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Abstract

The Chicago Mercantile Exchange offers futures and options based on daily temperatures.

There is an increasing interest in developing a pricing model for these temperature deriva-

tives by modelling the underlying temperature dynamics. In this work, we model the daily

average temperature using a Lévy driven continuous-time autoregressive process with sea-

sonal volatility. The aim is to generalize the Brownian motion as the driving noise process

to Lévy processes. The family of generalized hyperbolic distributions is considered in order

to capture the heavy tails in the temperature data. Based on the proposed model, we then

present explicit pricing formulas for several temperature derivatives. Fourier technique is

applied for numerical estimation for some derivatives as well. In empirical analysis, we first

examine the temperature data of 6 US cities and 2 European cities. Further we implement

the pricing framework for futures and discuss the behavior of the futures prices.
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Chapter 1

Introduction

1.1 Market for Temperature Derivatives

The first weather transaction was executed in 1997 as a weather option embedded in a

power contract. Later in 1999, the Chicago Mercantile Exchange (CME) launched the

first exchange-traded weather derivatives contracts. 1 Since then, the weather market has

grown tremendously.

The interest on weather derivatives is aroused by the significant influence of weather.

Business in Energy, agriculture, transportation, retail sales, etc. are easily affected by

weather. Undesired weather events might lead to great loss in revenues. For example,

cost of heating is increased in cold days, farming will face loss in a flood, and companies

selling skiing instruments make less profit in warm seasons. Weather derivatives serve as

an important tool to manage weather related risks. On the other hand, they also provide

opportunities to speculate for possible profit on weather variations. Hence they attract

not only companies facing weather related risk but also other market participants.

Currently the CME offers products related to temperatures, snowfall, frost, rainfall

and hurricanes. Among all types of weather instruments, temperature based contracts

are the most liquid ones. Temperature derivatives are based on four types of temperature

indices: the Heating Degree Days (HDD), the Cooling Degree Days (CDD), the Cumula-

tive Average Temperature (CAT) and the Pacific Rim Index (PAC). These temperature

indices are location specific, and in total cover 24 cities in the United States, 11 in Europe,

6 in Canada, 3 in Australia and 3 in Japan. Table 1.1 lists the products available on CME

currently for each location.

Here we introduce four types of temperature indices in the temperature market. Most

of them are based on the daily temperature. Let T (t) be the daily average temperature

1http://www.cmegroup.com/trading/weather/

2
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Table 1.1: Weather Products on CME

U.S. Canada Europe Asia-Pacific Australia
CDD Monthly CAT Monthly CAT Monthly Asia-Pacific Monthly CDD Monthly
CDD Seasonal CAT Seasonal CAT Seasonal Asia-Pacific Seasonal CDD Seasonal
HDD Monthly CDD Monthly HDD Monthly HDD Monthly
HDD Seasonal CDD Seasonal HDD Seasonal HDD Seasonal

Weekly Weather HDD Monthly
HDD Seasonal

(DAT) on date t and defined as

T (t) =
Tmax(t) + Tmin(t)

2
(1.1)

where Tmax(t), Tmin(t) are the maximum and minimum temperature measured on date t,

respectively.

The CAT index simply measures the cumulative DATs over the measurement period

[τ1, τ2]. It is defined as

CAT (τ1, τ2) =

τ2∑
t=τ1

T (t). (1.2)

The measurement period covers all year around.

HDD and CDD are cumulative difference between DAT and a reference temperature,

usually 18◦C or 65◦F . The HDD index measures how many degrees the temperature is

below a certain baseline, and thus assesses the demand for heating. The CDD index,

on the contrary, measures how many degrees the temperature is above a baseline, and

assesses the demand for cooling. The measurement period for HDD Monthly and HDD

Seasonal is from October to April, while the measurement period for CDD Monthly and

CDD Seasonal is from April to October. The HDD over a measurement period [τ1, τ2] is

defined as

HDD(τ1, τ2) =

τ2∑
t=τ1

max(c− T (t), 0). (1.3)

Similarly, the CDD over [τ1, τ2] is defined as

CDD(τ1, τ2) =

τ2∑
t=τ1

max(T (t)− c, 0). (1.4)

The Pacific Rim Index measures the cumulative total of 24-hour average temperatures



CHAPTER 1. INTRODUCTION 4

for Japanese cities:

PAC(τ1, τ2) =

τ2∑
t=τ1

T̃ (t), (1.5)

where T̃ (t) = 1
24

∑24
i=1 Ti(t) with Ti(t) being the temperature of the ith hour on the day t.

A futures contract, or futures, is a standardized contract between two parties to buy or

sell a specified asset for a price agreed today. The agreed price is named as the futures price.

The CME offers futures written on temperature indices. More explicitly, a temperature

futures is an agreement to exchange a fixed amount of money for a variable referenced

index with delivery and payment occurring at a specified future date. The referenced

index is some temperature index, such as the HDD, CDD or CAT index, with a specified

measurement period. The futures contracts are cash settled. The buyer of the contract

receives 20 times the index value at the end of the measurement period in return for the

futures price. The currency is Euro for European futures (British pounds for London) and

US dollars for US futures. Trading of the futures are available up to the beginning of the

measurement period.

The options offered in the CME are plain vanilla European call and put options written

on the temperature futures. In this thesis, we simply refer a plain vanilla European call (or

put) option as a call (or put) option for short. A call option (put option, respectively) is a

contract that gives the holder the right, but not the obligation, to buy (sell, respectively)

an underlying asset or instrument for a fixed price, known as the strike price, at a certain

date in the future, known as the expiration date or maturity. Options written on futures

are called futures options. The strike price of the option written on temperature futures is

the specified futures price at which the underlying futures is traded. The options are cash

settled. The owner of an option receives the difference between the futures price and the

strike if the option is exercised. For example, suppose the futures price at exercise time

τ < τ1 is F (τ, τ1, τ2) for futures with measurement period [τ1, τ2], then the owner of a call

option receive the payoff

max(F (τ, τ1, τ2)−K, 0),

where K is the strike price. In the market, we have options with different strike prices

and exercise times for futures on different indices at all times, see Benth et al. [2007].
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1.2 Pricing Temperature Derivatives via Daily Mod-

elling

The daily modelling approach involves statistical modelling of the temperature evolution.

One tries to model the dynamics of the temperature and then derive the dynamics of

the indices and price the associating temperature derivatives under some theory of asset

pricing. Instead of modelling the underlying temperature, one can model the dynamics

of an index, named as the index modelling approach. Other common approaches are, for

example, historical burn analysis and actuarial method.

The daily modelling approach has the following potential advantages, as argued in

Jewson and Brix [2005]. First of all, the daily modelling preserves more information of

the historical data. The daily modelling makes a more complete use of temperature data,

while other approaches account for the temperature indices which include refinement

of temperature data and lead to information lost. Secondly, daily modelling provides

more accurate representation of all indices and their distributions. By daily modeling,

the distribution of an index is derived from the distribution of temperature. More flexible

and accurate distribution is then allowed compared to direct modelling of the index.

Another advantage is that only one temperature model is required for all contracts on

one location. This ensures necessary consistency in pricing different contracts on the same

location, which will further suit the purpose of hedging. Compared to daily modelling,

index modelling where different models for different indices on the same location are

usually needed. Therefore, it is also more convenience in the sense of implementation. From

the point of implementation, daily modelling also allows to incorporate meteorological

forecasts, which can further increase the accuracy of forecasting and hence of pricing.

The disadvantage of daily modelling lies in the increased complexity of the model. Since

temperature is a complicated system in its nature, it is not straightforward to develop

a model fully capturing its dynamics. It is expected that the more sophisticated models

we use for modelling temperature, the more complex it will be to fit and implement the

models. Besides, daily modelling bears the risk from the model error. If the temperature

model is not good enough, or a mistake occurs when implementing the model, we may end

up with large error in pricing of the temperature derivatives. It is also worth mentioning

that access to weather data can be costly and not always available.

An accurate yet practically manageable model for the temperature dynamics is re-

quired as the starting point for further steps of pricing. Different models have been pro-

posed to model the dynamics of daily temperature. In general, they can be classified into

two kinds: the discrete time models and the continuous time models. Since discrete values



CHAPTER 1. INTRODUCTION 6

of temperature are used in determining temperature indices, discrete time models are nat-

urally adopted to study the daily observations. A general autoregressive moving average

(ARMA) framework is often used in literatures considering discrete time formulation, see

for example, Campbell and Diebold [2005], Roustant et al. [2004] and Caballero et al.

[2002]. On the other hand, continuous time models attracts more and more attention

in academic recently. From the point of modelling temperature, they are capable of de-

scribing irregularly spaced data and high-frequency data. From the point of pricing, they

allows application of some modern finance theory where theoretical solutions in derivatives

pricing can be obtained.

Many literatures attempt to model the temperature using mean-reverting Ornstein-

Uhlenbeck processes, where Brownian motion is commonly considered as the driving noise

process, see for example Choyce [2000] and Alaton et al. [2002]. However, Brownian motion

is found out to be insufficient to model the evolution of the temperature. Brody et al.

[2002] suggests using a fractional Brownian motion as the driving noise to incorporate

long memory effect. The family of generalized hyperbolic Lévy processes are suggested in

order to capture the semi-heavy tails and skewness of residuals in the temperature. For

example, Bellini [2005] suggests a hyperbolic Lévy process; Alexandridis and Zapranis

[2013] examines generalized hyperbolic distribution, the hyperbolic, the normal inverse

Gaussian and stable distribution for the residuals.

Benth et al. [2007] generalizes the above Ornstein Uhlenbeck process to higher or-

der continuous-time autoregressive (CAR) process with lag p and seasonal variance to

model temperature dynamics, where Brownian motion is the driving noise. Compared to

Ornstein-Uhlenbeck process, which is a CAR process with lag 1, the CAR process with lag

p allows a more flexible choice for the autocorrelation structure in the daily temperatures.

A generalization of this model is to generalize the Brownian motion to Lévy processes.

For example, Swishchuk and Cui [2013] applies the Lévy driven CAR process and uses

generalized hyperbolic distributions for the residuals to Canadian temperature data. The

pricing formula for CAT futures and numerical pricing formula for CDD and HDD futures

are also discussed in Swishchuk and Cui [2013].

1.3 Motivation and Outline

As introduced before, the CAR process provides an useful tool in the context of tempera-

ture derivatives. In this thesis, we explore the framework of modeling and pricing weather

derivatives under a Lévy driven CAR process.

For the part of modelling the temperature, we use a CAR process with lag p and sea-
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sonal variance. Some properties of such processes are first studied. Typically, we introduce

the class of Lévy processes with marginals following the family of generalized hyperbolic

distributions, which is capable to describe the heavy tails observed in the data.

Then we proceed on pricing the weather derivatives under our temperature model.

Since we consider contracts written on temperature indices which are in fact not traded

in the market, we deal with an incomplete market model. The arbitrage theory for asset

pricing is first reviewed. Under the no-arbitrage assumption, the derivatives prices are

some expected values under the equivalent martingale measure. The technique of applying

Esscher transform to construct risk-neutral measures is applied. We further introduce

explicit pricing formulas for CAT, HDD and CDD futures, as well as CAT options under

the settings of Brownian motion. For Lévy driven CAR process, explicit formula can be

derived for only CAT futures price. For HDD futures, CDD futures and CAT options, the

method of Fourier pricing is explored.

Further we implement the framework of pricing under the Lévy driven CAR model.

First we investigate the CAR model on temperature data for 6 US cities and 2 European

cities. Then we estimate the CAT futures prices and HDD prices for Stockholm following

the derived formulas and Fourier approach.

The thesis is structured as follows. After this introductory chapter, the necessary

background knowledge for both modelling and pricing is introduced in chapter 2. More

exactly, basics of the Lévy processes, arbitrage theory, Esscher transform and time series

analysis are included here. Chapter 3 presents the definition and some properties of the

CAR processes, and specifies the CAR model for temperature. In chapter 4, issues of

pricing temperature futures and options under the Lévy driven CAR model are discussed.

The data analysis for temperature is shown in chapter 5. Empirical results of pricing are

presented in chapter 6. Chapter 7 gives a summary of the thesis. All computations in this

thesis are carried out in R version 3.0.2.



Chapter 2

Preliminaries

2.1 Lévy Process

Lévy processes focus on jump behaviors and they allow more realistic and flexible models

to describe the evolution of temperature. Later we will assume Lévy processes as the

driving noise in our model for temperature dynamics. The class of generalized hyperbolic

Lévy processes are typically of interest since they provide distributions that are more

close to empirical statistics of temperature data.

For the purpose of introduction, we first give the definition of a Lévy process and

introduce its distribution. Definitions and some properties of the class of generalized

hyperbolic Lévy processes are followed. Then we present some results on the stochastic

integration based on Lévy process, which is needed for further discussion.

2.1.1 Lévy Process and Infinite Divisibility

Assume that a filtered probability space (Ω,F , P ) with filtration F = (Ft)0≤t≤∞, denoted

as (Ω,F ,F, P ) is given. Moreover, we always assume that it satisfies the usual hypotheses :

(i) F0 contains all the P -null sets of F ;

(ii) Ft = ∩u>tFu for all 0 ≤ t <∞, i.e. the filtration F is right continuous.

A stochastic process (X(t), t ∈ T ) is a family of random variables defined on a probability

space (Ω,F , P ). The index set T is called the time domain. Here we consider T = [0,∞)

or T = R for continuous-time stochastic processes, and T = Z or T = Z+ for discrete-

time ones. R denotes the set of real numbers, R+ the set of positive real numbers, Z the

set of integers, Z+ the set of positive integers, C the complex plane.

8
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The following definitions and results can be found in any standard text book on Lévy

process. Here we mainly refer to Applebaum [2009].

Definition 2.1 (Lévy process). A stochastic process L = (L(t), t ≥ 0) is a Lévy Process

if

(i) L(0) = 0 almost surely;

(ii) L has independent increments, i.e. for each n ∈ N and each 0 ≤ t1 ≤ · · · ≤ tn+1 <∞
the random variables (X(tj+1 −X(tj)), 1 ≤ j ≤ n) are independent;

(iii) L has stationary increments, i.e. X(t)−X(s)
d
= X(t− s) for all s ≤ t;

(iv) L is stochastically continuous, i.e. limt→s P (|L(t) − L(s)| > a) = 0, for all a > 0,

for all s ≥ 0

The Brownian motion and the Poisson process are two special cases of Lévy processes.

Example 1 (Brownian motion). A (standard) Brownian motion is a Lévy process B =

(B(t), t ≥ 0) for which

(i) B(t) ∼ N(0, t) for each t ≥ 0,

(ii) B has continuous sample paths.

In this thesis, we always use B to denote a Brownian motion and L to denote a Lévy

process.

Example 2 (The Poisson process). The Poisson process N = (N(t), t ≥ 0) of inten-

sity λ > 0 is a Lévy process taking values in {0, 1, 2, . . . } where N(t) follows a Poisson

distribution with intensity λt, so that

P (N(t) = n) =
(λt)n

n!
e−λt

for each n = 0, 1, 2, . . . . The compensated Poisson process Ñ = (Ñ(t), t ≥ 0) is defined by

Ñ(t) = N(t)− λt for t ≥ 0.

The distributions of Lévy processes are are related to infinitely divisible distributions.

We first give the definitions of infinitely divisible random variables and distributions.

Definition 2.2 (Infinitely divisible). Let X be a random variable taking values R. We say

X is infinitely divisible if, for all n ∈ N, there exits i.i.d random variables Y
(n)

1 , . . . , Y
(n)
n

such that

X = Y
(n)

1 + · · ·+ Y (n)
n .
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A distribution µ(dz) is said to be infinitely divisible if there exits a distribution µ(n)

for each n = 1, 2, . . . such that

µ = µ(n) ∗ µ(n) ∗ · · · ∗ µ(n), (2.1)

where ∗ is a convolution operator.

Given a random variable X, let φX(u) = E(eiuX) denote the characteristic function of

X where u ∈ R and i =
√
−1. The following Lévy-Khintchine Formula gives a characteri-

sation of infinitely divisible random variables through their characteristic functions. First

we need to introduce the Lévy measure. A Lévy measure, denoted by `(dz), is a σ-finite

measure on Borel sets of R\{0} := {x ∈ R, x 6= 0} satisfying the integrability condition∫
R\{0}

1 ∧ z2`(dz) <∞

Here a ∧ b denotes the minimum of two numbers a and b. The Lévy-Khintchine Formula

follows

Theorem 2.3 (Lévy-Khintchine). A random variable X is a infinitely divisible is there

exists ν ∈ R, σ > 0 and a Lévy measure ` such that, for all u ∈ R,

φX(u) = exp

{
iuν − 1

2
σ2u2 +

∫
R

(
eiuz − 1− iuz1|z|<1(z)

)
`(dz)

}
. (2.2)

Conversely, any mapping of the form (2.2) is the characteristic function of an infinitely

divisible random variable on R.

Remark 1. The characteristic function (2.2) can be written as φX(u) = eη(u), where

η : R 7→ C,

η(u) = iuν − 1

2
σ2u2 +

∫
R
{eiuz − 1− iuz1|z|<1(z)}`(dz),

is called the Lévy symbol. The triplet of parameters (ν, σ, `) is called the generating triplet.

By the definition of a Lévy process (L(t), t ≥ 0),

L(t) = L(
t

n
) + (L(

2t

n
)− L(

t

n
)) + · · ·+ (L(t)− L(

(n− 1)t

n
)),

for each n = 1, 2, . . . , so that L(t) is the sum of n independent, identically distributed

(i.i.d) random variables, whose distribution is that of L( t
n
). Therefore, L(t) is infinitely

divisible for each t ≥ 0. By Lévy-Khintchine Formula, we have φL(t)(u) = eη(t,u) for each
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t ≥ 0, u ∈ R, where each η(t, ·) is a Lévy symbol. We see in the following theorem that

η(t, u) = tη(1, u) for each t ≥ 0, u ∈ R.

Theorem 2.4. If L is a Lévy process, then the characteristic function of L(t)

φL(t)(u) = etη(u),

for each u ∈ R, t ≥ 0, where η(u) is the Lévy symbol of L(1).

Therefore, we define the Lévy symbol and the generating triplet of a Lévy process

(L(t), t ≥ 0) to be those of L(1). If L(t) is a Lévy process, the distribution of L(1) is

infinitely divisible. Conversely, as stated in Applebaum [2009], page 62, Corollary 1.4.6,

Theorem 2.5. Given an infinitely divisible probability measure µ on R with Lévy symbol

η, there exists a Lévy process {L(t)} such that µ is the law of L(1).

