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Abstract
Speech data is in principle available in large amounts for the
training of acoustic emotion recognisers. However, emotional
labelling is usually not given and the distribution is heavily un-
balanced, as most data is ‘rather neutral’ than truly ‘emotional’.
In the ‘hay stack’ of speech data, Active Learning automatically
identifies the ‘needles’, i.e., the more informative instances to
reduce human labelling effort when building a classifier, e.g.,
for acoustic emotion recognition. The critical issue thus is the
determination and quantification of informativeness. To this
end, we suggest to exploit the reliability of the usual ambigu-
ity of emotional labels, i.e., we propose a novel approach based
on label uncertainty. By building a certainty model and predict-
ing the candidate instances, informativeness is thus based on
labeller agreement. In addition, we consider class sparseness.
The results of extensive test runs under well standardised con-
ditions show the method’s great potential in reducing labelling
costs while boosting performance.
Index Terms: Active Learning, Label Uncertainty, Confidence
Values, Class Sparseness

1. Introduction
For acoustic emotion recognition – as practically in any other
pattern recognition task – we always consider ways to improve
the robustness of a classifier: On the one hand, because of mas-
sive speech resources coloured by emotion existing in the real-
world, we expect to annotate more instances and add more in-
stances to build a better classifier, upon the idea of “there is no
data like more data” in pattern recognition [1, 2, 3, 4]. On the
other hand, we make an effort to control the total number of
instances. A crucial problem is that this process is extremely
time-consuming and costly. It is well-known that data collec-
tion, cleaning, and annotation consume about 80 percent of the
effort in a typical data mining project [5]. In addition, it may
avoid potential adversities of a larger amount of training in-
stances [6], e.g., the training time will take long, or the training
set will include much noisy data which are harmful to the clas-
sifier performance [7, 8]. Active learning (AL) seems to be an
promising approach to minimize the amount of human supervi-
sion required and maximize the performance given transcribed
and untranscribed data [9, 10].

Several AL approaches have been proposed and inves-
tigated in machine learning. A well known method is
uncertainty-based AL in which the active learner determines
the certainties of the predictions on the unlabelled data based
on posterior probabilities. The samples with least certainty are
generally presented to the labellers for annotation. This method
is well established in automatic speech recognition [11] and in-

formation extraction [9], etc. Another common AL strategy
is the committee-based method which utilises multiple classi-
fiers and is investigated in [12, 13] for text categorisation. Pre-
dictions for unlabelled data are made by multiple classifiers.
The samples considered as most informative are those with the
lowest agreement. Other AL methods include the expected-
error-reduction method [14], the expected-model-change-based
method [15], the diversity-density-related method [16], etc.

However, those approaches mainly deal with objective pat-
tern recognition tasks with certain ‘ground truth’, like automatic
speech recognition [11], image retrieval [17], and vehicle recog-
nition and tracking [18]. In tasks with subjective speech phe-
nomena such as emotion, labels are determined by several la-
bellers’ personal judgement [19, 20, 21]. Because of the variety
of personal perception, those labels have a large deviation. Sev-
eral methods are recommended to alleviate the variation, e.g.,
labelling by multiple annotators, employing evaluator weighted
estimator (EWE) [22], and filtering outliers [23]. Those labels
ultimately form the ‘gold standard’ with an inherent label un-
certainty.

To exploit this information which is reflected in the levels
of human agreement, a novel AL approach is proposed by the
usage of label uncertainty. By building an uncertainty model
based on human agreement levels, we predict all the instances
in the candidate pool. Then, we select the instances by either
of two methods: 1) Based on class sparseness. That is, select
and add the ‘likely to be’ sparse class instances to the train-
ing set. 2) Based on confidence value. The prediction of those
instances among a range of labeller agreement levels will be
chosen. Compared to our previous work [3], where methods of
instance selection (sparse instance tracking and medium confi-
dence score) are based on class predictions, both methods im-
plemented in this paper are based upon predictions of human
agreement levels.

In the following, we firstly introduce the chosen database in
Section 2; then, we describe the details of our novel AL (Sec-
tion 3); further, we evaluate our approaches on acoustic emotion
recognition in Section 4; finally, in Section 5 we draw conclu-
sions and point out some future work.

