
TECHNISCHE UNIVERSITÄT MÜNCHEN
Lehrstuhl für Informatik II

Frameworks for analyzing
multi-threadedC

Kalmer Apinis

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Matthias Althoff

Prüfer der Dissertation: 1. Univ.-Prof. Dr. Helmut Seidl,
2. Univ.-Prof. Dr. Dr. h.c. Javier Esparza

Die Dissertation wurde am 21.01.2014 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 23.05.2014 angenommen.

Contents

1 Abstract 1

2 Introduction 3

3 A Unified Framework for Program Analysis 11
3.1 Programs . 15
3.2 Semantics . 16
3.3 Abstraction . 19
3.4 Constraint Systems . 22
3.5 Intra-Procedural Constraint Systems 25
3.6 Analyzing Procedures . 26

3.6.1 The Functional Approach 27
3.6.2 The Call-stack-0 Approach 28
3.6.3 Partial tabulation . 30

3.7 Local Solving . 33
3.8 Partial Context-Sensitivity 35
3.9 Proof of soundness . 37
3.10 Flow-insensitive Analyses 39
3.11 Constraint Systems with Side-Effects 41
3.12 A Generic local solver . 46
3.13 Dynamic Procedure Calls 48
3.14 Forward Propagation . 49
3.15 Experimental Evaluation . 51
3.16 Conclusion . 54

iii

Contents

4 Adding Widening and Narrowing 55
4.1 Classical widening/narrowing 57
4.2 Equation systems . 59
4.3 Chaotic fixpoint iteration . 60
4.4 Two-phased widening/narrowing 62
4.5 The combined update operator 63
4.6 Enforcing termination . 64
4.7 Local generic solvers . 70
4.8 The structured local recursive solver 72
4.9 Localized in SLR . 77
4.10 Restarting in SLR . 82
4.11 Solver for side-effecting equations systems 85
4.12 Experimental evaluation . 91
4.13 Conclusion . 97

5 Implementation in Goblint 99
5.1 Configuration . 99
5.2 Structure of Goblint . 103
5.3 Dead-code lifting . 111
5.4 Hash consing . 112
5.5 The query system . 113
5.6 Combining analysis specifications 114
5.7 Path-sensitivity . 117
5.8 Solver selection . 118

6 Conclusion 119

iv

List ofOriginal Publications

This dissertation includes the content of the following three publications:

1) Kalmer Apinis, Helmut Seidl, and Vesal Vojdani. Side-Effecting
Constraint Systems: A Swiss Army Knife for Program Analysis. In
APLAS, pages 157–172. LNCS 7705, Springer, 2012.

2) Kalmer Apinis, Helmut Seidl, and Vesal Vojdani. How to combine
widening and narrowing for non-monotonic systems of equations.
In Proceedings of the 34th ACM SIGPLAN conference on Programming
language design and implementation, pages 377–386. ACM, 2013.

3) Gianluca Amato, Francesca Scozzari, Kalmer Apinis, Helmut Seidl,
and Vesal Vojdani. Efficiently intertwining widening and narrow-
ing. (submitted for publication)

v

1 Abstract

Suitable abstraction layers are required in order to build a generic analy-
sis framework that is flexible enough to handle multi-threaded C. Practi-
cal analysis often requires the verification of a number of different safety
properties [Vojdani, 2010] for which useful analyses might already be de-
scribed in the literature. To accommodate reuse, a good abstraction, there-
fore, should allow for a convenient composition of individual analyses in
a way that enables each analysis to benefit from information provided by
the others. Additionally, configurable flow-, context-, and path-sensitivity
is preferred as it extends the applicability of the analyzer to larger range
of use cases. One such useful abstraction is describing the analysis as a
side-effecting constraint system over complete lattices. We show that this
abstraction is flexible and, also, useful in practice.

Side-effecting constraint systems were originally introduced in a re-
stricted form for the analysis of multi-threaded code by Seidl, Vene, and
Müller-Olm [2003]. In this thesis, I will explain how this formalism in
its extended form provides a unified framework for realizing efficient
interprocedural analyses of programs, possibly with dynamic function
calls, where the amount of context-sensitivity can be adjusted and where
the context-sensitive analyses of local properties can be combined with
flow-insensitive analyses of global properties, e.g., about the heap.

One major issue for a constraint- or equation systems based approach is
that many non-trivial analysis problems require complete lattices with
infinite ascending and descending chains. In order to compute reason-
ably precise post-fixpoints of the resulting systems of equations, Cousot
and Cousot have suggested to accelerate fixpoint iteration by means of
widening and narrowing [Cousot and Cousot, 1977a, 1992]. The strict
separation into a widening phase followed by a narrowing phase, how-
ever, may sacrifice precision which cannot be recovered later. Worse, a

1

1 Abstract

multi-phased approach does not lend itself to local solving. As a remedy,
I present a novel operator that combines a given widening operator

with a given narrowing operator which allows to merge the two
phases.

Applying the new combined approach to off-the-shelf equation solvers,
however, does not preserve the termination guarantees of the solvers as
the combined operator is inherently non-monotonic. Adapted versions of
round-robin as well as worklist iteration, local, and side-effecting solving
algorithms are, therefore, presented for use with the combined operator.
The key idea of each of the alteration is to assign priories to equation sys-
tem variables and then solve variables according to these priories. The
resulting solvers are proven to always return sound results and terminate
for monotonic systems whenever only finitely many constraint variables
are encountered and priorities are respected by side-effects. In addition,
several optimizations, inspired by [Amato and Scozzari, 2013], are pre-
sented which limit the use of the widening operator or restart parts of
the computation—therefore increasing precision, and, in some cases, per-
formance.

Finally, I provide implementation details and report on the various soft-
ware design decisions made while improving the Goblint tool [Vojdani
and Vene, 2009; Seidl and Vojdani, 2009; Vojdani, 2010] with the ideas
presented in this thesis. Most importantly, I elaborate on the software
architecture of the Goblint and describe how the analysis specifications
can be combined in such a way that each analysis can take advantage of
the information computed by other analyses.

2

2 Introduction

Computers are used for a wide variety of tasks: searching in vast quan-
tities of data, storing and providing multi-media content, steering par-
tially autonomous robotic rovers on Mars, helping pilots to fly modern
airplanes, etc. This lists will grow in the future as new technologies
mature—allowing implementation of ideas, such as self-driving cars, that
were previously in the realm of science-fiction.

For computers, as for all complicated systems, there exists a possibility of
failure. The effects of the failure ranges from slight annoyance to serious
bodily harm. It might be irritating to not being able to watch your favorite
TV show on your smartphone; however, it might be disastrous if there is
a disruption of service in a subsystem of a high speed train.

Sadly, disasters relating to computer failures do not only present a theo-
retical possibility, but rather a stark reality. In 2003, a widespread power
outage occurred in parts of Northeastern and Midwestern United States
and Ontario, Canada, leaving an estimated 50 million people without
electricity. Power was fully restored after two days. A software bug was
partially responsible for the incident by allowing certain alarms messages
to go unnoticed [Poulsen, 2004]. The blackout happened approximately
an hour after the first alarms were supposed to be triggered—leaving the
power plant staff unaware of the real situation.

Another, classic, example of disastrous computer failure is related to
the radiation therapy machine Therac-25. In six incidents between June
1985 and January 1987, massive overdoses of radiation were administered
[Leveson and Turner, 1993]. Many flaws in the Therac-25 system were
uncovered, including a software bug in the data entry subsystem of the
radiation therapy machine. Namely, in the case when a user entered the
configuration of the radiation procedure but then quickly changed the

3

2 Introduction

data, the final change was applied partially, leaving the system in an in-
consistent state.

The most common method for improving the quality of computer pro-
grams and reducing the possibility of failure is testing. For a limited set
of input parameters, the result produced by the program is compared
against the expected result—either manually by a person, or automati-
cally, using some testing framework.

Testing alone, however, cannot prove the absence of software bugs—at
least in the case where only a subset of all possible input values are con-
sidered. For all other input values, inherently, testing cannot conclude
anything. It might be feasible to test all parameters for a small deter-
ministic program, but it is much more difficult for larger programs and
programs that behave non-deterministically. For that reason, concurrent
programs—programs that contain parts that may execute in parallel or
allow for unknown scheduling—pose a difficult challenge for testing as
concurrency can introduce non-determinism into the system. Both of the
disastrous computer bugs, presented earlier, were in concurrent systems
where the exact input parameters that were used in the incidents alone
would not necessarily suffice to reproduce the problem.

We conclude that in many cases testing might be enough to achieve an
acceptable level of quality, e.g., for an entertainment application on a
smartphone. Nevertheless, for critical software, more is required. Sev-
eral approaches to tackle this problem exist; in this thesis, however, we
will look at techniques that fall under the general term of static program
analysis, which, contrary to testing, computes safety invariants without
executing the program itself. More specifically, we will focus on frame-
works that are able to support the analysis of concurrent C programs.

To get some initial intuition about static program analysis, first we shall
look at the example C program in Figure 2.1. The example program con-
sists of two procedures: action_A and action_B, which may be triggered
repeatedly and in an unknown combination—possibly in parallel by two
or more threads. The procedure action_A performs three consecutive op-
erations: first, it acquires a lock m, then increments a global variable x,
and finally releases the lock m. The procedure action_B also acquires the
same lock m, but instead decreases the variable x, though only in the case

4

�

�

�

�

void action_A(){
lock(&m);
x=x+1;
unlock(&m);

}

void action_B(){
lock(&m);
if (x>0) x=x−1;
unlock(&m);

}

Figure 2.1: Fragment of a concurrent program.

when the variable is bigger than zero. As its last operation, action_B also
releases the lock m. The locking procedures guarantee that each lock is
held by a single thread at a time—in case several threads want to acquire
the same lock, only one will succeed at first, while the others must wait
until the lock is again released.

The following properties, among others, can be automatically concluded
by using static program analysis:

a) accesses to the variable x occur only when the lock m is taken,

b) multiple action_B-s running in parallel will never interfere with
each other, and

c) the variable x, when initialized with 0, will always stay non-
negative.

Note that by removing the locking procedure calls from the example in
Figure 2.1, all of the presented properties would not necessarily hold. It
would be possible to decrease x below zero, if several action_B-s would
execute in parallel in such a way that first all the checks “x<0” are per-
formed, and only then all of the decrements.

To find such interesting properties of programs, however, it is sometimes
enough to combine a number of “classical” analyses with each other, pos-
sibly in addition to some specialized analyses. The properties of the
example program can be automatically derived with a combination of
an interval-based value analysis and a must-lockset analysis. There is a
critical interdependency between these analyses. Values of integer and
pointer variables influence the control flow, and ultimately the lock-sets,
while values of shared variables, as the example shows, are dependent

5

2 Introduction

on the lock-sets. Therefore, it is practically useful to design an analysis
tool that allows flexible configuration and composition of analyses. Ide-
ally, all analyses should be implemented in a single framework, where
adding new (sub-)analyses should be straight-forward and combining of
analyses should be automatic and without analysis-time overhead.

As a step towards the ideal analysis tool, we present an improved ver-
sion of Goblint [Vojdani and Vene, 2009; Seidl and Vojdani, 2009; Vojdani,
2010]—a static analyzer tool for (concurrent) C programs, implemented
in OCaml. This thesis includes the theoretical analysis framework that
is realized in Goblint as well as a selection of interesting implementa-
tion details. In addition, the thesis provides an extensive overview of
constraint system based static program analysis.

Main Contributions

The thesis consists of three major parts. In the first part, I show that
constraint system based, and especially side-effecting constraint sys-
tem based frameworks are flexible enough to support many interesting
features—fully configurable flow- and context-sensitivity, generic combi-
nation of analyses, and forward propagation similar to the algorithms of
Sharir and Pnueli [1981] instead of demand-driven iteration, as is usual
for constraint systems.

In the second part, I propose a way to apply the techniques from the
widening/narrowing approach, proposed by Cousot and Cousot [1976],
in a setting where local solving of constraint systems is required—both
for side-effecting and non-side-effecting constraint systems. This has the
additional benefit of possibly increasing the precision of the analysis in
comparison to the “classical” two-phased approach. Additionally, I adapt
the optimizations from [Amato and Scozzari, 2013] to further improve
the technique, significantly increasing the precision and, in some cases,
improving performance, while still preserving termination guarantees.

In the third part, I report about implementation details and improve-
ments to the Goblint framework that I have realized while researching
the subject of this thesis. The most important implementation contribu-
tion is the generic mechanism of combining analyses in a way that allows

6

analyses to reciprocally benefit from each other. All topics discussed in
the third part of the thesis contain new contributions—with the excep-
tion of the general structure of Goblint, the individual analyses and their
domains. Only minor improvements were made to path-sensitivity, dead-
code lifting, and the module GlobConstrSystem that represents constraint
systems—they are presented for the purpose of overview.

Side-effecting framework

The first part of the thesis starts with an introduction into static pro-
gram analysis which is based on constraint system over complete lattices.
Classical techniques for supporting the analysis of function calls are pre-
sented in the constraint system notation for overview. All necessary def-
initions are presented to allow reasoning about the correctness of the
analysis. Partial tabulation is formulated using constraint systems that
could then be solved using local solving. At this point we see that pre-
vious techniques have practical difficulties when reachability is directly
encoded in the constraints, instead of in the solving algorithm. This is
the case, for example, when only part of the starting state of a function
is used as the context. We draw parallels to flow-insensitive analysis and
show that extending constraints with side-effects [Seidl et al., 2003] can
also be used to perform partially context sensitive analysis. We show that
the more general formulation of side-effecting constraint system can be
solved, by providing a local solving algorithm.