From the following Lévy-Itô decomposition we see that a Lévy process can be decom-

posed into a Brownian motion with drift (the continuous path), a Poisson integral (the

large jump) and a compensated Poisson integral (the small jumps), cf. Applebaum [2009],

page 108, Theorem 2.4.16,

Theorem 2.6 (Lévy-Itô decomposition). If L is a Lévy process, then there exists ν ∈ R,

σ > 0 , a Brownian motion B(t) and an independent Poisson random measure N on

R+ × (R\{0}), such that for for each t ≥ 0,

L(t) = νt+ σB(t) +

∫
|z|<1

zÑ(t, dz) +

∫
|z|≥1

zN(t, dz),

Here N(dt, dx) is a Poisson random measure with compensator dt× `, where ` is the Lévy

measure and dt denotes the Lebesgue measure, and Ñ(dt, dz) = N(dt, dz)− dt`(dz).

The Lévy process L(t) with above Lévy-Itô decomposition corresponds to a generating

triplet (ν, σ, `). For example, if the generating triplet is (ν, σ, 0), then the corresponding

Lévy process is L(t) = νt+σB(t), which is a Brownian motion with variance σ2 and drift

ν.

In the case where σ = 0, i.e., the process has no continuous Brownian motion part,

the process is a purely discontinues Lévy process. In next section, we introduce the class

of generalized hyperbolic Lévy processes which belongs to this type.
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2.1.2 Generalized Hyperbolic Lévy Processes

Now we introduce the family of generalized hyperbolic distributions and two of its sub-

classes: the hyperbolic distribution and the normal inverse Gaussian distribution. These

distributions are infinitely divisible. As discussed before, they generate corresponding

Lévy processes.

The generalized hyperbolic distribution is often used in modelling financial markets. It

is a very flexible family of distributions which can model skewness and (semi-)heavy tails.

This is a property that the normal distribution does not possess. Moreover, the density

function, the characteristic function and the moment generating function of generalized

hyperbolic distributions are explicitly known, which provides convenience to access pricing

as we will see later.

The generalized hyperbolic distribution, introduced by Barndorff-Nielsen and Halgreen

[1977], is a class of five-parameter distributions.

Definition 2.7 (Generalized hyperbolic Lévy process). The generalized hyperbolic distri-

butions, denoted by GH(λ, α, β, µ, δ), with parameters λ ∈ R, α > 0, |β| < α, δ > 0 and

µ ∈ R, is a family of infinitely divisible distributions with density function given by

fGH(x;λ, α, β, µ, δ) =

(√
α2 − β2/δ

)λ
eβ(x−µ)

√
2πKλ

(
δ
√
α2 − β2

) × Kλ− 1
2

(
α
√
δ2 + (x− µ)2

)
(√

δ2 + (x− µ)2/a
) 1

2
−λ

, (2.3)

where

Kλ(z) =
1

2

∫ ∞
0

uλ−1 exp

{
−z

2
(u+

1

u
)

}
du (2.4)

is the modified Bessel function of the third kind with index λ.

The Generalized hyperbolic Lévy process is a Lévy process (L(t), t ≥ 0) such that L(1)

follows a generalized hyperbolic distribution.

The parameter µ controls the location of the distribution, α the steepness (or the

fatness of the tails) of the distribution, β the skewness, and δ is the scaling parameter.

The distribution is symmetric when β = 0. The parameter λ is identifying the subfamily

within the generalized hyperbolic class. The generalized hyperbolic family is the superclass

of the hyperbolic, normal inverse Gaussian, variance-gamma, normal, t-distribution.

The mean and variance of a GH(λ, α, β, δ, µ) distributed random variable are, see
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Prause [1999], Lemma 1.14 :

Mean µ+
βδ

γ

Kλ+1(δγ)

Kλ(δγ)

Variance
δKλ+1(δγ)

γKλ(δγ)
+
β2δ2

γ2

(
Kλ+2(δγ)

Kλ(δγ)
−
[
Kλ+1(δγ)

Kλ(δγ)

])
where γ =

√
α2 − β2.

The family of generalized hyperbolic distributions admits explicit moment generating

function. If a random variable X is distributed according to a generalized hyperbolic

distribution, the moment generating function MGH(u) = E[euX ] exists for u with |β+u| <
α and is given by

MGH(u) = eµu

( √
α2 − β2√

α2 − (β + u)2

)λ Kλ

(
δ
√
α2 − (β + u)2

)
Kλ

(
δ
√
α2 − β2

) , (2.5)

As a consequence, exponential moments of a generalized hyperbolic Lévy process L(t)

are finite, i.e. E[exp(L(t)] < ∞. Such property is required in later pricing of weather

derivatives under some martingale measure.

Now we introduce two subclasses of the generalized hyperbolic distribution, which are

the hyperbolic distribution and the normal inverse Gaussian distribution. By fixing the

parameter λ, they reduce the five-parameter distributions to four parameter distributions.

Both distributions have been commonly applied in financial context.

Setting λ = 1 in (2.3) we obtain the hyperbolic distribution, which is first applied in

finance by Eberlein and Keller [1995].

Definition 2.8 (Hyperbolic Lévy process). The hyperbolic distribution, denoted by H(α, β, µ, δ),

with parameters α > 0, |β| < α, δ > 0 and µ ∈ R, is infinitely distribution with density

function given by

fH(x;α, β, µ, δ) =

√
α2 − β2

2αδK1

(
δ
√
α2 − β2

) exp
(
−α
√
δ2 + (x− µ)2 + β(x− µ)

)
. (2.6)

where K1(z) is the modified Bessel function of the third kind with index 1.

The Hyperbolic Lévy process is a Lévy process such that L(1) follows hyperbolic distri-

bution.
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The moment generating function of a hyperbolic distribution H(α, β, µ, δ) is

MH(u) = eµu
√
α2 − β2√

α2 − (β + u)2

K1

(
δ
√
α2 − (β + u)2

)
K1

(
δ
√
α2 − β2

) . (2.7)

Setting λ = −1
2

in (2.3), we obtain the normal inverse Gaussian (NIG) distribution

which is first introduced in finance by Barndorff-Nielsen [1997].

Definition 2.9 (Normal Inverse Gaussian process). The normal inverse Gaussian distri-

bution, denoted by NIG(α, β, µ, δ), with parameters α > 0, |β| < α, δ > 0 and µ ∈ R, is

an infinitely divisible distribution with density function given by

fNIG(x;α, β, µ, δ) =
αδK1

(
α
√
δ2 + (x− µ)2

)
π
√
δ2 + (x− µ)2

exp
(
δ
√
α2 − β2 + β(x− µ)

)
. (2.8)

where K1(z) is the modified Bessel function of the third kind with index 1.

The Normal inverse Gaussian (NIG) process is a Lévy process such that L(1) is normal

inverse Gaussian distributed.

Since the Bessel function satisfies K−1/2(z) = K1/2(z) =
√
π/(2z)e−z, see Eberlein

[2009], section 4.4, NIG(α, β, δ, µ) distribution has more explicit form of some stylized

features, which are

Mean
βδ√
α2 − β2

+ µ

Variance
α2δ

(α2 − β2)3/2

Skewness
3β

α
√
δ(α2 − β2)1/4

Kurtosis 3

(
1 +

α2 + 4β2

δα2
√
δ(α2 − β2)

)
and the moment generating function of NIG distribution is

MNIG(u) = exp
{
µu+ δ

(√
α2 − β2 −

√
α2 − (β + u)2

)}
. (2.9)

If we derive M t
NIG(u), from (2.9), we obtain the same form of expression with parameters

tµ and tδ. Therefore, the NIG distributions are said to be closed under convolution in

the two parameters µ and δ, see Eberlein [2009]. From the independent and identical
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increments property, the distribution of L(t) is the convolution of L(1), therefore for a

NIG Lévy process, L(t) ∼ NIG(α, β, µt, δt), for each t ≥ 0.

We now focus back on the generalized hyperbolic distribution as the superclass. The

tail behavior of the generalized hyperbolic distribution is often classified as semi-heavy,

meaning that the tails are lighter than those non-Gaussian stable laws, but much heavier

than those of the Gaussian distribution. Take the NIG distribution as an example, we

see from equation (2.8) that the probability density decays exponentially like exp(βx) as

t→ ±∞. Comparatively, the normal distribution decays more rapidly like exp(−kx2) for

some constant k. Therefore, the family of generalized hyperbolic distributions allows more

probabilities of rare events compared to the normal distributions.

The generalized hyperbolic Lévy processes L(t) are purely discontinuous processes with

paths of infinite variation, see Benth and Šaltytė-Benth [2005], section 2.2. If we compare

the characteristic function of L(1), which is φ(u) = MGH(iu), to the Lévy-Khintchine

formula (2.2), we see σ = 0 and the process is a pure jump process. The infinite variation

property is drawn from the Lévy measure `. For generalized hyperbolic distribution, the

Lévy measure ` has explicit Lebesgue density given by

`GH(dz) = |z|−1eβz
1

π2

∫ ∞
0

{
exp(−

√
2y + α2|z|)

J2
λ(δ
√

2y) + Y 2
λ (δ
√

2y)

dy

y
+ λe−α|z|

}
dz, for λ ≥ 0,

and

`GH(dz) = |z|−1eβz
1

π2

∫ ∞
0

exp(−
√

2y + α2|z|)
J2
−λ(δ
√

2y) + Y 2
−λ(δ
√

2y)

dy

y
dz, for λ < 0,

where Jλ and Yλ are the Bessel functions of the first and second kind, respectively, with

index λ. With the explicit Lévy measure, we can verify some integrability conditions

imposed on Lévy measure for finance application.

Parameters of the generalized hyperbolic distribution can be estimated by maximum

likelihood method. Given observations x = (x1, . . . , xn), the maximum likelihood estimate

of the parameters κ = (λ, α, β, δ, µ) can be obtained by minimizing the log-likelihood

function for generalized hyperbolic distribution:

L(x;κ) = log(a) +
λ− 1/2

2

n∑
i=1

log
(
δ2 + (xi − µ)2

)
× log

(
Kλ−1/2

(
α
√
δ2 + (xi − µ)2

))
+ β(xi − µ).
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2.1.3 Integrals Based on Lévy Processes

In our model, the temperature dynamics is defined by a stochastic differential equation

based on Lévy processes. Important results required for Lévy based stochastic calculus

are presented here.

We begin with the definitions of local martingale and semimartingale. This concept is

useful since the theory of stochastic integrals can be applied for calculating
∫∞
o
H(s)dX(s),

where the integrator X = X(s) is a semimartingale and the integrand H = H(s) is a

predictable process.

Definition 2.10 (Local Martingale and Semimartingale). (i) For a stochastic process

X = (X(t)) and a stopping time τ , Xτ := Xt∧τ is called the process stopped at τ .

If X is a process and (τn) an increasing sequence of stopping times, X is called a

local martingale if (Xτn) = (Xτn∧t) is a martingale. The sequence (τn) is called a

localizing sequence.

(ii) An adapted, càdlàg stochastic process X = (X(t)) is a semimartingale if it can be

decomposed as

X(t) = X(0) +M(t) + C(t), (2.10)

where M = M(t) is a local martingale and C = C(t) is an adapted process of finite

variation.

From the Lévy-Itô decomposition, every Lévy process L = L(t) is a semimartingale,

see Applebaum [2009], page 115, Proposition 2.6.1. Then we can resort to the theory of

stochastic integrals of predictable process with respect to semimartingales. For the general

theory for stochastic integrals of predictable process with respect to semimartingales, we

refer to He et al. [1992].

In this thesis we focus on stochastic integrals with integrable and bounded integrands.

Let L = (L(t), t ≥ 0) be a Lévy process taking values in R and f ∈ L2(R+), i.e. f : R+ 7→
R satisfies

||f ||2 =

[∫ ∞
0

|f(s)|2ds
]1/2

<∞.

Note that we use L2 to denote the space with the above norm || · ||2. We consider the

Wiener-Lévy integrals Y = (Y (t), t ≥ 0), where each

Y (t) =

∫ t

0

f(s)dL(s). (2.11)

First we have that the process Y = Y (t) has independent increments, see Applebaum

[2009], page 214, Lemma 4.3.12, which is
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Lemma 2.11. For each 0 ≤ s < t <∞, Y (t)− Y (s) is independent of Fs.

Typically, if L in equation (2.11) is a standard Brownian motion B = (B(t), t ≥ 0),

we have that for each t ≥ 0,

Y (t) =

∫ t

0

f(s)dB(s) ∼ N

(
0,

∫ t

0

|f(s)|2ds
)
. (2.12)

For the differential-integral calculus based on Lévy process, we need an important tool

known as the Itô’s Lemma. Here we present the multidimensional Itô’s Formula. For more

information, we refer to Watanabe and Ikeda [1981].

Theorem 2.12 (Itô’s Lemma for semimartingales). Let X1, . . . , Xd be semimartingales,

and X(t) = (X1(t), . . . , Xd(t)). Each and f is a function on Rd with continuous partial

derivatives of the first and second orders. Then f(X(t)) = (f(X1(t), . . . , Xd(t)))t≥0 is a

semimartingale and

f(X(t)) =f(X(0)) +
d∑
j=1

∫ t

0

fj(X(s−)dX i(s) +
1

2

d∑
i,j=1

∫ t

0

fi,j(X(s−))d〈(X i)c, (Xj)c〉(s)

+
∑

0<s≤t

(
f(X(s))− f(X(s−))−

d∑
i=j

f(X(s−))∆Xj(s)

)

where fi = ∂f
∂xj

, fi,j = ∂2f
∂xi∂xj

, X(t−) is the left limit in t of process X, ∆X(t) = X(t) −
X(t−) , 〈X, Y 〉 is the predictable quadratic covariance of X and Y (see He et al. [1992],

page 186), and Xc is the continuous martingale part of X.

2.2 Arbitrage Theory

The arbitrage theory for pricing of derivatives is often applied after establishing a model

for the dynamics of the underlying asset. Later we will price the temperature derivatives

using no arbitrage theory. As a reference, we present some basic concepts and results

based on Bingham and Kiesel [2004] in this section. The main focus is on the concept of

arbitrage-free and completeness, and their relations to martingale measure.

A probability space (Ω,F , P ) with a filtration F = (Ft)0≤t≤τmax satisfying the usual hy-

pothesis is assumed given to model random events in the market. Here τmax <∞ denotes

the fixed maximal time up to which trades are allowed and Fτmax = F . The market model

consists of d + 1 basic assets whose price processes are modelled by stochastic processes

S0, . . . , Sd defined on (Ω,F ,F, P ). The continuously compounded risk-free interest rate,
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r, is assumed to be constant. Let S0(t) = R(t) be the risk-free bond given by R(t) = ert.

R(t) is a numéraire, i.e. an almost surely strictly positive price process for t ∈ [0, τmax].

The discounted price process is defined as

S̃(t) =
S(t)

R(t)
=
(

1, S̃1(t), . . . , S̃d(t)
)
, t ∈ [0, τmax],

with S̃i(t) = Si(t)
R(t)

, for i = 1, . . . , d.

An Rd+1-valued predictable process

ϑ(t) = (ϑ0(t), . . . , ϑd(t)), t ∈ [0, τmax],

a trading strategy (or dynamic portfolio process), if ϑi is sufficiently integrable such that∫ t
0
ϑi(s)dSi(s) is well-defined. Here ϑi(t) denotes the number of shares of asset i held in

the portfolio at time t−, which denotes the left limit of t. Some definitions on trading

strategies are required before introducing arbitrage opportunities.

Definition 2.13 (Value process, gains process and self-financing). (i) The value (or wealth)

process of the trading strategy ϑ is defined as

Vϑ(t) := ϑ(t)>S(t) =
d∑
i=0

ϑi(t)Si(t), t ∈ [0, τmax].

(ii) The gains process based on trading strategy ϑ is defined as

Gϑ(t) :=

∫ t

0

ϑ(t)>dS(t). =
d∑
i=0

∫ t

0

ϑi(t)dSi(t).

(iii) A trading strategy ϑ is called self-financing if the wealth process Vϑ satisfies

Vϑ(t) = Vϑ(0) +Gϑ(t) for all t ∈ [0, τmax].

Definition 2.14 (Arbitrage opportunity). A self-financing trading strategy ϑ is called an

arbitrage opportunity is the wealth process Vϑ satisfies the following set of conditions:

Vϑ(0) = 0, P (Vϑ(τmax) ≥ 0) = 1, and P (Vϑ(τmax) > 0) > 0.

By definition, an arbitrage opportunity allows a risk-free profit. The arbitrage theory is

based on the assumption that the market does not allow any arbitrage opportunity. In an
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efficient market, such no-arbitrage assumption should be true. The concept of equivalent

martingale measures, given in the following definition, plays an important role in arbitrage

theory.

Definition 2.15 (Equivalent martingale measure). A probability measure Q defined on

(Ω,F) is called an equivalent martingale measure (EMM) if

(i) Q is equivalent to P, denoted as Q ∼ P ,

(ii) the discounted price processes S̃i, i = 1, . . . , d, are Q-martingales.

We denote the set of martingale measures by Q.

Discussion on the link between the arbitrage and EMM follows. First some restrictions

are imposed on trading strategies from following Definition.

Definition 2.16. A self-financing strategy ϑ is called tame (relative to the numéraire) if

Ṽϑ ≥ 0, for t ∈ [0, τmax].

The set of tame strategies is denoted by Υ.

Theorem 2.17. Assume that there exists an EMM, then the market contains no arbitrage

opportunities in Υ.

The converse statement of Theorem 2.17 , i.e. no arbitrage implying the existence of

an EMM, is basically true as well. One requires a more technical and stronger definition

of no arbitrage, known as No free lunch with vanishing risk (NFLVR), see Bingham and

Kiesel [2004], page 235, Definition 6.1.6 and Theorem 6.1.2. In general, the equivalence

between no arbitrage and existence of equivalent martingale measure is known as the First

Fundamental Theorem of Asset Pricing.

Now we turn to the problem of pricing a financial derivative under the no-arbitrage

assumption. Under the assumption, there exists an EMM Q. The cash flow of a derivative

is described via the concept of contingent claims, which is an F -measurable random

variable X such that X̃ := X/S0(τmax) satisfies EQ[
∫ τmax

0
X̃(t)dt] < ∞. In order to price

or hedge the contingent claim, we attempt to construct a trading strategies which replicate

the its payoff. Mathematically, this is described in the following Definition.

Definition 2.18. (i) A self-financing strategy ϑ is called Q-admissible if the relative

gains process

G̃ϑ =

∫ t

0

ϑ(u)>dS̃(u)

is a Q-martingale.
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(ii) A contingent claim X is called attainable if there exists at least one admissible

trading strategy such that

Vϑ(τmax) = X.

We call such a trading strategy ϑ a replicating strategy for X.

From the definition, if the claim X is attainable, we can construct a portfolio ϑ which

returns the same payoff as X at time τmax. Holding the portfolio is equivalent to holding

the contingent claim X, and hence they their value should be the same. From the below

Theorem, we can obtain the arbitrage-free price process ΠX(t) of an contingent claim X.

