Not very sensitive
Thin layers not monitored
Fouling place unknown

Heat transfer parameters Heat flux, heat transfer coefficient, thermal
resistance measured

No extra equipment
(despite heat flux)
Flow/temperature usually
measured

Certain thickness necessary
Heat flux sensors not usable at
high temperatures

Electrical parameters Electrical resistance, conductivity measured
Electrical behaviour of heater monitored

Very sensitive to thin layers
Fouling thickness
determinable

Invasive
Electrical heating not popular

Acoustic/Ultrasound/QCM/QCM-D Acoustic parameters measured
Frequency change and energy dissipation
monitored

Non-invasive
Very sensitive to material
changes, thin fouling
Fouling and cleaning
monitored
Movable clamp-on sensor

Scattering can occur
Parameters temperature
dependent
One transducer: only one point
monitored
QCM/QCM-D invasive

Numerical methods/ANN Clean/fouled heat exchangers modelled
Parameters combined in ANN

No extra equipment
Very sensitive when
appropriate parameters
and models used

Due to parameters errors may occur
First, validation with other methods
necessary
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� If the main task is to determine fouling presence (thick layers),
pressure drop and product outlet or heating temperature is
sufficient.

� If information about place and fouling amount and a sensitive
method is wanted, monitoring of heat transfer parameters can
be done.

� If electrical heating is applied, monitoring of heater perfor-
mance helps to determine fouling presence, amount, and very
thin layers.

� If the presence or absence of thin fouling layers is wanted to
control e.g. cleaning better or if the fouling type is of interest,
acoustic methods are suitable. All presented methods are very
sensitive to these parameters. Dependent on sensor type only
selected positions may be investigated but well-chosen places
minimise this disadvantage. Guided waves and nanovibrations
give a broader view. Acoustic parameters are temperature
dependent thus temperature correction has to be included.
QCM and QCM-D has to be implemented in the heat exchanger
but is very sensitive to very thin layers and mechanical
properties.

� If help in the decision process if a heat exchanger is fouled and
how long cleaning shall take place is needed numerical
methods or simulations are useful. Determined parameters of
other measurements can be included and decisions of fouling
presence can be made. Numerical investigations may help to
improve heat exchanger design.

The process where fouling and/or cleaning is monitored as well
as user demands are the main influence on which method is suit-
able. A short overview about advantages, limitations, and possibly
fields of application of the presented methods is given in Table 2.

It is not easy to find a suitable method to monitor fouling (and
cleaning) in closed systemswhere a variety of conditions have to be
considered. The huge variance of methods makes it possible to find
a suitable procedure. In future, it seems good to combine different
approaches and to include numerical methods because dependent
on the objectives it will be easier to adapt to changing process
parameters and to enhance product quality.
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a b s t r a c t

Fouling and cleaning in heat exchangers are severe and costly issues in food processing. In this study, a
new pattern recognition method for detecting fouling on stainless steel is presented. It is based on a com-
bination of ultrasonic parameters and a multilayer perceptron feed forward neural network. Chosen
acoustic parameters change significantly with fouling compared with tap water as standard. When foul-
ing is present echo energy of echo 2 increases up to 73.84%, characteristic acoustic impedance shows
1.802 ± 0.169 MRayl (17.54% higher than impedance for water), and logarithmic decrement seems to
decrease. These acoustic parameters have been combined in an artificial neural network (ANN) with
one hidden layer and back propagation algorithm to disentangle error proneness of single parameters
and increase detection stability. After training with 400 and validation of 250 of 1000 samples, the
ANN displayed an accuracy of 98.58% for fouling presence/absence.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Milk is heated to extend shelf life and reduce microbiological
hazards. Heating above 70 �C induces protein denaturation and
agglomeration on heat transfer areas and results in fouling type A
(protein fouling), a soft, spongy, white deposit consisting mostly
of b-lactoglobulin and salt (Fig. 1) (Burton, 1968; Visser and
Jeurnink, 1997). This accumulation increases heat transfer resis-
tance, decreases thermal efficiency of heating equipment, and in-
creases production costs (Bansal and Chen, 2006). Fouling
deposition is influenced by various parameters like Reynolds num-
ber, surface characteristics, salt, and pH (Belmar-Beiny et al., 1993;
Fryer and Belmar-Beiny, 1991; Law and Leaver, 2000; McKenzie and
Sawyer, 1967; Pelegrine et al., 2007; Premathilaka et al., 2007;
Rosmaninho et al., 2005, 2007). In particular, influence of pH and
salts has been studied extensive during the last few years by various
groups (Krebs et al., 2009; Renard et al., 1998; Unterhaslberger
et al., 2006). It has been found that Ca2+ seems to screen b-lactoglob-
ulin surface charge and that the effect of salts on deposition changes
with pH (Haug et al., 2009; Simons et al., 2002; Smith and Rose,
1994; Yüksel and Erdem, 2005). Besides, it remains still unclear in
which order dairy protein fouling is deposited (Changani et al.,
1997). It is assumed that deposition starts with an induction layer
but it is unknown if this layer is composed primarily of salts or
protein even though usually salt is found as the undermost layer

(Bansal and Chen, 2006). Rosmaninho and Melo (2008) proposed
different kinds of deposition for SMUF (simulated milk ultrafiltrate)
which depend on surface energy and temperature. The results ob-
tained are not easily transferred to milk because it is more complex
than SMUF. For measuring readily developed fouling, different
methods are developed: Astorga-Zaragoza et al. (2007), Davies
et al. (1997) and Truong et al. (2002) e.g. used heat flux measure-
ments. Chen et al. (2004) measured thermal and electrical resis-
tance to detect fouling extent. In contrast, Pereira et al. (2008,
2009) applied nano-vibrations to determine removal of shampoo
films. As drawback, most of these methods are not very sensitive
or hardly usable in heat exchangers.

Ultrasound has been chosen as sensitive and non-destructive
measuring method. In food processes, it has been applied to moni-
tor sucrose and ethanol concentration (Resa et al., 2005; Schoeck
et al., 2010) and to detect foreign bodies (Hæggström and Luukkala,
2001; Leemans and Destain, 2009). Ultrasound has been used to de-
tect membrane fouling (Li et al., 2006; Marselina et al., 2009) and
Withers (1994) employed it to measure fouling thickness. In this
paper, acoustic parameters which are sensitive to changes on heat
transfer area are chosen. These are echo energies of first two echoes,
signal damping, and characteristic acoustic impedance. To enhance
detection stability and develop a pattern recognition method, these
parameters are combined in an artificial neural network (ANN).

An ANN is an emulation of a biological network which can
establish almost any relationship among data by building models
between a set of input and output vectors (Basheer and Hajmeer,
2000). Usually, a feed-forward multilayer perceptron with an
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input, one or several hidden, and an output layer consisting of var-
ious neurons is used. ANNs are preferred where traditional models
fail like in modelling complex phenomena with non-linear rela-
tionships. They have been applied in image processing, pattern rec-
ognition, and pest detection (Egmont-Petersen et al., 2002; Hussein
et al., 2010; Mas and Flores, 2008). ANNs have also been used in
monitoring and predicting fouling in boilers (Teruel et al., 2005)
and in designing cleaning in place in plate heat exchangers (Riverol
and Napolitano, 2005).

The focus in this study lies on the development of a pattern rec-
ognition method which uses a combination of carefully chosen
acoustic parameters and an ANN to detect presence and absence
of dairy fouling on stainless steel. Initially, ultrasonic experiments
have been made from which a set of five acoustic parameters has
been extracted together with information about fouling presence/
absence. These parameters changed significantly with fouling.
Then, they have been implemented in an ANN with back propaga-
tion algorithm with five neurons in the input, two neurons in one
hidden, and one neuron in the output layer displaying ‘‘0’’ for foul-
ing absence and ‘‘1’’ for fouling presence. Hence, a stable pattern
recognition method has been developed.

2. Materials and methods

2.1. Experimental setup

The experimental setup consists of a acryl glass container, two
stainless steel lids, and a self-built ultrasonic transducer with a
PZT-ceramic (Noliac, center frequency 2 MHz). A fast Fourier trans-

form (FFT) with rectangular windowing and sampling interval of
0.04 of one reflection has been applied in Origin displaying a center
frequency of 2.13 ± 0.34 MHz (Fig. 2b). An in-house electronic with
a sampling frequency of 40 ns and 20 V excitation voltage is used.
Tap water has been chosen as reference and measured because it is
used in cleaning and has well known properties (e.g. Marczak,
1997).

As acoustic parameters, energies of echo 1 and 2, signal damp-
ing and characteristic acoustic impedance at the interface stainless
steel–probe chamber have been chosen (Fig. 3a–c).

2.2. Fouling procedure

The setup has been filled with ca. 50 g of reconstituted milk
made from skim milk powder (34% protein, 7.2–8.2% ash). The
reconstituted milk showed a pH of between 6.5 and 6.9. The milk
protein content varied (2–9%) and milk has been heated to
90 ± 1 �C for 90 ± 5 min to produce fouling (see Table 1). Then,
waste milk has been poured out and the fouled setup has been
cooled to 25 ± 1 �C. After filling with water, the ultrasonic trans-
ducer has been attached to the stainless steel lid with fouling
(see Fig. 2a) using an oil-based coupling gel (Sonatest) and mea-
surements were made in pulse-echo mode under static conditions.
Experiments on five different days took place with 30 measure-
ments per protein content and day.

2.3. Energy calculation

Acoustic energy E can be calculated by summing kinetic Ekin and
potential energy Epot. Sound energy in a fluid is then given by
E ¼ Epot þ Ekin ¼ p2

2q0c2 þ q0v2

2 with p as sound pressure, q0 as initial

density, c as sound velocity, and v as particle velocity. Because echo
energy is wanted, the integral over intensity I in an echo is calcu-
lated. As boundaries, starting time t1 (start of echo) and ending
time t2 (intensity indistinguishable from noise) are chosen (see
Fig. 4):

E ¼
Z t2

t1

Idt ð1Þ

The energy depends on the material the signal travels through
and on reflection and transmission coefficients at interfaces.
Energy E1 is the energy from echo 1 prior entering the chamber,

Nomenclature

a damping coefficient
a neuron output
A (V) amplitude
c (m/s) sound velocity
d (m) distance
d (m) distance
E (J) energy
Ekin (J) kinetic energy
Epot (J) potential energy
I intensity
Ii incident intensity
Ir reflected intensity
K damping ratio
l (m) length
K logarithmic decrement
m slope
n output of transfer function
n number of pulses

p (Pa) pressure
q (kg/m3) density
r reflection coefficient
R reflectivity
SMUF simulated milk ultrafiltrate
t (s) time
T (s) time
TOF (s) time of flight
v (m/s) particle velocity
Z (Rayl = kg/(m2 s)) acoustic impedance

Subscripts
i, n counter
s sample
ss stainless steel
w water
0 initial value

Heat exchanger

Salt

Protein

Fat

Fig. 1. Schematic of protein fouling.
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E2 is the energy from echo 2 after travelling through the chamber.
For both E1 and E2 attenuation in the stainless steel wall and for E2
in water is negligible for frequencies and temperatures used here.
Energy E1 depends mostly on reflection and transmission coeffi-
cients at the first interface. These are governed by material proper-
ties at this interface with similar materials resulting in low
reflection and high transmission and differing materials showing
higher reflection and low transmission. For E2, material properties
in the chamber play an important role, in particular attenuation in
a fouling layer and scattering by air bubbles and uneven fouling
layers.

Fig. 2. (a) An ultrasonic wave is partly reflected at the interface wall–probe chamber (echo 1), partly transmitted. After travelling through the chamber it is reflected at the
interface chamber–back wall (echo 2). (b) FFT of one ultrasonic reflection displaying a center frequency of 2.13 ± 0.34 MHz.

Fig. 3. (a) An echo is the reflected signal at an interface. It consists of several reflections in the wall. (b) For acoustic impedance, succeeding reflections of echo 1 are used, for
energy, echo 1 and 2 is integrated. (c) Damping is calculated by logarithmising and fitting succeeding reflections in echo 1.

Table 1
Protein content in reconstituted milk, heating temperature and time for fouling
production.

Protein content (%) Temperature (�C) Heating time (min)

0 (water) – –
2 90 90
3 90 90
6 90 90
9 90 90

Fig. 4. Echo energy E1 and E2.
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2.4. Determination of logarithmic decrement

Signal damping at the interface prior entering the probe cham-
ber has been chosen because it depends on material properties at
this interface. It can be determined via comparing incident Ii and
reflected intensity Ir. The signal is damped by a damping factor a
after travelling a distance d, Ir ¼ Ii expð�adÞ. Incident intensity is
unknown thus logarithmic decrement K is used. It displays the
ratio between successive peaks of the amplitudes An and An+1

differing by one oscillation period (t + T) with constant damping
ratio K:

K ¼ An

Anþ1
¼ AðtÞ

Aðt þ TÞ ¼ expðdTÞ ) K ¼ ln expðdTÞ ¼ dT ð2Þ

Logarithmised amplitudes are plotted against number of amplitude
and fit linear where slope m resembles K (see Fig. 5). Here, the sig-
nal has been squared and intensities of consecutive reflections have
been logarithmised. Least square regression took place to determine
the slope which is twice K because intensity is used. Due to signal
variations, K is calculated twice: one with all intensities and an-
other one excluding intensities with a residuum higher than stan-
dard error.

2.5. Determination of characteristic acoustic impedance

Characteristic acoustic impedance Z is a measure for the resis-
tance a medium opposes to a travelling sound wave. With density
q and sound velocity c at one temperature in the far field of a
sound source it can be calculated with Z ¼ q � c. When q and c
are unknown Z2 at an interface can be obtained via reflection coef-
ficient r and reference impedance Z1.

Z2 ¼ Z1 �
1� r
1þ r

� �
ð3Þ

An ultrasonic signal can be described as n consecutive ampli-
tudes A1,. . .,n with incident amplitude A0, reflection coefficient at
interface transducer-wall r1, reflection coefficient at interface
wall-chamber r2, attenuation coefficient a, and wall thickness l.

A1 ¼ A0 � r2 � expð�2a1 � l1Þ
A2 ¼ A0 � r2

2 � r1 � expð�4a1 � l1Þ . . . ð4Þ
An ¼ A0 � rn

2 � rn�1
1 � expð�2na1 � l1Þ

With I / A2 and R ¼ r2, Eq. (6) can be written as
In ¼ I0 � const: � Rn

2 � R
n�1
1 � expð�4na1 � l1Þ and energy E of i succeeding

reflections is

E ¼
Z

I � Fdt ffi
X

n

In � FDt ð5Þ

with intensity I, area of ultrasonic transducer F, and integration
timestep Dt. With incident energy E0 ¼ const �

P
nA2n

0 � 1
R1
� FDt en-

ergy E is defined as E ¼ E0 � ðR2 � R1Þn expð�4nl1 � a1Þ. Due to expo-
nential decay E can be logarithmised resulting in

ln E
y
¼ ln E0

b
þn

x
� ½lnðR2R1Þ � 4a1l1�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

m

ð6Þ

This resembles the linear equation where slope m depends on mate-
rial properties (see Fig. 6).

Material changes at the interface can be detected when slope m
is compared with a reference.

ms

mw
¼ lnðRs � RssÞ � 4a1l1

lnðRw � RssÞ � 4a1l1
ð7Þ

with s for sample, w for water, and ss for stainless steel. This relation
is simplified when both denominator and numerator are exponen-
tiated and compared.

expðms �mwÞ ¼ Rs=Rw ð8Þ

With Eq. (10), reflectivity R2 = Rs and reflection coefficient r2 can
be calculated

Rs ¼ Rw � expðms �mwÞ ) rs ¼
ffiffiffiffiffi
Rs

p
ð9Þ

After that, the acoustic impedance Z at an interface can be
determined using Eq. (3).

2.6. Statistical analysis

Fitting for determination of logarithmic decrement and charac-
teristic acoustic impedance has been done via a self-written least
square regression algorithm. Statistical data analysis has been

Fig. 5. Amplitude is logarithmised and fit over number with slope m as logarithmic
decrement K.

Fig. 6. Signal is squared and energies are calculated and logarithmised. Slope m of a reference (water) and a sample (fouling) are got. Via slope comparison characteristic
acoustic impedance can be calculated.
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performed in Origin 8.0 using the build-in ANOVA test. Mean value,
standard deviation, and standard error of mean have been calcu-
lated. Percentage difference with respect to mean has been calcu-
lated using %error ¼ jmeasured�meanj

mean � 100 [%].

3. Results and discussion

3.1. Energy

Energies of echo 1 and 2 of surfaces with and without fouling
have been compared. The results are displayed in Fig. 7.

Energy of echo 1, E1, prior entering the probe chamber does not
show a clear tendency. Only fouling made of 6% and 9% protein
milk are significantly lower than water even though this is ex-
pected for all fouling layers. Energy of echo 2, E2, shows a clearly
higher value compared with water. A mean of 1.112 ± 0.153 AU
has been calculated which is 73.84% higher compared with E2 of
water (0.640 ± 0.176 AU). This increase depends on the change of
reflection and transmission at the interface when fouling is pres-
ent. Differences between stainless steel and fouling are less than
between steel and water leading to lower reflection and higher
transmission of the signal at the interface. Even though only thin
layers (<800 lm) are present changes are high enough to affect
the signal. Energy E2 seems to be better applicable for fouling
detection. Attenuation in fouling layer is outweighed by higher
transmission but may introduce an error in measurements. In
Table 2, E1 and E2 for water and fouling are displayed with stan-
dard deviation and percentage error.

The high error in E2 of water is explained by a high variance of
measured values. This can be due to changing experimental sur-
rounding conditions over 10 different days affecting water. Alto-
gether, error in E2 is higher because more error sources are
present. These could be e.g. uneven fouling surface, different com-
positions in fouling layer or air bubbles in water.

3.2. Logarithmic decrement

Damping of the ultrasonic wave at the interface prior entering
the probe chamber is got. Clean and surfaces with fouling have
been compared. In Fig. 8, the results are presented.

For logarithmic decrement, two values have been calculated.
Logarithmic decrement K1 resembles the slope got by least square
regression when all intensities of the reflections in echo 1 are ta-
ken. After fitting, intensity values with a residuum higher than
standard error have been excluded and a second least square
regression took place giving slope K2. Logarithmic decrement K1
does not show a clear trend whereas K2 seems to decrease when
fouling is present. This decrease can be explained by less reflection
and higher transmission at the interface wall–probe chamber lead-
ing to a faster decay of the reflected part which is connected to
stronger signal damping. Logarithmic decrement seems to be inde-
pendent on milk protein amount. For detecting fouling, K2 seems
to be more appropriate but due to high errors this trend is not easy
to see and has to be verified or falsified by further measurements.
The high error may be explained by imperfections in data analysis
and differing fouling layers. The values of K1 and K2 are summa-
rised in Table 3 together with standard deviation and error.

3.3. Characteristic acoustic impedance

The characteristic acoustic impedance at an interface of surfaces
with and without fouling has been determined; the obtained re-
sults are shown in Fig. 9.

Characteristic acoustic impedance seems to be independent on
protein content in milk. Thus, a mean of 1.802 ± 0.169 MRayl has
been calculated. This value for solid-like fouling is significantly
higher than for liquid water (1.486 MRayl, calculated using Bilaniuk
(Bilaniuk and Wong, 1993)) and liquid milk (1.558 MRayl, calcu-
lated using Kessler (Kessler, 1996)). A fouling layer has to be

Fig. 7. Energy of echo 1 (E1) and echo 2 (E2) for different protein contents in milk.
In contrast to E1, E2 shows higher values when fouling is present due to higher
transmission at the interface wall–probe chamber.

Table 2
Energies for echo 1 and 2 for water and fouling made of milk with different protein content along with standard deviation (SD) and error.

Material Energy E1 (AU) SD (AU) Error (%) Energy E2 (AU) SD (AU) Error (%) % Difference with respect to mean

Water 3.142 0.153 4.88 0.640 0.176 27.47 –
2% protein 3.197 0.049 1.54 1.163 0.123 10.53 4.57
3% protein 3.041 0.070 2.29 1.144 0.120 10.47 2.82
6% protein 2.426 0.287 11.84 0.976 0.105 10.74 12.24
9% protein 2.480 0.154 6.21 1.135 0.171 15.03 2.07
Mean 1.112 0.153 13.73 0.00

Fig. 8. Logarithmic decrement of water and fouling made of milk with different
protein content. Due to high error of logarithmic decrement of water a trend is hard
to see. Logarithmic decrement K2 seems to decrease when fouling is present due to
less reflection and thus faster intensity decay at the interface. Logarithmic
decrement K1 is displayed in closed, K2 in open symbols.
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considered as visco-elastic material being neither a liquid nor a so-
lid but solid-like. Its material properties vary strongly enough com-
pared with water and milk to change reflection and transmission
coefficients at an interface. Reflection decreases when fouling is
present which leads to a faster signal decay and increases charac-
teristic acoustic impedance. Thus, a solid-like layer can be clearly
distinguished from liquids present at an interface. Table 4 displays
the values for acoustic impedances of water, milk, and fouling with
standard deviation, standard error of mean, and percentage error.

The error for water and milk matches a standard deviation of
5%. Errors in characteristic acoustic impedance for fouling are
mostly caused by irregularities of the fouling layer like uneven
spreading on the surface. Fouling layers differed every day in
spreading on the surface and composition even though reconsti-
tuted milk has been used.

