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Abstract
Overlapping speech is still a major cause of error in many

speech processing applications, currently without any satisfac-
tory solution. This paper considers the problem of detecting
segments of overlapping speech within meeting recordings. Us-
ing an HMM-based framework recordings are segmented into
intervals containing non-speech, speech and overlapping speech.
New to this contribution is the use of linguistic information,
where spoken content is used to improve overlap detection. Us-
ing language models for speech and overlap, an overlap score
is created for every spoken word and used as an additional fea-
ture within the HMM framework. Experiments conducted on
the AMI corpus demonstrate the potential of the proposed lin-
guistic features.
Index Terms: Speech Overlap Detection, Spontaneous Speech,
Speaker Diarization, Language Modelling

1. Introduction
Overlapping speech, i. e., segments where two or more speak-
ers are simultaneously active, remains a major source of error
in many speech processing applications, e. g., speech recogni-
tion or speaker diarization [1, 2, 3, 4]. Particularly in spon-
taneous, conversational speech, overlap occurs at speaker turn
points or as backchannel utterances or interruptions, for exam-
ple. Overlap can degrade the performance of speech processing
systems which assume only one active speaker. With speaker
diarization, for example, overlap can lead to speaker model im-
purities which indirectly contribute to diarization error through
degraded clustering performance. Furthermore, overlap directly
provokes increases in the missed speaker rate. The successful
detection of overlap thus has the potential to improve the ro-
bustness of speech processing applications under realistic con-
ditions.

Overlap detection has attracted growing attention in the re-
cent past, especially in the context of speaker diarization. The
earliest prior work analysed the general influence of overlap-
ping speech on diarization performance [3, 5, 6]. The first hid-
den Markov model (HMM)-based overlap detection system us-
ing mainly spectral features (MFCCs, RMS energy, LPC resid-
ual energy, and diarization posterior entropy) was reported in
2008 [7]. The work showed how speaker diarization perfor-
mance can be improved by excluding overlapping speech seg-
ments from those used in speaker modelling and then by at-
tributing overlapping segments to at most two speakers. This
work was extended in [8] and [9] which assessed the use of new
features including spectral flatness, the harmonic energy ratio,
modulation spectrogram features, kurtosis, zero-crossing rate
and harmonicity. More recently, spatial [10, 11] and prosodic [12]

features have been investigated. Our own previous work intro-
duced the use of convolutive non-negative sparse coding (CNSC)
and other spectral, energy and voicing-related features [13, 14,
15]. An alternative approach which uses the output of a voice
activity detection component and the silence distribution to de-
tect overlap was reported in [16]. This work was extended by
exploiting long-term conversational features for overlap detec-
tion [17]. Finally, there is related, prior work in speaker recog-
nition [18], where overlap detection is used as a preprocessing
step for speaker recognition. In [19, 20], overlapping speech
was analyzed beyond acoustic properties. Despite the level of
recent interest, none of the above approaches gives satisfactory
performance; overlap detection remains an unsolved problem.

Almost all of this prior work focuses on the use of acoustic
cues to detect overlap. While backchannel utterances auch as
“yeah” or “mm-hmm” occur frequently in spontaneous, over-
lapping speech [21], they do not necessarily overlap acousti-
cally with competing speech. Our work in [14] also shows
that especially short overlap segments, which typify instances
of overlap such as those from backchannel, are particularly dif-
ficult to detect using acoustic features on their own. New ap-
proaches, exploiting different cues are thus required.

The linguistic contents of a speech signal has previously
been used for example for speech emotion recognition [22] or
for speaker diarization [23]. This contribution considers the
use of higher-level information for overlap detection. The spo-
ken content of the audio signal is one such source of informa-
tion. Central to the idea is the use of language models to detect
backchannel words and other language characteristics which
typify instances of overlap. Thus this paper presents a new
approach to overlap detection using linguistic features, where
language models are used to characterise the spoken content in
overlapping speech and speech with only a single active speaker.
The language models are then used to assign scores to each
word in a dictionary and thus to estimate the probability that the
linguistic content reflects overlapping speech. Using the output
of an automatic speech recognition (ASR) system, such scores
can be used within a conventional HMM framework to detect
overlap. Experiments conducted on the AMI Corpus show that
the proposed linguistic features lead to improved performance.