Theorem 2.19 (Risk-neutral Valuation Formula). The arbitrage price process of any

attainable claim X is given by the risk neutral formula

ΠX(t) = e−(τmax−t)EQ [X|Ft] , for all t ∈ [0, τmax]. (2.13)

In order to investigate the uniqueness of the EMM Q, the definition of a complete

market is introduce.

Definition 2.20. The financial market model is said to be complete if any contingent

claim is attainable.

Completeness of a market implies that we have sufficient securities in the market so

that any new one can be replicated by the existing ones. The market is incomplete if

we do not have sufficient securities to construct a replicating portfolio for all contingent

claim. This is often the case when the asset price processes have jumps and stochastic

volatility. As posed in Staum [2007], in a market where jumps of all sized are possible,

one need, for example, vanilla European options of all strikes and maturities, to complete

the market. In market For weather derivatives, the underlying asset is not traded, this

constitutes another type of insufficiency.

Completeness of the market is linked to uniques of EMM in the following Theorem.

Theorem 2.21 (Second Fundamental Theorem of Asset Pricing). A market model that

admits at least one EMM Q is complete if and only if Q is unique.

If the market is arbitrage-free and complete, then there exists only one unique EMM

Q such that the price of a contingent claim X given by (2.13) is unique. In the case

where the market is arbitrage-free but is not complete, the market admits more than one
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equivalent martingale measures, then the price is in the interval(
inf
Q∈Q

EQ[X̃], sup
Q∈Q

EQ[X̃]

)
.

whereQ is the set of all EMMs, X̃ is the discounted payoff, see Delbaen and Schachermayer

[2006], page 24, Theorem 2.4.1.

The problem is now to select the most suitable EMM Q in Q and then to value all

claims as the expected discounted value with respect to Q. In financial application, we

have several kinds of candidates for constructions of equivalent martingale. The Esscher

transformation method we introduced in next section is one of the well known techniques

to obtain a manageable class of EMMs.

2.3 Esscher Transform

In financial application, one usually has to change the physical probability measure P to

an EMM Q, known as the risk neutral measure, such that the discounted price process of

the underlying is a martingale under Q. Under the setting of Brownian motion, we have

Girsanov transform to serve the purpose of measure transformation. Under the setting of

Lévy process, one can resort to Esscher transform. The Esscher transform is introduced

by Esscher [1932] to study risk theory and then applied by Gerber and Shiu [1994] to

option pricing.

First we review the Girsanov’s theorem.

Theorem 2.22 (Girsanov’s theorem). Let B be a Brownian Motion on (Ω,F ,F, P ). With

θ(t) being a real-valued, and bounded and piecewise continuous function, let

Zθ
BM(t) = exp

(∫ t

0

θ(s)dL(s)− 1

2

∫ t

0

||θ(s)||2ds
)
.

Define

Bθ(t) := B(t)−
∫ t

0

θ(u)du.

We define a equivalent probability measure Qθ by the Radonr-Nikodym derivative

dQθ

dP
|Ft = Zθ

BM(t),

then the process Bθ(t) is a Brownian motion with respect to Qθ.
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As we have seen, the Girsanov transform preserves the normality of the distribution of

the Brownian motion. The Esscher transform is a generalization of the Girsanov transform

of Brownian motion to jump processes. The following theorem from Alexandridis and

Zapranis [2013], Theorem 2.7, states its original definition.

Theorem 2.23. The Esscher Transform. Let f(x) be a probability density; then its Ess-

cher transform is defined as

f(x, θ) =
eθxf(x)∫ +∞

−∞ eθxf(x)dx
(2.14)

More generally, if P is a probability measure, then the Esscher transform of P is a new

probability measure Qθ which has density

eθxf(x)∫ +∞
−∞ eθxf(x)dP (x)

(2.15)

with respect to P .

The Esscher transform preserves the distributional properties of jump processes, so

that we still have access to their characteristics, as posed in Benth et al. [2008]. Moreover,

the characteristics of the jump process is altered by the parameter θ, while the independent

increment property is yet preserved, see Benth et al. [2008]. This is an useful technique in

the context of Lévy processes as we will see later when it is applied on pricing derivatives.

2.4 Basics for Time Series Analysis

In this section, we introduce the discrete-time autoregressive moving average (ARMA)

process, based on Brockwell and Davis [2009]. We also include some statistical tests in

the context of time series analysis for further use of model diagnostic.

2.4.1 Discrete-time Autoregressive and Moving Average Pro-

cesses

The discrete-time ARMA process is an important class of stationary stochastic process

of the discrete form {X(t), t ∈ Z}. It can be viewed as a discrete counterpart of the

continuous-time autoregressive moving average (CARMA) process which will be intro-

duced in next section. It is also relevant for further data analysis.
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Definition 2.24 (The Autocovariance Function). If (X(t), t ∈ T ) is a process such that

V ar(X(t)) < ∞ for each t ∈ T , then the autocovariance function, γX(·, ·), of {X(t)} is

defined by

γX(s, t) = Cov(X(s), X(t)) = E [(X(s)− EX(s)) (X(t)− EX(t))] , s, t ∈ T ,

where E(·) denotes the expectation.

Definition 2.25 (The Autocorrelation Function). The autocorrelation function (ACF),

ρX(·, ·), of (X(t), t ∈ T ) is defined by

ρX(s, t) = Corr(Xs, Xt) =
γX(s, t)√

γX(r, r)γX(s, s)
, s, t ∈ T .

Definition 2.26 (Stationarity). The time series {X(t), t ∈ Z} is said to be stationary if

(i) E|Xt|2 <∞ for all t ∈ Z,

(ii) EXt = m for all t ∈ Z,

(iii) γX(s, t) = γX(s+ r, t+ r) for all s, t, r ∈ Z.

Such stationarity is referred to as weak stationarity, covariance stationarity or second-

order stationarity.

Definition 2.27 (White Noise). The process {Z(t)} is said to be white noise with mean

0 and variance σ2, denoted as

{Z(t)} ∼ WN(0, σ2),

if and only if {Z(t)} has zero mean and covariance function

γZ(h) =

σ2 h = 0,

0 h 6= 0.

Definition 2.28 (ARMA(p,q) Process). The process {X(t), t ∈ Z} is said to be an

ARMA(p,q) process if {X(t)} is stationary and for every t,

X(t)− b1X(t− 1)− · · · − bpX(t− p) = Z(t) + a1Z(t− 1) + · · ·+ aqZ(t− q), (2.16)

where {Zt} ∼ WN(0, σ2). We say that {X(t)} is an ARMA(p,q) process with mean µ if

{X(t)− µ} is an ARMA(p,q) process.
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We can rewrite equation (2.16) as

b(B)X(t) = a(B)Z(t), (2.17)

where B is the backward shift operator, i.e. BjX(t) = X(t − j), for each j ∈ Z; a and b

are the pth and qth degree polynomials

a(z) := 1− a1z − · · · − apzp,

b(z) := 1 + b1z + · · ·+ bqz
q.

Following are two special cases of the ARMA process. Setting a(z) ≡ 1 in equation

(2.17), we obtain the autoregressive (AR) process. Setting b(z) ≡ 1 in equation (2.17), we

obtain the moving average (MA) process.

Definition 2.29 (The AR(p) process). The process (X(t), t ∈ Z) is said to be an AR(p)

process if {X(t)} is stationary and for every t,

X(t)− b1X(t− 1)− · · · − bpX(t− p) = Z(t) (2.18)

where {Zt} ∼ WN(0, σ2).

Definition 2.30 (The MA(q) process). The process (X(t), t ∈ Z) is said to be an MA(q)

process if {X(t)} is stationary and for every t,

X(t) = Z(t) + a1Z(t− 1) + · · ·+ aqZ(t− q), (2.19)

where {Zt} ∼ WN(0, σ2).

Now we present the definitions of the autocorrelation function (ACF) and partial auto-

correlation functions (PACF) of stationary process defined in Definition 2.26. In practice,

we often estimate the ACF and PACF of a stationary time series {X(t)} from obser-

vations {x1, x2, . . . , xn} in order to explore the dependence structure of {X(t)}. For a

stationary process defined in Definition 2.26, the covariance of X(s) and X(t) only de-

pends on |s − t|, because γX(s, t) = γX(s − t, 0), for s, t ∈ Z. Therefore, we define the

autocovariance function of a stationary time series as

γX(h) := γX(h, 0) = Cov(X(t+ h), X(t)), t, h ∈ Z.
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where h is called the lag. Analogously, the autocorrelation function (ACF) of a stationary

time series at lag h is defined as

ρX(h) :=
ρX(h)

ρX(0)
= Corr(X(t+ h), X(t)), t, h ∈ Z.

In order to explore more about the dependence structure of a stationary process, we

introduce the partial autocorrelation function.

Definition 2.31 (Partial Autocorrelation Function). The partial autocorrelation function

(PACF) of a stationary time series is defined by

α(1) = Corr(X2, X1) = ρ(1)

and

α(k) = Corr
(
Xk+1 − Ps̄p{1,X2,...,Xk}Xk+1, X1 − Ps̄p{1,X2,...,Xk}X1

)
, k ≥ 2,

where Ps̄p{1,X2,...,Xk}X denotes the projection of X onto space spanned by {1, X2, . . . , Xk}.

The partial autocorrelation α(k), k ≥ 2, estimates the adjusted correlation of Xk+1

and X1, by removing the influence of 1, X2, . . . , Xk.

Table 2.1 summarizes the general behavior of ACFs and PACFs of AR, MA and ARMA

processes. It helps to detect the order p and q of ARMA process in practice.

Table 2.1: General behavior of ACFs and PACFs of AR, MA ARMA processes

AR(p) MA(q) ARMA(p,q)
ACF Tails off Cuts off after lag q Tails off

PACF Cuts off after lag p Tails off Tails off

The estimation of γ(h) and ρ(h) are sample autocovariance function and sample au-

tocorrelation function defined as following.

Definition 2.32 (Sample Autocovariance Function). The sample autocovariance function

of observations {x1, x2, . . . , xn} is defined as

γ̂(h) :=
1

n

n−h∑
j=1

(xj+h − x̄)(xj − x̄), 0 ≤< n, (2.20)

and γ̂(h) = γ̂(−h), −n < h ≤ 0, where x̄ = 1
n

∑n
j=1 xj.
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Definition 2.33 (Sample Autocorrelation Function (ACF)). The sample ACF of obser-

vations {x1, x2, . . . , xn} is defined as

ρ̂(h) :=
γ̂(h)

γ̂(0)
, |h| < n. (2.21)

Analogously, we have sample PACF for observations {x1, x2, . . . , xn}. For more infor-

mation, we refer to Brockwell and Davis [2009].

2.4.2 Statistical Tests for Model Diagnostics

Here we introduce some model selection criteria and statistical tests we will come across

in fitting the model.

Information Criteria

Given a finite set of models, we need some general model selection criteria in order to

select the most suitable one.

The Akaike information criterion (AIC), introduced by Akaike [1992], is one of the

most common means for model selection. Given observation {xi, i = 1, . . . , n}, the AIC is

a value defined as

AIC := 2k − 2 ln(Lik) (2.22)

where k is the number of parameters to be estimated in the model, Lik denotes the

maximized value of the likelihood function for the estimated model. The larger the value of

the likelihood function, the smaller the AIC value is. The term 2k acts as a penalty to avoid

over fitting, hence it provides a trade-off between the goodness of fit and the complexity

of the model. Consequently, the model with the minimum AIC value is preferred.

The Bayesian information criterion (BIC) or Schwartz criterion, introduced by Schwarz

[1978], is another widely used criterion based on the likelihood function. The formula for

BIC is constructed similarly to AIC, only with a larger penalty term

BIC := k ln(n)− 2 ln(Lik) (2.23)

where k is the number of parameters to be estimated in the model; n is the number

of observations; Lik is the maximized value of the likelihood function of the estimated

model. Similar to the case of AIC, the model with the minimum BIC value is preferred.
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Test of Stationarity

Normally time series data has seasonal mean and is not stationary. We usually remove

the trend and seasonality in the data first, and then work on stationary data. Test of

stationarity is then required. We begin with the concept of unit root which is closely

related to stationarity. Consider a process {X(t), t ∈ Z} and suppose that it is an AR(p)

process

X(t) = φ1X(t− 1) + · · ·+ φpX(t− p) + ε(t),

where {ε(t)} ∼ WN(0, σ2). If the characteristic equation

mp − φ1m
p−1 − · · · − φp = 0

has a root m = 1, then the process X(t) has a unit root. Such a process is non-stationary.

Here we introduce two unit root tests for examining the stationarity of time series.

The Augmented Dickey Fuller (ADF) test is one commonly used unit root test. Dickey

and Fuller [1979] develops a procedure for testing whether a variable has a unit root. The

ADF test is an augmented version of the Dickey-Fuller test. The ADF test is performed

on the model of following form:

∆X(t) = ρX(t− 1) + ξ1∆X(t− 1) + · · ·+ ξp−1∆X(t− p+ 1) + ε(t),

where ∆ is the difference operator, ρ = φ1 + · · · + φp − 1 and ξi = −(φi+1 + · · · + φp).

The augmenting lags p need to be determined before applying the test. It can chosen

by minimizing information criteria such as AIC or BIC, or dropping lags from high to

low order based on statistical significance of corresponding estimated coefficients. The

hypotheses of the ADF test are

H0 : ρ = 0 (the process has a unit root, and is non-stationary)

H1 : ρ < 0 (the process is stationary)

We reject the null hypothesis if the test statistic is smaller than the critical value at certain

significance level. For more details we refer to Dickey and Fuller [1979].

The Kwiatkowski Phillips Schmidt Shin (KPSS) test, developed by Kwiatkowski et al.

[1992], tests the null hypothesis that the time series is stationary versus the alternative

that the time series has a unit root (non-stationary). The regression model with a time
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trend can be written as

X(t) = c+ µt+ k
t∑
i=1

ζi + ε(t)

with stationary ε(t) and ζi ∼ iid(0, 1). The hypotheses of KPSS test are

H0 : k = 0, the process is trend-stationary (level-stationary if µ = 0)

H1 : k 6= 0, the process is not (trend or level) stationary

We reject the null hypothesis if the KPSS test statistic is larger than the critical value at

certain significance level. For more details we refer to Kwiatkowski et al. [1992].

Test for Correlation and Independence

To detect serial dependence we can perform the Ljung-Box test, developed by Ljung and

Box [1978]. The Ljung-Box test tests the hypotheses

H0 : The data are independently distributed

H1 : The data are not independently distributed

The Ljung-Box test jointly consider the sample autocorrelations of the first m lags with

the test statistic:

Q̃m = n(n+ 2)
m∑
k=1

ρ̂2
k

n− k
(2.24)

where n is the sample size, ρ̂k is the sample autocorrelation at lag k and m is the number

of lags being tested. Under the null hypothesis Q̃m is asymptotically χ2 distributed with

m− s degrees of freedom, with s being the number of parameters estimated in the model,

see Ljung and Box [1978]. For significance level α, the null hypothesis is rejected if

Q̃m > χ2
m−s,1−α,

where χ2
m−s,1−α is the 100(1− α)%-quantile of the χ2 distribution with m− s degrees of

freedom.

In our data analysis, the Ljung-Box test will be applied on residuals of a fitted ARMA

model in order to make sure that serial dependence is removed form the original time

series. For residuals of an ARMA(p,q) process, the number of parameters to be estimated

is s = p+ q, hence χ2 distribution with m− p− q degrees of freedom should be used.
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Test of Distributional Assumptions

In order to evaluate how well the model fits a set of observations, we need so called

goodness-of-fit tests. Here we introduce some tests we will apply later in data analysis.

The Jarque-Bera (J-B) test is a two-sided goodness-of-fit test of whether a sample of

data is drawn from a normal distribution. The hypothesis is:

H0 =The sample data comes from a normal distribution

H1 =The sample data does not come from a normal distribution

The test statistic is given by

JB =
n

6

(
Skewness2 +

(Kurtosis− 3)2

4

)
(2.25)

where n is the sample size, Skewness denotes the sample skewness, and Kurtosis denotes

the sample kurtosis. The J-B test performs by testing whether the skewness and kurtosis

of the sample data match normal distribution. Under the null hypothesis, the JB statistic

asymptotically has a χ2 distribution with two degrees of freedom.

The (one-sample) Kolmogorov-Smirnov (K-S) test is a nonparametric test that can be

used to compare empirical distribution of sample data with a reference distribution. The

hypothesis of the K-S test is given by

H0 =The data have the hypothesized distribution

H1 =The data do not have the hypothesized distribution

The K-S statistic is K-S distance given as

KS =
√
n sup

x
|F (x)− Fn(x)|, (2.26)

where n is the sample size, Fn(x) is the empirical cumulative density function (CDF) and

F (x) is the estimated CDF. The K-S distance estimate the distance between the empirical

distribution of the residuals and the theoretical one of the assumed distribution. If F (x)

is continuous, KS converges to the Kolmogorov distribution under the null hypothesis.

Hence the critical value can be found under Kolmogorov distribution and does not depend

on F (x).

The Anderson Darling (A-D) test, developed by Anderson and Darling [1952], is also

a nonparametric test of whether a given sample of data comes from a given probability



CHAPTER 2. PRELIMINARIES 30

distribution. The test statistic is given by

AD = sup
x

|F (x)− Fn(x)|√
F (x)(1− F (x))

(2.27)

The A-D statistics gives more weight to the tails of the distribution compared to the

K-S statistics. The critical value is currently available for normal, lognormal, exponential,

Weibull, extreme value type I and logistic distribution. For both K-S and A-D tests,

smaller test statistic indicates closer distance between the empirical distribution and the

reference distribution, which implies a better fit.

An graphical method for comparing two probability distribution is Quantile-Quantile

(Q-Q) plot, which is a plot of the quantiles of two distributions against each other. A 45-

degree reference line is also plotted. If the two sets come from a population with the same

distribution, the points should fall approximately along this reference line. The greater

the departure from this reference line, the greater the evidence for the conclusion that the

two data sets have come from populations with different distributions.



Chapter 3

Continuous-time Model for

Temperature

Here we introduce the Lévy driven continuous-time autoregressive (CAR) process and

specify the CAR model we use to model daily average temperature (DAT).

Definition and properties of CAR process are presented in section 1. Section 2 intro-

duces the link between CAR process and its discrete counterpart. The CAR model for

temperature is described in section 3.

3.1 Continuous-time Autoregressive Process

Here we introduce the continuous-time autoregressive (CAR) process with seasonal vari-

ance. The class of CAR processes is first studied by Phillips [1959]. It is a subclass of the

more general continuous-time autoregressive moving-average (CARMA) processes. Lévy

processes are included in the definition of CARMA process recently in order to obtain a

flexible class of continuous-time stationary processes allowing (semi-)heavy tail behaviors.

First we present the definition of the Lévy driven CAR process with constant volatility

based on Brockwell [2001]. Here we consider Lévy processes satisfying E[L(1)]2 < ∞.