3.4. Artificial neural network (ANN)

A feed-forward multilayer perceptron ANN (see Fig. 10) has
been designed based on the back propagation algorithm to develop

a pattern recognition method. The input layer is made of five neu-
rons for the acoustic parameters energies of echo 1 and 2, signal
damping (two values), and characteristic acoustic impedance.
One hidden layer with two neurons has been chosen while the out-
put layer contains one neuron for the fouling decision.

Each neuron weights the input and sums it up with a bias. Then,
it presents it to the next layer using a transfer function. The behav-
iour of an ANN depends on both the weights and the transfer func-
tion. The implemented back propagation algorithm tries to
minimise the network error by modifying the weights. The transfer
functions for the neurons should ensure the smallest available total
mean square error (MSE). Iterations on type and order of the trans-
fer functions have been applied and the best results were obtained
when LOGSIG (Eq. (2)), LOGSIG, TANSIG (Eq. (1) transfer functions
were chosen.

a ¼ 2
ð1þ expð�2nÞÞ � 1 ð10Þ

a ¼ 1
ð1þ expð�nÞÞ ð11Þ

where n and a are the input to the transfer function and the neuron
output, respectively. Prior training, the network inputs were scaled
to be in their mean-centered form so that the network sets the same
priority to each input. Altogether, 1000 experiments of water and
milk (clean surface) and surfaces with fouling have been investi-
gated whereof 40% (400 samples) has been used for training, 25%
(250 samples) for validation, and 35% (350 samples) for testing.

Since the result of the output TANSIG neuron is a finite value
(i.e., not {0,1}), a step function with a suitable threshold has to
be applied producing ‘‘1’’ for fouling presence and ‘‘0’’ for fouling
absence. Sensitivity analysis for several thresholds has been inves-
tigated with respect to the number of wrongly detected samples
(see Fig. 11). The best results were obtained with thresholds of
0.5, 0.6, and 0.7. However, a threshold of 0.5 had been selected
to avoid over-fitting that may occur when testing the designed
model with samples of different experimental environment.

After repeating the training 29 times, a mean square error
(MSE) of 6.75E�13 has been obtained (see Fig. 12). Then, the ability
of the ANN to accurately detect fouling presence has been tested.
For this, 207 samples without fouling have been chosen whereof

Table 3
Logarithmic decrement of water and fouling made of milk with different protein
contents with standard deviation (SD) and error.

Material K1 SD Error (%) K2 SD Error (%)

Water �0.522 0.052 9.90 �0.365 0.038 10.34
2% protein �0.455 0.042 9.23 �0.344 0.047 13.79
3% protein �0.505 0.036 7.12 �0.422 0.051 12.06
6% protein �0.593 0.038 6.44 �0.401 0.032 7.928
9% protein �0.438 0.057 12.95 �0.389 0.027 7.028

Fig. 9. Characteristic acoustic impedance of water, milk, and fouling made of milk
with different protein content. Values for water (calculated using Bilaniuk Bilaniuk
and Wong, 1993) and milk (calculated using Kessler, 1996) are similar. When solid-
like fouling is present the acoustic impedance is significant higher. The error of
water and milk represents a standard deviation of 5%.

Table 4
Characteristic acoustic impedances of water, milk, and fouling together with standard
deviation (SD), standard error of mean (SE of mean), and error.

Material Z
(MRayl)

SD
(MRayl)

SE of mean
(MRayl)

Error
(%)

% Difference with
respect to mean

Water 1.486 0.074 0.0041 4.99 –
Milk 1.558 0.078 0.0043 5.00 –
2% protein 1.800 0.165 0.0014 9.15 0.07
3% protein 1.771 0.172 0.0015 9.70 1.74
6% protein 1.802 0.163 0.0014 9.05 0.01
9% protein 1.826 0.171 0.0013 9.36 1.31
Mean 1.802 0.169 0.0072 9.36 0.00

Fig. 10. Architecture of the designed ANN. The input layer has five neurons for the
selected acoustic parameters (LOGSIG transfer function), the hidden layer two
neurons (LOGSIG transfer function), and the output layer one neuron (TANSIG
transfer function) giving ‘‘1’’ for fouling presence, ‘‘0’’ for absence.
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203 samples have been identified correctly resembling a detection
stability of 98.07%. The residual 143 of all 350 testing samples have
been with fouling present. Of them, 142 have been recognised cor-
rectly corresponding to 99.29% (compare with Fig. 13).

In Table 5, the number of samples used is displayed in more de-
tail and number of correctly and incorrectly detected samples as
well as percentage error are given.

Out of 350 test samples 345 have been detected correctly
(98.58%) indicating the efficiency of the designed network with
the selected acoustic parameters as input. To improve detection
efficiency, more samples with and without fouling have to be in-
cluded in designing and testing of the ANN as well as an outlier
algorithm could be included.

4. Conclusions

In this study a new pattern recognition method for determining
fouling presence and absence is presented. It is based on a combi-
nation of acoustic parameters from ultrasonic measurements and
an artificial neural network (ANN). Dairy fouling type A has been
made using reconstituted milk with varying protein content and
measured using ultrasound. The acoustic parameters chosen as in-
put for the ANN are energies of echo 1 and 2, logarithmic decre-
ment (two values), and characteristic acoustic impedance. Energy
of echo 1 did not show a clear tendency whereas energy of echo
2 increased up to 73.84% when fouling was present compared to
tap water. This increase is due to less difference between solid-like
fouling and stainless steel leading to higher signal transmission.
Logarithmic decrement resembles damping at the interface prior
entering the probe chamber and seemed to decrease up to 14%
with fouling. This may be disputable due to high variance which
may be caused by uneven fouling spreading and errors in analysis.
Characteristic acoustic impedance increased from 1.486 ± 0.074
MRayl for water by 17.54% to 1.802 ± 0.169 MRayl for fouling. This
is caused by changed material state from liquid to solid-like at the
interface wall–probe chamber. Errors in the measurements are
mainly due to uneven spreading of fouling on the measured sur-
face. All parameters seem to be independent of protein content
and show significant changes with fouling presence even though
usage of logarithmic decrement may be disputable. The parameters
have been used as input in an ANN to disentangle fouling detection
from error proneness of single acoustic parameters. Single param-
eters may vary strongly and give false results easily whereas a
combination of them will decrease error proneness and increase
detection stability and efficiency. The ANN is based on a back
propagation algorithm with one hidden layer and displays ‘‘1’’ for

Fig. 11. Number of wrong detected samples out of 350 test samples with different
thresholds applied to the ANN output (0 matches no threshold). Values between 0.5
and 0.7 show an optimum.

Fig. 12. Performance of the ANN during training: variation of MSE with number of
repetitions of training samples. The training process stopped after 29 repetitions
when MSE reached a minimum of 6.75 � 10�13.

Fig. 13. Performance of the ANN during testing. (a) 207 samples without fouling, 203 samples have been identified correctly. (b) 143 samples with fouling, 142 samples have
been recognised correctly.

Table 5
Number of testing samples in total and for fouling presence and absence together
with error and number of samples detected correctly and incorrectly.

# Of samples Detection
correct

Detection
incorrect

% Error

Fouling 143 142 1 0.70
No fouling 207 203 4 1.93
Total 350 345 5 1.42
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presence and ‘‘0’’ for absence of fouling. Sensitivity analysis
showed a threshold of 0.5 for the output neuron as best applicable.
After training with 400 samples (40% of data), 350 samples have
been tested (35% of data). In 98.58% of the tested samples correct
identification of fouling presence and absence has been found.
Increasing number of samples and decreased errors in single
parameters may increase correct detection further. Wrong detec-
tion may be caused by the decision in the last layer where values
are rounded up to 1 and down to 0 when not displaying definite
value, respectively. This may be improved by including outlier
analysis and making the threshold more flexible. Also, other or
more acoustic parameters may increase detection stability.

Fouling is a complex process and fouling detection is prone to
many errors. Using a combination of ultrasonic parameters and
an ANN a stable and efficient pattern recognition method for foul-
ing detection has been developed. In future, dairy fouling type B
shall be included to extend the analysis method to other fouling
kinds. Also, differing flow and temperatures and their influence
on acoustic parameters shall be added. Following, fouling and
cleaning processes shall be monitored to adapt the developed
method to real processes.
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Fouling and cleaning in heat exchangers are severe and costly (up to 0.3% of gross
national product) issues in dairy and food processing. Therefore, reducing cleaning
time and cost is urgently needed. In this study, two classification methods [artificial
neural network (ANN) and support vector machine (SVM)] for detecting protein
and mineral fouling presence and absence based on ultrasonic measurements were
presented and compared. ANN is based on a multilayer perceptron feed forward
neural network, whereas SVM is based on clustering between fouling and no fouling
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showed an accuracy of 71.9% while SVM displayed an accuracy of 97.6%. Sepa-
rate fouling detection of mineral/protein fouling by ANN/SVM was comparable:
dependent on fouling type detection accuracies of 100% (protein fouling, ANN and
SVM), and 98.2% (SVM), and 93.5% (ANN) for mineral fouling was reached. It was
shown that it was possible to detect fouling presence and absence offline in a static
setup using ultrasonic measurements in combination with a classification method.
This study proved the applicability of combining classification methods and fouling
measurements to take a step toward reducing cleaning costs and time.
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1 Introduction

To extend shelf life and reduce microbiological hazards, milk
is heated in heat exchangers where temperatures from 72◦C to
75◦C (pasteurization) and from 135◦C to 150◦C (ultra-high-
temperature processing) are used. At these temperatures, pro-
teins denaturate and agglomerate and minerals precipitate on
heat transfer surfaces producing fouling. Fouling is classified in
protein fouling (type A) a soft, spongy, white deposit consisting
mostly of β-lactoglobulin and developing at pasteurization pro-
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wzw.tum.de), (Bio-)Process Technology and Process Analysis,
Life Science Engineering, Technische Universitaet Muenchen,
Weihenstephaner Steig 20, 85354 Freising, Germany.

Abbreviations: ANN, artificial neural network; MSE, mean square error;
SCF, spectral crest factor; SSMOOTH, spectral smoothness; STE, short-
time energy; SVM, support vector machine; TCF, temporal crest factor;
Z, characteristic acoustic impedance

cesses and mineral fouling (type B) that is grayish, brittle, and
gritty and made mostly of calcium phosphates (Ca3(PO4)2) de-
veloping mostly at ultra-high temperature processing [1]. Foul-
ing deposition is influenced by various parameters like Reynolds
number [2], salt content, age of milk [3], protein concentration
[4], and pH [5]. Fouling starts with an induction layer but it
remains unknown if this layer is composed primarily of salts
or proteins [6–8]. When fouling occurs heat transfer resistance
and production costs are increased wile thermal efficiency is
decreased and unsupervised cleaning will take place [9]. Thus,
it is of great importance for dairy industry to determine foul-
ing presence and monitor its progress and cleaning success. To
achieve these goals different approaches were made like mon-
itoring heat transfer measurands [10, 11], electric parameters
[12–14], or acoustical quantities for fouling detection [15–17].
Another approach is to feed measured values to a computational
or numerical method that then states fouling presence [18–20].
All these methods proved to be usable for fouling detection and
have different advantages and disadvantages. Heat and electric
parameters are, e.g. very sensitive to fouling thickness but may
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Figure 1. (A) Experimental setup: an ultrasonic wave runs through the setup and is reflected and transmitted at interfaces. (B) An echo
is the reflected signal at an interface consisting of several reflections in the wall. (C) For the chosen signal parameters echo 1 is analyzed
(framed).

be only local, invasive, or not stand very high temperatures.
For example acoustic methods are noninvasive and are highly
sensitive to fouling but are temperature dependent. Numerical
approaches can be used to get an impression about fouling behav-
ior and occurrence but have to be compared with experimental
results and are usually simplifications of complex processes. De-
pendent on the application a suitable method has to be chosen.

This work deals with a combination of an ultrasonic mea-
suring method and classification techniques that are used to
determine fouling presence and absence where parameters were
extracted from an ultrasonic signal and fed into a decision ma-
chine. Ultrasound (20 kHz–2 GHz) is a well-known method for
noninvasive inspection and used in many applications like non-
destructive testing in aerospace industry [21], to determine poly-
mer properties [22], and to characterize dairy products and fer-
mentation in food industry [23, 24]. As classification machines,
artificial neural networks (ANN) and support vector machines
(SVM) were chosen. An ANN is an emulation of a biological
network that can establish a relationship among data by build-
ing models between input and output vectors [25]. ANNs were
already applied, e.g. in image processing, pattern recognition,
and pest detection [26, 27] and in supervising cleaning in place
in plate heat exchangers [28]. A SVM is a decision machine and
was first introduced by Vapnik et al. [29, 30] where objects are
classified such that a clear gap between them is found by using
a hyperplane that is defined by support vectors from the distin-
guished classes. SVMs were already applied in pattern recogni-
tion [31,32], regression [33], and computational biology [34,35].

The focus in this study lied on the development of a decision
method independent on fouling type. The method uses a com-
bination of carefully chosen acoustic and signal parameters and
a pattern recognition or classification method to detect fouling
presence and absence on stainless steel in a static setup.

2 Materials and methods

2.1 Experimental setup

The setup consists of an acrylic glass container (length 50 mm,
diameter 50 mm) closed with two stainless steel lids where the

self-built ultrasonic transducer with a lead zirconate titanate-
ceramic (Noliac, center frequency 2.13 ± 0.34 MHz, theoreti-
cally detectable fouling thickness below 50 μm) was pressed to
one side using a screw (Fig. 1A) with the path of the ultrasonic
wave schematically shown in Fig. 1B. An adjustable in-house
electronic was used (sampling frequency of 12.5 kHz, 20 V ex-
citation voltage) and tap water was chosen as reference. For
protein fouling, reconstituted milk and for mineral fouling re-
constituted permeate was heated. Different acoustic and signal
parameters were chosen to determine fouling presence and ab-
sence and calculated using the first echo of the signal (Fig. 1C).
The parameters showed a difference between a fouled and a clean
surface.

2.2 Procedure for protein and mineral fouling

For protein fouling, the setup was filled with 50 g of reconstituted
milk made from skim milk powder (Instant C, Schwarzwald-
milch, 34 w/w% protein) with a pH of 6.7 ± 0.2. Protein con-
tent varied (2–9 w/w%) and milk was heated to 90 ± 1◦C for
90 ± 5 min to produce fouling. Supernatant milk was poured
out, the fouled setup was cooled to 25 ± 1◦C, the setup was filled
with water, the ultrasonic transducer was attached to the fouled
stainless steel lid using an oil-based coupling gel (Sonatest) and
measurements were made in pulse-echo mode under static con-
ditions. All 238 measurements were combined because it was
found that protein content did not have a significant impact on
the signal and its parameters [36].

For mineral fouling, the setup was filled with 50 g of re-
constituted permeate made of permeate powder (Bayolan PT,
Bayerische Milchindustrie eG). After preliminary tests, a min-
eral content of 4 w/w% and pH 9 were chosen. Permeate was
filtered to reduce the amount of fats and sugars, heated for
180 ± 5 min at 95 ± 1◦C, then supernatant permeate was poured
out, and the setup was cooled to 25 ± 1◦C. After that, the same
procedure as for protein fouling was followed (317 measure-
ments). No fouling resembles the setup filled only with water
(648 measurements).
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2.3 Acoustic and signal processing parameters

Different acoustic and signal processing parameters that showed
high sensitivity toward fouling presence and absence were com-
bined in pattern recognition methods. The features and classifi-
cation methods are shortly presented together with their math-
ematical description.

2.3.1 Acoustic impedance
The characteristic acoustic impedance (Z) stands for the resis-
tance a medium opposes to the traveling sound wave. It is calcu-
lated by determining the reflection coefficient r at the interface
between wall and medium that changes dependent on material
present [Eq. (1)].

Z sample = Z steel

(
1 − r

1 + r

)
(1)

2.3.2 Short time energy
Short-time energy (STE) resembles the energy content of the
pattern (here first echo). It is calculated by summing up the area
under the curve of echo 1 (framed in Fig. 1C).

STE =
N∑

n=1

[x(n)]2 (2)

It changes due to different reflection and transmission co-
efficients at the considered interface that are changing due to
different media.

2.3.3 Temporal/spectral crest factor
Temporal crest factor (TCF) and spectral crest factor (SCF)
are the ratio between the maximum amplitude/magnitude in
time/frequency domain to the average amplitude/magnitude and
are unique for a signal. For this investigation, maximum and av-
erage of echo 1 were chosen.

TCF = max (|x (n)|)
1/N

∑N
n=1 |x (n)| (3)

SCF = max (|X (m)|)
1/1024

∑1024
m=1 |X (m)| (4)

The bigger it is the higher is the amount of harmonics in the
signal that is not wanted because many harmonics may decrease
detection stability and accuracy.

2.3.4 Spectral smoothness
The spectral smoothness (SSMOOTH) stands for the smooth-
ness variation of the amplitude of the chosen pattern with respect
to its two neighbors. This was done for echo 1.

SSMOOTH = 20 ·
1023∑
m=2∣∣∣∣log |X (m)|− log |X (m − 1)|+ log |X (m)|+ log |X (m+1)|

3

∣∣∣∣
(5)

The smoother a signal is, the less deviated is its waveform,
which is indicated by low SSMOOTH whereas high values indi-
cate stronger decrease.

2.4 Pattern recognition methods

2.4.1 Artificial neural network
A feed-forward multilayer perceptron ANN (Fig. 2) was designed
based on the back propagation algorithm to develop a pattern
recognition method. One input (five neurons), one hidden (two
neurons), and one output layer (one neuron) were chosen. The
output neuron displayed “1” for a fouled and “0” for a clean
plate.

Each neuron weights the input, sums it up with a bias, and
presents it to the next layer via a transfer function where ANN
behavior depends on both weights and transfer function. The
implemented back propagation algorithm minimizes network
error by weight modifying the transfer functions to obtain the
smallest total mean square error (MSE). Iterations on type and
order of the transfer function were applied and tangent sigmoid
transfer function [Eq. (6)] transfer function was chosen for both
fouling types.

a = 2[
1 + exp (−2n)

] − 1 (6)

Where n and a are the input to the transfer function and neu-
ron output, respectively. Prior training, the inputs were scaled to
be mean centered.

2.4.2 Support vector machine
A SVM creates and defines the maximal margin hyperplane to
separate two clouds of points. The classification training algo-
rithm builds a decision model capable of predicting whether a
new point falls into one category or the other [Eq. (7)].

F (x) =
N∑

i=1

wi · x + b =
N∑

i=1

αiyi (xi · x) + b (7)

where b is the distance between the separating hyperplane and the
origin in the perpendicular direction, N the number of support
vectors, α the nonnegative Lagrange multiplier, y the decision
value ∈{−1,1}, and F the decision function that allocates a test
sample to one cloud if its sign is positive and to the other cloud
if its sign is negative.

If the clouds are clearly separated (Fig. 3A) a linear SVM can
be used. The applied hyperplane is the one with largest distance
to nearest points (i.e. support vectors) of each cloud that define
the hyperplane and guide the decision process.

Since the samples are not linear separable in input space the
separation is sought in an appropriate chosen kernel-induced
feature space (Fig. 3B).

Nonlinear separable data can be made linear separable such
that a dot product can be used by applying the kernel trick. With
it the data is transferred from input to feature space making it
linear separable and Eq. (7) is modified [Eq. (8)]. The solution
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Figure 2. Architecture of the designed ANN. The input layer has five neurons (five inputs), the hidden layer two neurons, and the output
layer one neuron giving “1” for fouling presence, “0” for absence. tangent sigmoid transfer function was used.

of the problem lies in finding b, α’s, and an appropriate kernel.

F (x) =
N∑

i=1

αiyi [� (xi) · � (x)] + b =
N∑

i=1

αiyiK (xi, x) + b

(8)

Where �(x) is the transform of sample x from input to feature
space, and K is the kernel to represent feature space.

Choosing a kernel is a challenging task and is usually done
following other studies in the same area or by trial and error. For
a polynomial kernel it can be shown that it can be linked with
regression analysis [Eq. (9)]. This is proven by mathematical
induction.

Polynomial fit Polynomial kernel
y = A + ∑

n B i · xn
i K = (

A + x∗
i · xi

)n

n = 1 : y = A + B 1x1
1 B 1 = x∗

1 K = A + x∗
1x1

n = n : y = A + B nxn
n + · · · + B 1x1 K = A n + xn∗

n xn
n + · · ·

+ (n − 1) A n−1x∗
1x1

B n = xn∗
n , . . . , B 1 = (n − 1)A n−1x∗

1

(9)
If mean values can be fitted with polynomial regression this

may help to choose a kernel as starting point for further investi-

gation. Still, radial basis function or perceptron kernels may give
better results and may be tested.

3 Results and discussion

3.1 Fouling layer

Protein layer was spongy and thick with thicknesses of
400 ± 100 μm (measured with caliper). Thickness is in the
same range as described, e.g. by Withers [37] with fouling made
under static conditions in this study. Different protein concen-
trations led to similar layer thicknesses when same heating time
and temperature was applied. Increasing heating time, temper-
ature, and protein concentration is known to increase fouling
deposition rate and thickness [14,38,39]. Mineral fouling on the
other side was very thin, brittle, hard to obtain, and its thickness
could not be measured easily but is estimated to be below 50 μm.
Fouling resembled layers described in literature [6, 40] and only
one thickness for every fouling type was investigated because
fouling detection in principle was of interest.