2. Database
To evaluate the effectiveness of our approaches, we select
the frequently used, spontaneous emotion database FAU Aibo
Emotion Corpus (AEC) [24], which is the official corpus of the
INTERSPEECH 2009 Emotion Challenge (EC) [25]. It deals
with recordings of children interacting with Sony’s pet robot
Aibo via German speech. The Wizard-of-Oz controlled Aibo
robot sometimes disobeyed children’s commands thus provok-
ing various emotional reactions. The recording was executed



at two schools – MONT and OHM –, and features 51 children
with 21 males and 30 females, with ages ranging from 10 to 13.

Five annotators listened to the turns in sequential order and
labelled each word independently from each other as neutral or
as belonging to one of ten other classes. In our experiments – as
in the Challenge – the unit of analysis is neither the word nor the
turn, but some intermediate chunk being the best compromise
between the length of the unit of analysis and the homogene-
ity of the different emotional/emotion-related states within one
unit. The final labelling and labeller agreement levels for chunk
are determined by the majority voting from labels of the five
labellers on the word level onto one label for the whole chunk.
Following this, chunks are classified into the 2-class labelling:
NEGative (subsuming angry, touchy, reprimanding, and
emphatic) and IDLe (consisting of all other states). Fig. 1
displays the instance distribution of NEG and IDL with labeller
agreement levels. For our experiments, we use the whole cor-
pus consisting of 18 216 chunks, and guarantee speaker inde-
pendence by using the data recorded at school of OHM as can-
didate pool, and the data recorded at another school of MONT
as test set. Table 1 shows the details of the partition of the in-
stances and the speakers for the pool and the testing set.
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Figure 1: Number of instances with the according labeller
agreement levels in the whole AEC.

Table 1: Number of speakers and instances per partition of FAU
AIBO 2-class task. m/f: male/female; NEG/IDL: negative/idle.

# speakers # instances
NEG IDL Σ

Pool 13m/13f 3 358 6 601 9 959
Test 8m/17f 2 465 5 792 8 257
Σ 21m/30f 5 823 12 393 18 216

3. Methodology
Given a small amount of labelled data with its gold standard
and corresponding labeller agreement levels, we build an uncer-
tainty model for each class based on respective labeller agree-
ment levels for all instances in the training set. Then, a re-
gression is made for all instances in the candidate pool by each
uncertainty model, resulting in multiple predictions of labeller
agreement levels per instance. Upon these predictions of each
instance, we assign a class according to a predefined decision-
making mechanism, and calculate its corresponding confidence
value. Later, for each class we select the instances by either
of the following two methods: 1) By class sparseness (ALCS).
This means the instances predicted as the sparse classes will
be chosen randomly. 2) By confidence values (ALCV ). Those
instances will be selected whose confidence value is within a
certain range, trying to avoid adding the annotation noise which
the instances with lowest confidence value could contain. After-
wards, we deliver these selected instances for human labelling,

producing human agreement levels and the corresponding ‘gold
standard’. Finally, we move the selected instances from the can-
didate pool to the training set. This process repeats until some
criteria are met.

Algorithm 1: Active learning by label uncertainty.
Input:
L: small amount of labelled data (with labeller
agreement levels and gold standard);
U : large amount of unlabelled candidate data pool;
m: number of labellers;
k: number of classes;
n: number of selected instances for each repetition;
Output:
H: enhanced emotion classifier;
Process1
Obtain the priors of each class Pi (i = 1, . . . , k) in L;2
repeat3

(Option) Upsample the training set L to even class4
distribution LD;
Given the labeller agreement levels, build5
uncertainty models by usage of L/LD for each
class, Mi, i = 1, . . . , k;
for i = 1, . . . , k do6

Regress U by uncertainty models Mi, then,7
assign every instance in U with a predicted
labeller agreement level Si;
Normalise Si into [0,1];8

end9
Given k normalised predicted labeller agreement10
levels Si (i = 1, . . . , k) for each instance in U ,
assign it with the class determined by a
decision-making mechanism. Then, calculate
corresponding confidence values V ∈ [0, 1];
Select subset T from U with predefined instances
number n, and label them (cf. Method 1 or 2);11

Add the selected subset T into the training set L,12
L = L ∪ T ;
Remove the selected subset T out of the unlabelled13
set U , U = U r T ;

until14
i) Targeted performance is achieved; or15
ii) No more instances remain in the pool; or16
iii) The number of predetermined iteration times or17
instances numbers has been reached ;