The remainder of this paper is structured as follows: In
Section 2 we present the overlap detection system and the em-
ployed energy, spectral, voicing related and CNSC-based audio
features. Section 3 gives an insight into our proposed linguis-
tic features. Experiments and results are described in Section 4
before conclusions are given in Section 5.
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Figure 1: System overview for the overlap detection system

2. System Overview
An overview of the proposed system is illustrated in Figure 1.
It shows the integration of the new linguistic feature into an
HMM-based overlap detection system with baseline features.

2.1. Overlap detection system

We use an HMM-based overlap detection system similar to that
in [7]. Speech, nonspeech and overlapping speech are each
modeled by a three-state HMM. Observations are modeled by
a multivariate Gaussian Mixture Model (GMM) with diagonal
covariance matrices. Due to unbalanced training data, mixtures
in the speech model have 256 components, while those in the
nonspeech and overlap models have 64 components. The mod-
els are trained with an iterative mixture splitting technique with
successive re-estimation. During decoding, transitions between
nonspeech and overlap are forbidden, as are self-transitions,
e. g., from overlap to overlap. The log-likelihood transition
penalty from speech to overlap, also referred to as the overlap
insertion penalty (OIP), is tuned to control the trade-off between
precision and recall performance.

2.2. Baseline features

Through previous work reported in [15], we performed fea-
ture selection on a large set of candidate features to identify
those best suited to overlap detection. The candidate feature
set is derived from the baseline feature set we provided for the
first audio-visual emotion challenge (AVEC) in 2011 [24]. As
shown in Table 1, a total of 23 features were selected. They can
be categorised into energy and spectral features, voicing-related
features and features based on CNSC.

Conventional mel-frequency cepstral coefficients (MFCCs)
have been used for overlap detection in prior work [7]. Since
overlap contains speech from multiple speakers, and is thus of-
ten of higher volume than speech from a single person, energy
features are natural indicators. Jitter and shimmer are measures
of fluctuations in fundamental frequency and amplitude respec-
tively, and are thus also ideally suited.

CNSC [25] is an approach to represent non-negative, multi-
variate data as a linear combination of lower rank bases. Their
use for overlap detection was first reported in [13]. A non-
negative matrix D ∈ R≥0

M×N is represented as:

D ≈
P−1∑
p=0

Wp

p→
H , (1)

Energy & spectral features (18)

MFCC 1-12
loudness (auditory model based)
energy in band 250 - 650 Hz
energy in band 1 kHz - 4 kHz
spectral flux
spectral kurtosis
spectral harmonicity

Voicing-related features (3)

probability of voicing
jitter
shimmer (local)

CNSC-based features (2)

CNSC energy ratio
CNSC total energy

Table 1: Baseline energy, spectral, voicing-related and CNSC-
based features

where Wp ∈ R≥0
M×R and H ∈ R≥0

R×N are the bases and base
activations, respectively. P is the convolutional range. The col-
umn shift operator p→. shifts p columns of H to the right. The
bases and activations are learned such that the regularised least
square error between the original matrix D and the recompo-
sition WH is minimised. In all work reported here, we used
an approach proposed in [26, 27] to learn bases. Bases W are
learned for each speaker in an audio document using spectral
magnitude features extracted from segments of preferably pure
(non-overlapping) speech. Their detection, however, is the very
goal of this work and thus, in practice, they are identified using
speaker diarization.

The base patterns of each speaker are concatenated to cre-
ate a global basis. When the spectral magnitude features of a
recording are decomposed or projected onto each speaker ba-
sis, the resulting activations H reflect each speaker’s activity.
Summing over all activations for a given speaker s leads to an
estimate of the speaker energy Ej(s) for frame j. The first
CNSC-based feature is the CNSC energy ratio

ERj =
Ej(ŝ2)

Ej(ŝ1)
(2)

which reflects the difference in activation energy between the
two most active speakers. The second CNSC-based feature is
the CNSC total energy

ETj =
∑
s∈S

Ej(s)−
f

|Jsp|
∑

j∈Jsp

∑
s∈S

Ej(s) (3)

which is the sum of all speaker energies, normalised by the
mean over all the speech frames Jsp. Here, f is a regularization
factor tuned on held-out development data. Full details of the
CNSC feature extraction are reported in [15].

Finally, the feature set is augmented with first order regres-
sion coefficients and normalised using the statistics of the train-
ing set to have zero mean and unity variance.

3. Linguistic Cues for Overlap Detection
The motivation to use linguistic features for overlap detection
stems from the hypothesis that some words are more likely dur-
ing overlap than others and thus that spoken words can be used



to detect overlap. This is instinctively the case for floor grab-
bers, backchannel and interruptions, for example. We use lan-
guage models to characterise the distribution of words used dur-
ing non-overlapping and overlapping speech.

