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Abstract. In numerous applications positive martingales are crucial, for exam-
ple when defining an equivalent change of measure. In the class of exponentials of
semimartingales positive local martingales can be easily identified. However, the
true martingale property is more subtle. Based on general conditions in Kallsen
and Shiryaev (2002a), we derive explicit sufficient conditions for the true mar-
tingale property for a wide class of exponentials of semimartingales. Suitably for
applications, the conditions are expressed in terms of the semimartingale triplet.
We present two applications to mathematical finance. First, we apply the results
to stochastic volatility asset price models driven by semimartingales. Second, we
provide a proof of the martingale property of the Libor rates in the Lévy Libor
model, as well as in a semimartingale driven Libor model.

1. Introduction

The question under which conditions local martingales are true martingales plays
an important role in various applications. For example, positive martingales with
initial value one can be used as density processes to define a change of measure. Ex-
ponentials of semimartingales form a wide and flexible class of positive processes. By
means of stochastic calculus one can easily characterize the local martingales in this
class. It is, however, more involved to identify conditions for their true martingality.
Based on Kallsen and Shiryaev (2002a), we derive conditions that are suitable for
applications, such as in mathematical finance.

In order to formulate the problem more precisely denote by X an Rd-valued semi-
martingale and by λ an Rd-valued predictable process, which is integrable with
respect to X. Then λ · X :=

∑
i≤d
∫ ·

0
λi dX i is the vector stochastic integral of λ

with respect to X, written also as
∫ ·

0
λ dX. Moreover, let V be a predictable process

with finite variation. We pose the following question: under which conditions on the
characteristics of X is a real-valued semimartingale Z of the form

Z := eλ·X−V
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a (uniformly integrable) martingale?
If Z is a special semimartingale, V can be determined such that Z is a local mar-

tingale. In this case, V is called the exponential compensator of λ · X, see Section
2 for details. Various criteria for the more delicate true martingale property of Z
have been proposed. The seminal paper by Novikov (1972) treats the continuous
semimartingale case. Sufficient conditions for general semimartingales are provided
for example in Lépingle and Mémin (1978), Kallsen and Shiryaev (2002a) and Prot-
ter and Shimbo (2008). Moreover, we refer to Section 1 and Section 3 of Kallsen
and Shiryaev (2002a) for an exhaustive literature overview. In the special case when
X is a process with independent increments and absolutely continuous character-
istics and λ deterministic, Eberlein, Jacod, and Raible (2005) show that if Z is a
local martingale, it is also a true martingale. Deterministic conditions ensuring the
martingale property of an exponential of an affine process are given in Kallsen and
Muhle-Karbe (2010).

The conditions for more general semimartingales are not as explicit. Our con-
tribution is to derive – based on the criteria from Kallsen and Shiryaev (2002a) –
explicit conditions on the semimartingale characteristics of X for a wide class of
semimartingales. The advantage of the explicit conditions is their convenience for
applications. We present two applications to mathematical finance. First, we use the
obtained results to derive conditions for the martingale property of the discounted
stock price processes in stochastic volatility models driven by semimartingales. Sec-
ond, we provide a proof of the martingale property of the Libor rates under the
respective forward measures in the Lévy Libor model of Eberlein and Özkan (2005),
as well as in a more general semimartingale Libor model. This is a key property both
for the model construction and for option pricing.

The rest of the paper is organized as follows. In Section 2 we introduce the no-
tation and describe the general semimartingale setting used in the paper following
Jacod and Shiryaev (2003). Section 3 contains the main results. We illustrate the
application of these results in financial modeling in Section 4.

2. Semimartingale notation and preliminaries

In this section we introduce the notation and summarize the basic notions and
facts from the semimartingale theory in order to keep the paper self-contained. Our
main reference is Jacod and Shiryaev (2003), whose notation we use throughout the
paper. Other standard references for stochastic calculus and semimartingales are e.g.
Jacod (1979), Métivier (1982) and Protter (2004).

Let (Ω,F , (Ft)t≥0,P) denote a stochastic basis that satisfies the usual conditions.
Denote by Mloc the set of all càdlàg local martingales and by V+ (resp. V) a set
of all real-valued càdlàg processes starting from zero that have non-decreasing paths
(resp. paths with finite variation over each finite interval [0, t]). Let A+ denote the
set of all processes A ∈ V+ that are integrable, i.e. such that E[A∞] < ∞, where
A∞(ω) := limt→∞At(ω) ∈ R+ for every ω ∈ Ω. Moreover, let A denote the set of all
A ∈ V that have integrable variation, i.e. Var (A) ∈ A+, where for every t ≥ 0 and
every ω ∈ Ω, Var (A)t(ω) is defined as the total variation of the function s 7→ As(ω)
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on [0, t]. A process X is called a semimartingale if it can be written in the form

X = X0 +M + A, (2.1)

where X0 is finite-valued and F0-measurable, M ∈ Mloc with M0 = 0 and A ∈ V
with A0 = 0. If A in decomposition (2.1) is predictable, X is a special semimartingale
and the decomposition is unique.