Figure 3. (A) Classification problem of two classes (cloud 1, cloud 2) modeled by a linear SVM with three support vectors (x1, x2, x3) of
three weights (w1, w2, w3). (B) Schematic display of the transformation � of nonlinear separable samples from input to feature space at
which a linear separating hyperplane can be constructed.
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Figure 4. Characteristic acoustic impedance (Z) of water, protein,
and mineral fouling. Value for water was calculated using Z =
ρ · c with sound velocity c after Bilaniuk [37], SD of 5%. With
solid-like fouling acoustic impedance is significant higher. Error
bars stand for SD.

3.2 Acoustic and signal processing parameters

3.2.1 Characteristic acoustic impedance
The Z at an interface of surfaces with and without fouling was
determined; the results are shown in Fig. 4.

Z for both fouling types is higher than for water and one-
way analysis of variance calculated with Minitab R© and Origin R©,
respectively, showed significant difference between both foul-
ing types and water (for both fouling types p < 0.0005, H0
hypothesis stated no difference, H1 hypothesis stated differ-
ence between fouling and water, H0 hypothesis was rejected due
to low p-value). Characteristic acoustic impedance for water is
1.49 MRayl (calculated using Bilaniuk [41]), for protein fouling
1.80 ± 0.17 MRayl, and for mineral fouling 2.28 ± 0.64 MRayl.
Fouling is considered as visco-elastic, solid-like material thus its
material properties vary strongly compared with a liquid and
change the reflection coefficient at an interface even if only thin
layers are present. This change leads to a change in Z that in
turn can be used to distinguish fouling at an interface from a
liquid.

3.2.2 STE and TCF
STE of fouled and not fouled surfaces were compared (Fig. 5A).
It is seen that STE of protein fouling displayed a difference from
water where mineral fouling is very similar (p < 0.0005 for
protein fouling, p = 0.14263 for mineral fouling). STE may
be influenced by layer thickness because a higher amount of
signal energy is lost into the layer decreasing the reflected energy.
This may explain why STE of protein fouling shows a statistical
significant difference while mineral fouling shows no significant
difference.

TCF of protein fouling shows a smaller value than and dif-
fers from water more strongly whereas mineral fouling shows a
higher mean but lays inside the error bars (Fig. 5B) and statis-
tical differences between both fouling types and water is found
(p < 0.0005). Lower TCF can be explained by a thick protein-

fouling layer that may increase noise in a signal and lead to lower
TCF due to less harmonics.

3.2.3 SCF and SSMOOTH
SCF showed visible differences only for protein fouling (Fig. 5C)
that displays smaller SCF because it introduces a layer behind
the interface, decreases the reflected amplitude, and may in-
crease noise and thus mean amplitude where the reflected wave
seems to include fewer harmonics compared to water. From this
it follows that fouling seems to deform the ultrasonic signal
less.

SSMOOTH showed a difference for protein fouling (Fig.
5D) and seems to increase when fouling is present. This in-
dicates that the signal is more pronounced and decays faster
when fouling present. SCF and SSMOOTH showed statistical
differences for protein fouling (p < 0.0005) while for mineral
fouling no statistical difference was found (p = 0.75136 and
p = 0.57278, respectively). Still, both spectral features were used
for ANN and SVM for both fouling types because detection
was stabilized. Table 1 gives an overview over all determined
features.

Error sources for both fouling are uneven spreading on the
surface and slightly different fouling composition from day to
day. In the case of mineral fouling, complex experimental con-
ditions made it difficult to obtain reproducible fouling and only
very thin layers were produced [below 50 μm (estimated value)].
For protein fouling all temporal and spectral features showed sta-
tistical significance while for mineral fouling no statistical signif-
icance was found for STE and the spectral features. Some features
like STE may depend on layer thickness because they showed sig-
nificant difference for (thick) protein fouling but none for (thin)
mineral fouling. This has to be investigated in more detail in
future. Still, all features were included into ANN and SVM, re-
spectively, to increase the accuracy and to compare detection
accuracy.

3.3 Pattern recognition methods

3.3.1 Artificial neural network
Altogether, 1239 datasets with and without fouling were used. Of
these, 238 datasets with protein fouling, 317 datasets of mineral
fouling, and 684 datasets of no fouling were present. Of the data,
60% were used for training and 40% for testing. Three ANNs
were built, one for protein fouling, one for mineral fouling, and
one for both fouling types together.

The ANN for protein fouling showed a MSE of 3.0 × 10−12

and a detection accuracy of nearly 100% (error 2.3 × 10−5%).
When mineral fouling was investigated a MSE of 2.3 × 10−12

was found and the detection accuracy was 93.5%. The ANN that
should detect both fouling types had a MSE of 3.8 × 10−12 but
displayed a detection accuracy of only 71.9%. Both fouling types
were combined because in dairy industry usually both types do
occur regularly. Results for the three developed ANN together
with amount of training and testing data, MSE, and accuracy
is presented in Supporting information, Table 1. For protein
fouling, ANN showed very good results where for mineral fouling
and mixture of both fouling types ANN performance was less
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Figure 5. (A) STE of water, protein, and mineral fouling. STE of protein fouling differs significantly from water. (B) TCF of water, protein,
and mineral fouling. Protein fouling is easily distinguished from water. (C) SCF and (D) SSMOOTH of water and protein fouling can be
distinguished. For mineral fouling, the value is not shown but included in ANN and SVM. Error bars stand for SD.

good. This may be due to higher variations of determined values
and less stability of used network.

ANNs are applied for fouling detection in different appli-
cations like microfiltration membranes [42] and utility boilers
[43]. For heat exchangers, ANN was used successfully for simu-
lation and estimation of fouling usually using inlet/outlet tem-
peratures, mass flow rate, and more as ANN input parameters
[44,45]. Even though input parameters based on ultrasonic mea-
surements were used in this study comparison shows good ap-
plicability for detection of dairy protein fouling in heat exchang-
ers by ANN. For mineral fouling fewer studies are present and
comparison, e.g. with Malayeri and Müller-Steinhagen [46, 47]
show applicability of ANN for crystallization and CaSO4 fouling
formation with similar error range. ANN seems to be better ap-
plicable for detection of protein fouling than for mineral fouling
with higher accuracy.

3.3.2 Support vector machine
As kernel functions homogeneous polynomial of first, second,
third, and fourth orders [Eq. (10)] and Gaussian radial basis

function [Eq. (11)] were investigated.

K (xi, x) = (xi · x)d, d = 1, 2, 3... (10)

K (xi, x) = exp(−γ ‖xi − x‖2) (11)

Half of the samples were used to design the hyperplane, the
other half to validate and test the designed model where model
efficiency was found to be dependent on the selected kernel. A
polynomial kernel of third order showed highest accuracy for
all fouling types as expected from fitting mean data (Supporting
information, Fig. 1).

Figure 6 shows exemplary for protein fouling why a polyno-
mial kernel of third order is a good choice. STE and TCF were
held fix because they displayed lowest SD and can be consid-
ered as constant whereas Z, SCF, and SSMOOTH are plotted.
These three features are displayed prior and after multiplication
with the kernel function. Prior multiplication using the found
third order polynomial kernel no clear separation between foul-
ing and no fouling data is visible due to overlapping of data
(Fig. 6A). However, a clear separation between fouling and no
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Table 1. Determined features of water, permeate, protein, and
mineral fouling together with SD and SEM determined by built-in
analysis of variance in origin and experimental error. SCF and SS-
MOOTH for water is distinguished between protein and mineral
fouling

Water Protein fouling Mineral fouling

Z [MRayl] 1.486 1.802 2.277
SD 0.074 0.169 0.636
SE of mean 0.004 0.007 0.042
Exp. error [%] 5 9 28
STE [AU] 6.064 1.184 6.247
SD 0.474 0.242 0.001
SE of mean 0.018 0.016 6.493E-5
Exp. error [%] 8 20 0
TCF [AU] 3.86 3.632 3.993
SD 0.138 0.264 0.072
SE of mean 0.005 0.017 0.004
Exp. error [%] 4 5 2
SCF [AU] 7.043/17.508 4.196 17.291
SD 0.139/1.467 0.239 1.901
SEM 0.017/0.078 0.016 0.107
Exp. error [%] 2/8 6 11
SSMOOTH [AU] 0.073/38.053 1.004 38.076
SD 0.4/1.859 0.875 1.827
SEM 0.022/0.099 0.057 0.103
Exp. error [%] 548/5 87 5

fouling data is visible after multiplication of the data with the
third order polynomial kernel due to data separation. This is
shown in Fig. 6B) with no fouling data being framed for easier
identification.

Input parameters for the SVM were Z, STE, TCF, SCF, and
SSMOOTH and for protein fouling, an accuracy of 100% was

Table 2. Comparison of the accuracy and performance of the SVM
and ANN

SVM accuracy ANN accuracy Difference

Protein fouling 100 100 0
Mineral fouling 98.2 93.5 4.7
Both fouling kinds 97.6 71.9 25.7

determined with 30 support vectors and a bias of 0.49. The
SVM for mineral fouling showed an accuracy of 98.2% with 80
support vectors and a bias of 1.98. When both fouling types
were combined, SVM accuracy was 97.6% using 116 support
vectors and a bias of 1.69 (see Supporting information, Table 2
for comparison of different SVM structures).

SVM is a newly developed technique and often used for clas-
sification in computational biology (e.g. [34, 48, 49]) or online
monitoring and updating of fault systems [50]. For fouling pre-
diction in heat exchangers SVM was just recently applied for
protein fouling [51–53] showing very good results with low er-
rors. As for ANN, input parameters based on different features
were used compared with this study. Still, SVM showed low er-
rors and high accuracy making SVM a good tool for detection
of mineral and protein fouling.

In Table 2, the accuracy of SVM and ANN are compared.
Both methods show comparable results for protein and min-
eral fouling, respectively, but for the detection of both foul-
ing types SVM is more accurate. SVM displays an accuracy of
97.6% compared with 71.9% of the ANN (difference 25.7%).
Protein and mineral fouling are very different in layer struc-
ture (thick, spongy for protein; thin, brittle for mineral fouling).
This may lead to high variations of calculated features and may
introduce errors in detection. SVM seems to deal better with

Figure 6. (A) Protein fouling prior multiplication with SVM kernel function where TCF and STE are kept constant because they displayed
lowest SD. (B) Protein fouling after multiplication with SVM kernel function (third order polynomial). Fouling and no fouling (framed) data
can be clearly separated.

298 Eng. Life Sci. 2013, 13, 292–301 C© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



www.els-journal.com www.biotecvisions.com

the variation of calculated features because contrary to ANN
it finds an absolute maximum of the error function and not a
local one. SVM also shows higher stability and seems to be in-
dependent of fouling type and thickness compared to ANN.
Thus, even though both methods can be used to determine
fouling presence SVM seems to be advantageous concerning thin
layers.

Both ANN and SVM were shown to be usable for fouling
detection with SVM as younger and until now not so often
applied method. However, SVM seems to be less prone to data
variation and can be used additional to or even as replacement
for ANN if necessary.

4 Concluding remarks

In this study, two decision methods were compared for determin-
ing fouling presence and absence. Protein fouling from recon-
stituted milk and mineral fouling from reconstituted permeate
was made. ANN and SVM were applied as decision method.
Measurements of fouling and no fouling (only water) were
made using an ultrasonic transducer. From the ultrasonic sig-
nal, five parameters (acoustic impedance, STE, TCF, SCF, SS-
MOOTH) were extracted and used as input in the ANN and
SVM that decided offline if fouling was present or absent. For
protein fouling, all chosen features showed statistical significance
(p < 0.0005) while STE and the spectral features for mineral
fouling showed p > 0.05. This may be due to very thin foul-
ing layers for mineral fouling (<50 μm) and may change with
thicker layers. The ANN was built with one input layer (five neu-
rons), one hidden layer (two neurons), and one neuron in the
output layer displaying “1” for fouling presence and “0” for ab-
sence, between all layers tangent sigmoid transfer function was
applied. The ANN for protein fouling showed an accuracy of
nearly 100% (error 2.3 × 10−5%), for mineral fouling the accu-
racy was 93.5%, and when both fouling types were combined
an accuracy of 71.9% was found. Due to the high error of the
ANN for combined fouling and longish calculation SVM was
used. It classifies data into different groups (fouling/no foul-
ing) with an area around the border without any objects using
a kernel function. SVM for protein fouling had an accuracy
of 100%, for mineral fouling, it showed an accuracy of 98.2%
and when both fouling types were combined, the accuracy was
97.6%.

It was shown that ANN and SVM can be applied for de-
tection of fouling presence and absence. For protein and min-
eral fouling, both methods show high accuracy and detection
stability. When both fouling types are combined as may hap-
pen in industry SVM showed a higher accuracy than ANN be-
cause of very differing layer occurrence: mineral fouling had only
thin, brittle layers whereas for protein fouling thick, spongy lay-
ers were present. This led to high variation in parameters and
higher complexity of the data. SVM manages this better than
ANN and seems to be less dependent on fouling type. All mea-
surements were done static and analysis was done offline that
shall be changed to flow measurements and online analysis in
future.

Practical application

We present a method to determine dairy protein fouling
presence and absence in heat exchangers using a combina-
tion of ultrasonic measurements and classification meth-
ods such as artificial neural networks and support vector
machines. This will help to monitor the cleaning process
in a heat exchanger and adapt it if necessary. The change
from a fouled to a cleaned heat exchanger can be deter-
mined. Adjusting cleaning cycles to fouling amount and
type will help to reduce cleaning costs (effluent, cleaning
agent, water, temperature), shorten plant down time, and
increase production time.
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Technology. AIF project number: 16302 N. The authors acknowl-
edge Schwarzwaldmilch GmbH for the provision of skim milk pow-
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powder.
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[14] Guérin, R., Ronse, G., Bouvier, L., Debreyne, P. et al., Struc-
ture and rate of growth of whey protein deposit from in situ
electrical conductivity during fouling in a plate heat exchanger.
Chem. Eng. Sci. 2007, 62, 1948–1957.

[15] Pereira, A., Mendes, J., Melo, L. F., Using nanovibrations to
monitor biofouling. Biotechnol. Bioeng. 2008, 99, 1407–1415.

[16] Silva, J. J. da, Lima, A., Neff, F. H., da Rocha Neto, J. S., Non-
invasive fast detection of internal fouling layers in tubes and
ducts by acoustic vibration analysis. IEEE Trans. Instrum. Meas.
2009, 58, 108–114.

[17] Merheb, B., Nassar, G., Nongaillard, B., Delaplace, G. et al., De-
sign and performance of a low-frequency non-intrusive acous-
tic technique for monitoring fouling in plate heat exchangers.
J. Food Sci. 2007, 82, 518–527.

[18] Kaptan, Y., Buyruk, E., Ecder, A., Numerical investigation of
fouling on cross-flow heat exchanger tubes with conjugated
heat transfer approach. Int. Comm. Heat Mass Tran. 2008, 35,
1153–1158.

[19] Sahoo, P. K., Ansari, I. A., Datta, A. K., Milk fouling simulation
in helical triple tube heat exchanger. J. Food Eng. 2005, 69,
235–244.

[20] Malayeri, M. R., Müller-Steinhagen, H., Analysis of fouling
data based on prior knowledge, 2003 ECI Conference on Heat
Exchanger Fouling and Cleaning: Fundamentals and Applica-
tions, Santa Fe, USA 2003.

[21] Schnars, S., Henrich, R., Application of NDT methods on
composite structures in aerospace industry. CDCM 2006,
1–8.
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Fouling is an unwanted deposit on heat transfer surfaces and occurs regularly in foodstuff heat ex-
changers. Fouling causes high costs because cleaning of heat exchangers has to be carried out and
cleaning success cannot easily be monitored. Thus, used cleaning cycles in foodstuff industry are
usually too long leading to high costs. In this paper, a setup is described with which it is possible,
first, to produce dairy protein fouling similar to the one found in industrial heat exchangers and, sec-
ond, to detect the presence and absence of such fouling using an ultrasonic based measuring method.
The developed setup resembles a planar heat exchanger in which fouling can be made and cleaned
reproducible. Fouling presence, absence, and cleaning progress can be monitored by using an ultra-
sonic detection unit. The setup is described theoretically based on electrical and mechanical lumped
circuits to derive the wave equation and the transfer function to perform a sensitivity analysis. Sen-
sitivity analysis was done to determine influencing quantities and showed that fouling is measurable.
Also, first experimental results are compared with results from sensitivity analysis. © 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4753992]

NOMENCLATURE

b = damping constant
B = blockage factor
C = capacity
c0 = sound velocity
d = thickness
e33 = piezoelectric constant in direction 33
E = Young’s modulus
f = function
F = force
G = Laplace transformed
I = current
k = spring constant
k = wave vector
KLM = Krimholtz, Leedom, Mattaei
KV = Kelvin-Voigt
L = inductance
m = mass
M = matrix/matrix element
�p = pressure drop
R = resistance
Re = Reynold’s number
s = parameter
t = time
TF = transfer function
U = voltage
v = velocity
V = voltage
x = value
�x = variance of x

a)Author to whom correspondence should be addressed. Electronic mail:
e.wallhaeusser@wzw.tum.de. Tel.: 0049-(0)8161-71-2623. Fax: 0049-
(0)8161-71-3883.

X = Laplace transformed x
Z = impedance

Greek

δ = damping factor
εs

33 = permittivity at constant strain in direction 33
η = strain
λ = friction factor
ν = frequency
θ = length times wave vector
π = pi factor
σ = stress
ω = angular frequency
ω = frequency

Subscripts

0 = incident
1–4 = number of part
ac = acoustic
B = backing
delay = delay line
el = electric
fouling = fouling layer
ges = overall (gesamt)
i = counter
liquid = liquid
medium = medium
n = counter
US = ultrasound
wall = wall

I. INTRODUCTION

In dairy industry, milk is heated to extend shelf life and to
reduce microbiological hazards. Temperatures around 75 ◦C

0034-6748/2012/83(9)/094904/10/$30.00 © 2012 American Institute of Physics83, 094904-1
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(pasteurization) and above 130 ◦C (ultra-high-temperature
processing) are used. The protein β-lactoglobulin starts to
denaturate and aggregate when heated above 70 ◦C (protein
fouling) and salts start to precipitate above 110 ◦C (mineral
fouling).1–3 As a result, a solid layer composed of proteins
and salts develops on the heat transfer wall. This decreases
heat transfer and increases costs,4 leads to possible heat ex-
changer damage, and results in unavoidable cleaning.2, 5, 6

Different methods were developed to detect fouling and to
supervise cleaning to reduce both costs and risks for heat
exchangers. These methods are based on different methods
like heat flux,7–9 electrical and thermal resistance,10 nano-
vibrations,11, 12 and ultrasound.13, 14

Ultrasound is sound with frequencies between 20 kHz
and 2 GHz and can be used non-destructively in food
processes,15–21 medical application,22–26 and non-destructive
testing.27–30 Ultrasound is a well-known technique and of-
ten used when opaque materials are present where visible
light cannot be applied. Ultrasound generation is based on
the piezoelectric effect and can be described in both mechan-
ical and electrical ways using lumped circuits31–34 or port
notation.35–40 These descriptions can be used to determine the
wave equation of a system as well as to model ultrasonic sys-
tems based on integrated circuits41–44 or finite elements.45–47

Different models of an ultrasonic transducer using lumped
circuits and port notation are shortly presented. Van Dyke
model32 is a straightforward model and often used to describe
the behaviour of an ultrasonic transducer, but it holds only
near resonance frequency due to its simplicity. Mason33 pre-
sented an electromechanical representation of a piezoactive
material using three port theory (one electrical, two acousti-
cal ports) where the representation includes a transformer for
the connection between the mechanical and the electrical part.
It is more complex and includes a negative resistance but al-
lows to model the behaviour of a piezoplate in more detail
at many different frequencies. Redwood48 showed that this
negative resistance can be transferred to the mechanical part
of the three port while the remaining model stayed the same.
Krimholtz, Leedom, and Mattaei34 developed another three
port with a different description of the electrical transducer
port and excluded the negative resistance (KLM model). It
can be easily used to model piezoelectric behaviour across
a wide range of frequencies. Mason and KLM model show
comparable results when compared also when losses are in-
troduced in the model.49 Here, due to the demand of matching
the ultrasonic transducer to the load, KLM model was cho-
sen to describe the electromechanical part of the ultrasonic
transducer. A purely mechanical or electrical description of
an ultrasonic setup can also be done using mechanical and
electrical components. Starting from electrical and mechani-
cal lumped circuits, a sensitivity analysis can be performed to
determine the parameters with highest influence on the ultra-
sonic signal. Sensitivity analysis can be used to determine the
influence of different parameters and the variance of output
due to input variation.50, 51

II. LUMPED CIRCUITS

An ultrasonic transducer (electromechanical part) as well
as every other mechanical part of the setup can be described

FIG. 1. Electrical circuit to describe the system transducer (1)—delay line,
(2)—wall, (3)—fouling, (4) with resistors Ri, capacitors Ci, voltage Ui, and
current Ii of every subcircuit i.

with electrical and mechanical circuits, respectively. The cir-
cuits together with their wave equations are shortly presented.
Using the wave equation, the system can be modeled and de-
scribed in detail, and the system answer to different stimuli
can be found. The following system was considered: ultra-
sonic transducer (1), delay line (2), stainless steel wall (3),
fouling (4). Coupling was not included in the calculation
even though it plays a role in experiments for introducing
a sound wave into the medium. The lumped circuits can be
used for sensitivity analysis to determine the influence of the
parameters.

A. Electrical circuit description

An ultrasonic transducer as well as every part of the
setup can be described by its equivalent electrical circuit. The
setup can be circumscribed with the electrical circuit shown in
Fig. 1 (inductors are not displayed but included in calcula-
tion). For solids, the Kelvin-Voigt model was used (1)–(3),
whereas for fouling the Maxwell model was applied52 (4).