Method 1: By class sparseness

1. Randomly select n instances from U that are pre-
dicted as the sparse class (‘NEG’ in our case);

2. Deliver the selected subset T to m experts for la-
belling, respectively;

Method 2: By confidence values

1. for i = 1, . . . , k do
2. Sort the instances that are predicted as class Ci

by confidence value S, producing queue Qi;
3. Select ni (ni = n × Pi) instances which are in

the middle of queue Qi;
4. end
5. Deliver the selected subset T to m experts for la-

belling, respectively;



The issue of unbalanced class distribution and labeller
agreement levels might impact the affect recognition perfor-
mance by producing several problems. For example, instances
are generally inclined to be classified as the dominating classes,
making the selection process weak. This means that the domi-
nant class could be recognised incrementally better with respect
to the minority classes. In order to avoid this, several techniques
are considered in our algorithm. First, we upsample the train-
ing set to balance the class distribution if necessary. Second,
we normalise the predicted levels for each class. This partly
ensures a better class assignment to an instance according to
its multiple prediction levels. Third, we choose the instances
in proportion to the prior of each class in the initial training
set. Fourth, if upsampling is not applied, we employ a class
sparseness method, which aims to enhance the weight of sparse
classes.

In the case of our experiments on acoustic emotion recogni-
tion, only a 2-class task (NEG vs. IDL) is considered. Thus, the
AL algorithm can be simplified. Only one uncertainty model
needs to be built, since the labeller agreement level for IDL
is complementary with that for NEG. Further, the decision-
making mechanism can be simplified to a threshold based de-
cision to distinguish between NEG and IDL. In the same vein,
the confidence value can be applied as:

V (x) = |x− ST |/(Smax − Smin), (1)

where x is the normalised predicted labeller agreement levels,
ST is a predefined threshold between NEG and IDL, and Smax,
Smin are the maximal and minimal normalised predicted levels
of NEG or IDL. For example, if we build one uncertainty model
for IDL, Smax and Smin will be 1 and ST for IDL, and ST and
0 for NEG, respectively.

In addition, a crucial point in ALCV is the query function,
which can be defined as:

Q(x) =

{
1, if D(x) = arg min

x
|V (x)− Vm|,

0, otherwise,
(2)

where V (x) evaluates the confidence value of instance x
after normalisation, and Vm is the confidence value of that in-
stance in the centre of the ranking queue. Ideally, for equally
distributed predictions, Vm will be 0.5. Yet, practically, Vm

is determined by the scenario of the actual distribution, and it
is not fixed but varies within the change of the candidate pool
through the learning iterations.

4. Experiments and Results
According to whether instance upsampling is undertaken, we
evaluate AL based on label uncertainty by the class sparseness
method in Subsection 4.2 and confidence value method in Sub-
section 4.3.

4.1. Experimental Setups

According to the INTERSPEECH 2009 Emotion Challenge
(EC), we exactly follow the experimental setup as in [25].
The feature set contains 384 features resulting from a
systematic combination of 16 low-level-descriptors (LLDs) and
corresponding first order delta coefficients with 12 functionals.
Thus, the total feature vector per chunk contains 16× 2× 12 =
384 attributes. The features are extracted with openSMILE
[26] and details can be found in [25]. For our experiments,
we considered two classifiers: One is Support Vector Machines

(SVMs) for evaluating on the test set. Here, we applied Se-
quential Minimal Optimisation (SMO) algorithm with polyno-
mial kernel and a complexity constant of 0.05, as used in [25].
The other one is a DecisionStump Tree which was employed
to build the uncertainty model and exploit instances from the
candidate pool by label uncertainty. Here, we applied Addi-
tiveRegression meta-learning with an iteration number of 100
and subspace size of 0.2. Both classifiers are implemented in
the Weka toolkit [27]. As primary evaluation measure, we re-
tain the choice of unweighted average recall as was used in the
Challenge held in 2009 [28].

AL comprises a random selection of 500 instances from
candidate pool as initial small training set, which resembles ap-
proximately 3 % of the whole corpus. Thus, the other 9 459
instances are maintained in the pool waiting to be exploited.
Then, we choose n = 200 instances as step size in each learning
iteration. Finally, to reduce the influence of ‘lucky’ or ‘unlucky’
selection for the initial training set, we repeat 20 times with dif-
ferent random initialisations (‘seeds’), leading to 20 runs of the
whole iteration process executed.

