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Abstract
Proteins are the driving force behind cellular processes. They perform their tasks
by interacting with other molecules, in particular other proteins. Understanding life
on the molecular level therefore requires collecting and analyzing protein-protein
interactions (PPIs) on a large scale. Experimental methods are limited, however. Cap-
turing the precise molecular mechanisms of a PPI is highly exceptional. Determining
which proteins interact and which do not is easier and faster, but accompanied with
high error rates caused by missed and falsely detected PPIs. Many other aspects
of PPIs fall between these two extremes, but the picture of largely incomplete data
remains. Using existing PPI data in an optimal way is therefore of crucial importance.
With machine learning, for example, we can rank protein pairs with respect to their
probability to interact. Statistical analyses connect diverse small-scale experiments
and unravel hidden relationships. This thesis contributes to these fields of research
and particularly focuses on protein sequences, which are now abundantly available
thanks to great technical progress. We first collected and analyzed all known struc-
tures of PPIs with respect to their interfaces, i.e. the surface regions of the two
proteins that are in touch. Surprisingly, many proteins interact through different
interfaces, adding yet another twist to the problem of predicting which pairs of amino
acids are in contact. Nevertheless, we developed a new machine learning tool using
artificial neural networks that helps solving exactly this problem, given only the
sequences of the interacting proteins. For determining whether two proteins interact,
this predictor was not as accurate as specialized tools. We managed to come up with
another method, however, that improves over the state-of-the-art also in this respect.
It relies on evolutionary patterns found in today’s sequence databases and support
vector machines as the discriminatory method. We used it to annotate all 200 million
protein pairs in human. Finally, PPIs can be represented as networks and a common
task is to find overrepresented protein functions in certain network regions. Largely
missing experimentally determined function annotations again asks for computa-
tional tools. Addressing this problem, we developed a new state-of-the-art function
predictor that only relies on sequential similarity of the target protein to proteins
with known annotations.





Zusammenfassung
Zelluläre Prozesse werden durch Proteine gesteuert, die mit anderen Molekülen inter-
agieren, insbesondere mit anderen Proteinen. Um Leben auf molekularer Ebene zu
verstehen, müssen solche Protein-Protein Interaktionen (PPIs) daher in großem Umfang
gesammelt und analysiert werden. Heutige experimentelle Möglichkeiten sind jedoch
stark eingeschränkt. Nur selten gelingt es atomare Details einer Interaktion zu erfassen.
Die Trennung von interagierenden und nicht-interagierenden Proteinen ist einfacher und
schneller, aber verbunden mit hohen Fehlerraten, verursacht durch nicht oder falsch
erkannte PPIs. Auch Aspekte zwischen diesen beiden Extremen verändern nicht das
Bild, dass Daten großflächig fehlen. Umso wichtiger ist es, bestehende PPI Daten
optimal zu nutzen. In Kombination mit maschinellem Lernen etwa erlauben sie,
Proteinpaarungen nach ihrer Interaktionswahrscheinlichkeit zu ordnen. Statistische
Analysen können Einzelexperimente miteinander verbinden und dadurch unbekann-
te Beziehungen aufdecken. Diese Arbeit leistet einen Beitrag auf genau diesem
Gebiet und fokussiert sich insbesondere auf Proteinsequenzen, die dank großer
technischer Fortschritte nun in enormer Zahl zur Verfügung stehen. Zunächst sam-
melten wir alle bekannten Strukturen von PPIs und analysierten sie hinsichtlich
der Berührungsfläche der beiden Proteine. Überraschenderweise ändern sich diese
oft in unterschiedlicher Weise, was das ohnehin erhebliche Problem verschärft,
festzustellen, welche Aminosäuren miteinander interagieren. Trotzdem haben wir
ein auf künstliche neuronale Netze basierendes Programm entwickelt, das genau
diese Frage adressiert. Nur anhand der Sequenzen zweier interagierender Proteine
bestimmt es die Tendenz jedes Aminosäurepaares eine Bindung einzugehen. Die
Genauigkeit liegt dabei deutlich über der Hintergrundwahrscheinlichkeit. Leider
war das Programm bei der Unterscheidung interagierender und nicht-interagierender
Proteine schlechter als spezialisierte Methoden. Mit einem neuen Ansatz konnten
wir jedoch auch dort Fortschritte erzielen. Dabei benutzten wir evolutionäre Muster,
die sich in großem Umfang aus Sequenzdatenbanken ablesen lassen, und sogenannte
„Support Vector Machines“, Werkzeuge des maschinellen Lernens, spezialisiert auf
die Diskriminierung zwischen zwei Klassen. In einem großangelegten Einsatz be-
stimmten wir die Interaktionswahrscheinlichkeit aller 200 Millionen Proteinpaare im
Menschen. PPIs können als Netzwerke dargestellt und bestimmte Netzwerkregionen
auf signifikant überrepräsentierte Proteinfunktionen analysiert werden. Erneut sind
computergestützte Methoden notwendig, um großflächig fehlende experimentelle
Funktionsannotationen zu ergänzen. Als finalen Beitrag haben wir ein neues Funk-
tionsvorhersageprogramm entwickelt, das in seiner Genauigkeit dem neuesten Stand
der Technik entspricht und nur auf Sequenzähnlichkeit zwischen Zielprotein und
bereits annotierten Proteinen zurückgreift.
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Chapter 1

Introduction

Proteins are the main actors in the living cell and the manifestation of the information
encoded in genes. They perform their tasks by interacting with other molecules,
in particular other proteins. For well over a decade, the study of protein-protein
interactions (PPIs) has been a major activity in computational biology. For instance,
representing proteins as nodes and interactions as edges creates so-called PPI net-
works. They provide a bird’s-eye view of cellular processes and allow the application
of PPIs in a range of other areas. One recent major innovation, for example, is the
use of certain network properties and the OMIM (Online Mendelian Inheritance in
Men) database [Hamosh et al., 2005] to rank genes with respect to their probability
of being causative for a particular disease.

1.1 Protein-protein Interactions (PPIs) on the
Molecular Level

Despite these successes, data on the molecular level remains largely incomplete.
Precise interaction mechanisms are known for only a few PPIs (see e.g. Schmeing and
Ramakrishnan [2009]). Binding position, orientation, strength, oligomeric context as
well as binding-induced structural changes are mostly unresolved [Goh et al., 2004,
Kastritis et al., 2011, Kastritis and Bonvin, 2010]. While evidence of functionally
important alternative splicing events is mounting [Kalsotra and Cooper, 2011],
knowledge about their impact on the level of PPIs is still an exception [Talavera et al.,
2013, Wojtowicz et al., 2004]. Over the last years, structural biologists addressed
some of these issue with an increased output of structurally resolved PPI complexes.
In this context, computational biology has helped understanding PPIs with a series
of quantitative analyses. By looking at their amino acid compositions, Ofran and
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Rost found statistically significant differences in interfaces between proteins coming
from the same gene and from different genes [Ofran and Rost, 2003b]; two manually
curated data sets created by Mintseris and Weng [Mintseris and Weng, 2003, 2005]
to distinguish between two-state and three-state complexes have facilitated a series of
analyses focusing e.g. on the difference between permanent and transient or specific
and unspecific interactions [Block et al., 2006, Lukatsky et al., 2007, Madaoui and
Guerois, 2008, Bera and Ray, 2009]; related work investigated the co-evolution of
protein-protein interfaces [Mintseris and Weng, 2005, Choi et al., 2009] and even
the contribution of water to their binding modes [Teyra and Pisabarro, 2007].

We have complemented these studies by analyzing changes in the binding mode
of two interaction partners (Chapter 2). This challenges the long standing assump-
tion that, when measuring the same protein-protein interaction twice, the interface
remains same. We collected all hetero-complexes from the Protein Data Bank (PDB)
[Berman et al., 2000] and compared their interfaces over different levels of sequence
divergence. Then we calculated the probability of an interface change and its severity.
This revealed that even sequence-identical protein pairs can interact differently, con-
tributing over one third to the interface variability observed in pairs from the same
families (Interologs). One reason is oligomerization: the more copies of an interac-
tion in a complex, the higher the variability. Often, multiple copies are introduced by
homomers. Nevertheless, even dimeric complexes can have very different binding
modes. These results withstand numerous interface similarity measures and the
many challenges of the PDB. We performed our analysis after redundancy reduction,
ensured that variability is not limited to certain subgroups and marginalized the influ-
ence of crystal contacts. Many databases have appeared in recent years that classify
and cluster hetero-interfaces by families (e.g. SCOPPI [Winter et al., 2006]). They
leave it open whether interface variability is caused by sequence changes or actually
naturally encoded into a protein pair. We now demonstrate that different binding
modes are often observed without any amino acid change and provide explanations
by various follow-up analyses. Striking sample cases fall into diverse categories,
ranging from protein conformation-specific binding modes to flexible interfaces that
overcome steric constraints in the assembly of higher order complexes.

1.2 Sequence-based Residue-residue Interaction
Prediction

One of the oldest applications of computational biology is ‘protein-protein docking’.
This is the problem of predicting the structure of two proteins bound to each other,
given the structures of the monomeric proteins. Knowing this binding mode enables
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various downstream analyses, e.g. targeting the suppression or enhancement of the
PPI, for example via site-directed mutagenesis. This, in turn, is often a crucial step
in drug development and can generally contribute to our understanding of the greater
biological process the PPI is part of.

Protein docking can be divided into two different sub-categories, ‘rigid body
docking’ and ‘flexible body docking’. In rigid body docking, the structures of the
monomers are assumed to stay the same upon binding to each other. Methods usually
first perform a coarse-grained search in a large space of possible binding modes to
identify the most likely candidates and then refine them. A popular approach for
the former step is ZDOCK [Chen et al., 2003]. The latter can be addressed, e.g.
by RosettaDock [Gray et al., 2003]. In particular in combination with additional
experimental information, e.g. in the form of structures of interologous complexes
or other experiments indicative of the binding mode, it appears from the latest
independent assessments that the problem of rigid body docking can be solved quite
accurately [Lensink et al., 2007].

The picture looks very different for flexible body docking, however. Often, the
monomers undergo large conformational changes upon binding to each other. One
example of a method trying to also account for such changes is FiberDock [Mashiach
et al., 2010]. If no suitable template complex is available, however, today’s methods
usually fail to accurately predict the target complex [Lensink et al., 2007].

It has often been demonstrated that certain structural or even functional aspects of
a protein can be predicted from sequence without prior knowledge about its structure
and without a close and structurally resolved homolog [Rost and Liu, 2003]. This is
in particular true for the residues capable of binding other proteins [Ofran and Rost,
2003a]. Often, such predictions even correlate with hot spot residues [Ofran and
Rost, 2007b]. We therefore hypothesized that, using state-of-the-art sequence based
prediction tools and enough computational power, it might be possible to also predict,
from sequence alone, some of the residue pairs that are in contact in a PPI. The data
needed for this task was readily available in form of the collection of PPI structures
from the entire PDB that we created in our analysis on differential binding (Chapter
2). In Chapter 3, we describe the training and evaluation of such a predictor. For
every residue pair, it encodes both amino acids with various sequence-based features,
including predicted aspects of structure and function from the PredictProtein suite
of programs [Rost and Liu, 2003]. We evaluate the resulting classifier via cross-
validation on the training data and on non-redudant PPI structures recently added to
the PDB. As a summary, even though not reaching high accuracies in absolute terms,
it improves greatly over random and can thus be of valuable help for experimental
determination of key residue-residue interactions.
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1.3 Sequence-based Binary PPI Prediction
Not only data about the molecular details of PPIs is very limited, but also the
information whether two protein interact or not (‘binary interaction’). It is typically
presented in the form of PPI networks, where each protein is a node and each edge
indicates that the two proteins interact. In research dealing with PPI networks, the
term ‘interaction’ has been used to describe various different phenomena, reaching
from protein co-localization to functional association. Even though experimental data
is often inconclusive about the true nature of an interaction, we want to emphasize
that we still focus on direct physical interactions. Put simply, for us, two proteins
actually have to physically touch each other to be interacting (e.g. both proteins must
have at least 5 residue closer than 6Å to the other protein).

Such PPIs are supported by an increasing amount of inconclusive data that
becomes meaningful only in concert. This implies that the raw data no longer holds
the evidence. Instead, it needs to be connected through simple reasoning or more
advanced combinations in Bayesian networks [Troyanskaya et al., 2003]. This blurs
the line between experiment and prediction. For instance, if we use our definition
of PPIs (physical contacts between different proteins), using expression data in a
Bayesian network may decreases performance, unless we train another machine
learning device (SVM) that ‘predicts’ PPIs only using expression data [Soong et al.,
2008]. Many in-silico methods enrich PPI networks [Liu et al., 2008b, Lees et al.,
2011, Mosca et al., 2013]. Data sources include protein sequences, structures, co-
evolution, co-expression, domain co-occurrence, text-mining, subcellular localization
and already known interactions (network topology). Model types range from Naive
Bayes, to Support Vector Machines (SVM) and Conditional Random Fields and
are typically combined with other tools such as homology-based inference or other
sequence-derived features.

Homology-based inference describes the following rationale: Assume a detailed
experiment establishes that protein P1 has function F and that protein P2 has signif-
icant sequence similarity to P1. Predicting P2 to also have function F constitutes
homology-based inference. Interestingly, this approach is still one of the best ways
to predict Gene Ontology terms [Radivojac et al., 2013, Hamp et al., 2013b], and
in some cases it is even enough to outperform advanced methods for the prediction
of subcellular localization (Goldberg et al., personal communication). For PPIs,
however, it is substantially more challenging [Mika and Rost, 2006]. Advanced tools
reaching into the twilight zone of sequence similarity [Rost, 1999] are therefore a
requirement for successful sequence based interaction prediction.

Our first attempt at predicting whether two proteins interact was the residue-
residue contact predictor developed in Chapter 3. The idea was to predict all inter-
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protein residue-residue interactions for any given pair of proteins and to consider
the score of the highest-scoring pair as the sole indicator of whether two proteins
interact. This was superior to various other approaches such as considering the
top-N hits or maximum likelihood based inference relying on the distribution of
scores. As the PPIs in our data set were derived from the entire PDB, they involved
various different organisms. Large differences between proteomes and interactomes
demanded that negative interactions, i.e. non-interacting pairs of proteins, follow the
same distribution of organisms as the positive PPIs. Our data set was too small for
accurate taxonomy-based negative sampling, however, and we did not find a proper
evaluation setup. For example, it is unclear whether redundancy between negative
interactions is acceptable in general or only within or across organisms or among
positive and negative interactions. As our results largely depended on such questions
and we did not find answers in the literature, we decided to focus on the prediction
of PPIs in human. Comparing our method to those recently assessed by [Park and
Marcotte, 2012], however, we found its accuracy to be clearly inferior.

Our next and final approach focused on the evolutionary profile based kernel
developed by the Leslie group [Kuang et al., 2004]. We discovered that - when
applied properly - it achieves state-of-the accuracies for predicting the subcellular
localization of a protein [Goldberg et al., 2012]. Initially, it was too slow for training
with large-scale data sets and predicting new proteins, but we managed to accelerate it
by orders of magnitudes. This procedure is detailed in Chapter 4. Accurate prediction
of the subcellular localization of a protein alone helps to predict interaction partners
by eliminating protein pairs that cannot interact from a compartmental perspective.
However, the profile kernel can also directly be employed to predict whether two
proteins are interacting or not. In particular in combination with the prediction of
subcellular localization, this approach significantly outperforms all other sequence-
based methods for difficult prediction cases. We demonstrate this in Chapter 5.

1.4 PPI Networks and Protein Function Prediction
With data missing on a large scale, the interplay between experimental verification
and computational prediction of PPIs is iterative. In-silico predictors are trained with
existing experimental data and output candidate residues, residue pairs, proteins or
PPIs with a high probability of leading to new insights into molecular mechanisms or
cellular processes in the wet lab. The final factor for the success of a computational
method is therefore its availability and applicability by biologists in the context of
focused, small-scale experiments. For PPIs, this often involves visualizing interac-
tions as networks, followed by manual enrichment and analysis. Not surprisingly,
one of the most successful tools in computational biology helps doing exactly this

22



1.4. PPI Networks and Protein Function Prediction

(Cytoscape; [Shannon et al., 2003]).
For the network of interest, many downstream analyses are imaginable, involving

for example node degree or path length distributions. Gaining insights into the
functions of a network, however, also includes single-protein annotations. For
example, grouping the nodes by their subcellular localization dissects the network
into modules of interactions that happen at the same place, and thus presumably also
in the context of the same process [Ofran et al., 2006]. A generalization of this idea
is Gene Ontology (GO) [Ashburner et al., 2000] term enrichment, in which proteins
are mapped to a controlled vocabulary of a wide variety of functions (not only, but
including subcellular localization), followed by statistical analysis of GO terms that
are overrepresented in certain regions of the network. A highly successful tool for
this task is a plug-in for Cytoscape, named BiNGO [Maere et al., 2005].

The problem with GO terms, however, is the same as for PPIs, namely that
only a tiny fraction of all proteins have experimental GO term annotations. Fast
and reliable computational methods are therefore once again indispensable. As
mentioned earlier, sequence similarity has been found to be the most informative
source of information for function prediction in a recent independent assessment
[Radivojac et al., 2013]. We participated in this assessment successfully with three
simple homology-inference based methods developed by students of a lecture at
the Technical University Munich. In Chapter 6, we show to combine them into one
classifier that is fast, achieves state-of-the-art accuracy and outputs annotations that
can easily be traced back to experimental information.
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1.5 Contributions of This Thesis
In the following a summary of the scientific contributions of this thesis.

Chapter 1: On the Alternativeness of PPI Interfaces
In this chapter, we extract all high-resolution structures of PPIs from the Protein
Data Bank and determine in how far the same two proteins interact differently with
each other. Our assumption is that the intricate molecular details PPIs are crucial for
function and that we would see no difference when measuring the same interacting
protein pair twice. Our analysis takes various factors into account that could bias
or otherwise influence the results, such as crystal contacts, the oligomeric context
of a PPI or the interface similarity measure. We establish that some change in
the interfaces occurs in almost one quarter of all interactions even for sequence-
identical pairs of proteins and that this fraction increases to more than third for close
homologs. Strong differences can be observed for 12-29% of all comparisons. One
important factor was the number of copies of an interaction in the same complex.
The more copies, the more different the interfaces. Even after correcting for this
factor, however, a significant variability remained. We illustrate our results with
various sample complexes.

Chapter 2: Predicting Residue-residue Contacts in PPIs
Using the data set created in the previous chapter, we train an artificial neural network
based predictor that determines whether two amino acids from two different proteins
will bond to each other upon complex formation. To this end, we first extract all pairs
of contacting amino acid residues from structures of known PPIs. Non-interacting
pairs are sampled randomly from the remaining non-contacting residues. Then,
for each pair, we encode both amino acids with various sequence-based features,
including predicted aspects of structure and function from the PredictProtein suite
of programs [Rost and Liu, 2003]. We evaluate the resulting classifier via cross-
validation on the training data and on non-redudant PPI structures recently added to
the PDB. Despite low absolute precision, we find it to improve greatly over random
and thus to be of great help for guiding site-directed mutagenesis experiments.

Chapter 3: Acceleration of the Original Profile Kernel
Our residue-residue based predictor trained in the previous chapter performed well
on the level of residue pairs, but was not competitive for discriminating between
interacting and non-interacting protein pairs. Initial experiments with the original
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profile kernel [Kuang et al., 2004] showed great potential for this task, but was
too slow for large-scale applications. In this chaper, we show how to accelerate
the original implementation by orders of magnitudes with various low-level and
algorithmic optimizations.

Chapter 4: Improving Sequence-based Binary PPI Prediction
In this chapter, we apply our accelerated profile kernel to the binary prediction of
PPIs in human. In order to improve our understanding of biological processes on the
molecular level, we need to determine which proteins are interacting. The slow speed,
inaccuracy and limited applicability of experimental methods leaves sequence based
prediction of protein-protein interactions (PPIs) a crucial subject in computational
biology. Using highly reliable human PPIs, we show how evolutionary profiles and
subcellular localization increase precision over the state-of-the-art even for low recall
levels. A new rigorous way to reduce protein-protein interaction redundancy reveals
that only a fraction of available PPIs is needed to build more accurate classifiers.
Two cross-validations differing in the similarity amongst non-interacting protein
pairs investigate their impact on PPI prediction. We conclude by predicting all 200
million protein pairs in human and estimating their accuracy in terms of recall and
precision.

Chapter 5: Homology-based Inference of Protein Function
Predicting PPIs is immediately linked to network visualization and functional analy-
sis. One of the most-often used types of analysis is Gene Ontology (GO; [Ashburner
et al., 2000]) term enrichment. Most proteins, however are not experimentally anno-
tated and need to be predicted. In this chapter, we introduce a new sequence-based
in-silico GO term predictor that is fast, achieves state-of-the-art accuracy and outputs
annotations that can easily be traced back to experimental information.
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Chapter 2

On the Alternativeness of PPI
Interfaces∗

2.1 Outline
The intricate molecular details of protein-protein interactions (PPIs) are crucial for
function. Therefore, measuring the same interacting protein pair again, we expect the
same result. This work measured the similarity in the molecular details of interaction
for the same and for homologous protein pairs between different experiments. All
scores analyzed suggested that different experiments often find exceptions in the
interfaces of similar PPIs: up to 22% of all comparisons revealed some differences
even for sequence-identical pairs of proteins. The corresponding number for pairs
of close homologs reached 68%. Conversely, the interfaces differed entirely for
12-29% of all comparisons. All these estimates were calculated after redundancy
reduction. The magnitude of interface differences ranged from subtle to the extreme,
as illustrated by a few examples. An extreme case was a change of the interacting
domains between two observations of the same biological interaction. One reason for
different interfaces was the number of copies of an interaction in the same complex:
the probability of observing alternative binding modes increases with the number of
copies. Even after removing the special cases with alternative hetero-interfaces to
the same homomer, a substantial variability remained. Our results strongly support
the surprising notion that there are many alternative solutions to make the intricate
molecular details of PPIs crucial for function.

∗This chapter is based on the publication [Hamp and Rost, 2012]
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2.2 Introduction
PPIs in high-resolution reveal molecular details of network edges. The study
of high-resolution three-dimensional (3D) structures of proteins as deposited in the
PDB, the Protein Data Bank [Berman et al., 2000], began with peptides [Kendrew
et al., 1960, Perutz et al., 1960] and has increasingly included larger complexes of
interacting proteins [Dutta and Berman, 2005]. These complexes, also referred to
as protein-protein interactions (PPIs), capture the molecular details of interaction
networks. The network view, in turn, has become increasingly important for, e.g.,
the ranking of genes according to their probability of being causative for a particular
disease [Xu and Li, 2006, Chen et al., 2009, Taylor et al., 2009] as needed for
Genome-wide Association Studies.

Despite this wealth of high-resolution interaction data, the set of interactions for
which the exact molecular mechanisms are known remains immensely incomplete
[Schmeing and Ramakrishnan, 2009] and with it experimental and computational
descriptions of binding positions and binding-induced conformational changes [Goh
et al., 2004, Kastritis and Bonvin, 2010, Kastritis et al., 2011]. Nevertheless, studies
of available structures have shown that related proteins have similar binding sites
[Zhang et al., 2010], that permanent and transient interactions differ so substantially
from each other [Ofran and Rost, 2003b] that PPI hotspots can be predicted from
sequence [Ofran and Rost, 2007a,b], and that we can accurately distinguish between
specific and unspecific contacts [Mintseris and Weng, 2003]. Many others have
addressed related tasks [Zhao et al., 2012, Mintseris and Weng, 2005, Res et al.,
2005, Block et al., 2006, Lukatsky et al., 2007, Madaoui and Guerois, 2008, Bera
and Ray, 2009, Choi et al., 2009], including even the contribution of water to the
binding modes of PPIs [Teyra and Pisabarro, 2007].

Study of external PPIs from many new perspectives. An excellent recent work
reviews various types of protein interactions [Keskin et al., 2008]. We want to
complement it with a quantitative analysis of the interface variability of external
interactions, i.e. interactions between two protein chains coming from different genes.
These typically correspond to the edges in a PPI network. The atomic structures
of their interfaces often seem to cluster into particular architectures [Mintseris and
Weng, 2003, Tuncbag et al., 2008] and it has been suggested that they are conserved
within and between organisms [Mika and Rost, 2006, Scott and Barton, 2007, Shin
et al., 2009, Gophna and Ofran, 2010, Ranea et al., 2010, Nehrt et al., 2011]. Many
authors have also analyzed the molecular details of binding within and between their
domain families [Aloy et al., 2003, Ispolatov et al., 2005, Korkin et al., 2005, Kim
et al., 2006, Shoemaker et al., 2006, Stein et al., 2009]. For example, they found
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that two different SCOP [Murzin et al., 1995] domain families exhibit more than one
orientation of binding about 24% of the time [Kim et al., 2006]. Beside this number,
however, only few more details were given about the underlying biological variety
and in particular the causes of differential interfaces. The problem we see with this
approach is that members of a SCOP family only share similar 3D structures and that
the observed variability in binding might simply be explained by sequence variation.
In fact, the inference of similarity in structure (homology modeling) is much more
accurate than the inference of protein-protein interactions [Mika and Rost, 2006]. So
far no studies based on significantly sized data sets have addressed the question to
which extent the interface between two different proteins is biologically conserved,
i.e. excluding diversity due to sequential differences.

Another challenge for the analysis of large-scale data sets have been crystal
contacts and the difficulties of automated methods to correct such problems (e.g.
the PQS [Henrick and Thornton, 1998] or the PISA [Krissinel and Henrick, 2007]
service). Authors ‘addressed’ these problems by either entirely excluding different
interfaces suspecting that those originated from non-biological contacts, or by leaving
it open to which extent their results might have been created by such contacts.

Finding biologically relevant differences in binding modes. Here, we address
both issues. First, we realized that the number and quality of author-assigned
biological assemblies in the PDB now suffices to enable a quantitative study like this
one. For the large majority of entries, the PDB now provides biologically relevant
structures from the crystallographers themselves. Similar to PQS or PISA, they
describe a complex as it occurs in the living cell. At the same time, however, they
are more accurate and easier to verify than de novo predictions. Therefore, we did
not discard any high-resolution complex or interface therein.

Secondly, put most extremely, we ask the question: if X-ray crystallographers
measure the same interaction twice, do they get the same result? The main focus
is first on the variability of the interaction between identical variants of the same
two proteins (SameSeq). In other words, we look at external interactions corre-
sponding to the same pair of protein sequences and estimate how often the interfaces
are different (Fig. 1A; Fig. 1B: the red arrow compares two sequence-identical
interactions). We then extend our analysis by allowing minor sequence variations in
corresponding interactors (e.g. in the form of point mutations; SameProt). However,
we still maintain the comparison between essentially the same proteins, because we
make sure that a sequence change does not go hand-in-hand with a change of the
original protein (Fig. 1B: for the blue interface comparisons, the sequences have
changed [S1/S3 vs. S2/S3], but the original proteins [Px/Py] remained the same).
Finally, we compared two external interactions corresponding to the same family pair,
i.e. ‘interologs’ (Interolog). In a dimer-dimer comparison on this Interolog-level,
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corresponding interactors still had a similar 3D structure, but their sequences could
be very different. (Several authors have been using the term ‘interolog’ [Walhout
et al., 2000, Yu et al., 2004]; it has the advantage over the term ‘homolog’ that no
evolutionary relation is implied in the definition; Fig. 1B, green: interfaces between
proteins Px and Py are compared to those between Pz and Py).
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Figure 2.1: (A) Sketch for interface comparison. Two proteins Px and Py always
interact in the same way, do they? We compared pairs of proteins for which we found
several experimental solutions for their interaction. Assume that we have two high-
resolution protein complexes C1 and C2. From these, we pick two hetero-dimers
(Structure A and Structure B) for the interaction between proteins Px and Py (iden-
tified by the chains X and Y in Structure A, and by X’ and Y’ in Structure B). We
then compared the interface of the same interaction between those two experimental
solutions. (B) PPI network induced by complexes C1 and C2. Complexes C1 and
C2 contain two protein-protein interactions: Px-Py and Px-Pz. We differentiated
between three types of interface comparisons. First, we only compared interactions
corresponding to same pair of sequences (SameSeq; red; shown in A). Then, se-
quences could change as long as the original proteins remained the same (SameProt;
blue; interfaces S1/S3 are compared to S2/S3; both sequences S1 and S3 are variants
of protein Px). Finally, we compared interologous interactions (green; interfaces
Px/Py are compared to Pz/Py; Px and Pz come from the same family).
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2.3 Methods

2.3.1 PPI Data Set from the PDB
Each node in a PPI network typically refers to a UniProt [Consortium, 2011] entry.
While UniProt stores information about proteins, its first layer of organization is
genetic: every entry corresponds to a unique location on a genome. Hence, in
order to find reliable structural evidence of PPI network edges, we mined the PDB
[Berman et al., 2003, Rose et al., 2010] for interacting proteins which map to different
UniProt/Swiss-Prot [Schneider et al., 2009] identifiers. We extracted such external
protein-protein interactions (i.e. interactions originating from two different genes) in
the following way: first, we downloaded all author assigned biological assemblies
from the PDB. We then retained only X-ray structures that had a resolution < 2.5 Å
and mapped to at least two different UniProt/Swiss-Prot entries (author assignment
available for 99% of all such structures). We primarily used the PDB<=>Swiss-Prot
mapping provided by the PDB and only performed the following step if this mapping
was not available: we BLASTed [Altschul et al., 1997] the PDB SEQRES sequence
(at least 30 residues long) against the Swiss-Prot database, thresholding at E-Values
< 10−3 and requiring at least 90% of the PDB chain to be aligned. (When we found
more than one hit, we took the one with the lowest E-Value; when we had none, we
discarded this complex.) Having found those ‘interesting’ complexes, we extracted
all interacting pairs of chains pointing to two different Swiss-Prot entries. At this
early stage of our procedure, we only required one pair of atoms of the two chains to
be closer than 0.6 nm (6 Å) in order to consider them interacting.

2.3.2 Interlude: Using PISA for Construction of Biologically
Relevant Assemblies

An alternative that we considered was using the PISA [Krissinel and Henrick, 2007]
service to obtain biologically relevant assemblies instead of author assigned com-
plexes. In the following, we give reasons why we switched to author assigned
complexes, an accuracy estimation of PISA in the context of hetero-complexes and
other results compiled with the PISA based data set.

Crystallographic methods often do not allow the accurate determination of the
biologically relevant protein assembly, especially in the case of larger complexes.
Experimental ways to look at assemblies in the living cells (e.g. cryo electron
microscopy) are limited. For our studies, we exclusively used author assigned
biological assemblies as annotated in the PDB. In most cases, this means that some
interfaces from the asymmetric unit (ASU) have been deemed crystallographic
artifacts and that the original complex has been broken down into smaller fragments.
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Actual State Sensitivity Incorrect States

1-mer 0/2 2 x 2-mer
2-mer 4/7 2 x 4-mer, 8-mer
4-mer 34/36 2 x 2-mer
6-mer 3/3 -
8-mer 1/1 -
9-mer 29/29 -
12-mer 31/32 6-mer
16-mer 0/2 2 x 8-mer
20-mer 0/1 18-mer
21-mer 4/4 -
24-mer 2/2 -

Overall Accuracy: 90.7±2.7% (108/119)

Table 2.1: The accuracy of PISA evaluated with 119 heterocomplexes. “Actual
State” refers to the actual oligomeric state of a given complex, “Sensitivity” to
the fraction of correctly predicted complexes in the respective state and “Incorrect
States” to the oligomeric states the complex was assigned to in case it was predicted
incorrectly.

Crystallographic interfaces are often determined on the basis of, e.g., interface size
(the smaller, the less likely to be relevant) or homology (e.g. a protein is similar to
another tetramer, thus it is also a tetramer). The PDB provides biologically relevant
complexes in the form of downloadable structures, besides the ASUs. They cover
about 99% of all high-resolution PDB entries with external interfaces (data not
shown) and appear to be quite reliable: in about 100 manual checks whether the
author-assigned biological unit as deposited in the PDB was also described as such
in the publication introducing the structure, we found only 1 clear mistake.

Despite this high accuracy and coverage, PISA, the successor of PQS [Henrick
and Thornton, 1998], provides yet another view onto the PDB interactome: it cannot
only differentiate between specific and non-specific interfaces, but also re-assemble
the fragments of the ASU in order to build the most probable quaternary structure
in the living cell. Hence, it might find assemblies which crystallographic methods
miss due limitations of experimental methods. We took the opportunity of this work
to study its accuracy in context of external interfaces, i.e. interfaces coming from
different proteins. While in the majority of cases, there is no experimental data to
verify its predictions (which is also why we did not use PISA for our final results), a
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number of highly accurate biological complexes were available in the PIQSI [Levy,
2007] database.

PIQSI is a manually curated database annotating the oligomeric state of around
15,000 PDB entries (May 2011). Each complex is given an error attribute indicating
whether it has the correct oligomeric state. We only considered PIQSI complexes
‘without errors’, thus reducing the number of annotated complexes to 10,000. Un-
fortunately, only a small fraction of those were hetero-complexes, so that after
intersecting PIQSI with our data, only 119 complexes remained for evaluation. Cor-
responding coordinate files were downloaded from the PIQSI website. We then
compared the oligomeric state of each of those complexes to the most probable
complex predicted by PISA. Results are given in Table 2.1 in a similar way as found
in [Krissinel and Henrick, 2005].