We show that side-effecting constraint systems are powerful enough to
allow the encoding of dynamic procedure calls and forward propagation.
Forward propagation is a technique to propagate abstract analysis val-
ues along control-flow graph edges, whereas local solving works on a
constraint system and follows the dependencies of the constraints.

We provided experimental evaluation to compare forward propagation
to local solving in three configurations: no calling context, partial calling
contexts, and full calling context. The chapter ends with a conclusion that
summarizes the consequences of using side-effecting constraint systems.

7

2 Introduction

Adding Widening/Narrowing

The second part of the thesis deals with bridging the gap between con-
straint system based static program analysis and widening/narrowing
based static program analysis. A widening (over-approximation) is used
in cases where the height of the lattice is too large—a case where precise
generic solvers may encounter non-termination. Later, narrowing may
be used to regain some precision lost by over-approximation.

It is shown how constraint systems can be transformed into equation
systems so they can be used in the context of widening/narrowing. A
more general notion of a solution of an equation system is provided. Also,
the classical two-phased approach to widening/narrowing is presented
using equation systems.

A novel update operator is presented, which combines given widening
and narrowing operators in a generic manner. Using the new operator,
the two phases can be combined into one equation system. It is shown
that the solution of the combined equation system is also a post-solution
to the original system—allowing to apply any generic equation solver to
attempt to find a solution.

Using examples, it is shown that termination of the solver depends on
the order in which constraints are (re-)evaluated. Novel equation system
solvers which are based on round-robin iteration and worklist iteration
are presented. The new solvers choose constraints in a way that guaran-
tees termination for finite and monotonic constraint systems.

A more generic definition of local solvers is introduced. A new solver is
constructed from the solver RLD [Hofmann et al., 2010b] which termi-
nates in the monotonic case where only finitely many constraint variables
are encountered. As for the new round-robin and worklist solver, the new
local solver can provide termination guarantees, intuitively, because the
iteration adheres to a fixed linear ordering of the variables.

Next, optimization inspired by [Amato and Scozzari, 2013] are presented
as variants of the new local solver. The first optimization identifies so
called back-edges to detect potential dependency cycles in the equation

8

system and applies the new update operator only for variables pos-
sessing outgoing back-edges. While the first optimization only allowed
the set of back-edges to increase, the second optimization also allows the
set to decrease. The third optimization, however, allows to restart the
computation of a certain subset of variables in the case that the value
of a variable decreased. The intuition for that is that the previously
over-approximated value may have already been propagate to other
variables where the effect cannot be undone using successive iteration
alone. Restarting, however, may be able to improve the values of those
variables.

Additionally, side-effecting versions of the new local solver are intro-
duced with analogous guarantees for termination. For the termination
guarantees to hold, however, the side-effecting constraints are expected
to respect the ordering on variables, i.e., produce side-effects from a
smaller priority variable to larger variables, only.

Experimental evaluation is done to assess the precision of the presented
local solver. The precision of naive two-phased widening/narrowing is
compared to the presented local solver. Additionally, the precision im-
pact of the different optimizations to the solvers are examined.

The performance of the new local solvers are investigated by comparing
the number of right-hand side evaluations needed in different solver
configurations for the analysis of a selected set of benchmark programs.
All variants of the presented local solver are compared against each
other and, also, against the the configuration where only widening is
preformed. The chapter is concluded with a summary.

Implementation details

The final major part of the thesis consists of an overview of the practical
implementation details and improvements of the static analyzer Goblint.
Starting with the basic structure of Goblint, each subsequent section fo-
cuses on a different component of the implementation.

The first practical improvement is the new configuration sub-system,
which allows better handling of different analysis parameters. Techni-

9

2 Introduction

cally, the configuration sub-system consists of a JSON data structure that
can be manipulated in different ways.

Next, the structure of Goblint is presented in more detail—showing the
most important module signatures and describing their meaning and re-
lation to the previous chapters. In addition to textual description, the
various important modules are described using code-snippets and dia-
grams.

A transformation is presented which adds central handling of unreach-
able code to any analysis specifications. Following that, another analysis
transformation is presented which tries to minimize memory usage of
the analysis by applying the software pattern of hash consing.

The intuition behind the query system is discussed: each analysis pro-
vides a function that answers queries based on their “local” knowledge
and requests of recursive queries, and the analysis combining system
binds the queries together in a way that allows a limited form of recur-
sive queries.

The intuition behind the combination of analyses is presented along with
the needed technical features from the OCaml 4.00 compiler. A small
overview of path-sensitivity [Vojdani and Vene, 2009] is presented, to-
gether with some details of how it is handled by the new Goblint imple-
mentation. Finally, details are shown on how dynamic solver selection is
implemented within a static solver module.

10

3 AUnifiedFramework for Program
Analysis

Due to the complicated semantics of modern programming languages,
analyzers inferring non-trivial program invariants require auxiliary anal-
yses for many different properties. When checking multi-threaded C for
absence of data-races, for example, one needs auxiliary analyses for dis-
ambiguating function pointers, may- and must-alias analysis for ordinary
pointers, and if control-flow is to be tracked with higher precision, some
form of value analysis is additionally required [Vojdani, 2010].

One choice, when combining various kinds of analyses, is to proceed in
stages where later stages have access to the invariants previously com-
puted. The advantage of the staged approach is that each stage has to
deal with a small set of different concepts only and thus can be kept
rather simple. The disadvantage, though, is that an unnecessary loss
of precision may be incurred, since information only flows in one direc-
tion across stages. For example, call-graph construction for languages
with function values must rely on information about those function val-
ues; however, a sound data flow analysis computing these values may
already need to access the call graph [Grove and Chambers, 2001]. A
common approach to resolve this circular dependency is to start with an
over-approximation of the call-graph, and then rely on the pre-computed
graph in subsequent stages for interprocedural analysis.

Thus, when precision is crucial, an integrated approach is preferred. This
is the case in sound static analyzers, such as Astrée [Cousot et al., 2005]
or Goblint. In these frameworks, the different analyses are joined into
one global analysis which determines all required invariants in one go, so
that the distinct analyses reciprocally benefit from one another. Addition-
ally, Goblint allows the user to configure, for each analysis, whether it

11

3 A Unified Framework for Program Analysis

should run context-, path-sensitively, or not at all: the different analyses
communicate through a query-system such that multiple analyses can
complement each other in answering, e.g., aliasing queries. Such flex-
ible integration is only possible, however, when the algorithmics of the
different analyses harmonize.

The goal, therefore, is to abandon dedicated analysis algorithms and in-
stead provide one specification formalism together with a single solver
engine to compute the invariants. Proofs of soundness are then vastly
simplified as the verification task is separated into proving the constraint
system correct and independently proving the correctness of a generic
fixpoint engine, along the lines of [Hofmann et al., 2010b].

We suggest that side-effecting constraint systems, introduced in [Seidl
et al., 2003] for the analysis of multi-threaded code, is the ideal tool to
achieve the desired harmonization. Intuitively, in each constraint of a
side-effecting constraint system, the right-hand side does not only spec-
ify a sequence of reading accesses to some constraint variables, whose
values are queried and used to provide a contribution to the variable on
the left-hand side, but may additionally disperse write contributions to
further constraint variables in-between.

The key contribution of this part of the thesis is to show that many anal-
ysis problems, whose solving seems to require different algorithms, can
all be expressed using this single formalism. In particular, we show that
this idea provides a uniform solution to the following interprocedural
analysis problems:

a) tabulation of procedure summaries for parts of the calling context
only, also in the presence of dynamic procedure calls;

b) integrated analysis which accumulates some of the data flow in-
formation flow-insensitively, while at the same time tracking other
data, such as (an abstraction of) the local state, flow- as well as
context-sensitively.

These problems can be expressed by ordinary constraint systems which
thus may serve as a formal specification of the analysis problem. For non-
trivial analyses, including constant propagation, these constraint systems
are infinite. Local fix-point solvers, which only solve those variables that

12

are required for the analysis, can be used to solve infinite systems. How-
ever, these constraints are not only infinite, but some variables of the con-
straint system may formally depend on infinitely many other variables.
Therefore, they do not lend themselves to implementations by means of
generic local solvers.

We show instead that these constraint systems can be reformulated by
introducing side-effecting constraints. The side-effects are triggered dur-
ing constraint solving and may depend on the values of other variables.
Side-effecting constraints thus cannot generally be replaced by an equiva-
lent constraint system with finite variable dependencies by factoring out
side-effects as individual constraints. The reformulated constraint sys-
tems, however, can be solved efficiently by means of generic local solvers
adapted to side-effecting constraints. A local solver will try to solve only
variables that are required for the analysis. These adapted generic local
solvers together with side-effecting constraint systems may thus serve as
a Swiss army knife for efficient integrated whole-program analysis.

Related Work. The seminal paper by Kildall [1973] can already be inter-
preted as an attempt to provide a unifying framework for various pro-
gram analysis techniques at his time. It did not incorporate, however,
direct support for more advanced language features such as procedures
or threads. The approach of abstract interpretation by Cousot and Cousot
[1977a] not only provides the foundations for reasoning about the cor-
rectness, but also serves as the basis for a variety of program analyses
which algorithmically translate into solving appropriate constraint sys-
tems [Cousot and Halbwachs, 1978] or directly interpreting the input pro-
gram abstractly [Cousot et al., 2005]. As one instance, also a framework
for analyzing programs with procedures has been provided [Cousot and
Cousot, 1977b].

Various further approaches to interprocedural analysis are reviewed by
Sharir and Pnueli [1981]—one based on call-strings while the other, sim-
ilar to [Cousot and Cousot, 1977b], relies on (partially) computing ab-
stract procedure summaries. Following Sharir and Pnueli, later, restricted
frameworks for interprocedural analyses have been provided [Reps et al.,

13

3 A Unified Framework for Program Analysis

1995] which, however, only work for specific simple domains and there-
fore may not serve as general program analysis frameworks.

The feature of partial contexts is important for scalability since it makes
compositional approaches more practically feasable. It is particularly use-
ful for heap analysis, though the analysis designer must provide a way
to isolate the procedure-relevant portion of the heap and retrofit the par-
tial effect of a procedure into the wider context at a call site [Rinetzky
et al., 2005; Calcagno et al., 2009]. For object-oriented languages, object-
sensitivity, which distinguishes call-contexts using only the receiver object
at a method invocation site, rather than the entire points-to information,
is sufficiently precise [Milanova et al., 2005].

Generic frameworks for program analysis and code optimization [Nec-
ula et al., 2002; Lattner and Adve, 2004; Vallée-Rai et al., 1999; Wilson
et al., 1994] follow the multi-stage analysis paradigm and do not provide
a unified solving algorithm that allows one to combine mutually depen-
dent flow-sensitive and flow-independent analyses. However, specific
pointer-analyses have been proposed which flow-sensitively track a sub-
set of relevant pointers. The client-driven pointer analysis by Guyer and
Lin [2003] monitors the performance of an initial flow-insensitive analy-
sis to decide which pointers to track flow-sensitively. Lhoták and Chung
[2011], wishing to perform strong updates, track pointers with single-
ton points-to sets flow-sensitively, while relying on fast flow-insensitive
approaches for points-to sets where precision is already lost.

14

3.1 Programs

3.1 Programs

Before we can move on to the specific details of our approach of side-
effecting constraint systems, we, first, need to have a better understand-
ing of the structure and meaning of the programs that we are going to
analyze. Programs consist of a finite set of procedures Proc, including
a procedure main. Each procedure p is given by its control flow graph
(Np, Ep, sp, rp), where

• Np is the (finite) set of nodes,
• Ep ⊆Np×L×Np is the (finite) set of labeled edges, and where
• sp ∈Np and rp ∈Np are the start and return nodes of p, respectively.

The set of labels L consists of

• statements s ∈ Stmt, excluding procedure calls,
• procedure calls of the form p() where p ∈ Exp is an expression,
• thread spawning of the form spawn(p) where p is an expression,
• positive guards Pos(e) ∈ Guard and negative guards Neg(e) ∈ Guard,

given an expression e ∈ Exp.

For every procedure p, the start node is a source, i.e, it has in-degree
of zero, deg−(sp) = 0. Dually, the return node rp is a sink, i.e., it has
out-degree of zero, deg+(rp) = 0.

We assume, for simplicity, that every node u ∈Np is reachable from the
start node of the procedure p, i.e., there exists a path from sp to u. Sim-
ilarly, we require that the return node rp is reachable from all nodes
u ∈Np.

We require that the out-degree of all nodes must be less than three. More-
over, for nodes with out-degree of exactly two, one outgoing edge must
be a positive and the other a negative guard over the same expression.
Although the syntax of the call edge does not allow function arguments
explicitly, passing of arguments or returning results may be simulated,
e.g., by means of global variables. Additionally, using N we denote the
disjoint union

⊎
p∈ProcNp for all Np, p ∈ Proc.

Example 1. Figure 3.1 depicts the functions f and g, first, as written in
C, and second, by their control flow graphs. �

15

3 A Unified Framework for Program Analysis

�

�

�

�

int i, r;
void g(){
r = r + i;

}
void f (){
i = 0;
while (i<100){
g(); i++;

}
}

sf rf

rgsg Pos(i<100)r=r+i

i=0 Neg(i<100)
g()

i++

Figure 3.1: Two functions in C and their representations as CFGs.

3.2 Semantics

The execution of a program consists of interleaved executions of threads
where each thread may advance in its execution on the control flow graph
by performing a step. Initially, a single thread will begin to execute the
start of the main procedure, however, other threads may be spawned by
the program.