Moreover, we assume that L is scaled so that V ar(L(1)) = 1, then V ar(L(t)) = t for all

t ≥ 0 and there exists a real constant µ such that E[L(t)] = µt for all t ≥ 0. We call such

Lévy process L a standardized second-order Lévy processes. Without further mentions,

we limit the scope to the standardized second-order Lévy processes in this chapter. The

Lévy-driven CAR process is a special case of the Lévy-driven continuous-time ARMA

process defined in Brockwell [2001].

Definition 3.1 (Lévy driven CAR process). A Lévy driven continuous-time autoregres-

sive (CAR) process of order p is defined via the state-space representation of the formal

31
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equation

α(D)Y (t) = bDL(t), (3.1)

where b > 0 is a scale parameter, (L(t), t ≥ 0) is a Lévy process, D denotes the differen-

tiation with respect to t and

a(z) = zp + a1z
p−1 + · · ·+ ap.

Since the derivative DL(t) does not exist in the usual sense, equation (3.1) is inter-

preted as being equivalent to the following observation and state equations

Y (t) = b>X(t), (3.2)

and the state vector X(t) = (X1(t), . . . , Xp(t))
> satisfies the Itô equation

dX(t) = AX(t)dt+ epdL(t), (3.3)

where b = (b, 0, . . . , 0)>, A is a p× p-matrix of the form:

A =



0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

. . . 1
...

0 . . . . . . 0 0 1

−ap −ap−1 . . . −a2 −a1


, (3.4)

with positive constants a1, . . . , ap; ek denotes the k-th unit vector in Rp for k = 1, . . . , p;

b> denotes the transpose of b.

If p = 1, b = 1 and L is a Brownian motion B, the CAR(1) process Y (t) = X(t) is a

Gaussian Ornstein-Uhlenbeck process. X(t) defined by the state equation (3.3), known as

the Langevin’s equation,

dX(t) = −a1X(t)dt+ dB(t), (3.5)

has explicit solution

X(t) = e−a1tX(0) +

∫ t

0

e−a1(t−u)dB(u), (3.6)

for each t ≥ 0. X defined by (3.6) satisfies (3.5) with any a1 and initial value X(0).

Moreover, it is the unique, strong Markov solution to (3.5), cf. Protter [2004], page 297.

The process X is mean reverting to 0. From (3.5), when X is above 0 at some time, then

the coefficient of the dt drift term is negative (since a1 > 0), so X will tend to move
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downwards immediately after. The reverse holds if X is lower than zero.

Now we extend the Lévy driven CAR process defined above by incorporating seasonal

volatility in the state equation (3.3), as introduced in Benth et al. [2007]. Consider the

stochastic process X(t) in Rp for p ≥ 1 defined by the vectorial Ornstein-Uhlenbeck

equation

dX(t) = AX(t)dt+ epσ(t)dL(t), (3.7)

where σ(t) > 0 is a real-valued function and square integrable over any finite time interval,

L is a Lévy process and A is p× p-matrix as (3.4) with positive constants a1, . . . , ap.

In the case when L is a standard Brownian motion B, the solution to the stochastic

differential equation (3.7) exists and has explicit form

X(t) = eAtX(0) +

∫ t

0

σ(u)eA(t−u)epdB(u), for t ≥ 0, (3.8)

where

eAt :=
∞∑
k=0

tk

k!
Ak.

This is obtained by applying multi-dimensional Itô’s Lemma, see Øksendal [2003], so that

d
(
e−AtX(t)

)
= e−At (dX(t)−AX(t)dt) = e−Atσ(t)edB(t).

As discussed in Brockwell [2009], the integral in (3.8) is defined as the L2 limit of approx-

imating Riemann-Stieltjes sums Sn corresponding to the partition of the interval [0, t] by

points {k/2n, k ∈ Z, 0 ≤ k < 2nt} and t. By using Itô’s Lemma for semimartingale, we

obtain the solution to (3.7), that is

X(t) = eAtX(0) +

∫ t

0

eA(t−u)epσ(u)dL(u), for t ≥ 0, (3.9)

The integral in (3.9) is defined in the same way as above for second-order Lévy processes.

The continuous differentiability of the integrand in (3.9) implies that the sequence {Sn}
converges geometrically rapidly in L2 and hence almost surely to the same limit. In fact,

the integral in (3.9) with deterministic and continuously differential integrand is a special

case of integration with respect to semimartingale. From (3.9), we can also write

X(s) = eA(s−t)X(t) +

∫ s

t

eA(s−u)epσ(u)dL(u), for s ≥ t ≥ 0. (3.10)

From (3.10) we see that (X(t), t ≥ 0) is Markov by the independence of increments of
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(L(t), t ≥ 0).

Now we discuss the stationarity of the process (X(t), t ≥ 0), where we restrict our con-

cern to weak stationarity. A multivariate stochastic process (V(t), t ≥ 0) is called weakly

stationary if its mean is constant and the covariance matrix Cov(V(t),V(s)) depends on

time only through t − s, for any t, s ∈ [0,∞). With σ(t) being constant, the necessary

and sufficient condition for stationarity of {X(t)} is, see Brockwell [2009], Proposition 1,

Theorem 3.2. If {X(0)} is independent of {L(t), t ≥ 0} and E(L(1)2) <∞, then {X(t)}
is weakly stationary if and only if the eigenvalues of the matrix A all have strictly negative

real parts and X(0) has the mean and covariance matrix of
∫∞

0
eAuepσdL(u).

Theorem (3.2) holds in the case of σ = σ(t), if we further impose that σ(t) is bounded.

3.2 A Link to Discrete-time Autoregressive Process

In this section we focus on how to relate a CAR process to a discrete-time AR process.

The links between the CAR process and its discrete counterpart will be used for analyzing

the discrete sampling of a CAR process at uniformly spaced times.

For X(t) in equation (3.7) with Xq(t) being its qth coordinate, we have the stochastic

differential equation of Xq(t) for each q separately, i.e.,

dXq(t) = Xq+1dt, for q = 1, 2, . . . , p− 1,

dXp(t) = −
p∑
q=1

αp−q+1Xqdt+ σ(t)dL(t), for q = p.

Using an Euler approximation of the stochastic differential equations with time step

of length one, i.e. dt = 1, we have

Xq(t+ r)−Xq(t+ r − 1) = Xq+1(t+ r − 1), (3.11)

for q = 1, 2, . . . , p− 1 and r ≥ 1. And

Xp(t+ 1)−Xp(t) = −
p∑
q=1

αp−q+1Xq(t) + σ(t)e(t). (3.12)

where e(t) := L(t+ 1)−L(t). By calculating iteratively using equations (3.11) and (3.12),

we have the following result.
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Theorem 3.3. The following recursive expression for X1 holds,

p∑
k=0

(−1)kcpkX1(t+ p− k)

=−
p∑
q=1

ap−q+1

q−1∑
k=0

(−1)kcq−1
k X1(t+ q − 1− k) + σ(t)e(t), (3.13)

with coefficients cqk defined recursively as

cqk = cq−1
k−1 + cq−1

k , k = 1, 2, . . . , p− 1, q ≥ 2,

and cq0 = cqq = 1 for q = 0, 1, . . . , p.

Proof. see Benth et al. [2008] , page 284.

Reorganizing (3.13), we can obtain an expression of X1(t) in the form of AR(p) process

X1(t) =

p∑
i=1

biX1(t− i) + σ(t)e(t). (3.14)

As we have seen, the discrete sampling of the X1(t) at time t = 0, 1, . . . produces an AR

process. Later we will fit the observations of X1(t) to an AR process and identify the

coefficients ai, i = 1, 2, . . . , p for the CAR process from coefficients bi, i = 1, 2, . . . , p of

the associating AR process.

Moreover, we will see that CAR(3) and CAR(4) processes fit our data sufficiently well.

Therefore we include the examples for CAR(3) and CAR(4) here to introduce how the

parameter ai is identified.

Example 3 (CAR(3)). Let p = 3, we have

X1(t+ 3) = (3− a1)X1(t+ 2) + (2a1 − a2 − 3)X1(t+ 1)

+ (−a1 + a2 − a3 + 1)X1(t) + σ(t)e(t).

Example 4 (CAR(4)). Let p = 4, we have

X1(t+ 4) = (−a1 + 4)X1(t+ 3) + (3a1 − a2 − 6)X1(t+ 2)

+ (−3a1 + 2a2 − a3 + 4)X1(t+ 1) + (a1 − a2 + a3 − a4 − 1)X1(t) + σ(t)e(t).
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3.3 Model for Daily Average Temperature

In this section, we specify the model for the daily average temperature (DAT). The model

includes a seasonal mean and a continuous-time autoregressive (CAR) process with lag

p and seasonal variance. It is first suggested by Benth et al. [2007] under the context

of weather derivatives, with Brownian motion being the driving noise process. Later the

family of generalized hyperbolic Lévy processes are considered as the driving noise in

order to capture negative skewness and heavy tails in the residuals.

Here we try to build up a model hopefully to reproduce all the characteristic features

of the temperature data. Before that, we list several assumptions that are made and

verified on the DAT in most of the literatures. First of all, strong seasonality exists and

the DAT is moving around the seasonal mean. A change in the mean of DAT over time is

expected due to Global warming and urbanization effect. Autoregressive changes in DAT

are assumed. And we further assume that the temperature volatility are time-varying.

We model the DAT T (t) at time t ≥ 0 as

T (t) = Λ(t) + Y (t), (3.15)

where Λ(t) is a deterministic function denoting the seasonal mean; Y (t) is a stochastic

process modelling the random fluctuations around the mean. Y (t) = T (t)−Λ(t) is called

the deseasonalized temperatures. The motivation behind this is based on the observation

that the DATs always show a strong seasonal cycle with relatively small fluctuations

around it. Therefore, most studies model the seasonal mean first and the fluctuations

separately. Here we model seasonal mean with deterministic functions Λ(t) and hope that

the deseasonalized temperature Y (t) is a stationary process with mean 0. The stochastic

variability of temperatures is then entirely generated by the process Y (t), as posed in

Jewson and Brix [2005].

The seasonal mean function Λ(t) should include trend and seasonal effect. By seasonal

effect, we mean the seasonal oscillation in temperature which is cyclic every year. By

trend, we mean possible increase in temperature due to global warming and urbanization.

Here we use Fourier truncated series (FTS) to model the seasonal mean, that is

Λ(t) = c0 + c1t+
R∑
r=1

(
c2r cos

(
2πr

t

365

)
+ c2r+1 sin

(
2πr

t

365

))
. (3.16)

Parameter c0 is the average of temperature over a year. c1 indicates the global warming

or urban effect. Under this framework, we do not include 29th of February in the leap
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years. The period of oscillation is 365 days, therefore we have the phase 2πt/365. A

simplification is to assume that R = 1 as in Alaton et al. [2002]. But commonly the choice

for R is relaxed to provide more fine-tuning.

Campbell and Diebold [2005] argues two advantages of using FTS. One is that it

produces a smooth pattern which is appropriate to describe the gradual change in the

DAT. The other is that its formulated in a simple way which ensures numerical stability

in estimation.

The deseasonalized temperatures Y (t) is modelled by a CAR process with seasonal

variance, that is

Y (t) = e>1 X(t) = X1(t), (3.17)

dX(t) = AX(t)dt+ epσ(t)dL(t), (3.18)

where ek the k-th unit vector in Rp for k = 1, . . . , p; e> is the transpose of the vector e;

X1(t) is the first element of the X(t) ; L = L(t) is a Lévy process; σ(t) is a deterministic

function; A is a p× p-matrix

A =



0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

. . . 1
...

0 . . . . . . 0 0 1

−ap −ap−1 . . . −a2 −a1


, (3.19)

with constants ak for k = 1, . . . , p.

The general CAR process allows a time dependent deterministic function σ(t) which

models the seasonality in the temperature variance, since a periodic oscillation with pe-

riod of 365 days is often observed in the residuals of temperature after removing the

autoregressive effects. With similar consideration as for the seasonal mean Λ(t), we use

FTS to model the volatility σ(t) by

σ2(t) = d1 +
M∑
m=1

(
d2m cos

(
2πm

t

365

)
+ d2m+1 sin

(
2πm

t

365

))
. (3.20)

Parameters d1 is the mean of variance of the DAT; d2, d3, . . . characterize the amplitude

and shape of the oscillation; and 2πt/365 is the phase indicating a period of 365 days.

X(t) has explicit solution as in equation (3.9). As given in equation (3.10), X(t) also

satisfies

X(s) = eA(s−t)X(t) +

∫ s

t

eA(s−u)epσ(u)dL(u),
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therefore T (t) satisfies

T (s) = Λ(s) + e>1 e
A(s−t)X(t) +

∫ s

t

e>1 e
A(s−u)epσ(u)dL(u), (3.21)

for s ≥ t ≥ 0.

If the eigenvalues of the matrix A have negative real parts, eAt → 0 as t→ 0. Further

if the expectation of the Wiener-Lévy integral in equation (3.10) is constructed to be zero,

X(t) has a mean equal to zero vector, see Swishchuk and Cui [2013]. Then the process

T (t) is mean reverting to Λ(t). In other words, the temperature mainly depends on the

seasonal mean and tends to move back towards the seasonal mean.

The deseasonalized temperature estimated daily is a discrete sampled process (Y (t) =

X1(t), t = 0, 1, . . . ). As discussed before in section 3.2, it has a form of an AR process

X1(t) =

p∑
i=1

biX1(t− i) + ε(t), (3.22)

and

ε(t) = σ(t)e(t), (3.23)

where σ(t) is the volatility; bi, i = 1, . . . , p are constants determined by ai, i = 1, . . . , p in

the matrix A; e(t) = L(t+ 1)−L(t), t = 1, 2, . . . are Lévy increments independently and

identically distributed as L(1).

We assume the driving noise process is a Lévy process L(t). Moreover, we consider

four cases: a Brownian motion, a generalized hyperbolic (GHYP) Lévy process, a hyper-

bolic (HYP) Lévy process, and a normal inverse Gaussian (NIG) process. Respectively,

e(t) has standard normal distribution, GHYP distribution, HYP distribution and NIG

distribution. The motivation behind is that the estimated e(t) always possesses negative

skewness and heavy tails, which can not be captured by Brownian motion. The family

of GHYP distributions provides a manageable class of distributions which allows these

properties.



Chapter 4

Temperature Derivatives

Given on our temperature model, here we explore the prices for several temperature

futures and options under the arbitrage theory in this chapter.

In section 1, we define the arbitrage-free prices of temperature futures and options.

Then in section 2, the Esscher transform is introduced to specify a class of equivalent

martingale measures (EMMs). The following section presents the explicit pricing formula

for cumulative average temperature (CAT) futures. Section 4 introduces explicit pricing

formula for CAT options in the case of Brownian motion, and the Fourier approach to

estimate the price in the case of general Lévy processes. In section 5, we discuss pricing

for cooling degree days (CDD) and heating degree days (HDD) futures. The issues of the

market price of risk (MPR) are discussed in section 6.

4.1 Arbitrage-Free Pricing of Derivatives

Here we define the arbitrage-free prices of temperature futures and options.

In the CME market we have temperature futures written on CAT, HDD and CDD

indices introduced in section 1.1. We rewrite the temperature indices in a continuous way

for the convenience for pricing

CAT (τ1, τ2) =

∫ τ2

τ1

T (t)dt, (4.1)

CDD(τ1, τ2) =

∫ τ2

τ1

(T (t)− c)+dt, (4.2)

HDD(τ1, τ2) =

∫ τ2

τ1

(c− T (t))+dt, (4.3)

where (x)+ = max(x, 0), [τ1, τ2] is the measurement period, c is the reference temperature

39
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for CDD and HDD indices, and T (t) is the daily average temperature (DAT) on time t.

T (t) is modelled as defined in section 3.3 by a Lévy driven CAR process with seasonal

volatility, where T (t) satisfies

T (s) = Λ(s) + e>1 e
A(s−t)X(t) +

∫ s

t

e>1 e
A(s−u)epσ(u)dL(u),

for s ≥ t ≥ 0. Here Λ(s) and σ(s) are deterministic functions given by equation (3.16)

and equation (3.20).

Temperature market is a classical example of incomplete markets since the underlying

temperature indices for temperature futures are not tradable. Moreover, we consider Lévy

processes in our model and this introduces a higher level of incompleteness in our market

model. Here we rely on the arbitrage theory to study the price of temperature deriva-

tives. Under the no-arbitrage assumption, the price processes of all tradable assets in the

temperature market should be arbitrage-free. An equivalent martingale measure (EMM)

Q exists, which is a probability measure equivalent to P such that the discounted price

processes of all tradable assets are martingales with respect to Q. Because the market is

incomplete, there are infinitely many EMMs. For the market of temperature futures, the

risk-free bond with interest rate r is the only tradable asset. Using the bond price as a

numéraire, the discounted bond price is 1 and it is a trivial martingale with respect to all

equivalent measures. Thus, all equivalent measures Q are EMMs.

The temperature futures are traded in the market and their price processes should be

arbitrage-free. The buyer of the futures enters the contract at time t and will receive a

random amount Y in return of futures price F (t, τ1, τ2). The total payoff at the end of the

measurement period τ2 is Y −F (t, τ1, τ2). Because the cost to enter the futures contract is

zero, by the risk-neutral valuation formula in Theorem (2.19), the futures price F (t, τ1, τ2)

satisfies

0 = e−r(τ2−t)EQ[Y − F (t, τ1, τ2)|Ft], (4.4)

for each time t, where Q is an EMM measure. The futures price is then given by

F (t, τ1, τ2) = EQ[Y |Ft]. (4.5)

Therefore, the prices of the CAT, CDD and HDD futures at time t ≤ τ1 ≤ τ2 are,

respectively,

FCAT (t, τ1, τ2) = EQ
[∫ τ2

τ1

T (u)du | Ft
]
, (4.6)
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FCDD(t, τ1, τ2) = EQ
[∫ τ2

τ1

(T (u)− c)+du | Ft
]
, (4.7)

FHDD(t, τ1, τ2) = EQ
[∫ τ2

τ1

(c− T (u))+du | Ft
]
. (4.8)

Moreover, we have the following CDD-HDD parity.

Proposition 4.1. The prices of CAT, HDD and CDD futures have the following rela-

tionship

FCDD(t, τ1, τ2)− FHDD(t, τ1, τ2) = FCAT (t, τ1, τ2)− c(τ1 − τ2). (4.9)

Proof. The result follows by (T (t)− c)+ − (c− T (t))+ = T (t)− c,

The options in the CME market are written on temperature futures. As an example,

we consider a call option written on F (τ, τ1, τ2) at time τ ≤ τ1 ≤ τ2 with strike K. The

buyer enters the call option at time t ≤ τ and receives a payoff of (F (τ, τ1, τ2)−K)+

at time τ . The price process {F (t, τ1, τ2), t ∈ [0, τmax]} defined by equation (4.4) is a

martingale under the measure Q in its definition. Therefore, once we have pinned down

a pricing measure Q for the futures price, the option price is given by

C(t, τ, τ1, τ2) = e−r(τ−t)EQ
[
(F (τ, τ1, τ2)−K)+ | Ft

]
. (4.10)

4.2 Equivalent Measures by Esscher Transform

In such an incomplete market, the prices defined above are not unique and depend on Q.

