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ABSTRACT

A plethora of different onset detection methods have been
proposed in the recent years. However few attempts have
been made with regard to widely-applicable approaches in
order to achieve superior performances over different types
of music and with considerable temporal precision. This
paper concerns the usage of Wavelet Packet Transform in
order to exploits multi-resolution time-frequency features.
We apply early fusion in the feature space by combining
Wavelet Packet Energy Coefficients and auditory spectral
features. The features are then processed by a bidirectional
Long Short-Term Memory recurrent neural network, act-
ing as reduction function. The network is trained with a
large database of onset data covering various genres and
onset types. Due to the data driven nature, our approach
does not require the onset detection method and its param-
eters to be tuned to a particular type of music.

1. ALGORITHM DESCRIPTION

The algorithm can be seen divided in three parts. First, the
audio data is transformed into the frequency domain via a
Discrete Wavelet Packet Transform (DWPT) with 22 bands
(cf. Table 1) and via two parallel STFTs with two different
window sizes. Energy-based information and its evolution
over time are used as the final feature set.

Second, the features are used as inputs to the BLSTM
network, which produces an onset activation function as
output.

Finally, the network output is post-processed by a thresh-
olding and peak picking methods in order to obtain the cor-
rect position of the onsets. Figure 1 shows this procedure.
The individual blocks are described in more detail in the
following sections.

1.1 Feature Extraction

Discrete input audio files, sampled at Fs = 44.1kHz, have
been used for our experiments.
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Figure 1. General block scheme.

A new features set is obtained exploiting wavelet trans-
formation (cf. Figure 2) by obtaining Wavelet Packet En-
ergy Coefficients (WPEC). The discrete input audio signal
is segmented into overlapping frames ofW46 = 2048 sam-
ples, which are sampled at a rate of 100 fps, log-energy
of each frame is calculated before applying the Hamming
window following:

Elog
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)

1 ≤ k ≤W46 (1)

For each frame we computed the DWPT. By choosing
b leaves of the decomposition-tree, we obtained b different
representations of the original frame (one for each band).

Then, for each band, we calculated the energyEW (n, l),
with n being the frame index and l the band index accord-
ing to the following formula:
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where xn,l[k] represents the DWPT coefficients corre-
sponding to the l-th band and n-th frame. A logarithmic
representation is chosen to match the human perception of
loudness:

WPECb
n,l = log(EW (n, l) + 1.0) 1 ≤ l ≤ b (2)

Finally the first order differences of the WPECs are cal-
culated applying a half-wave rectifier function H(x) =
x+|x|

2 to the difference of two WPECs one frame apart:
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Figure 2. Wavelet packet energy coefficients extraction process. db44 indicates the function used as mother wavelet
(Daubechies of order 44), dec level indicates maximum decomposition level needed and Nbands indicates the number of
bands in which the signal is decomposed.

Level Bandwidth N. Bands Frequency Resolution
0 ÷ 2 kHz 12 172.27 Hz

2 ÷ 2.7 kHz 1 689.06 Hz
2.7 ÷ 11 kHz 6 1378.13 Hz

11 ÷ 16.5 kHz 2 2756.25 Hz
16.5 ÷ 22 kHz 1 5512.50 Hz

Table 1. DWPT frequency band division in detail.

WPEC+
n,l =WPECn,l −WPECn−2,l 1≤l≤b (3)

In addition to WPECs we computed the well-know au-
ditory spectral features [2]. The signal is divided into over-
lapping frames of W samples length (W23 = 1024 and
W46 = 2048), that are sampled at the same rate of WPEC.
The Hamming window is applied to these frames. For each
window dimensions, the STFT gives the power spectro-
gram S(n, k) = |X(n, k)|2, with n being the frame index,
and k the frequency bin index. A conversion to the Mel-
Frequency scale (by 40 triangular filter-bank) is made to
reduce the dimensionality of STFT spectrogram. Further-
more a logarithmic representation is taken to mimic the
human perception of loudness:

Mlog(n,m) = log(M(n,m) + 1.0) (4)

We also applied the difference of two adjacent Mel spec-
trograms which leads to the positive first order differences
D+(n,m), which carries information about the time evo-
lution of the Mel-coefficients:

D+(n,m) =Mlog(n,m)−Mlog(n− 1,m) (5)

1.2 BLSTM Neural Network

The best neural network for our purpose is a bidirectional
RNN with LSTM units instead of usual non-linear units.