Each thread has a call stack that contains CFG nodes from possibly differ-
ent procedures. At the top of the stack lies the current CFG node (of the
thread); the following elements are return points—CFG nodes where to
jump to after reaching a return node. In the following we are going to
use ML-style list syntax for stacks.

The binary relation (�) ⊆ (Stack× S)× (Stack× S × Proc∗) formalizes
the execution step of a thread, where Stack represents the set of call stacks,
S the set of program states, and Proc∗ the possibly empty sequence of
procedures. The thread step relation specifies how the program state is
transformed during the execution of the step, and, similarly, which new
threads are spawned.

The thread step relation is defined in Figure 3.2 using a denotational style
semantics function JsKStmt ∈ S → S for each statement s ∈ Stmt, and an
evaluation function JeKExp ∈ S → Val for each expression e ∈ Exp. The
evaluation function is used to evaluate the expressions on guard edges

16

3.2 Semantics

stmt
(u, l, v) ∈ Ep JlKStmt s= s′

(u :: c, s)� (v :: c, s′, [])
pos
(u, Pos(e), v) ∈ Ep JeKVal s= true

(u :: c, s)� (v :: c, s′, [])
neg
(u,Neg(e), v) ∈ Ep JeKVal s 6= true

(u :: c, s)� (v :: c, s′, [])
call
(u, f(), v) ∈ Ep JfKVal s= p p ∈ Proc

(u :: c, s)� (sp :: v :: c, enterp s, [])
ret

p ∈ Proc
(rp :: c, s)� (c, returnp s, [])

spawn
(u, spawn(f), v) ∈ Ep JfKVal s= p p ∈ Proc

(u :: c, s)� (v :: c, s, [p])

Figure 3.2: The Intra-thread Step Relation “�”

0≤ i≤ n (ti, s)� (t′i, s′, p)
([t0, · · · , ti, · · · , tn], s)V ([t0, · · · , t′i, · · · , tn]@[[q] | q ∈ p], s′)

Figure 3.3: The Inter-thread Step Relation “V”

to decide whether to take the edge with the positive or negative guard.
Furthermore, the step relation makes use of state transformers for enter-
ing and returning from calls: enter, return ∈ Proc→ S→ S.

As already mentioned, the relation (c, s)� (c′, s′, w) describes a possible
step of a thread, i.e., in case a thread has a call stack c and is in the state s,
then, the thread may move into a state s′, with the new call stack c′, and
spawn new threads w. Note that a single step is always performed atom-
ically—it is important to only allow statements and expressions where
this premise of atomicity is fulfilled.

To figure out the next step of a thread, one must look at the outgoing

17

3 A Unified Framework for Program Analysis

edges of the current node. In case the outgoing edge is a statement, the
step according to rule STMT may be used. Similarly, there are rules for
procedure calls (CALL), returns (RET), and thread spawning (SPAWN).

The step related to guards is a bit more complicated, as one has to evalu-
ate the guarding expression. In the case where the expression evaluates
to true, one must step through the Pos edge, otherwise the Neg edge.

Notice that the step relation defines a partial function—for each call stack
and state, there is at most one result stack, state, and list of new threads.
Furthermore, the only case where the transition gets stuck is the case
where the call stack is of the form [rp], for some p ∈ Proc, i.e., the thread
has terminated.

Using the step relation for a thread “�”, we can now define a similar
step relation for the complete program (V) ⊆ (Stack∗×S)× (Stack∗×S).
Making a step in the whole program (as defined in Figure 3.3) means to
pick a thread that is able to make a step, and then perform that step.

The relation “V” is deterministic only in the case when there is only one
thread that can perform steps—the order in which threads are picked is
out of our control.

Given a pre-defined starting state s0 ∈ S, the semantics of the program
is the set of tuples of the form S ⊆ Stack∗ × S that can be reached us-
ing repeated application of the “V” relation, starting from ([[smain]], s0) ∈
Stack∗×S. More formally, using the Kleene star operator, it can be con-
veniently written as

S = { y | ([[smain]], s0)V∗ y } .

In some cases it is interesting to consider the possible states (elements of
S), that may occur while visiting a concrete node u of some procedure p.
For those cases, we define the sets S[u] ∈ 2S as follows:

S[u] = { s | ([t0, · · · , u :: t′i, · · · , tn], s) ∈ S } .

18

3.3 Abstraction

3.3 Abstraction

The semantics of a program as defined in the last section describes ex-
actly what may happen at any point during the execution. In most cases,
however, the set S is not reasonably computable. Even if the set of states
S is finite and no new threads are created, the set S may grow too large
to be found in tolerable time.

A useful idea that we can apply in this case is over-approximation. Over-
approximation, or abstraction, however, must be used wisely—not only
to ensure the termination of the computation, but also to have a chance
of finding reasonable, non-trivial properties.

Definition 3.3.1 (Partial order).
A set D together with an operator (v) ⊆ D×D is a partial order if the
relation v is reflexive, transitive, and antisymmetric. �

Definition 3.3.2 (Least upper bound).
For a partial order (D,v), d is the least upper bound of X ⊆ D in the
case when

a) d is an upper bound of X , i.e., ∀x ∈X, xv d, and

b) all upper bounds are at least as large as d, i.e.,

∀d′, (∀x ∈X. xv d′) =⇒ dv d′ . �

Definition 3.3.3 (Complete lattice).
The tuple (D,v) is a complete lattice in the case when it is a partial order
and each subset X ⊆D has a least upper bound

⊔
X ∈D. Using the least

upper bound operator we additionally define a binary least upper bound
operator x t y =

⊔
{x, y}, the least element ⊥ =

⊔
∅, and the greatest

element >=
⊔
D. �

Example 2. Four examples of complete lattices are depicted on Figure 3.4:
a) a boolean lattice, b) an integer lattice with natural ordering, c) an ex-
tended integer lattice with “flat” ordering, and d) a subset lattice with
subset inclusion ordering. �

19

3 A Unified Framework for Program Analysis

true

false

{a}

{a,b} {a,c} {b,c}

{a,b,c}

{}

{b} {c}

∞

-∞

...

...

1

0

⊤

⊥

0 1 -1

Figure 3.4: Examples of lattices, shown using Hasse diagrams.

Abstraction, in this case, means that we are looking for a mapping X so
that for all v, S[v]⊆X[v]. This means that we allow to weaken the state-
ment about program points. To compute such an over-approximation
of (concrete) semantics, we start with picking a complete lattice (D,v) so
that each element d ∈D is a finite representation of a possibly infinite set
of states. This step is necessary as we obviously cannot compute using
infinite sets directly.

The relation between lattice elements and corresponding sets of states
can be formalized using a description relation ∆ ⊆ S ×D as follows. The
least element should not describe any state, i.e., there should be no s ∈ S
so that s ∆ ⊥, and the greatest element in the lattice must describe the
set of all states, i.e., ∀s ∈ S. s ∆ >. Additionally, the description relation
must reflect the ordering of the lattice:

s ∆ d1 ∧ d1 v d2 =⇒ s ∆ d2 .

Sometimes, instead of a description relation, a concretization function γ ∈
D→ 2S is used instead. For each element of the lattice d ∈D, the set γ(d)
is the set of (concrete) states that are described by d, i.e.,

γ(d) = { s ∈ S | s ∆ d } .

20

3.3 Abstraction

Definition 3.3.4 (Galois connection).
Given partially ordered sets (A,≤A) and (B,≤B), the two functions F :
A→B and G :B→A form a Galois connection if for all a ∈A and b ∈B

F (a)≤B b ⇐⇒ a≤A G(b)

holds. �

A useful property to strive for, when designing a lattice, is that for each
subset of states X ⊆ S, there exists a lattice element α(X) ∈D so that it
is the smallest lattice element to describe all states in X . In such a case,
the functions γ and α form a Galois connection.

To re-iterate and refine the statement stated earlier in the section, we are
looking to compute a mapping S] so that for all v ∈ N , s ∈ S[v] =⇒
s ∆ S][v]. I.e., the logical statement computed using the lattice must
describe the set of states that are defined by the concrete semantics.

In the case where the lattice D forms a Galois connection with the con-
crete set of states, we can state the optimistic expectation of computing
the lattice value that describes S[v] best—namely S][v] = α(S[v]). How-
ever, the value α(S[v]) is not necessarily computable in finite time.

Our strategy to compute such sets S][v] lies, first, in constructing a con-
straint system so that its solution describes the concrete semantics as re-
quested. To solve the constraint system, we can then use off-the-shelf con-
straint system solvers. This approach allows us to elegantly separate the
concerns of describing over-approximation of the semantics from com-
puting it.

Note that, intuitively, the description relation does not only assign mean-
ing to lattice elements, but also states that the ordering on the lattice is
the implication order, where larger elements are weaker statements about
the program point. So it should not be surprising that we are interested
in the smallest solution of the constraint system that we can find with a
reasonable effort.

21

3 A Unified Framework for Program Analysis

3.4 Constraint Systems

Definition 3.4.1 (Constraint system).
Given a complete lattice (D,v), a (pure) constraint system C is a set of
pairs (x, f) where x ∈ V is a (constraint) variable and f ∈ (V →D)→D is
a function that computes a contribution to the variable x, given a variable
assignment as the first argument. A variable assignment σ ∈ V → D

is called the (post-)solution of a constraint system C in the case when
it subsumes all contributions, i.e., for all (x, f) ∈ C we have σ x w f σ.
Note that all constraint systems possess a trivial solution—the variable
assignment σ = (λ x.>). �

An element of a constraint system is called a constraint. For a con-
straint (x, f) ∈ C, the variable x is sometimes called the left-hand side,
and the function f the right-hand side. For better readability, constraints
(x, λ get. e) ∈ C are sometimes denoted as “xw e” and in those cases get
will always be the name of the first parameter of functions representing
right-hand sides.

Definition 3.4.2 (Monotonicity).
For partially ordered sets (X,≤X) and (Y,≤Y), the function f ∈X → Y

is called monotonic if for all x1, x2 ∈ X the fact that x1 ≤X x2 implies
f x1 ≤Y f x2. �

Definition 3.4.3 (Lattice height).
The height of a lattice (D, v) is the maximal length of strictly ascend-
ing chains in the lattice, i.e., D has height h if it does not contain longer
strictly ascending chains than the following

⊥@ d1 @ d2 @ · · ·@ dh . �

In the case when all the right-hand sides of a constraint system C are
monotonic, then the constraint system has a unique least solution. More-
over, if the set of variables V is finite, and the complete lattice D has a
finite height, then the least solution is computable.

22

3.4 Constraint Systems

Definition 3.4.4 (Kleene’s fixed-point iteration).
For a lattice (D,v) and monotonic function f ∈D→D, the chain

⊥ v f ⊥ v f(f ⊥) v f3 ⊥ v . . . v fn⊥ v . . .

will, after stabilization, reach the least fixed-point of f . In the special case
that the lattice has a finite height, stabilization is guaranteed. �

Theoretically, a constraint system C with variables V = {x1, x2, . . . , xn}
can also be represented as a single inequation

~x w′ F ~x ,

where the lattice relation for vectors of lattice elements (x1, x2, . . . , xn) ∈
Dn is defined point-wise, i.e.,

(x1, x2, . . . , xn) w′ (y1, y2, . . . , yn) ⇐⇒ x1 w y1 ∧ x2 w y2 ∧ . . . ∧ xn w yn ,

and the function F ∈Dn→Dn is defined as

F ~x= (f1 ~x, f2 ~x, . . . , fn ~x)

and
fi (x1, x2, . . . , xn) =

⊔
(xi,h)∈C
h (λ j. xj) .

This allows to find the least solution of C by computing the least fixed-
point of F , for example, by using Kleene’s fixed-point iteration—at least
in the case where the right-hand sides are monotonic and the lattice D is
of a finite height. The use of dedicated constraint systems solvers, how-
ever, may allow for more efficient solving in case right-hand sides may
only depend on few variables.

One of the simplest solvers is the round-robin solver RR (Figure 3.5). At
start, RR initializes the vector ρ by setting all constraint variables X to ⊥.
The algorithm contains two nested loops. The outer loop iterates until the
inner loop does no longer change the vector ρ. The inner loop recomputes
each contribution of each constraint (x, f) ∈ C by evaluating f with the
current ρ. In the case that the new contribution is not subsumed by the
current value ρ[x], it is added to the vector by means of the least upper
bound operator.

23

3 A Unified Framework for Program Analysis

�

�

�

�

foreach x ∈
X do ρ[x] ← ⊥;
do
dirty ← false;
foreach (x,f) ∈ C do
new ← ρ[x] t f ρ;
if ρ[x] 6= new then
ρ[x] ← new;
dirty ← true;

done
while (dirty)

Figure 3.5: The solver RR.

�

�

�

�

foreach x ∈
X do ρ[x] ← ⊥;
W ← C;
while W 6= ∅ do
(x,f) ← extract(W);
new ← ρ[x] t f ρ;
if ρ[x] 6= new then
ρ[x] ← new;
W ← W ∪ inflx

done

Figure 3.6: The solver W.

The outer loop of the round-robin solver performs at most h · n + 1
rounds, where h denotes the height of the lattice and n the number of
(solver) variables. The upper bound comes from the fact that for each
round at least one variable has to increase, and moreover, each variable
can only increase up to h times. The last round confirms the stabiliza-
tion of values. Therefore, if each variable has at most one right-hand
side, then each inner round performs no more than n evaluations of a
right-hand side—totaling at most h ·n2 +n right-hand side evaluations.