Let X be an Rd-valued semimartingale, i.e. each component of X satisfies (2.1).
Denoting by εa the Dirac measure at point a, the random measure of jumps µX of
X is an integer-valued measure of the form

µX(ω; dt, dx) =
∑
s≥0

1{∆Xs(ω)6=0}ε(s,∆Xs(ω))(dt, dx)

and its predictable compensator ν satisfies

(|x|2 ∧ 1) ∗ ν ∈ Aloc. (2.2)

The semimartingale X admits a canonical representation

X = X0 +B(h) +Xc + (x− h(x)) ∗ µX + h(x) ∗ (µX − ν),

where h : Rd → Rd is a truncation function, i.e. a function that is bounded and
behaves like h(x) = x around 0, B(h) is a predictable Rd-valued process with com-
ponents in V , and Xc is the continuous martingale part of X.

Denote by C the predictable Rd×d-valued covariation process defined as Cij :=
〈X i,c, Xj,c〉. Then the triplet (B(h), C, ν) is called the triplet of predictable charac-
teristics of X (or simply the characteristics of X). It can be shown (see Proposition
II.2.9 in Jacod and Shiryaev (2003)) that there exists a predictable process A ∈ A+

loc

such that

B(h) = b(h) · A, C = c · A, ν = A⊗ F ,
where b(h) is a d-dimensional predictable process, c is a predictable process taking
values in the set of symmetric non-negative definite d×d-matrices and F is a transi-
tion kernel from (Ω×R+,P) into (Rd,B(Rd)). Here P denotes the predictable σ-field
on Ω×R+. We call (b(h), c, F ;A) the triplet of differential (or local) characteristics
of X. If X admits the choice At = t above, we say that X has absolutely continuous
characteristics (or shortly AC) and X is called an Itô semimartingale.

An important subclass of semimartingales is the class of Itô semimartingales with
independent increments. These processes are known as time-inhomogeneous Lévy
processes or as Processes with Independent Increments and Absolutely Continuous
characteristics (PIIAC), see e.g. Section 2 in Eberlein, Jacod, and Raible (2005). The
differential characteristics (b(h), c, F ) of a PIIAC X, for any truncation function h,
are deterministic and satisfy the following integrability assumption: for any T > 0

T∫
0

(
|b(h)s|+ ‖cs‖+

∫
Rd

(|x|2 ∧ 1)Fs(dx)

)
ds <∞, (2.3)

where ‖ · ‖ denotes any norm on the set of d×d-matrices. For every t > 0, the law of
Xt is characterized by a Lévy-Khintchine type formula for its characteristic function,
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see again Section 2 in Eberlein, Jacod, and Raible (2005). This property makes the
class of PIIAC particularly suitable for applications.

The following definition and results on exponentials of semimartingales are given
in Definition 2.12, Lemma 2.13 and Lemma 2.15 in Kallsen and Shiryaev (2002a).

Definition 2.1. A real-valued semimartingale Y is called exponentially special if
exp(Y − Y0) is a special semimartingale.

Remark 2.2. Let Y be a real-valued semimartingale and denote by νY the com-
pensator of the random measure of jumps of Y and h a truncation function.

(a) The following statements are equivalent:
(i) Y is an exponentially special semimartingale.

(ii) (ey − 1− h(y)) ∗ νY ∈ V .
(iii) ey1{y>1} ∗ νY ∈ V .

(b) If Y is exponentially special, then it admits an exponential compensator, i.e.
there exists a predictable process V ∈ V such that exp(Y − Y0 − V ) ∈Mloc.

Let X be an Rd-valued semimartingale with local characteristics (b(h), c, F ;A)
and λ ∈ L(X), where L(X) denotes the set of predictable processes integrable with
respect to X, cf. Jacod and Shiryaev (2003), page 207. Moreover, assume that λ ·X
is exponentially special. Following Jacod and Shiryaev (2003), Section III.7.7a we
define the Laplace cumulant process

K̃X(λ) := κ̃X(λ) · A, (2.4)

where

κ̃X(λ)t := 〈λt, bt〉+
1

2
〈λt, ctλt〉+

∫
(e〈λt,x〉 − 1− 〈λt, h(x)〉)Ft(dx), (2.5)

and the modified Laplace cumulant process KX(λ) := ln(E(K̃X(λ))), where E denotes
the stochastic exponential, and

KX(λ) = K̃X(λ) +
∑
s≤·

(ln(1 + ∆K̃X(λ))s −∆K̃X(λ)s). (2.6)

The following results are proved in Proposition III.7.14 and Theorem III.7.4 in
Jacod and Shiryaev (2003):

Proposition 2.3. Let X be an Rd-valued semimartingale and λ ∈ L(X) such that
λ ·X is exponentially special.