We now turn to the left-hand side of Figure 1. Unigram
language models are learned for single-speaker and overlapping
speech using independent training data and ground-truth, word-
level transcriptions. Test data is processed with an ASR system
to produce a comparable word-level transcription. It is used to-
gether with the two language models to estimate a score which
reflects the relative likelihood that the signal contains speech
from a single, or more than a single speaker. The score is com-
bined with the baseline features and used in an HMM detection
system which classifies the signal as either non-speech, speech
(from a single speaker), or overlap.

Generally, a language model is used to assign a probabil-
ity to a sequence of words p(w1, ..., wm). Of practical use are
N-gram language models, where the probability for a word de-
pends on the lastN−1 words. In speech recognition, it is com-
mon to use bigram or trigram language models. In contrast, a
unigram language model describes only the probability of a sin-
gle word p(w). Using training data for single-speaker speech
and overlapping speech, we compute such unigram language
models for speech and overlap denoted p(w|sp) and p(w|ol),
respectively. In practice, however, to allow for the automatic
recognition of only a single word at a time, only the longest
of the spoken words during an interval of overlap is taken into
account.

The detection of overlap using linguistic content is there-
fore equivalent to determining the probability of overlap p(ol|w)
for any given word. With Bayes’ theorem, this can be expressed
as:

p(ol|w) = p(w|ol) · p(ol)
p(w)

. (4)

Since p(ol) is independent of the word and p(w) is approx-
imated by the language model probability for single-speaker
speech p(w|sp), Eq. (4) can be reduced to

p(ol|w) ≈ p(w|ol)
p(w|sp) . (5)

Using log-likelihoods, the probability of overlap is finally ex-
pressed as:

s(w) = log(p(ol|w)) ≈ log(p(w|ol))− log(p(w|sp)). (6)

Eq. (6) reflects the relative likelihood of speech from a sin-
gle or multiple speakers. The value of s(w) can be computed
for every word in the training set. A ground-truth, speaker-level
annotation is then used to construct a word-level, look-up table
and to identify those words which are most and least indica-
tive of overlap. Words which occur more often in overlapping
speech and least often in non-overlapping speech are assigned
higher scores whereas those which occur most often in non-
overlapping speech and least often in overlapping speech are
assigned smaller scores. The score forms the new feature used
for overlap detection.

Words typically used in overlap segments (e.g., in backchan-
nel utterances) like “mh-hmm”, “uh-huh”,“um”, “yeah”, “yep”,
“okay”, “nope”, “but”, “wait” were all shown to be among those
with the highest scores. These observations support the hypoth-
esis that linguistic cues have potential for overlap detection.

For the training data, the reference transcriptions are used to
determine s(w) on a frame-by-frame basis according to Eq. (6).
The value of s(w) is then added to the baseline feature set.

Test set

EN2003a EN2009b ES2008a ES2015d
IN1008 IN1012 IS1002c IS1003b
IS1008b TS3009c

Table 2: Meetings from the AMI evaluation dataset used for the
tests

As with all other features, first order regression coefficients are
added and the features are normalised. Recognised words in
test data are assigned the corresponding value of s(w) from the
look-up table determined with training data. For both training
and test data, a value of s(w) = 0 is assigned in the abscence
of any recognised words.

To assess the potential of linguistic cues for overlap detec-
tion independently from the performance of an ASR system, we
assessed the performance of the proposed system using a so-
called oracle-style ASR, or ground-truth transcripts. Accord-
ingly, i. e., to simulate the output of a more realistic ASR sys-
tem, the transcripts are purged of overlapping words so as to
retain only those with the largest duration. The output of such
an oracle-style ASR system thus corresponds to that of a perfect
ASR system, but capable only of single-word recognition. This
is the same strategy as applied for language model training.

4. Experiments
4.1. Experimental Setup

Experiments were conducted using the AMI Corpus [28]. We
used a subset of 40 meeting recordings for HMM training, 6 for
tuning and 10 for testing. Table 2 lists all meeting recordings
contained in the test set. Language models are estimated using
a larger training set of 161 meeting recordings. The length of
the recordings in the test set varies between 17 and 57 minutes
and in total, the length of the test set is more than 6 hours. All
are single-channel, far-field microphone recordings – the most
challenging scenario. On average the amount of overlapping
speech is in the order of 20 %.