Another—much more practical—solver is the worklist solver W [Kildall,
1973; Vergauwen et al., 1994; Jørgensen, 1994]. The algorithm W (Fig-
ure 3.6), however, can only be used given that all dependences are pro-
vided beforehand. This means that for each right-hand side f of a vari-
able x, a (super-)set depx of variables is given such that for all mappings
ρ, ρ′, f ρ = f ρ′ whenever ρ and ρ′ agree on all variables in depx. From
these sets, we define the sets infly of constraints possibly influenced by
(a change of the value of) variable y, i.e.,

infly = { (x, f) ∈ C | y ∈ depx } .

In the case that the value of some variable y changes, all right-hand sides
in the set infly must be re-computed.

The work set W limits the set of constraints to be recomputed to the con-

24

3.5 Intra-Procedural Constraint Systems

straints that actually may be unstable. Complexity-wise, the worklist al-
gorithm has an advantage over round-robin in the case where the sets
depx are smaller than the set of all constraints C. The worst case run time
is at most h ·N where

N =
∑
x∈X

(1 + |depx|) .

3.5 Intra-Procedural Constraint Systems

Definition 3.5.1 (Flow-sensitive analysis).
If a static analysis technique is designed to take into account static control-
flow of the program, then it is considered to be flow-sensitive. If, however,
an analysis disregards control-flow information, e.g., by viewing a pro-
cedure as set of statements instead of as a graph, then it is called flow-
insensitive. �

Let us for the moment consider a program with just one procedure main
and without procedure calls nor thread creation. Analyzing such pro-
grams is referred to as intra-procedural analysis. Assume that we are in-
terested in inferring one separate invariant for each program point of
the analyzed program, making it a flow-sensitive analysis. Flow-sensitive
intra-procedural invariants can conveniently be expressed as solutions of
a constraint system.

Definition 3.5.2 (Strictness).
A function f ∈D→D over a lattice (D,v) is called strict in the case that
f ⊥=⊥, i.e., if it preserves the value ⊥. �

For intra-procedural analysis, the set of variables are simply program
points V =Nmain. Assume that d0 ∈D describes the program state before
starting procedure main, i.e., s0 ∆ d0. Additionally, for each statement or
guard s occurring at an edge, we are given the abstract semantics JsK] ∈
D→ D, which describes how the abstract state after the execution of s
is obtained from the abstract state before the execution. This means that
for all x1 ∈ S and d ∈D, if x1 ∆ d then also JsKStmt x1 ∆ JsK] d. As usual
in program analysis, these functions are assumed to be monotonic.

25

3 A Unified Framework for Program Analysis

Monotonicity of a right-hand side is guaranteed, for example, if the lattice
forms a Galois connection with the set of concrete states, and the abstract
semantics function for statements returns the least lattice element that
over-approximates the concrete semantics, i.e.,

JsK] d= (α ◦ JsKStmt ◦ γ) d= α({ JsKStmt s | s ∈ γ(d) }) .

Because ⊥ ∈D represents the empty set of concrete program states, i.e.,
can only be assumed at a program point which is unreachable, we assume
the functions JsK] to be strict. We know that smain is reachable and d0 6=⊥.

An initial abstract state d0 ∈D for the start point smain together with the
edges of the control flow graph give rise to the following system of con-
straints:

[smain]w d0

[v]w JsK] (get [u]) ∀(u, s, v) ∈ Emain
(0)

The whole constraint system uses finitely many variables, where the eval-
uation of the right-hand side of each constraint may also access finitely
many variables. In case that the domain D does not contain infinite
strictly ascending chains, a solution of (0) can be computed, e.g., with
round-robin iteration or a worklist solver. Moreover, since all abstract
functions JsK] are assumed to be monotonic, the computed result will be
the least solution—at least when using solvers RR or W.

As a side-note: in the case where the right-hand sides are not mono-
tonic, the solvers given are still guaranteed to terminate and return a
post-solution. This is achieved in the presented solvers by accumulating
contributions—taking the least upper bound of the old value and the
new contribution.

3.6 Analyzing Procedures

In this section we look at one of the classical conceptual bases of analyz-
ing procedures—the functional approach by Sharir and Pnueli [1981]. Next,
we show that the functional approach can already be represented in the
very simple call-stack-0 framework. After that, the more practical tactic,

26

3.6 Analyzing Procedures

presented by Sharir and Pnueli [1981] is represented as a constraint sys-
tem, following Cousot and Cousot [1977b]. The constraint system can
then be solved by standard means, instead of a dedicated algorithm as
in the original version.

3.6.1 The Functional Approach

Let F be a carrier set for a complete lattice that represents functions
D→ D. Let idD ∈ F represent the identity function and ◦ ∈ F→ F→ F

function composition. In the following, we assume that there are local
and global variables, but that procedures have neither parameters nor
return values. The latter simplifies the presentation but is no real restric-
tion since passing of value parameters as well as returning of results can
be simulated by means of global variables.

In presence of local variables and global variables, we require operators
He ∈ F→ F which transforms the effect of a procedure f into the effect
of a call to the procedure f at edge e. Then procedure summaries can
be characterized as the least solution of the following constraint system
over the complete lattice F:

{[sf]} w idD f ∈ Proc
{[v]} w (He (get {[rf]})) ◦ (get {[u]}) e≡ (u, f(), v) ∈ E
{[v]} w JsK] ◦ (get {[u]}) (u, s, v) ∈ E

(s)

Here, the variable v represents the summary of the effects of program
executions which start at the entry point of the current procedure and
reach program point v inside the same invocation of the procedure. In
particular, the value for {[rf]}, rf being the return point of procedure f ,
represents the summary for f .

In a second phase, the summaries for procedures can be applied to de-
termine an abstract description of the program states reaching a program
point v. Let enter]e ∈ F denote the abstract description of the transforma-
tion of the program state before the call at edge e into the program state
at the start point of the called procedure. Additionally, we require an

27

3 A Unified Framework for Program Analysis

abstract notion of function application of type F→D→D which we de-
note by juxtaposition. Then this second phase can be characterized by the
least solution of the following constraint system, now over the complete
lattice D:

[smain]w d0

[sf]w enter]e (get [u]) e≡ (u, f(), v) ∈ E
[v]wHe {[rf]} (get [u]) e≡ (u, f(), v) ∈ E
[v]w JsK] (get [u]) (u, s, v) ∈ E

(r)

Safety of the constraint system (s) can be established by checking the
following property for all procedures f . Namely, for all states x ∈ S and
d ∈D, whenever x ∆ d and ([sf], x)�∗ ([rf], x′, _), then also x′ ∆ ({[rf]} d).
Then, using the safety of (s), the safety of (r) can be then established
against the concrete semantics, i.e., for all variables v ∈ N , if x ∈ S[v]
then x ∆ (ρ [v]), where ρ is a solution for (r).

Similar constraint systems have been proposed in [Knoop and Steffen,
1992]. Constraint systems like (s) and (r) can be solved, e.g., by the work-
list solver—provided that a succinct representation of the elements of the
complete lattice F is given, that the required operations like ◦ and He are
effectively computable for these representations and that the complete
lattices D as well as F do not have infinite strictly ascending chains.

3.6.2 The Call-stack-0 Approach

Another classical way to support the analysis of code with procedures is
based in recording call-stacks of function calls. However, since the num-
ber of potential call-stacks may be infinite, usually just finite abstractions
of call-stacks are considered. Such a finite abstraction could consist in
identifying all call-stacks with their suffix of bounded length and consid-
ering a finite abstraction of each stack frame inside the call-stack.

For the moment, we only consider the extreme case where different calls
to the same procedure are not distinguished. This is the case of call-stacks
taken into account up to depth 0. Here the statements are handled in

28

3.6 Analyzing Procedures

the same manner as in (0), extended with constraints for procedure call
edges.

Let again enter]e denote the abstract description of the transformation of
the program state before the call at edge e into the program state at the
start point of the called procedure. We use a known technique where
the entry state of a procedure is generalized from the states at a call
sites. Assume further, that we are given functions comb]e : D→ D→ D

which combines the state before the call with the state returned by the
procedure called at edge e into the state after the call. Thus in particular,
the operator He from subsection 3.6.1 is an abstraction of the function
λ f d. comb]e d (f (enter]e d)). Then the constraint system (0) is extended
with the following constraints:

[sf]w enter]e (get [u])
[v]w comb]e (get [u]) (get [rf])

e≡ (u, f(), v) ∈ E (cs)

The least solution of this constraint system over the complete lattice D
can again be computed by the worklist fixpoint algorithm, if D has no
infinite strictly ascending chains. The safety of (cs) against the concrete
semantics can be shown analogously to (r), i.e., for all variables v ∈N , if
x ∈ S[v] then x ∆ (ρ [v]), where ρ is a solution for (cs).

We note that the call-stack-0 approach is strong enough to implement
the functional approach based on procedure summaries. To see this, we
combine the constraint systems (s) and (r) into one constraint system of
type (cs). Let D1 = D×F where F again represents the summary func-
tions over the complete lattice D. For this new lattice, we define an initial
value d1,0, transfer functions JsK]1, as well as functions enter]1,e and comb]1,e
by:

d1,0 = (d0, idF)
JsK]1 (d, g) = (JsK] d, JsK]F ◦ g)

enter]1,e (d, _) = (enter]e d, idF)

comb]1,e (d, g1) (_, g2) = (He g2 d,He g2 ◦ g1)

(rs)

The second components, thus, are computed along the lines of the con-
straint system (s). Accordingly, the first component behaves as the cor-
responding functions of the constraint system (r), where at call edges

29

3 A Unified Framework for Program Analysis

the corresponding summaries are taken from the second component. We
have:

Theorem 1. Let σ, ρ denote the least solutions of the constraint systems
(s) and (r), respectively. Let ρ1 denote the least solution of the correspond-
ing constraint system (cs) which uses definitions (rs). Then for every
program point v, ρ1 v = (ρ v, σ v). �

Summarizing, interprocedural analysis based on procedure summaries,
as well as based on call-stacks of depth 0, can be implemented with or-
dinary worklist solvers. This is no longer the case for the functional ap-
proach based on partial tabulation.

3.6.3 Partial tabulation

Many practical inter-procedural analyses are based on complete latticesD
where no effective representations for procedure summaries are known.
This is already the case for full inter-procedural constant propagation.
For such cases, Sharir and Pnueli [1981] propose an approach which con-
ceptually represents procedure summaries by their value tables of which
only those entries are computed which may affect the analysis result.

Formulated as a constraint system, following Cousot and Cousot [1977b],
the constraint variables for the functional approach of are pairs V =N ×D
where the second component records the calling-context of the current
instance of the procedure. The value for the variable [v, d], where v
belongs to a procedure g, thus, represents the abstract value attained at
program point v when g is called and the abstract state at start of the
procedure is d.

For the moment, we just consider static procedure calls, i.e., call edges of
the form (u, g(), v) where the parameterless procedure g is called. Later
we indicate how the approach can also be extended to procedure calls
where the set of possibly called procedures may depend on the local
state.

30

3.6 Analyzing Procedures

Following the approach from [Cousot and Cousot, 1977b], we obtain the
following constraint system for the variables [v, d]:

[sg, d]w d ∀g∈Proc
[v, d]w JsK] (get [u, d]) ∀(u, s, v)∈E
[v, d]w comb]

e (get [u, d]) (get [rg, enter]
e (get [u, d])]) ∀e=(u, g(), v)∈E

(1)

Here the functions enter]e ∈D→D and comb]e ∈D→D→D describe the
abstract semantics of procedure calls. Just as for the abstract semantics
of statements, we demand these functions to be monotonic and strict in
each of their arguments.

For an abstract state d, the application enter]e d returns the abstract state in
which g is called. The function comb]e on the other hand, describes how
the abstract value d1 before the call must be combined with the abstract
value d2 returned by the call to obtain the abstract value after the call. The
constraint for calling a procedure g at program point u, where d is the
context of the caller, computes d1 = get [u, d] and the context d′ = enter]e d1
of the called procedure g, and combines d1 with the return state of the
call d2 = get [rg, d′].

Safety of (1) against the concrete semantics can be be reasoned as follows.
Given x ∈ S and d ∈ D where x is described by d, then for all f ∈ Proc,
v ∈ Nf in the case that ([sf], x)�∗ ([v], x′, _) it can be shown that x′ is
described by the value of [v, d].

Definition 3.6.1 (Weak monotonicity).
A constraint system C is called weakly monotonic with respect to a given
partial ordering (≤)⊆ V ×V , if the following two properties hold.

a) For all (x, f) ∈ C and (y, g) ∈ C, where x≤ y, then for all monotonic
variable assignments σ, f σ v g σ.

b) If σ1 v σ2 and at least one of the variable assignments σi is mono-
tonic, then for every (x, f) ∈ C, f σ v f σ2. �

Even if all abstract functions JsK] and all enter]e and comb]e are mono-
tonic, the right-hand sides of the constraint system (1) are not necessarily
monotonic themselves. The second argument to combine is of the form

31

3 A Unified Framework for Program Analysis

get [x, get [y, d]], and there is no guarantee that σ1 [x, a1]v σ2 [x, a2] just
because a1 v a2 and σ1 v σ2. The expression is, however, monotonic in
the case that C is weakly monotonic with equality as the variable ordering.
In our setting, a variable assignment σ is monotonic, if for all program
points v, we have σ [v, a1] v σ [v, a2] whenever a1 v a2. This monotonic-
ity is sufficient to enforce that constraint system (1) has a unique least
solution which is monotonic [Fecht and Seidl, 1999].