Figure 2.2: (A) Comparison of Face Position Similarity distributions derived
from complexes common to our data and PIQSI. This panel shows the Face Posi-
tion Similarity Distribution DSameSeq (c.f. Sections 2.3.6,2.3.7) when only comparing
complexes common to both PISA and PIQSI. The range 0.9-1.0 is omitted in order
to emphasize the other ranges. It is shown again in the inlet. (B) Comparison of
Face Position Similarity distribution DSameSeq on the PISA data set. Here, we
replaced all author assigned complexes in our data set with those predicted by PISA
and re-calculated the Face Position Similarity distribution.
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The evaluation reveals quite a high precision of PISA with an accuracy of 90.7%.
This is in line with previous accuracy reports [Krissinel and Henrick, 2005]. Note
that an erroneous prediction does not automatically lead to distorted similarity distri-
butions for all external interactions of this complex as only a fraction of interfaces
should undergo changes in the transition from the incorrect to the correct quater-
nary structure. Also notice that errors are not systematic over or underestimates of
complex sizes so that missing or superfluous interfaces introduced by the wrong
oligomeric states should roughly equal each other out with respect to complemen-
tarity. To validate these claims, we applied our clustering procedure (c.f. Section
2.3.6) to the PIQSI data set and compared the Face Position Similarity distributions
(c.f. Section 2.3.7) to those derived from the PISA data set (distribution DSameSeq;
Fig. 2.2A). We did not require two or more PDB entries per external interactions,
however, in order to increase the number of interactions for PIQSI. Thus, in absolute
terms, curves should be biased towards low similarity.

Due to the small sample size, only a distorted curve could be derived in Fig. 2.2,
but it becomes clear that interfaces are largely the same in both complex sets. Given
these estimates, it is unlikely that the more accurate determination of the quaternary
state of a protein will have a significant impact on the results. In fact, after replacing
all author assigned PDB assemblies in our data set with the most probable PISA
assemblies and re-filtering and re-clustering all interactions, the according face
similarity distribution was mostly within the standard errors (Fig. 2.2B).

2.3.3 Definition of PPI Interfaces
Having found all structures of external interactions, we annotated their interfaces.
Given a hetero-dimer with chains X and Y (X and Y come from different genes), we
considered a pair of residues Rx and Ry as part of the interface if it contained at least
one pair of atoms closer than 0.6 nm (6 Å) or if it met all three conditions: (i) both
residues changed their accessible surface area upon binding (∆ASA: replacing the
binding partner by water), (ii) Rx had no other interaction partner within 0.6 nm (6
Å), (iii) of all residues in protein chain Y that changed their accessible surface area
(ASA), Ry was the closest to Rx. The latter included interactions that fell slightly
above the 0.6 nm (6 Å) threshold but should still be considered interacting by their
ASA change (we present a brief analysis of the effect of including ∆ASA in the
interface annotations in Section 2.4.1.1). We annotated each interface residue by
two structural descriptors: ∆ASA and d reflecting the distance (in Ångstrom) of the
closest binding residue. Having defined all interface residues, we removed each
hetero-dimer with fewer than five interacting residues on either chain from our data
set.
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2.3.4 Assignment of Copy Number to PPI Interfaces
Interface variability may be linked to the number the two proteins interact in the same
complex. We prepared our data to verified this hypothesis in the following way: first,
for a given interface, we determined its corresponding interaction and complex. In
Fig. 2.1, for example, interface X-Y corresponds to interaction S1-S3 and complex
C1. Then, we counted how often this interaction occurred in the complex (Fig. 2.1:
S1-S3 occurs twice in complex C1) and assigned this number to the interface (Fig.
2.1: interface X-Y has copy number 2). This was repeated for all interfaces in our
data set.

2.3.5 Measures for Face and Interface Similarity
Overall, we applied nine different interface similarity measures to our data, covering
various types of changes. They are defined in detail in the following. The variety
of these measures guaranteed that we captured as many aspects of ‘interaction
similarity’ as possible. We found significant differences between these measures, but
with respect to our overall conclusions, the reader may as well only consider the two
most representative and intuitive measures, namely the Face Position Similarity and
the L_rms. In the following, we refer to ‘interface’ as all the residues that ‘touch each
other’ between two interacting proteins (Fig. 2.1), and as ‘face’ as all the residues
on one side of the interface.

We compare the interface between chains CA
X and CA

Y in hetero-dimeric structure
A with the interface between chains CB

X and CB
Y in hetero-dimeric structure B. X and

Y indicate two different proteins (SameSeq, SameProt) or families (Interolog).

Accounting for Missing Residues. The atomic sequences of CA
X and CB

X are re-
lated, but not necessarily the same. In particular, parts of CA

X might be missing in CB
X

and vice versa because of, e.g., experimental inaccuracies or evolutionary insertions
and deletions (analogous statements for CA

Y and CB
Y ). Those cases should not lead to

low interface similarities as they should only be reported for actual binding mode
changes. Consequently, we reduced A and B to common residues before comparing
their interfaces. We found common residues in the following ways. (In case you
want to skip the details of this procedure, simply assume that corresponding chains
had the same number of residues with a 1:1 mapping between them and continue
with Section 2.3.5.1)

Let atomseqA
X be the atomic sequence, seqresA

X the SEQRES sequence and spA
X

the Swiss-Prot sequence of chain CA
X . Let the same sequences be defined analogously

for the other chains CB
X , CA

Y and CB
Y .
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If corresponding chains had the same SEQRES sequence (i.e. seqresA
X = seqresB

X ),
both of their atomic sequences atomseqA

X and atomseqB
X were semi-globally aligned

to seqresA
X (BLOSUM62 as alignment matrix). Common residues could then be iden-

tified by identical positions in this 3-sequence alignment: all columns without gaps
corresponded to common residues, all other residues were discarded. Analogous
statements hold again for chains Y , but we will restrict ourselves to the case of X
here and in the following for reasons of simplicity.

In case corresponding chains had different SEQRES sequences, but were variants
of the same protein (i.e. mapped to the same Swiss-Prot entry), the atomic sequences
atomseqA

X and atomseqB
X were first semi-globally aligned to the SEQRES sequences

seqresA
X and seqresB

X , respectively. Then we aligned both seqresA
X and seqresB

X to
the representative Swiss-Prot sequence spA

X (Note that spA
X = spB

X because CA
X and

CB
X come from the same Swiss-Prot entry). In case we had to introduce gaps in

seqresA
X during the alignment to spA

X , they were also added at the same positions in
the atomseqA

X alignment, thus preserving each alignment and its length (analogous
steps for B). In the end, common residues of atomseqA

X and atomseqB
X mapped to the

same position in the Swiss-Prot sequence and were identified by gapless columns in
the final 5-sequence alignment.

If the protein chains CA
X and CB

X came from different Swiss-Prot entries but the
same family, the atomic residues were aligned to Swiss-Prot positions as before, i.e.
atomseqA

X was aligned to seqresA
X and seqresA

X was aligned to spA
X , with analogous

steps for B. Finally, we aligned spA
X and spB

X . In case of gaps in the alignment
between spA

X and spB
X , they were added at according positions in both the atomic and

SEQRES sequence alignments. In the final 6-sequence alignment, atomic residues
mapping to the same position in this last alignment were considered common residues
and could again be identified by columns without a gap in each of the 6 rows.

Note that structure alignments were not used for two reasons. Firstly, we wanted
to safely identify missing residues. Using SEQRES and Swiss-Prot sequences
somewhat improves the sensitivity in this context. Consider for example the case
of CA

X and CB
X coming from different parts of the same gene (as it might happen for

example after post-translational cleavage). A structure alignment might align CA
X and

CB
X , find common residues and hence allow the comparison of their interfaces. The

above procedure, on the other hand, correctly suggests that the two proteins have no
common background and thus have to be excluded from the comparison. Secondly,
we would have had to align structures before any pairwise interface comparison
because the atomic sequences often differ slightly. This was unfeasible. Following
the above procedure, we only had to align the atomic sequence to the SEQRES
sequence once and could then infer common residues via this alignment.
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2.3.5.1 Face Position Similarity

Outline. The Face Similarity tries to measure the conservation of face residues in
both interfaces. For instance, assume that residues 1,2,3 interact on X, and residues
1,3,7,8 on X’ (Fig. 2.1). The size of the intersection is then 2 (1, 3), i.e. the two faces
on X and X’ have two residue positions in common (residues 1 and 3). The average
face size is 3.5=sqrt(3*4) (geometric mean) and the Face Position Similarity for X-X’
becomes 2/3.5. The calculations of the same number for the pair Y-Y’ yielded two
values of Face Position Similarity. Among all the measures that we tried, the Face
Position Similarity represented a good average interface similarity. Other measures
were either more robust against smaller changes (e.g. Sphere Radius Ratio [Section
2.3.5.3]) or more sensitive, e.g., in terms of rotations (Interface Position Similarity
[Section 2.3.5.5]) or side chain movements (Convex Hull Overlap; Section 2.3.5.4).

Formal definition. Face Position Similarity first creates four different residue sets
FA

X ,FA
Y ,FB

X ,FB
Y ⊂ N by determining the position of each interacting amino acid on

X and Y for both A and B and then peforms comparisons between FA
X and FB

X and
between FA

Y and FB
Y via s f ps:

s f ps : 2X×2X→ [0,1]

(F1,F2) 7→
|F1∩F2|√
|F1||F2|

(2.1)

where X = N and F1 and F2 are two sets of face residue positions so that each of
their elements points to exactly one amino acid on a common protein sequence. For
simple single distributions (Section 2.3.7), the two similarities were subsequently
arithmetically averaged. In the 2D plot (Section 2.3.7.2), they were treated separately
so that only corresponding faces were compared.

2.3.5.2 Interface Position Similarity

Interface Position Similarity captures similarity analogously to Face Position Similar-
ity, but also includes information about which particular pairs of amino acids interact.
A and B are projected onto two sets IFA, IFB ⊂ N×N which both contain tuples
of positions of interacting residues. An element (i, j) ∈ IFA for example indicates
that in structure A, the i-th residue of X has contact with the j-th residue of Y. The
similarity between IFA and IFB is calculated via s f ps with X= N×N (see Eq. 2.1).

2.3.5.3 Sphere Radius Ratio

Sphere Radius Ratio first uses the residue position sets FA
X ,FB

X ⊂ N as defined in
Section 2.3.5.1 to specify two different face locations on chain CA

X and stores the
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coordinates of the corresponding atoms in sets KCA
X

A ,KCA
X

B ⊂ R3 (note that only one
of the two sets contains atoms which are actually interacting in structure A). Their
similarity is then calculated via ssrr

ssrr : 2R
3
×2R

3
→ [0,1]

(K1,K2) 7→
rmbs(K1)

rmbs(K1∪K2)
(2.2)

where rmbs : 2R
3 → R returns the radius of the smallest sphere which encompasses

all of the given coordinates.
Applying this procedure not only to CA

X , but also to CA
Y ,CB

X and CB
Y , one obtains

all in all four distinct similarities sAX ,sAY ,sBX and sBY . As differences between
similarities corresponding to the same chain but different structures (e.g. sAX and
sBX ) should mainly be attributed to backbone flexibilities, we always averaged those
arithmetically, reducing the number of similarities for one pair of external interfaces
to two. Analogously to Face Position Similarity, these were then again averaged
when deriving 1D distributions (Section 2.3.7).

2.3.5.4 Convex Hull Overlap

Using KCA
X

A and KCA
X

B ⊂ R3 as defined above, Convex Hull Overlap first calculates

their convex hulls HCA
X

A and HCA
X

B and then defines scho as:

scho : P3×P3→ [0,1]

(H1,H2) 7→
vol(H1∩H2)

max(vol(H1),vol(H2))
(2.3)

where P3 is the space of polyhedra in R3, ∩ : P3× P3 → P3 a function which
determines the intersection of two polyhedra and vol : P3 → R a function which
returns the volume of a polyhedron.

Analogously to Sphere Radius Ratio, creating the convex hulls and calculating
scho not only for CA

X , but also for CA
Y ,CB

X and CB
Y , one obtains four distinct similariy

values for each pair of external interfaces. These were then averaged as in the
previous Section. Convex Hulls were calculated with the QHull package [Barber
et al., 1996].

2.3.5.5 Interface Composition Similarity

For both sets, FA = FA
X ∪FA

Y and FB = FB
X ∪FB

Y (Section 2.3.5.1), Interface Compo-
sition Similarity replaces each residue position i ∈ FA,FB with the corresponding
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amino acid aai ∈ Σ, where Σ is the set of 20 amino acids. An interface can then
be represented as a function cX : Σ→ N giving the number of occurrences of each
amino acid in an interface X . To compare interface compositions we define saac
similarly to s f ps:

saac : C×C→ [0,1]

(c1,c2) 7→
∑σ∈Σ|c1(σ)− c2(σ)|√
∑σ∈Σ c1(σ)∗∑σ∈Σ c(σ)

(2.4)

where C is the space of interface functions cX .

2.3.5.6 Domain Number Ratio

We mapped each SCOP [Murzin et al., 1995] and CATH [Orengo et al., 1997]
domain onto our sequences and counted the number of domains involved in the
interaction for each external interface. A domain was involved if it contributed at
least one binding residue to the interface. For each fully annotated pair of interfaces,
we defined Domain Number Ratio as the ratio between the smaller and the larger of
the two domain numbers.

2.3.5.7 Family Interaction Similarity

The interface of an external interaction not only corresponds to pairs of interacting
residues as defined by Interface Position Similarity, but also to pairs of interacting
protein families. Thus, we employed SCOP and the domain mapping of Domain
Number Difference to study to what degree pairs of interacting families change when
comparing two external interfaces. For each structure, we compiled the set of all
family pairings, analogously to IFA and IFB of Interface Position Similarity (Section
2.3.5.2). The actual similarity could then be derived by s f ps with X= F×F, where
F was the space of SCOP families .

2.3.5.8 RMSD

Actually not a similarity measure for interfaces, but rather for pairs of protein
chains, we calculated the Root Mean Square Deviation (RMSD) of two binary
heterocomplexes. To this end, we first separately superimposed CA

X and CB
X and then

CA
Y and CB

Y . The average RMSD of both superpositions then represented the final
similarity value which could be processed like any other similarity described before.
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2.3.5.9 L_rms

Most notably used in the CAPRI [Lensink et al., 2007] experiments, this measure
first optimally superimposes the two larger proteins under consideration (‘receptors’,
i.e. either CA

X and CB
X or CA

Y and CB
Y ) and then applies this transformation to the two

smaller proteins (‘ligands’). The classical Root Mean Square Deviation (RMSD)
of the backbone atoms of the ligands is the L_rms. Note that this approach differs
substantially from the other measures tested. Firstly, it returns a distance in Å instead
of a similarity between 0 and 1. Secondly, it measures the displacement of the entire
protein, not only the interface. Conformational changes of the ligands can lead to
high distances as well as different binding positions. We still used this measure in
order to link our results to related work.

2.3.5.10 I_rms

The I_rms is again a measure of the CAPRI experiments [Lensink et al., 2007].
First, we redefine the interface between CA

X and CA
Y : Now, every pair of residues

with at least one atom pair closer than 10Å is part of the interface (before, it was
6Å). Then, we determine equivalent interface residues of A and B: we first create
two sets of residue positions: RX

commonIF = FA
X ∩FB

X and RY
commonIF = FA

Y ∩FB
Y (see

2.3.5.1 for definitions of the F sets). Then we reduce CA
X and CB

X to the residues in
RX

commonIF , with analogous steps for Y . In these new interface structures, we remove
all non-backbone atoms.

This leaves us with two new structures which have the same amount of atoms.
All these atoms are both part of the interface and the protein backbone. Next, we
optimally superimpose the structures and calculate the RMSD. This RMSD is the
I_rms. In case we could not find common interface residues before, we returned
maximum RMSD.

2.3.5.11 Comparison of Measures

We have introduced a number of measures which capture different aspects of in-
terface similarity. If they find dissimilarity, they assign lower values with different
amplitudes, what makes them essentially incomparable in absolute terms. We can,
however, compile a hierarchy of which measure sees differences more often than
others based on the empirical results presented throughout the manuscript. We show
it in Fig. 2.3. Here, we see that Convex Hull Overlap is the overall most sensitive
face similarity measure. Only closely behind in terms of sensitivity follows L_rms,
which is, however, strongly influenced by backbone movements of the entire proteins.
The Face and Interface Position Similarity measures, coming next in the list, are both
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Figure 2.3: A hierarchy of interface similarity measures. We have looked at the
0.9 to 1.0 bins of the DSameSeq distributions and used them to compile a hierarchy of
measures based on sensitivity. We differentiate between measures that look at both
sides of the interface at the same time or incorporate interfacial contacts (Interface
Similarity) and those which first treat each side of the interaction separately and then
average their conservations (Face Similarity).

exclusively residue based. Interface Position Similarlity takes into account conser-
vartion of residue-residue contacts and is therefore more susceptible to change. The
I_rms, on one hand, is in principle quite sensitive because we chose very fine grained
RMSD thresholds (steps of 0.5Å). One the other hand, it misses dissimilarities due to
the reduction to common interface residues and also similarities if no such residues
could be found. The Interface Composition Similarity (residue based) and Sphere
Radius Ratio (atom based) already fall into the class of rather robust measures. As a
specialty, both almost never assign low similarities. In case of the Interface Compo-
sition Similarity, this is mainly due to random effects. Two interfaces usually have
similar dimensions which is why Sphere Radius Ratio always sees some similarity.
Finally, we have the domain based similarity measures. CATH domain assignments
change slightly more often between interfaces than SCOP assignments. Obviously,
entire SCOP domain families are even more conserved than domains.
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2.3.6 Grouping Interfaces
Before we could apply the interface similarity measures to our entire collection of
external interactions, we needed to group the structures so that we could differentiate
between (and not mix) different types of sequence divergence when calculating
interface similarity distribution. This also addressed the redundancy immanent in
the PDB in the form of, e.g., overrepresented protein families. We hierarchically
clustered the hetero-dimers over three levels, corresponding to increasing levels of
sequence divergence. In the following, we describe this procedure in two ways. First,
we provide an intuitive and easier to understand protocol and then a more formal
definition.

2.3.6.1 Outline of the Procedure

First, we assigned two hetero-dimers to the same Level SameSeq group if they
corresponded to same pair of SEQRES sequences (Fig. 2.1B: we add interfaces 1
and 2 to the same Level SameSeq group; other interfaces become single member
Level SameSeq groups). Next, we reduced the influence of over-represented proteins.
This was achieved by adding Level SameSeq groups to the same Level SameProt
group if they corresponded to the same pair of associated Swiss-Prot identifiers
(Fig. 2.1B: Level SameSeq groups S1-S3 and S2-S3 go into one Level SameProt
group, S3-S4 to another). Clusters obtained in this way should represent the classical
notion of edges and nodes in a PPI network. Our final Level Interolog addressed
overrepresented families: we merged Level SameProt groups that pointed to the
same pair of Pfam [Punta et al., 2012] families into one Level Interolog group (Fig.
1B: both Level SameProt groups are merged into one Level Interolog cluster; Fig.
2.4 for a graphical illustration of the clustering).

2.3.6.2 Formal Description

Let A be a hetero-dimer from our data set. It has two chains from two differ-
ent proteins X and Y . We denote the two chains as CA

X and CA
Y . Let further

seqres(CA
X) be the SEQRES sequence, sp(seqres(CA

X)) the Swiss-Prot sequence
and p f am(sp(seqres(CA

X))) the Pfam Punta et al. [2012] families of chain CA
X . Let

those sequences and families be defined analogously for the other chain CB
X .

On the first clustering Level (‘SameSeq’), we assign two hetero-dimers A and
B (chains CB

X ′ and CB
Y ′) to the same cluster if they have the same pair of SEQRES

sequences, i.e. seqres(CA
X) = seqres(CB

X ′) and seqres(CA
Y ) = seqres(CB

Y ′). Conse-
quently, we can represent a Level SameSeq cluster by a pair of SEQRES sequences
(seqresi,seqres j), because all the hetero-dimers in a cluster have exactly the same
SEQRES sequence pair.
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Figure 2.4: Clustering procedure and calculation of similarity distributions.
We clustered interfaces over 3 different levels. In the first level, ’SameSeq’, inter-
faces coming from identical sequence pairs were grouped together. Level SameSeq
clusters from the same Swiss-Prot pair (’protein pair’) were then merged in the
same Level SameProt cluster. Level SameProt clusters were grouped together into
the same Level Interolog clusters if they came from the same pair of Pfam [Punta
et al., 2012] families. We used this clustering to derive different interface similarity
distributions, based on three different types of interface comparisons (c.f. Section
2.3.7): First, we compared only interfaces from the same pair of sequences (red;
distribution DSameSeq), then only those from the same pair of proteins (blue; distribu-
tion DSameProt) and finally we only required them to come from the same family pair
(green; distribution DInterolog)

On the second clustering level (‘SameProt’), each cluster consists of several
SameSeq clusters. We merge two Level SameSeq clusters (seqresi,seqres j) and
(seqresi′,seqres j′) if they point to the same pair of Swiss-Prot entries, i.e. sp(seqresi)=
sp(seqresi′) and sp(seqres j) = sp(seqres j′). We denote a SameProt cluster by its
pair of Swiss-Prot entries (spk,spl).

In the third clustering Level (‘Interolog’), finally, two Level SameProt clusters
(spk,spl) and (spk′,spl′) are grouped together if they have the same Pfam [Punta
et al., 2012] family composition, i.e. p f am(spk) = p f am(spk′) and p f am(spl) =
p f am(spl′).
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2.3.7 Interface Similarity Distributions
Without the grouping above, any distribution of pairwise interface similarities would
have been highly dominated by large and well-studied complexes for which many
structures are available. Avoiding this bias demanded to group PPIs differently
(Levels SameSeq to Interolog) and also to embrace this alternative grouping when
trying to infer biologically meaningful similarity distributions. While the following
procedure successfully reduced the bias stemming from overrepresented sequences
and sequence families, we deliberately left Level SameSeq clusters unchanged in the
assumption that all binding modes are biologically meaningful and that eliminating
this redundancy would remove more biology than noise. In the following, we again
first give an informal and easy to follow description of the procedure. Then we
define it in a more formal way. The calculation of standard errors and distributions
for combinations of similarity measures are exclusively given in formal definitions.

2.3.7.1 Outline of the Procedure

Distribution DSameSeq. The interface similarity distribution in a SameSeq group
describes the variety of the binding modes of sequence-identical pairs of proteins
(Fig. 2.1A; Fig 1B: red). We calculated this similarity distribution by using all
pairwise interface similarities of the members of a SameSeq group: we estimated
the probability that a similarity falls into a particular similarity range (e.g. 0.0 to
0.1) and repeated this for all similarity ranges. SameProt groups contain several
SameSeq groups. Thus, for a SameProt group distribution, we averaged over the
distributions of all its SameSeq groups. Correspondingly, Interolog distributions
originate from averaging over the distributions of the member SameProt groups.
Essentially, the above leaves us with many Interolog distributions. For a view of
all those distributions, we simply averaged over all Interolog distributions to obtain
distribution DSameSeq. It can be interpreted in the following way: First, we randomly
choose a family pair (Interolog group; e.g. globin - globin). From this family pair,
we randomly pick a Swiss-Prot pair (SameProt group; e.g. bovine hemoglobin-A
– bovine hemoglobin-B) and then a sequence pair (SameSeq group; e.g. wild-type
bovine hemoglobin-A – wild-type bovine hemoglobin-B). Distribution DSameSeq
then gives the chance that the similarity between two interfaces of this sequence
pair (‘two observations’) lies in a specific similarity range. For example, DSameSeq
may define the probability that two interfaces have a similarity between 0.1 and
0.2 to be 7%. Note that the role of SameProt and Interolog groups here is simply
to reduce sequence redundancy. We are still only comparing interfaces between
sequentially identical protein pairs. By leaving out Level Interolog for example, we
would highly bias DSameSeq towards the globin family. The PDB not only contains
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many structures of one particular hemoglobin variant, but of many variants (for
example from different organisms). Only by combining all these variants in one
Interolog group and giving the distribution of this group the same weight as any
other group, we limit the influence of hemoglobin. Similarly, combining SameSeq
clusters in one SameProt cluster makes sure that one hemoglobin variant does not
suppress the influence of others.

Distribution DSameProt . Distribution DSameSeq compared observations of sequen-
tially completely identical PPIs (Fig. 2.1A; 1B: red). This provided information
about native interface variability, i.e. variability coming from environmental and
conformational changes or simply different energetic minima between two proteins.
The edge in a PPI network, however, allowed for some sequential variation as a
node only referred to a gene, not to a specific gene product (Fig. 2.1B). The dis-
tribution DSameProt revealed how such modifications affected interface variability.
First choose a family pair and then a Swiss-Prot pair. This yields several sequence
pairs (SameSeq clusters) that all map to the same edge in a PPI network (Fig. 2.1B:
S1/S3, S2/S3). Pick two of these pairs and compare all of their interface structures
to derive a similarity distribution (Fig. 2.1B: blue). For example, we compared all
wild-type bovine hemoglobin interfaces to those where residue 90 of subunit A was
changed from H to Y (natural variant of bovine hemoglobin-A; P01966). Repeating
this for all sequence pairs (e.g. for all bovine hemoglobin variants) we calculated
many distributions. Averaging them yielded the overall Level SameProt distribution
(e.g., the average interface variability of bovine hemoglobin). From here on, the
same procedure as for DSameSeq applies: calculate all Level SameProt distributions
of the parent Interolog cluster (e.g. distributions for all globin-globin clusters, not
only bovine hemoglobine). Average over these to obtain the Interolog distribution;
calculate and average all Interolog distributions. This yields the overall distribution
DSameProt . Put simply, it reflects the chance that two interfaces from the same PPI
edge lie in a particular similarity range, given small sequence changes have occurred.

Distribution DInterolog. Finally, we want to investigate the diversity of binding
modes between proteins from the same family pair, but different gene pairs (Fig.
2.1B: Px/Py, Pz/Py; green). The procedure to derive this overall similarity distribution
DInterolog is analogous to that for DSameProt : first, choose a family pair (e.g. cyclin
- protein kinase) and two of its Swiss-Prot pairs (e.g. cyclin E1 – protein kinase 2
and cyclin B1 – protein kinase 2). Then, pick one sequence pair from each Swiss-
Prot pair (e.g. the wild-type variants), compare all of their interfaces and calculate
the Level SameSeq distribution. Repeat this for all sequence pairs from the two
Swiss-Prot pairs and obtain the Level SameProt distribution by averaging over all

45



Chapter 2. On the Alternativeness of PPI Interfaces

Level SameSeq distributions. This again is repeated for all possible Swiss-Prot pair
combinations in order to derive the Level Interolog distribution. Finally, average
over all single Level Interolog distributions in order to derive the overall distribution
DInterolog. Put simply: randomly choosing a pair of interacting families and then
two of its protein pairs, DInterolog gives the chance that a typical comparison of their
interfaces will result in a particular similarity. (Note that this procedure quickly
leads to unfeasible amounts of interface comparisons. We have therefore limited the
number of protein pairs per family and the number of sequence pairs per protein
pairs to a maximum of 50.)

2.3.7.2 Formal Description

In the following, we formally describe the calculation of interface similarity dis-
tributions. Mathematically, they fall into the category of so-called ’finite mixture
distributions’, i.e. weighted averages over many uncorrelated individual distributions.
We reduce the influence of the redundancy found in the PDB by giving the same
weight not only to sequence pairs, but also to protein pairs and eventually family
pairs.

Distribution DSameSeq. Here, we describe how we can use the clustering to derive
non-redundant interface similarity distributions. Let Clx ∈ {Cl1, . . . ,Cls} be the set
of Level SameProt clusters in Level SameFam cluster x, Clx,y ∈ {Clx,1, . . . ,Clx,t} the
set of Level SameSeq clusters in Level SameProt cluster (x,y) and EI1

x,y,z, . . . ,EIv
x,y,z

the external interfaces of Level SameSeq cluster (x,y,z). We first calculate the set
of pairwise similarities Sx,y,z = {sim(EIi

x,y,z,EI j
x,y,z) | i 6= j∧ i, j ∈ {1, . . . ,v}} where

sim(EIi
x,y,z,EI j

x,y,z) ∈ [0,1] was the result of one of the similarity measures as de-
scribed in Section 2.3.5 and EIi

x,y,z always came from a different PDB entry than
EI j

x,y,z. We then defined a discrete probability distribution Px,y,z(X ∈ [ak,ak+1]) =
|{s|s∈[ak,ak+1]∧s∈Sx,y,z}|

|{Sx,y,z}| with ak =
k
n ,k ∈ (0,1, . . . ,n−1) and n typically set to 10, which

gave the chance of the interface similarity lying between ak and ak+1 after randomly
picking two structures corresponding to the pair of protein sequences given by Clx,y,z
(Note that this is essentially a maximum likelihood estimation for the unknown
parameters p of typically n = 10 different Bernoulli-distributed random variables).
Repeating this procedure for all Level SameSeq clusters in Clx,y leads to the i.i.d set
{Px,y,1, . . . ,Px,y,|Clx,y|} and subsequently to the Level SameProt similarity distribution
Px,y(X ∈ [ak,ak+1]) =

1
|Clx,y| [Px,y,1(X ∈ [ak,ak+1]) + · · ·+Px,y,|Clx,y|(X ∈ [ak,ak+1])].

We obtain Px in the same way as Px,y, i.e.: Px(X ∈ [ak,ak+1]) =
1
|Clx| [Px,1(X ∈

[ak,ak+1]) + · · ·+Px,|Clx|(X ∈ [ak,ak+1])]. Finally we define the overall distribu-
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tion DSameSeq as: DSameSeq(X ∈ [ak,ak+1]) =
1
s [P1(X ∈ [ak,ak+1]) + · · ·+ Ps(X ∈

[ak,ak+1])].

Distribution DSameProt . Now, we compare interfaces coming from different Level
SameSeq clusters. Given two Level SameSeq clusters Clx,y,z and Clx,y,z′ with inter-
faces EI1

x,y,z, . . . ,EIv
x,y,z and EI1

x,y,z′, . . . ,EIv′
x,y,z′ , we define the pairwise similarities as

Sx,y,(z,z′) = {sim(EIi
x,y,z,EI j

x,y,z′) | i ∈ {1, . . . ,v}∧ j ∈ {1, . . . ,v′}}. The correspond-

ing distribution is then defined as P′x,y,(z,z′)(X ∈ [ak,ak+1]) =
|{s|s∈[ak,ak+1]∧s∈Sx,y,(z,z′)}|

|{Sx,y,(z,z′)}|

with ak =
k
n ,k ∈ (0,1, . . . ,n−1). Consequently, we can calculate the Level Same-

Prot distribution P′x,y(X ∈ [ak,ak+1]) =
1

|Clx,y|(|Clx,y|−1) [Px,y,(1,2)(X ∈ [ak,ak+1])+ · · ·+
Px,y,(1,|Clx,y|)(X ∈ [ak,ak+1])+ · · ·+Px,y,(|Clx,y|,|Clx,y|−1)(X ∈ [ak,ak+1])]. Substituting
P with P’, we obtain P′x in the same way as Px in DSameSeq, and ultimately also the
overall distribution DSameProt in the same way as DSameSeq.

Distribution DInterolog. Finally, we compare interfaces coming from the same
Level Interolog cluster x, but different Level SameProt clusters (x,y) and (x,y′). To
this end, we define a Level SameProt similarity distribution P′′x,(y,y′)(X ∈ [ak,ak+1]) =

1
|Clx,y||Clx,y′ |

[P′′x,(y,1),(y′,1)(X ∈ [ak,ak+1])+ · · ·+P′′x,(y,1),(y′,|Clx,y′ |)
(X ∈ [ak,ak+1])+ · · ·+

P′′x,(y,|Clx,y|),(y′,|Clx,y′ |)
(X ∈ [ak,ak+1])] where

P′′x,(y,z),(y′,z′)(X ∈ [ak,ak+1]) =
|{s|s∈[ak,ak+1]∧s∈Sx,(y,z),(y′,z′)}|

|{Sx,(y,z),(y′,z′)}|
with

ak =
k
n ,k ∈ (0,1, . . . ,n−1) and

Sx,(y,z),(y′,z′) = {sim(EIi
x,y,z,EI j

x,y′,z′) | i ∈ {1, . . . , |Clx,y,z|}∧ j ∈ {1, . . . , |Clx,y′,z′ |}}.
Before, we used the set of distributions defined as Px,y in order to calculate Px. We
now replace this set with the new newly derived P′′x,(y,y′) distributions and obtain P′′x .
Performing analogous steps for the overall distribution, we calculate DInterolog.

Standard Errors. We calculated standard errors of distributions DSameSeq to DInterolog
with a multi-level bootstrapping approach. From the n Interolog clusters which con-
tributed to a D distribution, we first re-sampled with replacement until we had a new
list of n Interolog clusters (in which some entries might have been duplicates). In
other words, we bootstrapped the Interolog clusters. For each Interolog cluster in
this bootstrap, we then bootstrapped its SameProt clusters. For each of the SameProt
clusters in this sub-bootstrap, we bootstrapped the SameSeq clusters and finally
the interface similarities in each bootstrapped SameSeq cluster. Thus, in the end,
our overall bootstrap was a re-sampling over all Levels and clusters. Next, we
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re-calculated the D distributions with this bootstrap and saved it. Then, we repeated
all of the above 200 times.

Ultimately, we had 200 different estimates for each of the 10 bins in a D distribu-
tion. The standard error being defined as the standard deviation of a target statistic
and the occurrence of a bin being this target statistic, the standard deviation of a
bin over those 200 estimates defined its standard error. Note that this procedure is
independent of the number of bins: for example, if we are interested in the occurrence
of the range 0.0 to 0.5, we only have to change the n parameter for the D distribution
to 2 (creating two bins: 0.0 to 0.5 and 0.5 to 1.0) and repeat all of the above.

Cross-correlating Distributions. In order to capture interface differences with
two measures simultaneously, we compiled so-called ‘2D distributions’. In this con-
text, the function sim(EIi,EI j) of DSameSeq no longer returned a single number, but a
triple, with both elements coming from different similarity measures. Subsequently,
we redefined:

Px,y,z(X ∈ ([ak,ak+1], [al,al+1])) =
|{(s1,s2)|s1∈[ak,ak+1]∧s2∈[al ,al+1]∧(s1,s2)∈Sx,y,z}|

|{Sx,y,z}|
with

ak =
k
n ,al =

l
n ,k, l ∈ (0,1, ...,n−1) and n typically set to 10.