We apply the following system parameters, based on our
previous experience: Energy, spectral and voicing-related fea-
tures are computed every 20 ms. A window size of 60 ms is
applied for MFCC and voicing-related features, whereas other
energy and spectral features are determined using a window size
of 25 ms. CNSC is applied using magnitude spectra computed
from 40 ms windows with a window shift of 20 ms. We used
R = 35 bases per speaker, a convolutional range of P = 4
and a sparseness parameter λ = 0.05. The regularisation factor
in Eq. (3) is set to f = 1.2. Speaker bases are learned using
speaker-specific training data obtained with the LIA-Eurecom
speaker diarization system [29].

System performance is measured in terms of frame-wise
precision, recall and detection error, which is equivalent to the
total duration of missed and false alarm overlap time divided by
the reference overlap time. Note that, since overlap makes up
only around 20 % of the recordings, false positive detections can
result in an overlap detection error above 100 %. For a typical
application such as overlap handling for speaker diarization, the
detection error is the most meaningful metric.

4.2. Results

We report results for four different combinations of MFCC fea-
tures, AVEC features, CNSC-based features, and the newly pro-
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Figure 2: Overlap detection performance as a function of the
OIP for five different feature combinations. Performance illus-
trated in terms of detection error (solid line), precision (dotted
line) and recall (dashed line).

Features OIP Prec. Rec. Err.

MFCC 50 55.3 34.2 93.4
MFCC + AVEC + CNSC 50 77.8 25.8 81.6
MFCC + Ling. 65 72.6 23.2 85.5
MFCC+AVEC+CNSC+Ling. 85 81.7 28.0 78.3

Table 3: Precision (Prec.), recall (Rec.) and overlap detection
error (Err.) on the test set for the four tested feature combina-
tions. Operating points are tuned (by varying OIP) to achieve
minimum overlap detection error on the tuning set.

posed linguistic features, using an oracle-style ASR system.
Results are illustrated in Fig. 2 for each feature combination
as function of OIP. In addition, Table 3 lists test set results for
all four systems for one operating point. This operating point
is determined by varing OIP and evaluating on the tuning set to
achieve a minimum overlap detection error.

The lowest detection error achieved with MFCC features
alone is 93.4 % achieved with an OIP of 50. When combined
with the new linguistic feature, the error drops to 85.5 % as a re-
sult of significant improvements in precision. For other system
operating points (other values for OIP), the addition of linguistic
information to the MFCC feature set also helps to decrease the
overlap detection error. The best feature set without linguistic
features combines MFCCs, energy, spectral and voicing-related
features from the AVEC set and CNSC features. With this fea-
ture set the minimum detection error is 81.6 %, again with an
OIP of 50. When linguistic features are added to this feature
set, the error drops to 78.3 %. This time, however, the drop in
error is attributed to an increase in both, precision and recall.
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Figure 3: Illustration of overlap detection, showing annotations
for the ground truth, the baseline system and the baseline com-
bined with the linguistic feature (from top to bottom) for a 40-
second excerpt of a recording from the test set.

Here again, the addition of the new linguistic feature leads to
a constant performance gain for all tested values of OIP. The
increased recall in the case of using linguistic features can be
attributed to a better detection of small overlap segments, for
example those containing backchannel utterances.

Figure 3 illustrates overlap detection performance for a 40
second long excerpt of a recording from the test set. The three
plots show the ground truth annotation (0, 1 or 2 active speak-
ers), the output of the baseline system and that when combined
with the new linguistic feature. Together they show how the new
feature has the potential not only to improve overlap detection
accuracy of those segments already detected with the baseline
approach, but also smaller segments which the baseline system
otherwise fails to identify.

5. Conclusions
This paper presents our latest work in overlap detection. Meet-
ing recordings are segmented into intervals of nonspeech, speech
and overlapping speech using an HMM-based framework and a
diverse set of features. The new contribution relates to the use
of unigram language models to distinguish between speech and
overlap. Especially short overlap segments (backchannel utter-
ances or interruptions) are expected to exhibit different word
distributions than single speaker intervals. Experiments con-
firm the hypothesis that linguistic features can help to improve
overlap detection; results show improved precision and recall
performance and reduced overlap detection error. Linguistic
features were derived from an oracle-style ASR system. It has
to be tested, how these results transfer to the case when a real
more error-prone ASR system is used.

To extend the idea further, future work should consider the
use of not only language model scores, but also those from
acoustic models. In particular, further work should study in
greater detail the nature of overlapping speech so that new in-
sights can stimulate the develop of future overlap detection sys-
tems.
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