The least solution, in some sense, describes the procedure summaries,
i.e., the abstract effect of every function g for every context a ∈ D—no
matter whether the procedure g is called for a or not. E.g. [sg,>] equals
> by the first constraint in (1), regardless if enter] for an edge calling g
will ever return >.

Computing the least solution using an ordinary worklist algorithm, how-
ever, is not generally possible. Adding contexts to variables makes the set
of variables infinite, given that D is infinite. And even if D is finite, the
number of variables depends on the number of elements in D—which
might be too large.

Often procedures are only called in few distinct abstract calling-contexts.
In this case, local solving (as shown in Section 3.7) may succeed by start-
ing from a set X of interesting variables, such as X = {[rmain, d0]}, and
return a partial solution which contains the return values of the proce-
dure summary for the required abstract calling-contexts only.

The least (total) solution of constraint system (1) does not contain reach-
ability information, and it is only by local fixpoint iteration that a set of
possibly occurring contexts is identified. Instead of referring to the oper-
ational behavior of solvers, we can express reachability directly by means
of the constraint system. In order to do so, we modify (1) by replacing
the constraints [sg, a]w a with

[smain, d0]w d0

[sf , a]w
⊔
{ a | ∃a′∈D, a=enter]

e (get [u, a′]) } ∀e=(u, f(), v)∈E
(1’)

Note that for each potential entry state a ∈D, the second constraint joins
over the same value a, so the result is either

⊔
∅=⊥ or

⊔
{a} = a. The

entry point of the called procedure f is constrained by the context a if

32

3.7 Local Solving

there exists a call to f in some context a′ (of the caller) that produces the
entry state a (for the callee). This explicitly encodes reachability into the
system. Therefore, in contrast to the constraint system (1), we require a
dedicated constraint for the initial call of the main procedure. Assuming
that the initial local state is d0, the initial context is also d0, as encoded
by the first constraint.

The constraint system (1’), however, may have minimal solutions which
are not monotonic. Assume, e.g., the case where the procedure main
consists just of the program point smain. Then the unique least solution is
given by [smain, b] =⊥ for b 6= d0 and [smain, d0] = d0—which is not a mono-
tonic variable assignment. For non-monotonic variable assignments, how-
ever, right-hand sides of constraints need no longer be monotonic. As
any constraint system over a complete lattice, the constraint system (1’)
has solutions, and if the domain is finite, one may compute it by an accu-
mulating fix-point iteration, i.e., by taking the least upper bound of the
new value of a variable and the value from the previous iteration.

If the lattice D is infinite, however, then the constraint system (1’) not
only contains infinitely many variables, but also has constraints where
the evaluation of a single right-hand side may access infinitely many vari-
ables. This is the case for the newly introduced constraints for the entry
points of procedures. In order to terminate, local solving requires that
there be only finitely many right-hand sides for each variable, and that
each constraint depend on finitely many variables only. Therefore, it can-
not be applied to solve the system (1’).

3.7 Local Solving

The central idea of local solving is that even though the constraint system
C is defined in a very general way, there may exist a sub-system C′ ⊆ C
that is smaller, but gives for some subset of variables V ′ ⊆ V the same
result. Intuitively, this allows us to compute the value of some variable
x in a constraint system that has infinitely many variables, but only in
the case where the solving algorithm is sure that it can isolate such a
sub-system.

33

3 A Unified Framework for Program Analysis

Use of local solvers can be considered if systems of equations are in-
feasibly large or even infinite. Such systems are, e.g., encountered for
context-sensitive analysis of procedural languages [Cousot and Cousot,
1977b]. Local solvers query the system of equations for the value of a
given variable of interest and try to evaluate only the right-hand sides of
those variables that are needed for answering the query [Le Charlier and
Van Hentenryck, 1992; Vergauwen et al., 1994; Fecht and Seidl, 1999].

Definition 3.7.1 (Partial solution).
A variable assignment η : V ′ → D, for a subset of variables V ′ ⊆ V , is
called a partial solution of the constraint system C, if

a) all constraints for the subset V ′ are satisfied, i.e., for all constraints
(x, f) of the system C, the following implication holds: x ∈ V ′ =⇒
η xw f η, and

b) the right-hand sides of variables in V ′ only access the values of
other variables in V ′, i.e., for all constraints (x, f) ∈ C, where x is
in the set V ′, the set of variables accessed using get during the
evaluation of f η is subsumed by V ′. �

Definition 3.7.2 (Local solver).
An algorithm which, given a constraint system C and a set of interesting
variables X , will, upon termination, return a partial solution η ∈ V ′→D

where X ⊆ V ′, is called a local solver. �

Assume that local fixpoint computation terminates with a partial solu-
tion η ∈ X ′ → D where X ⊆ X ′. Then it follows that the entry point sg
of a procedure g can only be reached with abstract values from a ∈ D
with [sg, a] ∈X ′. Accordingly, a program point v can only be reached by
abstract values bounded by

⊔
{ η [v, a] | [v, a] ∈X ′}, as observed in [Fecht,

1997; Fecht and Seidl, 1999].

A simple local solver RRL (Figure 3.7) can be constructed from the round-
robin solver (Figure 3.5) by extending it with a function eval. The al-
gorithm starts by looking only at the constraints of variables in the set
V ′ ⊇ X instead of the whole set V . During the evaluation of the right-
hand side, if it turns out that the value of another variable y 6∈ V ′ is re-
quested using eval, only then it is included in the set V ′ and considered

34

3.8 Partial Context-Sensitivity

�

�

�

�

foreach x ∈X do ρ[x] ← ⊥;
V’ ← X;
do
dirty ← false;
foreach (x,f) ∈ C ∧ x ∈ V’ do
let eval x =
if x /∈ V’ then
dirty ← true;
ρ[x] ← ⊥;

V’ ← V’ ∪ {x};
ρ[x]

in
new ← ρ[x] t f eval;
if ρ[x] 6= new then
ρ[x] ← new;
dirty ← true

while (dirty)

Figure 3.7: The local solver RRL.

in the inner loop. Additionally, the values of the new variables are ini-
tialized to ⊥. The helper function eval performs a kind of introspection
of the dependencies of the right-hand side.

A worklist solver can also be adapted to perform local solving, as shown
in Figure 3.8. More specifically, to get the local solving algorithm WL
from W, the following two changes are needed.

a) At start, the worklistW is initialized with the set of interesting vari-
ables X instead of the full set of variables, and

b) variables are initialized with ⊥ at the time they are first encoun-
tered, instead of at the beginning of the algorithm.

3.8 Partial Context-Sensitivity

As we saw previously, local solving has difficulties when reachability is
explicitly encoded in the constraint. Now we take this a step further and

35

3 A Unified Framework for Program Analysis

�

�

�

�

W ← X;
while W = ∅ do
(x,f) ← extract(W);
if x /∈ dom(ρ) then ρ[x] ← ⊥;
new ← ρ[x] t f ρ;
if ρ[x] 6= new then
ρ[x] ← new;
W ← W ∪ inflx

}

Figure 3.8: The local solver WL.

consider analyses where the precision of explicitly computed reachability
information affects the precision of the analysis. This is the case, e.g., if
only parts of the abstract state are used to distinguish between different
procedure calls.

Consider a complete lattice D=D1×D2 which is the Cartesian product
of complete lattices D1,D2, and assume that calls to procedures f are dis-
ambiguated by means of the second component b of a reaching abstract
state (a, b) ∈D, while the first components corresponding to the same b
are merged.

Conceptually, the constraints then take the following form:

[smain, 〈d0〉2]w d0

[v, b]w JsK] (get [u, b]) ∀(u, s, v)∈E
[sg, b]w

⊔
{d | ∃b′∈D2, d=enter]

e (get [u, b′]), 〈d〉2=b}
∀e=(u, g(), v)∈E

[v, b]w let d= enter]
e (get [u, b])

in comb]
e (get [u, b]) (get [rg, 〈d〉2])

∀e=(u, g(), v)∈E

(2)

Here, the operator 〈·〉i extracts the i-th component of a tuple. Technically,
this constraint system is a smooth generalization of constraint system
(1’)—only that now program points v are not distinguished by the full
context d in which the procedure of v has been called, but only the second

36

3.9 Proof of soundness

component of d. Similarly to constraint system (1’), the constraint system
(2) explicitly keeps track of reachability.

In the particular case where D2 is the unit domain 1 = {•}, constraint
system (2) generalizes a constraint system for call-stack-0 (cs). In this case
no contexts are distinguished, and all right-hand sides of the constraint
system are monotonic.

For nontrivial contexts, though, constraint system (2), just as constraint
system (1’), may have minimal solutions which are not monotonic. Still,
in the next section we prove that every solution of (2) provides sound
analysis information.

Assume for a moment that the complete lattice D2 of partial contexts is
infinite. Then the same argument as for constraint system (1’) can be ap-
plied to rule out local fixpoint iteration for solving the constraint system
(2). But even if the number of partial contexts is finite, use of general
fixpoint engines may be infeasible.

According to the constraint of (2) for the starting states of procedure
g with the context b, the solver has to track contributions from all call
sites that may call g in context b. Also in complete absence of context-
sensitivity (i.e., where D2 = 1) but in presence of dynamic procedure
calls, a local solver, for instance, will explore all possible call sites in order
to determine the abstract value for the start node of g. The same already
holds true in presence of partial context-sensitivity (i.e., both D1 and D2
are different from 1). We conclude that even in these simple cases, the
number of variables considered by the local solver on constraint system
(2) might be excessively large.

3.9 Proof of soundness

Before proceeding, we prove that every solution of constraint system (2)
is a sound abstraction of the collecting semantics. For that proof, we
assume, again, that program execution operates on a set S of concrete
states whereas the analyzer operates with abstract states from a complete
lattice D = D1 × D2. As before, we assume for the concretization that
γ(⊥) = ∅, i.e., that no concrete state is described by ⊥.

37

3 A Unified Framework for Program Analysis

The collecting semantics of the program then can be restated as the least
solution of the following constraint system over sets of concrete states:

[smain, a0]⊇ {a0}
[sg, a]⊇ { a | a′∈S, a1∈get [u, a′], a∈entere a1} ∀e=(u, g(), v)∈E
[v, a]⊇

⋃
{ JsK a′ | a′∈get [u, a]} ∀(u, s, v)∈E

[v, a]⊇
⋃
{ combe a1 a2 | a1∈get [u, a],

a′∈entere a1, a2∈get [rg, a
′]} ∀e=(u, g(), v)∈E

(c)

Each variable [u, a] represents the set of states possibly reaching program
point u of some procedure g when executing g in entering context a, i.e.,⋃

{σ[v, a] | a ∈ S }= S[v]

where σ is the solution of the constraint system (c). The functions:

JsK ∈ S→ 2S

entere ∈ S→ 2S

combe ∈ S→ S→ 2S

formalize evaluation of basic statements or guards, concrete passing of
parameters into calls and combining states before calls with returned
states to the state after the calls, respectively. Their effects are assumed
to be described by the corresponding abstract functions. This means that
for all a ∆ d, a′ ∆ d′ the following holds:

JsK a⊆ γ(JsK] d)
entere a⊆ γ(enter]e d)

combe a a′ ⊆ γ(comb]e d d′)

Note that all right-hand sides of the concrete constraint system (c) are
monotonic. Therefore, constraint system (c) has a unique least solution.
We have:

Theorem 2. Let σ denote the least solution of the concrete constraint sys-
tem (c), and σ] any solution of the abstract constraint system (2) over the
domain D=D1×D2. Then the following holds for every program point
v.

38

3.10 Flow-insensitive Analyses

a) Assume that d ∆ (a, b) and (a, b)v σ] [sg, b]. Then for every program
point v of procedure g, σ [v, d]⊆ γ(σ] [v, b]).

b) If σ [sg, d] 6= ∅ and v is a program point of g, then there exists some
(a, b) ∈D such that d ∆ (a, b) and σ [v, d]⊆ γ(σ] [v, b]).

c) For all program points v,

σ [v, d]⊆
⋃
{ γ(σ] [v, b]) | ∃ a ∈D1. d ∆ (a, b) }

�

Proof. The joint proof of statements a) and b) is by fixpoint induction of
the concrete semantics. The base of the induction is trivial. For the induc-
tive step, we only consider values added along a call edge e= (u, h(), v)
where u is from procedure g. Assume that d ∈ σ [sg, d], d ∆ (a, b) and
d ∆ (σ [sg, b]). Assume that d′′ has been added to σ [v, d] along the edge
e, i.e., d′′ ∈ combe d1 d2 where d1 ∈ σ [u, d] and d2 ∈ σ [rh, d′] for some d′ ∈
entere d1. By induction hypothesis, d1 ∆ (σ] [u, b]). Moreover, d′ ∆ (a′, b′)
for (a′, b′) = enter]e (σ] [u, b]). By construction of the constraint system,
then also (a′, b′) v σ] [sh, b′] and therefore, d′ ∆ (σ] [sh, b′]). Consequently
again by induction hypothesis, d2 ∆ (σ] [rh, b′]). Since comb]e is a safe ap-
proximation of combe, we conclude that

d′′ ∆ comb]e (σ] [u, b]) (σ] [rh, 〈enter]e (σ] [u, b])〉2])

Statement c) directly follows from statements a) and b). �

3.10 Flow-insensitive Analyses

One further challenge for general frameworks for automatic program
analysis is added when certain pieces of information are meant to be
accumulated flow-insensitively. Flow-insensitive analyses try to infer in-
variants which hold throughout the program execution. Such invariants
are used, e.g., to reason about dynamic data-structures [Andersen, 1994;
Steensgaard, 1996; Shapiro and Horwitz, 1997] or concurrently running
threads [Vojdani, 2010].