(i) The process KX(λ) is the exponential compensator of λ ·X, i.e. the process
Z defined by

Z := exp(λ ·X −KX(λ))

is a local martingale.
(ii) If X is quasi-left continuous, i.e. X a.s. does not jump at predictable times

(cf. Jacod and Shiryaev (2003), page 22), the Laplace cumulant process K̃X(λ)
and the modified Laplace cumulant process KX(λ) coincide, i.e. KX(λ) =

K̃X(λ).
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3. Main results

In this section we present several results answering the question under which
conditions an exponentially compensated semimartingale – that is a local martingale
by construction – is a uniformly integrable (UI) martingale. We show in the following
proposition that for quasi-left continuous semimartingales the sufficient conditions
provided in Theorem 3.2 in Kallsen and Shiryaev (2002a) boil down to conditions
on the semimartingale characteristics. Moreover, a weaker condition ensures the
martingale property instead of the UI martingale property.

Proposition 3.1. Let Y be a quasi-left continuous, real-valued semimartingale with
characteristics (BY , CY , νY ) for a truncation function hY . If

(A1) |y|ey1{|y|>1} ∗ νY ∈ V, and

(A2) sup
t≤T

E
[
exp

{
1
2
CY
t + ((y − 1)ey + 1) ∗ νYt

}]
<∞ for every T ≥ 0,

the process M := eY−K
Y (1) is a true martingale. Moreover, replacing condition (A2)

with

(A2′) sup
t∈R+

E
[
exp

{
1
2
CY
t + ((y − 1)ey + 1) ∗ νYt

}]
<∞,

M is a UI martingale.

Proof: We first assume (A1) and the stronger condition (A2′).
Condition (A1) implies that ey1{|y|>1} ∗ νY ∈ V and hence by Remark 2.2(a), Y is

exponentially special and M is a well-defined local martingale. Taylor expansion of
the exponential function and the integrability property (2.2) of the compensator νY

yield that (A1) is equivalent to

|yey − hY (y)| ∗ νY ∈ V , (3.1)

which is the first requirement of condition I(0, 1) in Theorem 3.2 in Kallsen and
Shiryaev (2002a). The following results of Kallsen and Shiryaev (2002a) – Theorem
2.18(6), Definition 2.23, Definition 3.1 and Remarks 1 and 2 which follow after
Proposition 2.25 – show for quasi-left continuous processes that condition (A2′) is
equivalent to the second requirement in I(0, 1) in Kallsen and Shiryaev (2002a).
Hence, M is a UI martingale by Theorem 3.2 from the same paper.

If Y satisfies condition (A2) instead of (A2′), then for every fixed T > 0, we repeat
the proof along the same lines as above for the stopped process (Yt∧T )t≥0 and the
semimartingale characteristics (BY

·∧T , C
Y
·∧T , ν

Y
·∧T ) of the stopped process which are

derived for example in Lemma 2.3 in Kallsen and Muhle-Karbe (2010). Here νY·∧T
is defined as follows: νY·∧T (B) = νY (B ∩ [[0, T ]]) = νY (B ∩ (Ω × [0, T ])), for every
B ∈ P . This yields that the stopped process (Mt∧T )t≥0 is a UI martingale. Therefore,
E[|Mt|] < ∞, for every t ≥ 0 and E[Mt|Fs] = Ms, for every s ≤ t, hence M is a
martingale. �

Remark 3.2. Note that in case νY = 0 (A2′) reduces to the classical Novikov
condition as presented in Section 3.5.D in Karatzas and Shreve (1991).
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Next, we derive sufficient conditions under which exponentially compensated semi-
martingales for stochastic integrals λ ·X with bounded integrands λ are martingales,
resp. UI martingales. Denote by λ := supω∈Ω supt≥0 |λt(ω)| <∞.