Moreover, the number of labellers m is equal to five and
the number of classes k is set to two. According to the statistic
distribution of IDL and NEG (cf. Fig. 1), we define ST as 0.58.
This means that if the normalised prediction levels of instances
are greater than 0.58, they will be classified as IDL; otherwise,
they will be classified as NEG.
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Figure 2: Mean UAR (top) and its standard derivation (std.
dev.) (bottom) vs. number of human labelled instances. Com-
parison of active learning (AL) by label uncertainty with the
method based on confidence values (ALCV ), or class sparse-
ness (ALCS), and passive learning (PL) in 20 independent runs
of the whole process without instance upsampling.

4.2. By Class Sparseness

Fig. 2 displays the performance (upper: UAR, bottom: stan-
dard derivation) of ALCS and ALCV . Obviously, in the case
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Figure 3: Mean UAR (top) and its standard derivation (std. dev.)
(bottom) vs. number of human labelled instances. Comparison
of active learning (AL) by label uncertainty with the method
based on confidence values (ALCV ), and passive learning (PL)
in 20 independent runs of the whole process with instance up-
sampling.
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Figure 4: Mean Correlation Coefficient (CC) of the uncertainty
model evaluated on the remaining pool vs. the number of human
labelled instances. Comparison of active learning (AL) by label
uncertainty based upon confidence values (ALCV ) and passive
learning (PL) with/-out upsampling in five independent runs.

of no upsampling technique executed in the process, the two
methods outperform the passive learning (PL) which considers
random instance selection. However, the best performance can
be observed by applying ALCS . The most impressive perfor-
mance trend can be found in the first few iterations. After the
4th iteration (800 instances added), the accuracy increases from
57.4 % to 61.9 % of UAR, with 4.5 % absolute gain. The best
performance is achieved at roughly 62.5 % after 2.4 k instances

are added. Compared to the performance (60.7 %) of the classi-
fier trained on the whole candidate pool (about 10 k instances),
UAR is increased by about 2 % and the training set is reduced
by 70 %. This can be expected: It accelerates the learning rate
for selecting the ‘right’ instances within the first few iterations,
which helps to improve the acoustic model rapidly for the sparse
class ‘NEG’. Apart from that, it is worth noting that its perfor-
mance becomes somewhat worse when adding more instances
after the best performance is achieved. This could be due to the
limited number of sparse instances (NEG) in the candidate pool.

4.3. By Confidence Values

Fig. 3 compares the performance of ALCV and PL when the
instance upsampling strategy is used. The subfigure (upper) in
Fig. 3 shows that ALCV outperforms PL. Especially after 10
iterations (2 k instances added), UAR speeds up, rising to an
average improvement of 0.8 % UAR absolute. For ALCV , we
obtain an UAR of 67.7 % which is equal to the baseline in [24]
after 5 k instances are added in the training set, reducing the
training set to 4 % of its size. Moreover, the subfigure (bottom)
in Fig. 3 further indicates that the ALCV shows more stable
performances than PL. This would greatly save a lot of time and
money for human labelling, and reduce the training complexity
and training time.

We further investigate the impact of human agreement lev-
els on instance selection of AL. Fig. 4 gives a comparison of
correlation coefficient (CC) between ALCV , and PL with/-out
instance upsampling. Note that these results are evaluated on
the remaining candidate pool instead of the testing set. It shows
clearly that after 2 k human labelled instances are added, both
uncertainty models built by ALCV with/-out upsampling out-
perform the models built by PL.

5. Conclusions and Future Work
In this paper, we proposed novel active learning approaches
based on label uncertainty for the subjective speech phe-
nomenon of emotion, aiming to exploit the reliability of la-
belling. Two instance selection methods based on class sparse-
ness and confidence value were investigated. The experimental
results show the efficiency of our proposed AL. With ALCS , the
best performance was achieved by 62.5 % UAR by adding only
2.4 k instance for training. This overtakes the performance of
the classifier trained on the whole pool set with approximately
2 % UAR absolute gain, and reduces the training instances by
roughly 70 %. By ALCV , the amount of training instances is
also reduced by 45 % when balancing the training instances
to achieve the baseline of the INTERSPEECH 2009 Emotion
Challenge. This is quite interesting when we put acoustic emo-
tion recognition into practise, where large unlabelled instances
can be easily collected in automated ways, but labelling is ex-
pensive and time consuming.

Future work will continue on other subjective speech tasks
to investigate robustness and universality. In addition, the per-
formance of semi-supervised learning on label uncertainty is of
interest.
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