As discussed before, every equivalent measure is an EMM measure in our model. The way

to single out one EMM Q is to restrict to a parameterized class of equivalent measures

and fit the theoretically derived prices to the observed prices. If a Brownian motion is the

driving noise process, the Girsanov transform is applied for the change of measure. As

Lévy process is included is included in our model, we apply the Esscher transform which

is a generalization of the Girsanov transform.

Before applying the Esscher transform, we first impose the following integrability con-

ditions on the Lévy measure. The following condition is to ensure that the underlying

asset process has finite moments up to some orders, see Swishchuk and Cui [2013], page

91, Condition 1.

Condition 4.2. There exists a constant k > 0 such that the Lévy measure ` satisfies the

integrability condition ∫
|z|≥1

| z |k `(dz) <∞
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almost surely.

The price is the expectation of the discounted process under a risk-neutral measure Q

defined by Esscher transform, which requires an exponential integrability, see Benth and

Šaltytė-Benth [2004], page 186, Condition (L).

Condition 4.3. There exists a constant k > 0 such that the Lévy measure ` satisfies the

integrability condition ∫
|z|≥1

zkz`(dz) <∞.

With the exponential integrability, we have the following Lemma

Lemma 4.4. Let function f : [0, T ] 7→ R be a bounded and measurable function and

Condition 4.3 holds for k := sups∈[0,t]|f(s)|, then

E
[
exp

(∫ t

0

f(s)dL(s)

)]
= exp

(∫ t

0

ψ(f(s))ds

)
,

where ψ(u) = η(−iu), η is the Lévy symbol.

Proof. see Benth and Šaltytė-Benth [2004], page 186, Lemma 4.1.

Recall that the characteristic function of L(1) is φL(1)(u) = E[eiuL(1)] = eη(u), with

Lévy symbol η(u). Then E[euL(1)] = eη(−iu) = eψ(u), i.e. ψ(u) is the logarithm of the

moment generating function of L(1).

Now we introduce the class of EMMs via Esscher transform. Let τmax denote a fixed

time horizon including the trading time for all relevant temperature derivatives. Let θ :

[0, τmax] 7→ R is a measurable and bounded function. Define for t ∈ [0, τmax] the stochastic

process

Zθ(t) = exp

(∫ t

0

θ(s)dL(s)−
∫ t

0

ψ(θ(s))ds

)
, (4.11)

where ψ(u) is the logarithm of the moment generating function of L(1). The process

Zθ(t) is well defined for t ∈ [0, τmax] if Condition 4.3 holds for k := sups∈[0,t]|θ(s)|. The

probability measure Qθ is defined such that Zθ(t) is the density process of the Radon-

Nikodym derivative dQθ

dP
, i.e.

dQθ

dP
|Ft = Zθ(t). (4.12)

Or equivalently,

Qθ(A) = E
[
1AZ

θ(τmax)
]
, (4.13)
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where 1A is the indicator function. Now we have a class of equivalent martingale measures

Qθ which is parametrized by θ. If the Lévy process is a Brownian motion, the Esscher

transform corresponds to the Girsanov transform. The expectation under Qθ is denoted

by EQ[·]. It is worth mentioning that Esscher Transform defined in this way is dependent

on the driving Lévy process.

As argued in Benth and Benth [2012], we restrict to the Esscher transform in order

to obtain a flexible class of EMMs tractable for pricing and at the same time can be

used for estimation of the market risk premium. The Esscher transform introduces a

class of parametrized EMMs. We will see later that the prices of some derivatives can be

represented explicitly in terms of the cumulant function of the underlying Lévy process

and the parameter θ. Therefore, the parameters θ can be estimated from observed market

price and interpreted as the market price of risk.

4.3 Futures on Cumulative Average Temperature

The price of the CAT futures, as given in equation (4.6), is

FCAT (t, τ1, τ2) = EQ
[∫ τ2

τ1

T (u)du | Ft
]
. (4.14)

We will see later that under the Lévy driven CAR model the price of CAT futures has

an closed form formula. Before we derive the pricing formula of CAT futures, we need an

Lemma by Benth and Šaltytė-Benth [2005].

Lemma 4.5. Given a measurable and bounded function f(t), the expectation of Lévy

integral under risk neutral measure Q over [τ1, τ2] is

EQ
[∫ τ2

τ1

f(t)dL(t) | Fτ1
]

=

∫ τ2

τ1

f(t)ψ′(θ(t))dt,

where ψ(u) is the logarithm of the moment generating function of L(1), ψ′(u) is the

derivative of ψ(u) with respect to u.

Proof. Using the Bayes Formula, the independent increment property of Lévy process and
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Lemma 4.4, we have

EQ
[∫ τ2

τ1

f(t)dL(t) | Fτ1
]

=E
[∫ τ2

τ1

f(t)dL(t)
Zθ(τ2)

Zθ(τ1)
| Fτ1

]
=E

[∫ τ2

τ1

f(t)dL(t)× exp

(∫ τ2

τ1

θ(s)dL(s)−
∫ τ2

τ1

ψ(θ(s))ds

)
| Fτ1

]
= exp

(
−
∫ τ2

τ1

ψ(θ(s))ds

)
d

dλ
E
[∫ τ2

τ1

λf(s) + θ(u)dL(s)

]
|λ=0

= exp

(
−
∫ τ2

τ1

ψ(θ(s))ds

)
d

dλ
exp

(∫ τ2

τ1

ψ(λf(s) + θ(u))ds

)
|λ=0

=

∫ τ2

τ1

f(t)ψ′(θ(t))dt

With the above Lemma, we present the pricing formula in following Theorem, see

Swishchuk and Cui [2013], page 94, Theorem 6.

Theorem 4.6. The price of CAT futures for 0 ≤ t ≤ τ1 ≤ τ2 is

FCAT (t, τ1, τ2) =

∫ τ2

τ1

Λ(u)du+ a(t, τ1, τ2)X(t) +

∫ τ1

t

σ(u)ψ′(θ(u))a(t, τ1, τ2)epdu

+

∫ τ2

τ1

σ(u)ψ′(θ(u))e>1 A−1
(
eA(τ2−u) − Ip

)
epdu, (4.15)

where a(t, τ1, τ2) = e>1 A−1
(
eA(τ2−t) − eA(τ1−t)

)
; Ip is a p × p identity matrix; ψ(u) is the

logarithm of the moment generating function of L(1), ψ′(u) is the derivative of ψ(u) with

respect to u.

Proof. In order to derive

FCAT (t, τ1, τ2) = EQ
[∫ τ2

τ1

T (u)du | Ft
]

given in equation (4.6), we first derive the dynamics of
∫ τ2

τ1
T (u)du.

Integrate equation (3.7) on [τ1, τ2], we have

X(τ2)−X(τ1) = A.

∫ τ2

τ1

X(t)dt+ ep

∫ τ2

τ1

σ(t)dL(t).
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Using equation (3.10) for X(τ1) and X(τ2), we have∫ τ2

τ1

X(u)du =A−1

(
X(τ2)−X(τ1)− ep

∫ τ2

τ1

σ(u)dL(u)

)
=A−1

((
eA(τ2−t) − eA(τ1−t)

)
X(t) +

∫ τ2

t

eA(τ2−u)epσ(u)dL(u)

−
∫ τ1

t

eA(τ1−u)epσ(u)dL(u)− ep

∫ τ2

τ1

σ(u)dL(u)

)
.

Hence∫ τ2

τ1

T (u)du

=

∫ τ2

τ1

(
Λ(u) + e>1 X(u)

)
du

=

∫ τ2

τ1

Λ(u)du+ e>1

∫ τ2

τ1

X(u)du

=

∫ τ2

τ1

Λ(u)du+ e>1 A−1

((
eA(τ2−t) − eA(τ1−t)

)
X(t) +

∫ τ2

t

eA(τ2−u)epσ(u)dL(u)

−
∫ τ1

t

eA(τ1−u)epσ(u)dL(u)− ep

∫ τ2

τ1

σ(u)dL(u)

)
We calculate the conditional expectation of each term separately. From Lemma 4.5, we

have for example

EQ
[∫ τ2

t

e>1 A−1eA(τ2−u)epσ(u)dL(u) | Ft
]

=

∫ τ2

t

σ(u)ψ′(θ(u))e>1 A−1eA(τ2−u)epdu

Summing up the expectations of each term leads to the pricing formula.

In the case when the Lévy process L is a standard Brownian motion B, the logarithm

of the moment generating function of B(1) is ψBM(θ) = 1
2
θ2 for each θ ∈ R. ψ′BM(θ) = θ,

then we have

Example 5. If the driving noise process L is a Brownian motion, the price of CAT futures

FCAT (t, τ1, τ2) =

∫ τ2

τ1

Λ(u)du+ a(t, τ1, τ2)X(t) +

∫ τ1

t

θ(u)σ(u)a(t, τ1, τ2)epdu

+

∫ τ2

τ1

θ(u)σ(u)e>1 A−1
(
eA(τ2−u) − Ip

)
epdu, (4.16)

where a(t, τ1, τ2) = e>1 A−1
(
eA(τ2−t) − eA(τ1−t)

)
; Ip is a p× p identity matrix.
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4.4 Options on Cumulative Average Temperature Fu-

tures

Here we discuss the pricing of options written on CAT futures. The price of a call option

on future price FCAT (τ, τ1, τ2) at time t ≤ τ with strike K is

CCAT (t, τ, τ1, τ2) = e−r(τ−t)EQ
[
(FCAT (τ, τ1, τ2)−K)+ | Ft

]
. (4.17)

Thus, we require the distribution of FCAT (τ, τ1, τ2) under risk-neutral measure Q. From

equation (4.15), the distribution of FCAT (τ, τ1, τ2) depends on X(τ), where

X(τ) = eA(τ−t)X(t) +

∫ τ

t

eA(τ−u)epσ(u)dL(u), (4.18)

for τ > t.

In the special case when Lévy process L is a Brownian motion B, we can derive

an explicit pricing formula for CAT options based on the insight that X(τ) is normally

distributed under Q. An explicit pricing formula for a call option written on FCAT (t, τ1, τ2)

is derived by Benth et al. [2007], as in following Theorem.

Theorem 4.7. If L is a Brownian motion B, the price of a call option at time t written

on a CAT futures with strike price K and exercise date τ , where the measure period of

the futures is [τ1, τ2] with t ≤ τ ≤ τ1 < τ2, is

CCAT (t, , τ, τ1, τ2) =e−r(τ−t) × {(FCAT (t, τ1, τ2)−K)Φ(w(t, τ, τ1, τ2))

+

∫ τ

t

Σ2
CAT (s, τ1, τ2)dsΦ′(w(t, τ, τ1, τ2))} (4.19)

where

w(t, τ, τ1, τ2) =
FCAT (t, τ1, τ2)−K√∫ τ
t

Σ2
CAT (s, τ1, τ2)ds

and Φ is the cumulative standard normal distribution function.

Proof. The Esscher transform coincides with Girsanov transform in this case, so that

Bθ(t) := B(t)−
∫ t

0

θ(u)du

is a Brownian motion under under Q = Qθ for t ∈ [0, τmax]. The dynamics of X(t) under

Q becomes

dX(t) = (AX(t) + epσ(t)θ(t)) dt+ epσ(t)dBθ(t). (4.20)
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The CAT futures dynamics under the risk neutral measure Qθ is then

dFCAT (t, τ1, τ2) = ΣCAT (t, τ1, τ2)dBθ(t) (4.21)

where

ΣCAT (t, τ1, τ2) = σ(t)e>1 A−1
(
eA(τ2−t) − eA(τ1−t)

)
ep. (4.22)

This is true using the fact that FCAT (t, τ1, τ2) is a Qθ-martingale, see Benth et al. [2007],

Proposition 2. Following equation (4.21), we have

FCAT (τ, τ1, τ2) = FCAT (t, τ1, τ2) +

∫ τ

t

ΣCAT (s, τ1, τ2)dBθ(s),

for τ ≥ t. Thus, FCAT (τ, τ1, τ2) conditioned on FCAT (t, τ1, τ2) is normally distributed

under Q. The result follows the properties of normal distribution, see Benth et al. [2007],

Proposition 3.

From equation (4.19), we notice that the option price no longer depends on θ if L

is a Brownian motion particularly. Therefore, after we single out a measure Qθ for CAT

futures, the market consisting of CAT futures and options is complete. Then we can

replicate the payoff of an option with the underlying futures using a delta hedging strategy,

see Benth et al. [2007].

For general Lévy processes, it is not straightforward to derive explicit pricing formula

for equation (4.17), because the explicit distribution of X(τ) is not known under Q, except

for some very special cases. The difficulty lies in finding an explicit density function for

the Wiener integral of the form∫ u

t

eA(u−s)epσ(s)dL(s), for u > t. (4.23)

As an example, we consider L being a hyperbolic Lévy process with L(1) following hyper-

bolic distribution. Hyperbolic distributions are not closed under convolution, as posed in

Bellini [2005]. Therefore, we can not find an exact expression for density of L(t) for t 6= 1.

As a consequence, explicit density for a process including L(t) for t 6= 1 is not feasible.

The common approach to evaluate option price (4.17) is to use numerical integration

or Monte Carlo simulation. Here we discuss the method using a Fourier approach. The

motivation behind is that the characteristic function of the form (4.23) admits explicit

expression, as presented in the following Lemma.

Lemma 4.8. For a constant vector c ∈ Rp, the characteristic function of the random
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variable

G(u) :=

∫ u

t

c>eA(u−s)epσ(s)dL(s)

under the risk neutral measure Q is given by

φG(u)(λ) = EQ[exp(iλG(u))|Ft] = exp {Θ(λ)} , (4.24)

with

Θ(λ) =

∫ u

t

ψ
(
iλc>eA(u−s)epσ(s) + θ(s)

)
ds−

∫ u

t

ψ (θ(s)) ds, (4.25)

and ψ(u) being the logarithm of the moment generating function of L(1).

Proof. Using the Bayes Formula, the independent increment property of Lévy process and

Lemma 4.4, we have

EQ
[
exp

{
c>iλ

∫ u

t

eA(u−s)epσ(s)dL(s)

}
| Ft
]

=E
[
exp

{
iλ

∫ u

t

c>eA(u−s)epσ(s)dL(s)

}
Zθ(u)

Zθ(t)
| Ft
]

=E
[
exp

{
iλ

∫ u

t

c>eA(u−s)epσ(s)dL(s)

+

∫ u

t

θ(s)dL(s)−
∫ u

t

ψ(θ(s))ds

}
| Ft
]

= exp

{
−
∫ u

t

ψ(θ(s))ds

}
· E
[
exp

{
iλ

∫ u

t

c>eA(u−s)epσ(s)dL(s) +

∫ u

t

θ(s)dL(s)

}]
= exp

{∫ u

t

ψ
(
iλc>eA(t−u)epσ(s) + θ(s)

)
ds−

∫ u

t

ψ(θ(s))ds

}

We now present some details on how the Fourier approach is conducted to evaluate

the price. We follow the framework developed by Swishchuk and Cui [2013] on pricing

HDD and CDD futures.

First we review the mathematical insights and the general construction of this method.

The following Theorem links the density function of a random variable to its characteristic

function.

Theorem 4.9. Let F (x) denote the cumulative density function of a random variable X,

the corresponding probability density function f(x) is integrable in Lebesgue sense, i.e.
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f(x) ∈ L, The characteristic function of X is defined as φ(t) =
∫ +∞
−∞ eitxf(x)dx ∈ L.

Then

f(x) =
1

2π

∫ +∞

−∞
e−itxφ(t)dt

=
1

π
Re

[∫ +∞

0

e−itxφ(t)dt

]
, (4.26)

where Re[x] denotes the real part of a complex number x.

Proof. The result follows from Fourier Inversion Theorem, see Hewitt and Ross [1963],

page 409.

We follow the construction introduced in Chourdakis [2004], section 1, section 2. The

integral in equation (4.26) can be approximated by

f(x) ≈ 1

π
Re

[
N−1∑
k=0

δke
−itkxφ(tk)∆t

]
, (4.27)

where δk, k = 0, 1, . . . , N − 1 are the integration weights implementing some integration

rule. We choose the rule such that δk = 1
2

for k = 0 and δk = 1 otherwise. The points

tk are chosen to be equidistant with grid spacing ∆t, then tk = k∆t. The value of ∆t

should be sufficiently small to approximate the integral well enough, while the value of

N∆t should be large enough to assume that the characteristic function is equal to zero

for t > t̄ = N∆t.

Application of discrete Fourier transform (DTF) will result in a set of numbers ap-

proximating equation (4.26) on the points {xk, k = 0, . . . , N − 1}. The points {xk} are

set to be equidistant with grid spacing ∆x. Then the values xk is of the form

xk = −b+ k∆x, k = 0, . . . , N − 1, (4.28)

where b is a parameter to control the return range. For example, if b = ∆xN
2

, {xk} evenly

spread around x = 0. By contrasting equation (4.27) with DTF transform, we have

∆x∆t =
2π

N
⇒ ∆x =

2π

N∆t
(4.29)
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so that

f(xj) ≈ Re

[
1

π

N−1∑
k=0

δke
−itkxjφ(k∆t)∆t

]

= Re

[
N−1∑
k=0

1

π
δke
−i(k∆t)(−b+j∆x)φ(k∆t)∆t

]

= Re

[
N−1∑
k=0

1

π
δke

ikb∆te−ik
2π
N
jφ(k∆t)∆t

]

= Re

[
N−1∑
k=0

fke
−ik 2π

N
j

]
(4.30)

for j = 0, . . . , N − 1, where

fk :=
1

π
δke

i∆tkbφ(∆tk)∆t, k = 0, 1, . . . , N − 1. (4.31)

From equation (4.30), the sequence {f(xj), j = 0, . . . , N − 1} is the real parts of the DTF

of {fk, k = 0, . . . , N − 1}, which can be computed fastly by the Fast Fourier Transform.