Proposition 3.3. Let X be an Rd-valued quasi-left continuous semimartingale with
differential characteristics (b, c, F ;A) and λ ∈ L(X) bounded. If

(B1) |x|e〈λ,x〉1{|x|>1} ∗ ν ∈ V, and

(B2) sup
t≤T

E
[

exp
(

1
2

∫ t
0
〈λs, csλs〉dAs+

∫ t
0

∫
Rd((〈λs, x〉−1)e〈λs,x〉+1)Fs(dx)dAs

)]
<∞

for every T ≥ 0,

the process M := eλ·X−K
X(λ) is a true martingale. Moreover, replacing (B2) with

(B2′) sup
t∈R+

E
[

exp
(
1
2

∫ t
0
〈λs, csλs〉dAs+

∫ t
0

∫
Rd((〈λs, x〉−1)e〈λs,x〉+1)Fs(dx)dAs

)]
<∞,

M is a UI martingale.

Proof: Denote by (BY , CY , νY ) the semimartingale characteristics of Y := λ ·X. If
λ ≡ 0, then M = 1 is trivially a UI martingale, hence, we assume now that λ 6≡ 0.
From Lemma 2.3 in Kallsen and Shiryaev (2002b) we obtain

BY
t =

t∫
0

(
〈λs, bs〉+

∫
Rd

(
(hY (〈λs, x〉)− 〈λs, h(x)〉

)
Fs(dx)

)
dAs

CY
t =

t∫
0

〈λs, csλs〉 dAs (3.2)

νY (dt, G) =

∫
Rd

1G(〈λt, x〉)Ft(dx) dAt, for every G ∈ B(R\{0}),

where h is a truncation function for X and hY for Y . Hence, condition (B2) is
exactly condition (A2) and (B2′) is (A2′) for the semimartingale Y . Let us prove
that condition (B1) implies condition (A1) for Y . From |〈λs, x〉| ≤ |λs||x| it follows
1{|〈λs,x〉|>1} ≤ 1{|x|>|λs|−1} on the set {λs 6= 0} and 1{|〈λs,x〉|>1} = 0 on the set {λs = 0}.
Note, moreover, that 0 < λ <∞ by assumption. Hence, for every t ≥ 0 we have by
(3.2) and condition (B1)

|y|ey1{|y|>1} ∗ νYt ≤
t∫

0

∫
Rd

|〈λs, x〉|e〈λs,x〉1{|x|>|λs|−1}1{λs 6=0}ν(ds, dx)

≤ λ

t∫
0

∫
Rd

|x|e〈λs,x〉1{|x|>λ−1}ν(ds, dx)

< ∞.

From the nonnegativity of the integrand we obtain |y|ey1{|y|>1} ∗ νY ∈ V+, which
delivers condition (A1).
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Noting that KX(λ) = KY (1), which follows by combining (3.2) with (2.4), (2.5)
and Proposition 2.3(ii), the assertion of the proposition is implied by Proposition
3.1. �

We derive more explicit conditions on the semimartingale characteristics of the
driving process X that are expressed using only deterministic bounds.

Proposition 3.4. Let X and λ be as in Proposition 3.3. If

(C) for every T ≥ 0, there exists a constant κ(T ) > 0 such that a.s.

T∫
0

|〈λs, csλs〉|dAs +

T∫
0

∫
Rd

[
(|x|2 ∧ 1) + |x|e〈λs,x〉1{|x|>1}

]
Fs(dx)dAs < κ(T ),

the process M := eλ·X−K
X(λ) is a true martingale. Moreover, replacing (C) with

(C′) there exists a constant κ > 0 such that a.s.

∞∫
0

|〈λs, csλs〉|dAs +

∞∫
0

∫
Rd

[
(|x|2 ∧ 1) + |x|e〈λs,x〉1{|x|>1}

]
Fs(dx)dAs < κ

M is a UI martingale.

Proof: Condition (C) and the fact that (ω, s, x) 7→ |x|e〈λs(ω),x〉1{|x|>1} is a nonnegative
random function immediately yield (B1).

Let us now verify that (C) (resp. (C′)) implies condition (B2) (resp. (B2′)). Taylor
expansion of the exponential function around zero, condition (C) (resp. (C′)), and
the boundedness of λ, yield for each T > 0 (resp. for T := ∞) the existence of
constants c1(T ), c2(T ) > 0 such that

T∫
0

∫
|x|≤1

∣∣∣(〈λs, x〉 − 1)e〈λs,x〉 + 1
∣∣∣ν(ds, dx) ≤ c1(T )

T∫
0

∫
|x|≤1

|x|2ν(ds, dx)

≤ c2(T ).

(3.3)

Moreover, using λ < ∞, some elementary transformations and (C) (resp. (C′)), for
every T > 0 (resp. T := ∞) we obtain the existence of a constant c3(T ) > 0 such
that

T∫
0

∫
|x|>1

∣∣∣(〈λs, x〉 − 1)e〈λs,x〉 + 1
∣∣∣ν(ds, dx)

≤ (λ+ 1)

T∫
0

∫
|x|>1

(
|x|e〈λs,x〉 + 1

)
ν(ds, dx)

≤ c3(T ).