The wave equation for voltage Uges of the circuit with
overall resistivity Rges, overall capacity Cges, and overall in-
ductance Lges was found to be

Uges(t) + Rges · Cges · U̇ges(t) + Lges · Cges · Üges(t) = 0
(1)

with

Uges = UKV + U4,Rges = RKV + R4,
1

Cges

= 1

CKV

+ 1

C4
,

Lges = LKV + L4, (2)

where for the solid parts (1)-(3) (Kelvin-Voigt, KV) UKV

= U1 = U2 = U3, CKV = C1 + C2 + C3, 1/RKV = 1/R1

+ 1/R2 + 1/R3, and 1/LKV = 1/L1 + 1/L2 + 1/L3.
Using Kirchhoff’s circuit laws, Eq. (1) can be solved and

gives for R2
ges/4L2

ges < 1/(Lges · Cges)

U (t) = U0 · exp(−δt) · (cos ωt + δ/ω · sin ωt). (3)

Where damping factor δ and frequency ω are defined as

δ = Rges

Cges

and ω =
√

1

Lges · Cges

− R2
ges

4L2
ges

. (4)

B. Mechanical circuit description

The setup can also be described with a mechanical cir-
cuit (see Fig. 2). Masses are not displayed but included in
calculation.
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FIG. 2. Mechanical circuit of the system transducer (1)—delay line, (2)—
steel wall, (3)—fouling, (4) using springs Ei, dashpots ηi, stress σ i, and strain
εi for every subcircuit i.

The mechanical wave equation is determined using a
combination of Kelvin-Voigt chain for solids and Burger
model for fouling. The result is

σges(t) + ηges · Eges · σ̇ges(t) + mges · Eges · σ̈ges(t) = 0.

(5)
With overall stress σ ges = σ 1 = . . . = σ 4, overall strain ηges

= ∑4
i=1 ηi , overall Young’s modulus 1/Eges = ∑4

i=1 1/Ei ,
and overall mass mges = ∑4

i=1 mi , the solution is

σ (t) = σ0 · exp(−δ · t) · (cos ω · t + δ/ω · sin ω · t). (6)

Where the damping factor δ and frequency ω are

δ = ηges

2mges

and ω =
√

Eges

mges

. (7)

So, a transfer function between the input and output of the
system can be found.

III. SENSITIVITY ANALYSIS

Sensitivity analysis helps to understand the influence of
input parameters on output parameters and can be used to im-
prove a setup by identifying possible error sources. It varies
the quantities of interest to determine the weight and thus the
impact of a quantity on the system investigated and helps to
find out if the quantity of interest is measurable. There are

different ways to calculate the weights, here, central differ-
ence equation was chosen.

A. Port notation

Port notation can be used to describe the setup. An equiv-
alent circuit model for the ultrasonic transducer is applied
(KLM model). The ultrasonic transducer is described with an
electromechanical three port. With fixed backing impedance,
Zb, the three port is reduced to a series of two ports, one elec-
tromechanical, one purely mechanical. The description of the
electromechanical two port matrix follows Higuti et al.40 All
passive parts are considered as transmission lines where the
two port matrix is defined by port thickness.47 Figure 3 shows
the used three port for the ultrasonic transducer.

The considered structure is composed of an ultrasonic
transducer, a voltage source, a delay line, a stainless steel wall,
fouling, water, a second stainless steel wall, and air (compare
with Fig. 4). The transducer is divided into backing (sheer re-
sistance) and piezoplate, which is described by one electrome-
chanical and one mechanical two port. All other two ports are
purely mechanical.

B. Sensitivity analysis of the electrical circuit
following port notation

The parts are connected in series giving a transfer matrix
M describing the transformation from the electrical (voltage
V , current I) to the mechanical part (force F, velocity v),[

V

I

]
= M

[
F

v

]
. (8)

The matrix M for fouling presence is found by multiplication
of the matrices of all two ports,

M =
∏

i

M
i
= M

US
· M

delay
· M

wall1
· M

f ouling

·M
medium

· M
wall2

. (9)

The electromechanical two port matrix of the ultrasonic trans-
ducer follows Higuti et al.40 Abbreviations are explained in

FIG. 3. Three port notation of an ultrasonic transducer. (a) The forces F1,2 and velocities v1,2 at the surfaces of the transducer with area A and thickness l are
connected with the electrical port (voltage V , current I ). (b) KLM model with capacitance C0, reactance X1, and transformer (ratio 1:N) from the electrical to
the mechanical part.
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FIG. 4. Used ports for description of the equivalent circuits: Setup with fouling.

the Appendix.

M
US

=
[

M11 M12

M21 M22

]
with

M11 = εS
33

e33c0
· cos θ + iς sin θ

cos θ − 1 + iς sin θ
− e33

iωεS
33

· sin θ

cos θ − 1 + iς sin θ
,

M12 = −e33

iωεS
33

· 2(cos θ − 1) + iς sin θ

cos θ − 1 + iς sin θ
+ εS

33

e33c0

·ZB(ς cos θ + i sin θ )

cos θ − 1 + iς sin θ
,

M21 = iωεS
33

e33
· cos θ + iς sin θ

cos θ − 1 + iς sin θ
,M22 = iωεS

33

e33

·Z0(ς cos θ + i sin θ )

cos θ − 1 + iς sin θ
. (10)

The matrix for every passive layer i (only mechanical
ports, according to Lerch et al.53) is[

Fi

vi

]
=

[
cosh kl Z sinh kl

(sinh kl) /Z cosh kl

] [
Fj

vj

]
. (11)

If fouling is present, the matrix elements Mij of the overall
transfer matrix M are

M11 =
(

b · c

a
− d

a
sin θUS

)
· � −

(
d · g

a
+ b · e

a
ZUS

)
· �,

M12 =
(

b · c

a
− d

a
sin θUS

)
· � −

(
d · g

a
− b · e

a
ZUS

)
· ϒ,

M21 = f · c

a
· � + f · e

a
ZUS · �, (12)

M22 = f · c

a
· � + f · e

a
ZUS · ϒ,

TABLE I. Parameters used for the sensitivity analysis of the electrical
circuit.

Parameter Mean Unit Parameter Mean Unit

Zac 72.192 × 105 Pa θUS 2.92 . . .
Zel 9 � θdelay 148.93 . . .
ZB 14 × 106 Rayl θwall 2.2 . . .
ZUS 22.5 × 106 Rayl θ fouling 3.14 . . .
Zdelay 32 × 106 Rayl θ liquid 99.69 . . .
Zwall 40.1 × 106 Rayl εS

33 1400 F/m
Zfouling 2.1 × 106 Rayl e33 15 × 10−12 m2/N
Zliquid 1.5 × 106 Rayl c0 4300 m/s

where θUS = k · dUS with k as wave number and dUS as ul-
trasonic (US) transducer thickness. The long writing for the
abbreviations can be found in the Appendix.

The transfer function (TFel) of pulse echo mode can be
described with the multiplication of the one for the emitting
(TFFV) and the receiving transducer (TFVF).

T Fel = T FFV · T FV F

= Zac · Zel

(M11Zel + M12 + M21ZacZel + M22Zac)2
. (13)

From TFel, derivatives with respect to the chosen parameters
are made. These parameters are presented in Table I with a
chosen variation for every parameter of ±5%.

Concerning the parameters, a sensitivity analysis was
done and central difference equation was used to calculate the
parameter weights.

∂f (xn)

∂xn

= f (xn+1) − f (xn−1)

2 · �x
. (14)

Here, f(xn) resembles TF at one parameter. The variance δx
is ±5% of this value. With Eq. (14), the weight �x of every
parameter is calculated and its influence is determined.

C. Sensitivity analysis of the mechanical circuit

Sensitivity analysis was done for the mechanical descrip-
tion by writing x instead of σ and the transfer function (TF )
was found by substituting Eges = 1/k, ηges = b, x1 = x, and
x2 = ẋ.

m · ẍ + b · ẋ + k · x = F → m · ẋ2 + b · x2 + k · x1 = F.

(15)

TABLE II. Parameters used for the sensitivity analysis of the mechanical
circuit.

Parameter Mean value Unit Parameter Mean value Unit

m1 100.0 × 10−3 kg E4 4.86 × 109 Pa
m2 38.6 × 10−3 kg η0 4.95 × 103 Pa
m3 32.2 × 10−3 kg η1 1.47 × 1010 Pa
m4 4.0 × 10−3 kg η2 8.60 × 108 Pa
E1 1.47 × 1011 Pa η3 2.65 × 1010 Pa
E2 8.60 × 109 Pa η4 4.86 × 108 Pa
E3 2.65 × 1011 Pa
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Thus,

(
ẋ1

ẋ2

)
=

(
0 1

−k/m −b/m

)
·
(

x1

x2

)
+

(
0

1/m

)
· F.

(16)

With this, TFmech is found

T Fmech = Z2
m(

mZ2
m − Zmb − k

)2 (17)

with

Zm = ω · ηges − i(E1 + E2 + E3 + E4)

η4ωE4(iω3αm + ω2(βmE3 + δmE1) + ω(γmE2 − iη3λ − iη1μm − iη2νm) − πm)
, (18)

where ω = 2πν, αm = η1η2η3, βm = η1η2, δm = η2η3, γ m

= η1η3, λm = E1E2, μm = E2E3, νm = E1E3, and πm

= E1E2E3.
Besides, Laplace transformation can be used to determine

the TF. With ẋ (t) = s · X (s),

m · s2 · X (s) + b · s · X (s) + k · X (s) = F (s)

→ G (s) = input

output
= s

m · s2 + b · s + k
.

(19)

Back transformation and the fact that the transducer serves as
emitter and receiver gives the same TFmech as in Eq. (17). Sen-
sitivity analysis was done concerning the parameters shown in
Table II with a variation of ±5%.

E stands for the real part of Young’s modulus describing
the elastic part and η is the imaginary part including the vis-
cous part of a material. η0 describes the transducer backing
(only damping considered). For sensitivity analysis, Eq. (14)
was applied.

IV. EXPERIMENT

An experimental setup was constructed to test the pre-
dictions from sensitivity analysis and to produce and measure
fouling presence and absence. The setup was also compared
with industrial heat exchangers.

A. Experimental setup

The experimental setup consists of an ultrasonic trans-
ducer with a resonance frequency of 2.2 ± 0.1 MHz and an
epoxy-tungsten backing in a polyoxymethylene housing. It is
used in pulse echo mode and attached to a delay line made
of polymethyl methacrylate (PMMA), which is affixed to a
rectangular stainless steel channel (498 × 94 × 32 mm, wall
thickness 2 mm, Fig. 5). The excitation is carried out via in-
house electronics and measurements are done using the pro-
gram Virtual Expert on a personal computer. The ultrasonic
transducer was coupled to the PMMA delay line (length
30 mm) using a water-based coupling gel from AB Angelika
Busch (UCA-2M). This is the ultrasonic measuring section
and it is pressed on the rectangular channel using a spring
(Federnshop Bayern, V2A). Solid coupling is used (thickness
2 mm, AqualeneTM, Olympus) between delay line and wall.
A rectangular channel was chosen because no refraction due
to curved surfaces has to be taken into account.

The rectangular channel is connected with two connec-
tions to hot water hoses (DN 20). With an adjustable pump
(Nirostar 2000-A/PT, ZUWA-Pumpe GmbH), a liquid (water,
milk) can be pumped through the piping, the planar channel
and a feed tank (20l). The rectangular channel is heatable us-
ing an electrical heating band (ELWA-VA, 6.0, 294 W) and
the liquid can be heated in the feed tank via a heating rod
(1000 W @ 220 V) to produce dairy fouling and measure wa-
ter at different temperatures.

FIG. 5. Sketch of the flow channel where fouling is produced with the ultrasonic detection unit.
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TABLE III. Comparison of different fluid dynamic parameters.

Factor Industry scale Lab scale Industry/lab ratio

Blockage factor B 1.085 1.006 1.078
Friction coefficient λ 1.899 × 10−2 2.293 × 10−2 0.827
Pi parameter π1 0.154 1.538 × 10−2 10
Pi parameter π2 0.247 1.716 × 10−2 13.849
Pressure drop �p 2.256 × 104 2.531 × 103 8.915
Reynolds number Re 7.703 × 104 3.628 × 104 2.436

Sensitivity analysis (SA) can be used to improve the
setup, e.g., the ultrasonic measuring unit. It helps to determine
influencing parameters on the ultrasonic signal such that they
can be overcome by hardware or software adaption during
measuring and signal preparation for analysis. SA was used
to estimate the influence of the different setup parts on the ul-
trasonic signal and to see if it is possible to measure fouling
presence and absence.

B. Comparing the experimental setup
and an industrial heat exchanger

The developed measuring section and an industrial
monotube heat exchanger with same length as the measuring
section are compared to determine the adequacy of the devel-
oped setup concerning fouling build-up using different factors
(blockage factor, Reynolds number, non-dimensional π pa-
rameters, friction coefficient (after Ref. 54), pressure drop).
Blockage factor includes information about how strongly a
channel is blocked, friction coefficient is the friction loss dur-
ing pipe flow, Reynolds number can be used to compare flow
behaviour, and pressure drop can be applied to compare pres-
sure loss during flow. π1 is similar to Biot number and π2

describes the heat transfer together with mass flow rate. The
used equations and values can be found in the Appendix. The
results are displayed in Table III.

Blockage factor and friction coefficient are nearly the
same for both setups, thus, the setups behave similarly con-
cerning channel blockage and friction loss. Both Reynolds
number and pressure drop of the industrial heat exchanger
are higher showing a higher pressure drop for an industrial
heat exchanger, and Reynolds number is in the same order of
magnitude compared, thus, the fouling is made under similar
flow conditions. Both non-dimensional π -parameters are ca.
10 times bigger for industry leading to a higher heat trans-

fer. This does not alter fouling composition but may lead to
different fouling times and thicknesses. From this, it can be
concluded that the developed setup and an industrial mono-
tube heat exchanger are comparable which should result in
similar fouling layers. It has to be kept in mind that different
scale ups have to be considered regarding the lab scale heat
exchanger.

C. Experimental procedure

The setup can be used to produce dairy protein fouling
similar to the one found in industrial heat exchangers and to
determine the phase transition of a material from liquid to
solid (fouling) and reverse (cleaning). Measurements are done
using an ultrasonic measuring section. Reconstituted skim
milk (15 kg) was produced by dissolving skim milk powder
(Schwarzwaldmilch GmbH) in water (40 ± 2 ◦C) for 10 min
using a stirrer. Milk (protein content 7.2%) was pumped in cir-
culation (V̇ = 4.07l/ min) and heated up to 76 ± 2 ◦C (140
± 0.5 ◦C on top plate) and held for 5 h. Then, the heating
band was removed. After cooling down the planar channel for
15 min (fluid temperature 62 ± 1 ◦C), the ultrasonic measur-
ing section was attached and measurements were done every
20 s for 30 min (fluid temperature 56 ± 1 ◦C at the end, ul-
trasonic measuring section 28 ± 1 ◦C). The transducer was
excited with 40 V and 17.5 kHz were used as sampling fre-
quency. Water at 60 ± 1 ◦C was measured with the same pump
settings as reference. Generated fouling was similar to the one
in dairy industry making the measurements comparable.

V. RESULTS AND DISCUSSION

The results for SA of the electrical and the mechanical
lumped circuits will be presented and compared. Then, exper-
imental results will be shown and compared with SA results.

A. Sensitivity analysis for the electrical circuit

The weight �x of every parameter was calculated using
Eq. (14) providing information about the influence of an in-
put parameter on the ultrasonic signal. The ranking for the
weights of the electrical circuit is displayed in Table IV.

Highest weight is seen for delay line thickness �delay

and characteristic acoustic impedance of the wall Zwall where
former influences the amount of signal transmitted to the

TABLE IV. Ranking of the weights from the sensitivity analysis for the electrical circuit.

Rank Parameter Weight Weight/mean Rank Parameter Weight Weight/mean

1 θdelay 1.96 × 107 1.32 × 105 9 Zac 1.44 × 104 1.99 × 10−3

2 Zwall 1.60 × 107 3.99 × 10−1 10 e33 278.58 1.86 × 1013

3 θ liquid 7.62 × 106 7.64 × 104 11 θUS 0.75 2.57 × 10−1

4 ZUS 4.50 × 106 2 × 10−1 12 θ fouling 0.64 2.04 × 10−1

5 ZB 2.80 × 106 2 × 10−1 13 θwall 0.46 1.09 × 10−1

6 Zdelay 6.40 × 105 2 × 10−2 14 Zel 3.90 × 10−3 4.33 × 10−4

7 Zfouling 4.43 × 105 1.46 × 10−1 15 εS
33 2.99 × 10−12 2.14 × 10−15

8 Zliquid 3.06 × 105 2.04 × 10−1 16 c0 8.63 × 10−15 2.01 × 10−18
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TABLE V. Ranking of the weights from the sensitivity analysis of the mechanical circuit.

Rank Parameter Weight Weight/mean Rank Parameter Weight Weight/mean

1 η1 1.05 × 109 7.14 × 10−2 8 η4 9.44 × 107 1.94 × 10−1

2 E3 6.33 × 108 2.39 × 10−3 9 m1 2.0 × 10−2 2 × 10−1

3 η3 5.73 × 108 2.16 × 10−2 10 m3 6.4 × 10−3 1.99 × 10−1

4 E1 4.00 × 108 2.72 × 10−3 11 m2 7.6 × 10−3 1.97 × 10−1

5 E4 3.53 × 108 7.26 × 10−2 12 m4 8.0 × 10−4 2 × 10−1

6 E2 2.54 × 108 2.95 × 10−2 13 η0 6.53 × 10−8 1.32 × 10−11

7 η2 1.63 × 108 1.89 × 10−1

measuring section and latter ultrasonic behaviour at the in-
terface. Also, characteristic acoustic impedances of the ultra-
sonic transducer ZUS, backing ZB, delay line Zdelay, and liquid
Zliquid show high weights. However, all of these parameters
should stay nearly constant varying less than during SA and
thus can be considered as negligible on ultrasonic signal (as
long as variations are not too high). The acoustic impedance
of the setup Zac is also considered as constant during mea-
surements and thus negligible. Thickness of the liquid behind
the fouling layer �liquid shows a high influence if thick foul-
ing layers (above 500 μm) are present which change �liquid

strongly and is usually not the case. Surprisingly, the mate-
rial parameters of the piezoplate, which govern the production
of the ultrasonic wave show only low weight, which was not
expected.

The parameters for fouling show different results:
whereas layer thickness �fouling shows only low weight, char-
acteristic acoustic impedance of fouling Zfouling displays a
high weight on the ultrasonic signal. Fouling is not present at
the beginning of a production cycle, develops during produc-
tion, and disappears again during cleaning (as does its char-
acteristic impedance) from which it follows that it is possible
to determine fouling presence and absence during cleaning.

The thicknesses regulate how much wave energy is lost
during the travel. Thus, delay line thickness is important for
the complete ultrasonic signal but the influence during mea-
suring is negligible because thickness change during mea-
surements at constant temperature is nil. The same is true
for thickness of liquid behind the fouling layer because it is
only affected if fouling thickness is high. Acoustic impedance
of different materials determines reflection and transmission
at interfaces and signal shape. The former is used to deter-
mine fouling presence and absence at the interface stainless
steel wall-measuring section because when fouling presence
changes so does the acoustic impedance and reflection coeffi-
cient at this interface, while all other acoustic impedances stay
constant if temperature stays constant. If this is not the case,
influences particularly from the delay line are present. From
the characteristic acoustic impedance Zfouling, it is visible that
fouling presence and absence should be detectable.

B. Sensitivity analysis for the mechanical circuit

The weights for the parameters of the mechanical circuit
(Fig. 2) are calculated and the ranking is shown in Table V.

The highest weight is displayed by η1 of the piezoplate,
which determines the damping of the ultrasonic wave inside
the plate. Also, its elastic counterpart E1 and the elastic and

viscous part of the stainless steel wall (E3, η3) and of the de-
lay line (E2, η2) have high weights. These parameters should
stay roughly constant during measurement and thus can be
neglected and subtracted out of the signal influences. As can
be seen, also the elastic and viscous part of the fouling layer
(E4, η4) shows high weights. This can be used to determine
the presence and absence of fouling because both parameters
are not present on a clean but only at a fouled surface. The
masses m1-4 do not seem to have any influence on the ultra-
sonic signal. E describes the material answer and can be com-
pared with the spring constant, the higher it is the higher is
the material resistance to the deformation. This will change
significantly if fouling develops. η on the other side governs
the signal loss due to damping.

Comparing both SA, it is seen that the mechanical and
acoustic parameters E, η, and Z influence the signal strongly.
Characteristic acoustic impedance Z and real part of Young’s
modulus E are comparable because both describe the answer
of a material to the travelling sound wave. For both, high
weights for the piezoplate, stainless steel plate, and delay line
were expected and found. Z also gives information about in-
terfaces between two materials and changes at these inter-
faces. Imaginary part η and “thickness” � both contain infor-
mation about signal loss where � includes not only thickness
but also the wave vector. Losses should never be underesti-
mated because they determine the amount of signal received
and thus the detection accuracy and stability. Most parame-
ters with high weight like delay line and stainless steel wall
can be considered as nearly constant and thus negligible. This
can be used for improving the setup. Fouling also shows a
high weight and is thus measurable.