2.3.8 Analyzing the Influence of Homo-oligomeric Assemblies
The same proteins may aggregate to form a homo-oligomer and bind as such a
complex to another protein. In this case, the other protein often ‘sees’ different parts
of the homomeric chain, resulting in very different external interfaces. For example,
a homo-dimer with chains X1 and X2 might bind to another chain Y with two different
interfaces (Fig. 2.5). Hence, we will have two hetero-dimers X1/Y and X2/Y with low
interface similarity. As it can be argued whether both of these interfaces should be
considered as one big interface or treated separately (c.f. Discussion), we analyzed
their influence on the distributions DSameSeq to DInterolog. To this end, we defined
homo-oligomers in two different ways. Firstly, we used the classical notion, namely
that all chains of a homomer have the same SEQRES sequence. Secondly, we
introduced ‘structural homomers’ as interacting chains from the same family. This
corresponded to all complexes that look homo-oligomeric on a structural level (low
RMSD; c.f. Section 2.8), but can differ in sequence.

Consequently, when comparing two interfaces X/Y and X ′/Y ′ from two different
PDB entries, it was checked whether or not one of the chains X ′ and Y ′ were part of
homo-oligomers (i.e. whether there were homomers X ′/X ′1/. . . /X ′n or Y ′/Y ′1/. . . /Y ′m)
and whether or not these homo-oligomers had other external interfaces with the same
interaction partner as in X ′/Y ′ (i.e. whether X ′ had interfaces with Y ′1/. . . /Y ′m or Y ′
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interfaces with X ′1/. . . /X ′n). Having identified the set of all those sequence- or family-
identical interfaces (including X ′/Y ′), they were compared to X /Y . Only if X /Y <=>
X ′/Y ′ was the best match among all alternatives, the corresponding similarity was
used. Otherwise, the entire comparison was discarded (Fig. 2.5.)

Eventually, the roles of X /Y and X ′/Y ′ are switched, and the procedure is repeated
because all interfaces are compared with all others in the distributions DSameSeq to
DInterolog. In this way asymmetries arising from only considering the oligomeric
context of one side of the comparison were filtered out.

We applied ‘structural homomerization’ only in the context of DInterolog. For
the two other distributions, it would have led to comparisons of interfaces between
different protein pairs, thereby invalidating the constraints of these distributions.
Also note that the above definition only allowed for comparisons of interactions
between two different families.

Figure 2.5: Filtering out interface diversity introduced by homomers. Assume
you want to compare an interface Px-Py in complex 1 to the interfaces in complex 2.
Usually, you will calculate two similarities (0.1 and 0.6), because there are two Px-Py
interfaces in complex 2. Looking for homomers, you will find the two sequence
identical Px chains in complex 2 interacting and connecting the two Px-Py interfaces.
Now, you can correct the comparison by using only the one best match (0.6). The
comparisons of the ‘worse’ alternatives are discarded.
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2.4 Results
Our complete data set of external protein-protein interactions (PPIs) comprised
37,338 hetero-dimers. We grouped and filtered them on three different levels with
decreasing sequence redundancy (Section 2.3.6). For instance, the first clustering
level had 634 groups that contained sequence-identical hetero-dimers from at least
two different high-resolution PDB entries. We compiled various statistics on this data
set, including the distribution of cluster sizes on each clustering level, of oligomeric
states, interface sizes and even of the conservation of protein function (Section 2.4.1).

In order to capture different facets of interface similarity, we introduced and
evaluated nine different similarity measures (Section 2.3.5). Our main focus lies
on two measures that we considered most important in hindsight (Face Position
Similarity [Section 2.3.5.1] and L_rms [Section 2.3.5.9]). The first measure (Face
Position Similarity) was most representative for all other seven measures while the
second (L_rms) enabled direct comparisons of our results to related work, e.g. to
the CAPRI [Lensink et al., 2007] experiments. For each measure, we used our clus-
tering to calculate three different interface similarity distributions, corresponding to
increasing levels of sequence divergence between interactions (DSameSeq to DInterolog;
Section 2.3.7). These distributions constitute the main result of this chapter. They
were calculated such that all proteins and families of our data set contributed equally,
regardless of their respective over-representation in the PDB. Finally, we measured
how the distributions change when excluding the interface variability introduced by
a protein binding differently to the same homomer. We give a short summary of this
after the presentation of the unmodified distributions in Section 2.4.3.1.

2.4.1 Data Set Analysis

2.4.1.1 Influence of Initial Parameters

In related publications, there are usually a number of ad-hoc decision when selecting
structures and defining interfaces. To exclude experimental or sampling bias in
this context, we investigated the influence of some of the arguably most crucial
alternatives: including structures with a resolution above 2.5Å; setting the minimal
distance of two residues to be considered interacting to 4Å instead of 6Å; using
∆ASA (change of accessible surface area) as a means to correct for interacting
residues slightly above a given distance cutoff; using level SameSeq clusters with
less than 5 members instead of 5 or more members.

While the first two points can be commonly encountered, the use of ∆ASA when
defining interfaces (as opposed to faces) was mainly an effort to retain consistency
with the PISA service, which exclusively uses ∆ASA to define face residues. The
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use of clusters with less than 5 members finally was a test in how far cluster size
influences the expected similarity of two interfaces.

Figure 2.6: The effect of different parameters on the similarity distribution of
interfaces. Both curves were derived with the Interface Position Similarity measure
(Section 2.3.5.2). (A) An example of a distribution change when altering a single
parameter value. It corresponds to switching the inclusion of ∆ASA on and off when
considering large complexes with resolutions above 2.5Å and an interaction distance
cutoff of 4.0Å. (B) The average (thick bars) and maximum (error bars) differences
for each parameter and bin with respect to all parameter combinations.

We interpreted the options above as parameters which can adopt two distinct
values, on and off, and used one of our most sensitive similarity measures, Interface
Position Similarity (Section 2.3.5.2), to assess their effect. For a particular parameter
value combination, we first calculated the discrete probability distribution DSameSeq
(Section 2.3.7). Put simply, this corresponds to the average distribution of pairwise
interface similarities for identical protein pairs in a redundancy reduced version of
the PDB. This procedure was repeated for all possible value combinations, resulting
in 24 = 16 different distributions. One could then create 8 pairs of distributions for
each parameter pi by only changing the value of pi and keeping the other parameters
fixed. For example, there were 8 combination with low-resolution structures included
and 8 where they were excluded, thus creating 8 pairs of corresponding distributions.
The mean and maximal change in distribution for each parameter value and bin then
allowed to combine everything in one image (Fig. 2.6). To stay with the example
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of including low-resolution structures, a mean change of 5.0 for this option in a
particular value range meant that the probability of observing such an interface
similarity in this range on average changed by 5.0 percent when this option was
turned on. Note that this was an exclusively graphical approach to estimate effects,
as already changing the number of bins could lead to different values. Since the
presentation of results will be kept in this form throughout the rest of this paper,
however, it was sufficient in our case.

According to Fig. 2.6, each parameter can have a considerable effect. Including
∆ASA, using 6Å instead of 4Å and high instead of low resolution structures generally
stabilized interfaces, i.e. similarities shifted from intermediately high ranges (0.7
to 0.9) to very high conservation (0.9 to 1.0). A different phenomenon arises when
using small instead of large clusters: interfaces of small clusters with only 5 or less
members tend to be less complementary and more conserved, thus supporting the
hypothesis that big complexes encourage alternative binding modes for the same pair
of proteins. As they produce more binary structures of the same external interaction,
they tend to be found in larger clusters. This is studied in more detail in Section
2.4.3.2.

2.4.1.2 PPI Data Set Properties

Cluster and Complex Sizes. In order to give a better picture of the data at hand,
we compiled histograms of the number of protein chains per complex, external
interfaces per Level SameSeq cluster, Level SameSeq clusters per Level SameProt
cluster and Level SameProt clusters per Level Interolog cluster (Fig. 2.7; Section
2.3.6 for a description of the clustering procedure). All plots were calculated with the
final data set after filtering (exclusion of bad resolution complexes, small interfaces,
...; see Section 2.4.1.1)

The curves in Fig. 2.7 display typical exponentially decreasing distributions. The
distribution of oligomeric states and heterodimers per Level SameSeq cluster are
influenced by a natural preference for symmetrical assemblies so that counts for even
numbers are overrepresented. Additionally, some larger Level SameSeq cluster sizes
are quite frequent (not shown). An over-representation of size 17 clusters, e.g., stems
from a significant abundance of Cytochrome C Oxidase in the PDB. The effect is
already remedied in the second clustering level, however, where external interactions
are grouped according to the proteins involved.

Interface Sizes. Next, we analyzed the size of interfaces. To this end, we first
counted the number of residue-residue interactions in each interface. Then, we
calculated the distribution of interface sizes individually for each Level SameSeq
cluster. These distributions were subsequently normalized in the same way as a
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Figure 2.7: Histograms of various properties of our final data set. We show
the distribution of the number of binary interactions per Level SameSeq cluster
(heterodimers per SEQRES pair), the number of Level SameSeq clusters per Level
SameProt cluster (SEQRES pairs per Swiss-Prot pair) and the number of Level
SameProt clusters per Level Interolog cluster (Swiss-Prot pair per Pfam [Punta et al.,
2012] family pair). The inlet additionally displays the histogram of the complex
oligomeric states, i.e. the number of protein chains per complex.

DSameSeq distribution (Section 2.3.7), i.e. we first normalized for overrepresented
sequences, then for proteins and then for families. The final distribution is presented
in Fig. 2.8A.

We observe quite a far stretched distribution of interface sizes, as some population
exists even beyond 400 residue-residue contacts. Compiling the data with bin size
100, it corresponds to an exponentially decreasing curve, i.e. the smaller the interface,
the more frequent. Looking closer at interfaces with 0 to 100 contacts, however, (Fig.
2.7A, inlet), we see a peak in the range from 40 to 60 residues. The bin from 0 to 20
contacts only plays a minor role.

Structural Similarities. Then, we looked at the Root Mean Square Deviations
(RMSDs). As the RMSD typically involves two structures, we implemented it as a
standard similarity measure: first, we split the two hetero-dimers under consideration
into their four chains. Then, we superimposed corresponding chains, calculated the
two RMSDs and returned the average of both (Section 2.3.5.8). This allowed us to
embed the RMSD into our evaluation framework and observe how values change
across different types of comparisons (DSameSeq through DInterolog; Section 2.3.7). It
featured comparisons within clusters (e.g., we calculate one distribution for each
Level SameSeq cluster) and across clusters (final distributions DSameSeq to DInterolog
are averages over within-cluster distributions). See Fig. 2.8B for results.
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Figure 2.8: (A) Distribution of interface sizes. We counted the number of residue-
residue contacts per interface and calculated the distribution of interface sizes for
each Level SameSeq cluster. In this way we could derive distribution DSameSeq like
for any other similarity measure (Section 2.3.7). Subfigure (a) shows this distribution
first on a rather coarse scale (bin size 100). As it peaks between 40 and 60 contacts,
we additionally zoom into the first bin (inlet). (B) Distributions of RMSDs. We
interpreted the classical Root Mean Square Deviation as a similarity measure and
superimposed corresponding chains when comparing two binary heterocomplexes in
a Level SameSeq cluster. The two resulting RMSD values were always averaged.
This allowed us to calculate DSameSeq through DInterolog (Section 2.3.7). (C) Func-
tion Conservation within Level Interolog clusters. We analyzed how often and
to what degree the EC number between two proteins from the same Pfam family is
conserved. The distribution shows the average over all families after averaging the
pairwise conservations within each family. This corresponds to the procedure used
to calculate the DInterolog distribution in the context of interface similarity measures
(Section 2.3.7).

The RMSD distributions impressively show the effects of sequence variations.
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Comparisons between proteins with the same sequence (DSameSeq) most often result
in very low RMSD values (0.0Å to 0.5Å). Occurrence of higher values then decreases
exponentially and disappears beyond 1.5Å. The distribution of RMSDs between
chains from the same protein but different sequences (DSameProt) exhibits a clear
decrease of high similarity (0.0Å to 0.5Å) and an increase of other ranges up to
2.0Å. When comparing chains from different proteins but the same family, finally,
occurrence peaks in the range from 0.5Å to 1.0Å and then steadily declines. As also
this distribution stops early for values above 3.0Å, we can say that any DInterolog
distribution compares proteins with the same structure, but different sequences.

Function Conservation. We tried to analyze the relationship between protein
interactions and protein functions. Unfortunately, large scale function annotations
as found, e.g., in Swiss-Prot, in the form of, e.g. Gene Ontology (GO; Ashburner
et al. [2000]) terms or Enzyme Commission (EC) numbers, only reach the protein
and not the sequence level. Therefore we limited our analysis to the functional
diversity found in Level Interolog of our clustering (Section 2.3.7), where proteins
are grouped by Pfam [Punta et al., 2012] families. (Note that Pfam itself aspires to
only group functionally related proteins. Hence, we are to some degree comparing
different function classification systems.). In this context, we first have to report a
negative result: after mapping level Interolog cluster with more than 1 member to
experimental GO annotations (evidence codes IDA, IMP, IPI, IGI, IEP, TAS, IC, and
EXP), only 26 clusters had more than one functionally annotated protein pair. This
was clearly not enough to generally link functional and interfacial diversity. Even a
case-by-case reasoning failed: 15 of 26 clusters contained proteins which differed
in their annotation already on the first level of the Molecular Function ontology.
Curiously, the term leading to by far the most diversity was ‘binding’. This means
despite clear evidence of protein binding in the PDB, the experimental evidence had
not made it into Swiss-Prot, yet. Manually curating the annotations in the 26 clusters
after this finding, we could not find clear evidence of functional diversity.

Consequently, we switched from GO annotations to EC numbers, in the hope of
more and more complete functional annotations. Indeed, the majority of proteins
were annotated with EC numbers, and we could derive a distribution of function
conservation in the following way: First, we defined a pairwise function similarity
measure: given two proteins, it returns the number of conserved EC number digits.
For example, if protein A has EC number 3.4.11.4 and protein B number 3.4.16.1, the
measure returns the number 2, because the first two digits are conserved. Calculating
the distribution of pairwise functional similarities in this way for each cluster and
then averaging over all clusters, we obtained a DInterolog distribution (Section 2.3.7).
We present it in Fig. 2.8C. Here, we see that 60% of protein pairs in a cluster
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have exactly the same EC number. Conservation then sharply drops for 3 and 2
conserved digits, but rises again for 1. This should mainly be due to random effects,
however, since complete enzymatic heterogeneity (no conserved digits) has the
lowest occurrence (3%).

2.4.2 Interface Similarity Distributions

2.4.2.1 Sequentially Identical Pairs of Interactions
(DSameSeq)

Most interfaces were mostly robust for identical pairs of interactions (DSameSeq).
When two different experiments measured exactly the same external interaction
(distribution DSameSeq; Section 2.3.7), usually the interface between the two proteins
was identical. Depending on the similarity measure, the number of largely conserved
interfaces varied between 60 and 89% (Fig. 2.6 and Fig. 2.10). The most representa-
tive measure (Face Position Similarity) found the same interface in 75-79% of all
cases (Fig. 2.9A, DSameSeq, rightmost bar). Conversely, interfaces largely differed
between two observations in about 12% (Fig. 2.9A, Face Position Similarity <0.5).

Other measures introduced in this work were, for instance, very sensitive to side-
chain movements (Convex Hull Overlap), or only roughly assessed the conservation
of the interface location (Sphere Radius Ratio). Taking into account two similarity
measures simultaneously, small differences were observed in as many as 49% of all
comparisons (Section 2.4.2.6).

In contrast to our measures, the L_rms (used by CAPRI) returned distances in
Å for the entire protein rather than for the interface alone. This perspective could
capture conformational changes outside the binding regions that would be missed by
other measures. L_rms found 64-69% of all ‘ligands’ (per definition the smaller of
the two proteins in the interaction) not to exhibit conformational changes and to bind
to the larger proteins at the same positions (RMSD <1.0 Å). Conversely, 10-14%
of the interfaces differed very substantially between alternative experiments (>9.0
Å). Considering Face Position Similarity and L_rms at the same time suggested
that about 1% of all comparisons did not differ by the first but differed substantially
(>9 Å) by L_rms (Section 2.4.2.6). In other words, at least 1% of all the changes
between different experiments can be attributed to conformational changes outside
the binding region.

Another CAPRI measure, the I_rms, compared the shapes of the interface regions
common to both protein pairs. We found these common regions to be very different
in about 4% (e.g. due to a rotation of one of the proteins) and largely conserved in
80% (Section 2.4.2.5).

We confirmed the surprising result of interface variability without sequential
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changes through a variety of additional analyses. The degree to which interfaces were
mostly robust (ratio between rightmost and leftmost bars in Fig. 3) was a function
of the number of copies of a particular interaction in a complex (i.e., a function of
the ‘interface copy number’; Section 2.3.4; e.g. Fig. 1: S1/S3 observed once in
C1): the more copies, the relatively lower the bars on the right and the higher on
the left (Section 2.4.3.2). But all of this also varied between families and particular
complex subgroups (Section 2.4.3.3). For instance, MHC (Major Histocompatibility
Complex) interactions were much less diverse than others. In fact, they contributed
importantly to our overall results, although they constituted only a small fraction
of all interactions. Like many before us, we also had to choose key parameters to
define an interface (Section 2.3.3). As previous studies differed in these parameters,
we also provided results for several alternative choices (Section 2.4.1). For instance,
we included structures with a resolution >2.5 Å, used 4 Å instead of 6 Å as the
minimal distance between two interacting residues or did not consider the change in
solvent accessibility upon binding (∆ASA) when defining interface residues. These
additional analyses demonstrated that some of our quantitative results depended
crucially on the choice of critical parameters while the qualitative findings did not.

2.4.2.2 Genetically Identical Pairs of Interactions
(DSameProt)

Minor sequence variations slightly increased binding diversity (DSameProt). Two
hetero-dimers can differ by minor sequence variations and still correspond to the
same external interaction. Comparing these slightly different pairs (Fig. 2.9,
DSameProt) suggested considerably lower interface conservation than for the same
pairs (Fig. 2.9, DSameSeq): the most conserved bin (0.9-1.0) was reduced by about five
percentage points for Face Position Similarity (Fig. 2.9A black vs. dark gray) and by
nine percentage points for the L_rms measure (Fig. 2.9B black vs. dark gray). These
reductions were evenly distributed over the other similarity ranges. This result can
be cast into two opposing views. On the one hand, it suggested that a PPI network
accurately reflected the interactions because different protein variants only had a
small effect on interfaces. On the other hand, there was a significant influence of
small sequence changes. For instance, the range of very different interfaces (0.0-0.5)
by the Face Position Similarity measure rose from 12% to 17%. In other words,
about one interface pair in six differed substantially.

2.4.2.3 Interologous Interactions (DInterolog)

Conservation broke down when comparing interologous interfaces (DInterolog). When
two experiments measured external interactions that did not correspond to the same
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protein pair, but to the same family pair (DInterolog), interface conservation dropped
significantly by both measures (Fig. 2.9, DInterolog, rightmost bars; Face Position
Similarity: 28-36%; L_rms: 7-11%). For Face Position Similarity, these differences
largely originated from a shift toward intermediate levels of conservation, suggest-
ing that most changes partially preserved the approximate interface location. The
Sphere Radius Ratio supported this interpretation (Section 2.4.2.4). Nevertheless,
the interfaces with clear dissimilarity also increased from 13% (DSameSeq) to almost
30% (DInterolog, Fig. 2.9, cumulative black to light gray bin with <0.5). This effect
was stronger for L_rms: 33-40% of all comparisons were by this measure clearly
dissimilar (>9 Å; Fig. 2.9B, light gray vs. black). For these strong differences, the
effects from conformational changes (Fig. 2.8) and from local interfaces appeared to
act synergistically.

We hypothesized that families of interologs without alternative binding might
have similar functions and that the same could be true for families with extreme
binding diversity. Unfortunately, only for 18 Level Interolog clusters, interfaces
were always maintained (Face Position Similarity >0.9 at 100%), while only 17
others always used very different interfaces (Face Position Similarity <0.5 at 100%).
These numbers were too small to permit statistically significant analyses on the
functional differences between those interactions. We still provided a list of those
cases in Appendix A. The two most extreme findings of this analysis were that the
Gene Ontology (GO) [Ashburner et al., 2000] term ‘tetrapyrrole binding’ appeared
over-represented in the interactions that differed, while ‘cytoskeletal protein binding’
appeared over-represented in the interactions that did not change.

2.4.2.4 Additional Face Similarity Measures

In the following, we present the results for additional face similarity measures (Fig.
2.10; measures introduced in Section 2.3.5). The calculation of the distributions is
described in Section 2.3.7.

Overall, the curves for Convex Hull Overlap are similar to those of L_rms. Note,
however, that this measure exclusively compares the interface area and not the entire
proteins. Its high sensitivity comes from a comparison of interface shapes and their
overlap in volume. Side-chain movement on the edge of an interface, for example,
can lead to different interface shapes and thus to lower Convex Hull Overlap.

Sphere Radius Ratio, on the other hand, is the most robust of all measures.
This is mainly because it is very difficult to achieve low similarities the way it is
calculated (radius of one interface devided by radius of both interfaces combined)
and considering the typical proportions of a protein. It is interesting to see that the
rough positions of the interfaces on the proteins appear to be conserved even for
DInterolog.
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Interface Composition Similarity compares the amino acid compositions. Also
here, dissimilarity is present in all distributions and proofs that differences in terms
of residue positions are not due to interface duplications, as expected for example for
a protein with two sequentially identical domains. As the measure is also prone to
return higher similarities simply by chance (any two interfaces larger than 10 amino
acids will have at least one in common), we additionally show the random distribution
which was derived by randomly picking interfaces and comparing their compositions.
While DSameSeq shows typical values in the area of high interface conservation, lower
ranges are not populated. This is in line with the random distributions. In DSameProt
and DInterolog, the divergence of sequences sets in, because we now allow different
amino acids at the same position in the interfaces. The range 0.9-1.0 in DInterolog
has the lowest absolute value. Curiously, the influence of sequence divergence and
the random distribution merge seamlessly: DInterolog resembles an equal distribution
until about a value of 0.5.

The I_rms distribution is quite complex: in the range >4.5Å-4.0Å, we see a
difference between distributions similar to L_rms , but with lower overall occurrence.
However, the fraction of comparisons with highest I_rms, i.e. where no common
interface residues could be found, accounts for only 1-2% in all three distributions
(not shown). Consequently, their differences must come from comparisons for
which common interface residues could be found, but where these residues had
very different atom coordinates. This could be due to, e.g., interface rotations,
different overlapping binding modes, but also to overall conformational changes (for
the I_rms, we included residues in the interface which were as far as 10Å apart).
We can hypothesize from this result that ’binding clouds’, as shown in the sample
structures, should be more frequent in D-Interolog than the other two distributions.
Moving on to intermediately low similarities, they seem to be surprisingly rare. One
issue is that common interface residues can often be found for only one side of
the interaction, i.e. for only one face. In this case, I_rms turns into a comparison
of identical fragments of the same protein (family), instead of a comparison of
interfaces. Such comparisons usually result in low similarity/high distance ranges
(1.0Å- 0.0Å). Similarly, even if all chains have common residues, the exclusion
of non-common interfaces residue can lead to low I_rms despite actually different
interfaces. Compared to other measures, I_rms should therefore be considered as
rather insensitive. Nevertheless, in absolute terms, occurrences of identical interfaces
fell well in between the ranges of the other measures.
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2.4.2.5 Additional Interface and Domain Similarity
Measures

Now, we present the curves for interface and domain similarity measures (Sections
2.3.5.2, 2.3.5.6 and 2.3.5.7). As results are overall very similar to those already
shown in the context of other measures, we focus on simplicity and only present
DSameSeq distributions.

In general, Interface Position Similarity (Fig. 2.11) draws a similar picture as the
face counterpart. As could be expected, though, the chance that a pair of interacting
residues is conserved becomes very small when one or both of the interacting faces
change according to the Face Position Similarity distributions, thus leading to an
increase of high complementarity for Interface Position Similarity compared to Face
Position Similarity. Only around 10% of all similarities now lie in the intermediate
range between 0.1 and 0.9. Changes in domain numbers or families as measured by
Domain Number Ratio and Family Interaction Similarity occur in about 5-15% of all
DSameSeq comparisons. We can interpret this observation to imply that interfaces are
slightly more similar in terms of this measure than in terms of the others. However,
we could also argue that this low difference is partially explained by ambiguities
in terms of the domain definitions (and directly connected to this: in terms of the
number of domain families), as for instance SCOP and CATH domain assignments
differ by about this magnitude [Liu and Rost, 2003, 2004]. In any case, it indicates
a steady rate of multi-domain proteins which have learned to interact with their
domains in more than one way. Only considering domain-domain interactions, there
is a chance we miss parts of the interface between two entire proteins and do not see,
for example, that not all domains are always needed for the interaction.

2.4.2.6 Cross-correlations

The full extent to which interfaces vary is best appreciated when cross-correlating
multiple measures. The same interface pair might appear identical by one measure
and different by another. To identify such cases, we selected a few pairs of measures
and derived the correlation between their distributions. To this end, we no longer
calculated the occurrence of a single similarity range (e.g. 0.9 to 1.0) for one
particular measure. Instead, we looked at two similarity ranges simultaneously, each
corresponding to a different measure. For example, we measured how often the
similarity of a pair of interfaces lies in the range between 0.9 and 1.0 according
measure 1 while being between 0.1 and 0.2 for measure 2 (Section 2.3.7.2 for details).
The visualization of the entire distribution, i.e. all possible range combinations, then
obviously required three axes: one determining the value of the first measure; one
the value of the second measure; and one the probability of observing both similarity

60



2.4. Results

values at the same time. Simple matrix plots displayed this: the first measure was
assigned to the x-axis and the second measure to the y-axis. The square at a particular
x-y coordinate then corresponded to the occurrence of this particular combination
of interface similarity: The darker the square, the more often the combination was
observed. Hypothetically, these distributions could again be derived for distributions
DSameSeq to DInterolog. The relations between the measures is already evident for
DSameSeq, however, so that we limited the analysis to comparisons between interfaces
from the same sequence pair (DSameSeq). Results are presented in Fig. 2.12.

If one measure suggests that an interface is identical between repeated observa-
tions and another that it differs, which one is right? Clearly, the cross-correlation of
measures adds to the view that interfaces have some flexibility to cope with change.
In 62% of all comparisons, both Face Position Similarity and L_rms agree that
the interfaces between two measurements were largely identical (Fig. 2.12A). The
remaining 38% mainly appeared in ranges above 0.5 in both measure, with a slight
tendency of L_rms to be more sensitive than Face Position Similarity. This trend
strikingly manifests itself for L_rms values above 9 (7% of all comparisons): here,
we see at least some population in every range of Face Position Similarity. Appar-
ently, conformational changes of the entire protein can lead to high RMSDs, but
preserve the interfaces to a point where no interface residue changes are detectable.
The matrix comparison between Convex Hull Overlap and L_rms shows a similar
trend, but is more pronounced (Fig. 2.12C). Now, we observe almost any pair of
similarities. Again, highest L_rms is often accompagnied by intermediate Convex
Hull Overlap. Note that both measures agree on conservation of an interface pair in
only 51% of all cases. This means that there is a 49% chance that the same interfaces
from two different PDBs will differ from each other by at least one measure. Com-
paring Face Position Similarity and Convex Hull Overlap, finally, we see that Convex
Hull Overlap is significantly more sensitive (Fig. 2.12B). It assigns lower values
to the same interface pair in about 27% of all cases, while Face Position Similarity
does the same in only 2%. In case the two measures differ, the difference is usually
not large: most values are close to the diagonal and there are no cases where one
measure assigns highest difference and the other highest similarity.

2.4.3 Additional Analyses

2.4.3.1 Effect of Alternative Binding to the Same Homomer

Trivially, removing alternative binding to the same homomer reduces diversity. With
a special filter, we might remove all alternative binding of a protein to the same
homomer from DSameSeq to DSameFam Section 2.3.8. Obviously, filtering out diversity
will reduce the signal of diversity observed. Nevertheless, we performed this analysis.
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As expected, the observed effects dropped significantly (Table 2.2), most extremely
for DSameSeq, i.e. for the same pairs. The differential behavior between DSameSeq and
DInterolog might be explained by sequence divergence increasingly leading to very
different interfaces for the same protein pair and ultimately to different quaternary
states. Despite all the filtering for homomers, varying interfaces remain frequent
and still almost one third of the change seen in interologous pairs (DInterolog) is also
observed between the same pairs (DSameSeq).

Distribution Original Homomer
filtered (sequence)

Homomer
filtered (structure)

D-SameSeq: 0.0-0.5 11-16% 3-4% -
D-SameSeq: 0.9-1.0 75-79% 84-88% -

D-SameProt: 0.0-0.5 14-19% 4-7% -
D-SameProt: 0.9-1.0 69-75% 80-84% -

D-Interolog: 0.0-0.5 26-32% 11-16% 8-12%
D-Interolog: 0.9-1.0 29-35% 34-41% 38-47%

Table 2.2: Influence of homo-oligomerization. This table shows a summary of the
Face Position Similarity distributions of Fig. 2.9 after excluding diversity introduced
by a protein chain binding to the same homo-oligomer at different positions. We
used two different definitions for homomers: at the sequence level, all chains in the
assembly come from the same protein. In a ‘structural homomer’, they only come
from the same family.

2.4.3.2 Effect of Interface Copy Number

By restricting measurements to interfaces with the same associated copy number
(Section 2.3.4), we could derive one overall similarity distribution DSameSeq for each
observed copy number. These distributions were calculated with the procedure
described in Section 2.3.7. In case of copy number 3, e.g., this meant that we
calculated the distribution of a single Level SameSeq cluster only with interfaces
which come from a complex in which this interaction occurred 3 times. Comparisons
between interfaces with different copy numbers were discarded. Due to lack of
samples for specific copy numbers above 4, we had to limit this analysis to copy
numbers 1 to 4 plus an average over interfaces with a copy number higher than 4.
Results are given in Fig. 2.13.

As can immediately be seen from the high similarity range (0.9 to 1.0), interface
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similarity is clearly linked to the copy number of the interaction in the respective
complex. Interfaces in dimers are highly conserved, with differences almost exclu-
sively staying in the range from 0.8 to 1.0. High similarity then gradually declines so
that the curve for complexes with more than 4 copies of the same interaction shows
similarity to an equal distribution.

2.4.3.3 Effect of Significant Complex Subgroups

There is a possibility that the observed interface variability is confined to particular
complex families or subgroups which are known to be overrepresented in the PDB.
To address this, we first looked at the occurrence of the 0.9 to 1.0 similarity range in
the distribution of each Level Interolog cluster (no sequence divergence [DSameSeq];
data not shown). We found a continuum of values, ranging from 0% to 100%. This
means there is no particular group of families responsible for the overall observed
interface variability. Instead, there are examples for each degree of variability.
Furthermore, we found that the size of a family (number of Level SameSeq and
Level SameProt clusters in a Level Interolog cluster) does not correlate with its
0.9 to 1.0 bin. Secondly, we queried the PDB for known Virus, Antigen/Antibody
and Major Histocompatibility (MHC) complexes and determined the intersection
of these subgroups with our data set. This revealed 39 viral, 235 Antigen/Antibody
and 198 MHC structures in our data, accounting for 3.0%, 18.2% and 15.4% of all
complexes, respectively, and, due to overlap between the sets, together to 21.8%.
Distributions for the Face Position Similarity measure (DSameSeq; Section 2.3.7) and
each subgroup are given in Fig. 2.14.

Even though the distributions of the three subgroups substantially differ from
the overall distributions, it becomes clear that they are not exclusively responsible
for interface variabilities observed in the entire data set. MHC complexes actually
appear to be the cause for quite a high fraction of conserved interfaces. In contrast,
the Antibody/Antigen subgroup populates the area from 0.0 to 0.9 with 8% of all
similarities. In the same range, viral interface similarities are more frequent at a
cumulative rate of 21%. Due to small sample sizes, error estimates in all distributions
are generally large.

2.4.4 Sample Structures
Examples illustrate that interfaces can really differ substantially. Our finding that
most interactions form identically when repeating the experiment might not be
surprising. The observation that many interactions differed substantially, in contrast,
appears much more counter-intuitive. Readers might attribute the difference to some
mistake in the way we measure similarity or build our data sets. We addressed these
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concerns by expanding our analysis in many directions. On top, we analyzed ten
case studies in more detail. Three are discussed in detail in the following, the other
seven shortly in Sections 2.4.4.4. Section 2.4.4.5 lists even more samples that we did
not investigate in detail.

2.4.4.1 Ras - Son Of Sevenless

The same proteins binding at entirely different interfaces. Our first example is the
enzyme ras in complex with the nucleotide exchange factor SOS (Son Of Sevenless;
Fig. 2.15A). Ras catalyzes the conversion of guanosin tri- to diphosphate (GTP
→ GDP). It needs the interaction with SOS in order to release GDP again after
conversion. To this end, SOS provides a binding site that is highly specific for
the ras-GDP complex. However, despite this specificity to ras-GDP, also SOS and
ras-GTP can form a complex [Margarit et al., 2003]. SOS has a second interface far
away from the first that is specific for ras-GTP. It accelerates the reaction ‘ras-GDP
→ ras + GDP’. In other words, the ras-GTP-SOS complex separates GDP from
ras faster than the uncomplexed SOS. Consequently, we have a positive allosteric
modulation, in which both the active and the allosteric site are specific for exactly
the same protein. This represents the rare case of sequence-identical protein pairs
(DSameSeq) binding very differently without prior homomerization of subunits (Table
1) and with a low interface copy number (2; Section 2.4.3.2). In Section 2.4.4.4, we
discuss another similar case (Yersinia Pestis Antigen).