(3.4)
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Combining inequalities (3.3) and (3.4) with
∫ T

0
|〈λs, csλs〉|dAs < max{κ(T ), κ}, we

get for every T > 0 (resp. T := ∞) condition (B2) (resp. (B2′)) from Proposition
3.3. Hence, M is a martingale (resp. a UI martingale). �

When X is a process with independent increments and an absolutely continuous
characteristic (PIIAC), condition (C) from the previous proposition simplifies fur-
ther. More precisely, we obtain an integrability condition solely on the family of Lévy
measures of X:

Corollary 3.5. Let X be an Rd-valued PIIAC and λ ∈ L(X) bounded. If

(D) for every T ≥ 0, there exists a constant κ(T ) > 0 such that a.s.

T∫
0

∫
|x|>1

|x|e〈λ,x〉Fs(dx)ds < κ(T ),

then M = eλ·X−K
X(λ) is a martingale.

Proof: Recall from Section 2 that the differential characteristic triplet (b, c, F ) of X
is deterministic and As(ω) := s, for every s. Moreover, X is quasi-left continuous by
Corollary II.1.19 in Jacod and Shiryaev (2003). By assumption λ <∞ and by (2.3),
for every T > 0 there exist constants c1(T ), c2(T ) > 0 such that

T∫
0

∫
Rd

(|x|2 ∧ 1)Fs(dx)ds < c1(T ) and

T∫
0

|〈λs, csλs〉| ds ≤ λ
2

T∫
0

||cs||ds < c2(T ).

Thus, condition (C) from Proposition 3.4 reduces to (D) which implies the assertion
of the corollary. �

Remark 3.6. Corollary 3.5 states that for X PIIAC and λ bounded, the local
martingale property of M := eλ·X−K

X(λ) is essentially equivalent to its martingale
property (up to a slightly stronger integrability condition). For λ deterministic, this
is implied by the proof of Proposition 4.4 in Eberlein, Jacod, and Raible (2005).

Remark 3.7. Condition (D) in Corollary 3.5 can be replaced with

(D*) for every T ≥ 0, there exists a constant κ(T ) > 0 and ε > 0 such that a.s.

T∫
0

∫
|x|>1

e(1+ε)λ|x|Fs(dx)ds < κ(T ).

This follows from the fact that for x large enough, |x| ≤ eελ|x|.
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4. Application to financial modeling

In this section we present two applications of the results from Section 3 to finan-
cial modeling. The monographs by Shiryaev (1999), Musiela and Rutkowski (2005),
Cont and Tankov (2003) and Jeanblanc, Yor, and Chesney (2009) and the references
therein provide a detailed overview concerning applications of semimartingales in
finance.

4.1. Asset price models with stochastic volatility. Let (Ω,F , (Ft)0≤t≤T ,P) be
a stochastic basis satisfying the usual conditions, where T > 0 denotes a finite time
horizon. Let us model the asset price S and a bank account B with stochastic interest
rate by

S := S0e
σS ·XS−V , B := eσ

r·Xr

(4.1)

with S0 ∈ R, a d-dimensional semimartingale X := (XS, Xr), a real-valued pre-
dictable process of finite variation V and a d-dimensional predictable process σ :=
(σS,−σr) ∈ L(X) such that σ·X is exponentially special. Then, according to Remark
2.2(b), the discounted price process

S̃ := B−1S = S0e
σ·X−V (4.2)

is a local martingale, i.e. P is a risk-neutral measure, if and only if V is the expo-
nential compensator of σ · X. If X is quasi-left continuous, this is the case if and

only if V = K̃X(σ) = KX(σ), see Proposition 2.3. According to the fundamental
theorem of asset pricing for general semimartingales in Delbaen and Schachermayer
(1998), this implies that the model satisfies the No Free Lunch With Vanishing Risk
(NFLVR) condition. In other words, model (4.1) is a semimartingale pricing model
specified directly under a risk-neutral measure. In order to compute option prices
in this model, integrability conditions ensuring their well-definedness are required in
addition. Standard options include European call options with strike K > 0 paying
out max(ST −K, 0) at maturity T > 0 that we take as an example in the sequel. To
compute the price of a call option, we must have

(A) the discounted price process S̃ is a martingale,

which is equivalent to E[S̃T ] = E[S̃0] <∞ because S̃ is a nonnegative locale martin-
gale. Then, according to the fundamental principles of option pricing, the discounted
price process B−1Π of the call option is a martingale, hence the time-t-price of the
option is

Πt = BtE
(
B−1
T max(ST −K, 0)

∣∣Ft). (4.3)

In order to compute this expectation in a specific model, the joint distribution of
(ST , BT ) must be known. By a change of numeraire, i.e. an equivalent change of
measure, we can express the price as an expectation of a function of the asset value

ST solely: let dP̃
dP |Ft := S̃t for 0 ≤ t ≤ T . Denoting by EP̃ the expectation under P̃,

Bayes formula yields

Πt = StEP̃

(
max(1−KS−1

T , 0)
∣∣Ft). (4.4)

In conclusion, Proposition 3.3, Proposition 3.4, Corollary 3.5 and Remark 3.7 imply:
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Corollary 4.1. Let the semimartingale asset price model (4.1) be given with σ
bounded. Denote by (b, c, F ;A) the local semimartingale characteristics of X.