C. Experimental results

First, the experiments showed that it is possible to pro-
duce dairy protein fouling in this setup, which was similar to
the one found in dairy industry (Fig. 6). A procedure is devel-
oped to get every time a similar fouling layer.

FIG. 6. Fouling made in developed setup.
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FIG. 7. (a) Typical signal of the ultrasonic transducer on the planar measuring section. The echo used for analysis is framed. (b) Short time energy (STE) with
standard deviation for different pumping rates measured at different days. STE does not differ strongly.

Experiments were made to compare the results with the
results from SA. Different measurements were made at dif-
ferent days, daytimes, and pumping rates to exclude environ-
mental factors like temperature and vibration. Figure 7(a) dis-
plays a typical signal measured with the described setup. The
analysed signal part (1st echo) is framed. It was found that
neither outside temperature nor vibrations showed a high in-
fluence on the signal and the chosen signal and acoustic pa-
rameters characteristic acoustic impedance Z, short time en-
ergy STE, temporal crest factor TCF, and spectral crest factor
SCF. STE was chosen to be displayed as model parameter.
Vibrations of the setup caused by the pump did not influence
STE strongly (pump turned off 306 measurements, 10% 309
measurements, 20% 204 measurements, Fig. 7(b)). Errors are
around 33%.

Different solid couplings were used between delay line
and measuring section. Aqualene (Olympus) was used in
thicknesses of 2 mm and 0.5 mm and silicone rubber was
applied with different hardnesses (40◦SH, 60◦SH) and thick-
nesses (0.3 mm, 0.5 mm, 0.6 mm, 1.0 mm). The results are
shown in Fig. 8(a)). All errors were between 0.3% and 1% be-

sides the silicone foil with 40◦SH and a thickness of 0.5 mm
(6%). Even though the hard silicon foil (60◦SH) with 0.3 mm
and 0.5 mm showed the highest STE, Aqualene demonstrated
better heat and mechanical stability for long term use. The
influence of the (solid) coupling on the ultrasonic signal (par-
ticular its energy content) should not be underestimated.

A delay line was used between ultrasonic transducer
and planar channel. It was necessary to separate the echoes
from the different interfaces of the setup. Different materi-
als were investigated namely polyether ether ketone (PEEK)
and PMMA. Latter was used as solid and as cylinder filled
with demineralised water. The water-filled PMMA showed
the highest transmitted STE but also the highest variation of
70% due to difficulties in excluding air bubbles between delay
line and ultrasonic transducer. PMMA showed the best result
with lowest error of 36% and thus was chosen (Fig. 8(b)); the
error for PEEK was 56%.

In SA, it was shown that delay line has a high influ-
ence on the ultrasonic signal when non-stable conditions
apply. This influence is confirmed by experimental results
when different materials (same length all) were investigated.

FIG. 8. (a) STE of different solid couplings used between delay line and planar channel. The silicone foil (Si) with 60 ◦SH and thicknesses of 0.3 mm and
0.5 mm showed highest STE but Aqualene (Aq) displayed better heat and mechanical stability (all results with standard deviation). (b) PEEK, PMMA, and a
PMMA cylinder filled with water were used as delay line. PMMA showed highest STE (with standard deviation).
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Coupling was found in experiments to be important even
though it was primarily excluded in SA. The influence of the
stainless steel wall was not investigated in experiments be-
cause wall thickness is considered constant such that the in-
fluence can be neglected. More experiments with fouling have
to be made to see the effect of fouled surfaces but a difference
is seen as predicted by SA.

It is known that the mechanical pressure applied to
the ultrasonic transducer influences the transmitted and re-
ceived signal. For repeatable measurements, the same force
was applied using a spring (Federnshop Bayern, V2A, k
= 7.77 N/mm) which was compressed a defined way (11
mm) with a screw. The force applied was F = 93.24 N for all
measurements.

VI. CONCLUSION

A setup is presented in which dairy protein fouling can
be produced and measured using ultrasound. The theoreti-
cal and experimental descriptions are given and the influence
of different parameters on the ultrasonic signal is determined
using sensitivity analysis. The wave equation for the electri-
cal and mechanical lumped circuit is derived and the transfer
function between input and output is obtained. SA was per-
formed and high weights were found for characteristic acous-
tic impedance Z, thickness θ , real and imaginary parts of the
elastic modulus E, and η of the delay line, the stainless steel
wall, and the piezoplate as expected. All parameters are con-
sidered constant during measurement and thus their influence
can be thought as nil. Z, E, and η of fouling also showed high
weights, thus, it is concluded that fouling is measurable be-
cause fouling presence and absence change during fouling
production and cleaning. Experiments confirmed the results
of SA concerning the influence of the delay line (if conditions
are not controlled) and also showed high influence of (solid)
coupling. In first tests, it was possible to make reproducible
dairy protein fouling which was also measurable again con-
firming SA results.

Small variations in signal stability and transducer exci-
tation are investigated further and will be excluded using ap-
propriate filtering, digital lock-in amplifiers, and impedance
matching. In future, it shall be possible to detect cleaning of
dairy protein fouling using ultrasound. During cleaning pro-
cesses fouling presence changed to its absence. Monitoring
the time where fouling absence is determined can help to
adapt cleaning cycles in industry.
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Abstract Fouling and cleaning of heat exchangers in food
industry are severe and costly issues and of high importance.
In this study, a planar heat exchanger was constructed to produce
and clean milk protein fouling similar to industry. Using a
combination of an ultrasonic measuring method and classifica-
tion machines cleaning should be monitored online to adapt
cleaning time. After reproducible fouling deposit was built,
cleaning started which was monitored using an ultrasonic mea-
suring unit. The measured ultrasonic signal was analyzed for
seven acoustic features and fed together with temperature and
mass flow rate (both measured) into a classification method for
decision of fouling presence or absence. For classification, arti-
ficial neural network (ANN) and support vector machine (SVM)
was applied displaying detection accuracies of more than 80 %
(ANN) and 94% (SVM), respectively. Besides, the slope change
of the seven acoustic features was monitored with time resulting
in a cleaning time of at least 21±4 min. The cleaning time
determined by the new sensor system is comparable with previ-
ously determined cleaning times for this setup. This study dem-
onstrated that ultrasound based sensor systems offer a new tool
to determine presence or absence of fouling and to monitor
cleaning processes in the food industry with high accuracy.

Keywords Ultrasound . Artificial neural network . Support
vector machine . Dairy fouling . Acoustic features .

Classification method

Introduction

Milk is heated in heat exchangers using temperatures be-
tween 72 to 75 °C (pasteurization) and 135 to 150 °C (ultra-
high temperature processing) to extend shelf life and reduce
microbiological hazards. At these temperatures, proteins
denaturate and agglomerate, and minerals precipitate on
heat transfer surfaces. The resulting fouling is classified in
protein fouling (type A, develops above 72 °C), a soft,
spongy, white deposit consisting mostly of β-lactoglobulin
and in mineral fouling (type B, develops above 110 °C)
which is grayish, brittle and gritty and made mostly of
calcium phosphates (Ca3(PO4)2) (Burton 1968; Visser and
Jeurnink 1997). Fouling formation is influenced by various
parameters like Reynolds number (Belmar-Beiny et al. 1993;
Pelegrine et al. 2007), surface characteristics (Premathilaka et
al. 2007; Rosmaninho andMelo 2008), age of milk (Fryer and
Belmar-Beiny 1991), protein concentration (Fickak et al.
2011), and pH (Law and Leaver 2000). The accumulation of
salts and proteins increase heat transfer resistance, decreases
thermal efficiency, lets the thermal equipment to go off-
design, and increases production costs. Unfortunately, only
unsupervised and unadapted cleaning of the equipment takes
place (Fryer and Asteriadou 2009; Gillham et al. 1999). Thus,
it is important for dairy industry to determine fouling presence
and to monitor its cleaning success to adapt cleaning. To
achieve these goals different approaches were followed. Of-
ten, heat transfer parameters like heat flux is monitored
(Astorga-Zaragoza et al. 2007; Perez et al. 2009; Truong et
al. 2002), electric parameters are used (Chen et al. 2004;
Guérin et al. 2007), or acoustic parameters are measured
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(Merheb et al. 2007; Pereira et al. 2009; Silva et al. 2009;
Withers 1994). Weaknesses in these besides other studies are,
e.g., that some sensors cannot withstand high temperatures,
that some methods are difficult to apply in food industry heat
exchangers at the moment, or that results currently depend
strongly on sensor position. A new method, compared with
already used acoustic methods, is the combination of acoustic
measurements with classification methods.

Ultrasound is high frequency sound and is used non-
destructively, e.g., in medical applications (Wang and
Olbricht 2011) or non-destructive testing (McHugh et al.
2006; Schnars and Henrich 2006). Ultrasound is well-
known and was already applied in different applications in
food industry, e.g., in dairy industry (Dukhin et al. 2005),
bread crumb (Elmehdi et al. 2003), or alcoholic fermenta-
tion (Lamberti et al. 2009). Here, acoustic and signal
features from an ultrasonic signal were chosen to deter-
mine fouling presence and absence. They were extracted
from an ultrasonic signal and then fed into different
decision machines like artificial neural networks (ANN)
and support vector machines (SVM). An ANN is an
emulation of a biological network (Basheer and Hajmeer
2000) and most often used as feed-forward multilayer
perceptron. ANNs classify into the trained classes and
were already applied in image processing (Egmont-
Petersen et al. 2002), pest detection (Hussein et al.
2010), to monitor and predict fouling in boilers (Teruel
et al. 2005) and static setups (Wallhäußer et al. 2011),
and to design cleaning cycles in plate heat exchangers
(Riverol and Napolitano 2005). SVM is a decision ma-
chine and was first introduced by Vapnik et al. (Boser et
al. 1992; Cortes and Vapnik 1995). Objects are classified
such that a clear gap between them can be found which
is defined by a hyperplane and its support vectors. For
this, the dual problem is solved which always gives an
absolute extremum contrary to ANN. SVMs were already
applied in pattern recognition (Burges 1998), regression
(Grimm et al. 2007), and in computational biology
(Komura et al. 2005; Qiu et al. 2008).

The study was aligned to the development of an online
detection system to monitor cleaning success in a pilot plant
dairy heat exchanger. Ultrasonic online measurements were
combined with classification methods developed via offline
analysis and implemented to perform online. Following a
fixed fouling and cleaning procedure, cleaning success was
monitored using the developed method. As decision
machines an ANN and a SVM, respectively, was tested.
Besides, a new method based on the slope change of the
calculated features was investigated. The goal of this study
was to develop an ultrasonic based method with which
cleaning and cleaning success of dairy protein fouling can
be monitored.

Material and Methods

Experimental Setup

The experimental setup consists of two process tanks
(40 l), two pumps (Durietta 0/2K32/25/0.75/2, Hilge
GmbH und Co KG, CRN 1–2 A-FGJ-G-E HQQE,
Grundfos GmbH), two plate heat exchangers for preheat-
ing and cooling (Tetra Plex MS3-SR, TetraPak Process-
ing GmbH), one planar measuring section (self-built),
and tubing. The substrate is pumped in circuit from the
process tanks to the planar measuring section where it is
heated up to 120 °C via a heating plate (G. Maier
Elektrotechnik GmbH) and afterwards cooled down to
50 °C. The setup and a sketch of the planar measuring
section are shown in Fig. 1.

The channel of the planar measuring section is rectangu-
lar (497×94×32 mm) and connected to the tubing via a
diminution. An ultrasonic transducer is attached to the pla-
nar channel via a delay line made of polymethyl methacry-
late (PMMA) for fouling detection. The ultrasonic
transducer (piezoceramic PZT, center frequency of 2.2±
2 MHz, epoxy-tungsten backing) is coupled using a water-
based coupling gel (UCA-2M, AB Angelika Busch) to the
PMMA delay line. The delay line is coupled using a solid
coupling (2 mm thickness, Aqualene, Olympus) to the stain-
less steel and everything is pressed to the channel using a
spring (V2A, Federnshop Bayern, F=93.24 N). The trans-
ducer is excited with an in-house electronic (40 V, sampling
rate 12.5 kHz) and measured using Virtual Expert (gimbio
mbH) reading a signal every 10 s.

Procedure for protein fouling formation and cleaning cycle

As standard substrate for milk protein fouling, skim milk
concentrate were used (Dairy for Research and Training, Uni-
versitaet Hohenheim, Stuttgart, Germany). Protein content
was increased up to 30 % (w/w) by dispersing skim milk
powder (Instant C, Schwarzwaldmilch) in pasteurized skim
milk because higher protein content increases amount of foul-
ing (Schraml 1993). For fouling production, 20 l of 20 % DM
skimmilk concentrate was heated up to 65 °C and circulated in
the pilot plant at a mass flow rate of 410 kg/h for 128 min
(laminar flow range increasing fouling formation (Graßhoff
1988; Guérin et al. 2007)). Thereby, standard substrate was
heated up to 120 °C for each passage in the planar measuring
section with a wall temperature difference of Δϑw=5−15K
where high wall temperature differences decrease induction
phase (Chen et al. 2004; Yang et al. 2009). For cleaning, milk
was exchanged with water, then NaOH (0.1 % w/w, Anti-
Germ, AGFX) was circulated at 70 °C, and at the end water
was used for rinsing.
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Signal and acoustic parameters

Characteristic acoustic impedance (Z)

The characteristic acoustic impedance Z is the resistance of a
medium to a sound wave and is calculated with the reflec-
tion coefficient r at the interface between wall and medium.

Zsample ¼ Zsteel
1� r

1þ r

� �
ð1Þ

It depends on the material behind the considered interface
because the reflection coefficient r used for calculation
changes due to the material properties at this interface.
Liquids lead to higher r and lower Z, solids like fouling lead
to lower r and higher Z.

Short time energy

Short time energy (STE) resembles the energy content of one
echo and is determined by summing up the area under the
signal curve.

STE ¼
XN
n¼1

xðnÞð Þ2 ð2Þ

As Z, STE depends on the material and changes due to
different reflection and transmission coefficients at the con-
sidered interface, and was highly influenced by temperature.

Temporal/spectral crest factor

Temporal/spectral crest factor (TCF/SCF) is the ratio be-
tween the maximum signal amplitude/magnitude in time/
frequency domain to the average amplitude/magnitude.

TCF ¼ max xðnÞj jð Þ
1 N=

PN
n¼1 xðnÞj j ð3Þ

SCF ¼ max XðmÞj jð Þ
1 1024=

P1024
m¼1 XðmÞj j ð4Þ

High values indicate high amounts of harmonics in a
signal which are usually not wanted in a clear signal.

Spectral smoothness

Spectral smoothness (SSMOOTH) stands for the smooth-
ness variation of the amplitude of the chosen pattern with
respect to its two neighbors.

SSMOOTH ¼ 20 �
X1023
m¼2

log XðmÞj j � log X m� 1ð Þj j þ log XðmÞj j þ log X mþ 1ð Þj j
3

����
���� ð5Þ

High values lead to an unsmooth amplitude whereas low
values show a smooth course.

Temporal slope

Temporal slope (TSLOPE) describes the signal decrease
between 0.8×maximum and 0.08×maximum and pro-

vides an impression about damping and losses at
interfaces.

Descent time

Descent time (TDESCENT) is the time which is scanned by
the temporal slope and thus is dependent on how strongly
the signal decreases.

Temperature (T)

Temperature is included in SVM and ANN to make the
decision independent on temperature influence of the

Fig. 1 Experimental setup with
the process tanks, pumps, and
plate heat exchangers for
preheating and cooling; the
planar measuring section
together with an ultrasonic
measuring section can be
included instead of a tube
(indicated by arrow)
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different features and was measured in the planar
section.

Mass flow rate m
�� �

The mass flow rate is included to exclude its possible
influence on the features due to irregular flow or vibrations
and was measured after the pump.

Detection Methods

Artificial Neural Network

A feed-forward multilayer perceptron ANN (Fig. 2) was
designed based on the back propagation algorithm. The
ANN is composed of an input layer with nine neurons
(seven signal features, temperature, mass flow rate), one
hidden layer with 14 neurons, and an output layer with nine
neurons to compare the output with the input. The ANN
stated “1” for fouling presence and “0” for its absence.

Each neuron weighted its input, summed it up with a bias,
and presented it to the next layer via LOGSIG (Eq. (6)) and
TANSIG transfer function (Eq. (7)) with n and a as the input to
the transfer function and the neuron output, respectively,

a ¼ 1

1þ exp �nð Þ ð6Þ

a ¼ 2

1þ exp �2nð Þð Þ � 1 ð7Þ

while PURELIN transfer function solely transfers the input
to the output without any changes.

Inputs were scaled to be mean-centered to exclude influ-
ences due to feature magnitude. The used back propagation
algorithm minimized network error by weight modifying
where the transfer functions ensures the smallest available
total mean square error.

Support Vector Machine

A SVM finds a hyperplane defined by support vectors (SV) to
separate two categories of points (in direction to the normal
vector w, +1, and opposite to it, −1) (Belousov et al. 2002;
Burges 1998; Smola and Schoelkopf 2004). Usually, a ca-
nonical hyperplane normalized to N training data is applied
with maximized margin. The maximized margin is found by
minimizing the Lagrangian L (Eq. (8)) with regard to the
normal vector w and the bias b while the Lagrange multi-
plicators αi are maximized. The SV xi define the location of
the hyperplane and have αi≠0. Every decision can thus be
expressed by a scalar product between the SV xi and the data x.

L w; b; að Þ ¼ 1

2
wk k2 �

XN

i¼1
ai yi xi;wh i þ bð Þ � 1ð Þ ð8Þ

where y is the decision value.

Fig. 2 ANN architecture. The
input layer has nine neurons
(seven ultrasonic parameters,
mass flow rate, temperature),
the hidden layer 14 neurons,
and the output layer nine
neurons (TANSIG, LOGSIG,
PURELIN transfer function). A
clean surface is identified if
output layer equals input layer
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Non-linear separable data can be made linear sepa-
rable by transferring data to feature space using a
transfer function (Fig. 3). There a dot product can
be found with an appropriate kernel K and a linear

separating hyperplane can be applied (kernel trick)
(Eq. (9)). The solution of the problem lies in deter-
mining the values of b and α’s and in finding the
appropriate K.

ð9Þ

K describes a scalar product in the feature space, is sym-
metrical and positive definite (Mercer 1909). A kernel func-
tion may be a polynomials of nth degree K x; xið Þ ¼ x; xih ið Þn,
a radial basis functions (rbf) with width σK x; xið Þ ¼
exp � x� xik k2 2σ2

�� �
, or a neural network K x; xið Þ ¼

tanh k x; xih i þ θð Þ. Usually, a soft margin hyperplane is ap-
plied which allows errors while looking for the hyperplane
while introducing a cost term.

Different kernels were tested and a rbf kernel with σ=0.7
proofed best. Of the 7,722 values, 50 % were used for
training and 50 % were used for testing and the same input
as for the ANN was used.

Online Detection Method

To detect the cleaning process, a code was developed in
Matlab including the ANN and the SVM, respectively,
and later implemented in C++ for online analysis. The
code able for online detection reads in the ultrasonic
signal and then calculates the seven acoustic features
mentioned above. They are fed into an offline trained
ANN/SVM together with the measured temperature and
the mass flow rate and a decision is made. Fouling
presence is stated with a red long bar representing
“1”, fouling absence is a green short bar representing
“0”. Figure 4 displays the process flow chart. To im-
prove detection stability data mining tasks like outlier
detection and exceptional handling were introduced.

Results and Discussion

Fouling Layer and Cleaning Results

To evaluate suitable cleaning cycles, different cleaning times of
NaOH with fixed concentration (0.1 % w/w, pH11.05±0.06)
were investigated. NaOH determines the cleaning of protein
fouling where soaking time, temperature and other parameters
play an important role (Fryer and Asteriadou 2009; Mercade-
Prieto et al. 2007). Cleaning times ranged from 10 to 180 min
whereby swelling, layer thickness, and layer composition was
analyzed by different methods. Layer thickness was deter-
mined using eddy current (Leptoskop, Karl Deutsch Prüf-
und Messgerätebau GmbH) following DIN EN ISO 2360
and layer composition was characterized concerning protein,
mineral, and ash content by applying Dumas method, ashing,
and atomic emission spectroscopy with the results displayed in
Table 1. To determine reproducibility of fouling, five experi-
ments were made, the plate was weighed prior and after drying,
and the layer was photographed.

The protein content was found to be 78.8 % with an ash
content of 10.5 % and layer thicknesses around 316 μm.
Error for thickness measurement was below 6 %, for protein
and ash content below 2 %, and fouling was similar to the
one found in industry.

Fouling removal was investigated dependent on cleaning
time. During the investigation it was found that first a strong
removal was seen where 42 % of the fouling layer was
removed after 10–20 min; followed by only small removal

Fig. 3 Classification of two
classes (X, O) by a SVM which
transfers data from input to fea-
ture space using the transform

where data is linear
separable. The hyperplane is de-
fined by the normal vector w and
is surrounded by a margin
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between 40 and 120 min. Figure 5 gives an overview over
fouling distribution and thickness for different cleaning times.

After contact with the cleaning agent NaOH the deposit
started to swell and build a gel which collapsed after drying
for analysis having a brownish color. When cleaning lasted
60 min or longer, only the edges of the plate remained
unclean, the place where the transducer is located was
cleaned down to 30–40 μm. Protein content of the remain-
ing layer decreased to 60 % whereas mineral content in-
creased up to 15–16.5 and 6–12 % sodium because the
cleaning agent was integrated into the fouling layer. Struc-
ture and surface of fouling changed during cleaning, the
amount of pores in direction to the plate decreased until at
the end nearly no pores were present. During cleaning,
crystals developed on the surface with a length of 4–5 μm
due to the usage of drinking water which precipitates calcite
when heated (cleaning was done at 70 °C).