2.4.4.2 Cyclin - Protein Kinase

Related work mostly differentiates alternative binding modes by clustering ap-
proaches. This implicitly suggests the assumption that the system could fall into
alternative minima. Our results seem to support this assumption: interface similari-
ties follow an extreme distribution, i.e. either they are very similar or very dissimilar
(Fig. 2.9). When digging deeper, however, we easily found exceptions. Binding
modes can form a contiuum. We discuss one case in the following and two others in
Section 2.4.4.4.

The dimeric interactions between cyclins and protein kinases (interface copy
number 1) reveal a largely conserved binding cloud (Fig. 2.15B, green and cyan).
Pairwise Face Position Similarities span a range from 0.6 to 1.0. An automated
clustering of the structures would not accurately reflect the reality of this case because
it would discriminate between the interfaces. Such a clustering might be improved
by using the functions of the respective proteins in order to find correlations between
interface and functional similarities. However, we found our current functional
classification (GO) not to be comprehensive enough for this, yet (Section 2.4.1.2).
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Another complicating factor is that continua can not only be observed on the DInterolog
Level (as is the case here), but also on the Levels of DSameProt and even of DSameSeq
(Section 2.4.4.4; namely hemoglobin and choleraholotoxin). For those two examples,
GO-like functional annotation systems are trivially insufficient as they operate on
the level of proteins, not protein variants or even interfaces.

Further extending the interface variability of cyclins and protein kinases is the
recently discovered interface between cyclin D1 and protein kinase 4 (Fig. 2.15B,
blue). Its discovery seems mainly due to improvements in experimental methods
[Day et al., 2009]. Hence, this might only be the beginning of an entirely new class
of binding modes.

2.4.4.3 F1-ATPase

So-called ‘structural homomers’ often act as a gate-way to higher-order complexation.
Homomers can bind to another protein through alternative interfaces (Fig. 2.16D,F,E).
This concept can be generalized by introducing structural homomers, i.e. assemblies
between proteins from the same family (Section 2.3.8). The F1-ATPase structure (Fig.
2.15C) is such a case. Here, the alpha and beta subunit (Fig. 2.15C: orange and cyan)
bind alternatingly to each other, thereby forming a hexameric ring with a central
pore. The gamma subunit (Fig. 2.15C: green) winds through this pore with two long
helices. This hexameric ring alone already represents two entirely different binding
modes between the same protein pairs (DSameSeq) and without homomerization of
subunits. Two alpha subunits are always separated by a beta subunit and vice versa.
Furthermore, all of these six chains bind to different positions on the gamma subunit,
leading to two other interactions with great variability. Interface clouds of different
structures, e.g. under varying conditions, reveal the dynamic nature of the interaction.
Especially a rotation of the hexameric ring around the central helices is frequent.

The missing homo-oligomeric context is hidden: the hexameric ring appears to be
a homomer. Subunits alpha and beta have a RMSD of 1.3 Å. Only the sequences and
eventually their original proteins, reveal that we are actually dealing with heteromers.
However, both of the proteins come from the same family, so that we have a case
of a ‘structural homomer’, i.e. an assembly that appears to be homomeric, but has
actually undergone significant sequence divergence. Similar to traditional homomers,
the alternative binding to another protein (subunit gamma) is evident from the
structure within seconds and homomerization might be essential (i.e. interactions
between alpha and gamma subunits might not be stable without the hexameric ring).
Filtering alternative binding to the same structural homomer (Section 2.3.8), the only
remaining variability is the rotation around the two central helices of subunit gamma.
This is a good example why homomeric filtering might come short from a biological
point of view: What if subunits alpha and beta would not have the same family?
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Would it make the variability between alpha and gamma subunits any more or less
biologically relevant? Unfortunately, current data does not lead to specific answers,
yet. Similar examples for structural homomers are some hemoglobin structures
(Section 2.4.4.4) and the exosome complex by Lorentzen et al. [2007] (2JE6).

2.4.4.4 Additional Sample Structures

In the following, we discuss other cases of differing interfaces for the same pair of
sequences. They add to the picture of binding diversity.

Yersinia pestis (Fig. 2.16A) represents one of the very few cases of clear al-
ternative binding between two interfaces with copy number 1 (Section 2.3.4). All
measures agree in this finding. The antigen usually forms fibers by repeatedly bind-
ing to itself. In the two structures displayed here, this has been disabled by mutating
the N terminus in various ways. What remains are two original interactions with a
chaperone protein, representing snapshots of different stages in the fiber assembly
process. Note that 1P5U has actually three chains with two corresponding to the
antigen, but only one of them also corresponds to the N-modified variant present in
the binary structure 1P5V.

Choleraholotoxin is an extreme case of an interaction with Face Position Simi-
larities almost exclusively lying in the intermediate range 0.1-0.9 (Fig. 2.16E, Fig.
2.17C,D). The shorter B chain forms a cyclic homo-pentamer with a pore in the
middle. The A subunit occupies this space with a terminal loop. This results in
several different binding positions of a single B chain on the A subunit in one PDB
structure. Furthermore, another structure of the same complex reveals that the pen-
tamer exhibits some translational freedom with respect to the A subunit, leading
to even more interface diversity. These types of rotational interfaces can generally
be found by cross-correlating the measures Sphere Radius Ratio and Face Position
Similarity. A high Sphere Radius Ratio suggests that interface sizes and locations
are conserved. If the Face Position Similarity is low, change must therefore come
from a rotation around a central axis. Only in this way, we preserve the radius and
position and yet change the residues of the face.

For hemoglobin, (Fig. 2.16C), a clustering should easily interpret the two big
interface ’cloud’ as such and identify two distinct binding modes. This is further
supported by the distribution of pairwise interface similarities (Fig. 2.17C) that is
mainly populated either in regions of low (0.0-0.2) or high similarity (0.9-1.0). Closer
inspection, however, reveals that the clouds are by no means biologically irrelevant:
A main contributor to their variety for example is the change of hemoglobin from
the T to the R conformation when releasing or binding oxygen. A typical clustering
would not only miss this conformational change, but also its seemingly continuous
nature with many intermediate states. Note, however, that a detailed functional
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annotation of each interface according to the conformational state could improve
that.

We discuss Cytochrome BC1 and Type IV collagen in the caption of Fig. 2.16
and RuBisCO in the next Section.

Difference in Number of Interacting Families. Over 7% of all interface com-
parisons suggest a difference in the domain families that interact (Fig. 2.11). Two
examples illustrate the above conclusion that many of those are limits in the reliability
of our domain/family definition. The first is RuBisCO (Fig. 2.17A) that has a short
chain (single domain, single domain family). It has evolved three clearly distinct
binding positions on the large chain (2 domains, 2 domain families). Two of these
faces fall on the same domain; the third falls on a different domain. Consequently, we
see two different family pairings in the same pair of proteins. The second example
is the complex of aldolase-dehydrogenase (Fig. 2.17B). The two aldolase domains
both contribute almost equally to one interface while on the other interface, only the
catalytic domain interacts with the dehydrogenase. The same pattern is true for the
comparisons between the faces on the two-domain dehydrogenase (not shown).

2.4.4.5 Other Interesting Cases

We had to exclude other interesting examples to limit the length of this work. These
included the DSameProt comparisons of two nitrogenase complexes (2AFH, 1QH1)
exhibiting alternating quaternary states [Tezcan et al., 2005]; two amine dehydroge-
nase complexes (2J57, 2IUP) with different enzymatic activities (Section 2.4.1.2);
dual binding modes of cohesion and dockerin (2CCL, 1OHZ); and two interologous
interactions for which the according Swiss-Prot sequences are identical and only
differ in their organisms (2PE6, 2VRR; dimeric). Notable previous publications
reporting different binding modes include, e.g., [Park et al., 2004] (histidine kinases;
1U0S) and [Kang and Crane, 2005] (cytochrome C; 2B11).

2.4.4.6 Summary

While our examples confirmed the overall trends, they also suggested that the aver-
ages above reveal only the tip of the iceberg: if there is one reasonable measure for
interface similarity by which two experimental solutions differ, then this observation
suggests variability. To complicate matters further, we observe ‘rotational inter-
faces’ (F1-ATPase) and see that ligand binding can have great impact on interface
specificity (ras-SOS). On another note, our tests with alternative data set parameters,
e.g. changing structural resolution, revealed that the variability that we see is not
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explained by experimental or procedural inaccuracies. Thus, the PDB structures
clearly tell a tale of unexpected variability and dynamics of biological interactions.
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Figure 2.9: Faces are similar yet different. For two different ways to measure
interface similarity - Face Position Similarity [A] and L_rms [B] - we present
the similarity distribution for all interfaces. The rightmost interval shows largely
identical faces, the leftmost completely different faces. For each similarity range and
measure, there are three bars: one for each type of sequence divergence (DSameSeq to
DInterolog). For example, Face Position Similarity finds about 7% of all the interface
similarities at DSameProt to fall in the range 0.0-0.1, i.e. suggests in 7% of the cases
completely different outcomes when experimentally measuring the same interaction
again. The error bars show standard errors and are explained in Section 2.3.7. The
inlet displays the cumulative distribution giving the fraction of all similarities that
differ by a certain value. For instance, 21% of all interface comparisons result in
a value above 2 Å according to the L_rms in DSameProt . In these cases, the two
smaller proteins are clearly not in the same position after superimposing the two
larger proteins.
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Figure 2.10: The face similarity distributions for Convex Hull Overlap, Sphere
Radius Ratio and Interface Composition Similarity. The random variant of In-
terface Composition Similarity was derived by repeatedly randomly picking two
interfaces from two different clusters in the respective level and applying the measure.
For each similarity range and measure, there are three bars. Their order corresponds
to the three Distributions DSameSeq to DInterolog. The inlet in each plot displays the
corresponding cumulative distributions.
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Figure 2.11: The interface similarity distributions for Interface Position Simi-
larity, Domain Number Ratio (SCOP and CATH) and Family Interaction Sim-
ilarity. We limited the analysis to distribution DSameSeq for reasons of simplicity. In
the context of the Domain Number Ratio, we present the results for both SCOP and
CATH. The Family Interaction Similarity was only derived for SCOP. In each plot,
the inlet shows the corresponding cumulative distribution.
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Figure 2.12: Cross-comparing measures reveals more diversity. Overall, the
different measures agree that most repeated measurements yield similar results.
However, they often disagree in that one considers a pair of two measurements to
be similar while the other measure considers the same to differ. Here, we show
three cross-correlations of measures (A-C). Simply put, if the measures agreed,
all diagonals would be black, and everything else would be white (blank cells
mean that the particular pair of interface similarities has not been observed). The
uppermost rightmost cells correspond to very high interface similarity according to
both measures and also show the exact percentage of the respective combination. All
plots show DSameSeq distributions.
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Figure 2.13: The change of the similarity distribution when restricting compar-
isons to interfaces with a particular copy number. A given interface corresponds
to a certain interaction of two proteins and originates from a particular complex (Fig.
2.1). We counted how often the same interaction occurred in a complex and assigned
this number, the interface copy number, to the interface. We repeated this for all
interfaces. In the Figure above, we show DSameSeq distributions derived exclusively
with interfaces sharing a particular copy number. This number is depicted by shades
of gray: the darker, the higher.
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Figure 2.14: Distributions of interface similarity in particular complex sub-
groups. In (A), we show the DSameSeq distribution without the range 0.9-1.0. It was
omitted due to its overall dominance. Instead, we present it in the corresponding
cumulative distribution (B).
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Figure 2.15: Three typical interactions exhibiting surprising variety. (A) Protein
‘ras’ binds to ‘son of sevenless’ (PDB ID 1NVV): alternative binding for sequence-
identical pairs of proteins and without a multimeric context; the lower left panel
shows the residues of the two interfaces in purple and red. (B) Natural dimeric
interactions between proteins from the protein kinase and cyclin families (interface
copy number 1; e.g. 1OI9). Cyclin chains (green) have been structurally aligned and
superimposed. Protein kinases (cyan and blue) were subject to the same geometric
translations. The blue chain has a recently discovered outlier interface (see text).
(C) Superimposition of entire sequence-identical F1-ATPase complexes. Complexes
were aligned and superimposed with the gamma chains (green). Alpha (orange)
and beta (cyan) subunits were subject to the same geometric translations. In the
main panel, we look at the complexes from the top. The inlet displays an interaction
between a beta and a gamma subunit from the side.
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Figure 2.16: Six additional interactions with surprising interface variety. Each
panel (A-F) shows superimpositions of multiple heterodimers with sequences X
(dark green, note: all green have RMSD<1Å to each other) and Y. The interacting
chains Y were subject to the same geometric translations as their X counterpart and
are displayed in cyan. (A) The rare case (Section 2.3.4) of large interface differences
when looking at two structures with interface copy number 1 (1P5U, 1P5V). (B)
Example for ’low Interface Position Similarity with high Face Position Similarity’
(1PP9, 2FYU): lower frame: comparison of two structures of Iron-sulfur subunit
precursor (cyan) interacting with core protein 1 (green); upper frame: iron-sulfur
subunit precursor superimposition in detail; black and gray: identical subsequences
at different spatial locations; green and blue: different subsequences at same spatial
location. (C) Superimposition of 251 Hemoglobin complexes (e.g. 1A3N); lower left
side frame: superposition of two sample faces of upper interface cloud; face residues
(blue and red) colored by chain; lower right side frame: one sample complex of
each interface cloud; also see Fig. 2.17C (D) Ribulose-1,5-bisphosphate carboxylase
oxygenase (1AA1): three highly distinct binding positions; also see Fig. 2.17A (E)
Even distribution of Face Position Similarity vs. constantly high Sphere Radius Ratio
(1S5C, 1S5D); upper frame: side view; lower frame: view from top; also see Fig.
2.17 (F) High Amino Acid Coupling vs. low Interface Position Similarity (1M3D,
1T61); upper frame: X consists of two homologous domains (domain boundary
indicated by separating line) and interacts with Y at two different positions; dark
blue used instead of cyan to show chain boundaries; lower frame: domains of X
superimposed (domains highly homologous; sequences not shown).
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Figure 2.17: Multi-domain proteins interacting through different SCOP fami-
lies and difficult cases of interface clustering. Colors as in Fig. 2.16; exceptions:
second domain of X is orange, second domain of Y is blue; interface residues in
red. (A) RuBisCO from Fig. 2.16B; interfaces magnified; the short chain (cyan; one
domain) has two binding positions on the green domain of the large chain and one
on the orange domain. (B) Aldolase-Dehydrogenase complex (1NVM); Aldolase
domains: green and orange; Dehydrogenase domains: cyan and blue; Aldolase faces
magnified; in the first interaction, only the green domain contributes to the face
(upper frame); in the second, both the green and the orange domain are involved
(lower frame). (C) Comparison of the Face Position Similarity distribution of two
Level SameSeq groups corresponding to Hemoglobin (Fig. 2.16C) and Choleraholo-
toxin (Fig. 2.16E, 2.17D). (D) Superimposition of two diverse Choleraholotoxin
interactions; created from Fig. 2.16E by removing all but two Y chains.
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2.5 Discussion
How can proteins interact differently? Empirically, we found several reasons
for the same two proteins to have different interfaces (DSameSeq). The simplest was
merely technical: some experimental findings may not have been completely correct.
We reduced this effect by excluding complexes with resolutions >2.5 Å, but even
structures at 1.2 Å can contain errors [Ginzinger et al., 2010, 2011]. Another reason
was local flexibility or disorder: many proteins have local regions that are natively
unstructured and these often form protein-protein interfaces [Dunker and Uversky,
2008]; such regions are difficult to track experimentally. Often, the N- and C-termini
contributed to the observed interface variability. Another reason was environmental
differences: despite all efforts, we could not entirely exclude artificial interfaces due
to crystal packing. Different pH values could trigger conformational changes, as
was the case for small ligands or other interaction partners. The presence of another
protein changing the overall structure of a complex played a similar role. In all that,
however, we still miss one important aspect: proteins often have evolved to interact
in different ways. For such cases of biologically important alternatives, we might
interpret the variety observed in a single PDB structure as an example of one protein
binding to multiple copies of the same interaction partner.

There were various reasons why variability in binding was higher between
sequentially modified proteins than for identical proteins. The modifications that
preserved the original protein (DSameProt) were usually point mutations (i.e. changes
of single amino acids, e.g. by site directed mutagenesis or in the form of Nucleotide
Polymorphisms [SNPs]). Others included protein tags at the N- or C-terminus
(e.g. to facilitate protein purification), post-translational modifications (protein
cleavage) and alternative splicing. For interologs (DInterolog), finally, there was also
evolutionary driven sequence divergence. As described before, however, the mere
presence of insertions or deletions was not enough for low interface similarity: we
reduced structures to common residues before comparing them. Thus, the increase in
variability was actually the result of changes in the common parts of two structures.

Continuum of binding modes rather than major clusters? Using similar mea-
sures as we did, other groups [Kim et al., 2006, Shoemaker et al., 2006] have found
that many families interact in more than one way. Our analyses support this result.
However, they also reveal that the differences in interfaces span the entire spectrum
of the distribution, especially for DInterolog. Only 18 of the 151 pairs of families
completely conserved the binding modes. This finding suggests the model of a
continuum of binding modes rather than clearly defined groupings, e.g. as obtained
by clustering at predefined thresholds. Furthermore, in our results, about one third of
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the variability observed in a family-family interaction appeared to be protein-intrinsic
in the sense that it was also observed between sequence-identical pairs (DSameSeq),
i.e. did not originate from sequence variations (as, e.g. for DInterolog).

Is variability caused by homomers a special case? As mentioned before, al-
ternative interfaces might be due to the intrinsic capability of proteins to bind at
different positions. This is often encountered among homo-oligomers [Levy et al.,
2008]. In our case, however, it leads to a debatable scenario: a protein A can bind to
multiple copies of protein B, all of which alone form a homo-oligomeric complex
(Fig. 2.5). Do we then have to treat the various external interfaces between the
same proteins as one interface, or are they indeed individual interfaces that ought to
be differentiated? We argue for the second case: first, considering the homomer a
requirement for the hetero-interactions implies that by disabling the homomerization
(e.g. through site-directed mutagenesis), we also loose the interaction. This is not
always the case [Zavialov et al., 2003]. Secondly, it is unclear why such a filtering
should be limited to homo-complexes. Also the formation of a hetero-multimer
could be a requirement for the interaction with another protein. Studying which
interactions remain after disabling the potentially highly complex hetero-multimer is
much beyond the currently available data. Finally, also the original publication of
a complex usually describes different interfaces to the same homomer as separate
interfaces.
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2.6 Conclusion
Our results raise the question whether the molecular details of protein-protein inter-
actions (PPIs) are crucial for function. Protein crystallography captures static views
on those molecular details along with some information about the dynamic nature
of PPIs. If the details always had to be the same to guarantee function, different
experiments would identify the same interfaces. We applied many reasonable ways
of measuring interface similarity in order to analyze the consistency of the molecular
details of protein-protein interactions between different experiments. For sequence-
identical pairs of proteins, i.e. the same biological interaction, most interfaces were
almost completely conserved by all measures. However, all measures also revealed
an unexpected variety. Depending on how much detail we required to be similar in
order to consider two experiments to yield the same results, we found 11-37% of all
observations to have significant differences, and up to 10% to be completely differ-
ent. One important result was that this was a significant fraction of the difference
observed between homologous PPIs. Put differently, over a third of the differences
in the interactions between pairs of homologous proteins are also observed between
identical proteins. These numbers may challenge the notion that the maintenance of
the molecular details is crucial for function. At least, our results suggest that there
appear to be many alternative solutions to maintain or actually enable the intricate
molecular details: change seems an extremely frequent exception for protein-protein
interfaces.
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Chapter 3

Predicting Residue-residue Contacts
in PPIs

3.1 Introduction
PPIs are crucial for almost all facets of cellular processes. However, the exact
mechanisms of binding still escape our knowledge [D’Alessandro et al., 2010].
Even worse, there is still not a single organism for which we know all the PPIs i.e.
the full interactome. Experiments to determine the structure of a protein complex
could possibly shed light on the molecular details of all interactions, but are too
slow to be applied on an interactomic scale. The question whether two proteins
interact or not, on the other hand, can be answered much more rapidly, e.g. by
high-throughput yeast-two-hybrid [Shoemaker and Panchenko, 2007], but give no
molecular details. Such details, however, are usually a requirement for therapeutic
progress. Unfortunately, it is likely that this imbalance in available data will persist
for the next years or even decades.

From another perspective, the monomeric structure of many proteins is available
either in the PDB or can be predicted to a satisfying degree. Together with the
information which proteins interact, it might seem as an easy task to also model the
molecular details of the two (or more) proteins bound to each other. This problem,
however, can still only be solved for cases in which the structures of the proteins
do not change upon binding [Lensink et al., 2007]. If this is not the case, this
so-called ‘docking’ largely fails. In this respect, it would already be of great help to
know which pairs of residues are interacting and leave other tasks, such as finding
suitable conformations, to other specialized algorithms. Surprisingly, sequences
might provide valuable information in this context. For example, it has been shown
that it is possible to predict, from sequence alone, which residues can bind to other
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proteins [Ofran and Rost, 2003a].
In this chapter, we will go yet a step further and try to predict, again from

sequence alone, the exact pairwise residue-residue interactions that happen upon
formation of a PPI complex. We extract all residue-residue interactions from the
data set introduced in the previous chapter and encode each residue and residue pair
with various sequence and evolutionary features and incorporate annotations from
other tools predicting other aspects of protein structure or function from sequence.
This data set is then used to train a neural networks that predict for a new pair of
protein sequences which residues interact and which do not.
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3.2 Methods

3.2.1 Data Sets
The basis for our data set of residue-residue interactions (each of two residues from
a different protein) is the SameSeq level clustering created in the previous chapter
(Chapter 2). It contains 2870 clusters and each cluster corresponded to a pair of
interacting sequences. Each sequence pair was observed to be interacting in at least
one high-resolution complex (<2.5Å) in the PDB (Aug 2011). Consequently, each
SameSeq cluster maps to a number of binary complexes and the next task is to
define a fixed set of residue-residue interactions for each such cluster. Embracing
our findings on alternative interfaces, we use the union of all contacts in a cluster.
The only requirement is that each single interface is large enough, i.e. has at least 5
residues with ∆ASA>0 (accessible surface area) for both of the interacting proteins.

In order not to skew our predictor towards certain over-represented protein
families and construct difficult test cases, we redundancy the data set on the level
of protein sequences. To this end, we randomly picked a cluster (pair of sequences)
from the full set and added it to the new redundancy reduced set if none of its two
sequences had a HVAL> 20 to any other sequence that was already in the new set
(HVAL 20 corresponds roughly to 40% sequence identity for 250 aligned residues
[Rost, 1999]). Otherwise, the pair was discarded. This left us with 451 non-redundant
interacting sequence pairs.

We split this set into four parts, three with 100 and one with 151 interactions. We
used the first three for training, while the fourth was treated as a hold-out set and
untouched until the predictor was fully trained. For training, we alternately merged
two of the three splits with 100 interactions (resulting in sets of 200 interactions) and
used the third split for cross-training.

For a second test set consisting of PPI structures recently added to the PDB, we
first followed the same protocol of PPI data extraction as in the previous chapter,
only with a newer version of the PDB (Sept 2013). Once the SameSeq clustering
was completed, we redundancy it internally exactly as the older training data set
before and then also externally against the older redundancy reduced training data
set with the same criteria used before (no protein more similar than HVAL 20). This
resulted in 187 new non-redundant interacting sequence pairs.

3.2.2 Data Subsampling
Taking all the interacting residue pairs as the ‘positive’ class and all others as the
‘negative’ class would not only have lead to a data set too large for fine grained
parameter and feature selection, but also to an extreme over-representation of pairs

83



Chapter 3. Predicting Residue-residue Contacts in PPIs

from interactions with longer sequences. For example, an average interaction in
which both sequences are 200 residues long leads to 200∗200 = 4∗104 residue pairs,
whereas a 1000∗1000 interaction results in 106 pairs, accounting for 106/(4∗104) =
25 ‘average’ interactions. We therefore limited the number of residue pairs per
interaction to the geometric mean of both sequences, i.e. ni =

√
len(s1)len(s2),

where ni is the number of pairs to sample for the i-th interaction, len a function
returning the length of a sequence and s1,2 the first and second sequence of the
interaction. In order to maximize resource utilization, we additionally multiplied
the ni’s with a constant factor (5 for feature selection and parameter optimization
and 40 for the final network learning). Obviously, this did not alter the relative
contribution of each interaction to the full data set. We also always made sure that
the fraction of positive to negative residue-residue interactions remained the same
for each sequence-sequence interaction and was not altered due to subsampling the
residue-residue pairs in a given interaction.

3.2.3 Evaluation Measures
Determining whether a residue pair interacts or not is a standard two-class prediction
problem. This means we can apply default evaluation measures. In particular, we
used recall-precision curves as they focus on the ‘positive’ class, i.e. interacting
residue pairs. They are calculated as follows: Predicting a test set associates each
residue pair with a score reflecting the reliability that the residues interact. Choosing
a threshold separates the residue pairs with a score higher than this threshold from
those that fall below it. Precision is then defined as the number of interacting pairs
above the threshold divided by all the pairs above the threshold. Recall is the number
of interacting pairs above the threshold divided by all interacting pairs. In order to
summarize the performance on a data set in one number, we calculate the average
precision up to a recall of 50% (recall step size of 5%).

3.2.4 Features
We encoded every residue in the data set as a vector of floating point numbers. These
numbers, called ‘features’, were derived from various data sources and existing
sequence-based prediction methods. In the following, we give a short overview. For
details, please see the respective publications.

Amino Acid Sequence. Every residue corresponds to 1 of 20 amino acids. This
information was encoded in 20-dimensional vector in which each amino acid corre-
sponded to one dimension. The amino acid of the residue to encode had a value of 1,
all others a value of 0.
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Evolutionary Profile Frequencies. We PSI-BLASTed [Altschul et al., 1997] each
sequence against Uniprot [Consortium, 2011], redundancy reduced to 80% max.
pairwise sequence identity with 3 iterations and an E-Value threshold of 10−3. This
resulted in a sequence ‘profile’ that contained for each residue a frequency for each
of the 20 amino acids reflecting how often the respective amino acid was conserved
at this position in similar sequences. Following the same principle as before, every
residue was consequently encoded as a 20-dimensional vector where each dimension
represented one amino acid and each value the frequency of the amino acid.

Evolutionary Profile Scores. As for ‘Evolutionary Profile Frequencies’, but using
normalized PSI-BLAST substitution scores instead of substitution frequencies.

Evolutionary Profiles (Strict). As in the two previous Sections, but with a differ-
ent E-Value cutoff (10−25). Hence, this leads to two new features, each corresponding
to 20 dimensions.

Evolutionary Profile (HHBlits). As for the previous three features, but using
HHBlits [Remmert et al., 2012] to create the evolutionary profiles instead of PSI-
BLAST. This leads to four new features, each corresponding to 20 dimensions.

PSIC. As described in [Sunyaev et al., 1999, Bromberg and Rost, 2007], an evo-
lutionary profile is generated from the hits found in a PSI-BLAST run like for the
previous features, but amino acids at a certain position are scored according to
position specific independent counts (PSIC). This means, for example, that large
clusters of highly similar sequences in the alignment may have the same contribution
as a single sequence that is very different from others. We calculated this feature as
in [Bromberg and Rost, 2007] and used PSI-BLAST with parameters as described
for ‘Evolutionary Profile Frequencies’.

reprof. Reprof (unpublished) is a neural network based tool to predict the solvent
accessibility and secondary structure for each residue in a protein sequence. It
was developed and trained in the same way as PROF PHD in [Rost and Sander,
1993], but with newer data and an advanced neural network implementation [Nissen,
2003]. For each residue, it outputs the probability of belonging to one of three
secondary structure element (helix, sheet, loop), together with an overall reliability
index reflecting the confidence in the prediction. The degree of solvent accessibility
is also predicted as a probability and accompanied by a reliability index.
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ISIS. ISIS is another neural network based method that predicts for a protein
sequence which residues are able to bind to other proteins [Ofran and Rost, 2007a].
Predictions have also been shown to correlate with hot spots [Ofran and Rost, 2007b].
ISIS outputs a single value reflecting the probability that the respective residue can
bind other proteins, together with a score reflecting the reliability of the prediction.

metadisorder. Some parts of a protein may not fold into a stable structure. Such
segments are ‘disordered’ and predicted by metadisorder [Schlessinger et al., 2009]
by merging the output of various other tools predicting various disorder subtypes. Its
output is a single value reflecting the degree of disorder, together with a reliability
index.

SomeNA. SomeNA (diploma thesis in computational biology by Peter Hoenigschmidt
at the TUM) is an overhauled version of the neural network based classifier DISIS
[Ofran et al., 2007] and predicts whether a residue can bind to DNA and/or RNA
molecules. Amongst various other values, it outputs the probabilities that a residue
binds to DNA and RNA. We only use those 2 values.

SNAP2. SNAP2 (master thesis in computational biology by Maximilian Hecht at
the TUM), a faster and more accurate version of SNAP [Bromberg and Rost, 2007],
predicts the impact of function on the protein upon changing the amino acid type of
one residue to another amino acid. In order to obtain a single value for a residue, we
changed each residue to Alanine and recorded the impact. We used this value as a
feature.

Chemical Features. A residue was encoded with a number of chemical properties
such as charge, volume, hydrophobicity or ability to break a helix.

Global Features. ‘Global’ features do not change their value across the residues
of a protein. A simple example is the length of a protein. Global features can help
estimating the pairing susceptibility of a protein, the fraction of interface residues
and thus, on the level of protein pairs, the ratio of interacting to non-interacting
residue pairs.

We encoded the protein length with 20 dimensions. The first value is set to 1
if the protein is longer than 60 residues, otherwise it is 0. The second is 1 if the
protein is longer than 120 residues, otherwise 0. The third is 1 if it is longer than
180, etc. . Next, we counted the propensity of each amino acid in the entire sequence,
again resulting in 20 values between 0.0 and 1.0 for this feature called ‘amino acid
composition’. Similarly, we calculated the secondary structure composition based
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on the predictions of reprof. SomeNA, ISIS and metadisorder values were averaged
over the entire sequence, resulting in three values that reflect the overall tendency to
bind RNA/DNA, other proteins or to avoid a fixed structure, respectively. A final
tool, LocTree2 [Goldberg et al., 2012], predicted the localization of a protein. It
outputs one class for each of the three kingdoms (archaea, bacteria, eukaryota) out
of a total of 27 classes. Hence, LocTree2 predictions were encoded in 27 values,
with 3 of them having a value between 0.0 and 1.0 reflecting the probability of the
predicted class and all others being 0.

3.2.5 Residue-residue Feature Windows
For all proteins in our data sets, we split the protein sequences into overlapping
fragments (windows) of a fixed size, in which the central amino acid determines
which residue the window maps to and all flanking amino acids provide additional
context information that putatively help with the prediction of the central residue.
Replacing the actual residues in a window by features as listed above creates exactly
n vectors of equal length, where n is the length of the sequence (features reaching
out of the sequence initialized to reasonable default values).

For encoding residue-residue pairs, we concatenate the two feature vectors of
the two windows under consideration. In order to avoid protein order dependent
bias, we concatenated in both ways, i.e. residue-residue pair A-B was encoded
as features(A)+features(B) and features(B)+features(A), resulting in two feature
vectors per pair. The class is determined by whether the two residues interact or not.
We empirically estimated the ideal single-protein window size by selecting the best
performing size out of candidate sizes 3,5 and 7 for every network that we trained.

3.2.6 Artificial Neural Networks
Having defined a vector representation for every residue-residue pair in our data set,
we could apply standard machine learning tools to train a predictive classifier capable
of scoring new residue-residue pairs with respect to their probability to interact. Like
many before us, we chose artificial neural networks. We defined a single hidden
layer with a to-be-optimized number of hidden units and two output units, one for
each class (interacting/not interacting). This fully connected feed-forward network
was trained with the standard backpropagation algorithm implemented in the FANN
library [Nissen, 2003].
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3.2.7 Network Parameter Optimization
For every network that we trained, we first presented the training split of our data set
to the network and applied backpropagation after each sample. Then we predicted
the cross-validation set with the network and recorded the average precision until
a recall of 50% (recall step size of 5%; see ‘Evaluation Measures’). This is what
we refer to as one ‘epoch’. Next, we presented the training data again, and again
calculated the average precision on the cross-training data. We stopped repeating this
when the network error was more than 2% average precision below the maximum
observed earlier for longer than 20 epochs. This was observed to be near-optimal on
a smaller data set.

For each learning task, we also optimized the number of hidden units, the learning
rate of the network (i.e. the magnitude of the change of each connection weight
after each sample during backpropagation) and the learning momentum (includes
not only the last, but also the second last weight when calculating the new weight
of a connection; this sometimes avoids getting stuck in local minima of the target
function). Possible values were: for hidden units 5,10,25 and 50; for the learning
rate 10−2,...,−5; and for the momentum 0.0 ad 0.7.

For each learning task, we consequently trained 4∗4∗2 = 32 different networks
and selected the one with the best average precision on the cross-validation set.

3.2.8 Feature Selection
In order to further optimize the neural network, we tried to eliminate irrelevant and
redundant features. To this end, we performed a wrapped greedy forward feature
selection. This means we first fully optimized a neural network for each feature
individually, i.e. we trained |window sizes| ∗ |network parameters| = 3 ∗ 32 = 96
neural networks for each of the features described before, using only the respective
feature to encode residue-residue pairs. Then we selected the feature leading to the
network with the best average precision on the cross-training set and added it to our
final feature set. In any iteration thereafter, we again evaluated all features (except
for those in the final set), but always in combination with those already in the final
set. The procedure stopped when all features had been selected into the final set. The
feature combination leading to the highest average precision over all the iterations
was chosen to train our final model. We performed this procedure three times, i.e.
separately for for each train/cross-train data set.