Back to the price of CAT option, insert the futures price FCAT (τ, τ1, τ2) given by

equation (4.15) and the dynamics of X(τ) by equation (4.18) into the option price (4.17),

we have

CCAT (t, τ, τ1, τ2)

=e−r(τ−t)EQ
[
(FCAT (τ, τ1, τ2)−K)+ | Ft

]
=e−r(τ−t)EQ

[(
k(t, τ, τ1, τ2) +

∫ τ

t

a(τ, τ1, τ2)eA(τ−u)epσ(u)dL(u)

)+

| Ft

]

=e−r(τ−t)
∫ +∞

−k(t,τ,τ1,τ2)

(k(t, τ, τ1, τ2) + x)f(x)dx (4.32)

where

k(t, τ, τ1, τ2) :=

∫ τ2

τ1

Λ(u)du+

∫ τ1

τ

σ(u)ψ′(θ(u))a(τ, τ1, τ2)epdu

+

∫ τ2

τ1

σ(u)ψ′(θ(u))e>1 A−1
(
eA(τ2−u) − Ip

)
epdu

+ a(τ, τ1, τ2)eA(τ−t)X(t)−K, (4.33)
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and f(x) is the density of ∫ τ

t

a(τ, τ1, τ2)eA(τ−u)epσ(u)dL(u). (4.34)

Here we outline the algorithm to estimate the call option on CAT futures. Let φ(u)

be the characteristic function of the term (4.34) which is known from Lemma 4.8. After

choosing suitable values ∆x, N and the b, we construct the sequence {fk, k = 0, . . . , N−1}
as given in equation (4.31). Then we perform DTF to obtain {f(xj), j = 0, . . . , N − 1},
which is the approximations of f(x) on points {xj, j = 0, . . . , N − 1}. The CAT option

price is given numerically by

CCAT (t, τ, τ1, τ2) ≈ e−r(τ−t)
∑

xj>−k(t,τ,τ1,τ2)

(k(t, τ, τ1, τ2) + xj)f(xj)∆x, (4.35)

where k(t, τ, τ1, τ2) is given by (4.33).

4.5 Futures on Cooling and Heating Degree Day

As given in equations (4.7) and (4.8), the prices of CDD and HDD futures are

FCDD(t, τ1, τ2) = EQ
[∫ τ2

τ1

(T (u)− c)+du | Ft
]

=

∫ τ2

τ1

EQ
[
(T (u)− c)+ | Ft

]
du

=

∫ τ2

τ1

∫ +∞

c

(x− c)fT (u)(x)dxdu, (4.36)

and

FHDD(t, τ1, τ2) = EQ
[∫ τ2

τ1

(c− T (u))+du | Ft
]

=

∫ τ2

τ1

∫ c

−∞
(c− x)fT (u)(x)dxdu, (4.37)

where fT (u)(x) is the density function of T (u) under Q. Thus, in order to calculate the

price of a CDD/HDD future, we have to know the distribution of T (u), u ∈ [τ1, τ2] under

Q.

In the special case when L is Brownian motion, the distribution of T (u), u ∈ [τ1, τ2] is

normal under Q. The appealing properties of normal distributions allow explicit pricing
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formulas for CDD and HDD futures. The formulas, derived by Benth et al. [2007], are

given in the following Theorem.

Theorem 4.10. If L is a Brownian motion, the CDD future price

FCDD(t, τ1, τ2) =

∫ τ2

τ1

ν(t, s)Ψ

[
m(t, s)− c
ν(t, s)

]
ds, (4.38)

and the HDD future price

FHDD(t, τ1, τ2) =

∫ τ2

τ1

ν(t, s)Ψ

[
c−m(t, s))

ν(t, s)

]
ds, (4.39)

where

m(t, u) = Λ(u) + e>1 e
A(u−t)X(t) +

∫ u

t

θ(s)σ(s)e>1 e
A(u−s)epds, (4.40)

ν2(t, u) =

∫ u

t

σ2(s)
(
e>1 e

A(u−s)ep
)2
ds, (4.41)

Φ is the cumulative standard normal distribution function and Ψ(x) = xΦ(x) + Φ′(x).

Proof. We prove for CDD futures here. First we calculate the inner integral in equation

(4.36). Under Girsanov transform, X(t) has solution

X(t) = eA(t−s)X(s) +

∫ t

s

eA(t−u)epσ(u)θ(u)du+

∫ t

s

eA(t−u)epσ(u)dBθ(u), (4.42)

for t ≥ s ≥ 0, where Bθ is a Brownian motion under Q. Thus, T (u) = Λ(u) + e>1 X(u)

is normally distributed under Q with mean m(t, u) = EQ[T (u)|Ft] given by (4.40) and

variance ν2(t, u) = V arQ[T (u)|Ft] given by (4.41)

Using properties for normal distribution, S := T (u)−m
ν
∼ N(0, 1), and its density func-

tion fS(s) = Φ′(s) = exp{1
2
s2}, where Φ is the cumulative standard normal distribution

function. Let s = x−m
ν

and c̃ := c−m
ν

, we have∫ +∞

c

(x− c)fT (u)(x)dx =

∫ +∞

c̃

(νs+m− c)fS(s)ds

=ν

∫ +∞

c̃

sfS(s)ds+ (m− c)
∫ +∞

c̃

fS(s)ds

where

ν

∫ +∞

c̃

sfS(s)ds = ν

∫ +∞

c̃

s exp{1

2
s2}ds = −ν

∫ +∞

c̃

dfS(s) = νΦ′(−c̃),
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(m− c)
∫ +∞

c̃

fS(s)ds = (m− c)Φ(−c̃) = −c̃νΦ(−c̃)

Sum up two terms and define Ψ(x) := xΦ(x) + Φ′(x), we have the final expression.

Finding a simple closed form solution for price of HDD/CDD future is difficult for

general Lévy processes with non-Gaussian increments. The argument is similar to pricing

CAT options. The difficulty lies in finding an exact expression for the density of T (s)

under Q, typically with the existence of the term∫ s

t

e>1 e
A(t−u)epσ(u)dL(u) (4.43)

in T (s) from equation (3.21). However, the characteristic function of (4.43) is explicitly

known from Lemma (4.8). As a consequence, the characteristic function of T (s) under Q

is known, as shown in the following Proposition.

Proposition 4.11. The characteristic function of T (s) for s ≥ t conditioned on Ft under

the risk neutral measure Q is given by

φT (s)(λ) = EQ [exp{iλT (s)} | Ft] = exp{ΘT (s)(λ)},

where

ΘT (s)(λ) =iλΛ(s) + iλe>1 e
A(s−t)X(t)−

∫ s

t

ψ (θ(u)) du

+

∫ s

t

ψ
(
iλe>1 e

A(s−u)epσ(u) + θ(u)
)
du,

with ψ(u) being the logarithm of the moment generating function of L(1).

Proof. Simple calculation with Lemma 4.8.

Therefore, we can apply the Fourier technique based on characteristic function of

T (t) to estimate the price. Here we outline a method to estimate the price using Fourier

transform concerning the term (4.43). This approach is introduced in Swishchuk and Cui

[2013].



CHAPTER 4. TEMPERATURE DERIVATIVES 54

For price of a CDD future, we have

FCDD(t, τ1, τ2)

=

∫ τ2

τ1

EQ
[
(T (u)− c)+ | Ft

]
du

=

∫ τ2

τ1

EQ


Λ(u) + e>1 e

A(u−t)X(t) +

∫ u

t

e>1 e
A(u−s)epσ(s)dL(s)︸ ︷︷ ︸

=:G(u)

−c


+

| Ft

 du
=

∫ τ2

τ1

∫ +∞

d(u)

(x− d(u))fG(u)(x)dxdu, (4.44)

where d(u) = c−Λ(u)− e>1 e
A(u−t)X(t) and fG(u)(x) is the density of G(u). From Lemma

4.8, the characteristic function of G(u) conditioned on Ft under the risk neutral measure

Q is given by

φG(u)(λ) = exp
{

ΘG(u)(λ)
}

(4.45)

where

ΘG(u)(λ) =

∫ u

t

ψ
(
iλe>1 e

A(u−s)epσ(s) + θ(s)
)
ds−

∫ u

t

ψ (θ(s)) ds, (4.46)

with ψ(u) being the logarithm of moment generating function of L(1). We construct

{xk, k = 1, . . . , N−1} in the same way as introduced for pricing CAT option and estimate

fG(u)(xk) with φG(u) for u ∈ [τ1, τ2]. Then the CDD and HDD futures prices are given

numerically as follows. The price of HDD future is

FCDD(t, τ1, τ2) ≈
τ2∑

u=τ1

∑
xk≥d(u)

[
xk +

(
Λ(u) + e>1 e

A(u−t)X(t)− c
)]
fG(u)(xk)∆x∆u, (4.47)

and the price of HDD future is

FHDD(t, τ1, τ2) ≈
τ2∑

u=τ1

∑
xk≤d(u)

[(
c− Λ(u)− e>1 e

A(u−t)X(t)
)
− xk

]
fG(u)(xk)∆x∆u, (4.48)

where d(u) = c− Λ(u)− e>1 e
A(u−t)X(t). This corrects the numerical representation given

by Swishchuk and Cui [2013], page 95, Theorem 5.

Because the CDD and HDD futures prices are given in a numerical way, we do not

include discussion on the pricing of CDD and HDD options here. In the special case

of Brownian motion, one can refer to Benth et al. [2007]. More generally, Monte Carlo

simulations can be used.
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4.6 The Market Price of Risk

Here we introduce the concept of the market price of risk, and how it can be further

explored to study the prices behavior in the market.

The temperature derivatives market is a classical incomplete market. In incomplete

markets, there are infinite many EMMs. Before we have introduced a parametric class

of measures Qθ by Esscher transform, where parameter θ = θ(t) is square integrable

functions in our assumption. The price of the derivatives depends on the selected EMM,

and hence on the parameter θ(t). θ(t) is interpreted as the market price of risk (MPR).

The choice of θ(t) reflects the preference towards risk of the market participants, as posed

in Bellini [2005].

Recent studies have found that the MPR is different than zero. In order to study the

significance of the MPR, we can calibrate the MPR from market data. The calibration

process is in fact the inverse problem to the pricing process. The estimated value of θ gives

the theoretical prices that are closest to the market prices according to some minimizing

criterion.

Assume we have different futures contracts i = 1, . . . , I with measurement period

[τ1, τ2]. For a single trading date t, or the so called close date, we observe market prices

F ∗(t, τ i1, τ
i
2) for contracts i = 1, . . . , I. We restrict to the case where the MPR is constant

for each contract per trading date, i.e. the MPR is constant over [t, τ i2] for each contract

i = 1, . . . , I. The aim to minimize the objective function given as the squared distance

between the observed market price F ∗(t, τ i1, τ
i
2) and theoretical price F (t, τ i1, τ

i
2) estimated

under the pricing framework, i.e. we solve the problem

min
{
F (t, τ i1, τ

i
2)− F ∗(t, τ i1, τ i2)

}2
.

For example, since we have an closed form pricing formula for CAT futures under the

Lévy driven CAR model, we have that

θiCAT (t) = arg min
θi(t)

(
F ∗CAT (t, τ1, τ2)−

∫ τ2

τ1

Λ(u)du− a(t, τ1, τ2)X(t)

−ψ′(θi(t))
{∫ τ1

t

σ(u)a(t, τ1, τ2)epdu

+

∫ τ2

τ1

σ(u)e>1 A−1
(
eA(τ2−u) − Ip

)
epdu

})2

(4.49)

Hence we obtain the MPR θi(t) which is varying with respect to time t but it is constant

on [t, τ i2].
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This framework can be generalized with more complex formulations on θ(t). For ex-

ample, Härdle and Cabrera [2012] consider formulations of one piece constant, two piece

constant, and a general form of series expansion for θ under the Brownian driven CAR

model. We can put similar considerations here for CAT futures, since it also has an explicit

expression with cumulant function of the Lévy process. It is worth mentioning that one

usually calibrates the MPR for temperature futures and use the implied MPR for further

pricing of options.

In fact, the market price of risk is associated with the economic concept of risk pre-

mium, defined as the difference between the risk neutral price F (t, τ1, τ2) which is the

expected pay-off under Q, and the price FP (t, τ1, τ2) which the expected payoff under

physical measure P , i.e.,

RP = F (t, τ1, τ2)− FP (t, τ1, τ2). (4.50)

For more discussion on the economic interpretation, one can refer to Härdle and Cabrera

[2012].



Chapter 5

Temperature Data Analysis

In this chapter, we analyze historical temperature data of 6 cites in the United States

(US) and 2 cities in Europe. We fit the data to the continuous-time autoregressive (CAR)

model and the results are presented here.

In the first section, we give the source of our temperature data and some descriptive

statistics of the data. In the second section, we describe the overall fitting procedures.

The last few sections are organized in the way to present the results for each step in the

procedures separately.

5.1 Data Description

We have historical daily temperature data of 2 European cities and 6 US cities, which

are Berlin, Stockholm, Atlanta, Chicago, Dallas, New York, Philadelphia and Portland.

For US cities, the data set is obtained from the National Climatic data Center (NCDC)

under the National Oceanic and Atmospheric Administration (NOAA).1 Historical data

of Berlin is obtained from the Deutscher Wetterdienst (DWD).2 Data of Stockholm is

obtained from Swedish Meteorological and Hydrological Institute (SMHI).3 These sources

offer historical temperature data measured on different stations for each city, and we select

the right one according to the contracts offered in Chicago Mercantile Exchange (CME).

Observations of daily average temperature (DAT) is calculated as the mean of the

maximum and minimum contained in the temperature data. February 29 is removed in

every leap year, so that the length of every year is fixed as 365 days. In this thesis, we

use the format mm/dd/yyyy for dates, e.g. 09/01/1961 denotes 1st of September in year

1http://www.ncdc.noaa.gov
2http://www.dwd.de/
3http://www.smhi.se/
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1961. The data set periods are 01/01/1961 ∼ 12/31/2010 for US cities, 01/01/1963 ∼
12/31/2011 for Berlin and 01/01/1961 ∼ 12/31/2012 for Stockholm. The data set period

lasts for about 50 years, and together we have approximately 18,000 observations for each

city. To agree with the notification of the temperature derivatives, the temperature is

measured in degree Fahrenheit for US cities and in degree Celsius for European cities.

To give an overview of the data, Figure 5.1 plots the temperature data between

01/01/2006 and 12/31/2010 for Stockholm. Strong seasonality with period of 1 year is

observed, with high temperature in the summer and low temperature in the winter. Fig-

ure 5.2 plots the histograms for temperature data for all cities. Bimodal distributions

are clearly observed for cities such as Berlin, Chicago and Stockholm. The two peaks

corresponds to temperature in summer and in winter.
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Figure 5.1: Daily average temperatures of Stockholm in period 01/01/2006 ∼ 12/31/2010

Table 5.1 presents some descriptive statistics of the temperature data. We see that

the statistics varies from city to city and depends on the geological location. The mean

temperature ranges from 7.30◦C in Stockholm to 65.96◦F (18.87◦C) in Dallas. The stan-

dard deviation is quite large compared to the mean temperature, which indicates that

the temperature is volatile. All cities except Portland have negative skewness. Negative

excess kurtosis is observed for all cities. This indicates that the distribution of DAT is

platykurtic and the mass of distribution is concentrate on the left tail (on the right tail fro

Portland). The Jarque-Bera test is performed to test the null hypothesis that the DATs

come from a normal distribution. The result is that the null hypothesis is rejected for all

cities at significance level of 1%.
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Table 5.1: Descriptive statistics of the daily average temperature

Mean Std. dev Max Median Min Skewness Kurtosis JB stat
Atlanta 61.92 15.05 92.03 63.95 5.00 -0.43 -0.74 974.26
Chicago 49.54 20.05 92.48 50.99 -18.04 -0.33 -0.71 712.11
Dallas 65.96 16.28 96.98 67.55 8.51 -0.40 -0.72 887.78

Newyork 55.14 17.35 94.01 55.49 2.57 -0.19 -0.91 731.10
Philadelphia 55.18 17.72 91.94 55.49 0.50 -0.21 -0.95 815.82

Portland 53.98 11.55 89.96 53.06 11.03 0.02 -0.56 238.77
Berlin 9.69 7.89 30.55 9.85 -18.25 -0.17 -0.63 385.33

Stockholm 7.30 8.23 28.70 7.00 -23.60 -0.11 -0.68 405.52

St. dev denotes the standard deviation. JB stat denotes the Jarque-Bera statistic. The

temperature for the first 6 US cities are measured in ◦F, while that for the last 2 European

cities are measured in ◦C. The critical values for JB test are 5.99 at 5% significance level, and

9.21 at 1% significance level.

5.2 Fitting Procedures

Recall from section 3.3 that we have modelled the DAT with a Lévy-driven CAR model.

The T (t) at time t ≥ 0 is

T (t) = Λ(t) + Y (t),

where Λ(t) is the seasonal mean given by

Λ(t) = c0 + c1t+
R∑
r=1

(
c2r cos

(
2πr

t

365

)
+ c2r+1 sin

(
2πr

t

365

))
.

and the deseasonalized temperature Y (t) is a general CAR process given by

Y (t) = e>1 X(t),

dX(t) = AX(t)dt+ epσ(t)dL(t),

where L = L(t) is a Lévy process; A is a p× p-matrix

A =



0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

. . . 1
...

0 . . . . . . 0 0 1

−ap −ap−1 . . . −a2 −a1


,
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with positive constants ak for k = 1, . . . , p. The discretely sampled deseasonalized tem-

perature Y (t), t = 1, 2, . . . has the form of an autoregressive process

X1(t) =

p∑
i=1

biX1(t− i) + ε(t),

and

ε(t) = σ(t)e(t),

where e(t) = L(t+ 1)− L(t) and σ2(t) > 0 is the variance modelled by

σ2(t) = d1 +
M∑
m=1

(
d2m cos

(
2πm

t

365

)
+ d2m+1 sin

(
2πm

t

365

))
.

We analyzed the temperature data and estimate the parameters of the model in the

following ways.

First we remove the seasonal mean in temperature data. The seasonal mean Λ(t) is

fitted by least squares minimization. Parameters in the model are chosen by minimizing

the BIC criteria. Then we have the estimated value of the seasonal mean, Λ̂(t). We remove

the seasonal mean from the data and hope that the deseasonalized temperature data

Ŷ (t) = T (t) − Λ̂(t) is a stationary process. The ADF test and KPSS test are performed

to check stationarity.

Then the deseasonalized temperatures are fitted to an AR(p) process. The optimal

order p is chosen by minimizing some information criteria. Once we have estimated pa-

rameters b̂j, j = 1, 2, . . . , p, for the autoregressive process, we identify âi, i = 1, 2, . . . , p.

Eigenvalues of the matrix Â are calculated and the condition for stationarity of the CAR

process is examined.

The seasonal volatility is estimated in the following way. From the previous step, we

have the residuals ε̂(t) from the AR(p) process. In order to estimate volatility σ(t), we

group ε̂(t), t = 1, 2, . . . , into 365 groups for each calendar day ti, i = 1, 2, . . . , 365, and

take the average of each groups of ε̂(ti) as the observations of σ(ti). The parameters in

the FTS function for σ(t) is estimated by least square minimization with M chosen by

minimizing some information criteria.