Statistical Significance

All chosen features from the ultrasonic signal (Z, STE, TCF,
SCF, SSMOOTH, TSLOPE, TDESCEND) showed statisti-
cal significance difference between a clean and a surface
with deposit (p<0.0005, significance level 0.05). Statistical
analysis was done with built-in one-way ANOVA in
Origin®.

Ultrasonic Detection of Fouling

Ultrasound and sound were already applied in different
application of fouling detection (see, e.g., Lemos et al.
2011; Silva et al. 2010), or for cleaning supervision
(Kujundzic et al. 2008; Pereira et al. 2009) in heat exchangers
and membranes. In membranes, other methods like confocal
microscope or gravimetric methods can be used (Chai et al.
2007; Ferrando et al. 2005; Peiris et al. 2010) whereas in heat
exchangers often numerical/computational methods are ap-
plied (Jonsson et al. 2007; Lalot and Palsson 2010).

Artificial Neural Network

ANN already was applied in fouling detection showing
good applicability (Lyons et al. 2001; Wallhäußer et al.
2011). ANN was first trained offline using data of a clean
heat exchanger (water at 70 °C) and was tested with both a
clean and a fouled heat exchanger and with data from
cleaning cycles. ANN showed an accuracy of more than
80 % after introduction of a LOGSIG neuron which weight-
ed the different features.

Support Vector Machine

The SVM was trained offline using data of both a clean and a
fouled heat exchanger (3861 values) and it was tested with
signals of cleaning cycles and of a clean aswell as a fouled heat
exchanger (3861). The SVM used a rbf-kernel with a width of
0.7 and 1179 support vectors and showed an accuracy of 94 %.

Slope Change

It was found that the determined values of the features may
be variable and that this may diminish the detection accura-
cy. Thus, a method was investigated which follows the
change of a feature and not its actual value. To make the
method as easy as possible, not the whole cleaning cycle

Table 1 Reproducibility of the fouling layer and its composition: skim
milk concentrate (20 % DM); heating temperature: 120 °C, five inde-
pendent experiments

MV±SEa Repetitions Variation
(%)

Thickness (μm) 316±23 5 5.87

Deposit mass (g/m2)

Wet 253±29 5 9.07

Drying 20 °C, 18 h 149±17 5 9.11

Drying 20 °C, 18 h and
105 °C, 4 h

138±17 5 9.89

Mass portion in dry matter (%)

Protein 78.8±1.3 5 1.33

Lactoseb 10.6±1.4 5 10.5

Ash 10.5±0.3 5 1.93

Mass portion of minerals in ash (%)c

Calcium 37.4±1.3 5 2.77

Phosphate 52.4±1.1 5 3.56

Magnesium 2.16±0.18 3 3.52

Potassiumd 1.49±0.86 5 46.0

Sodiumd 0.78±0.37 5 35.9

Irond 0.04±0.05 3 26.1

aMean value and standard error
b Overall mass—(protein+ash)
c ICP-OES
dMinor components outside confidence range ICP-OES

Fig. 4 Flowchart of the
developed code which can be
used online and offline
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was investigated at once but frame-wise. That way, a linear
fit can be applied if the frame is small enough but not too
small (a frame of ten signals was chosen). The algorithm can
be described as follows:

& Wait until ten ultrasonic signals are measured and the
features are determined

& Fit for every feature a line to the values and determine
the slope

Fig. 5 Cleaning progress and deposit height with time. Fouling deposit was removed strongly in the first 40 min from approx. 300 μm to ca.
50 μm, afterwards the removal was slower. This is indicated by a black line

Fig. 6 Change of slope of short
time energy (STE) for three
different cleaning runs. Change
of slope to around zero takes
place after around 20–22 min
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& If the slope≠0 then take the next determined value, skip
the first value and fit again

& Do so until the slope≈0 for at least 3 min (20 values)

If the slope change is unequal zero for at least four out of
seven features, fouling is decided if it equals zero no fouling
is concluded. The slope change is exemplary shown in
Fig. 6 for short time energy for three different cleaning runs
at different days. If the slope is monitored, a change to about
zero at 21±4 min for different features is found resembling a
fouling thickness of below 50 μm. A factor of safety of
3 min can be added because the time until setup changes are
effective is in the same range.

Outlier Detection

Outlier detection is applied to exclude data which do not fit
into the general data distribution. Angle-based outlier detec-
tion (ABOD) was chosen because it is more stable in high
dimensional space considering locations in both x and y
axis. ABOD is based on the angles between distance vec-
tors: The smaller the angle and its variation the more likely
point p is an outlier. A point of the data group has a high
angle variation because it is surrounded by many other
points whereas an outlier is not surrounded by many points.

Following Kriegel et al. (2008), the definition for ABOD
is given as:

ABOF A
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Any value which did neither display “0” nor “1” but a
value in between was transformed to “0” or “1”. This
smoothed the displayed results and helped not to connect
the seen bar with cleaning progress (e.g., high green bar
means partially cleaned). Besides, any classification method
has a detection accuracy of 100 % leading to false decisions.
To overcome this, a combination of ABOD and exceptional
handling was applied using a window with adaptable frame

size which was moved over the data with no overlap be-
tween two windows. If at least half of the window size
values display fouling/no fouling all other values are con-
sidered the same. The decision when both ABOD and
exceptional handling were applied is shown in Fig. 7.

When both methods were applied a time delay occurred
due to the windows tendency check. This means if the end
of cleaning is reached inside a window, it may not be shown
until the next window because in this window maybe more
values display fouling. Time delay due to ABOD and ex-
ceptional handling is only of importance if window size is
chosen to large.

Conclusion

In this study, a method is presented to monitor online
cleaning of milk fouling and to provide a decision
concerning fouling presence and absence. This method is
based on a combination of different classification methods
and ultrasonic measurements. A specially designed experi-
mental setup with a planar measuring section was developed
and built to enable reproducible fouling and cleaning. Heat-
induced fouling was comparable to fouling emerging in
continuous heating processes in dairy industry. In analogy,
after rinsing, an alkaline-based cleaning cycle was devel-
oped. Clean and fouled heat exchangers as well as different
cleaning procedures were monitored using an ultrasonic trans-
ducer (resonance frequency 2 MHz) and signals were ana-
lyzed concerning seven different acoustic features. ANN and
SVM were applied using acoustic features, mass flow rate,
and temperature. Fouling presence or absence was determined
with accuracies of 80 % (ANN) and 94 % (SVM). An addi-
tional method concerning the change of the slope of the seven
acoustic features was also investigated. Thus, a clean surface
was detected after 21±4 min independent on differing starting
values at various days. This proposed cleaning time implies a
fouling deposit thickness below 50μmdetermined in cleaning
time experiments. Higher frequencies may lead to thinner
detectable deposits. ANN showed also usable for online de-
tection showing similar cleaning times but due to less detec-
tion accuracy sophisticated outlier detection was necessary.
SVM was not tested online so far but seems to be promising
concerning offline detection accuracy. Thus, it was shown that

Fig. 7 Outlier detection and exceptional handling (window: 10 sig-
nals). All outliers displaying not an exact value are transformed to an
exact value. If five or more signals display e.g. fouling, all other signals

are considered being the same. Red, long bars stand for fouling, green,
short bars for no fouling
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monitoring cleaning success of dairy protein fouling is possi-
ble using a combination of ultrasonic measurements and clas-
sification methods.

In the future, the planar setup will be exchanged by a
tubular double pipe setup (monotube approach, outer pipe
transmitting water, inner pipe carrying substrate) and clean-
ing success will be monitored using the same system com-
bining ultrasonic measurements and a classification method.

Another application site of the developed ultrasonic sen-
sor together with its method is to apply waffled plate heat
exchangers (PHE). PHE are advantageous concerning trans-
ducer mounting (no adaption for round surfaces has to be
found) but multiple refractions of the ultrasonic signal have
to be taken into account in the analysis. Also, adding up of
multiple signals coming of different plates have to be inves-
tigated concerning detection accuracy and new challenges.
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6. Conclusion and Outlook
Summary and Discussion

This thesis addresses the development of a system which can monitor online cleaning of

dairy fouling in industrial-like heat exchangers. Fouling is one of the most costly factors

particularly in foodstu� industry because it cannot be avoided. In dairy industry, milk

is heated for safety and shelf life reasons. Heating leads to denaturation of proteins and

aggregation of salts and consequential fouling in industrial heat exchangers. To overcome

this problem, cleaning is conducted on a daily basis using �xed cleaning in place (CIP)

cycles. At the moment, CIP cycles cannot be adapted to amount and kind of fouling

present and is conducted without knowledge of actual fouling. Thus, cleaning is often

conducted too long for small batches and small- and medium-sized companies. Online

monitoring of cleaning will help to adapt CIP cycles. This will help to save costs for

example for energy and cleaning agents and will increase production time because plant

downtime can be minimised and production time can be maximised.

For monitor fouling progress and cleaning success in dairy heat exchangers it is necessary

to understand fouling process and the properties of the fouling layer. Focus in most

fouling studies is protein fouling because it is one major factor in dairy industry. As

known, protein fouling mainly consists of β-lactoglobulin (β-lg). β-lg is a globular protein

and naturally present in cow milk. β-lg denaturates at used pasteurisation temperatures.

Its denaturation behaviour is summarised in table C.1. Denaturated and/or aggregated

β-lg is attached to heat exchanger surface via molecular interactions (van der Waals and

electrostatic double layer forces). Thus, deposition of β-lg is the crucial step which leads

to fouling in heat exchangers.

Detection of fouling is necessary to monitor cleaning success and adapt CIP cycles. To

do so, several research approaches were done focusing on monitoring fouling presence.

All known approaches show di�erent advantages and drawbacks where general overviews

can be found in [127], [165], or [167]. Most of the investigated methods are sensitive

but cannot be easily applied to existing heat exchangers. In contrast, heat exchangers

have to be adapted to the developed detection system. Ultrasound promises remedy

because it is a sensitive method which can be applied and used in various areas and

environnments. Ultrasound can also be easily applied to existing heat exchangers because

it can be attached from the outside. Drawbacks are that ultrasound is dependent on the

system and in�uenced by parameters like temperature and excitation variations. These
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points have to be kept in mind but can be dealt with: the detection system (ultrasonic

transducer, excitation and reception electronics, cables, connections, coupling system)

has to be adjusted to each part. Also, analysis software can be adapted such that most

in�uences can be included in it and thus compensated. Detailed analysis was done for

the system developed in this thesis where detailed results can be found in Appendix D.

Ultrasound is promising for monitoring fouling and cleaning success also due to another

reason: it is very sensitive to changes of medium state at interfaces. Here, the change

of �uid milk to solid fouling and back is explicitly addressed. Fouling deposition on

the heat exchanger surfaces leads to changes in re�ection and transmission of signals

and medium properties like characteristic acoustic impedance. Therefore, ultrasound can

detect changes caused by thin and thick fouling layers. Thin layers can be detected

mainly by changes at the interface heat exchanger wall-medium because re�ection and

transmission coe�cients are in�uenced. Thick layers on the other hand change time

of �ight of signal, damp and refract the signal di�erently (e.g. via air/water bubbles

inside the layer), or additional echoes may appear. Thus, there is no limitation of using

ultrasound to fouling layers thickness. A detailed investigation of interactions between

fouling layer and ultrasound can be found in Appendix C.

Ultrasonic methods are investigated in di�erent foodstu� areas since several decades.

E.g., ultrasound was applied for viscosity/density measurements [60] [61], non-invasive

characterisation of foodstu� [9] [38] [106], and process monitoring [69] [70] [107]. Ultra-

sound was also used to determine sugar content in fruit juices [31], to characterise dairy

products [39], and to detect internal cheese defects [90].

As mentioned above reliable excitation of the ultrasonic signal as well as analysis of

measured signal is crucial. During this work signal analyses was a major topic which was

realised in software. Variable methods of signal analysis are present and can be used in

time and/or frequency domain. In both domains di�erent features can be determined

like amplitude (both domains), time of �ight (time domain), or phase angle (frequency

domain). Often, signal analysis is focused on time domain because signal is measured

in time domain e.g. [92] [93] [101] [107]. For analysis in frequency domain, mainly fast

Fourier transform (FFT) is undertaken. FFT has to be applied with care because it can

easily introduce unwanted errors. Still, with FFT it is possible to determine in�uences

which are not visible or not strongly distinctive in time domain [112] [122] [123] [126].

Determined features can be used directly or can be introduced into smart systems like

classi�cation methods as done in this work. Classi�cation methods are applied in many

di�erent areas showing good results. One kind of classi�cation is undertaken by arti�cial

neural networks (ANN) which behave similar to neurons in brains. Overviews over ANN
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and how it can be applied are given in e.g. [13] (general), [94] (one-class classi�cation), or

[104] (remote sensing). Applications of ANN are image processing [42] [67] and detection

of �uid structures at interfaces [71]. ANNs were also used for modeling fouling in heat

exchangers e.g. [89] or cross�ow ultra�ltration of dairy products e.g. [134] [133]. ANNs

are often used for processing of signals like in image analysis or for modelling like in dairy

industry. In this thesis ANNs have been used to detect fouling presence and to monitor

cleaning success with ultrasonic measurements for the �rst time.

Another smart system for classi�cation and pattern recognition is support vector machine

(SVM). Compared with ANN, SVM is a newer technique where overviews are given by

[152] and [163] concerning the theoretical background. Recently, SVM was applied in

computational biology [15] because it is predestined for sorting and classifying complex

data. This holds for e.g. gene expression where huge amount of complex data has to be

sorted in multiple dimensions [81] and for protein structure prediction where the three

dimensional structure of proteins is to be modeled by amino acid sequence [130]. Also,

SVM was applied in speech recognition and analysis where SVM is e.g. used for automatic

recognition of emotions in speech [63]. In that work, SVM showed best results compared

with other methods like fuzzy logic and fuzzy k-nearest neighbour. SVM was applied in

foodstu� area for the �rst time in this thesis.

Di�erent ultrasonic methods were applied for monitoring fouling. Ultrasonic frequency do-

main re�ectometry was chosen for monitoring early stage growth of bio�lms on polymeric

surfaces which are used for membranes in foodstu� industry [85]. Bio�lm growth could be

monitored successfully but measuring approach is too complicated to be easily applied in

industrial heat exchangers. Also, ultrasonic time domain re�ectometry (UTDR) can be

applied for monitoring fouling in paper waste water as well as protein fouling [92] [93] [95].

Ultrasound was used during ultra�ltration to monitor fouling as well as cleaning success

of both �at and round membranes by UTDR technique. This method shows good ap-

proaches with good accuracy yet it is based on time-of-�ight measurements of re�ection

of di�erent layers of the �ltration membrane. Each echo of each membrane layer can be

analysed and compared because all are e�ected by fouling. Drawback of this method is

that it cannot be used for monitoring cleaning success in industrial heat exchangers.

Another method to monitor fouling and cleaning in heat exchangers is using a mechatronic

surface sensor (MSS) [121] [122] [123]. Here, the evolution of an ultrasonic surface wave is

investigated between actuator and sensor. Amplitude decreases with fouling presence and

di�erent fouling kinds as well as cleaning can be monitored. A drawback for industrial heat

exchangers with this sensor is at the moment that temperature range for the developed

sensor is much lower than pasteurisation temperature (maximum temperature in the
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conducted studies was around 50°C) and mainly one feature is used (signal amplitude).

Amplitude variations due to excitation variation or changes in the system independent of

fouling may introduce errors in detection.

Until now, there are not many studies in literature which used ultrasound for monitoring

cleaning success of dairy fouling. Also, most ultrasonic methods focus on one single

feature. This approach may reduce detection e�ciency and accuracy if variations in

excitation signal or changes in measured system during measurements occur. Closest

to the work done here are the studies undertaken by Pereira et al. [121] [122] [123].

Still, they did not apply classical ultrasonic sensors but developed a mechatronic surface

sensor. Pereira et al. also investigated dependencies of the signal on e.g. mass �ow rate

and temperature. Indeed, this was not included into analysis for increasing detection

stability. For reliable online monitoring of cleaning and adaption of CIP cycles based

on monitoring, a method is necessary which combines a reliable measuring method like

ultrasound with reliable signal analysis which can adapt to changing conditions.

Here, a gap opens which was bridged by the work underdone in this thesis. In this thesis

an ultrasonic measuring unit was developed together with an intelligent analysis to detect

fouling and monitor cleaning online. To achieve this goal several steps were undertaken

and several milestones were reached. First milestone was to determine what kind of

detection and measurement systems are present and what is needed. Ultrasound was

selected due to above mentioned advantages: it is easy to apply, a known method, sensitive

to surface changes, as well as sensitive to thin layers. Next goal was the development of

a well de�ned prototype at lab scale. A planar and linear heat exchanger was chosen

such that di�erent ultrasonic sensors could be applied easily. Furthermore modelling can

be underdone easily and external in�uences can be controlled and minimised. The heat

exchanger section can be opened to obtain information about fouling layer and cleaning

success.

Based on this planar setup, the group of Prof. J. Hinrichs developed a reliable and

reproducible method to produce and clean dairy protein fouling. To achieve this important

milestone protein enriched milk was used and pumped in a circle through the planar

measuring section were fouling was produced by electric heating. A cleaning procedure

was developed using sodium hydroxide. To �nd best cleaning time, the measuring section

was opened and cleaning success was determined visible during several cleaning runs.

At the same time an ultrasonic measuring section was developed which �ts to the designed

heat exchanger and could be easily applied to industrial systems. Also, error analysis of

the excited and measured ultrasonic signal was done. The used materials were invest-

igated and characterised in detail concerning electrical and thermal properties to reduce
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thermal e�ects of the ultrasonic measuring section on the signal. During this development

di�erent coupling agents and their interactions with the ultrasonic signal were investig-

ated. Here, both solid and liquid coupling was compared. At the end, a solid couplant

(Aqualene�) was used together with a water-based coupling gel.

Ultrasonic excitation was investigated to determine in�uence of sheer capacities and ultra-

sonic transducer on the signal. This is important for analysis because electric impedance

mismatch between excitation/reception and ultrasonic sensor may in�uence measured sig-

nals. For better analysis error analysis of the signal was done concerning extra echoes

which were not introduced by the electronics. This extra echo can be neglected because it

did not carry information about the investigated system and was easily distinguished by

the signal of interest. Also, in�uence of temperature of excitation box was investigated.

Signal amplitude drift was found with temperature of excitation electronics. For time of

�ight measurements the determination of exact arrival time of the echo is most important.

Found signal drift is of no interest for time of �ight measurements for which the electron-

ics was �rst developed. For signal analysis underdone in this work signal amplitude was

the superior parameter. Thus, signal drift with temperature was investigated and ex-

cluded. The found signal drift could be easily overcome by turning the excitation on at

least 30 min prior start of measuring or not turning it o� at all. Also, signal amplitude

was in�uenced by temperature variation of system where measurements took place. This

in�uence was taken care by introducing temperature measurements into signal analysis.

More details concerning found errors can be found in Appendix D.

Besides having reproducible fouling and cleaning procedures using a reliable setup and

excluding in�uences via hardware (coupling agent, used frequency, excitation electronics)

signal analysis was investigated in detail. The milestone was to have a reliable signal

analysis for monitoring fouling and cleaning online. To achieve this, �rst di�erent signal

parameters and features were determined both in time and frequency domain. A variety

of features was chosen at the end because it was found that detection stability increased.

Still, only features where chosen which showed an in�uence on signal with fouling presence

and absence. Namely the following features of the ultrasonic signal were chosen together

with temperature and mass �ow rate: characteristic acoustic impedance, short time en-

ergy, temporal slope, temporal/spectral crest factor, spectral smoothness, and descent

time. All chosen features displayed sensitivity to dairy protein fouling and changed with

fouling. In this work, a variety of features were used to improve detection stability. This

advantage helps to reduce the in�uence of varying signals and to get wrong results. A

disadvantage is that signal analysis gets more complex and may be prone to errors if signal

analysis is not undertaken with care. Chosen features were not used directly for detection
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of fouling presence and absence but were used as input to a sophisticated analysis system.

As mentioned above, ANN, SVM, and a third method called slope change were chosen.

Both ANN and SVM can be applied for complex applications and showed comparable

results in speech recognition [91]. Thus both methods were chosen for detection of fouling

and monitoring of cleaning success. This is one the �rst times that SVM was applied

for detection of fouling and monitoring of cleaning. As mentioned above both methods

are sophisticated and need a lot of computation time. So, a third method was developed

which was less sophisticated and more e�cient in calculation. All methods were compared

to each other to determine which method showed best results under which conditions.

Chosen benchmark was o�ine detection of fouled and clean surfaces and online monitoring

of cleaning of fouled surfaces using the ultrasonic measuring unit. O�ine training was

undertaken with Matlab while signal analysis code was written with C++. Determined

results were compared with each other and with literature:

� ANN was used as one-class classi�cation and showed high accuracy (80 %) for

detection of fouling presence and absence. ANN can be easily implemented into the

signal analysis code and was trained o�ine in this thesis. Still, ANN showed highest

susceptibility and thus did show drawbacks during online monitoring of cleaning.

Comparing ANNs trained for protein and salt fouling showed that they cannot be

easily swept. Hence, ANN can be used for detection of fouling after training but for

every kind of fouling single ANNs have to be found and trained.