39

3 A Unified Framework for Program Analysis

Technically, flow-insensitive analyses can be constructed by introducing
an extra finite set G of entities for which values are accumulated. De-
pending on the application, the elements of G can, e.g., be viewed as
global variables, abstract locations of heap objects or the components of
the interface through which concurrently running threads communicate.
Thus, the effect of the statement s at an edge in the control flow graph
may now additionally depend on the values of the globals in G as well
as the predecessor state and may also return contributions to the values
of some of the globals.

In the following we assume that global and local information are repre-
sented by the same lattice D—if this is not the case, one can, for example,
use the Cartesian product (with product ordering) of the domains and
set the unused pair entry to ⊥.

One way to describe the effects of a statement s is by modifying the ab-
stract semantics function JsK] to:

JsK] ∈D→ (G→D)→D× (G→D)

which jointly specifies the contribution to the next program point as well
as to certain elements of G. Again, we assume this function to be mono-
tonic in its arguments and strict, at least in its first argument. This means
that any call JsK] ⊥ τ should return a pair (⊥,⊥) where ⊥ maps every
global to ⊥.

In absence of procedures, we thus may put up the following constraint
system for approximating invariants for the globals in G:

[v]w 〈JsK] (get [u]) get〉1 ∀(u, s, v) ∈ E
[y]w 〈JsK] (get [u]) get〉2 y ∀y ∈G, (u, s, v) ∈ E

(3)

In absence of procedures, this constraint system can be solved, for ex-
ample, with solvers RR or W. While it cannot easily be combined with
constraint system (1), it can be combined with the constraint system (2).
Assume the complete lattice D is of the form D = D1 × D2 where el-
ements b ∈ D2 may serve as contexts. Then we modify the constraint
system (2) by replacing the constraints for statements s with:

[v, b]w 〈JsK] (get [u, b]) get〉1 ∀(u, s, v) ∈ E
[y]w

⊔
{ 〈JsK] (get [u, b]) get〉2 y | b ∈D2 } ∀y ∈G, (u, s, v) ∈ E

(4)

40

3.11 Constraint Systems with Side-Effects

Example 3. As an example, we generate constraints for inter-procedural
constant propagation analysis on the following small C program in Fig-
ure 3.9. The example program uses a global variable y, one helper pro-
cedure up, and a main procedure. We examine the case where globals
are handled flow-insensitively; variables and formal parameters flow-
sensitively. As parameter passing is not natively supported, we simulate
it with a flow-sensitive global variable v. For this program, we would
obtain the following system of constraints:

[smain, 〈d0〉2]w d0

[a1, b]w get [rup, Jv = 11; K] (get [smain, b])] ∀b∈D2

[a2, b]w get [rup, Jv = 42; K] (get [a1, b])] ∀b∈D2

[rmain, b]w Jreturn a; K] (get [a2, b]) ∀b∈D2

[sup, b]w
⊔
{d|∃b′∈D2, d=Jv=11;K] (get [smain, b

′]), 〈d〉2=b} ∀b∈D2

[sup, b]w
⊔
{d|∃b′∈D2, d=Jv=42;K] (get [a1, b

′]), 〈d〉2=b} ∀b∈D2

[rup, b]w get [sup, b] ∀b∈D2

[y]w Jv+ 1K] (get [sup, b]) ∀b∈D2

�

Just as for constraint system (2), a local fixpoint algorithm for the en-
hanced constraint system will behave badly—in order to determine the
value for some global y, the algorithm would explore all variables [u, b]
for which there is a control-flow edge (u, s, v) which may contribute to
the value of y. If the number of potential contexts is infinite, we again ob-
tain constraints where right-hand sides access infinitely many constraint
variables. In the next section, though, we provide alternative formula-
tions of constraint systems (2) and (4) which can be solved by means of
partial tabulation.

3.11 Constraint Systems with Side-Effects

Ordinary constraints allow to specify precisely in which order variables
are read while the single writing occurs at the very end, namely, to the
variable at the left-hand side. Side-effecting constraints generalize this

41

3 A Unified Framework for Program Analysis

�

�

�

�

int y = 0;
void up(int v){
y = v+1;

}
int main(){
up(11);
up(42);
return a;

}

smain

a1

a2

rmain

sup

rup

v= 11; up();

v= 42; up();

return a;

y= v+ 1;

Figure 3.9: An Example Program

by allowing multiple writes and also specify precisely in which order
constraint variables are not only read, but also written to. In particular,
which variable to read or write to next can depend on the values previ-
ously read. Even the sets of accessed variables may change. Each execu-
tion of a constraint thus yields a sequence of reads and writes which is
terminated with an assignment to a left-hand side.

Definition 3.11.1 (Side-effecting constraint system).
A side-effecting constraint system over the complete lattice (D, v) is
a set of pairs (x, f), where x ∈ V is a variable and f ∈ (V → D) →
(V →D→ unit)→D the function that computes a contribution to x, and,
additionally, sends contributions to other variables using the second
argument of f . �

Definition 3.11.2 (Solution of a side-effecting constraint system).
A variable assignment σ ∈ V →D is a solution to the side-effecting con-
straint system C if for all constraints (x, f) ∈ C we have that σ xw f σ set
where for every call set y d arising from the evaluation of f we have
σ y w d. �

For a side-effecting constraint (x, f), a call get y of the first argument func-
tion of f to some variable y ∈ V is meant to return the value of y in the
current variable assignment. A call set y d of the second argument func-
tion during the evaluation of f for y ∈ V , d ∈D is meant to provide the

42

3.11 Constraint Systems with Side-Effects

contribution d to the value of y in the current variable assignment. If
f is defined as λ get set . e for an expression e, we again represent the
constraint (x, f) by “xw e”.

Note that the second argument of a right-hand side—the function set,
provided by the solver, should perform a weak update, i.e., overwrite
the current value with the least upper bound of the current and the new
value.
Definition 3.11.3 (Partial solution of a side-effecting constraint system).
A variable assignment η ∈X ′→ D for a subset X ′ ⊆ V is a partial solu-
tion of a side-effecting constraint system C, if for every constraint (x, f) ∈
C where x ∈ X ′, f get set is defined if get = η, and for any call set y d
with d 6=⊥ which arises from f we have y ∈X ′ and η y w d.

A local solver for side-effecting constraint systems is called with a (small)
subset X of interesting variables and tries to determine a partial solution
which is defined for as few variables as possible. �

A generic local solver for side-effecting constraint systems lies at the heart
of the analyzer generator Goblint. A slightly simplified version is pro-
vided in Section 3.12. It uses self-observation for dynamically keeping track
of variable dependences.

Side-effecting constraint systems allow us to conveniently specify par-
tially context-sensitive interprocedural analyses. Instead of defining the
constraints for the starting point of some function g by means of the in-
verse of the enter]e function as in constraint system (2), we attribute the
contributions to the respective call sites as side-effects.

As in Section 3.8, consider an analysis where the domain is the Cartesian
product D1×D2 of two complete lattices D1 and D2. Assume again that
calls to procedures should only be distinguished w.r.t. the second compo-
nent b ∈D2 of reaching states. The constraints for statements or guards
are identical to the constraint system (2). We modify the constraints gen-
erated for every procedure call edge (u, g(), v) ∈ E in the following way:

[v, b]w let d = enter]e (get [u, b])
() = set [sg, 〈d〉2] d

in comb]e (get [u, b]) (get [rg, 〈d〉2])

(5)

43

3 A Unified Framework for Program Analysis

For an infinite complete lattice D2, the constraint system (5) requires in-
finitely many constraint variables. This is identical to constraint system
(2). In contrast, however, to system (2), the number of constraint vari-
ables accessed in the right-hand side of every single constraint is finite,
while there are still only finitely many right-hand sides for each variable.
Moreover, we have:

Theorem 3. The constraint systems (5) and (2) are equivalent. This means
that every solution of the constraint system (2) is a solution of the con-
straint system (5) and vice versa, every solution of the constraint system
(5) is a solution of the constraint system (2). �

Proof. We prove equivalence by proving implication in both directions.

a) Given a solution σ for (5) we have to show that σ is a solution to (2).
We are going to look at the two constraints explicitly mentioned in
(2).

1. We have to show that

σ [sg, b]w
⊔
{d | ∃b′∈D2, d= enter] (σ [u, b′]), 〈d〉2 = b} .

It is sufficient to show that [sg, b] is an upper bound of d=
enter] (σ [u, b′]) for all b′ where 〈d〉2 = b. This we get from a
side-effect of the following constraint in (5):

σ [v, b′]w let d= enter]e (σ [u, b′])
() = set [sg, 〈d〉2] d

in . . .

2. We have to show that

σ [v, b]w let d= enter]e (σ [u, b])
in comb]e (σ [u, b]) (get [rg, 〈d〉2])

Ignoring the side-effect, this is exactly the effect to [v, b] in (5).

b) Given a solution σ for (2) we have to show that σ is a solution to (5).
We only consider the constraint explicitly mentioned in (5). The
crucial part is to verify that all eventual side-effects are covered.

44

3.11 Constraint Systems with Side-Effects

For that, we have to show that for d= enter] (σ [u, b]) it holds that
σ [sg, 〈d〉2]w d. This is given by the following constraint in (2):

[sg, b′′]w
⊔
{d | d= enter] (get [u, b′]), 〈d〉2 = b′′}

if we take b′ = b. �

Since every solution of constraint system (2) is a sound abstraction of the
concrete semantics, Theorem 3 implies that every solution of constraint
system (5) is a sound abstraction of the concrete semantics. In contrast to
constraint system (2), constraint system (5) now can be solved by means
of local fixpoint iteration.

Side-effecting constraint systems also provide a way to realize flow-
insensitive invariants as considered in Section 3.10—even in presence
of procedure calls which are analyzed by means of partial tabulation of
summaries. The corresponding constraint system is obtained from the
constraint system (5) by modifying the constraints for statement or guard
edges (u, s, v) ∈ E by taking the modified abstract semantics JsK] into
account:

[v, b]w let (d, τ) = JsK] (get [u, b]) get
() = forall (y ∈Gwith τ y 6=⊥)

set y (τ y)
in d

(6)

The remaining constraints are as in the constraint system (5). Due to this
formulation, contributions to globals y are only collected for contexts b
which occur during fixpoint iteration.

45

3 A Unified Framework for Program Analysis

Example 4. Using side-effecting constraints, we may now reformulate
the constraints from Example 3 as follows:

[smain, 〈d0〉2]w d0

[rmain, b]w Jreturn a; K] (get [a2, b]) ∀b ∈D2

[a1, b]w let d= Jv = 11; K] (get [smain, b])
() = set [sup, 〈d〉2] d

in comb]e d (get [rup, 〈d〉2])
∀b ∈D2

[a2, b]w let d= Jv = 42; K] (get [a1, b])
() = set [sup, 〈d〉2] d

in comb]e d (get [rup, 〈d〉2])
∀b ∈D2

[rup, b]w let () = set [y] (Jv+ 1K] (get [sup, b]))
in get [sup, b] ∀b ∈D2

�

3.12 A Generic local solver

A simplified generic local solver for side-effecting constraint systems is
given in Figure 3.10. The algorithm maintains a partial assignment σ
of variables to values in the complete lattice D, together with a partial
assignment I which maintains for every encountered variable x the set
of variables which have been accessed during the last evaluation of right-
hand sides of x. Since both assignments are changes during a execution
of the algorithm, we prefer to denote accesses to σ and I in array notation.
Initially, both partial assignments are empty. Additionally, the algorithm
maintains a set S of stable variables. Stable variables either satisfy their
constraints or have been started to be processed and are currently under
evaluation. Initially, the set S is also empty.

46

3.12 A Generic local solver

�

�

�

�

let rec solve x =
if x /∈ dom(σ) then
σ[x] ← ⊥;
I[x] ← ∅;

S ← S ∪ {x};
set x (

⊔
{f (eval x) set | (x,f) ∈ C})

and eval x y =
if y /∈ S then solve y;
I[y] ← I[y] ∪ {x};
σ[y]

and set x d =
if x /∈ dom(σ) then solve x;
if d 6v σ[x] then
σ[x] ← σ[x] t d;
let X = I[x] in
S ← S \X;
I[x] ← ∅;
solve_all X

and solve_all X =
foreach x ∈ X do solve x

Figure 3.10: The local solving algorithm.

When calling the main function solve_all with a set X of interesting vari-
ables, the recursive worker function solve is called for each variable x ∈
X .

For a variable x, the worker function solve first checks whether σ is al-
ready defined for x. If this is not the case, σ[x] and I[x] are initialized
with ⊥ and ∅, respectively. Then x is added to the set S of stable variables.
In the next step, the contribution to the new value for x is determined.
This new value, the least upper bound of all contributions from the right-
hand sides of x, is combined with the old value of x by means of the
auxiliary function set.

The evaluation of a right-hand side f , however, is executed not for the
assignment σ directly but for the partially applied function call eval x.
In the end, when called for another variable y, the value σ[y] will be
returned. Before that, however, first solve is called for y in order to deter-
mine the best possible value for y, and then the variable dependencies
of x on y is recorded in I[x].

The second argument passed to f , set is responsible for creating the side
effects. The function set, when called for a variable y and a value d, first
checks whether y is already in the domain of σ. If this is not the case,
y is solved first. Then the value d is compared with the value σ[y]. If
d is not subsumed by σ[y], then σ[y] is updated to d t σ[y]. Since then

47

3 A Unified Framework for Program Analysis

the current value of y has changed, the variables influenced by y must
be reevaluated. This means that they must be removed from the set S
of stable variables and scheduled for reevaluation by means of solve. As
soon as their reevaluation has been scheduled, they can be removed from
the set I[y].