We call ê(t) = ε̂(t)/σ̂(t) the standardized residuals. In last step we estimate the dis-

tribution of the standardized residuals. First we test whether the standardized residuals

are normally distributed. Further we test whether the standardized residuals come from

generalized hyperbolic (GHYP) distribution, hyperbolic (HYP) distribution and normal

inverse Gaussian (NIG) distribution.
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This stepwise procedure is applied in Benth et al. [2007]. Admittedly, the estimation

of the seasonal variance σ2(t) is ”ad hoc”, as posed in Benth et al. [2007]. However, we

will see later that it captures seasonal variance sufficiently. Methods for estimation of the

AR process with time-dependent residual variance can be found in, for example, Ruppert

[1988] and Hayman [1960].

5.3 Seasonal Mean

The seasonal mean is modelled by FTS in form of equation (3.16). The parameters under

different number of periodic terms, R, are first fitted by least squares minimization. We

select the number of the number of R, by minimizing BIC criteria. Then we drop the

parameters that are not significant at a confidence level of 5%, and again aim at minimiz-

ing the BIC value. Figure 5.3 plots the observed DAT together with the fitted seasonal

function Λ̂(t).

Tables 5.2 and 5.3 present the fitted parameters of each city. ĉ0 is the mean temperature

in a year, ranging from 6.39◦C in Berlin to 64.78◦F (18.21 ◦C) in Dallas. ĉ1 is positive

and non-zero at 5% significance level for all cities, which indicates an increase in the

temperature due to global warming or urbanization effects. Though the estimated value

of ĉ1 is very small in absolute value, it still has significant influence given the large time

span, For example, with ĉ1 estimated to be 0.0001 for Berlin, the temperature increases

by 1.46◦C as the time increases by 40 years. We see that R varies from city to city,

ranging from 3 in Chicago (Dallas, Newyork and Philadelphia as well) to 8 in Berlin. As

posed in Härdle and Cabrera [2012], an increasing number of the periodic terms provides

additional flexibility for fine tuning. However, as the number of parameters in increasing,

the complexity in estimation is also increased.
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Figure 5.2: Histograms of of daily average temperatures
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Table 5.2: Fitted parameters of the seasonal mean (part 1)

Atlanta Chicago Dallas Newyork
ĉ0 (Std. er) 60.22 (0.11) 48.51 (0.13) 64.78 (0.11) 53.50 (0.10)
ĉ1 (Std. er) 0.0001 (0.00001) 0.0001 (0.00001) 0.0001 (0.00001) 0.0001 (0.00001)
ĉ2 (Std. er) -17.85(0.07) -23.75 (0.09) -19.35 (0.08) -20.53 (0.07)
ĉ3 (Std. er) -5.34 (0.07) -8.52 (0.09) -6.06 (0.08) -8.86 (0.07)
ĉ4 (Std. er) -1.32 (0.07) -1.77 (0.09) -1.46 (0.08) -0.35 (0.07)
ĉ5 (Std. er) 0.49 (0.07) - 1.04 (0.08) -
ĉ6 (Std. er) - -0.59 (0.09) -0.40 (0.08) -0.16 (0.07)
ĉ7 (Std. er) -0.20 (0.07) -0.79 (0.09) -0.40 (0.08) -0.72 (0.07)
ĉ8 (Std. er) - - - -
ĉ9 (Std. er) -0.43 (0.07) - - -
ĉ10 (Std. er) - - - -
ĉ12 (Std. er) - - - -
ĉ13 (Std. er) - - - -
ĉ14 (Std. er) - - - -
ĉ15 (Std. er) - - - -
ĉ16 (Std. er) - - - -
ĉ17 (Std. er) - - - -
ĉ18 (Std. er) - - - -

R̂ 4 3 3 3
BIC 123499 132090 125658 123160

Std. er denotes the standard error. All the coefficients are non-zero at 5% significant level.
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Table 5.3: Fitted parameters of the seasonal mean (part 2)

Portland Philadelphia Berlin Stockholm
ĉ0 (Std. er) 53.00 (0.08) 53.32 (0.11) 8.97 (0.05) 6.39 (0.05)
ĉ1 (Std. er) 0.0001 (0.00001) 0.0004 (0.00001) 0.0001 (0.00001) 0.0001 (0.000004)
ĉ2 (Std. er) -13.33 (0.05) -2.12 (0.07) -9.34 (0.03) -9.80 (0.03)
ĉ3 (Std. er) -5.02 (0.05) -8.10 (0.07) -2.91 (0.03) -3.65 (0.03)
ĉ4 (Std. er) -0.74 (0.05) -0.61 (0.07) -0.10 (0.03) 0.75 (0.03)
ĉ5 (Std. er) 2.37 (0.05) -0.79 (0.07) 0.26 (0.03) 0.18 (0.03)
ĉ6 (Std. er) -0.26 (0.05) - 0.16 (0.03) 0.09 (0.03)
ĉ7 (Std. er) - - - -0.12 (0.03)
ĉ8 (Std. er) -0.28 (0.05) - -0.12 (0.03) -
ĉ9 (Std. er) - - 0.14 (0.03) 0.17 (0.03)
ĉ10 (Std. er) 0.17 (0.05) - 0.15 (0.03) 0.10 (0.03)
ĉ12 (Std. er) -0.16 (0.05) - - 0.13 (0.03)
ĉ13 (Std. er) -0.19 (0.05) - -0.19 (0.03) -0.14 (0.03)
ĉ14 (Std. er) 0.26 (0.05) - - 0.11 (0.03)
ĉ15 (Std. er) - - -0.15 (0.03) -0.15 (0.03)
ĉ16 (Std. er) - - - 0.12 (0.03)
ĉ17 (Std. er) - - - -
ĉ18 (Std. er) - - -0.20 (0.03) -

R̂ 6 3 8 7
BIC 112879 132090 98204 101680

Std. er denotes the standard error. All the coefficients are non-zero at 5% significant level.
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After removing the seasonal mean from the temperature data, we perform the ADF

test and KPSS test to check whether the deseasonalized temperatures follow a stationary

process. From Table 5.4, the Dickey-Fuller statistic is smaller than the critical value at 5%

significance level. Hence the null hypothesis of the ADF test that the underlying process

is non-stationary is rejected for all cities at 5% significance level. The KPSS statistic is

smaller than the critical value. Hence the null hypothesis of the KPSS test that the time

series is stationary process cannot be rejected for all cities.

Table 5.4: Results of ADF test and KPSS test for deseasonalized temperature data

City Dickey-Fuller KPSS
Atlanta -22.55 0.380
Chicago -22.14 0.084
Dallas -21.65 0.271

Newyork -21.68 0.104
Philadelphia -22.03 0.138

Portland -21.33 0.197
Berlin -21.00 0.056

Stockholm -19.07 0.157

The critical values for ADF test are -2.86 at 5% significance level, and -3.43 at 1% significance

level. The critical values for KPSS test are 0.463 at 5% significance level.

5.4 Autoregressive process

After stationarity is verified on the deseasonalized temperature data, we plot the Sample

ACFs and Sample PACFs of the deseasonalized temperature data to detect serial depen-

dence. From figures 5.4 and 5.5, we observe that the Sample PACFs display a cutoff at

lag 3 while the Sample ACFs decay more slowly for most cities. The plots indicate that

AR(3) may be suitable for most cities.

More precisely, we assume the data follows an AR(p) process and then use an order

selection criteria to select the optimal p. We use arima in R to fit the AR(p) process,

which returns AIC and BIC values. Table 5.5 gives the optimal p with minimum AIC

and BIC values, respectively, for each city. The BIC leads to p = 3 for all cities except

Portland. The AIC leads to different p, ranging from 4 for Portland and 12 for Atlanta,

Chicago, Dallas and Stockholm. Notice that p = 4 is optimal for Portland under both AIC

and BIC. Based on the results as well as Sample ACFs and Sample PACFs, we choose

p = 4 for city Portland, and p = 3 for the rest.
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Table 5.5: Optimal number of lags p for deseasonalized temperature under AIC and BIC

BIC AIC
p BIC p AIC

Atlanta 3 107626 12 107561
Chicago 3 117862 12 117808
Dallas 3 112619 12 112571

Newyork 3 111108 9 111042
Philadelphia 3 111917 8 111847

Portland 4 98113 4 98065
Berlin 3 78028 8 77970

Stockholm 3 80024 12 79946

Table 5.6 lists the fitted coefficients for AR(3) process. As discussed before, we identify

the parameters of the matrix A in the CAR(p) process from the fitted AR(p) process. The

fitted coefficients for the AR(3) and the parameters calculated for the associated CAR(p)

are given in Table 5.6. The real parts of eigenvalues of the fitted matrix are negative for

all cities, hence the condition for stationarity is satisfied.
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Figure 5.3: The fitted seasonal function over average daily temperatures
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Figure 5.4: Sample ACFs and Sample PACFs of deseasonalized temperature data (part
1)
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(a) Philadelphia
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(d) Stockholm
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Figure 5.5: Sample ACFs and Sample PACFs of deseasonalized temperature data (part
2)
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Table 5.6: Fitted parameters of AR(3)

City
AR(p) CAR(p)

b̂1 b̂2 b̂3 b̂4 â1 â2 â3 â4 Real parts of eigenvalues of Âp×p
Atlanta 0.9514 -0.3471 0.1031 - 2.0486 1.4443 0.2926 - -0.34,-0.86,-0.86
Chicago 0.8766 -0.2868 0.1148 - 2.1234 1.5336 0.2954 - -0.30,-0.91,-0.91
Dallas 0.8530 -0.2807 0.1005 - 2.1470 1.5747 0.3272 - -0.34,-0.90,-0.90

Newyork 0.8255 -0.2811 0.1124 - 2.1745 1.6301 0.3432 - -0.34,-0.92,-0.92
Philadelphia 0.8237 -0.2573 0.1032 - 2.1763 1.6099 0.3304 - -0.33,-0.92,-0.92

Berlin 0.9281 -0.2183 0.0851 - 2.0719 1.3621 0.2051 - -0.21,-0.93,-0.93
Stockholm 0.9481 -0.2455 0.1124 - 2.0519 1.3493 0.1850 - -0.18,-0.93,-0.93
Portland 0.8388 -0.1630 0.0164 0.0330 3.1612 3.6466 1.7930 0.2748 -1.25,-0.26,-0.82,-0.82
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5.5 Seasonal Volatility

After fitting the deseasonalized temperature data to an AR(p) process, we now have

residuals ε̂(t) from AR(p). In order to give an overview of the residuals, Figure 5.6 plots

the residuals ε̂(t) and squared residuals ε̂2(t) of the first 9 years. We observe that the

residuals are showing cyclic pattern with period of 1 year. To gain additional insight,

Figure 5.7 plots the Sample ACFs of both the residuals and squared residuals. Seasonal

pattern is observed in the Sample ACFs for squared residuals as well, which confirms the

existence of seasonal variation.

The residual ε(t) is has a multiplicative representation as in equations (3.23). In order

to estimate σ(t), we group them into 365 groups for each calendar day, and take the

average of the squared residuals as the estimated variance for each calendar day. We use

FTS as in equation (3.20) to capture seasonality in the variance. The parameters are

estimated by least square minimization. Table 5.7 lists the fitted parameters for the FTS

function. The number of periodic terms, M , is chosen by minimizing the BIC.

Figure 5.8 plots the fitted function over the empirical mean of squared residuals on

each calendar day. We observe that the variance usually has larger value in winter and

smaller value in summer. The pattern varies from city to city and depends on the location.
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Figure 5.6: Residuals ε̂(t) (left) and squared residuals ε̂2(t) (right)
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(h) Stockholm
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Figure 5.7: Sample ACFs of residuals ε̂(t) (left) and Sample ACFs of squared residuals
ε̂2(t) (right)
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Figure 5.8: Average squared residuals (blue) and the fitted seasonal variance σ̂2(t) (red)
.
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Table 5.7: Fitted parameters of the seasonal variance function σ2(t)

City d̂1 d̂2 d̂3 d̂4 d̂5

Atlanta 21.26(20.74,21.78) 16.54(15.80,17.27) 6.97( 6.24, 7.70) - -
Chicago 37.24(36.48,38.01) 15.13(14.06,16.21) 7.42( 6.34, 8.49) 0.13(-0.94, 1.20) -2.90(-3.97,-1.82)
Dallas 27.95(27.21,28.69) 23.21(22.16,24.25) 7.20( 6.15, 8.24) - -

Newyork 25.73(25.16,26.29) 9.85( 9.05,10.65) 6.31( 5.51, 7.11) 0.75(-0.03, 1.55) -0.38(-1.17, 0.41)
Philadelphia 26.88(26.25,27.51) 12.16(11.27,13.05) 6.38( 5.49, 7.27) - -

Portland 12.62(12.33,12.92) 0.38(-0.02, 0.80) 0.30(-0.10, 0.72) 1.57( 1.16, 1.99) -0.74(-1.15,-0.32)
Berlin 4.58( 4.48, 4.68) 0.38( 0.25, 0.52) 0.43( 0.29, 0.56) 0.50( 0.36, 0.63) -0.22(-0.35,-0.09)

Stockholm 3.96( 3.87,4.04) 1.15( 1.02,1.27) 0.68( 0.55,0.80) 0.67( 0.54,0.79) -0.12(-0.24,0.00)

City d̂6 d̂7 d̂8 d̂9 M̂ BIC
Atlanta - - - - 1 2237
Chicago 2.30( 1.22, 3.37) 2.34( 1.27, 3.42) 2.04(1.00,3.09) 1.56(0.51,2.60) 4 2525
Dallas - - - - 1 2494

Newyork 0.68(-0.11, 1.47) 1.82( 1.02, 2.62) - - 3 2318
Philadelphia - - - - 1 2377

Portland 0.89( 0.49,1.30) 0.11(-0.29,0.52) - - 3 1822
Berlin - - - - 2 1023

Stockholm 0.14( 0.01,0.26) 0.40( 0.27,0.52) -0.05(-0.17,0.07) -0.02(-0.14,0.10) 4 975
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The standardized residuals are calculated as ê(t) = ε̂(t)/σ̂(t). Figure 5.9 plots the

Sample ACFs of ê(t), ê2(t) and Sample PACFs of ê(t). From Figure 5.9, the Sample

ACFs of standardized residuals show that the correlations between the first few lags are

significant. In Atlanta and Dallas the Sample ACFs of standardized residuals tail off. The

Sample ACFs and Sample PACFs of squared standardized residuals shows significant

dependency structure for the first few lags. An tails off behavior can to found in the

Sample ACFs of standardized residuals for Chicago, Dallas and Stockholm and in the

Sample PACF of standardized residuals for Berlin and Stockholm.

We perform the Box-Ljung test on the first few lags. Table 5.8 presents the Box-Ljung

statistics for the first 1, 5 and 10 lags. For cities Atlanta, Dallas, Newyork and Stockholm,

the test statistics for some lag are significant according to the p-value. Therefore, the

hypothesis of randomness is rejected. For cities Berlin, Chicago and Portland, the test

statistics are insignificant, and the null hypothesis of independence cannot be rejected

under these number of lags.

Table 5.8: Results of Box-Ljung tests for the first few lags

lag =1 lag=5 lag=10

Q̂1 p-value Q̂5 p-value Q̂10 p-value
Atlanta 7.5614 0.0059 42.8978 0.0000 90.4667 0.0000
Berlin 1.5576 0.2120 5.6679 0.3399 11.5207 0.3184

Chicago 2.7212 0.0990 6.6059 0.2516 13.3396 0.2053
Dallas 0.5311 0.4662 45.6039 0.0000 95.6145 0.0000

Newyork 1.2364 0.2662 9.405 0.0939 20.3647 0.0259
Philadelphia 0.0456 0.8309 6.3521 0.2734 18.1697 0.0521

Portland 0.9875 0.3204 1.2392 0.9411 3.752 0.9578
Stockholm 6.5142 0.0107 12.0081 0.0346 22.3863 0.0132

Q̂m is the Ljung-Box Q statistics with lags m.

A dependence structure exists to be explored in the standardized residuals. However,

dependencies in the standardized residuals are not accounted for in our model. An usual

approach to cope with this is to extend the model by adding an generalized autoregres-

sive conditional heteroskedasticity (GARCH) term to the volatility function σ2(t), see

for example, Härdle and Cabrera [2012]. One can use a more sophisticated model with

stochastic volatility, which is outside the scope of this thesis.
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5.6 Distribution of the Random Noise

Table 5.9 lists some descriptive statistics of the standardized residuals. Most cities have

negative skewness and positive excessive kurtosis. The hypothesis of normality is rejected

for all cities under the Jarque-Bera (JB) test.

Table 5.9: Descriptive statistics of the standardized residuals

Mean Std. dev Max Median Min Skewness Kurtosis JB stat
Atlanta 0.00 1.02 4.11 0.13 -6.44 -0.64 0.90 1862
Chicago -0.00 1.00 4.04 0.03 -4.10 -0.15 0.28 127
Dallas -0.00 1.02 4.03 0.11 -8.19 -0.68 1.45 2999

Newyork -0.00 1.00 3.66 0.02 -4.17 -0.11 0.09 45
Philadelphia 0.00 1.00 3.43 0.03 -4.18 -0.19 0.13 117

Portland 0.00 1.00 3.77 -0.02 -4.57 0.01 0.22 36
Berlin 0.00 1.00 3.90 -0.01 -4.60 0.04 0.24 49

Stockholm -0.00 1.00 3.88 0.01 -4.68 -0.09 0.34 115

St. dev denotes the standard deviation , while JB stat denotes the Jarque-Bera statistic. The

critical values for JB test are 5.99 at 5% significance level, and 9.21 at 1% significance level.

Motivated by the existence of negative skewness and heavy tails, we fit the standard-

ized residuals with GHYP distribution and two of its limiting cases: the HYP distribution

and the NIG distribution. Package ”ghyp” in R is used to estimate parameters. Estimated

parameters are shown in Table 5.10.

In order to examine and compare the goodness-of-fit for the four distributions: Gaus-

sian, GHYP, HYP and NIG, we perform the Kolmogorov-Smirnov (K-S) test and Anderson-

Darling (A-D) test, as well as the QQ plot.