� SVM was used with a radial basis function kernel and showed very high accuracies

(94 %) for detection of fouled and clean surfaces. Stability against signal variation

was high for SVM because contrary to ANN SVM is looking for an absolute ex-

tremum during training. Training of SVM is easy but �nding the best suitable

kernel is a delicate work. Also, implementation into the signal analysis code was

sophisticated because the code used for training has to be known in detail such that

weighting is the same for the trained and the implemented SVM. As shown in this

thesis SVM showed highest reliability in monitoring cleaning success and is the best

candidate for industrial application. So far, SVM was not implemented for detection

or modelling of fouling in foodstu� area.

� Slope change is the less sophisticated method because it only monitors the change

of the determined features. Implementation into the signal analysis code is very

easy and computational time is low. Slope change monitors cleaning success with

high accuracy if stable and reliable experimental conditions are present. Further
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investigation has to be undertaken to determine the applicability of this method to

other fouling types. This method is new and was not used in literature so far.

� All investigated methods can be combined with each other to improve stability and

accuracy. Slope change is the most ressource serving method and it is advantageous

to couple this method with ANN or SVM. The results of the methods can then be

compared with each other. Consequently weaknesses and errors of the methods can

be found and the real time of cleaning end can be determined with higher precision.

To improve detection stability of investigated methods outlier detection was necessarily

introduced into signal analysis code. Angle-based outlier detection (ABOD) was used

because it is more stable in higher dimensions. Result of ANN/SVM were given binary:

1 for fouling presence, 0 for fouling absence (clean conditions). ABOD transformed any

value between 0 and 1 to one of both dependent on a threshold and compared each result

in a choosable window of width n. If at least n/2 are greater than 0 all values were

considered as 0 otherwise they were displayed as 1. ABOD helped to detect the turning

point between fouled and clean conditions better. But it has to be taken into mind that

turning point may be shown at a later time than it actually happened due to chosen

window.

On the whole all three methods are comparable and can be used for determination of

fouling presence and online monitoring of cleaning in a planar heat exchanger. ANN

and SVM have to be trained o�ine with both fouled and clean surfaces to �nd best

suitable ANN and SVM. Afterwards suitable ANN and SVM, respectively, were applied

online. Slope change on the other hand can be used without any training. Thus is can

be applied to unknown systems. ANN and slope change can be more easily implemented

into the developed signal analysis code than SVM. But, ANN and slope change are prone

to vary when signal varies. SVM showed higher stability against all kinds of variation of

the ultrasonic signal but is the most sophisticated method. Still, SVM can be used for

di�erent fouling kinds without loss of accuracy. For each demand all investigated method

show di�erent advantages and drawbacks. Thus the suitable analysis method has to be

found dependent on demand. Combination of two or all three methods helps to switch

easily without loosing information or time during cleaning.

Comparing the obtained results of this thesis with literature is challenging because there

is a high variation of determination of fouling and cleaning. Acoustic methods often use

a di�erent approach as applied in this PhD thesis e.g. low frequency waves travelling on

plates [112] or mechatronic surfaces sensors (MSS) [121] [122] [123]. Here, [112] uses a

di�erent acoustic technique compared with the method used in this thesis. Also, di�erent
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features were chosen, namely power spectral density and propagation time of acoustic

wave. Latter decreased with fouling and increased with cleaning. Advantage of the

method of [112] is that it can easily be applied with plate heat exchangers. However, it

cannot be used with tubular heat exchangers in contrast to the method developed in this

thesis.

The MSS which was developed by Pereira et al. [121] [122] [123] and is promising for

monitoring fouling and cleaning success. Still, method and chosen wave type is di�erent

from the investigated detection system here. Simulated milk ultra�ltrate was used as

foulant which is very di�erent from protein enriched milk as was used in this thesis.

Protein enriched milk resembles indutrial milk more. Another di�erence is chosen feature

(normalised amplitude in frequency domain). Cleaning was only investigated until now

using shampoo �lms. However, this cannot be compared with cleaning of dairy protein

fouling as undertaken in this thesis because both materials are very di�erent from each

other. Another drawback of the MSS at the moment is the material the �ow cell is made of

which only stands temperatures below 70°C while the ultrasonic detection unit developed

here withstands temperatures up to 120°C.

In a nutshell the combination of ultrasonic measurements together with sophisticated

pattern recognition methods is unique in foodstu� industry at the moment. Comparison

with results from literature shows that this method is one of the few who detect not only

fouling presence but also monitors cleaning success online. It was shown that both is

feasible with the developed method and the obtained results are promising. Still several

adaption have to be made such that this method can be easily implemented into industrial

heat exchangers environment.

In this thesis, a combined approach of ultrasonic measurements and pattern recognition

methods was applied to determine dairy protein fouling in closed heat exchangers. This

approach in the used combination was new and not investigated earlier. Ultrasound was

chosen because it is a well-known technique and can be used non-destructively. Classi�ca-

tion methods were applied for signal analysis of ultrasonic signals because they are known

to provide reliable results (see above). The combination of non-invasive ultrasonic meas-

urements and classi�cation methods can be used to monitor cleaning and adapt cleaning

cycles. To accomplish the overall goal of monitoring cleaning of dairy fouling di�erent

steps were reached which are brie�y summarised:

� The importance of detecting dairy fouling in closed heat exchangers was invest-

igated. Literature was reviewed in detail to determine research missing and to

evaluate di�erent possible methods including their advantages and drawbacks. Be-



97

sides, demands of industry concerning cleaning of heat exchangers was summarised.

Many di�erent methods for fouling detection were developed over the years. These

methods are based on experimental methods like pressure drop, temperature and

heat transfer paramters or electric and acoustic features. Others apply numerical

or computational methods like neural networks or wavelet analysis using measured

or simulated data as input.

The drawback of most methods is that they cannot be easily applied for online mon-

itoring of cleaning success. Here, numerical/computational methods are advantage-

ous compared to experimental ones because they can be more easily adapted to

changing conditions. Still, numerical/computational methods �rst have to be val-

idated experimentally. Dependent on industrial demands it is advantageous not to

focus on one single method but to combine di�erent ones. This increases stability

and accuracy of results and analysis can be adapted more easily to changing con-

ditions. Combination of experimental and numerical/computational methods are

suggested to achieve these goals. This will help to improve cleaning of closed heat

exchangers, to adapt cleaning cycles to fouling, and to be less dependent on the

process investigated.

The results of this investigation are presented in paper 1 ("Detection methods of

fouling in heat exchangers in the food industry").

� For determination of fouling ultrasound was chosen because it is sensitive to material

changes which are happening during fouling formation and cleaning. Thus, invest-

igations were undertaken to �nd a suitable detection and analysis method. This

was done by using a small static setup in which both protein and mineral fouling

was made reproducible. A fouling procedure for both fouling kinds was developed

where the setup was �lled with reconstituted milk/permeate and heated.

After fouling formation, ultrasonic measurements were made and cleaning by hand

was undertaken. Cleaning as well as fouling build-up could not be monitored but

clean (before and after fouling build-up) as well as fouled surfaces were measured

using an ultrasonic transducer (resonance frequency 2 MHz). Ultrasonic signals

were used to determine most promising classi�cation method for fouling detection.

As classi�cation methods, arti�cial neural networks (ANN) and support vector ma-

chines (SVM) were chosen. These methods were developed and evaluated to de-

termine fouling presence and absence.

Protein and mineral fouling were investigated to �nd similarities and di�erences

between both fouling types and their in�uence on detection. Three di�erent cases
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were investigated: detection of only protein fouling, detection of only mineral foul-

ing, and detection of both fouling types together. Three ANNs and three SVMs

were developed and compared. Binary classi�cation was used for ANN and SVM.

ANN showed accuracies between 70 % for both fouling mixed together and up to 100

% for only protein fouling. ANN showed high accuracy when only protein fouling

was investigated but drawbacks when mineral fouling or both fouling types were

present. This may be due to higher variation of data and higher susceptibility of

ANN concerning data variation. Still, it was applicable for fouling determination.

Accuracies for SVM varied between 97 % for both fouling types and 98 % for mineral

and 100 % for protein fouling. SVM was less dependent on fouling type and data

variation and also proofed a good method for fouling detection.

It follows that both classi�cation methods can be used for determination of fouled

and cleaned surfaces. Next steps are including �ow and monitor cleaning to improve

developed detection methods. This will test their applicability in more realistic

cases.

Work done together with detailed results is presented in papers 2 ("On the usage

of acoustic properties combined with an arti�cal neural network � A new approach

of determining presence of dairy fouling") and 3 ("Detection of dairy fouling: Com-

bining ultrasonic measurements and classi�cation methods").

� Determination of suitable methods for fouling detection and cleaning monitoring is

a very important point. An experimental setup was developed to monitor cleaning

and measure fouling with �ow. Most important part of the developed setup was a

planar measuring section which can be inserted into a setup with pumps, tanks, and

preheaters or can be used by its own with electric heating. The planar measuring

section can be disassembled to investigate the fouling layer in more detail. Also,

pilot plant scale experiments can be undertaken and di�erent fouling procedures

and cleaning cycles can be investigated.

An ultrasonic detection unit was attached to the planar measuring section and

used for monitoring fouling presence and cleaning. Fouling build-up could not be

monitored. The ultrasonic measuring section consisted of a delay line made of poly-

methylmethacrylate (PMMA) and an ultrasonic transducer (resonance frequency 2

MHz). Coupling was done with water-based gel and solid coupling (Aqualene).

The planar measuring section was investigated both experimentally and theoretic-

ally. Experimental characterisation was done concerning reproducible signals and

in�uence of di�erent parameters (temperature, vibration) on ultrasonic signals. It
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was shown that most in�uences on ultrasonic signal are negligible. Detailed the-

oretical description was given using lumped circuits and by performing sensitivity

analysis. Latter can help to determine error sources and in�uences which then can

be investigated in more detail. Sensitivity analysis showed in�uence of di�erent

features on the ultrasonic signal but most features can be considered constant dur-

ing cleaning and fouling build-up, e.g. stainless steel wall and delay line. Fouling

particularly its characteristic acoustic impedance had a high weight. Because foul-

ing develops and is diminished during cleaning a changing characteristic acoustic

impedance at the interface stainless steel wall-medium ist presen. Thus, it can be

concluded that fouling is measurable and cleaning can be monitored.

Work done is summarised in paper 4 ("Investigating and understanding fouling in

a new setup using ultrasonic detection methods").

� After investigating di�erent classi�cation methods and developing an experimental

setup cleaning monitoring has to be done to determine accuracies and improve de-

veloped methods. To do so, the developed classi�cation methods ANN and SVM

were implemented in an online monitoring code which was used to determine fouling

presence and monitor cleaning success in the planar measuring section.

First, a fouling procedure for reproducible fouling build-up and a cleaning cycle

for de�ned cleaning was developed. Then, ultrasonic measurements of the clean

and fouled heat exchanger as well as cleaning cycles were performed. Ultrasonic

measurements were analysed and ANN and SVM showed accuracies between 80 %

(ANN) and 94 % (SVM). One-class classi�cation was used for ANN and binary clas-

si�cation was used for SVM. SVM showed higher accuracy and was less in�uenced

by data variation than ANN making it a better applicable method for online de-

tection. Data variation may be introduced by slightly varying fouling layers. Angle

based outlier detection and exceptional handling were applied to reduce outliers and

improve detection accuracy of the measurements.

Both classi�cation methods were usable for online detection but a third method was

developed which proofed to be easier applicable for direct monitoring of cleaning

time. This method monitors the slope of measured ultrasonic features which were

also used for ANN and SVMN. Values of the ultrasonic features stayed nearly con-

stant after fouling developed and process parameters were �xed. When cleaning

started, values changed until cleaning was �nished after which they showed nearly

constant values again. Thereby not the value itself was of importance but the change

during cleaning was investigated. Cleaning time could be monitored o�ine and was
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determined to be 22±3 min. This was in good agreement with experimental results

where cleaning was stopped and cleaning success was determined. Still, thickness

of fouling layer was not 0 but determined to be below 50 µm. Further improvement

has to be done to determine even thinner layers. It was shown that it is possible to

monitor fouling and cleaning success in a planar heat exchanger using a combination

of ultrasonic measurements and classi�cation methods.

The achieved results are summarised in Paper 5 ("Monitoring fouling presence and

absence by an online measuring method of combined ultrasonic measurements and

classi�cation methods").

Further Work

Further work concerning detection of dairy fouling and monitoring of cleaning cycles in

heat exchangers can be done in a variety of directions. Some of these ways will be discussed

in short. This may help to improve detection and gives an opportunity to industry to

adapt cleaning cycles and to safe money.

One way to improve detection of dairy fouling and monitoring of cleaning cycles is using

phase locked loop (PLL): an output signal generated by a control system is related to phase

of an input signal. Thus, phase of the signal can be detected and matched. So, frequency

of the input signal can be tracked which may help to detect low fouling thicknesses. PLL

is used in various electronic applications and measurement and control technology. E.g.,

for atomic force microscopy PLL is applied where frequencies can be detected with 0.1

Hz accuracy using a measuring frequency of 32 kHz and a resolution of atomic scale.

Another way to improve measurements for fouling detection and cleaning monitoring is

to perform computational simulations. Simulation using di�erent models are possible.

SPICE for example can be used to improve electronics and get rough impressions of the

behaviour of the ultrasonic wave during fouling and cleaning. Finite element (FE) mod-

elling on the other side can provide more details concerning the interaction of ultrasonic

waves and media. If fouling deposition and cleaning models are included cleaning su-

pervision can be modelled and compared with ultrasonic experiments. This will help to

adapt cleaning better to fouling present and to reduce costs and amounts of experiments.

Also, developed signal analysis can be tested without or with less experiments made and

adapted if drawbacks are shown. Fundamental understanding of fouling and cleaning

processes and their measurements using ultrasound will also be provided.

To make signal analysis better adaptable to changed process parameters (e.g. changed

product, changed temperatures) analysis training and testing of classi�cation methods
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can be done online. This can be achieved by using one-class classi�cation where the

classi�cation system is trained to the status "clean" which is always the case at the

beginning of a batch. If any changes occur between this batch and batches prior the

analysis system can adapt easily and provide the used with reliable results. Changes

during operation can be included more easily and decisions about cleaning success can

be made more secure. This can also be combined with simutational results improving

detection accuracy even more.

One way to adapt fouling detection and cleaning monitoring to di�erent fouling types and

cleaning cycles may be using frequency sweep techniques. Here, the frequency of a signal

is scanned (sweeped) during a �xed band. Power spectrum versus frequency is measured.

Di�erent fouling kinds and layer thickness may react di�erently to various frequencies.

Advantage of this can be taken to improve detection accuracy. E.g. higher frequencies

are more sensitive to thin layers than lower frequencies. Also, performance of electronic

and measuring system can be determined to reduce false negative or false positive results.

Measurement accuracy can be improved if more than one ultrasonic transducer is used

because di�erent places in one heat exchanger can be monitored at the same time. This

overcomes the drawback of ultrasonic transducers which are monitoring only one point.

If several transducers are placed at points prone to fouling cleaning could be improved.

Still, di�erent measurement signals have to be combined in enhanced signal analysis to

determine reasonable results.

One important step is to attach the ultrasonic detection unit to round tubes to �t the

developed ultrasonic measuring system better to industry. This can be done by adapting

transducer design such that no �at-round but round-round design is used. Here, �exible

piezo foils or using an adaptor which �ts the planar piezo ceramic to the round tube can

be used. Transducer design has also to be adapted which means resonance frequency used,

backing, and coupling of the transducer. This will improve measured signal and increase

signal-to-noise ratio which in turns increases detection accuracy and stability. Refraction

will play a more important role with round tubes than in the system investigated here.

Thus, refraction corrections have to be included into signal analysis. On the other hand,

an adaptor and signal refraction of the round tubes may be used to build a kind of

acoustic lens which focus on the area of interest (compare with a microscope). Here,

thinner layers may be detected and cleaning may be even better adapted in time. Time

of �ight measurements may be done to determine also fouling layer thickness if this is

of interest. Pulse-echo technique on the other side does not have to cope with changed

medium properties behind the fouling layer. In this thesis, pulse-echo technique was

applied using one transducer. For round tubes, also through-transmission technique may
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be applied using two transducer because signal may be less in�uenced during through

transmission. A �xed position of the ultrasonic measuring section should be chosen on

a heat exchanger. Ultrasonic transducer should not be deattached as long as it is not

necessary because attaching and deattaching may include unwanted signal variations.

Besides cleaning cycles fouling build-up can be monitored with such a system. This may

help to de�ne starting point of cleaning and adapt cleaning not only in cleaning length.

Here, production cycles may be elongated and costs concerning downtime can be reduced.

Combination of di�erent detection systems increases detection stability and fault-

tolerances due to increased redundancy. Results of the di�erent methods can be compared

and weaknesses of one single method can be found and compensated by other methods.

Combining methods with higher and less computational time can be chosen and compared.

Conclusion

In summary, it was shown in this thesis that it is possible to determine fouling presence

and absence and monitor cleaning success in a planar heat exchanger using a combination

of ultrasonic measurements and classi�cation methods. Di�erent classi�cation methods

(ANN, SVM) were investigated and compared. Accuracies of classi�cation methods were

between 80 % (ANN) and 94 % (SVM). Cleaning time was determined using another

method (slope change) and was comparable with cleaning time found by experiments.

Cleaning time found by slope change was 22± 3 min. This resembled a fouling thickness

below 50 µm. Comparing all three methods showed that they are comparable showing

di�erent advantages and drawbacks. In a nutshell, a reliable online detection system

was developed using a combined approach of ultrasonic measurements and classi�cation

methods.

The focus for further investigations lies in adapting signal analysis and ultrasonic meas-

uring unit (ultrasonic transducer, delay line if necessary, coupling) to round tubes. Next

steps will include measurements in industrial heat exchangers to enhance signal analysis

and make the system adaptable for industry. Simulations done with FE or other tools

will help to improve measurements, signal analysis, and transducer design and can reduce

costs. So, a reliable method for fouling detection and online monitoring of cleaning success

can be provided for industrial processes.
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R gas constant
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a,b,c number of component

ads adsorbed

agg aggregated

B bulk

c characteristic

calc calculated

D deposition

denat denaturated

el electrostratic

i,j,k (tensor) direction

i counter

m counter

n counter

R removal
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sample investigated sample

steel stainless steel

tube siphon tube

wall wall

water water
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A. Derivation of the Linear Wave Equation
In ultrasonics the ideal linear wave equation is used even though nonlinear e�ects like

absorption and damping are present. Still, most nonlinear e�ects are small and the linear

wave equation can be derived from the nonlinear one.

∆p =
1

c2
· ∂

2

∂t2
(A.1)

with p as pressure, t as time, and c as medium sound velocity.

The nonlinear wave formula considering viscosity, gravitational e�ects, acoustic �elds from

volume changes, moving acoustic �elds, and (nonlinear) e�ects from vortices is (after [79])

(
1 + τ · ∂

∂t

)
∆p− 1

c2
· ∂

2p

∂t2
−∇(ρ0 · g)− ∂G

∂t
−∇F − ∂2(ρuiuj)

∂xi∂xj
= 0with τ =

4/3 · η + ηB
ρ− 0 · c2

.

(A.2)

τ is absorption due to viscosity, ρ0 medium density of rest, g gravity, G an acoustic �eld

due to changing volume, F outer body force, ui,j particle velocity in i and j direction, η

shear viscosity, and ηB bulk viscosity. To derive the linear wave equation starting from

the nonlinear wave equation above every term of the nonlinear one will be investigated in

detail.

Absorption Effects

Absorption due to viscosity plays an important role for �uids with high viscosity, low

�uidity, and high inner friction which is true for non-Newtonian and some Newtonian

�uids. For water and milk this kind of absoption is negligible but damping of an ultrasonic

wave.

τ
∂

∂t
=

4/3 · η + ηB
ρ− 0 · c2

� 1 (A.3)

because ηwater ≤ 1mPa and ηB,water ≤ 1mPa.

Gravitational Effects

E�ects of gravity can often be neglected because in most cases ∇g ≡ 0. Gravitational

e�ects do play a role if medium and/or �ow is inhomogeneous.
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∇ρ0 · g ≈ 0. (A.4)

Acoustic Field due to Volume Changes

G describes injected mass into space at a rate per unit volume and is generated by a

closed surface with changing volume, e.g. the surface of an explosion or an imploding

bubble. Because no mass is injected and no explosion/implosions are present acoustic

�elds due to volume changes can be neglected

∂G

∂t
≈ 0. (A.5)

Body Forces

Body forces are introduced by sources which do not change its volume while moving

through a �uid like vibrating spheres or bubbles of constant volume. This may play a

role if air bubbles are present but in food processing the focus lies on air-free processing.

∇F ≈ 0. (A.6)

Vortices

This term takes into account e�ects of spatial changes of momentum �ux inside a �uid

produced by regions of turbulences e.g. in the exhaust of a jet engine. These turbulences

are partially caused by viscosity inhomogenities and of interest at high �ow �elds and

high energies. Here, �ow �elds and (ultrasonic) energies are low and they can be excluded

in most cases in food industry

∂(ρ · ui · uj)
∂xi∂xj

≈ 0. (A.7)

Result

Thus, the linear lossless wave equation can be derived from a lossy nonlinear wave equation

(
1 + τ · ∂

∂t

)
∆p− 1

c2
· ∂

2

∂t2
−∇(ρ0 · g)− ∂G

∂t
−∇F − ∂2(ρuiuj)

∂xi∂xj
⇒ ∆p =

1

c2
· ∂

2

∂t2
. (A.8)



B. Description of the Developed Code
The subroutines of the developed online monitoring code are brie�y presented where all

features have the following steps together:

� Read in signal.