To train our final model, we increased the size of our data set as described in
‘Data Sampling’ and again optimized the window size and other neural network
parameter. A new residue-residue window was predicted by predicting it with all
three networks (one for each data set fold) and averaging their output.
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3.2.9 EV-fold
We compared our approach to EV-fold [Marks et al., 2011], a protein contact predic-
tion method with original applications in the prediction of contacting PPI residues.
It is based on correlated mutations, i.e. changes in the sequence of one protein that
are accompanied by changes in the other proteins. The idea is to concatenate the
sequences of two interacting proteins if they come from the same species S1. A
homologous interaction is then defined as two proteins from another species S2
that interact and are sequentially similar to both proteins of the first interactions.
Concatenating the two S2 proteins allows us to create a single pairwise sequence
alignment of the interaction. Repeating this for all species with the S1 interaction as
the target, we can create a multiple sequence alignment for the S1 interaction and
finally apply a standard single-protein contact prediction method. Interacting PPI
residues are those that cross the sequence border in the multiple sequence alignment
of concatenated proteins.

In practice, we first searched for similar sequences in the complete UniProt
database for each of our proteins using JackHMMer [Eddy, 2011]. We experimented
with three different E-Value cutoffs (100,10−3,10−25) and found 10−3 to perform
best in downstream assessments. All filters that would limit the number of sequence
alignments in the output were turned off. This generated two sequence alignments
for each interacting protein pair. The two alignments were merged by matching
the sequences from either alignment by their taxonomic ID. A sequence in the first
alignment that had a sequence from the same organism in the second alignment was
concatenated with this second sequence (one per taxonomic ID). Sequences without
matches were discarded. We then applied EV-fold to the merged alignment (default
parameters) and removed all residue pairs in which both residues came from the
same protein. This created a scored list of residue-residue pairs for every protein
pair that could be evaluated exactly as described before.
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3.3 Results and Discussion
We have used our data set from the previous chapter to create a collection of in-
teracting and non-interacting PPI residue pairs. Various features encode the pairs
as high-dimensional numerical vectors which we used in turn to train an artificial
neural network (NN) based classifier (Methods). For new PPIs, it can predict from
sequence which residue-residue pairs are interacting and which are not. We compare
this approach to EV-fold [Marks et al., 2011], a recent state-of-the-art method to
predict contacts from sequence alignments (Methods).

3.3.1 Evaluation on Hold-out Set
148 non-redundant interactions were completely held-out during training and could
be used for independent evaluation. We predicted all of their residue-residue pairs
which come from two different proteins with both, our neural networks and EV-fold.
For each method, this associated each pair with a score and allowed us to calculate
recall-precision curves (Methods).

Fig. 3.1 (solid lines) shows that our method greatly outperforms EV-fold for all
but the very lowest levels of recall in which precision values still have large error
margins. The coverage of proteins that contain high-confidence predictions climbs
faster for EV-fold than for our method (dotted lines). This means the residue-residue
pairs that receive the highest scores are limited to a few proteins. However, even
predictions with lower reliability (e.g. those that cover 100% of all proteins) are
more accurate than the high-reliability predictions by EV-fold.

Both methods improve greatly over random (0.26%; roughly corresponds to
precision at 100% recall). In absolute terms, however, precision values are low and
do not climb above 6-7% in precision regions with small error margins. This is
due to the extreme ratio of interacting to non-interacting pairs (roughly 1 in 400).
Consequently, the primary use case of our method is to assist in choosing candidate
residues for site-directed mutagenesis experiments (e.g. Alanin scans). If structures
of the proteins are available, it may also help in the ranking of docking solutions.

3.3.2 Evaluation on New PPIs
168 non-redundant PPIs were added to the PDB since we started working on our
predictor. We evaluated them in the same way as the data set in the previous Section
(Fig. 3.2). Results are largely consistent with those of the hold-out set so that our
conclusions remain the same.
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Figure 3.1: Recall-precision curves for the hold-out data set. The plot compares
EV-fold to our new artificial neural network (ANN) based method on the data set
that was held out during training. Solid lines are recall-precision curves. Dotted
lines indicate the percentage of proteins that have residue-residue pairs with a score
above the threshold corresponding to the current recall level.

3.3.3 Limiting Factors for EV-fold
There are a number of reasons why EV-fold performs dismally on our data com-
pared to the proteins it has been applied to before [Weigt et al., 2008]. First, the
performance is critically dependent on the number of sequences in the alignment.
This number, however, is always limited by the number of hits of the protein with
the fewer hits. The size of the alignment is measured by EV-fold as the ‘effective
sequence count‘. It should ideally be orders of magnitude larger than the length of
the protein. For us, this was never the case, however, and exceeded the length of the
protein in only about 25% of the cases. Secondly, the signal for correlated mutation
likely stands and falls with the interaction of the two proteins. If we concatenate
two proteins from the same species that are distantly related to the target proteins
and include the merged sequence in our alignment, we implicitly assume that the
two proteins are interacting. This is probably often not the case. Another unresolved
issue is how to make scores comparable across proteins. So far no universal rule is
available.
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Figure 3.2: Recall-precision curves for new PPIs. The plot compares EV-fold to
our new artificial neural network (ANN) based method on PPIs that have recently
been added to the PDB and that do show sequential similarity to PPIs used for
training (Methods). Solid lines are recall-precision curves. Dotted lines indicate
the percentage of proteins that have residue-residue pairs with a score above the
threshold corresponding to the current recall level.

3.3.4 EV-fold as a Feature
Although EV-fold was not competitive as a stand-alone predictor, it may still have
been helpful as a feature. We tested this by encoding the output of EV-fold as a
feature for our predictor. For example, we mapped each score of a residue-residue
pair to its percentile among the scores of the entire training data set. This score could
then be treated as a feature of the residue-residue pair. When including this new
feature in our feature selection (Methods), we could observe it to slightly improve
over random in the beginning, but it was always outperformed by other features and
not selected.
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3.4 Conclusion
We used a battery of sequence-derived features to train artificial neural networks that
can predict from sequence whether two residues from two different proteins interact
or not. It outperforms a recent state-of-the-art contact predictor that was originally
used for exactly this problem - PPI contact prediction. Due to the extreme imbalance
of interacting to non-interacting pairs, absolute values for precision are low over
all recall levels. Nevertheless, they improve greatly over random. This makes
the application of our method an ideal primary step in site-directed mutagenesis
experiments targeting PPI interfaces. Another potential, yet still unexplored, use
could be the ranking of candidate docking solutions.
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Chapter 4

Acceleration of the Original Profile
Kernel∗

4.1 Outline
Our residue-residue based predictor trained in the previous chapter performed well
on the level of residue pairs, but was not competitive for discriminating between
interacting and non-interacting protein pairs (not shown). Initial experiments with
the original profile kernel [Kuang et al., 2004] showed great potential for this task,
but its CPU requirements render it too slow for practical applications of large-
scale classifications. Here, we introduce several software improvements that enable
significant acceleration. Using various non-redundant data sets, we demonstrate
that our new implementation reaches a maximum speed-up as high as 14-fold for
calculating the same kernel matrix. Some predictions are over 200 times faster and
render the kernel as possibly the top contender in a low ratio of speed/performance.
Additionally, we explain how to parallelize various computations and provide an
integrative program that reduces creating a production-quality classifier to a single
program call.

4.2 Introduction
Profile kernels provide state-of-the-art accuracy. The characterization of pro-
teins often begins with their assignment to different classes. Examples for such
classes are protein families, distant structural relations, or sub-cellular localization.

∗This chapter is based on the publication [Hamp et al., 2013a]
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GO, the Gene Ontology [Ashburner et al., 2000], is the most comprehensive func-
tional vocabulary that defines over 38,000 different ’GO terms’, i.e. classes into
which a protein could be grouped. The simplest classification is through homology-
based inference [Rost, 1999, Rost and Liu, 2003]. A PSI-BLAST [Altschul et al.,
1997] or HHBlits [Remmert et al., 2012] query against a database with annotations
such as Swiss-Prot (Consortium 2011) creates a list of proteins that have reliable
experimental annotations and are sequentially similar to the target. Choosing the an-
notation of the best hit for the query then constitutes one simple means of annotating
function [Radivojac et al., 2013].

Such a naive prediction method has disadvantages: query results are usually
ordered by the e-value or the HVAL [Rost, 1999] of the best local alignment. This is
not the best choice for all classification problems. A membrane-integral domain, for
example, might be located at the N-terminus of the target, whereas the alignment
with the best hit begins near the C-terminus. Therefore, advanced machine learning
methods such as Neural Networks or Support Vector Machines (SVMs) often outper-
form simple homology-based inference, even for very small classes [Hamp et al.,
2011].

These methods represent proteins in a high-dimensional space, as given, for
example, by the frequencies of the 20 amino acids in a protein. Some of the most
popular and accurate classifiers are sequence-profile based kernels in conjunction
with SVMs [Kuang et al., 2004, Rangwala and Karypis, 2005a, Weston et al., 2005,
Liu et al., 2008a, Man-Wai, 2008, Thanh and Rui, 2009, Toussaint et al., 2010] .
They do not require a protein to be represented explicitly, but only implicitly via
dot-products to other proteins. Without this limitation, even the score of a local
alignment can be turned into a kernel function and harness the advantages of the
maximum-margin hyperplanes computed by SVMs [Rangwala and Karypis, 2005a,
Man-Wai, 2008, Thanh and Rui, 2009].

Methodological limitations difficult to address. This advantage, however, comes
at a computational cost. The dot products required for training are stored as kernel
matrices, which are quadratic in the number of training samples. Furthermore,
in order to classify a new query, dot products have to be calculated with respect
to all support vectors. Their number, however, is typically proportional to the
amount of classes and template proteins. This puts strong limitations on data sets
sizes and some kernels that are sufficiently fast for today’s searches might become
infeasible soon because the growth of the bio-sequence data far outpaces the growth
of computing hardware. Current solutions to the problem of data set sizes that are
preventative for training include the use of linear SVMs, keeping only parts of the
kernel matrix in memory or massive parallelization. All three options are mostly
inapplicable to profile kernels. The first two (linear SVMs; caching the kernel matrix)
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are complicated because explicit sample vectors are either unknown or too large and
calculating the same kernel values multiple times slows down training unacceptably.
The second (parallelization) has, to the best of our knowledge, not been implemented
by any state-of-the-art method, yet. In some cases, predictions can be accelerated
much more elegantly: if a kernel operates directly in the feature space, the normal
vector separating one class from the other may be calculated explicitly, instead of
implicitly via support vectors and associated weights. This reduces predicting a new
query to calculating a single dot product.

Accelerating the original profile kernel. Here, we show how to apply these
concepts to the kernel introduced by the Leslie group [Kuang et al., 2004]. It is
arguably the most popular profile-based kernel today and its outstanding performance
for many tasks has been repeatedly confirmed ([Rangwala and Karypis, 2005a,
Weston et al., 2005, Thanh and Rui, 2009, Toussaint et al., 2010]. We have recently
applied it in the development of a state-of-the-art method for the prediction of
sub-cellular localization, LocTree2 [Goldberg et al., 2012]. On top of its high
performance, the original profile kernel has other advantages, such as the ability to
extract sequence motifs from trained SVMs. In particular, its hyper-planes can be
made explicit as long as also the underlying k-mer trie based algorithm is modified
accordingly. Consequently, our first and most important improvement is calculating
the matrix product of input profiles and pre-computed SVM normal vectors at full
use of the k-mer trie based data structure. This corresponds to an efficient and highly
parallel classification of many protein profiles with many SVMs at the same time,
without the need for multiple CPU cores. Secondly, addressing the training phase, we
can now distribute the computation of a single kernel matrix to an arbitrary amount
of parallel processes. Due to optimizations of procedures required both for training
and testing, also existing un-parallelized routines now run about five times faster than
in the original implementation. Finally, we have combined all the necessary steps
for training a classifier in a single program. It automatically calculates the kernel
matrix, learns a user-defined SVM-based multi-class model, extracts and compresses
the SVM normal vectors and stores everything as a ready-to-use predictor.
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4.3 Methods

4.3.1 Original Profile Kernel
The algorithm to calculate the kernel matrix with the original profile kernel has
been thoroughly introduced in [Kuang et al., 2004]. It maps every profile to a
20k-dimensional vector of integers. Each dimension represents one k-mer of k
consecutive residues and a particular value gives the number of times this k-mer is
conserved in a profile of related proteins. Conservation is calculated as the sum of
the substitution scores for each residue in the k-mer profile and has to fall below a
certain user defined threshold σ . Conserved k-mers are found very efficiently by
traversing a trie based data structure (Fig. 4.1). Each leaf corresponds to one of
the 20k dimensions and defines a set of conserved k-mers. With this set, the kernel
matrix is updated so that each kernel matrix value is increased by the number of
k-mers shared by the two corresponding profiles at that leaf.

In the following, we describe our own modifications and extensions to this
approach. Where appropriate, a non-detailed outline is followed by a detailed
technical description. Our speed-up focuses on two different steps in the profile
kernel algorithm: the trie traversal and the matrix update. Combined, these two
always account for about 90% of the overall runtime, but their individual fraction
depends on the respective kernel parameters and input. On average, we estimate that
the two contribute equally to the runtime.

4.3.2 Modification 1: Reducing Kernel Matrix Updates to
Matrix Multiplication.

Outline. At each leaf node during the traversal of the k-mer trie, a set of conserved
k-mers of the input profiles has remained (Fig. 4.1). At this point, the original profile
kernel updates the kernel matrix: if, e.g., k-mer 1 belongs to input profile 3 and
k-mer 2 to input profile 8, then the value of the kernel matrix at row 3, column 8
has to be increased by 1. Repeating this for all k-mer pairs updates the entire kernel
matrix for this particular leaf node and the traversal continues. This operation can be
greatly simplified: first, we count how many conserved k-mers each profile has at a
particular leaf node. Only the profiles with non-zero counts are added to a sparse
matrix in which each row stands for a profile and each column for a particular leaf.
(To save space, the matrix is stored as a ‘coordinate list’, i.e. as a list of triplets of
the form [x-coordinate, y-coordinate, value].) For most leaves, we only add elements
to this sparse matrix; only when the buffer is almost full, we update the actual kernel
matrix. This can be done in arithmetically the same way as described above, but
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Figure 4.1: Sample k-mer tree traversal. Sketched is one part of a 3-mer trie
traversal with two input profiles (P1 and P2). These profiles were generated with
proteins that were 186 (P1) and 241 residues long (P2; tables on the top). During
traversal, some conserved multi-mers remain at each node that fall below the substi-
tution score threshold σ . The ‘Sample 3-mer trie traversal’ illustrates the transition
from two-letter node ‘AA’ to node ‘AAA’ (‘AAA’ is also a leaf, because k = 3). At
node ‘AA’, five 2-mers have remained from previous transitions (root -> ‘A’ ->’AA’)
that still fall below the substitution score threshold σ = 5. In the transition to node
‘AAA’, each such 2-mer is extended to a 3-mer and each score re-calculated (k-mer
extension and new scores in red). 3-mers with a score>5 are discarded (2/5) and
those that remain (3/5) are used in the kernel matrix update. Afterwards, the traversal
continues until reaching the lexicographically last leaf (‘YYY’).

operationally by a very efficient self-multiplication of the buffered sparse matrix and
an on-the-fly addition of the result to the kernel matrix.
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Detailed description. Let P be the space of all possible protein profiles and
p1, ..., pm ∈ P be the input protein profiles. Let length : P→ N be a function that
returns the length of each profile (i.e. the length of the sequence that a profile pi was
generated with). Let further Kmers = {(l,r)|1≤ l ≤m∧1≤ r≤ length(pl)−k+1}
be the set of all k-mer starting positions with k being the user-defined k-mer length
and let A = [ai, j]m×m be the kernel matrix.

At a leaf node L, there remains a set KmersL ⊂ Kmers of k-mers whose cumula-
tive substitution score is lower than a pre-defined threshold [Kuang et al., 2004]. In
the original profile kernel implementation, the subsequent kernel matrix update is
performed in the following way:

for all (l,r) ∈ KmersL do
for all (l′,r′) ∈ KmersL do

Al,l′ ← Al,l′+1
end for

end for
By definition, a kernel matrix value Al,l′ is the result of a dot product φ(pl)φ(pl′)

and one of the 20k dimensions of any φ(pi) is processed at every leaf node. However,
the implementation above never calculates a dimension of a φ(pi) explicitly, but
directly updates the kernel matrix. Hence, it could even be argued to be a ’kernel
trick’, which is commonly regarded as an acceleration of a kernel. In the following,
however, we show how its replacement with the explicit feature mapping and the
subsequent reduction to matrix multiplication leads to a more efficient procedure.

First, note that r and r′ are never used and can be ignored. Secondly, after
one entire inner for all loop, the value Al,l′ has been increased by the number of
k-mers that have remained from profile pl′ . This number can be calculated as
sL(l′) = ∑(l,r)∈KmersL I(l = l′), where I(x) is 1 if x is true and 0 otherwise, and allows
re-writing the matrix update in the following way:

vL← 〈sL(1), ...,sL(m)〉
for all (l,r) ∈ KmersL do

for j← 1; j ≤ m; j← j+1 do
Al, j← Al, j + vL

j
end for

end for
In this new version, instead of iterating over KmersL in the inner loop, we only
iterate over the number of profiles. Since sL only depends on KmersL and not on A,
it can be pre-computed before the matrix update and the time complexity of the latter
is reduced from O(|KmersL|2) to O(m · |KmersL|). Now, note again that vL

j is added
to Al, j exactly as often as there are kmers from profile l in KmersL. This means we
can also re-write the outer for loop:
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vL← 〈sL(1), ...,sL(m)〉
for i← 1; i < m;a← i+1 do

for j← 1; j < m;b← j+1 do
Ai, j← Ai, j + vL

i · vL
j

end for
end for

Obviously, the time complexity for this operation is now O(m2). Next, assume that
the matrix update is not executed at every leaf node, but instead only every x leaf
nodes (1≤ x≤ 20k). At leaves without an update, the vector vL is added to a matrix
Ṽ as a new row. When reaching an update leaf, Ṽ has the form Ṽ = [ṽi, j]x×m and the
bulk matrix update can be performed in the following way:

for i← 1; i < m; i← i+1 do
for j← 1; j < m; j← j+1 do

Ai, j← Ai, j +Ṽ1,i ·Ṽ1, j + ...+Ṽx,i ·Ṽx, j
end for

end for
Simplifying even further, we obtain: Ṽ1,i ·Ṽ1, j + ...+Ṽx,i ·Ṽx, j = Ṽ T

i,1 ·Ṽ1, j + ...+Ṽ T
i,x ·

Ṽx, j = (Ṽ TṼ )i, j and the entire matrix update reduces to matrix multiplication:
A = A+Ṽ TṼ

This operation can be implemented very efficiently with a slight modification of the
IKJ algorithm introduced in [Sulatycke and Ghose, 1998] so that matrices are stored
in a sparse format and cache efficiency is preserved (Section 4.3.8 for more details).
As each value (Ṽ TṼ )i, j is calculated separately by the algorithm, there is also no
need for a temporary matrix to store Ṽ TṼ . (Ṽ TṼ )i, j can be added directly to the
kernel matrix. In our actual implementation, Ṽ is a triplet-based sparse matrix with
a maximum size of 300MB. In order to make sure that every row addition still fits
into memory, the current matrix size is checked at every leaf node and an update is
performed as soon as more than 67% of the buffer are used or the last leaf is reached.
After the matrix update, the buffer is emptied and the traversal continues until all
leaves are reached.

Interpreting the above in terms of the explicit feature mapping φ , we calculate
one of the 20k dimensions of every feature vector φ(pi) at each leaf node L and store
it in Ṽ . Before a kernel matrix update, Ṽ contains x dimensions of every φ(pi) and
the actual matrix update calculates all of their pairwise dot products.
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4.3.3 Modification 2: SSE2 Instructions and New Data
Structure During Tree Traversal

Profiling the profile kernel executable with perf (part of the Linux kernel) revealed
that during traversal of the k-mer trie, most of the time is spent on checking whether
the substitution score of the k-mers is below the user-defined threshold. Implementing
this double comparison with Streaming SIMD Extensions 2 (SSE2) instructions,
two values can be compared in one CPU cycle, thus significantly improving overall
runtime.

4.3.4 Modification 3: Multi-process Kernel Matrix Calculation
Outline. Too large kernel matrices can no longer be kept in main memory and may
require several days for computation on a single CPU. Therefore, we have added
the feature to split this task among several individual processes. Given m training
profiles, we first assign each to one of n groups of size p=m/n (n is user defined).
Then we compute the dot products of the profiles for one group to those of another
group. This creates a p x p sub-matrix of the original kernel matrix. Repeating
this for all O(p2) possible group pairs calculates all sub-matrices which then have
to be joined together to build the original kernel matrix. The creation of a single
sub-matrix can be accelerated by only computing dot products between profiles from
different groups and again by applying Modifications 1 and 2.

Calculating a Kernel Submatrix. In certain situations, only a consecutive subma-
trix A′[ai, j]n×n′ of A has to be calculated, i.e. A′i, j = Anstart+i−1,n′start+ j−1 where nstart

denotes first row in A and n′start the first column.
A certain value Ai, j only depends on the columns i and j of matrix Ṽ . Hence, in

order to reduce Ṽ to the required columns for A′, we project it to two submatrices Ṽ ′=
[ṽi, j]x×n and Ṽ ′′ = [ṽi, j]x×n′ with Ṽ ′i, j = Ṽi,nstart+ j−1 and Ṽ ′′i, j = Ṽi,n′start+ j−1. Submatrix
A′ can then be calculated as:

for i← 1; i < n;a← i+1 do
for j← 1; j < n′; j← j+1 do

A′i, j← A′i, j +Ṽ ′1,i ·Ṽ ′′1, j + ...+Ṽ ′x,i ·Ṽ ′′x, j
end for

end for
This can be simplified to:

A′ = A′+Ṽ ′TṼ ′′

In practice, Ṽ ′ and Ṽ ′′ can be calculated directly by accepting two sets of input
profiles p⊂ P and p′ ⊂ P that correspond to the rows and columns of A′, respectively.
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When traversing the trie, conserved k-mers of p are added to Ṽ ′ and conserved k-mers
of p′ to Ṽ ′′, as described in Section 4.3.2 for Ṽ .

4.3.5 Modification 4: Predicting New Queries Through Normal
Vectors (Application of Model)

Outline. In contrast to the kernels described elsewhere [Rangwala and Karypis,
2005a], the original profile kernel introduced by the Leslie group allows the explicit
calculation of the discriminative normal vector w of a SVM. The ‘SVM score’ of a
new query profile p, i.e. its scaled distance to the hyper-plane, can then be calculated
as a single dot product s = w∗φ(p), where φ(p) is the feature vector of p and φ(p) j
the number of conserved k-mers at leaf node j. Before, dot products to all support
vectors were required (Section 4.3.5).

In order to extract normal vectors from trained SVMs, we can again use the
k-mer trie. A single traversal can determine the normal vectors of many SVMs and
create a ‘normal matrix’ in which each row represents one of 20k k-mers and each
column one normal vector (Section 4.3.5). This greatly accelerates the additional
training time, as classification problems are hardly ever limited to two classes in
computational biology.

In order to calculate the SVM score s = w∗φ(p) of a single query p and a single
normal vector w, we multiply w j with φ(p) j at each leaf node j and add the result
to s (s is initialized to 0). By using the normal matrix (above), this can be modified
so that the scores of all SVM normals are updated at each leaf node, resulting in a
vector of SVM score for query p. Traversing the trie with multiple queries at once
consequently generates a matrix of SVM scores in which each row represents a target
profile and each column a SVM.

With another extension similar to Modification 1, we can again store k-mer
counts in a sparse matrix and use matrix multiplication to update the SVM scores
matrix (Section 4.3.5). SSE2 instructions again accelerate the transition from one
node to the next (Modification 2).

Calculating the matrix of normal vectors. With one profile kernel matrix, several
binary Support Vector Machines (SVMs) can be trained. The exact number of SVMs
depends on the number of classes and the multi-class scheme. For a traditional
1-vs-All classifier, e.g., we train as many SVMs as there are classes.

Classifying a new target profile pm+1 requires calculating its scaled distance
to the SVM hyperplanes. One distance is computed with the well-known formula
sm+1 = w ·φ(pm+1) = ∑i=1...m αiφ(pi)φ(pm+1) where m is the number of support
vectors, αi the weight, pi the original profile and φ(pi) the feature vector of support
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vector i. This means sm+1 can either be calculated via support vectors (Modification
6) or via a pre-computed normal vector w. In the following, we describe how to use
the k-mer trie traversal to efficiently calculate several of these normal vectors in one
run with support vector profiles and associated α’s as input. In the next section, we
apply this matrix of normal vectors to predict new queries.

Let P be the set of all possible protein profiles and length : P→ N be a function
that returns the length of each profile (i.e. the length of the sequence that a profile
p was generated with). Let (p1, ..., pm) ∈ Pm be the original training profiles and
T = [ti, j]m×n be the matrix of support vector weights extracted from n pre-computed
SVMs, where each SVM corresponds to a column and each row to a training
profile. One value Ti, j indicates the weight of profile pi in SVM j (the weights
of non-support vectors are set to 0). Let Q = {i|1 ≤ i ≤ m∧ ∃ j : Ti, j 6= 0} be
the indices of those training profiles that appear as a support vector at least once.
Let q = (qi)qi∈Q be Q as an ordered tuple and let m′ = |Q| be the size of Q. Let
further Kmers = {(l,r)|l ∈ Q∧1≤ r ≤ length(pl)− k+1} be the set of all k-mer
starting positions of all support vector profiles. Our goal is to compute a matrix
W = [wi, j]20k,n where each Wi, j indicates the value of the i-th dimension in the normal
vector of SVM j and is defined as Wi, j = ∑z=1...m′ Tqz, jφ(pqz) (follows directly from
w = ∑i=1...m αiφ(pi)). Once W is calculated, each column j corresponds to the
normal vector of SVM j.

We start the trie traversal with all support vector profiles pqi and matrix T as input.
At a leaf node L, there remains a set KmersL ⊂ Kmers of k-mers whose cumulative
substitution score is lower than a pre-defined threshold. This set KmersL is converted
to a vector vL of size m so that vL

i = φ(pqi)L = ∑(l,r)∈KmersL I(l = qi) (analogously
to Section 4.3.2). One row WL is then defined as WL, j = ∑z=1...m′ Tqz, jv

L
z .

As W can become very large and sparse, we only store non-zero entries of each
row and write it directly to a file. As soon as it grows over a certain size, it is
compressed with zlib [Gailly and Adler, 2012] (DEFLATE compression [Deutsch,
1996]) and the output is directed to a new file.

Applying the Matrix of Normal Vectors. In order to classify a new profile pm+1
(m is the number of training samples) with a single SVM, we need to calculate its
scaled distance to the hyperplane. This distance, which will be referred to as the
’SVM score’, is given by the formula sm+1 = w ·φ(pm+1), where w is the normal
vector of the SVM and φ(pm+1) the feature vector of profile pm+1. In practice, often
many samples have to be classified by many SVMs at the same time, e.g. to predict
all proteins of a genome in a multi-class setting. In the following, we show how to
achieve this very efficiently in a single k-mer trie traversal and using the matrix of
pre-computed normal vectors (previous Section).
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Let P be the set of all possible protein profiles. Let length : P→ N be a function
that returns the length of each profile (i.e. the length of the sequence that profile
pi was generated with) and (p1, ..., pm) ∈ Pm be the target profiles. During the trie
traversal, we use a matrix Ṽ as a buffer which stores dimensions xstart to xend of all
φ(pi)’s (xstart and xend are initialized to 0 and x, respectively; x is user-defined). Let
W = [wi, j]20k×n be the matrix of normal vectors, where k is the user-defined k-mer
length and n the number of SVMs. Each column of W corresponds to a normal vector
and each row to a k-mer. As W is usually too large to be kept entirely in memory, we
use a temporary matrix W̃ = [w̃i, j]x×n to store only the rows of W currently needed.
Our goal is to calculate matrix D̃ = [di, j]m,n where each Di, j indicates the SVM score
of profile pi after classification by SVM j, i.e. Di, j = w j · φ(pi), where w j is the
normal vector of the j-th SVM.

The trie traversal begins with all support vector profiles pi. At a leaf node L,
there remains a set KmersL ⊂ Kmers of k-mers whose cumulative substitution score
is lower than a predefined threshold. This set KmersL is converted to a vector vL of
size m so that vL

i = φ(pi)L = ∑(l,r)∈KmersL I(l = i) (identical to previous sections).
Each vector vL is added to matrix Ṽ as a new row. When rows xstart to xend have
been added, we load rows of matrix W with the same indices into W̃ and perform the
following procedure:

for i← 1; i < m; i← i+1 do
for j← 1; i < n; j← j+1 do

Di, j← Di, j +Ṽ1,i ·W̃1, j + ...+Ṽx,i ·W̃x, j
end for

end for
With a proof analogous to that of Section 4.3.2, this procedure reduces to

D← D+Ṽ TW̃
The matrix multiplication is carried out with the Eigen package ([Guennebaud et al.,
2010]; Section 4.3.8 for more details). After the matrix update, the value of xend
is assigned to xstart and xend is adjusted to fit the next update of D. Ṽ and W̃ are
emptied.

The above calculates the dot product between profile i and normal vector j,
reduced to the summands xstart to xend and adds the result to Di, j. As the range
[xstart ,xend] has contained every k-mer index exactly once after the trie traversal, we
obtain Di, j = w j ·φ(pi) in the end.
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4.3.6 Modification 5: Pipelining the Training and Prediction
Process

Using both, the normal and the SVM score matrices described above, renders training
and applying a multi-class profile kernel based classifier a tedious task that requires
many data management steps. We have therefore pipelined the entire model creation
and application workflow in a Perl script. In ‘model creation’ mode, it calculates
the kernel matrix, uses it to learn an SVM multi-class classifier, extracts all weights
for the Support Vectors from the resulting binary SVMs, converts these vectors
into a matrix of normal vectors and stores all files and parameters that are required
for predictions in a ‘model’ folder. The user only has to provide the input profiles
with class labels and to specify the kernel parameters, a Weka [Frank et al., 2004]
multi-class model and the number of processes to use. The ‘model application’ mode
then uses this model to first calculate SVM scores with the normal matrix and the
profile kernel and then forwards them to Weka which finally calculates the class
probabilities of the queries.

4.3.7 Modification 6: Predicting New Targets with Support
Vectors (Baseline Predictor)

In the original implementation of the profile kernel, there is no prediction mode. In
order to classify a query, its profile has to be added those of all support vectors and
the kernel matrix has to be re-calculated. Comparing the impact of our modifications
to this approach would be unfair, because a simple prediction mode can easily be
added: first, the kernel matrix updates can be restricted to dot products between
targets and support vectors only; secondly, at each node in the k-mer trie, we can stop
going down further in the trie as soon as there are no more k-mers left that belong to
the queries. Another difference to normal matrix based predictions (Modification 5)
is the output of dot products to support vectors instead of SVM scores. This can be
neglected, however, because the time needed by external multi-class classifiers to
calculate SVM scores given dot products is minimal. In the following, we will refer
to this slightly altered original implementation as the ‘baseline’ implementation.

4.3.8 Matrix Multiplications
In the previous Sections, we either had to multiply a sparse matrix with a dense
matrix or a sparse matrix with a sparse matrix. In both cases, the result had to be
added to another third matrix.

For sparse-dense multiplications, we used the operations provided by the Eigen
package [Guennebaud et al., 2010]. For sparse-sparse multiplications, however, all
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Eigen operations resulted in at least one temporary matrix and a significant additional
memory overhead. As the result of sparse-sparse multiplications is as big as the
kernel matrix, we found this to be unacceptable and implemented the operation
ourselves. As a template, we used the IKJ algorithm detailed in [Sulatycke and
Ghose, 1998]. This algorithm described the cache efficient multiplication of a sparse
matrix with a dense matrix, but we extended it to the sparse-sparse case. It turned
out to not only save memory but also CPU time in comparison to Eigen.

So far, we stored sparse matrices as coordinate lists. Before a multiplication,
we convert them to the following format (runtime and space complexity of the
conversion is trivially linear in the number of coordinates).

• Msparse→ data: an array of all non-zero data values of Msparse in row-major
format, i.e. the series of non-zero values obtained by reading the first row of
Msparse from left to right and then repeating the same for the second, third, ...
row (exactly as in [Sulatycke and Ghose, 1998]).

• Msparse → index_col: an array of column indices, with one index for each
value in Msparse→ data. For example, if the first two non-zero elements of
Msparse are in row one, columns three and five, then the first two values of
Msparse→ index_col are 2 and 4 (exactly as in [Sulatycke and Ghose, 1998]).

• Msparse→ index_row: an array of offsets where each offset points to the first
element of a row in Msparse→ data, in row-major format. For example, if
the first two rows of M contain three and seven elements, then the first three
values of Msparse→ index_row are 0, 3 and 10 (3+7; new).

• Msparse→ length: an array containing the counts of non-zero data elements of
each row, in row-major format. For example, if the first two rows of Msparse
contain three and seven elements, the first two values of Msparse→ length are
3 and 7 (exactly as in [Sulatycke and Ghose, 1998]).

Note that Msparse→ data and Msparse→ index_col have the same length (the
number of non-zero elements in Msparse), as do Msparse → length and Msparse →
index_row (the number of rows in Msparse).

Msparse → index_col, Msparse → index_row and Msparse → length only need
(short) integer data types, however.