The results for the K-S test and the A-D test are shown in Table 5.11. Recall that the

null hypothesis of the A-D test and K-S test is that the data comes from the hypothesized

distribution. We reject the null hypothesis when the test statistic is larger than the critical

values in both tests. Therefore, we have that the null hypothesis of normal distribution

is rejected at confidence level of 5% for almost all cities in both tests, with exception for

Berlin in the K-S test. Since the critical values are not available for GHYP, HYP and NIG

distributions, we rely on the K-S test for them. The null hypotheses that the data has

GHYP distribution and that the data has HYP distribution can not be rejected at the

5% confidence level in the K-S test for all cities. The null hypothesis that the data comes

from the NIG distribution can not be rejected at confidence level of 5% for most cities,

with the exception of Atlanta and Stockholm. The K-S test results indicate that we have

no sufficient evidence to reject the hypotheses /HYof GHYP, NIG and HYP distributions
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λ̂ α̂ β̂ δ̂ µ̂

Atlanta
GHYP 3.026 2.750 -0.889 0.082 0.796
HYP - 2.473 -1.000 1.289 0.883
NIG - 2.368 -1.127 1.812 0.981

Chicago
GHYP 4.819 3.516 -0.419 1.440 0.414
HYP - 3.040 -0.438 2.459 0.433
NIG - 2.846 -0.449 2.777 0.443

Dallas
GHYP 2.996 2.656 -0.740 0.047 0.682
HYP - 2.212 -0.756 1.167 0.705
NIG - 1.977 -0.810 1.673 0.751

Newyork
GHYP 9.150 6.605 -1.260 4.636 1.229
HYP - 6.084 -1.318 5.534 1.284
NIG - 5.964 -1.303 5.676 1.271

Portland
GHYP 4.661 4.300 0.152 2.912 -0.151
HYP - 3.868 0.141 3.467 -0.140
NIG - 17.995 -1.947 17.784 1.936

Philadelphia
GHYP 6.375 5.634 -1.482 3.745 1.412
HYP - 5.313 -1.540 4.534 1.463
NIG - 5.210 -1.560 4.722 1.482

Berlin
GHYP 3.913 4.127 0.365 2.876 -0.363
HYP - 3.684 0.221 3.255 -0.220
NIG - 3.482 0.220 3.469 -0.219

Stockholm
GHYP 3.529 3.429 -0.215 2.018 0.215
HYP - 3.075 -0.220 2.555 0.220
NIG - 2.849 -0.221 2.832 0.221

Table 5.10: Estimated parameters for the generalized hyperbolic distributions, hyperbilic
distributions and normal inverse Gaussian distribution

for most cities.

Comparing the test statistics of the four distributions in both tests, the values in the

test of Normal distribution are the largest and lead to rejection of the null hypothesis. The

test statistics in the test of the GHYP distribution usually provides the smallest values

which indicates a better fit. This is expected since the GHYP distribution is the superclass

of other distributions. The test statistics for HYP are smaller than those for NIG, except

for Berlin. Hence we have the general conclusion that the GHYP distribution provides

the best fit in four distributions, the HYP distribution the second, NIG distribution the

third and the normal distribution the worst.

Figure 5.10 presents the QQ plots of the data versus the four theoretical distributions.

For normal distribution, the quantiles deviate from the 45-degree reference line in the

tails apparently in cities Atlanta, Dallas and Stockholm. This shows that the normal
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Table 5.11: Testing distributions of the standardized residuals

City Normal GHYP NIG HYP 5% CV 1% CV

Atlanta
K-S 0.058 0.0093 0.0115 0.0108 0.0101 0.0121
A-D 115.1 2.921 4.8346 3.925 - -

Berlin
K-S 0.0083 0.0053 0.0053 0.0053 0.0102 0.0122
A-D 2.5718 0.5322 0.5286 0.5257 - -

Chicago
K-S 0.023 0.008 0.0092 0.0087 0.0101 0.0121
A-D 13.71 1.349 1.7117 1.5967 - -

Dallas
K-S 0.0533 0.0047 0.0067 0.0052 0.0101 0.0121
A-D 97.4627 0.3618 1.2572 0.6903 - -

Newyork
K-S 0.0121 0.0041 0.0042 0.0041 0.0101 0.0121
A-D 4.0394 0.4327 0.4558 0.4477 - -

Philadelphia
K-S 0.0172 0.0046 0.0048 0.0047 0.0101 0.0121
A-D 9.4205 0.5459 0.5786 0.5706 - -

Portland
K-S 0.0123 0.0076 0.0133 0.0078 0.0101 0.0121
A-D 9.8496 1.761 4.4689 1.7877 - -

Stockholm
K-S 0.0122 0.0046 0.0049 0.0048 0.0099 0.0118
A-D 6.1018 0.3263 0.3656 0.3517 - -

CV denotes the critical value. K-S denotes Kolmogorov distance, while A-D denotes the

Anderson-Darling statistic. Critical values for A-D statistic are available for normal

distribution, but not for the HYP, NIG and GHYP distributions. For A-D test for normal

distribution, the 5% CV is 2.492, the 1% CV is 3.857.

distribution provides a poor fit. The quantiles for GHYP, HYP and NIG distributions

are much closer to reference line in cities Dallas, Philadelphia, Portland, Berlin. In most

cities, the quantiles for GHYP, HYP and NIG are close to each other and they often

overlap. We only observe in the plot of Atlanta that quantiles for GHYP are closer to the

reference line compared to others.
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(c) Dallas
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(d) Newyork
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Figure 5.9: Sample ACFs of standardized residuals (Left), Sample ACFs of squared stan-
dardized residuals (middle), and Sample PACFs of standardized residuals (Right)
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(e) Philadelphia
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(f) Portland
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(g) Berlin
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(h) Stockholm
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Figure 5.9: Sample ACFs of standardized residuals (Left), Sample ACFs of squared stan-
dardized residuals (middle), and Sample PACFs of standardized residuals (Right)
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(c) Dallas
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(d) Newyork
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Figure 5.10: QQ plot of standardized residuals



Chapter 6

Empirical Results of Pricing

With the fitted results of the temperature data from previous chapter of data analysis, we

now implement the pricing framework for CAT futures and HDD futures for Stockholm.

Empirical results on CAT futures are presented in first section. Results on HDD futures

are shown in the second section.

6.1 Empirical Results for CAT Futures Prices

We consider 1195 contracts with 8 different measurement periods traded during 11/20/2011 ∼
9/11/2012 on Stockholm CAT futures.

Recall from Theorem that 4.6, the CAT futures price is given by

FCAT (t, τ1, τ2) =

∫ τ2

τ1

Λ(u)du+ a(t, τ1, τ2)X(t) +

∫ τ1

t

σ(u)ψ′(θ(u))a(t, τ1, τ2)epdu

+

∫ τ2

τ1

σ(u)ψ′(θ(u))e>1 A−1
(
eA(τ2−u) − Ip

)
epdu,

where a(t, τ1, τ2) = e>1 A−1
(
eA(τ2−t) − eA(τ1−t)

)
; Ip is a p × p identity matrix; ψ(u) is the

logarithm of the moment generating function of L(1); θ = θ(u) is the market price of risk

(MPR).

By previous Chapter of data analysis, we have estimated Λ̂(t) and Â, σ̂(t). With the

fitted parameters for different marginal distributions of L, we have ψ′BM(u), ψ′GHY P (u),

ψ′HY P (u) and ψ′NIG(u) respectively, see Figure 6.1 for the plot of these functions. p = 3 is

chosen for most cities, then X̂(t) is a 3-dimensional vector given by

X̂(t) =
(
X̂1(t), X̂1(t+ 1)− X̂1(t), X̂1(t+ 2)− 2X̂1(t+ 1) + X̂1(t)

)>
, (6.1)

83
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where X̂1(t) = T (t)− Λ̂(t). We see that although the price is calculated with information

up to t, we requires information of at time t+ 1 and t+ 2. Since we perform our analysis

in sample, we have temperature data at time t + 1 and t + 2 and we use them directly.

For out of sample evaluation, one can resort to temperature forecast. For more discussion

on recovering the state vector X(t), one can refer to Benth and Benth [2012].

In order to study the significance of the market price of risk θ, we first examine the

CAT futures prices estimated from the formula assuming that the market price of risk

θ(u) ≡ 0, such prices are denoted by FCAT,0. Figure 6.2 plots the observed CAT futures

prices, the realized CAT values and the theoretical prices FCAT,0 for Stockholm. The

observed CAT futures prices in the market remain almost unchanged, which indicates the

market is not liquid in reality. The theoretical prices FCAT,0. is smaller than the observed

futures prices for all contracts. The realized CAT lies in the middle of the market price

and the theoretical prices. The theoretical prices when θ(u) ≡ 0 in the cases of normal,

GHYP, HYP and NIG distributions are the same. This agrees with the fact that when

θ = 0, Q = P and the price is calculated under unique the physical measure P . ψ′(0)

is almost zero, see Figure 6.1. Therefore, the CAT futures price is determined by the

first two terms in the formula, which is the integrated seasonal mean and the effect from

temperature variations.

From Figure 6.2, the theoretical prices are constant at close dates far from the mea-

surement period, and become varying when close to the measurement period. Since the

eigenvalues of A all have negative real parts, eA(τ2−t) and eA(τ1−t) both converge to zero

as τ1 − t → ∞, hence the second term a(t, τ1, τ2)X(t) in the formula converges to zero

given X(t). The CAT futures price is then equal to the integrated seasonal mean over the

measurement period when far from measurement period.

We can further investigate the contributions of the first two terms in the formula by

empirical data. Take the CAT futures contract with monthly measurement period of July

2012 as an example. The first term
∫ τ2
τ1

Λ(u)du, which is the integrated seasonal mean

on the measurement period, gives the constant value of 522. On the close dates far from

the begin of the measurement period, a(t, τ1, τ2) is nearly zero. The CAT futures price

is determined by the integrated seasonal mean which is constant. However, as the close

date becomes closer to τ1, a(t, τ1, τ2) becomes large enough to affect the price. When

the close date is 6 days prior to June 1, that is τ1 − t = 6, â(t, τ1, τ2) = (2.6, 4.8, 2.6),

X̂(t) = (0.1,−1.5, 0.2) the second term has the value of -14, which is about 3% of the

first term. When the close date is 2 days prior to June 1, â(t, τ1, τ2) = (6.3, 10.6, 5.3), and

X̂(t) = (−1.4,−1.4, 0.2), the second term has the value of -20, which is about 4% of the

first term. As the close date gets closer to the start of measurement period, the second
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term in CAT futures price, referred as the effect of the temperature variations in Benth

and Šaltytė Benth [2011], impacts the CAT futures price more significantly. However, even

when close to the measurement period, the value of the integrated seasonal mean still has

a larger contributions to the futures price compared to the effect of the seasonal variation.

And overall the seasonal mean determines the level of the CAT futures price.

For contracts with longer measurement period, for example the seasonal strip in Figure

6.2, the integrated seasonal mean is larger compared to the second term. The price is then

less sensitive to the temperature variations when close to measurement period.

The deviation of theoretical prices FCAT,0 from observed prices indicates the existence

of non-zero MPRs. We restrict to the assumption that the MPR is constant over [t, τ i2] for

each contract i = 1, . . . , I, i.e. θ(u) = θit(u). Recall that the MPR is calibrated by square

minimization,

θ̂it,CAT = arg min
θit

(
FCAT (t, τ1, τ2)−

∫ τ2

τ1

Λ̂(u)du− a(t, τ1, τ2)X(t)

−ψ′(θit)
{∫ τ1

t

σ̂(u)a(t, τ1, τ2)epdu

+

∫ τ2

τ1

σ̂(u)e>1 A−1
(
eA(τ2−u) − Ip

)
epdu

})2

.

Figure 6.3 plots the implied MPR for contracts with 8 different measurement periods.

We see that the MPR in around 0.2. From Figure 6.1, we see that ψ′(u) is nearly the

same for the four different distributions we consider, i.e. the normal, GHYP, HYP and

NIG distributions. Therefore, the implied constant MPR θ will be almost the same for

four distributions which leads to the same ψ′(θ). Figure 6.4 plots the implied MPR with

respect to Normal, NIG, HYP and GHYP distributions for contract with measurement

period of September 2012, where the MPR are completely overlapping.

The last two terms in the CAT futures price, with ψ′(0) being zero, is then the risk

premium we define before, i.e.

RP =

∫ τ1

t

σ(u)ψ′(θ(u))a(t, τ1, τ2)epdu+

∫ τ2

τ1

σ(u)ψ′(θ(u))e>1 A−1
(
eA(τ2−u) − Ip

)
epdu,

Hence we notice that the risk premium is determined by the seasonal variation, and

autocorrelation structure of the temperature and the market price of risk. Given different

level of MPR, the RP term will contribute to the CAT futures differently. From the implied

MPR result we obtain before, the MPR is around 0.2, which agrees with the results in

Härdle and Cabrera [2012] and Benth et al. [2011]. Therefore, the RP term contributes
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less significantly compared to the seasonal function.

If we use the implied MPR which is assumed to be constant to calculate the CAT

futures price for our contracts, the CAT futures price simply is the same with the true

market value.

6.2 Empirical Results HDD Futures Prices

From Theorem 4.10 the price of the HDD futures in the special case when L is Brownian

motion

FHDD(t, τ1, τ2) =

∫ τ2

τ1

ν(t, s)Ψ

[
c−m(t, s))

ν(t, s)

]
ds,

where

m(t, u) = Λ(u) + e>1 e
A(u−t)X(t) +

∫ u

t

θ(s)σ(s)e>1 e
A(u−s)epds,

ν2(t, u) =

∫ u

t

σ2(s)
(
e>1 e

A(u−s)ep
)2
ds.

Φ is the cumulative standard normal distribution function and Ψ(x) = xΦ(x) + Φ′(x).

For general Lévy processes, the price of a HDD futures is estimated by Fourier trans-

form, and numerically given by

FHDD(t, τ1, τ2) ≈
τ2∑

u=τ1

∑
xk≤d(u)

[(
c− Λ(u)− e>1 e

A(u−t)X(t)
)
− xk

]
fG(u)(xk)∆x∆u

where d(u) = c− Λ(u)− e>1 e
A(u−t)X(t), f(xk, u) is determined by characteristic function

φG(u)(λ) = exp

{∫ u

t

ψ
(
iλe>1 e

A(u−s)epσ(s) + θ(s)
)
ds−

∫ u

t

ψ (θ(s)) ds

}
,

with ψ(u) being the log-moment generating function of L(1).

Here we examine the HDD futures prices if the market price of risk θ(u) ≡ 0. Further-

more, we only consider the NIG(α,β,µ,δ) distribution since ψ(u) has simple expressions,

ψNIG(u) =
{
µu+ δ

(√
α2 − β2 −

√
α2 − (β + u)2

)}
. (6.2)

For the normal distribution, the price is calculated by closed form formula. For NIG

distribution, the Fourier method is applied. Figure 6.5 plots the real market HDD futures

prices , the realized HDD values and the theoretical prices given for the normal distribution

and NIG distribution with θ(u) ≡ 0 for Stockholm. Again, we notice that the HDD futures
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prices remain almost constant in real market. We see that the theoretical prices when

θ(u) ≡ 0 in the cases of normal and NIG distributions are the same. Therefore we believe

that the Fourier technique returns a plausible result. We also notice that the HDD futures

price is constant when far from the start of the measurement period, and wiggles when

approaching the start of the measurement period.

We analyze the contributions of each terms in the explicit formula under the case of

Brownian motion. A HDD future with measurement January 2012 of Stockholm is studied.

Let u be the middle of the measurement period [τ1, τ2]. The seasonal mean Λ̂(u) is -0.918.

When the close date t is a month before τ1, we have e>1 e
A(u−t)X(t) equals to 0.002, which

is about 2% of the Λ̂(u). When t is 6 days before τ1, e>1 e
A(u−t)X(t) returns a value of

0.259, which is around 28% of Λ̂(u). Therefore, we have same conclusion that the effect of

the temperature variations impacts the CAT futures price significantly when approaching

the start of measurement, but the mean level of the price is set by the seasonal mean of

the temperature.
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Figure 6.1: The derivative of the log-moment generating function
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Figure 6.2: Market prices of Stockholm CAT futures (black line), realized CAT values
(purple line) and estimated theoretical prices when MPR is zero under different Lévy
processes (red for Brownian motion, green for NIG, blue for HYP, light blue for GHYP)
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Figure 6.5: HDD Futures Prices of Stockholm with zero MPR



Chapter 7

Summary

In this thesis, we explore the framework of pricing temperature derivatives using a Lévy

driven continuous-time autoregressive (CAR) model.

Temperature derivatives offered by The Chicago Mercantile Exchange (CME) are in-

troduced. And we focus on futures and options written on three types of temperature

indices: the Cumulative Average Temperature (CAT), the Heating Degree Days (HDD),

and the Cooling Degree Days (CDD). These temperature indices are based on daily aver-

age temperature. Therefore, a stochastic model for modelling the temperature and pricing

temperature derivatives is of interest.

We model the daily average temperature using a Lévy driven CAR process with lag

p and seasonal volatility. Seasonal variance, autoregressive structure, and mean reverting

property of temperature can be explained well by this process. Moreover, we introduce

Lévy processes with marginals following the family of generalized hyperbolic distribu-

tions. The skewness and heavy tails observed in the standardized residuals can be further

captured.

For pricing of temperature derivatives, the arbitrage theory is naturally adopted. Ess-

cher transform is applied to construct a parametrized class of equivalent measures. Under

a Brownian motion driven CAR process, we present explicit pricing formulas for the CAT,

HDD and CDD futures as well as CAT options. Under the general assumption of a Lévy

process, explicit pricing formula for CAT futures is presented. Closed form pricing for-

mulas for CDD and HDD futures and CAT option are not feasible. However, the Esscher

transform provides access to the characteristic functions, which enables the use of Fourier

technique. Therefore we outline the numerical implementation method here for pricing

these contracts.

In the empirical part of this thesis, we analyze the historical temperature data in 6

American cities and 2 European cites. The results show that the family of generalized

92
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hyperbolic distributions provide a better fit than normal distribution. We proceed on

implementing the pricing formula as well as the Fourier technique for CAT, HDD and CDD

futures and compare it to the realized value and observed market prices. The influence

on futures prices from different aspect of the temperature is then discussed.

As a conclusion, We have seen that CAR model is sufficiently good for modelling the

temperature evolution and at the same time appropriate for pricing under the arbitrage

theory.

For further extension, more sophisticated models or approaches can be used on mod-

elling the seasonal mean, for example wavelet analysis as in Alexandridis and Zapranis

[2013]. As we have seen in our data analysis, independence of the residuals is not fulfilled,

a generalized autoregressive conditional heteroskedasticity (GARCH) model can be used

for calibration of the seasonal volatility, as introduced in Härdle and Cabrera [2012]. For

simple CAR(1) process, another interest lies in replacing the constant speed of mean re-

version by a time varying one, see for example Alexandridis and Zapranis [2013]. For more

sophisticated models using continuous-time autoregressive (CARMA) process and kernel

analysis, one can refer to Benth and Benth [2012].
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Fred Espen Benth and Jūratė Šaltytė-Benth. The normal inverse gaussian distribution

and spot price modelling in energy markets. International journal of theoretical and

applied finance, 7(02):177–192, 2004.

94



BIBLIOGRAPHY 95
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Peter J Brockwell. Lévy–driven continuous–time arma processes. In Handbook of financial

time series, pages 457–480. Springer, 2009.

Peter J Brockwell and Richard A Davis. Time series: theory and methods. Springer, 2009.
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