� Determine wanted echo.

� Calculated wanted feature.

� Feed calculated feature into a classi�cation method.

� Decide for fouling presence and absence.

Calculation of Acoustic Impedance Z

Characteristic acoustic impedance is calculated as follows:

� Determine re�ections inside wanted echo.

� Determine energy of every re�ection.

� Logarithmise these energies.

� Fit a linear regression to logarithmised re�ection.

� Determine slope of linear regression.

� Use slope to calculate re�ectivity at interface: Rsample = Rwater · exp(msample −
mwater).

� Calculate re�ection coe�cient: r =
√
R.

� Determine characteristic acoustic impedance Zsample: Zsample = rcalc·[(1−Zsteel)/(1+

Zsteel)].

� Feed Z into a classi�cation machine.
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Calculation of Other Features

Other features used are brie�y presented with their equation and description.

� Short time energy (STE): STE =
∑N

n=1

(
x(n)

)2
. Describes energy content of echo.

� Temporal crest factor (TCF): TCF =
(
max

(
|x(n)|

))
/
(

(1/N)
∑N

n=1 |x(n)|
)
. Ratio

between maximal and average amplitude (time domain).

� Spectral crest factor (SCF): SCF =
(
max

(
|X(m)|

))
/
(

(1/1024)
∑1024

m=1 |X(m)|
)
.

Ratio between maximal and average magnitude (frequency domain).

� Spectral smoothness (SSMOOTH): SSMOOTH = 20 ·
∑1023

2

∣∣log|X(m)| −(
log|X(m − 1)| + log|X(m)| + log|X(m + 1)|

)
/(3)

∣∣. Variation of a point with

respect to its two nearest neighbours.

� Temporal slope (TSLOPE): Slope between 0.8*maximum and 0.08*maximum.

� Descent time (TDESCENT): Time which is scanned by TSLOPE.

All features are calculated and then fed into classi�cation methods like ANN or SVM to

determine fouling and to monitor cleaning success. These features were chosen because

they showed high sensitivity to fouling and can be determined from the echo at the inter-

face between stainless steel wall and fouling. For higher detection stability, temperature

T and mass �ow rate ṁ were included.

Artificial Neural Network (ANN)

An 1-class classi�cation ANN was trained o�ine to determine weights and bias and de-

termined values were implemented into the online code. As transfer functions between

the layers TANSIG, LOGSIG, and PURELIN were applied.

TANSIG : a =
( 2

1 + exp(−2 · n)

)
− 1 (B.1)

LOGSIG : a =
1

1 + exp(n)
(B.2)

PURELIN : a = n (B.3)

where a is output and n is input of one neuron.
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If input and output layers were the same net output equaled zero and a clean heat ex-

changer was determined. If the layers were di�erent net output equaled one and a fouled

heat exchanger was present.

Support Vector Machine (SVM)

The SVM was trained o�ine and values for bias b, support vectors xi, direction in or

opposite to the direction of the normal vector of the hyperplane yi, Lagrange multipliers

αi 6= 0, and kernel function K were load into the online monitoring code.

F (x) =
N∑
i=1

αiyiK(x, xi) + b (B.4)

with radial basis function as kernel. SVM classi�ed the features stating fouling or no

fouling dependent on the direction of the vector from feature to hyperplane.

Monitoring the Slope

The slope of the calculated features was monitored using a gliding �t with n as number

of investigated features:

� Wait until ten values of one feature is determined.

� Fit linear using linear regression.

� Determine slope of linear �t.

� IF m 6= 0 THEN include the next determined value, drop the �rst value, and �t

again. State "fouled heat exchanger" if at least n/2 features state the same.

� ELSEIF m = 0 THEN include the next value, drop the �rst value and �t again.

State "clean heat exchanger" if at least n/2 features state the same.

It is recommended to wait for ten consecutive �ts if a clean heat exchanger is stated before

cleaning is stopped. This corresponds to ca. 2.5 min and lies inside setup reaction time.

Outlier Detection

Outlier detection was done using a combination of angle based outlier detection (ABOD)

and windows tendency check where outliers were values neither displaying "0" nor "1".

� IF ANN/SVM decision is 0 or 1 do not change it.
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� ELSEIF compare if decision is closer to 0 or 1.

� IF decision is closer to 0 change decision and displayed bar to 0.

� IF decision is closer to 1 do so accordingly.

In doing so a user is not mislead to connect length of bar with cleaning success.

Windows tendency check is used to compare the ANN/SVM decisions in a frame of n

signals without overlapping.

� Check every decision inside frame.

� IF n/2 or more signals display fouling change all decisions to fouling.

� IF n/2 or more signals display no fouling do so accordingly.

This smoothens the displayed decision but introduces a time delay in the range of n · 10s.



C. β-lactoglobulin and Ultrasound
β-lactoglobulin: Properties and Fouling

Bovine β-lactoglobulin (β-lg) is a globular protein (diameter ca. 3nm) belonging to lipo-

calin family, made of 162 amino acids, and has an IEP of ca. 5.13 [44]. Average weight

is 18kDa and its concentration in raw cow milk is 0.2 g/100 ml where β-lg exists in

three genetic variants (A, B, C). β-lg consists of eight-stranded β-sheets and α-helices

(Fig. C.1) [37] [82] and ternary structure is stabilised via two disul�de bonds. A free

thiol and one tryptophane residue is buried in the conical hydrophobic β-barrel, a second

tryptophane is exposed to the solvent forming covalently bound dimers [86] [143].

Figure C.1.: Molecular modelled β-lactoglobulin where β-sheet con�guration can be seen.

Folding of β-lg follows an α−β-transition and proceeds via intermediate states [143]. Dur-
ing heating, β-lg denaturates (reversible), agglomerates with β-lg, α-lactalbumin and/or

caseins (irreversible), and adsorbs on heat transfer surfaces. Dependent on pH β-lg forms

particulates (pH near IEP) or amyloid �brils (pH away from IEP) [83] while �brils can

assemble into supra�brillar structures [65] [66].

Denaturation and aggregation of β-lg is in�uenced by di�erent factors like pH [108] [137]

[160], salts [144] [151] [154], temperature, β-lg concentration, and other whey proteins

[174]. Denaturation is rate limited at low temperature, pH at IEP, and high ionic strength

while aggregation is slowed at high temperatures, pH far away from IEP, and low ionic

strength. The in�uence of some factors are summarised in Table C.1.
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Table C.1.: E�ect of di�erent factors on β-lg denaturation and behaviour.

Factor In�uence
Concentra-
tion

Increasing concentration increases average size of aggregates
Protein association is in�uenced

Genetic
variant

Thermostability at pH 6.7: C>A>B
Variant A shows enhanced oligomerisation and gelation, lower solubility,
changed polarity

pH Conversion rate of native β-lg into aggregates increases with pH, molecu-
lar mass decreases; high pH facilitates unfolding and dissociation
7<pH<8.5: conformational change, refolding of protein chain (Tanford
transition) → higher acitivity of thiol group
pH8: thiol group more ready for reactions
<pH7: molecule unfolds and exposes thiol group
6.4<pH<8: intermolecular disulphide bonds play an important role
2-3pH: β-lg has positive charge (21)→ electrostatic interactions repulsive
→ screening via salts → increasing aggregation rate and ionic strength
pH=2.5: only non-covalent binding

Whey pro-
teins

α-lactalbumin binds via disulphide bonds and hydrophobic interactions
Bovine Serum Albumin also binds to disulphide bonds

Salt Overall mechanisms unchanged but rate and intensity reinforced (charge
screening), stabilising/destabilising e�ects follow Hofmeister series
pH 3: Charge repulsion suppressed (counterion binding) → more dimers
pH 4: Positive charged protein, aggregation when negatively charged ions
present (e.g. Cl−), hydrophobic interactions due to high protein stability
in acidic condition
pH 7: Negatively charged protein → positively charged ions important
(e.g. Na+)
Transition metals in�uence dissociation/aggregation: Cu2+ interacts spe-
ci�c, makes kinetics 4.6-fold faster, Zn2+ interacts less speci�c, favours
aggregation by forming intermolecular bonds between denaturated poly-
peptide chains

Absorption of fouling depends on protein and surface characteristics, solution, �ow con-

ditions, transport phenomena, and heat exchanger design [47] [115] [117]. As soon as

the �rst fouling layer is present its properties take over surface characteristics. For adhe-

sion on surfaces di�erent forces play an important role like mechanical forces, molecular

interactions (DLVO, Derjaguin, Landau, Verwey, Overbeek), and others (Fig. C.2).

Forces like Lewis acid-base interactions and ion bridging are not important in fouling while

DLVO forces are dominant which combine van der Waals (F ∝ 1/r3) and electrostatic

double layer forces (F ∝ exp(−r)) (see Table C.2). The resultive potential can be repulsive
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Figure C.2.: For fouling adsorption DLVO forces play an important role (after [47]).

or attractive dependent on force distribution and it in�uences fouling behaviour.

Table C.2.: van der Waals and electro-static double layer forces together with equations and brief
explanation.

Force Equation (round particle, �at
surface)

Description

van der
Waals
(vdW),
attractive

FvdW = (A ·r)/(6d2)+A/(6πd3) ·πz2 Non-covalent binding dependent
on geometry, physical/chemical
properties

Electro-
static
double
layer,
repulsive

Fel = (εr)/2 · (Ψ2
01 + Ψ2

02) ·
(κexp(−κd))/(1 − exp(−2κd)) ·[
(2Ψ01Ψ02)/

(Ψ2
01 + Ψ2

02)− exp(−κd)

]
Particle: tendency to acquire
electric surface charge (mostly
negative at neutral pH), close to
surface double layer is developed

Interactions between Ultrasound and Fouling Layer

Composition of fouling layers changes with time due to ageing where e.g. deposit hardness,

thickness, and thermal conductivity are in�uenced. Fouling composition changes because

fouling reduces overall heat transfer and in�uences temperature di�erence between sur-

face (stainless steel or fouling layer) and medium (milk). This feeds back on deposition

rate because deposition rate is controlled by temperature di�erence: lower temperature
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di�erence in�uences deposition→ in�uences thermal conductivity→ in�uences layer com-

position (di�erent strata) and so on. Fouling is not evenly distributed on the wall leading

to uneven spreading, varying thicknesses, and rough surfaces. This in�uences ultrasonic

signals and its re�ection at the interface where fouling is located (C.3).

Table C.3.: Fouling layers can in�uence an ultrasonic signal in varies ways.

Fouling layer In�uence on ultrasonic signal
Layer thickness Pathway is changed → time of �ight (TOF) is in�uenced

Minimum thickness necessary to in�uence TOF
Signal attenuated/damped due to visco-elastic layer→ signal
may be lost
Minimal thickness and clear signal: Additional echoes may
appear
A�ects ultrasonic re�ection due to changed mass (interface,
re�ection changes) and changed height (can in�uence e.g. fre-
quency of re�ected wave)

Fouling surface Ultrasonic signal may be scattered due to rough surface →
signal may be lost, noise will increase

Di�erent strata Di�erent composition may alter ultrasonic features
Inhomogeneties (air/water bubbles) increase scattering →
signal-to-noise ratio decreases
Inhomogenities may lead to broadened signal

Fouling presence Re�ection and transmission at interface changed→ amplitude
and damping of signal in�uenced
Ultrasonic features in�uenced due to changed oscillating be-
haviour at the interface

Ultrasonic features seem to be best suitable for fouling detection and cleaning monitoring

when they can be determined from the ultrasonic re�ection at the interface stainless steel

wall-fouling. Features are promising which are sensitive to changes at this interface via

e.g. re�ection/transmission coe�cients and amplitude. Fouling thickness may in�uence

ultrasonic features indirectly which are not sensitive to thickness because changed height of

an oscillating system changes oscillation behaviour. This in turn in�uences e.g. frequency

and amplitude and can be determined (compare with di�erent rope lengths and changed

oscillation behaviour of a pendulum).



D. Material Properties and Error Analysis
Ultrasonic Measuring Unit and Coupling

Di�erent materials were tested for the ultrasonic measuring unit (PZT ceramic, polyvinyl-

chloride (PVC) housing, epoxy-tungsten backing, delay line, coupling). A delay line was

necessary because echoes at the interface were not clearly separable with 2 MHz ultra-

sonic transducers. Polymethylmethacrylate (PMMA) was chosen as delay line because

it showed best S/N ratio and was easy to use. A second reason to use a delay line was

to bu�er temperature between hot stainless steel wall and ultrasonic transducer to heat

the transducer less as if it would be attached directly to the wall. This helps to elongate

transducer life time and to reduce damage due to temperature. Electrical and thermal

properties vary between di�erent materials but e�ects were negligible for most cases (Table

D.1 with water as reference).

Table D.1.: Electrical and thermal properties of materials used for ultrasonic measuring unit
(PZT ceramic, PVC housing, epoxy-tungsten backing, PMMA delay line).

PZT
ceramic

PVC Tungsten Epo-

xy

Epoxy-
tungsten
mixture

PMMA Wa-

ter
Thermal
conductivity
[10−6W/m ·K]

1.1 1.01 164 0.19 Unknown 0.19 0.6

Thermal
expansion
coe�cient
[10−61/K]

-4 - -6 in dir-
ection, 4 -
8 perpendic-
ular to po-
larization

50.4 4.2 45 -
65

Unknown 70 (at
80°C:
700)

200

Electrical
conductivity
[A/Vm]

Insulator
(dieletric)

Insu-

lator

18 · 106

(for
solids)

Insu-

lator

Insulator? Insu-
lator

0.03

Density
[kg/m3]

7.8 1.4 19.3 Ca.
1

Unknown 1.19 0.99

Speci�c heat
capacity
[kJ/kgK]

0.35 0.9 0.14 Ca.
1.5

Unknown 1.47 4.18

Glass temper-
ature [°C ]

- Ca.
100

- Ca.
70

Unknown Ca.
105

-

139
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Coupling of the measuring unit to the stainless steel wall was investigated where di�erent

coupling agents (solid and liquid) were examined in detail (Table D.2). Liquid coupling

(water-based gel) was chosen to couple ultrasonic transducer and delay line and solid

coupling (Aqualene) for coupling delay line to stainless steel wall. This helped to improve

signal and accuracy of ultrasonic measurements.

Table D.2.: Attenuation of solid and liquid couplings. Aqualene is a professional solid coupling
distributed by Olympus, the other coupling agents were bought at di�erent place, Si
stands for silicone.

Coupling agent Attenuation [Np] Attenuation (dB)
Honey 0.0 0.0
Gel (oil-based) 0.98 0.11
Gel (water-based) -0.52 -0.06
Aluminium sheet 60.58 6.97
Plastic sheet 57.17 6.58
Si foil, 40°SH, 0.6mm 39.38 4.53
Si foil, 40°SH, 1.0mm 40.98 4.71
Si foil, 60°SH, 0.3mm 48.61 5.60
Si foil, 60°SH, 0.5mm 33.67 3.88
Si foil, 60°SH, 0.6mm 38.01 4.38
Si foil, 60°SH, 1.0mm 32.26 3.71
Aqualene, 0.5mm 17.26 1.99
Aqualene, 2.0mm 18.37 2.11
Aqualene, 6.4mm 23.57 2.71

Ultrasonic Transducer and Excitation Electronics

Electric impedance mismatch between ultrasonic transducer and excitation electronics

has a high in�uence on ultrasonic signals. Capacity of ultrasonic transducer used was

unknown thus to determine its in�uence on the rectangular excitation pulse di�erent

capacities were used and compared. Capacities ranged from 10 pF to 13 nF because

estimated value was calculated to be around 10 nF (Fig. D.1). For excitation, 10 V were

applied and in�uence of capacity was monitored with an oscilloscope (Picoscope).

Capacities below 2 nF did not in�uence excitation while higher capacities showed an

in�uence (output of electronics was set to 50 Ω). The ultrasonic transducer showed lower

in�uence than sheer capacity and the oscillation of the transducer (2 MHz) can be seen.

Care has to be taken with measurements made due to in�uences of the transducer on

excitation and also on reception process.
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Figure D.1.: Various capacities in�uence the excitation di�erently: below 2 nF no in�uence is
seen, above 2nF the signal is distorted, while the ultrasonic transducer imprints its
oscillation.

Error Analysis

Error analysis was investigated in detail of the echo used for fouling detection because

it sometimes consisted of two parts, a main echo between 22 µs and 38 µs and a second

one between 44 µs and 50 µs (Fig. D.2). Most features were not strongly a�ected by this

extra oscillation but characteristic acoustic impedance was.

This oscillation may be introduced by electronics, setup, or other sources but can be

excluded using �lters: bandpass �lters showed signal improvement while features were

not in�uenced. Also, time was adapted for signal analysis because echoes were clearly

separable and the extra echo did not carry necessary information for analysis.

Another e�ect was an oscillation of the signal where amplitude varied with time independ-

ent on used excitation board (SatLin and SatScan), �rmware, and setup. The boards used

di�erent ways for amplifying the ultrasonic signal: one ampli�ed linearly, one exponential.

The oscillation had a very low frequency and a period in the range of minutes after which

the amplitude stabilised (Table D.3).

This oscillation may be introduced by heating of electrical components of the excitation.

This is important particularly for components which are used for voltage and current

ampli�cation because high power (∝ I2) leads to high temperatures in�uencing current

and may in�uence measured signals if measurements with high accuracy are to be made.

To investigate temperature inside the box, temperature was measured in the air inside the
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Figure D.2.: First echo of some signals. Besides investigated echo between 22µs and 38µs an
extra echo between 44µs and 50µs was found but neglected in analysis.

Table D.3.: The ultrasonic signal showed an oscillation in the range of minutes independent on
excitation board and setup used.

Hohenheim Freising
Period ca. 264 s ca. 320 s ca. 308 s ca. 216 s
Type of board SatLin SatLin SatScan SatScan
Setup Planar channel Di�erent Planar channel Planar channel

box (three measurements) and at an output ampli�er (seven measurements). Temperature

reached a stable value after 20 min and an increase of ca. 2 °C (Fig. D.3). Thus,

temperature changes inside the box may lead to variations in the signal at the beginning

of the measurements. This is no problem if at least 20 min are waited until measurements

are made.

Other in�uencing quantities were investigated some having a higher, a lower, or no in�u-

ence. The quantitites a�ected the features di�erently and in the following are summarised

together with their exclusion.

� In�uence on electronics

� Pumps (frequency inverter) → excluded via �ltering

� Heating cartridge (voltage peak, thermal drift) → excluded (minor in�uence)

� Switch control box in setup (voltage peaks) → excluded (minor in�uence)
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Figure D.3.: Temperature inside the box (measured in air) and at an output stage was monitored.
Temperatures increased with operating time and stabilised after ca. 20min.

� Mass �ow and conductivity measuring device (voltage peaks) → excluded

(minor in�uence)

� Power supplies (voltage peaks) → excluded (minor in�uence)

� Air conditioning (voltage peaks, thermal in�uence)→ excluded (minor in�u-

ence)

� In�uence on transducer/measurement apparatus

� Pumps (setup vibration) → excluded (vibrations negligible)

� Heating cartridge (thermal infuence) → excluded (minor in�uence)

� Power supplies (voltage peak) → excluded (minor in�uence)

� Fluid behaviour → excluded by including mass �ow rate into decision

� Pressure used for attaching ultrasonic transducer → excluded by de�ned pres-

sure

� In�uence on computer

� Power supplies (voltage peaks) → excluded (minor in�uence)

� Communication between VE, Moxa, DAQFactory → excluded (minor in�u-

ence)



144 APPENDIX D. MATERIAL PROPERTIES AND ERROR ANALYSIS

Medium and setup temperature was investigated because it showed an in�uence on some

features. This was visible when medium temperature was not constant e.g. at the be-

ginning of an measurement when parts had di�erent temperatures and heated up. Signal

amplitude showed a high in�uence where fouling seemed to weaken the e�ect.

Figure D.4.: Temperature of medium and setup (channel+ultrasonic measuring unit) in�uenced
signal amplitude (A(0) − A(t), 0 is start and t later time). a) Amplitude change
where fouling seems to have a weakening e�ect. b) In�uence of medium temperature
(water): lower medium temperature leads to less decrease in amplitude.

In Fig. D.4 amplitude di�erence between amplitude at time t = 0 (beginning of measure-

ment) and at later times t are compared. Temperature in�uence was dependent on me-

dium temperature: higher temperatures showed higher in�uences. This may be partially

caused by heating of the ultrasonic measuring system. Di�erent features were investigated

concerning amplitude change to get an impression of the extend this in�uence was and

if it may cause problems. Most features were only slightly in�uenced like temporal crest

factor (TCF) while short time energy (STE) was strongly in�uenced (Fig. D.5). STE

depends directly on signal amplitude while TCF measures a ratio between maximum and

average amplitude which seems not to be in�uenced strongly.

To overcome temperature in�uence di�erent strategies were followed: temperature meas-

urements inside the measuring section were included into classi�cation methods and prior
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Figure D.5.: STE was strongly in�uenced by temperature, TCF only slightly. STE directly
depends on amplitude while TCF compares maximum and average amplitude and
the ratio seemed not to be in�uenced strongly.

every measurements 15 min were waited until ultrasonic measuring section showed a stable

temperature. The e�ect of temperature could be minimised, errors could be reduced, and

measurement accuracy was improved.
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