(i) If X is quasi-left continuous and (b, c, F ;A) and σ satisfy (B1) and (B2) of
Proposition 3.3, resp. condition (C) of Proposition 3.4, or

(ii) If X is PIIAC and F and σ satisfy condition (D) of Corollary 3.5, resp.
condition (D*) of Remark 3.7,

the discounted asset price process S̃ given in (4.2) is a martingale and the time-t
value of the call option with maturity T and strike K is given by (4.3) and (4.4).

Remark 4.2. If X is quasi-left continuous and the money market account is of the

usual form B := e
∫ ·
0 rtdt, then V = KXS

(σS)−
∫ ·

0
rtdt and S̃ = S0e

σS ·XS−KXS
(σS).

If in addition X has absolutely continuous local characteristics (b, c, F ), then V =∫ ·
0
(κ̃X

S
(σS)t − rt)dt with κ̃X

S
(σS)t given in (2.5). If X is PIIAC, σ is deterministic

and V := 0, we recover the classical no-arbitrage drift condition

κ̃X
S

(σS)− r = 0,

and in particular the interest rate r has to be deterministic.

4.2. Libor models. To illustrate the applications to Libor models we consider the
Lévy Libor model of Eberlein and Özkan (2005). This is a model for discretely com-
pounded forward rates known as Libor rates. The name stems from the London In-
terbank Offered Rate. Among the semimartingale Libor models, we choose the Lévy
Libor model because, even though it is driven by a PIIAC, the martingale property
of the Libor rates cannot be deduced using the standard results for PIIACs. This is
due to the fact that the Libor rates with different maturities are modeled under dif-
ferent equivalent probability measures for which the PIIAC property of the driving
process is not preserved. Verifying that the Libor rates are martingales under their
corresponding measures has not been addressed in detail in the literature and we
close the gap below. Moreover, we provide conditions for the martingale property
also in a more general semimartingale Libor model, cf. Proposition 4.5.

Let us now briefly introduce the Lévy Libor model. For a detailed overview we refer
to Eberlein and Özkan (2005). Assume that T ∗ > 0 is a fixed time horizon and we are
given a pre-determined collection of settlement dates 0 = T0 < T1 < . . . < Tn = T ∗.
The driving process of the Lévy Libor model is an Rd-valued PIIAC (Xt)t∈[0,T ∗] on a
complete stochastic basis (Ω,F = FT ∗ ,F = (Ft)0≤t≤T ∗ ,PT ∗), where the filtration F
is the natural filtration of X and the characteristic triplet of X is (0, c, F T ∗) under
the measure PT ∗ . A family of equivalent measures PTk on (Ω,FT ∗) for k = 1, . . . , n,
where PTn = PT ∗ , will serve as the so-called forward measures with respect to the
maturities Tk.

The Lévy Libor model is constructed by backward induction in such a way that
for each k = n− 1, . . . , 1, the Libor rate L(·, Tk) for the lending period [Tk, Tk+1] is
of the form

L(·, Tk) := L(0, Tk) exp{λ(·, Tk) ·X −KX(PTk+1
, λ(·, Tk))}, (4.5)

with a volatility process λ(·, Tk) ∈ L(X) such that λ(·, Tk)·X is exponentially special
under PTk+1

, and where KX(PTk+1
, λ(·, Tk)) denotes the exponential compensator of
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λ(·, Tk) · X with respect to the measure PTk+1
. In Eberlein and Özkan (2005), the

following assumption are imposed:
For some M, ε > 0 and every k = 1, . . . , n− 1 we have

(L1)
∫ T ∗

0

∫
|x|>1

e〈u,x〉F T ∗
s (dx)ds <∞ for every u ∈ [−(1 + ε)M, (1 + ε)M ]d,

(L2) λ(·, Tk) : [0, T ∗] → Rd
+ is a bounded, nonnegative function such that for

s > Tk, λ(s, Tk) = 0 and
∑n−1

k=1 λ
j(s, Tk) ≤ M, for all s ∈ [0, T ∗] and every

coordinate j ∈ {1, . . . , d},

(L3) λ(·, Tk) : [0, T ∗]→ Rd
+ is deterministic.