3.13 Dynamic Procedure Calls

Constraints for procedure calls can be extended to deal with dynamic calls,
i.e., the procedure, to be called, may depend on the current program state.
Let this dependence be formalized by means of a modified functionality
of the abstract functions enter]e

enter]e ∈D→ Proc→D

where enter]e d g = ⊥ indicates that procedure g is definitely not called
at the edge e when the concrete state is described with d. Here we only
consider the extension of the side-effecting constraint system for partial
contexts with dynamic calls. Therefore, assume again that the complete
lattice D of abstract states is of the form D = D1 × D2 where the ele-
ments in D2 are used to distinguish between different calls. We get the
constraint system by replacing the procedure call constrains in (5) with
constraints for every procedure g ∈ Proc:

[v, b]w let d = enter]e (get [u, b]) g
() = set [sg, 〈d〉2] d

in comb]e (get [u, b]) (get [rg, 〈d〉2])

(7’)

For efficiency reasons, we do not want to analyze procedures which are
not called, i.e., for which enter]e returns ⊥. In order to avoid that, an extra
test first checks whether enter]e d g has returned ⊥ or not. Only if that
value is different from ⊥, a side-effect to the start point of g is triggered
and the return value of g is combined with the state before the call. This

48

3.14 Forward Propagation

optimization results in:

[v, b]wmatch enter]e (get [u, b]) g with
| ⊥→⊥
| d → let () = set [sg, 〈d〉2] d

in comb]e (get [u, b]) (get [rg, 〈d〉2])

(7)

3.14 Forward Propagation

The algorithm of Sharir and Pnueli for partially tabulating procedure
summaries has proven to be surprisingly efficient in practice. It can also
be applied to partially tabulating partial contexts. Interestingly, its algo-
rithmic characteristics are quite different from locally solving ordinary
constraint systems. Instead of recursively descending into variable de-
pendences starting from the return point of the initial call to main, i.e.
[rmain, d0], it is based on forward propagation. Whenever the abstract state
at an variable [u, b] changes, the abstract effects corresponding to all out-
going edges (u, s, v) are executed to trigger the necessary updates for
the end points v. This behavior is mandatory for the analysis of binary
code where the control-flow graphs are not given before-hand but are
successively built up while the program is decoded [Flexeder et al., 2010].

We show that this forward propagation can be achieved if the following
variant of the side-effecting constraint system (5) is used:

[smain, 〈d0〉2]w d0

[u, b]w let () = set [v, b] (JsK] (get [u, b])) in⊥ ∀(u, s, v)∈E
[u, b]w let d = enter]

e (get [u, b])
() = set [sg, 〈d〉2] d
() = set [v, b] (comb]

e (get [u, b]) (get [rg, 〈d〉2]))
in ⊥

∀e=(u, g(), v)∈E

(5’)

The constraints for both statements s and function calls g() are now given
in the right-hand side for the source program point of CFG the edge,
instead of the target point. The contribution to the source program point

49

3 A Unified Framework for Program Analysis

itself, however, is always ⊥. The contribution to the target program point
is given instead as a side-effect—with the function set—using the same
computation as the normal contributions of (5) for the target program
point.

Theorem 4. The constraint systems (5) and (5’) are equivalent, which
means that every solution to constraint system (5) is also a solution to
constraint system (5’), and vice versa, every solution to constraint system
(5’) is also a solution to system (5). �

Proof. We are going to show that the second constraint in (5’) has the
same semantics as the second constraint in (2) (that is inherited by (5)),
and that the last constraint from (5’) has exactly the same semantics as
the constraint form (5). All other cases are trivial.

a) The constraint (from (5’))

[u, b]w let () = set [v, b] (JsK] (get [u, b]))
in ⊥

∀(u, s, v) ∈ E

has only a bottom contribution to [u, b], but it may have a contribu-
tion to [v, b]. It can, clearly, without losing information, be rewritten
as

[v, b]w JsK] (get [u, b])

With this operation we got exactly the second constraint in (2) (that
is inherited by (5)). Note, that the rewriting can also be performed
in the other direction.

b) Similarly to the previous case, the following constraint from (5’)

[u, b]w let d= enter]e (get [u, b])
() = set [sg, 〈d〉2] d
() = set [v, b] (comb]e (get [u, b]) (get [rg, 〈d〉2]))

in ⊥
∀e= (u, g(), v) ∈ E

can be rewritten as

50

3.15 Experimental Evaluation

[v, b]w let d= enter]e (get [u, b])
() = set [sg, 〈d〉2] d

in comb]e (get [u, b]) (get [rg, 〈d〉2])
∀e= (u, g(), v) ∈ E

�

Assume that local solving is applied to the constraint system (5’), and
a variable [u, b] has changed its value. Since for every constraint (but
the very first one) the variable of the left-hand side also occurs on the
right-hand side, all constraints for [u, b] will be evaluated and the change
propagated through the control-flow graph and into calls via side effects.
If then a variable [rg, b′] (corresponding to the return point of the proce-
dure g) changes its value, re-evaluation will be triggered for every con-
straint for a corresponding call to procedure g and produce the required
contributions to the end points of these calls.

Thus, the operational behavior of a local fixpoint solver applied to this sys-
tem emulates the behavior of the original algorithm of Sharir and Pnueli.
The advantage, though, is that this effect is not achieved by implement-
ing a dedicated algorithm, but solely by changing the specification of the
constraints. Moreover, this formulation is flexible enough to allow for an
extension which deals with side-effects to globals as well.

3.15 Experimental Evaluation

Side-effecting constraint systems are at the heart of Goblint—an analyzer
generator for concurrent C programs. This implementation of our Swiss
army knife approach allows us to conduct experimental comparisons be-
tween configurations for the same analysis.

We considered a lockset analysis for concurrent C, where the goal is to
guarantee absence of data races by accumulating for every global g, sets
of definitely held static locks when accessing g. This analysis requires a
detailed value analysis which provides points-to information for pointers
as well as constant values for variables and resolves function pointers on-
the-fly. Given that, the actual sets of definitely held locks are propagated
and recorded at each access to a shared variable. In order to increase

51

3 A Unified Framework for Program Analysis

precision, path-sensitivity is added to relate conditional lock operations
with corresponding conditional unlock operations [Das et al., 2002].

We considered a suite of the following concurrent programs using Posix
threads:

aget A multithreaded HTTP download accelerator, version 0.4.
automount Autofs kernel-based automounter for Linux, version 5.0.2.
ctrace C tracing library sample program, version 1.2.
knot Knot web-server, stable release from SOSP CD.
pfscan Parallel file scanner, version 1.0.
smtprc A network open mail relay checker, version 2.0.3.
ypbind Linux NIS daemon: ypbind-mt, version 1.19.1.
zfs-fuse ZFS filesystem for FUSE/Linux: release 0.4.0_beta2.

The sizes of these benchmarks vary between 1280 LoC and 24097 LoC
where LoC counts the lines of post-processed and merged C code.

For these benchmarks, we compared the analysis based on Cousot-style
constraint system (5) (extended with dynamic function calls and side ef-
fects) with the analysis based on constraint system (5’) corresponding to
the forward propagating algorithm of Sharir and Pnueli. In both cases,
we considered three instances where procedures are analyzed with full
context, with partial context or no context, respectively. As partial con-
text, we chose the information about the pointer variables together with
the lockset information.

For benchmarking we used an OS X (10.9) laptop with a dual core 2.7GHz
Intel Core i7 processor, of which the analyzer currently utilizes a single
core, and 8.0GB DDR3 memory. For all benchmarks and all configura-
tions, the analyzer performs reasonably well—the full context analysis of
the 24kloc program zfs-fuse takes 6.6 seconds only.

For a fair comparison between the different configurations, we counted
the number of evaluations of right-hand sides. Figure 3.11 displays these
numbers for the given list of benchmarks, sorted according to their sizes.
The Table 3.1 shows, for each program, the number of lines where a data
race could not be ruled out.

52

3.15 Experimental Evaluation

age
t
pfs

canctra
cekno

t
sm

tpr
c

ypb
ind

aut
om

oun
t

zfs
-fu

se
103

104

105

(5)—Dependency Driven

age
t
pfs

canctra
cekno

t
sm

tpr
c

ypb
ind

aut
om

oun
t

zfs
-fu

se

#
rh
se

va
lu
at
io
ns

(5’)— Forward Propagating

No Context Half Context Full Context

Figure 3.11: Timing results.

As expected, the analysis without context is less precise. Less expected,
we found no difference in precision between full or half context in
these benchmarks. Concerning precision, no distinction is made be-
tween dependency-driven solving and forward propagation, as these
approaches produce the same result for the same context configuration.

Surprisingly, an analysis without context was not always the most effi-
cient, i.e., for dependency driven analysis of smtprc fewer right-hand
sides had to be evaluated in full context case than the no context case.
This shows that trading the number of updates against the number of
constraint variables does not necessarily pay off.

Generally, for these benchmarks forward propagation required the evalu-
ation of significantly more right-hand sides than the dependency-driven
approach. This confirms the intuition that forward propagation is prone
to analyze the code, after two branches have met, twice.

53

3 A Unified Framework for Program Analysis

Lines with Warnings
Name Size(LoC) No Ctx. Half Ctx. Full Ctx.
aget 1280 122 100 100
pfscan 1295 5 5 5
ctrace 1407 34 33 33
knot 2255 89 33 33
smtprc 5787 899 113 113
ypbind 6596 106 46 46
automount 20624 225 225 225
zfs-fuse 24097 1282 1281 1281

Table 3.1: Precision Results.

3.16 Conclusion

We have shown that side-effecting constraint systems are well-suited to
express interprocedural program analyses with quite different character-
istics such as flow insensitivity for global properties, as well as flow sen-
sitivity for locals where procedure summaries are tabulated for varying
parts of the abstract state.

Encoding different well-known techniques using side-effecting constraint
systems allows us to freely combine different types of program analy-
ses into a single analysis, while preserving soundness guarantees. This
combination into a single analysis is critical for precision because differ-
ent analyses may mutually complement each other. It also enables us
to generically apply property simulation [Das et al., 2002], which we have
used to deal with conditional locking, by letting the user select which
analyses should be seen as the relevant property and which analyses are
part of the simulation.

The approach through side-effecting constraint systems has been realized
in the analyzer generator Goblint. Any analysis that can be expressed
using side-effecting constraint system can be plugged into the analysis
framework. An experimental evaluation on practical programs shows
that competitive run times can be obtained for larger programs and quite
complicated analyses.

54

4 AddingWidening andNarrowing

Right from the beginning of abstract interpretation, it has been observed
that many interesting invariants are best expressed by means of lattices
that have infinite strictly ascending chains. Possibly infinite strictly as-
cending chains, though, imply that naive Kleene iteration may not termi-
nate. For that reason, Cousot and Cousot proposed a widening iteration,
followed by a narrowing iteration in order to determine reasonably pre-
cise invariants or, technically speaking, reasonably small post solutions
[Cousot and Cousot, 1976].

The widening phase can be considered as a Kleene iteration that is accel-
erated by means of a widening operator which enforces that only finitely
many increases of values occur for a variable. While enforcing termina-
tion, it may result in a crude over-approximation of the invariants of the
program. In order to compensate for that, the subsequent narrowing it-
eration tries to improve a given post solution by means of a downward
fixpoint iteration, which again may be accelerated by means of a narrow-
ing operator.

One problem with the approach is that trying to recover precision once it
has been thrown away, though, in general is not possible (see, e.g., [Halb-
wachs and Henry, 2012] for a recent discussion). Some attempts try to
improve precision by reducing the number of points where widening is
applied [Cousot, 1981; Bourdoncle, 1993], others rely on refined widen-
ing or narrowing operators (see, e.g., [Simon and King, 2006; Cortesi and
Zanioli, 2011]). Recent work has focused on methods to guide or stratify
the exploration of the state space [Gopan and Reps, 2007, 2006; Gulavani
et al., 2008; Monniaux and Guen, 2011; Henry et al., 2012], including tech-
niques for automatic transformation of irregular loops [Gulwani et al.,
2009; Sharma et al., 2011].

55

4 Adding Widening and Narrowing

Our approach here is complementary to such techniques and can, possi-
bly, be combined with these. Our idea is not to postpone narrowing to a
second phase where all losses of information have already occurred and
been propagated. Instead, an attempt is made to systematically improve
the current information by narrowing immediately. In particular, this
means that widening and narrowing are applied in an interleaved manner.
A similar idea has been proposed for the static analyzer Astrée [Blanchet
et al., 2003].

Narrowing and the narrowing operator are only guaranteed to return
meaningful results, i.e., a post solution of the given system of equations,
if the right-hand sides of equations are monotonic. This assumption, how-
ever, is violated in presence of widening. As we saw in the previous
chapter, this requirement is also not met by the equation systems for
context-sensitive interprocedural analysis. Moreover, for more compli-
cated abstract domains, these systems may be infinite and thus can be
handled by local solvers only. Local solvers query the value of an interest-
ing variable and explore the space of variables only insofar as required for
answering the query. For this type of algorithm, the set of evaluated vari-
ables is not known beforehand. In particular the values of new variables
may be queried in the narrowing phase that have not yet been consid-
ered before. As a consequence, the strict separation into a widening and
a narrowing phase can no longer be maintained. Although, narrowing
iteration in case of non-monotonicity has been considered before [Cousot
et al., 2007], such approaches are not directly applicable for local solving.