We can now perform the sparse-sparse matrix multiplication and the on-the-fly
addition of the result to a third dense matrix in the following way.

procedure MULTIPLYANDADD(A,B,R)

A← the first sparse matrix of size m×n
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B← the second sparse matrix of size n×m
R← the dense matrix

indexA = 0
for i = 0; i < m; i = i+1 do

lenrow
A = A→ length[i]

for k = 0;k < lenrow
A ;k = k+1 do

colA = A→ index_col[indexA + k]
dataA = A→ data[indexA + k]
lenrow

B = B→ length[colA]
indexB = B→ index_row[colA]
for j = 0; j < lenrow

B ; j = j+1 do
valueold =C[i][B→ index_col[indexB + j]]
valuetoAdd = dataA ·B→ data[indexB + j]
C[i][B→ index_col[indexB + j]] = valueold + valuetoAdd

end for
end for
indexA = indexA + lenrow

A
end for

end procedure

4.3.9 Equivalence of Old and New Implementation
Mathematically, both the old and the new implementation produce the same output for
the same input. In practice, however, differences could arise due to the imprecision
of floating point numbers.

It has to be stressed that even the old implementation will not always produce the
exact same results. The result of a double multiplication, for example, depends on the
order of CPU instructions produced by the compiler. Even given the same compiler,
different architectures and optimization levels will change this order. Another source
for differences are downstream programs. The kernel matrix will be used in other
algorithms, for example a support vector machine. Even different implementations
of the same algorithm (e.g. Sequential Minimal Optimization [Platt, 1998]) will
most likely generate different models.

Our changes to the generation of the kernel matrix have not added any additional
source for differences. The comparison of cumulative substitution scores to the
user-defined threshold is still carried out with 64 bit double precision types. The
actual kernel matrix values are stored as integers and hence not subject to precision
loss.

The question that remains is whether the additional (preprocessing) steps for
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predicting queries with our pipeline (Modification 5) has resulted in a loss of pre-
cision compared to the old baseline method (Modification 6). To answer this, we
have predicted 2,000 random targets from our 20,000 targets test set with models
created from the ’Euka (5920)’ dataset (multi-class model: ’Nested Dichtomoy for
Eukaryota’ [Goldberg et al., 2012]; 17 SVMs; k = 6; σ = 11) in two different ways.
One time, we used the original baseline implementation of the profile kernel to
generate dot products which were then used as input for a Weka model. The latter
processed these dot products in 17 precomputed SVMs to output 17 SVM scores for
each query, i.e. scaled distances to the hyperplanes. The other time, we calculated
these SVM scores with a normal matrix generated by our pipeline (Modification 5;
pipeline used the same Weka model) and our new profile kernel implementation.

This resulted in 17∗2,000 = 34,000 value pairs that were mathematically identi-
cal, but could differ due to floating point imprecision. Next, we determined for each
value pair their difference, which we call the ’distance fluctuation’. It corresponds to
the difference in the distances to the SVM hyperplane. Then we divided the distance
fluctuation by the distance of the supposedly correct distance, i.e. the distance
calculated with the original implementation. The result, called ’relative distance
fluctuation’, can be interpreted as the degree with which the fluctuation influenced
the actual decision made by the SVM. A value greater than 1.0 (> 100% change)
means that the fluctuation changed the class of a sample point for this particular
SVM (i.e. the side of the hyperplane the sample was on), a value below 0.01 (< 1%
change) indicates that the fluctuation had virtually no impact. Fig. 4.2 shows the
distribution of relative distance fluctuations.

Figure 4.2: Distribution of relative distance fluctuations. This figure shows how
much the new kernel implementation changed SVM scores compared to the old
implementation. A ’relative distance fluctuation’ is the difference between the old
and the new score, divided by the old score. The plot is a histogram of 34,000 such
fluctuations. Please see the text for how the SVM scores were calculated.
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None of the 34,000 relative distance fluctuations was greater than 0.001 and 4
were between 0.001 and 0.0001, which correspond to a frequency of 4/34,000≈0.0001.
This means about 1 in 10,000 distances to the hyperplane will be at most 0.1% dif-
ferent from the actual value. Such an effect will not have a measurable impact
on a classifier. For example, the 2,000 class probabilities calculated by the Weka
multi-class model from the old and the new SVM scores (one value for the ’winning’
class in percentage, rounded to three decimal digits) were absolutely identical. (In
case of multiple classes, even a dramatic change of a SVM score will most likely
not result in a different classification due to the influence of other SVMs on the final
class.)

To extrapolate probabilities of more severe changes, note that the occurrences
in the outer bins of Fig. 4.2 decrease with about a factor of 10. A relative distance
fluctuation between 0.1% and 1% will probably occur in about 1 of every 100,000
SVM decisions, and an actual hyperplane side change (≥100%) in much less than 1
of every 1,000,000 SVM decisions.

4.3.10 Data Sets
Overview. In order to measure the runtime improvement of our new implemen-
tation, we use four different data sets for kernel matrix computations and three for
classifying new queries. All profiles are taken from a redundancy reduced Swiss-Prot
database and readily available as part of the PredictProtein [Rost and Liu, 2003]
cache.

The four training data sets correspond to 5920 profiles assigned to 18 classes
(set ‘Euka (5920)’), 12,500 profiles assigned to 125 classes (set ‘SP60_25k’), 25,000
profiles assigned to 250 classes (set ‘SP60_25k’) and 100,000 profiles assigned to
1000 classes (set ‘SP60_100k’).

The runtimes for classifying new profiles were measured with models created
from these four training data sets. As queries, we used three other data sets containing
1, 200 and 20,000 non-redundant protein profiles. They simulate typical classification
tasks, ranging from the frequent single-user single-target case to the prediction of an
entire genome.

Detailed Description. Modifications 1 to 3 should significantly accelerate the com-
putation of kernel matrices compared to the original profile kernel implementation.
Similarly, Modification 5 is expected to speed up the classification of new query
proteins, even if the original implementation is extended by a simple prediction mode
(Modification 6). In order to obtain exact measurements, we created four different
data sets for training and three for testing.
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The first training set (‘Euka (5920)’) comes from the recent LocTree2 method
[Goldberg et al., 2012] which predicts protein localization. It consists of 5920
eukaryotic proteins from the UniProt/Swiss-Prot [Schneider et al., 2009] database,
assigned to one of 18 sub-cellular localization classes based on experimental evi-
dence. For the other three, we first redundancy reduced all Swiss-Prot sequences to
60% pairwise sequence identity using cd-hit [Fu et al., 2012] and then sub-sampled
12,500 (‘SP60_13k’), 25,000 (‘SP60_25k’) and 100,000 (‘SP60_100k’) proteins.
While irrelevant for kernel matrix computations, classes of training samples strongly
affect prediction speed as they determine the number of SVMs and Support Vectors.
We estimated these parameters for the three larger data sets using the data of the
final online version of LocTree2 and our own experience. For the LocTree2 data,
18 classes in a 1-vs-all schema (nuclear-vs-all, cytoplasm-vs-all, etc.) sufficed to
render 84% of all training profiles Support Vectors. This implied that in order to
classify one protein through the baseline method (Modification 6), dot products to
4954 other profiles have to be calculated. Given the 84% value, we assumed all
profiles of the larger data sets to be support vectors in order to create realistic, large-
scale classification problems. The speed of the normal vector based classification
(Modification 4) depends on the number of SVMs. We assumed 125, 250 and 1000
SVMs for the three large-scale profile sets (SP60_13k, SP60_25k, and SP60_100k
respectively), corresponding to about 100 proteins per class with a 1-vs-all or ‘Nested
Dichotomy’ [Fox, 1997] based multi-class schema. Note that this underestimates
the relative performance of the normal vector based classification: considerably
fewer classes should suffice to render almost all training samples Support Vectors
and the class sizes in this example were smaller than those for LocTree2. Actual
normal vector values were randomly sampled from the LocTree2 vectors, but have no
impact on the speed of the application/prediction. For the testing sets, we again used
the redundancy reduced Swiss-Prot database and sub-sampled 1, 200 and 20,000
proteins (the one protein was a transpeptidase with 246 amino acids). We did not
need class assignments for the testing sets, as we only measured prediction speed,
not accuracy. The three sets simulate typical classification tasks, ranging from the
frequent single-user single-target case to the prediction of an entire genome.

All profiles of all seven data sets were readily available as part of the Predict-
Protein [Rost and Liu, 2003] cache and created by three iterations of PSI-BLAST
[Altschul et al., 1997] against UniProt [Consortium, 2011] (E-Value 10−3).
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4.4 Results and Discussion

4.4.1 Speed Measurements Under Stringent Conditions
We measured the impact of our modifications on the speed of both, the kernel matrix
creation and the final application of the model, i.e. the prediction of new queries. The
baseline for kernel matrix computations was the original and publicly available profile
kernel implementation from the Leslie lab; for predictions, we implemented the
baseline ourselves (Methods: Modification 6). None of our modifications changed
the original kernel arithmetically and the chance that floating point imprecisions will
lead to different classifications is minimal (Section 4.3.9). Therefore, all previously
published values for accuracy are still valid.

Experiments were conducted on a 2 x 6-Core AMD Opteron Processor 2431 (2.4
Ghz) with 32GB DDR2 main memory using various data sets (Section 4.3.10). Each
kernel run was executed as the only active process on the entire computer, so that
the conditions with respect to memory, disk and hyper-threading were similar for all
experiments. Repeating the same measurements 20-30 times revealed a universal
runtime standard error below 5%. The profile kernel has two free parameters: the
length of the k-mer (k) and the substitution score threshold σ . Parameter combina-
tions were taken from the original publication [Kuang et al., 2004] and LocTree2
[Goldberg et al., 2012]. To our knowledge, only the latter optimized these parameters
and found it preferable to use substantially higher substitution score thresholds than
reported originally (‘k=5, σ=9’ and ‘k=6, σ=11’). Other papers using the profile
kernel appeared to have copied the combinations reported in the original publication.

4.4.2 Kernel Matrix Creation Five Times Faster and
Parallelizable

Modifications 1 and 2 (Methods) yielded a constant acceleration, ranging from twice
to up to 14 times faster with respect to the original implementation (Fig. 4.3A).
On average, the new implementation was about five times faster, with the speed-
up increasing proportionally to the data set size. The kernel matrix computation
for the SP60_100k data set (Methods) no longer fit into the main memory of our
machine (approx. 56GB). Hence, we used our new splitting technique (Methods;
Modification 3) to distribute its calculation amongst 100 individual processes that
were run simultaneously on a computer cluster (the CPU conditions described in the
paragraph above no longer applied for this proof-of-concept run). This took about
40 minutes. The speed of the kernel critically depends on its two parameters (Fig.
4.3). The large difference between, e.g. ‘k=6, σ=9’ and ‘k=6, σ=11’, is due to a
loss of sparseness and an accumulation of conserved k-mers during the trie traversal.
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However, in our hands, this actually improved performance for the development of
LocTree2 [Goldberg et al., 2012], suggesting a relative enhancement of the conserved
k-mer signal despite a probable increase of background noise. Indeed, we found
the feature vectors resulting from ‘k=6, σ=11’ to be sparse but less so than those
resulting from training with ‘k=6, σ=9’.

4.4.3 Predictions Accelerated by Orders of Magnitudes
Besides a general code optimization, our modifications include the feature to calcu-
late the SVM scores for many queries and SVMs in one profile kernel run (model
application mode; Methods: Modifications 4 and 5). We compare this variant to
the original implementation extended by a support vector based application mode
(Methods: Modification 6). The normal vector based variant that we introduced here,
is at least five times faster than the support vector based alternative (Fig. 4.3B, Euka
data set, 20,000 targets, ‘k=5, σ=7.5’), with a maximum acceleration of 205-fold
(Fig. 4.3B, SP60_100k, 200 target, ‘k=5, σ=7.5’). On average (arithmetic mean over
all experiments), our new implementation turned out to be about 66 times faster than
the original implementation. Again: for larger data sets, the speed-up would increase.
As long as the models are queried only with a few targets (up to about 200), the most
limiting factor is the size of the normal vector matrix. For k=5, even the matrix with
1000 SVMs still remains below 10GB (8.2GB), but it grows to 39GB for k=6 and
250 classes and consequently takes about 20 minutes to be read from disk.

4.4.4 Comparison to SVM-Fold and SW-PSSM
Generating the same output as the original version, our new profile kernel implemen-
tation can directly be used in existing profile kernel based classifiers like SVM-Fold
[Melvin et al., 2007]. The latter is a web-server for the prediction of SCOP classes
from protein sequence. Multiple binary SVMs are trained and embedded in a multi-
class scheme, called ‘adaptive codes’, which exploits the hierarchical structure of
SCOP. Extending or replacing the Weka-based multi-class models with the adap-
tive codes approach, our new workflow script (Methods; Modification 5) could
generate SVM-Fold automatically. For predictions, SVM-Fold uses the baseline
implementation (Methods; Modification 6) with an additional caching of k-mers in
the higher levels of the k-mer trie. Prediction speed could be greatly increased by
using pre-computed normal matrices (Methods; Modification 4).

A popular competitor of the original profile kernel in terms of classification accu-
racy is SW-PSSM (Smith-Waterman Position Specific Scoring Matrix; [Rangwala
and Karypis, 2005b]). We have compared our implementation of the original profile
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Figure 4.3: Speed measurements. Each arrow compares the runtime of the original
implementation (upper symbol) to the new implementation (lower symbol). The
symbol type indicates the parameter combination. The number above or below an
arrow is the acceleration (original runtime divided by new runtime). All runtimes
are wall-clock times of single processes. We did not perform an experiment if it was
clear that it would take longer than 24 hours. (A) Kernel matrix calculations. In
this subfigure we compare kernel matrix creation runtimes. Data sets correspond
to subsets of a redundancy reduced Swiss-Prot database with 5920 (‘Euka (5920)’),
12,500 (‘SP60_13k’), 25,000 (‘SP60_25k’) and 100,000 (‘SP60_100k’) samples,
respectively. The SP60_100k experiment (‘k=5, σ=7.5’) for which we used 100
CPUs in parallel took 40 minutes and is not shown. (B) Prediction of new targets.
This subfigure displays the runtimes for predicting three sets of targets (1, 200 and
20,000 profiles; axis on top) using models created with the training data sets (‘Euka
(5920)’ to ‘SP60_100k’; axis on bottom)
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kernel to this method and found our program to be multiple orders of magnitudes
faster.

SW-PSSM (Smith-Waterman Position Specific Scoring Matrix) [Rangwala and
Karypis, 2005b] calculates a profile-profile alignment and converts its score into
a valid kernel value. ‘Valid’ means that it makes the score comply with Mercer’s
conditions [Burges, 1998], i.e. it turns finding the maximum margin hyperplane into
convex optimization problem, implying that it does not have a local minimum. As
the feature space is unknown, each value in the kernel matrix has to be calculated
separately and only predictions based on the Support Vectors are possible. Using
the publicly available implementation of SW-PSSM with the optimal parameter
choices taken from elsewhere [Rangwala and Karypis, 2005b] and our own SP60
data set (Section 4.3.10), we found that the average time to compute the score of
two profiles is 21 ms. Hence, creating a kernel matrix takes about 4.4 CPU days
with 6000 samples, 19 CPU days with 12,500 samples and 3.3 CPU years with
100,000 samples. Classifying a single target with the same number of support
vectors takes about 2, 4, and 35 minutes, respectively. Comparing this to the runtime
for our new implementation with the parameter combination ‘k=5, σ=7.5’, our new
implementation is roughly 744, 980 and 433 times faster than SW-PSSM for the
three training data sets and 30, 8 and 9 times faster when classifying a single target.
Additionally, in contrast to the profile kernel, simultaneously applying the model to
multiple queries gains no speed-up. The runtime, therefore, is directly proportional
to the number of queries and the superiority for predictions easily exceeds that of
matrix creations for many queries. In summary, our implementation of the original
profile kernel hugely outperforms SW-PSSM.
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4.5 Conclusion
The original profile kernel proposed by the Leslie group is highly accurate and can
be applied to many classification problems. Our new implementation produces the
identical results with considerably fewer computer resources (in terms of runtime
and memory). Additionally, we have implemented a prediction workflow. It can both
automatically create new models and apply them to new queries.
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Chapter 5

Improving Sequence-based Binary
PPI Prediction

5.1 Outline
As mentioned in the previous chapter, it eventually became apparent that our tool
to predict the interaction of residue-residue pairs in a PPI (Chapter 3) was not
accurate enough to compete with state-of-the art classifiers for the binary prediction
of PPIs (i.e. whether two proteins interact or not). In this chapter, we follow a
different approach. We apply our accelerated profile kernel (Chapter 4) to the binary
prediction of PPIs in human. This is a new sequence-only based approach that
improves over state-of-the-art methods. Using highly reliable human PPIs, we
show how evolutionary profiles and subcellular localization increase precision even
for low recall levels. A new rigorous way to reduce protein-protein interaction
redundancy reveals that only a fraction of available PPIs is needed to build more
accurate classifiers. Two cross-validations differing in the similarity amongst non-
interacting protein pairs investigate their impact on PPI prediction. We conclude by
predicting all 200 million protein pairs in human and estimating their accuracy in
terms of recall and precision.

5.2 Introduction
PPIs: physical protein-protein Interactions between different proteins. We
define as PPI (Protein-Protein Interaction) only the interaction between two proteins
A-B if the following three conditions are fulfilled (1) external interaction: A and B
are different proteins. (2) physical interaction: the interaction is manifested in that
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residues from A are in physical contact with residues from B (e.g. closest atoms
within 6Å, i.e. 0.65 nm). Note that this ‘molecular’ or ‘structural biology’ view of
PPIs differs substantially from what most publications in PubMed referring to PPIs
would label as PPIs: assume that P1 activates P2 activates P3, then most publications
would also consider P1-P3 to interact, while we would only consider P1-P2, P2-
P3. Similarly, most authors referring to ‘physical’ interactions tend to include all
components of large complexes to physically interact, e.g. all constituents of a
ribosome. Tandem Purification Pull-downs (TAP) measures exactly such physical
complexes. Again: for us the crucial aspect of an interaction pair is the direct
physical contact of its constituents.

Experimental PPIs have come a long way. Better understanding physical, ex-
ternal protein-protein interactions is crucial for grasping cellular processes on the
molecular level [Ofran and Rost, 2003b, Hamp and Rost, 2012]. Substantial invest-
ments in large-scale experimental studies, such as yeast-2-hybrid (y2h) [Fields and
Song, 1989, Uetz et al., 2000, Ito et al., 2001, Uetz et al., 2006], mass-spectrometry
[Meissner and Mann, 2014], or - just beginning - next-generation sequencing tech-
niques [Yu et al., 2011], has created a wealth of information. Despite the Herculean
efforts, our view remains importantly incomplete even for the most-worked on
model organisms. Ultimately, the problem is as simple as this: we cannot apply
all experimental methods to all model proteins in any organism. To begin with the
highest-resolution experiments, namely the determination of PPIs through X-ray
crystallography: we have high-resolution three-dimensional (3D) structures for fewer
than half of all human proteins [Rose et al., 2010, Haas et al., 2013], and we have at
least one single 3D structures giving the details of interaction for fewer than 20%
of all human proteins (Chapter 2). Even this high-resolution information comes
with many challenges: many of the 3D complexes do not correspond to cellular
interactions [Krissinel and Henrick, 2005, Hamp and Rost, 2012], and even those that
are often are observed to interact very differently [Hamp and Rost, 2012]. Clearly,
the issue of in vitro vs. in vivo (what interacts in the tube may not interact in the cell
and vice versa), cannot be addressed by high-resolution structures alone. Leaving
the realm of high-resolution data, we immediately widen our coverage, e.g. of
human, but we also bring in information that is much less reliable. All large-scale
experiments setting out to capture ‘all PPIs’ in some set of proteins representing
an organism continue to suffer from a number of shortcomings. They often detect
protein-protein interactions (PPIs) by mistake (false positives) and miss interactions
that actually happen (false negatives). In addition, errors often depend on factors
related to subcellular localization or particular features of the proteins that cannot
be penciled into the error assessment. Furthermore, errors may originate from how
exactly an experimental protocol is executed: the y2h scan from one lab may be all
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faulty while the ‘same’ y2h technique from another may be mostly right [Huang
et al., 2007, Stynen et al., 2012]. These issues become most evident in estimates of
the total number of interactions in an organism [Stumpf et al., 2008, Venkatesan et al.,
2009]. Even for yeast, THE most studied model organisms for y2h scans, the number
of expected interactions has just been almost doubled after a decade of intense work
[Sambourg and Thierry-Mieg, 2010]. For human, known interactions accumulate
fast, but still only constitute a small fraction of all expected PPIs [Venkatesan et al.,
2009].

Predictions and experimental evidence are intertwined. To increase interac-
tome coverage and help finding interactions that elude high-throughput approaches,
a number of computational methods have been developed (excellent reviews in
[Liu et al., 2008b, Lees et al., 2011, Mosca et al., 2013]). They use diverse ex-
perimental data sources to build statistical models, typically one for each target
organism, and produce lists of scored protein pairs, with higher scores indicating
higher likelihood of interaction. Data sources used include protein sequences, struc-
tures, co-evolution, co-expression, domain co-occurrence, text-mining, subcellular
localization and already known interactions (network topology). Model types range
from Naive Bayes, to Support Vector Machines and Conditional Random Fields
and are typically combined with other tools such as homology models or a-priori
knowledge, e.g. biophysical features of amino acids.

Similar to wet-lab methods, each computational predictor has its own speed
and error characteristics. Using different types of experimental data can increase
their accuracy, but missing annotations reduce their applicability (as is the case
for SCOP [Murzin et al., 1995], for example ). A recent assessment of function
prediction tools also revealed that homology is still more informative than other
types of high-throughput data [Hamp et al., 2013b, Radivojac et al., 2013]. Hence,
great important lies on developing fast and accurate sequence-only based methods.

A recent review of PPI prediction methods [Park and Marcotte, 2012] found
that the accuracy of correctly identifying an interaction between proteins A and B
significantly depends on whether or not interactions of A and B with other partners
have been used for development. Best are cases in which A and B were used, second
best if this was case for either A or B, and all methods tested performed dismally
if both A and B had not been seen before. The latter two classes of targets are by
far the most frequent as reliable interactions usually cover only a fraction of the
complete proteome (e.g. still less than half for human [Schaefer et al., 2012]). This
finding invalidates most of the performance measurements published previously as
they are typically based on cross-validations with data sets only reduced on the level
of pairwise sequence similarity. Randomly splitting such data sets will largely create
cases of the first/easiest of the three classes above.
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Here, we introduce a new method to predict that two different proteins A and B
interact physically, i.e. that they have residues touching each other without predicting
the binding site. The method exclusively uses sequence-derived features that are
available for all proteins of known sequence. Our method uses a combination of
empirical rules along with several machine learning-based protocols. When we apply
the formalism to capturing all PPIs in human, we present data that suggests the
addition of important novelty. Assume the example above, i.e. we want to predict
the interaction between A-B. If A and B are in our data set, our method slightly
outperforms other approaches. If either A or B is new, however, it improves greatly.
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5.3 Methods

5.3.1 Data Set ParkMarcotte
Park and Marcotte [2012] used PPIs from the Protein Interaction Network Analysis
Platform [Wu et al., 2009] (version 3/2010), a collection of PPIs from various
databases, and redundancy reduced it with cd-hit [Fu et al., 2012] so that no protein
had more than 40% pairwise sequence identity to any other protein in the data set.
For their analysis, they divided this ‘ParkMarcotte’ set into 10 partitions and, in a
cross-validation manner, used 9 partitions for training and one for testing. Each
interaction between proteins A and B in a test partition was further assigned to one
of three subsets, corresponding to different classes of difficulty: set 1 (C1) if both
A and B had other interactions in the corresponding training set, set 2 (C2) if this
was the case for either A or B and set 3 (C3) if neither of the two was in the training
set (illustration in Fig. 5.1A). Non-interacting (‘negative’) pairs were generated
by randomly re-wiring the proteins in each of the four sets (1 training + 3 testing)
separately.

5.3.2 Data Set Hippie
The Hippie database [Schaefer et al., 2012] collects PPIs from human with experi-
mental annotations. Each interaction is graded by a reliability score that considers
information such as the number of publications per interaction or the type of ex-
perimental support. We followed the Hippie procedure [Schaefer et al., 2012] and
reduced version 1.2 (Aug 2011) to the top 10% highest scoring interactions to obtain
a high-quality subset, dubbed ‘HippieHQ1.2’ with 7,237 human PPIs from 3,915
different proteins representing 43% of the human Pfam families. We redundancy
reduced HippieHQ1.2 by excluding sequence similar interactions as follows. When
we included an interaction A-B in the non-redundant set, we excluded all interactions
A’-C and B’-D. A is similar to A’ if HVAL(A,A’)>20 ([Rost, 1999]; corresponding
to 40% pairwise sequence identity for 250 aligned residues). The same holds for
B and B’. In other words: A was sequentially dissimilar to any other protein in the
data set - only its interaction partner B was a possible exception (5% of all cases).
This level of non-redundancy is similar to the C3 class defined by Park and Marcotte
[2012]. We will therefore refer to the set as ‘HippieHQ1.2_C3’ (842 PPIs; 30%
of human Pfam families). Topological differences between HippieHQ1.2_C3 and
ParkMarcotte are illustrated in Fig. 5.1. Most importantly, a protein can have many
interaction partners in ParkMarcotte, but only one in HippieHQ1.2_C3.

We sampled the ‘negatives’ (A-B do not interact) in two different ways (below),
but we always ascertained that no negative was listed as positive in the full Hippie
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Figure 5.1: Data sets in terms of interactions and sequence similarity. Every
node is a protein and every edge is a PPI. Close distance between two proteins
indicates high sequence similarity. Proteins that are part of the training set are black
filled nodes. All other nodes are proteins only occurring in the test set. Training
interactions (‘Tr’) are solid lines, test interactions are dashed lines (‘C1-3’). (A) Park
et al. redundancy reduced their data set to max. 40% pairwise sequence identity.
Consequently, all nodes are far apart. They split the set into 10 folds to perform a
cross-validation and the figure displays one such fold. Training proteins may have
many interaction partners and form networks. Each test interaction between proteins
A and B is grouped into one of three classes (C1-3) based on whether A and/or B are
already in the training set (main text for details). (B) In our cross-validations, two
interaction partners are allowed to be sequentially similar, but there is no sequence
similarity between interactions. Hence training and test interactions all fall into the
C3 category amongst each other. The other two classes C1 and C2 only occurred
in the context of the full interactome prediction. They are defined so that they
also account for sequence similarity between test and training interactions. This is
necessary because Park et al. assumes non-redundancy between all proteins, what
is clearly not the case for full interactome prediction. For example, assume there
is a test interaction A-B and a training interaction A’-B’ and pairs A-A’ and B-B’
both have 99% sequence identity (in (B) there is a box around such a case). This
would still be a C3 case according to [Park and Marcotte, 2012] but a C1 case in our
definition.

1.2 database (i.e. as a PPI with experimental evidence that we deemed insufficient for
training). Hippie had already mapped protein identifiers to a reference nomenclature
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which perfectly matched the EBI human reference proteome [Dessimoz et al., 2012,
Gabaldon et al., 2009] with 20,249 proteins. The latter was our source for protein
identifiers and sequences for every Hippie related experiment.

5.3.3 Cross-validation Hippie
We performed two different cross-validations with HippieHQ1.2_C3 that differed in
the way of sampling the negatives (non-interactions).

First cross-validation. We split HippieHQ1.2_C3 into 20 equally sized partitions
p1, . . . , p20. Next, we merged the partitions in the following way to create 10 unique
classification tasks. The positives (observed PPIs) for the first of 10 test partitions
(‘test1’) were those in p1 and p2. Randomly re-pairing the proteins involved in any
of the PPIs from p1 and p2 created the negatives (non-interactions) of test1. While
re-pairing, we ascertained that no negative A-B had another protein C in test1 with
HVAL(A,C)>20 or HVAL(B,C)>20 (this might happen because in our redundancy
reduction we had not filtered out sequence similarity between interacting pairs of
proteins, i.e. HippieHQ1.2_C3 contained samples of PPIs A-B with HVAL(A,B)>20.

For the positive interactions in the first of 10 training sets (‘training1’), we merged
p3, . . . , p11. For the negative interactions of training1, we merged the interactions in
p12, . . . , p20 and then randomly re-wired them exactly as for test1. The sets resulting
from this procedure implied that (i) no test protein had HVAL>20 to any training
protein, (ii) all training interactions, irrespectively of negative or positive, were
pairwise dissimilar and (iii) all negative test interactions were pairwise dissimilar and
all positive test interaction. To improve mixture, we also randomized the assignment
of partitions to either the negatives or positives in the training set. Then we repeated
the entire procedure ten times, creating 100 train-test setups. This ensured statistically
significant precision estimates even for low recall levels (c.f. ‘Evaluation measures’).

Second cross-validation. The second cross-validation split followed the more or
less trivial standard many developers are familiar with: we randomly split the entire
set of positives into ten partitions and used nine for training and one for testing. We
repeated this ten times until each PPI had become part of a test set exactly once.
Negatives were randomly sampled from the full human proteome until there were 10
times more negatives than positives in each partition. This means, unlike for the first
cross-validation, negative test interactions can now fall into the C1 and C2 category.
Again, we repeated all this 10 times, ending up with 100 unique train-test setups.
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5.3.4 Prediction of All PPIs in Human
We downloaded the human reference proteome from EBI [Dessimoz et al., 2012] and
predicted all possible interactions between proteins longer than 50 and shorter than
5,000 residues. Our positive training set for this task was the full HippieHQ1.2_C3
(reasons for not using all of HippieHQ1.2 given in Results). Negatives for the
training were sampled randomly from the human proteome until there were 100
times more negatives than positives. Additionally, no negative was sampled twice
or already reported in the full Hippie 1.2 data set. Positive test interactions were
taken from the 10% most reliable interactions in Hippie version 1.6 (Oct 2013: set
‘HippieHQ1.6’), excluding those of HippieHQ1.2. Negative test interactions were all
protein pairs not in HippieHQ1.6. We distinguished between three types of difficulty
for each test interaction A-B: Class 1 (‘C1’) if both A or B had HVAL>20 to a
protein in HippieHQ1.2_C3 (3,425 positives; 12,577,484 pairs total); ‘C2’ if this
was the case for only one interactor (2,924 positive pairs; 76,273,451 pairs total) and
‘C3’ if neither protein was sequentially similar to any protein in HippieHQ1.2_C3
(836 positive pairs; 115,558,003 pairs total). This definition of the C1-3 classes
accounts for sequence similarity between proteins, a feature that is missing in the
definitions by Park et al., but crucial for full interactome predictions (illustration in
Fig 5.1B). We refer to these subsets containing both negative and positive test pairs
as HippieHQ1.6_(C1,C2,C3).

5.3.5 Evaluation Measures
Overview. All methods under consideration associate a pair of proteins with a score
reflecting the likelihood of a physical interaction. We can therefore apply standard
two-class evaluation measures. In particular, we used the area under the ROC curve
(AUROC) and recall-precision curves. For the full interactome predictions, we
additionally re-estimated precisions to correct for HippieHQ1.6 constituting only
a fraction of all positive interactions (much in contrast to the negatives). For this
task, we used estimates of the ratio of positive to negative interactions in human
[Hart et al., 2006, Stumpf et al., 2008, Venkatesan et al., 2009]. Despite large error
margins, we feel that such a correction is still better than leaving it to the user to
calculate actual precisions him/herself, e.g. from ROC curves (which are not as
susceptible), or to not report it all.

Estimating precision of full interactome predictions. Every point in the recall−
precision curve corresponds to a threshold that separates predictions with higher
scores from those with lower scores. Pairs above the threshold can either be actual
PPIs (true positives [TPs]) or non-interacting pairs (false positives [FPs]). Analo-
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gously, pairs below the threshold can be non-interacting (true negatives [TNs]) or
interacting (false negatives [FNs]).

Precision is the number of actual PPIs above the threshold (TPs [true positives])
divided by the number of all predictions above the threshold (TPs + FPs [false
positives]). Recall is the fraction of actual PPIs above the threshold (TPs) among all
actual interactions (TPs + FNs).

In full interactome predictions, we have a small sample of actual PPIs and treat
all other protein pairs as negatives. Any precision calculated in such a setting will be
an underestimate because many FPs are actually TPs. We can, however, estimate the
actual precision.

We interpret the observed precision as a conditional probability: precisionobs =
T Ps

T Ps+FPs = P(I|A), where the event I indicates that a pair of proteins is an actual
PPI and A that the pair’s score is above the threshold. Following Bayes’ theorem,
we can rewrite this as P(I|A) = P(A|I)∗P(I)

P(A) . Here, P(A|I) is the fraction of positive
PPIs above the threshold among all positive PPIs, in other words recallobs. Hence
P(A|I) = T Ps

T Ps+FNs . P(A) = T Ps+FPs
T Ps+FPs+T Ns+FNs is the fraction of pairs above the

threshold among all pairs and P(I) = T Ps+FNs
T Ps+FPs+T Ns+FNs is the fraction of positive

PPIs among all pairs.
Recall is calculated solely from actual PPIs and therefore independent of the

ratio of interacting to non-interacting pairs. Hence, P(A|I) remains the same even for
the corrected precision. The same holds for P(A) as we will not add or remove any
interactions (we have already predicted every possible pair) or change the threshold.
The only value we need to adjust is P(I). Our estimate for P(I) has been the number
of test PPIs (833 in HippieHQ1.6_C3) divided by all possible pairs. It should,
however, be the number of all PPIs in human (e.g 225,000 as estimated by Hart et al.
[2006]) divided by all possible pairs (P(I)′). Performing this correction and using
P(I)′ instead of P(I), we obtain the estimated actual precision precision′.

5.3.6 Profile Interaction Kernel

5.3.6.1 Overview

Our method relies on ‘Support Vector Machines’ (SVMs) (introduction e.g. in
[Schölkopf and Smola, 2002]), which calculate a hyperplane that optimally separates
data points of one class from those of another class. A user-given ‘kernel function’
defines the actual space of the data points and calculates all of their pairwise dot
products, the ‘kernel matrix’. As a specialty, only this matrix is needed to calculate
the hyperplane, not the explicit feature vectors of the data points. Hence, our task was
to define a good feature space for protein-protein interactions and to find a fast way
to calculate dot products in this space. Our solution is built upon the evolutionary
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profile based kernel developed by the Leslie group [Kuang et al., 2004]. It is defined
on single proteins, but can be extended to pairs of proteins (PPIs; Section 5.3.6.2).