As network inputs we used 205 features per frame, com-
posed in the following manner:

• 22 WPECs obtained (as in (2)) by the band division
in Table 1 using the Daubechies wavelet function of
order 44, 7-level of decomposition and b = 22 bands
(WPEC22

n,l).

• The log-energy of each frame (Elog
n ) extracted as in

(1).

• 22 WPEC positive differences (WPEC+
n,l) as in (3).

• Two Mel-spectrograms (M log
23 (n,m), M log

46 (n,m))
were computed with window size of 23.2 ms and
46.4 ms as in (4) and their corresponding first order
positive differences (D+

23(n,m),D+
46(n,m)), result-

ing in 160 features.

The network has six hidden layers in total (three for
each direction) with 20 LSTM units each. The output layer
has one unit and its output activation function lies between
0 and 1. It represents the probability for the class ’onset’
and allows the use of the cross entropy error criterion to
train the network [4].

1.2.1 Network Training and Dataset

Supervised learning with early stopping was applied to the
network training. The dataset consists of 199 audio ex-
cerpts. It was created taking Bello’s dataset [1], the dataset
used by Glover et al. in [5], audio files used by Leveau et
al. in [6] and some excerpts from ISMIR 2004 Ballroom
set 1 .

The final set was processed as monaural signals sam-
pled at 44.1 kHz. It is composed by different categories of
music 2 pitched percussive (PP e.g., piano), pitched non-
percussive (PNP e.g., bowed strings), non-pitched percus-
sive (NPP e.g., drums), complex mixture (MIX e.g., pop
music) and others sound (OTHER is composed by ISMIR
2004 Ballroom dataset) for a total amount of 7989 onsets.

Presenting each audio sequence frame by frame to the
network, its weights are recursively updated by standard
gradient descent with backpropagation of the output er-
ror. The gradient descent algorithm requires the network
weights to be initialised with non zero values. We ini-
tialise the weights with a random Gaussian distribution
with mean 0 and standard deviation 0.1.

1.3 Peak Detection

The network obtained after training can classify each frame
as ’onset’ and consequently as ‘non-onset’ class. Frames

1 http://mtg.upf.edu/ismir2004/contest/
tempoContest/node5.html

2 Bello and Glover datasets specify the music categories. ISMIR 2004
Ballroom dataset does not specify these information and we refer to it as
OTHER.



containing the onsets are identified by processing the out-
put unit function. Higher output activation function val-
ues indicate an high probability that the frame is an onset-
frame.

An adaptive threshold technique has to be implemented
before peak picking due to the dependency among the de-
tection function, input signal, short time spectrum and wavelet
packet coefficients.

In order to obtain the best classification for each song,
a threshold θ is computed per song in accordance with the
median and the mean of the activation function, fixing the
range from θmin = 0.1 to θmax = 0.3:

θ′ = λ ·median{a0(1), ..., a0(N)} (6)

θ′′ = β ·mean{a0(1), ..., a0(N)} (7)

θ = min(max(0.1, θ′, θ′′), 0.3) (8)

where ao(n) is the output activation function of the BLSTM
network (frames n = 1...N ) and the scalar values λ and β
are chosen to maximise the F -measure on the validation
set. Their values are fixed to λ = 50 and β = 3.7.
The final onset function oo(n) contains only the activation
values greater than this threshold.

oo(n) =

{
1 oo(n− 1) ≤ oo(n) ≥ oo(n+ 1)
0 otherwise

2. RESULTS

The presented onset detector attained good performance in
the MIREX 2013 evaluation (cf. gray row in Table 2).

Algorithm F-measure Precision Recall
SB1 0.8727 0.8641 0.8946

ZHZD1 0.8233 0.7858 0.9009
FMESS1 0.8062 0.7770 0.8732
FMEGS1 0.8025 0.7880 0.8593

CF4 0.7345 0.6966 0.8507
CB1 0.6308 0.8506 0.5367

MTB1 0.3785 0.5429 0.3418

Table 2. Results for the MIREX 2013 onset detection eval-
uation. Only the best results of other participants or groups
are shown with the exception for our two submissions.
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