To ensure that the model is well defined and arbitrage-free, the Libor rate L(·, Tk)
has be a positive martingale with respect to PTk+1

, for each k = 1, . . . , n − 1. The
measure PTk+1

will be defined via the following Radon-Nikodym derivative

dPTk+1

dPT ∗

∣∣∣∣
Ft

=

∏n−1
i=k+1(1 + δiL(t, Ti))∏n−1
i=k+1(1 + δiL(0, Ti))

for k < n − 1 and t ≤ Tk+1. To justify this backward construction of the measures
PTk+1

, we prove the required martingale property of the Libor rates in the proposition

below. Note that more generally than in Eberlein and Özkan (2005), we only assume
(L1) and (L2) and do not need that the volatility process is deterministic.

Proposition 4.3. Assume (L1) and (L2). Then for each k = 1, . . . , n−1, the process
L(·, Tk) is a UI martingale with respect to PTk+1

given by (4.6).

Proof: The proof follows by backward induction.
For k = n−1, the assertion follows from the boundedness of λ(·, Tn−1), assumption

(L1), and Corollary 3.5 (or Remark 3.7).
For k < n−1, assume that the claim has been proved for k+1, . . . , n−1. Let us now

show that the process L(·, Tk) is a UI martingale with respect to PTk+1
. Denote the

semimartingale characteristics of X with respect to PTk+1
by (BTk+1 , CTk+1 , νTk+1),

where

CTk+1 = C, νTk+1(dt, dx) =
n−1∏
l=k+1

β(t, x, Tl)ν
T ∗(dt, dx) (4.6)

with

β(t, x, Tl) =
δlL(t−, Tl)

1 + δlL(t−, Tl)
(
e〈λ(t,Tl),x〉 − 1

)
+ 1,

for l = 1, . . . , n− 1, cf. Eberlein and Özkan (2005), page 341-342.
Let us now verify condition (C′) of Proposition 3.4. Note that we are working with

a finite time horizon, and therefore it is enough to check the validity of the condition
on [0, T ∗]. First, we have

Tk∫
0

〈λ(s, Tk), c
Tk+1
s λ(s, Tk)〉ds =

Tk∫
0

〈λ(s, Tk), csλ(s, Tk)〉ds < C2,
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for some constant C2, by definition of a PIIAC (cf. (2.3)). Note that as λ(t, Tk) = 0
for t ≥ Tk by (L2), we only consider the interval [0, Tk]. Second, we have to show
that

(|x|2 ∧ 1) ∗ νTk+1

T ∗ + |x|e〈λ(·,Tk),x〉1{|x|>1} ∗ ν
Tk+1

T ∗ < C1,

for some constant C1 > 0. Recalling (4.6) and noting that for every t, x and l,

0 ≤ β(t, x, Tl) ≤ e〈λ(s,Tl),x〉 + 1 (because of 0 < δlL(s−,Tl)
1+δlL(s−,Tl)

< 1), the product∏n−1
l=k+1

(
e〈λ(t,Tl),x〉 + 1

)
is bounded by a constant on the set {|x| ≤ 1} and that

νT
∗

is deterministic, we have

T ∗∫
0

∫
|x|≤1

|x|2νTk+1(dt, dx) ≤
T ∗∫
0

∫
|x|≤1

|x|2
n−1∏
l=k+1

(
e〈λ(t,Tl),x〉 + 1

)
νT
∗
(dt, dx) < C ′1,

for some C ′1 > 0. Similarly,

T ∗∫
0

∫
|x|>1

(|x|e〈λ(t,Tk),x〉 + 1)νTk+1(dt, dx)

≤
T ∗∫
0

∫
|x|>1

|x|
(
e〈λ(t,Tk),x〉 + 1

) n−1∏
l=k+1

(
e〈λ(t,Tl),x〉 + 1

)
νT
∗
(dt, dx) .