The single-protein profile kernel represents a protein as a very high dimensional
feature vector in which each dimension stands for a k amino acids long sequence
(k-mer). For example, if k=4, the feature vector has 204 = 160,000 dimensions.
The value of a dimension is the number of times this k-mer is conserved in the
protein profile, i.e. how often the sum of amino acid substitution scores is below
a user-defined threshold σ . Substitution scores are read off an evolutionary profile
calculated by PSI-BLAST [Altschul et al., 1997]. For example, if we wanted to
check whether 4-mer ‘WTGG’ is conserved at position 37 in the profile, we first
read off the frequency of ‘W’ at that position and convert it to a score by taking the
negative logarithm. Then we do the same for ‘T’ at position 38 and ‘G’ at positions
39 and 40, sum up the four scores and check whether the result is smaller than
σ . (Note that there can be more than one conserved k-mer per position: e.g. with
σ = ∞ there are 20k conserved k-mers for every position in a sequence of length n
and hence n(20k) in total). The profile kernel is then defined as the dot product of
two feature vectors. In the actual implementation of the profile kernel, an efficient
k-mer trie based algorithm takes all PSI-BLAST profiles as input and calculates the
entire kernel matrix in one traversal of the trie. In the previous Chapter, we further
accelerate this algorithm by various technical and methodological modifications and
make it easier to use.

In the feature space that we define for protein-protein interactions, each dimen-
sion represents a pair of k-mers. For example, besides ‘WTGG’ in protein A, we now
also look for conserved k-mers ‘LGAH’ in protein B and count how often ‘WTGG’
and ‘LGAH’ occur together in the interaction. This new feature space has 20k ∗20k

dimensions, but it in the next Section, we show that the dot product between two
feature vectors only requires dot products in the 20k dimensional single-protein
feature space.

5.3.6.2 Profile Interaction Kernel for PPI Classification

Let PA, PA′ , PB,PB′ be four proteins and let A,A′,B,B′ ∈ N20k
be the protein feature

vectors as defined by the original profile kernel (k is the k-mer length). Every
dimension Ai is the number of times k-mer i has been conserved in the sequence
profile of PA (analogously A′i,Bi,B′i). For example, 4-mer ’AAAA’ (i = 1,k = 4) may
have been conserved 12 times in PA, i.e. A1 = 12.

(PA,PB) and (PA′,PB′) are the two interactions for which a kernel value has to be
calculated. In the feature space of the profile interaction kernel, every dimension
stands for one pair of k-mers and its value for the number of times this pair has
been conserved in the interaction. For example, in interaction (PA,PB) we may find
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’AAAA’ conserved at position 8 in the profile of PA and ’WWTG’ conserved at
position 150 in the profile of PB. Hence, we increase the dimension ’AAAA-WWTG’
in the feature vector for (PA,PB) by one. Knowing how to calculate the feature vector
for a PPI, the profile interaction kernel is simply the dot product of two such vectors.
This corresponds to the number times the two PPIs have the same k-mer pairs.

The protein order matters. In other words, the dot product between (PA,PB)
and (PA′,PB′) is different to the dot product between (PA,PB) and (PB′,PA′). We
can resolve this by calculating both and taking the maximum (corresponding to
finding the better match between the single proteins). Alternatively, we can add
the occurrences of one dimension to the dimension of the reversed k-mer pair (e.g.
adding the counts of ’AAAA-WWTG’ to those of ’WWTG-AAAA’). In preliminary
studies, the latter solution was consistenly better than the former so that we chose
the latter in all experiments presented here.

More formally, the feature vector of (PA,PB) is defined as

X 7→ N20k20k

φ((PA,PB)) = (...,AiB j +A jBi, ...) (5.1)

where 1≤ i, j ≤ 20k and X is the space of all protein pairs. The profile interaction
kernel consequently is

X×X 7→ N
Kppi(φ((PA,PB)),φ((PA′,PB′))) = ∑

i, j
(AiB j +A jBi)(A′iB

′
j +A′jB

′
i) =

= ∑
i, j

AiA′iB jB′j +∑
i, j

AiA′jB
′
iB j +∑

i, j
A jA′iBiB′j +∑

i, j
A jA′jBiB′i =

= 2∑
i, j

AiA′iB jB′j +2∑
i, j

AiA′jB
′
iB j = 2∑

i
(AiA′i ∑

j
B jB′j)+

+2∑
i
(AiB′i ∑

j
A′jB j) = 2∑

j
B jB′j ∑

i
AiA′i +2∑

j
A′jB j ∑

i
AiB′i =

2K̂(B,B′)K̂(A,A′)+2K̂(A′,B)K̂(A,B′)
= (due to scale invariance)

K̂(B,B′)K̂(A,A′)+ K̂(A′,B)K̂(A,B′) (5.2)

where K̂ is the original profile kernel. The same mathematical formulation has also
been found in [Martin et al., 2005].

5.3.6.3 Incorporating Subcellular Localization Prediction

Finally, knowing the subcellular localization of a protein, we can check whether
a PPI is actually possible from a compartmental point of view. Again using the
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profile kernel and multi-class machine learning techniques explored in [Hamp et al.,
2011] and an additional PSI-BLAST pre-filter, we recently developed LocTree3
(unpublished) which assigns a eukaryotic protein to one of 18 localization classes.
(Loctree3 uses Loctree2 [Goldberg et al., 2012] for difficult prediction cases and
Blast for easy cases. Difficulty is measured by the sequence identity of the best
annotated Blast hit.) The state-of-the-art accuracy of Loctree3 might improve PPI
prediction by filtering out all interactions that are predicted to happen between
proteins from different compartments. For both LocTree3 and the profile interaction
kernel, we use the PSI-BLAST profiles generated and cached by our PredictProtein
[Rost and Liu, 2003] server (3 iterations against Uniprot [Consortium, 2011] reduced
to 80% pairwise sequence identity; E-value 0.001).

5.3.6.4 Optimization of Free Parameters

The k-mer length, the substitution score threshold and the SVM complexity parameter
C have to be optimized empirically. Preliminary studies with various different
interaction sets, e.g. from the PDB [Berman et al., 2000] and various organisms,
constantly showed that a k-mer length of 5 is the best choice (in particular better
than 3, as chosen by a number of other methods). For lambda, we propose three
different values from previous applications of the profile kernel: 7, 9 and 11. As
SVM, we used the Sequential Minimal Optimization [Platt, 1998] implementation
in Weka [Frank et al., 2004], which also provided the functionality to optimize C
by an internal 10-fold cross-validation for every SVM that we trained (values for
C were 10−2,−1,...,2 ). We always chose the parameter combination that led to the
highest average precision up to a recall of 50% (precision step size of 10%). We
favored this approach over alternatives such as AUROC because we knew a-priori
that performance for higher recall levels would be unacceptable. It is a compromise
between a reduced sample size (due to a dominance of low recall levels) and a focus
on high precision.

5.3.7 Other Methods
Park et al. recently compared sequence-based PPI prediction methods [Park and
Marcotte, 2012]. We test our method on the same data set and additionally compare
it against the following top 2 methods for C3 targets using our own data sets.
Implementations that allow complete re-training with custom interaction data were
thankfully provided by Park, Y..
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5.3.7.1 PIPE2

For a target interaction between proteins A and B, PIPE2 (Protein-protein Interaction
Prediction Engine 2; Pitre et al. [2008]) counts how often two particular 20-mers
from A and B co-occur in other interactions in the training set. The result is stored
in a matrix with all 20-mers of A as the X and all 20-mers of B as the Y axis. The
value of a cell is the number of positive interactions this pair of 20-mers has been
observed in. The matching of 20-mers is inexact, i.e. not exactly the same 20-mer
has to be found in a training protein A’ (B’) to be considered a hit for A (B). A
PAM120 alignment score above a certain threshold suffices. The matrix is smoothed
by a sliding 3x3 window that replaces the central value by the median of the window.
Two proteins are predicted to interact when the average score in a 3x3 window of the
new matrix is above a certain threshold.

5.3.7.2 Sigprod

Sigprod [Martin et al., 2005] represent a protein sequence as a vector in which each
dimension stands for a ‘signature’, i.e. a pair of 3-mers. Each 3-mer in a pair has
the same central amino acid and the same order-independent flanking amino acids.
For example, dimension ‘GTW’ represents both ‘GTW’ and ‘WTG’. Each value in
a vector is the number of times this signature has been observed in the sequence.
A PPI is then represented as a vector of signature co-occurrences, as explained for
our method before. Our approach can hence be seen as an enhancement of the
signature PPI kernel by using protein profiles instead of sequences, a much larger
single-protein feature space (∼4,000 for signatures vs. 3.2M for the profile kernel
with k=5), a thorough selection of the SVM complexity parameter (not performed by
Martin et al.) and a state-of-the-art localization predictor as a filter.
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5.4 Results

5.4.1 Overview
We have developed a new approach to predicting PPIs from sequence alone. It is
based on evolutionary profiles, a fast and high dimensional profile-based SVM kernel,
rigorous optimization of free parameters and a filter for protein pairs predicted to
localize in non-neighboring compartments (Methods). We compare it against the best
two other sequence-based remote interolog detectors according to Park and Marcotte
[2012] by means of three different cross-validations on human PPIs (Methods).
Each sheds light on the prediction of remotely interologous interactions from a
different angle. Finally, we predict all possible interactions between human proteins
while differentiation between different classes of prediction difficulty. Accuracy is
measured by highly reliable experimental interactions that have been recently added
to PPI databases.

5.4.2 Cross-validation on ParkMarcotte Data Set
The PPI data set created by [Park and Marcotte, 2012] is non-redundant on the
protein level and includes for each protein all its interactions reported before March
2010 (Methods). Negatives are sampled randomly from the non-redundant proteins.
The authors perform a cross-validation with 7 different PPI prediction methods that
are based on sequence alone. Each test interaction between proteins A and B is
assigned to one of three categories: ‘C1’ if both A and B have other interactions in
the training set (say A-C and B-D), ‘C2’ if this is the case for only one interactor (say
A-C) and ‘C3’ if neither of the two has a similar protein in the training set (‘C3’).
As a result, they found that the accuracy of all 7 methods significantly depends on
the category and that there are clear differences among the methods. We trained and
tested our method on the same data set. Results are listed in Table 5.1, together with
those of the two best other performers in the C3 category, namely Sigprod [Martin
et al., 2005] and PIPE2 [Pitre et al., 2008] (Methods). We did not apply the LocTree3
filter (Methods) in order not to lose any predictions given the full area under ROC
curve is the evaluation measure.

5.4.3 Cross-validation on Hippie Data Sets
We complement the study by Park and Marcotte [2012] with two additional 10-
fold cross-validations to address some weaknesses in the ParkMarcotte data and
show that our method really constitutes advancement in remote interolog detection
(Methods). For both, we take the top 10% most reliable human interactions according
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Method CV C1 C2 C3

Sigprod 81±1 81±1 61±1 58±3
PIPE2 76±1 77±1 64±1 59±2
PK 87±1 87±1 69±1 66±2

Table 5.1: Cross-validation on the ParkMarcotte data set. This table shows
the area under the ROC curves of the three best sequence-based remote interolog
detectors, calculated with the ParkMarcotte data sets in a 4 times 10-fold cross
validation [Park and Marcotte, 2012]. ‘CV’ is the performance on all test cases, ‘C1’
on those for which both interactors already had other interactions in the training
set, ‘C2’ on those for which this was true for only one protein and ‘C3’ on the
interactions that were sequentially dissimilar to the training proteins. Errors are
standard deviations. Values for Sigprod [Martin et al., 2005] and PIPE2 [Pitre et al.,
2008] were taken from [Park and Marcotte, 2012], PK (profile kernel) is our new
method without the LocTree3 filter (Methods).

to the Hippie database [Schaefer et al., 2012]. The first cross-validation tests the
detection of pure interaction patterns (as opposed to ‘hooking’ to a protein and
then only detecting a compatible partner as for C1,2 cases) by constructing training
and test data in a way that any interaction, negative or positive, is at best a remote
interolog of any other interaction. This compares methods in their ability to detect
interactions solely by interaction signals. Negative interactions are sampled from the
same proteins as the positive interactions and every protein occurs only once in a
cross-validation fold (Methods). With this setup, we again compare our method to
the best two other remote interolog detectors according to Park et al.. Results are
presented as recall-precision curves in Fig. 5.2A.

In the second cross-validation, positive samples are the same as in the first, i.e.
every positive interaction is a C3 remote interolog to any other positive interaction.
The negatives, however, are sampled randomly from the human proteome until
there are ten times more negative interactions than positive interactions for every
training-/test set (Methods). Fig. 5.2B shows the results.

It may be argued that the rigorous redundancy reduction of the Hippie data
sets has excluded so many interactions that accuracies are unnecessarily low. We
tested this by re-adding all previously excluded high quality interactions among
the positive training proteins of the second cross-validation, thus creating a level of
non-redundancy very similar to the ParkMarcotte data set. Then we repeated the
entire second cross-validation. In the same way we also tested the effect of adding all
interactions (not only the ones among the positive training proteins) as long as they
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did not violate the C3 rules between train and test set. Surprisingly, the precision of
all methods dropped significantly, especially for lower levels of recall.

In the 882 HippieHQ1.2_C3 data set, every interactor of an interaction between
proteins A and B was sequentially dissimilar (HVAL < 20) to all proteins of all other
interactions in the data set. We performed a 10-fold cross-validation with this data
set. Negatives were sampled randomly from the human proteome up to a positive to
negative ratio of 1:10 in every data set split. The entire procedure was repeated 10
times, creating 100 train/test setups.

Keeping the negative sets the same, we compared the performances resulting
from this cross-validation to two other types of positive sampling. First, we kept
the proteins of the positive interactions in a training set the same, but added all
interactions between them that were previously excluded. All new interactions came
from HippieHQ1.2. This increased the number of positive interactions in a training
set from ∼760 to ∼2,050 and created a level on non-redundancy very similar to the
one used by Park and Marcotte [2012]. The negatives were unchanged. Next, we
also added interactions to proteins that had so far not been in the positive training
set (source again HippieHQ1.2), while making sure no new protein was sequentially
similar to a protein in the test set. This increased the number of positives per training
set to ∼4,750. Again, negatives were not changed.

Results are shown in Fig. 5.3 for the same methods as in Fig. 5.2. The larger
training sets consistenly and significantly decreased prediction performance on the
test sets for lower recall levels in all methods.

5.4.4 Full Interactome Prediction
The primary incentive to develop our method was to identify interactions between
proteins for which no interaction has been reported so far. Following the cross-
validated result that a highly non-redundant training set leads to highest precision, we
re-trained our method on the full HippieHQ1.2_C3 data set (negative-positive ratio
reduced to 1:100; Methods) and predicted all 20,000*20,000=20 million possible
interactions in human. The accuracy of this experiment was measured by high-
quality positive interactions that had been added to Hippie in the two years after the
release of version 1.2 (HippieHQ1.6; Methods). Negatives were all other pairs of
proteins except for HippieHQ1.2_C3. We again differentiated between three classes
of difficulty, namely ‘C1’ if both interactors were sequentially similar to proteins
in Hippie1.2_C3, ‘C2’ if this was the case for only one protein and ‘C3’ otherwise
(Methods). Results are presented in Fig. 5.4A.

The values for precision in Fig. 5.4A are strong underestimates because they are
susceptible to the ratio of positive to negative interactions. (The test set comprises all
non-interacting, but only a fraction of the interacting pairs.) Assuming HippieHQ1.6
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is a random sample from the full positive interactome, we can correct the values
for precision (Methods), but we need to know the actual positive to negative ratio.
The number of direct interactions in human has been estimated numerous times,
but with very different outcomes [Hart et al., 2006, Stumpf et al., 2008, Venkatesan
et al., 2009]. It ranges from 130,000 [Venkatesan et al., 2009] to 650,000 [Stumpf
et al., 2008] (225,000 in [Hart et al., 2006]). We therefore decided to perform two
corrections of precision, one for what we believe to be the lower boundary (100,000)
and one for an upper boundary (300,000). Results are shown in Fig. 5.4B. We did not
perform this correction for the C1 class because it would have required new ways to
correct for the interactions in the training set. For example, the lower bound positive
to negative ratio was violated when considering HippieHQ1.2 and 1.6 together. We
now would have had to estimate the ratio of false positives within our data sets, then
how many actual interactions between proteins (or close homologs) in HippieHQ1.2
are left for 1.6 etc. Such problems are much less prevalent if at least one target
interactor is different from all training proteins. By definition, all its interactions are
unknown at prediction time.

5.4.5 Analysis of Most Reliable PPIs
Predictions of PPIs are most useful when it is feasible to validate them via accurate
low-throughput wet-lab experiments. This is the roughly case when at least 1 in 20
predicted PPIs is an actual interaction, corresponding to a precision of 5%. Rather
pessimistic estimates of precision in Fig. 5.4B reach this point at a recall of about
4%, corresponding to 31,390 pairs for C2 and 60,754 pairs for C3. There is risk
that the pairs are somehow biased for certain proteins with which all other proteins
interact or that interactions only happen between a few highly connected proteins.
We performed a series of analysis on these pairs refuting such concerns.

We analyzed the highest scoring protein pairs of our full interactome prediction.
Our first concern was that all the pairs would only map to a small number proteins.
This was not the case as shown in Fig. 5.5. Going through the list of pairs from most
to least reliable (Fig. 5.5 (A) and (B): left to right on x-axis), the number of unique
proteins observed grows almost linearly for both pair sets C2 and C3 (black lines)
and in the end maps to 5,687 proteins for C2 and 5,473 for C3. The average node
degree is 5.5 for the C2 set and 11.1 for the C3 set.

Another possible issue was that the proteins, despite their diversity, only interact
with a few highly connected hub proteins. This would manifest in a few proteins
having very high degrees. Also this was not the case: again going from the most to
the least reliable pair, the maximum number of interaction partners of any protein (the
maximum degree) only jumps in the very beginning at around interaction 1,000 for
C2 and 5,000 for C3 (blue lines in Fig. 5.5 (A) and (B)). The worst point is arguably

132



5.4. Results

at interaction 2,500 in the C2 distribution, where 276 of 873 proteins interact with
the same protein. Even at this point, however, still almost 90% of the interactions
(2,500-276=2,224) do not involve this hub protein.

Finally, we calculated the degree distributions for all the highest scoring pairs,
again separately for C2 and C3 (Fig. 5.5C). They decrease exponentially, indicating
scale freeness according to Barabasi and Oltvai [2004], but the exponent is very
small (∼1.3 for C2 and ∼0.9 for C3), again showing that interactions are fairly
evenly distributed among the proteins.
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Figure 5.2: Comparison of the best two sequence-based remote interolog de-
tectors and our profile interaction kernel on the Hippie [Park and Marcotte,
2012] data sets. Cross-validations were performed with 10 folds and repeated 10
times (including resampling). In a single fold, precision was calculated every 4
proteins (∼5% recall). Consequently, every point is the average over 10*10=100
values. Standard deviations of precisions are high in low recall levels due to the
small sample sizes (overlaps between curves until ∼15% recall; not shown), but
standard errors are always below 2% (due to the high repetition number). The
differences between the curves are statistically significant at any point except for
‘PK-LC3’/’PK’ at 47% recall. ‘Sigprod’ [Martin et al., 2005] and ‘PIPE2’ [Pitre
et al., 2008] are the two best remote interolog predictors according to [Park and
Marcotte, 2012]. PK (profile kernel) is our profile interaction kernel and PK+LC3
also includes the LocTree3 filter (Methods). ‘PK+LC3’ does not span the entire
recall range because pairs of proteins predicted not to co-localize are removed from
the test sets. (A) Every protein pair is a remote interolog of any other pair. This
applies across train/test and positive/negative sets (Methods). Positive-negative ratio
is 1:1. (B) Only positive interactions are pairwise dissimilar. Negatives are sampled
randomly from the human proteome separately for each fold (ratio 1:10; Methods).
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Figure 5.3: Comparison of performance with more positive interactions in the
training sets. We increased the number of training interaction compared to the
original HippieHQ1.2_C3 data set (’non-red’) in two different ways. First (’all1’),
we kept the original proteins but added all high-quality interactions between them.
Then (’all2’), we also added interactions to other proteins while making sure no new
protein had an HVAL greater than 20 to any protein in a test interaction.
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Figure 5.4: Results of full interactome prediction. (A) Recall-precision curves
of raw results. We predicted all possible pairs between human proteins with our
new method, only excluding those used for training (HippieHQ1.2_C3). Each pair
was assigned to one of three categories (C1-3) based on the sequence similarity of
its proteins to the proteins in the training set (Methods). We tested the accuracy of
the predictions with high-quality interactions that had recently been added to the
Hippie database (HippieHQ1.6; solid lines). The dotted lines show the precisions
of random predictions and correspond to the ratio of positive to all interaction in
the respective category. (B) Corrected recall-precision curves. The results of (A)
are strong underestimates in absolute terms because the actual fraction of positive
interactions in human is much higher than in our data set (random lines in (A)). We
adjusted the precision values of the curves in (A) to what we believe is a lower (lower
curves) and an upper bound (upper curves) for this actual fraction based on recent
estimates in the literature. We again differentiated between categories C2 and C3,
but not C1 due to strong interference of training interactions.
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Figure 5.5: Analysis of highest scoring interaction pairs. We analyzed the inter-
actions scoring highest in our full interactome prediction (Results) separately for the
C2 and the C3 types of pairs (Methods). (A) The C2 pairs are sorted according to
score (x-axis), from highest (left) to lowest (right). We go through this list from high
to low scoring and record how many unique proteins are among the interactions that
we have already observed (black line) and how many interaction partners (i.e. node
degree) a protein has at the most (blue line). (B) Same as (A), only for C3 pairs. (C)
The degree distributions, i.e. the probabilities that a protein has a certain number of
interaction partners, calculated on all highest scoring pairs. For example, about 50%
of all proteins in the C2 set have between 1 and 5 interaction parters.
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5.5 Discussion

5.5.1 Hippie as the Source of High-quality PPIs
The most reliable sources for PPIs today are arguably the asymmetric units of high-
resolution crystal complexes. We had recently collected all such PPIs from the PDB,
but it was too small for statistically significant training/testing after redundancy
reduction (160 PPIs). Based on previous experience with the PDB, we also discarded
the idea of including lower resolution complexes due to a considerably higher error
rate. The Hippie database was a good alternative because of its simple yet effective
PPI scoring scheme, combining various indicators of PPI reliability. We chose the
top-10% cutoff after sampling the experimental evidence of a number of PPIs in the
full Hippie database sorted by score. As a verification, taking the top 25% like the
original authors increased the non-redundant data set size to only 1,075 interactions
(842 before), but significantly decreased prediction performance on the high-quality
interactions in the cross-validations (results not shown). The classification of target
interactions is slightly different than in [Park and Marcotte, 2012], but more suited
for full interactome predictions because of the way sequence similarity is accounted
for. For example, the two highlighted interactions in Fig. 5.1B are likely interologs,
but would be category C3 according to [Park and Marcotte, 2012]. They are C1 in
our classification.

5.5.2 Profile Interaction Kernel and LocTree3 Improve
Sequence-based PPI Prediction

We demonstrate that our series of small methodological changes drastically improve
sequence-based PPI prediction. Properly using the evolutionary profile kernel de-
veloped by the Leslie group alone is significantly better than other state-of-the-art
methods. LocTree3 as a filter is accurate enough to increase precision by filtering
out interactions that are improbable compartmentally while retaining those that
are. A new rigorous way to reduce interaction redundancy improves classifiers in
low recall regions. We show this with three different cross-validations. The first
was independently set up by others, the second measures prediction ability without
exploiting sequence similarity between proteins and the third simulates human PPI
prediction on an interactome scale.
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5.5.3 Sampling Strategy of Positive and Negative Interactions
of Crucial Importance

Park and Marcotte [2012] discovered a ‘flaw’ in the evaluation of PPI prediction
methods as their accuracy on a new pair of proteins depends on whether the proteins
have already appeared in the training set. There is, however, no reason to assume that
this bias affects only test interactions. Machine learning devices are known to react
sensitively to bias in the training set and it is usually a good choice to eliminate it as
long as enough data is available. We show that even 6 times more positive redundant
interactions in the training set consistently leads to worse classifiers than the original
unbiased data set.

Another issue that remained unaddressed by Park and Marcotte [2012] was the
effect of the non-interacting pairs. A machine learning device does not differentiate
between interacting/non-interaction, only between one class or the other. Therefore,
the flaw in the positives should be observable for the negatives, too. This shows in the
absolute values of the first and second Hippie-based cross-validation. In the first, the
positive-to-negative ratio is ten times higher than in the second and yet our method is
hardly better, as is the case for Sigprod. This happens because of sequence similarity
between negatives of the training and the test sets (PIPE2 is trained only on positive
interactions!). Ultimately, this is not a mistake: we can safely sample random
pairs from the human proteome until every protein is selected at least once and
claim that negative C2 and C3 cases do not exist. A crucial point, however, arrives
when sampling so many negatives that the sample would contain a considerable
number of actually interacting pairs. Not including pairs found interacting in any
experiments would ultimately transform the problem of PPI prediction into finding
reliable among unreliable interactions and neglect the problem of discovering yet
unknown interactions. At this point, we believe a compromise is the best solution for
optimal performance: there must be enough negatives to cover the human proteome
entirely, ideally multiple times, but the set must remain small enough to not contain
too much bias from excluded known interactions or wrongly included actual PPIs.
The ∼80,000 negative pairs that we sampled for our full interactome prediction fell
well within this range.

5.5.4 Full Interactome Prediction
We predicted all human protein pairs to provide candidate interactions that can be
verified in low-throughput experiments. At the same time, this full interactome
scan eliminated the need to subsample negatives in the test set, making estimates
particularly in the lower recall regions more precise. The new positive interactions
of HippieHQ1.6 constituted an independent positive test set and minimized potential
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over-optimizations on the HippieHQ1.2 interactions. Finally, the need for computa-
tional predictions of PPIs remains big: reliable interactions in Hippie1.6 as defined
by the original authors (top 25%) still cover only 5,859 of the 20,249 human proteins.
With the quality we demanded for training our classifiers, this is number is further
reduced to 3,878.
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5.6 Conclusion
In order to improve our understanding of biological processes on the molecular level,
we need to determine which proteins are interacting. The slow speed, inaccuracy
and limited applicability of experimental methods leaves sequence based prediction
of protein-protein interactions (PPIs) a crucial subject in computational biology.
We introduced a new SVM-based based approach that relies only on sequence and
improves over the best other state-of-the-art methods for human interactions. Using
evolutionary profiles and subcellular localization, we increase precision across all
levels of recall. We also demonstrated that crucial importance lies on the data
sampling strategy for the training data set. Only a carefully selected fraction of
all available PPIs is necessary for optimal training and much importance lies on
the similarity between among negative interactions. Finally, we presented the first
interactome-scale recall-precision curve by predicting all 200 million protein pairs
in human and interpolating precision values using recent interactome size estimates
for human.

141



Chapter 6

Accurate Homology-based Inference
of Protein Function∗

6.1 Outline
Predicting PPIs is immediately linked to network visualization (e.g. in Cytoscape
[Shannon et al., 2003]; Introduction) and functional analysis (e.g. with BiNGO
[Maere et al., 2005]). One of the most-often used types of analysis is Gene Ontology
(GO; [Ashburner et al., 2000]) term enrichment. Most proteins, however are not
experimentally annotated and need to be predicted. Any method that de novo predicts
protein function should do better than random. More challenging, it also ought to
outperform simple homology-based inference. Here, we describe a few methods that
predict protein function exclusively through homology. Together, they set the bar
or lower limit for future improvements. During the development of these methods,
we faced two surprises. Firstly, our most successful implementation for the baseline
ranked very high in a recent independent assessment (CAFA; [Radivojac et al., 2013]).
However, this work also revealed that the precise details of the implementation are
crucial: methods span from top to bottom performers at CAFA. Secondly, we propose
a new rigorous measure to compare predicted and experimental annotations. It puts
more emphasis on the details of protein function than the other measures employed
by CAFA and may best reflect the expectations of users. Clearly, the definition
of proper goals remains one major objective for CAFA. Finally, we introduce a
new combined sequence-based in-silico GO term predictor that is fast, achieves
state-of-the-art accuracy and outputs annotations that can easily be traced back to
experimental information.

∗This chapter is based on the publication [Hamp et al., 2013b]
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6.2 Introduction

6.2.1 Our Contribution to CAFA
UniProt [Consortium, 2011] holds over 22 million sequences (May 2012), but reliable
and detailed experimental annotations exist for fewer than 1% of these. GO, the
Gene Ontology [Ashburner et al., 2000] has become the gold standard for function
annotation and many methods have emerged that predict GO annotations [Rentzsch
and Orengo, 2009]. Due to various problems, it has been almost impossible to
assess how well these methods perform. CAFA (Critical Assessment of Function
Annotations) has arisen to address the challenges by a comprehensive independent
comparison [Radivojac et al., 2013]. CAFA also drove our work presented here.
Three teams of students implemented three different methods predicting function
through homology, i.e. through inference from experimental annotations of related
proteins. All three groups began with the same description what to do, and that
description was more comprehensive and detailed than many descriptions of methods
in papers. Two of the three methods were surprisingly competitive in CAFA and
outperformed other similar methods. This triggered the decision to enhance and
combine these classifiers in one meta predictor. This post-CAFA method did not
participate in CAFA. Would it have, it might have reached the top-10 ranks among
all participants. Either way, it suggests several ways for the improvement of function
prediction by homology, as demonstrated in this post-CAFA evaluation.

Additionally, we developed a new metric to compare predicted and actual GO
annotations. It provides insight into how methods perform with respect to the
prediction of the exact functions. This turns out to be largely neglected by existing
measures.

6.2.2 Related Work
Several advanced methods have appeared that also predict protein function through
homology-based inference. ConFunc [Wass and Sternberg, 2008] first assigns the
proteins found via PSI-BLAST to groups so that all members of a group share a
particular GO term. Looking at the alignments in each group, the method then
identifies conserved functional residues, scores them and only outputs the groups
above a certain combined score. GOSLING [Jones et al., 2008] first derives various
features of the terms found in the BLAST result (e.g. GO evidence code, E-Value
and bit score). Using many decision trees, the prediction is then flagged as either
correct or incorrect. PFP [Hawkins et al., 2006] follows an approach very similar
to GOtcha [Martin et al., 2004], but also considers highly insignificant BLAST hits
and co-occurrence between GO terms. An extension of GOtcha, ESG [Chitale et al.,
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2009], additionally differentiates between the hits found in different PSI-BLAST
iterations. GOstruct [Sokolov and Ben-Hur, 2010] takes the idea of co-occurrence to
the next level and builds a sophisticated SVM machinery around ‘structured output
spaces’. This refers to the extension of the input space (E-Values, asf.) with all
experimentally observed GO-subgraphs. FANN-GO [Clark and Radivojac, 2011]
uses E-Values as inputs to neural networks. Methods based on data sources other than
similarity to already annotated proteins are described in a recent review [Rentzsch
and Orengo, 2009].
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6.3 Methods

6.3.1 GO (Gene Ontology) for CAFA
GO has three parts: Molecular Function Ontology (MFO), Biological Process Ontol-
ogy (BPO) and Cellular Component Ontology (CCO). CAFA considered only the
MFO and BPO. Both correspond to two directed acyclic graphs and capture different
aspects of protein function. Functional keywords (‘GO terms’) are nodes and their
relationships are labeled edges. The ontology is hierarchical: following the edges
from a node, each new term corresponds to a more general concept of the original
function. All paths converge at the root node, which can simply be interpreted as,
e.g., has a molecular function. The complete functional annotation of each protein
has two subgraphs (MFO and BPO). If a subgraph does not contain all the terms
that can be inferred by going from its nodes to the root, we perform a propagation.
Given a set of GO terms, this operation refers to its extension with all ancestral
terms. Ancestors can be found by following all outgoing paths from the terms to the
root: each visited node is an ancestor. If the GO terms have scores (e.g. to reflect
their reliability), the latter are also propagated: each parent term is simply assigned
the maximum score of its children. Sometimes, a propagated subgraph needs to be
reduced again to the leaf terms. A leaf term is not the parent of any other term in
the propagation and corresponds to the most exact description of a function for the
given protein. In order to integrate the operations above into our methods, we used
the graph_path table provided by the GO consortium. It contains all possible paths
in the entire GO graph, pre-calculated by specific path inference rules.

6.3.2 Assessment of Predicted GO Annotations
Analogously to CAFA, we use fixed sets of target proteins to compare prediction
methods. Each target corresponds to one or two propagated GO subgraphs of experi-
mentally validated terms (depending on whether both BPO and MFO annotations are
available or only one of the two). A method is supposed to predict these subgraphs
(e.g. the left tree in Fig. 6.1) and assign a reliability between 0.0 and 1.0 to each
predicted term (e.g. green nodes in Fig. 6.1). Then we assess their accuracy in the
following ways, separately for the MFO and BPO. For the first two measures, we
exclusively used the original CAFA implementations, GO version, targets and target
annotations. Only to implement our new leaf threshold measure, we slightly adapted
the programs.

Top-20. Given the prediction of a single protein, the top-20 measure first reduces
the prediction to the terms with the highest reliability (Fig 6.1: green nodes with
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score 0.8). It then defines recall as the number of correctly predicted GO terms
divided by the number of all true GO terms. Precision corresponds to the number of
correctly predicted GO terms divided by the number of all predicted GO terms. In
Fig. 6.1, for example, recall is 1/11 = 0.09 and precision is 1/2 = 0.5. If a target is
not predicted at all, it is assigned a recall of 0.0. Precision is not calculated in such a
case and has no influence. Repeating this for all targets, we obtain the average recall
and precision. This is the first point in the recall-precision curve. In order to fill the
curve, we gradually add the terms with 2nd, 3rd, . . . , 20th highest reliability to the
predictions and recalculate all of the above.

Threshold. The threshold measure [Clark and Radivojac, 2011] follows a similar
concept as top-20. Instead of considering a certain number of terms for each target at
a time the measure demands a threshold between 0.0 and 1.0. In case of a threshold
of 0.82, for example, each prediction is reduced to terms with a reliability greater
than or equal to 0.82. Recall and precision can then be calculated analogously
to the top-20 measure. A curve is obtained by lowering the threshold in steps of
0.01 from 1.0 to 0.0. Leaf threshold: The leaf threshold measure, finally, operates
exclusively on the leaves of a propagation (red nodes in Fig. 6.1). First, predicted
and experimental subgraphs are reduced to their leaf terms (Fig. 6.1: experimental
leaves on the left, predicted leaves on the right). Then, we define a threshold T as
before, e.g. T=0.82, and reduce each prediction to the leaves with a reliability ≥T.
The recall of a single prediction is given by the number of correctly predicted leaves
divided by the number of all experimental leaves. Precision is defined analogously.
Consequently, we can derive a recall-precision curve in the same way as for the
threshold measure. In Fig. 6.1, we obtain the first non-empty prediction as soon as
the threshold reaches 0.80 (the highest score of all predicted leaves is 0.8). In this
case, recall and precision correspond to 0/3 = 0.0 and 0/1 = 0.0.

Leaf Threshold. The leaf threshold measure is orthogonal to the top-20 and thresh-
old measure: in the case of low recall, for example, the former two measures remove
specific GO terms from the prediction and retain only the more general terms. Nat-
urally, more general terms have a higher chance to overlap with the experimental
propagation than specific terms, resulting in higher precision. However, the leaves of
this reduced prediction are not more likely to overlap with the leaves of the experi-
mental annotation. If the full prediction was the best estimate of the experimental
leaves, the reduced version could even result in recall=precision=0.0 by the leaf
threshold measure, because the reduction might remove all correctly predicted leaves.
Our new measure assesses how well the exact functions of a protein are predicted.
Too general or specific predictions are penalized.
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Maximum F1 score. The top-20 and threshold measure were the two main metrics
in the CAFA meeting. The leaf measure is introduced here for the first time. In order
to rank methods, the CAFA organizers additionally used the maximum F1 score over
all recall-precision pairs obtained with the threshold measure (Fmax). The F1 score
is defined as:

F1 =
2∗ precision∗ recall

precision+ recall
(6.1)

We also employed Fmax in order to choose among alternative parameters during
method development after CAFA.

6.3.3 Homology-based Methods
All the methods that we presented at CAFA were developed as part of the exercises
of a regular lecture at the Technical University in Munich (year 1-3 in bioinformatics
master). Due to limitations in time and resources, our methods had to focus on a
k-nearest-neighbor approach and to only use the hits returned from a PSI-BLAST
[Altschul et al., 1997] query against Swiss-Prot [Schneider et al., 2009]. They were
supposed to optimize the F1 score (threshold measure) of the leaf term with the
highest reliability. We split the 16 participating students into three groups, each of
which had to develop an own implementation. After 8 weeks of time and one week
before the CAFA submission deadline, we received the following three methods.
Their key features are summarized in Table 6.1.

6.3.3.1 StudentA

Begin with 2-iteration PSI-BLAST against all Swiss-Prot proteins with GO anno-
tations (E-Value <0.1). Extract GO terms of the six top PSI-BLAST hits (or all if
fewer than 6 hits found). Each identified GO term is scored 1.0 if the term is found
in all 6 hits and 0.5 otherwise. Once the term-score pairs have been extracted, only
the leaf terms of their propagation are retained. Then apply the following filter to
reduce functional redundancy: (i) create branches by propagating each predicted leaf
term separately; (ii) calculate all pairwise branch overlaps, with the overlap being
defined as the number of common GO terms in both branches divided by the average
branch size.

Next, cluster all branches so that each pair from two different clusters overlaps
less than 10%. For each cluster, the branch with the longest path to the root is
chosen, reduced to its original leaf term with the original score and output to the
user. As the redundancy reduction may filter out highly supported terms, we apply a
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Figure 6.1: A functional annotation and its prediction. This figure shows one
annotation of a sample protein A and its prediction. Each node in a graph corresponds
to one GO term and the edges to relationships such as ‘is a’ or ‘part of’. The edges
always point to the root node (either ‘MFO’ or ‘BPO’), which by itself is not
informative and discarded in every evaluation. For clarity, the left subgraph only
shows the experimental annotation of A. This means, all GO terms have either been
experimentally verified or inferred from the same. The red circles indicate the leaf
terms, i.e. the nodes which are not a parent of any other term. In the right subgraph,
we see the experimental annotation again, but overlaid with predicted terms (green)
and their reliabilities. This time, the leaf terms correspond to the predicted GO
annotation, instead of the actual annotation.

final correction: if any pair of branches from previous steps overlaps over 90%, the
term common to both and with the longest path to the root, i.e., the lowest common
ancestor, is added to the result. See Fig. 6.2 for an illustration.
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StudentA StudentB StudentC

Input Features GO term counts E-Values GO term counts;
percentage positives

Scoring Scheme 1 2 2
Propagation Types maximum child maximum child maximum child;

cumulative
Score Normalization
Across Proteins

No Yes No

Table 6.1: Comparison of student methods. In this table, we have summarized
the key differences between student methods. Input features include: the number of
times a GO term appeared in the annotations of homologous proteins; the E-Values of
the homologous proteins; and the percentage of ‘positive’ columns in their alignment
matrices. Some groups used more than one way to score a GO term or differed
during the propagation of a prediction by assigning a node the maximum value of its
children or their sum. StudentB normalized the final score of a GO term to improve
comparability among proteins.

Figure 6.2: Flow chart of StudentA. StudentA first reduces the BLAST output to
the best 6 hits. GO terms that are part of the annotation in all 6 hits are assigned a
score of 1.0, all others 0.5. Then the predicted GO graph is assembled by propagating
the scores and pruned again during a functional redundancy reduction (see text).
This reduced graph is output to the user..

6.3.3.2 StudentB

Begin with 2-iteration PSI-BLAST against all Swiss-Prot proteins with GO annota-
tions (E-Value <0.002 for 1st and E-Value <0.01 for 2nd round). Each PSI-BLAST
hit is associated with the propagation of its GO terms and each term in the propa-
gation is associated with the PSI-BLAST E-Value of the hit. We then define two
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scores.
The template quality score gauges the reliability of the entire PSI-BLAST query

with respect to the goal of assigning function. First, we calculate the raw template
score as the average over the logarithms of all returned PSI-BLAST E-Values plus
twice the standard deviation (also derived from the log(E-Value)). The standard
deviation is added to correct for cases with relatively low top scores and relatively
high averages. This raw template score is normalized into a value from 0 to 1 by
mapping it into a percentile bin obtained from running PSI-BLAST in the same
fashion on a sample of all Swiss-Prot proteins (e.g. a score obtained by 90% of the
samples for all Swiss-Prot is scored 0.1=1-0.9). We call this percentile the template
quality score.

The combined leaf score measures the reliability of each predicted leaf. First, we
compile the propagated set of all GO terms for all PSI-BLAST hits. Each term can
occur in multiple hits and thus be associated with multiple E-Values. The support of
a term is defined as the sum over the logarithm of its E-Values divided by the sum
of the logarithm over the E-Values of all hits. The combined leaf score of a leaf in
the set of GO terms above is then given by the average support of itself and all of its
ancestors. Finally, we multiply template quality and combined leaf score for each
leaf, combine all the leaf-score pairs in one set and output its propagation to the user.
See Fig. 6.3 for an illustration.

6.3.3.3 StudentC

Begin with 2-iteration PSI-BLAST against all Swiss-Prot proteins with GO an-
notations (E-Value <0.1). Count how often a particular GO term appeared in the
PSI-BLAST hits (without propagation). All nodes with counts are propagated
through the GO tree. Instead of taking the maximum count of all children at each
parent node, however, their values are summed up and added to that of the parent
node (normalization to [0,1] by division by maximal value). We call this type of
scoring the max support. The PSI-BLAST scores, on the other hand, are considered
as follows. For each PSI-BLAST hit, we first read off the positive identity. This
value is included in the default BLAST output and corresponds to the number of
positives divided by the alignment length. (Each mutation column in the default
BLAST output with a positive score by BLOSUM62 is a positive.) Then, we multiply
the max support of each term with the highest associated positive identity (we may
have many positive identities, because a GO term can be associated with multiple
PSI-BLAST hits). The method outputs only the one branch corresponding to the
highest scoring leaf term. See Fig. 6.4 for an illustration.
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Figure 6.3: Flow chart of StudentB. StudentB first logarithmizes the E-Values of
all BLAST hits and averages them. The result is mapped into a range from 0 to
1 by looking up its percentile in a precompiled distribution. This percentile is the
Template Quality Score and reflects how well we can predict the entire target. To
score single terms, we multiply it with the score of each predicted leaf, i.e. the
Combined Leaf Score. This is the average of the logarithmized E-Values of the
nodes on the path from the leaf to the root. The propagation of the leaf terms and
their scores is output to the user.
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Figure 6.4: Flow chart of StudentC. StudentC first counts how often each GO
term appeared in the BLAST hits and performs a cumulative propagation: for each
inner node, all counts of its child terms are summed up and added to its own count
(depth-first traversal). Dividing each count by that of the root term, we obtain a score
between 0 and 1 for each term. In parallel, we calculate a second score for each
term by assigning it the maximum percentage of positives of all associated hits (see
text). Finally, we multiply the two scores, determine the highest scoring leaf term
and output only its propagation to the user.

6.3.4 Post-CAFA Re-parameterization
After CAFA, we parameterized the above three basic homology-inference methods.
For StudentA, we introduced the options to exclude predictions with a score of 0.5
and to choose the number of PSI-BLAST hits to consider (before: 6; now: 1, 5 or 9).
For StudentC, we added alternative PSI-BLAST E-Value thresholds (before: 10−1;
now: 100,10−3 or 10−6 and percentage pairwise sequence identity as an alternative
to the positive identity. We also enabled the optional output of all branches, instead
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of restricting it to the most probable one. The original implementation of StudentB
had a bug: an alternative graph_path table inverted the order of the columns by
mistake. The results of this bug were submitted to CAFA. We fixed the bug and
allowed for alternatives in the thresholds for E-Values and maximum numbers of
PSI-BLAST hits (E-Value before: 10−2; now: 100,10−3 or 10−6; max. number of
hits before: 250 [PSI-BLAST default]; now: 5, 50 or 500).

For all methods, we also add the choice of the number of PSI-BLAST iterations
(before: 2 for all methods; now: 1, 2 or 3). Finally, we enabled the filtering out of
Swiss-Prot annotations with unclear experimental support (optional restriction to
the following experimental GO evidence codes: IDA, IMP, IPI, IGI, IEP, TAS, IC,
EXP).

The re-parameterization created 36, 54, and 72 different parameter combinations
for StudentA- C, respectively. We optimized the parameters by picking the combi-
nation leading to the highest Fmax (threshold measure; Eq. 6.1) on a hold-out data
set. This data set comprised all Swiss-Prot proteins annotated with experimentally
verified GO terms in 2010 (‘Set 2010’). All proteins annotated before 2010 served
as templates (‘Set <2010’). This ascertained that there was no overlap to the CAFA
targets. In the following, we refer to the optimized student methods as StudentA’-C’.

6.3.5 Post-CAFA Method Combination
Due to the end of the lecture during which the methods were developed, we could
not combine them. We did this also post-CAFA. We randomly split Set 2010 into
two equal parts (Set 2010a and 2010b). Parameters were optimized on the first split
(2010a; as before, only with 2010a instead of 2010). These optimized variants of
StudentA-C (say StudentA”-C”) were applied to the second split (2010b). Then, we
switched the roles of the two sets and repeated the procedure to obtain predictions
for each protein in Set 2010. With these predictions, we trained a commonly used
meta classifier [Ming and Witten, 1999], namely a weighted least-squares linear
regression model. This corresponded to the formula x*A’ + y*B’ + z*C’ + i = p,
where A’, B’ and C’ are the results of the student methods for each predicted GO
term and [x-z] and i are the coefficients to optimize in the regression so that p reflects
the reliability of the GO term. In order to meta-predict a new target protein, we first
annotate it with methods StudentA’-C’. Each predicted GO term is then converted
into a vector of three elements (one dimension for each method) and put into the
formula above. The resulting value of p is the reliability of the GO term for the given
target. We refer to this predictor as MetaStudent’.
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6.3.6 Baseline Classifiers
The CAFA organizers implemented the following three baseline classifiers to gauge
the improvement of current function predictiors over old or naive methods [Clark and
Radivojac, 2011]. (1) Priors. Every target has the same annotations and each term’s
score is the probability of that term occurring in Swiss-Prot. (2) BLAST. Target
annotations are simply the maximum sequence identity returned by BLAST under
default parameters when aligning a target with all proteins annotated with a given
term. (3) GOtcha. Using the same BLAST results as BLAST, GOtcha [Martin et al.,
2004] I-Scores are calculated as the sum of the negative logarithm of the E-Value of
the alignment between the target protein and all proteins associated with a given term.
Additionally, we introduce Priors’, which simply returns the entire GO annotation of
a random Swiss-Prot protein. Scores are assigned as in Priors.

6.3.7 Data Sets
We used five different data sets for method development and evaluation. All are
exclusively derived from GO and the GO annotated proteins from Swiss-Prot and
only differ in their release dates. The first three methods used the GO/Swiss-Prot
releases from Oct. 2010 (‘Set <2010_10’) for both development and group-internal
evaluations. We updated to the versions from Dec. 2010 (‘Set <2010_12’) and
submitted all 48,298 CAFA targets with each method. For post-CAFA developments,
we used the release of Jan. 2010 as the source for template annotations (‘Set
<2010’). The independent data set needed for post-CAFA parameter optimization
then contained all proteins annotated between January and December 2010 (‘Set
2010’). Analogously to CAFA, we ignored proteins that had any GO annotation
before January 2010 and only retained experimental annotations in the remaining
proteins. Experimental GO evidence codes were: IDA, IMP, IPI, IGI, IEP, TAS, IC,
and EXP (same as in CAFA). ‘Set_2010’ contained 1752 targets with BPO and 1351
with MFO annotations.

The CAFA organizers provided the original CAFA targets (436 with BPO and 366
with MFO annotations). They correspond to the proteins annotated between January
and May 2011 (‘Set 2011’). This set was derived following a similar algorithm as
those in ‘Set 2010’. The difference was that the CAFA organizers also excluded
annotations from the GOA project in proteins annotated before January 2011 (a
resource we left untouched). We used the annotations in ‘Set <2010_12’ to predict
proteins in ‘Set 2011’. Note that this implied that all our post-CAFA optimization
could have been accomplished completely before the submission to CAFA (we just
had not been fast enough). Nevertheless, we clearly label all the new methods as
‘post-CAFA’ in this work.
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6.4 Results

6.4.1 Wide Performance Spread of Homology-based Inference
Our three homology-based predictors of protein function (StudentA-C) performed
very differently (Fig. 6.5, dark blue; note: all data compiled exclusively on the
CAFA targets and with data available before the CAFA submission). This was true
for both categories, namely for biological process (BPO, Fig. 6.5, top panels) and for
molecular function (MFO, Fig. 6.5, lower panels) and for all performance measures
(Fig. 6.5: each column signifies one particular measure). For instance, StudentA
performed slightly better than StudentC by the top-20 measure (Methods) and slightly
worse by the threshold criterion (Methods). While StudentA and StudentC mostly
surpassed the baseline tests (PRIORS and BLAST), they even topped the GOtcha
baseline (dark green) for many thresholds. In the BPO category (threshold measure),
StudentC actually outperformed all but two of the other 36 CAFA predictors until a
recall of about 0.2 (not shown). Note that the curves for StudentA-C in Fig. 6.5 are
identical to those calculated by the CAFA organizers.

6.4.2 Post-CAFA Optimization Renders Homology-based
Inference Competitive

When we changed our methods post-CAFA, we carefully avoided using any infor-
mation that was not available at the CAFA submission deadline. Nevertheless, we
are treating our optimized predictors (StudentA’-C’, and MetaStudent’) differently
to clearly mark the point that these methods did not compete at CAFA. All changes
were straightforward (e.g. optimization of simple thresholds) in the sense that they
did not require any of the knowledge that we gained at CAFA. They would have been
done by anyone with enough time before submission. This reality is important be-
cause they improved performance markedly. Our best single method that exclusively
used homology information (StudentC’) even outperformed the advanced method
GOtcha in almost all respects. MetaStudent’, the combination of all three methods,
was consistently on par or better than all others, including GOtcha.

6.4.3 Leaf Threshold Measure Suggested Very Different View
There is evidence that the top-20 and the threshold measure penalize methods that
provide a decision as to which function is predicted and favor methods that output
huge lists of scored GO terms (Discussion). If so, their use as the scoring to be
optimized may go against the interest of users (Discussion). In contrast, our new
leaf threshold measure (Methods) favors predictions with reasonable amounts of
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terms over those with overly many. It first reduces all predicted GO terms to the leaf
terms and then compares those to the leaves of the true annotation. Achieving, e.g., a
recall of 1.0 simply by outputting the entire GO is therefore impossible. This reveals
just how bloated predictions can be (Fig. 6.5: rightmost panels): For instance, the
baseline background ‘method’ Priors (i.e., predicting all GO terms for each target and
scoring them by frequency) is now numerically reduced to where it belongs, namely
to a very bad performance. Priors’ (i.e., randomly picking a protein annotation from
Swiss-Prot and scoring terms by frequency), on the other hand, shows up competitive
for levels of recall <0.1 in the MFO category. Since also Priors stopped at recall
0.1, there appears to exist a very common low level leaf in GO. In the BPO, a larger
and more complex hierarchy, Priors’ fails, too. It remains unclear whether the bad
performance of other baseline classifiers (BLAST, GOtcha) under the leaf threshold
is due to unnecessarily large predictions in order to achieve high recall or to deeper
methodological problems. In any case, our results show that even under this most
rigorous measure, we can see fine grained separations between methods.

6.4.4 Homology-based Method Ranks Very High
CAFA decided to rank methods according to the Fmax score on the threshold mea-
sure (Eq. 6.1). For compatibility, we followed this approach (Table 6.2: all methods
provided in this contribution, plus the top mark presented at CAFA, namely Func-
tionSpace). For comparison, we also provide the scores for the top ranking method
(FunctionSpace). The complete list presented at CAFA contained 36 methods; for 15
of these, the ranks have been released. Of all methods in Table 6.2, only StudentA,
Gotcha, and ‘best’ were in the list. StudentB-C were excluded because only one
method per group was considered (we had correctly chosen Student A for this).
StudentA’-C’ and MetaStudent’ were not ranked as they were developed post-CAFA
with pre-CAFA data. The best homology-only method (StudentA) was in the top 8
only for BPO, while it dropped to rank 13 for MFO. In contrast, two of the baseline
methods, namely Priors and Gotcha both ranked higher for MFO than for BPO. In
fact, StudentA ranked worse than both baseline methods according to MFO and
better than both for BPO. All our homology-only post-CAFA methods reached F1
scores consistently higher than that of StudentA. Our best method (MetaStudent’)
performed rather well by this criterion and would have ranked in the list of the top
three at CAFA, had the method been completed in time. Its F1 scores would have
been very similar to those of the top contender (FunctionSpace).
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Figure 6.5: Results of evaluations before and after CAFA. Here, we show the
results of all methods for each ontology and measure. Baseline classifiers share the
same color (cyan), just like methods corresponding to the same design, but different
parameter values (blue). Curves derived from the CAFA organizers are solid and
bold, otherwise thin and dotted. As the area between recall 0.0 - 0.2 and precision
0.45 – 0.55 is extremely crowded in the BPO threshold measure plot, we provide an
enlarged view with the inlet. In the BPO leaf threshold measure plot, Priors’ is at the
origin (0.0, 0.0).

6.4.5 Ranks Varied Significantly with Measure
We expanded the ranking to include all measures shown in Fig. 6.5 (Table 6.3). As
before, we reduced each recall-precision curve to one maximum F1 score and used
this value to define the rank of the respective method for this measure. There were
11 methods, so that ranks always ranged from 1 to 11. Depending on the method,
the top and lowest ranks differed by 2 to 7. The average difference for alternative
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F1 BPO Rank BPO F1 MFO Rank MFO
Presented@CAFA

GOtcha 0.29 13 0.47 4
BLAST 0.21 - 0.34 -
Priors 0.27 15 0.41 12
StudentA 0.32 8 0.40 13
StudentB 0.15 - 0.20 -
StudentC 0.28 14 0.36 -
Best@CAFA 0.37 1 0.49 1

Post-CAFA

Priors’ 0.20 - 0.29 -
Student A’ 0.33 8 0.43 10
Student B’ 0.36 3 0.45 7
Student C’ 0.34 6 0.48 3
MetaStudent’ 0.36 3 0.48 3

Table 6.2: Ranking of methods with respect to the maximum F1 score of the
threshold measure curves. This table shows the maximum F1 score (Fmax) of each
threshold measure curve in Fig. 6.5 and its rank in the list of competing methods
which was shown at CAFA. This list actually consists of 36 predictors, but only the
scores and ranks of the top 15 performers have been released. Classifiers which are
actually part of this list are kept in bold. Ranks of other methods are hypothetical,
either because calculated after CAFA or because discarded by the CAFA organizers.
They considered only one method per participating group and we chose method A.
Results for StudentB were compiled with the bug (Methods).

measures was 3.8. Put differently, no single method always had the same rank and,
on average, the differences spanned over one third of the entire spectrum.
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BPO MFO

Top-20 Threshold Leaf Top-20 Threshold Leaf
Priors 8 8 11 7 6 11
Priors’ 10 10 10 10 10 6
BLAST 9 9 9 6 9 10
GOtcha 6 6 8 2 3 9
StudentA 5 5 5 8 7 5
StudentA’ 3 4 4 5 5 2
StudentB 11 11 7 11 11 7
StudentB’ 2 2 1 3 4 1
StudentC 7 7 6 9 8 8
StudentC’ 4 3 3 4 2 4
MetaStudent’ 1 1 2 1 1 3

Table 6.3: Ranking of methods by maximal F1 score for various measures. We
calculated the maximum F1 score (Eqn. 6.1) for each method and curve presented in
Fig. 6.5 and ranked the methods accordingly. The number in each cell is the rank of
the method in the respective category. As we evaluated 11 different methods, ranks
range from 1 (best) to 11 (worst). Results for StudentB were compiled with the bug
(Methods).
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6.5 Discussion

6.5.1 A New Baseline for Simple Homology Based Inference
CAFA provided a common ground to test our student methods with experimental
annotations unknown at the time of prediction. These initial methods defined some
new lower bounds for the performance of simple homology-based inference (e.g.
StudentA and StudentC for BPO). Our post-CAFA optimizations were carried out
exclusively with data available before the CAFA submission deadline. Hence, we
postulate that our new results could have been presented at CAFA, had we been
ready in time. They show that simple homology based inference can compete with
state-of-the-art prediction methods. Considering the wealth of data that we did not
use, this suggests large room for improvement.

6.5.2 Similar Methods Can Differ Substantially
Nearest neighbor based homology inference can be realized in surprisingly many
ways. The details of an implementation may lead to almost random predictions
(StudentB, BLAST) or to state-of-the-art tools (optimized student methods, GOtcha).
This pertains to both design choices and other free parameters. For example, score
normalization across targets appeared deleterious for low-recall precision (Stu-
dentB’). In contrast, restricting predictions to the most probable leaf can boost
this aspect of performance (StudentC). Analyzing the impact of various free param-
eters during the optimization process (data not shown), we also found the choice
between using all or only experimental GO annotations to be critical: StudentA’
and StudentC’ only approached the performance of GOtcha in the MFO category
because they focused on experimental annotations.

6.5.3 CAFA Measures Seem to Favor Unspecific Predictions
The difference in the performance of Priors and Priors’ for the top-20 and threshold
measures must be the result of Priors’ reducing predictions to observed protein
annotations. Both predictors use the same scoring (term frequencies). To understand
this effect, consider a minimal scoring threshold of 0.1. This defines one point in
a recall precision curve. Any term with a frequency of, e.g., 0.15 will be a correct
prediction for about 15% of the targets with Priors, because this predictor always
predicts the entire GO ontology. In contrast, Priors’ will pick this term in only about
15% of all cases, reducing the chance to predict it correctly to 0.15*0.15 = 0.02 =
2%. Put simply, Priors finds many more true positives than Priors’ at any reasonable
threshold. Superfluous predictions, on the other hand, should be more frequent
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for Priors than for Priors’, because Priors always predicts all terms above 0.1 and
Priors’ only a fraction. Depending on which of those two error forces is stronger,
either Priors or Priors’ is preferable for top-20 and threshold. At least for the GO
and typical Swiss-Prot annotations, the incorporation of many false positives in the
prediction seems highly favorable (Priors). We would be surprised if this effect was
limited to Priors and Priors’ and not observable for most other scoring schemes.

6.5.4 The Leaf Threshold Measure Challenges Existing Metrics
The leaf threshold measure sheds a brighter light onto many results presented at
CAFA. Now, baseline classifiers are hugely outperformed by, for instance, homology-
based methods and also a different type of random predictor is favorable (Priors’).
This can be explained by a simple example: assume the propagated annotation of
a single-function aldolase enzyme contains four terms. Predicting it, we obtain,
e.g., a subgraph of 20 terms in which the four highest scoring terms are correct and
the others are wrong According to the top-20 and threshold measure, this is very
good: We reach a recall of 1.0 with a precision of 1.0 (first four terms). Only when
considering all predictions, precision drops to 0.2 (4/[4+16]). We argue that this
type of measure does not reflect performance from a user’s point of view. Using all
predicted terms, he or she will end up with the precision of the highest recall. Even
considering the predicted reliability of each term, the user still has to decide which
terms are correct and which are not: the reliability threshold separating true from
false terms is unknown. The odds of choosing a threshold exactly between the score
of the 4th term (correct) and the 5th term (false) are low. But exactly this choice is
assumed by the top-20 and threshold measures and can highly bias exact function
prediction, as evident in the results of the leaf threshold measure. The latter yields
a recall and precision of 1.0 only if the prediction solely consists of the first four
highest scoring terms. Note that also restricting the prediction to scores above a
certain threshold per default does not solve the problem: first of all, we would have
to find this global threshold that leads to the best leaf accuracy (a minimal change
of the threshold can lead to entirely new leaves and a new number of leaves). This,
however, should clearly be the task of the method developer, not of the assessor.
Secondly, even with the best threshold, a small internal change of the method might
still lead to better performance. For instance, consider a variable threshold that
depends on the target (instead of one global threshold) or a restriction of the output
to terms that have already been observed as leaves in Swiss-Prot. Again, this is the
task of the method developer, not of the assessors.

We are convinced that the leaf threshold measure will be an important extension
for CAFA2. Getting to points such as 80% recall at 10% precision with the current
measures is really not a valid goal for function prediction. Rather the opposite, best
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performance should imply high accuracy/precision. This direction is supported by
our new measure.

6.5.5 Method Ranking Might Be Misleading
Our ranking of methods (Tables 6.2 and 6.3) followed guidelines proposed earlier
[Marti-Renom et al., 2002, Eyrich et al., 2003, Koh et al., 2003]. For example, we
always used the same data set and scoring schemes for all methods. However, no
clear ‘winner’ emerged, as it depended on the measure which method ranked top.
MetaStudent’, for instance, performed best on average, but ranked only 3rd behind
StudentB’ and StudentA by the leaf threshold measure in the MFO category (Table
6.3). In addition, there are many alternative relevant performance measures and many
new methods are yet to be published. For future CAFA experiments, it will therefore
become even more important to avoid ‘crowning winners’ (unless methods stand out
by all means) and to focus on method groups suited best for certain disciplines.
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6.6 Conclusion
In this chapter, we have explored the design and parameter space of homology-based
function prediction based on nearest-neighbor principles. We find that small method-
ological and parametric changes can cause dramatic differences in performance.
Consequently, we propose several new algorithms that outperformed similar methods
either at the CAFA meeting or in the assessment presented here. Consistently show-
ing superior accuracies, our best predictor even imposes itself as a substitution of the
popular GOtcha method suggesting that a loose coupling of diverse nearest-neighbor
methods can yield state-of-the-art performance. Finally, we challenge existing eval-
uation protocols. Apparently, the performance measures on which CAFA focused
inadequately encourage methods to abstain from making specific function predic-
tions and to instead provide huge lists of scored GO terms. This appears a push into
the wrong direction. Therefore, we introduced a new rigorous measure that corrects
for this shortcoming as a candidate for the assessment at CAFA2.
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Appendix A

Functions of Families With and
Without Interface Variability

We collected interacting families which show absolutely no sign of interface vari-
ability (0.9-1.0 bin in distribution DInterolog at 100% with Face Position Similarity).
Then, we determinded the GO terms of the proteins in each of these family pairs
and counted how many family pairs were associated with a particular GO term. We
show the results in the first half of the following table. Then, we performed the same
analysis for family pairs which show very high interface variability (0.0-0.5 bins in
distribution DInterolog sum up to 100% with Face Position Similarity). In both tables,
the column "Unique" indicates that the respective GO term was only found in that
particular group of family pairs. Terms which only appeared once in either group are
not shown.
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GO Number GO Term Family Pairs
(max. 17)

Unique

GO:0003674 molecular function 16 No
GO:0005488 binding 16 No
GO:0043169 cation binding 11 No
GO:0043167 ion binding 11 No
GO:0046906 tetrapyrrole binding 7 Yes
GO:0051540 metal cluster binding 6 No
GO:0016787 hydrolase activity 6 No
GO:0003824 catalytic activity 6 No
GO:0051536 iron-sulfur cluster binding 6 No
GO:0004175 endopeptidase activity 5 No
GO:0008233 peptidase activity 5 No
GO:0046872 metal ion binding 5 No
GO:0070011 peptidase activity, acting on L-amino acid peptides 5 No
GO:0046914 transition metal ion binding 4 No
GO:0030234 enzyme regulator activity 3 No
GO:0030246 carbohydrate binding 2 Yes
GO:0008236 serine-type peptidase activity 2 Yes
GO:0004857 enzyme inhibitor activity 2 No
GO:0017171 serine hydrolase activity 2 Yes
GO:0015077 monovalent inorg. cation transmembr. transp. act. 2 No
GO:0070003 threonine-type peptidase activity 2 Yes
GO:0005506 iron ion binding 2 Yes
GO:0005215 transporter activity 2 No
GO:0008324 cation transmembrane transporter activity 2 No
GO:0022891 substrate-specific transmembrane transporter activity 2 No
GO:0022890 inorganic cation transmembrane transporter activity 2 No
GO:0022892 substrate-specific transporter activity 2 No
GO:0015078 hydrogen ion transmembrane transporter activity 2 No
GO:0015075 ion transmembrane transporter activity 2 No
GO:0022857 transmembrane transporter activity 2 No
GO:0005515 protein binding 2 No

Table A.1: GO Terms of families with exclusively alternative interfaces
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GO Number GO Term Family Pairs
(max. 18)

Unique

GO:0003674 molecular function 17 No
GO:0005488 binding 16 No
GO:0043169 cation binding 11 No
GO:0043167 ion binding 11 No
GO:0003824 catalytic activity 10 No
GO:0005515 protein binding 10 No
GO:0046872 metal ion binding 9 No
GO:0016787 hydrolase activity 6 No
GO:0000166 nucleotide binding 5 No
GO:0017076 purine nucleotide binding 5 No
GO:0008092 cytoskeletal protein binding 5 Yes
GO:0030554 adenyl nucleotide binding 5 No
GO:0001883 purine nucleoside binding 5 No
GO:0001882 nucleoside binding 5 No
GO:0046914 transition metal ion binding 4 No
GO:0032559 adenyl ribonucleotide binding 4 No
GO:0032555 purine ribonucleotide binding 4 No
GO:0032553 ribonucleotide binding 4 No
GO:0016491 oxidoreductase activity 4 No
GO:0008233 peptidase activity 3 No
GO:0019899 enzyme binding 3 No
GO:0005102 receptor binding 3 Yes
GO:0030528 transcription regulator activity 3 Yes
GO:0030234 enzyme regulator activity 3 No
GO:0070011 peptidase activity, acting on L-amino acid peptides 3 No
GO:0004866 endopeptidase inhibitor activity 2 No
GO:0060089 molecular transducer activity 2 No
GO:0003712 transcription cofactor activity 2 Yes
GO:0019900 kinase binding 2 Yes
GO:0019902 phosphatase binding 2 Yes
GO:0044212 transcription regulatory region DNA binding 2 Yes
GO:0016563 transcription activator activity 2 Yes
GO:0003676 nucleic acid binding 2 No
GO:0003677 DNA binding 2 Yes

Table A.2: GO Terms of families without interface variability
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GO Number GO Term Family Pairs
(max. 18)

Unique

GO:0043565 sequence-specific DNA binding 2 Yes
GO:0022891 substrate-specific transmembr. transp. act. 2 No
GO:0022892 substrate-specific transporter activity 2 No
GO:0051536 iron-sulfur cluster binding 2 No
GO:0015075 ion transmembrane transporter activity 2 No
GO:0046983 protein dimerization activity 2 No
GO:0004857 enzyme inhibitor activity 2 No
GO:0008237 metallopeptidase activity 2 No
GO:0042802 identical protein binding 2 No
GO:0005215 transporter activity 2 No
GO:0008134 transcription factor binding 2 Yes
GO:0008324 cation transmembrane transporter activity 2 No
GO:0048037 cofactor binding 2 Yes
GO:0030414 peptidase inhibitor activity 2 No
GO:0004175 endopeptidase activity 2 No
GO:0051540 metal cluster binding 2 No
GO:0003702 RNA polymerase II transcription factor activity 2 Yes
GO:0022857 transmembrane transporter activity 2 No

Table A.3: GO Terms of families without interface variability, continued
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