The right-hand side is a finite sum of summands of the form

T ∗∫
0

∫
|x|>1

|x|e
∑

l∈I〈λ(t,Tl),x〉F T ∗

t (dx)dt , (4.7)

where I is some set of indices such that I ⊂ {k, k + 1, . . . , n− 1}. For I = ∅, we set∑
l∈I · = 0. Since

∑n−1
l=1 λ

i(s, Tl) ≤M for every i ∈ {1, . . . , d}, (L1) yields (note that

one has |x| ≤ e〈(sign(x1)Mε,...,sign(xd)Mε),x〉 for large x)

T ∗∫
0

∫
|x|>1

(|x|e〈λ(t,Tk),x〉 + 1)νTk+1(dt, dx) < C ′′1 ,

where C ′′1 > 0 is a constant. Putting the above inequalities together we get

(|x|2 ∧ 1) ∗ νTk+1

T ∗ + |x|e〈λ(·,Tk),x〉1{|x|>1} ∗ ν
Tk+1

T ∗ < C1,

for C1 := C ′1 +C ′′1 . Proposition 3.4 now yields that L(·, Tk) is a UI martingale under
the measure PTk+1

.
�

Remark 4.4. Note that for k < n−1, the process X is not a PIIAC with respect to
PTk+1

, because its characteristics are not deterministic which is visible from equation
(4.6).
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The results from this section can be extended to the case of a semimartingale
Libor model:

Proposition 4.5. Let X in equation (4.5) be an Rd-valued quasi-left continuous with
semimartingale characteristics (BT ∗ , C, νT

∗
) with respect to PT ∗, and λ(·, Tk) ∈ L(X)

nonnegative and bounded such that λ(s, Tk) = 0, for Tk < s < T ∗. Assume

(SL) For all i = 1, . . . , n− 1 and some κ > 0 a.s.
T ∗∫
0

∫
Rd

[
(|x|2 ∧ 1) + |x|e〈

∑n−1
k=i λ(s,Tk),x〉1{|x|>1}

]
νT
∗
(ds, dx)

+

T ∗∫
0

〈λ(s, Ti), csλ(s, Ti)〉dAs < κ.

Then for each k = 1, . . . , n − 1, the process L(·, Tk) from (4.5) is a UI martingale
with respect to PTk+1

given by (4.6).

Proof: The proof follows along the same lines as the proof of Proposition 4.3.
For k = n−1, the assertion follows directly from assumption (SL) and Proposition

3.4.
For k < n− 1, the semimartingale characteristics (BTk+1 , CTk+1 , νTk+1) of X with

respect to PTk+1
are again of the form (4.6). To prove this, it suffices to note that for

every i = k + 1, . . . , n− 1, we have

d(1 + δiL(t, Ti))

1 + δiL(t−, Ti))
=

δiL(t−, Ti)
1 + δiL(t−, Ti)

λ(t, Ti) dXc
t

+

∫
Rd

δiL(t−, Ti)
1 + δiL(t−, Ti)

(
e〈λ(t,Ti),x〉 − 1

)
(µ− νTi+1)(dt, dx)

and the result is a consequence of (4.6) and Girsanov’s theorem for semimartingales
(Theorem III.3.24 in Jacod and Shiryaev (2003)).

Now we verify condition (C′) from Proposition 3.4. First, we have

Tk∫
0

〈λ(s, Tk), c
Tk+1
s λ(s, Tk)〉dAs =

Tk∫
0

〈λ(s, Tk), csλ(s, Tk)〉dAs < C2,

for some constant C2, by assumption (SL). Note that as in Proposition 4.3, we only
consider the interval [0, Tk] since λ(t, Tk) = 0 for t ≥ Tk. Second, we have to show
that

(|x|2 ∧ 1) ∗ νTk+1

T ∗ + |x|e〈λ(·,Tk),x〉1{|x|>1} ∗ ν
Tk+1

T ∗ < C1,

for some constant C1 > 0, which follows by exactly the same reasoning as in Propo-
sition 4.3. In particular, by assumption (SL)

T ∗∫
0

∫
|x|≤1

|x|2νTk+1(dt, dx) < C ′1,
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and
T ∗∫
0

∫
|x|>1

(|x|e〈λ(t,Tk),x〉 + 1)νTk+1(dt, dx)

≤
T ∗∫
0

∫
|x|>1

(
|x|e〈λ(t,Tk),x〉 + 1

) n−1∏
l=k+1

(
e〈λ(t,Tl),x〉 + 1

)
νT
∗
(dt, dx) ,

where the right-hand side is a finite sum of summands of the form

T ∗∫
0

∫
|x|>1

(
|x|e〈λ(t,Tk),x〉 + 1

)
e
∑

l∈I〈λ(t,Tl),x〉F T ∗

t (dx)dt , (4.8)

where I is some set of indices such that I ⊂ {k + 1, . . . , n − 1} and
∑

l∈∅ · = 0.
Assumption (SL) now yields

T ∗∫
0

∫
|x|>1

(|x|e〈λ(t,Tk),x〉 + 1)νTk+1(dt, dx) < C ′′1 ,

for some constant C ′′1 > 0. Hence, C1 := C ′1 + C ′′1 and Proposition 3.4 yields that
L(·, Tk) is a UI martingale under the measure PTk+1

. �
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arbitrage and completeness. Finance Stoch. 9, 67–88.
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