In order to remedy these obstacles, we introduce an operator which
is a generic combination of a given widening with a given narrowing
operator and show that this new operator can be plugged into a generic
solver of equation systems, be they monotonic or non-monotonic. As a
result, solvers are obtained that return reasonably precise post solutions
in one go—given that they terminate.

56

4.1 Classical widening/narrowing

4.1 Classical widening/narrowing

Definition 4.1.1 (Widening operator).
For a lattice (D,v), the binary operator :D→D→D is called a widen-
ing operator if the following two properties are satisfied:

a) for all x, y ∈D it holds that xt y v x y, and

b) for all increasing chains x0 v x1 v . . . , the increasing chain defined
by

y0 = x0, . . . , yi+1 = yi xi+1, . . .

is not strictly increasing. �

Example 5. The integer intervals D = (Z∪ {−∞})× (Z∪ {∞}) are sets
of pairs where the lower bound is in an integer or −∞, and the upper
bound an integer or ∞. The ordering v is ordinary interval inclusion.

Widening for intervals is classically defined as follows:

[xl, xu] [yl, yu] = [zl, zu]

where

zl =

xl if xl = yl

−∞ otherwise
and zu =

xu if xu = yu

∞ otherwise. �

Definition 4.1.2 (Narrowing operator).
For a lattice (D,v), the binary operator :D→D→D is called a nar-
rowing operator if the following two properties are satisfied:

a) for all x, y ∈D it holds that (y v x) ⇒ (y v (x y)v x), and

b) for all decreasing chains x0 v x1 v . . . , the decreasing chain defined
by

y0 = x0, . . . , yi+1 = yi xi+1, . . .

is not strictly decreasing. �

57

4 Adding Widening and Narrowing

Example 6. Narrowing for intervals is classically defined as follows:

[xl, xu] [yl, yu] = [zl, zu]

where

zl =

yl if xl =−∞
xl otherwise

and zu =

yu if xu =∞
xu otherwise. �

Finding a post-fixpoint of the monotonic function F : D → D → D us-
ing the widening/narrowing approach [Cousot and Cousot, 1976, 1977a,
1992] consists of first computing the upward iteration sequence:

X0 =⊥
Xi+1 =Xi if F Xi vXi

=Xi F Xi otherwise.

The iteration starts (i = 0) with the least value X0 = ⊥, and then stays
the same if F Xi v Xi, otherwise increases the value using Xi F Xi.
Because of the properties of the widening operator, it can be shown that
the sequence is ultimately stationary, i.e., there exists n so that for all
m> n, Xn =Xm. Additionally, the reached stationary point Xn is a post-
fixpoint for the function F , i.e., Xn w F Xn, but it might not be a fixpoint.

Next, a downward iteration is performed in the attempt to find a smaller
post-fixpoint. Starting with the result from the upward iteration, it de-
creases the value using Yi F Yi.

Y0 =Xn

Yi+1 = Yi F Yi

The downward iteration is, also, ultimately stationary. Additionally, each
step, although decreasing, is still a post-fixpoint in the case that F is
monotonic.

Example 7. In the case that applying F leads to the following infinite
chain

F 0⊥ F 1⊥ F 2⊥ F 3⊥ . . .

⊥ [0, 0] [0, 1] [0, 2] . . .

58

4.2 Equation systems

the upward iteration using will stabilize quickly:

X0 X1 X2 X3 . . .

⊥ [0, 0] [0,∞] [0,∞] . . . �

In the case of non-monotone functions and domains with infinitely as-
cending chains, we cannot use narrowing—the newly computed value
might be larger than the current value. Therefore, we would like to have
a simple and robust technique that works as well as the known solvers
for functions with good properties and gives its best effort for functions
with bad properties.

4.2 Equation systems

Previously we talked about constraint systems—systems where each vari-
able could have any number of constraints. This is in some cases practi-
cally preferred as one may want to only re-compute the constraints whose
dependencies have changed their value. However, for use with the widen-
ing/narrowing approach, the equational form is needed.

Definition 4.2.1 (Equation system).
For a set of variables V , and values D, the function F ∈ V → (V →D)→
D is called an equation system. For each variable x ∈ V , the partially
applied function F x represents the right-hand side of x. �

The equational form is optional for the widening iteration. Because, con-
ceptually, the widening operator throws away information, we try to use
it in as few places as possible. Therefore, we still prefer to use widening
for all the constraints together, not for each separate constraint.

For narrowing, however, it is absolutely necessary to combine all con-
straints for a variable, as narrowing with a single contribution from a
constraint might lead to a variable assignment that is no longer a post-
solution.

Note, that a constraint system C ⊆ V × ((V →D)→D) is a binary relation
between left- and right-hand sides. So it is natural to look at a equation

59

4 Adding Widening and Narrowing

system F as a function from a left-hand side to the right-hand side V →
(V →D)→D. A constraint system C can be converted to equational form
using the following scheme:

F x σ =
⊔
{f σ | ∀f, (x, f) ∈ C} .

4.3 Chaotic fixpoint iteration

For static program analysis, constraint systems over complete lattices are
used [Cousot and Cousot, 1977a], but equation systems can be more gen-
eral. Therefore, we generalize the definitions for equation systems in a
way that allows to use other mathematical structures.

We consider a system F of equations, for a set of variables x ∈ V , and
over a set D of values. Furthermore, let : D → D → D be a binary
operator to combine old values with the new contributions of the right-
hand sides.
Definition 4.3.1 (-solution).
A -solution of F is an assignment ρ ∈ V →D such that for all variables
x ∈ V, ρ[x] = ρ[x] F x ρ holds. In the case that is defined as a b = b,
a -solution is an ordinary solution of the system, i.e., a mapping ρ with
ρ[x] = F x ρ for all variables x. �

In case D is a lattice, and the -operator is defined as the least upper
bound operator t, a -solution is a post-solution of the system, i.e., a
mapping ρ with ρ[x]wF x ρ for all variables x. Likewise in case equals
the greatest lower bound operator u, a -solution is a pre-solution of the
system, i.e., a mapping ρ with ρ[x]vF x ρ for all variables x.

The operator can also be instantiated with widening and narrowing
operators. As stated previously, a widening operator for a lattice D
must satisfy that a t b v a b for all a, b ∈ D. This implies that a -
solution then again provides a post-solution of the original system F .

The situation is slightly more complicated for narrowing operators. For a
narrowing operator , aw b implies that aw (a b)w b and any narrow-
ing sequence cannot be strictly descending. This means that narrowing

60

4.3 Chaotic fixpoint iteration

can only be applied if the right-hand side of equations are guaranteed
to return values that are less than or equal to than the values of the cur-
rent left-hand sides. Thus a mapping ρ can only be a -solution, if it is
a post-solution of the system.

Definition 4.3.2 (chaotic solver).
A (chaotic) solver for systems of equations is an algorithm that maintains
a mapping ρ ∈ V →D and performs a sequence of update steps, starting
from an initial mapping ρ0. Each update step selects an variable x, eval-
uates the right-hand side F x of x w.r.t. the current mapping ρi and up-
dates the value for x, i.e.,

ρi+1[y] =

ρi[x] F x ρi, if x= y

ρi[y], otherwise.

Then the algorithm is a -solver if upon termination the final mapping
(after completing n steps) ρn is a -solution of F . The algorithm is a
generic solver if it works for any binary update operator . �

In this sense, the round-robin iteration of Figure 4.1 is a generic solver.
Note that, in most cases, we omit update step indices and, additionally,
use imperative assignment syntax of the form ρ[x]← w to change the
value of the variable x to w

In order to prove that a given algorithm is a generic solver, i.e., upon
termination returns a -solution, one typically verifies the invariant
that for every terminating run of the algorithm producing the sequence
ρ0, ρ1, . . . , ρn of mappings, and every variable x, ρi[x] 6= ρi[x] F x ρi
implies that for some j ≥ i, an update ρj+1[x] = ρj [x] F x ρj occurs.

Not every solver algorithm, though, may consider right-hand sides of
equations as black boxes, as the round-robin algorithm does. The work-
list algorithm from Figure 4.2 can only be used as a generic solver—given
that all dependences are provided before-hand. In the case that the value
of some variable y changes, all right-hand sides of variables in the set
infly must be re-computed.

Note that whenever an update to a variable y provides a new value, W
re-schedules y for evaluation as well. This is a precaution for the case

61

4 Adding Widening and Narrowing

�

�

�

�

do
dirty ← false;
foreach x ∈ V do
new ← ρ[x] F x ρ;
if ρ[x] 6= new then
ρ[x] ← new;
dirty ← true;

while (dirty)

Figure 4.1: The solver RR .

�

�

�

�

W ← V;
while W 6= ∅ do
x ← extract(W);
new ← ρ[x] F x ρ;
if ρ[x] 6= new then
ρ[x] ← new;
W ← W ∪ inflx

done

Figure 4.2: The Solver W .

that the operator is not (right) idempotent. Here, an operator is called
idempotent if the following equality:

(a b) b= a b

holds for all a, b. In this sense, the operators t and u are idempotent and
often also and . An operator such as a+b

2 , however, for a, b ∈R is not
idempotent.

4.4 Two-phased widening/narrowing

The simplest way to apply widening/narrowing to a monotonic equa-
tion system F over the complete lattice D is to proceed in two-phases—
similarly to the iterations in Section 4.1. Using a generic chaotic solver,
we first generate a -solution σ+ of F starting with the value ⊥ for all
variables. After that, we generate a -solution σ−, where we start with
the values σ+ x for each variable x ∈ V .

Fact 4.4.1. Assume that all right-hand sides of the system F of equations
over a lattice D are monotonic and that ρ0 is a post-solution of F , and
is a narrowing operator . Then the sequence ρ0, ρ1, . . . of mappings

produced by a generic -solver, is defined and decreasing. �

Thus, any generic solver can be applied to improve a post-solution by
means of a narrowing iteration—given that all right-hand sides of equa-
tions are monotonic. This means that both variable assignments σ+ and

62

4.5 The combined update operator

σ− will be post-solutions of the system F , and additionally, the variable
assignment σ− is no larger than σ+.

4.5 The combined update operator

Equation systems for context-sensitive interprocedural analysis, though,
are not necessarily monotonic. In the following we show how to lift the
technical restrictions to the applicability of narrowing. Given a widening
operator and a narrowing operator , we define a new binary operator

by:

a b=

a b, if bv a
a b, otherwise .

Note that the operator is not necessarily idempotent, but whenever
narrowing is idempotent the following holds:

(a b) b= (a b) b

and therefore also

((a b) b) b= (a b) b .

A fixpoint algorithm equipped with the operator applies widening as
long as values grow. Once the evaluation of the right-hand side of a
variable results in a smaller or equal value, narrowing is applied and
values may shrink. For the operator , we observe:

Lemma 1. Consider a finite system F of equations over a lattice D. Then
every -solution ρ of F is a post-solution of F , i.e., for all variables x,
ρ[x]wF x ρ. �

Proof. Consider a mapping ρ that is a -solution of F and an arbitrary
variable x. For a contradiction assume that ρ[x] 6w F x ρ. But then we
have:

ρ[x] = ρ[x] F x ρ = ρ[x] F x ρ w F x ρ
in contradiction to our assumption! Accordingly, ρ must be a post-
solution of the system of equations F . �

63

4 Adding Widening and Narrowing

Thus, every generic solver for lattices D can be turned into a solver com-
puting post-solutions by using the combined widening and narrowing
operator. The intertwined application of widening and narrowing, which
naturally occurs when solving the system of equations by means of , has
the additional advantage that values may also shrink in-between. Improv-
ing possibly too large values, thus, may take place immediately resulting
in overall smaller, i.e., better post-solutions. Moreover, no restriction is
imposed any longer concerning monotonicity of right-hand sides.

4.6 Enforcing termination

For the new operator , termination cannot generally be guaranteed for
all solvers. In this section, we therefore present a modification of work-
list iteration which is guaranteed to terminate—given that all right-hand
sides of equations are monotonic.

Example 8. Consider the system:

x1 = x2

x2 = x3 + 1
x3 = x1

with D = N ∪ {∞}, the lattice of non-negative integers, equipped with
the natural ordering v given by ≤ and extended with ∞.

Consider a widening where a b= a if a= b and a b=∞ otherwise,
together with a narrowing where, for a≥ b, a b= b if a=∞, and
a b= a otherwise. Round-robin iteration with the combined operator
for this system starting from the mapping ρ0 = {x1 7→ 0, x2 7→ 0, x3 7→ 0},
will produce the following sequence of mappings:

0 1 2 3 4 5
x1 0 0 ∞ 1 ∞ 2 . . .

x2 0 ∞ 1 ∞ 2 ∞ . . .

x3 0 0 ∞ 1 ∞ 2 . . .

thus does no not terminate—although right-hand sides are monotonic.�

64

4.6 Enforcing termination

A similar example shows that ordinary worklist iteration, enhanced with
, also may not terminate, even if all equations are monotonic.

Example 9. Consider the two equations:

x1 =(x1 + 1)u (x2 + 1)
x2 =(x2 + 1)u (x1 + 1)

using the same lattice as in Example 8 where u denotes minimum, i.e.,
the greatest lower bound. Assume that the work-set is maintained with
a LIFO discipline. For W = [x1, x2], worklist iteration, starting with the
initial mapping ρ0 = {x1 7→ 0, x2 7→ 0}, results in the following iteration
sequence:

W [x1, x2] [x1, x2] [x1, x2] [x2] [x2, x1] [x2, x1] [x1] [x1, x2]
x1 0 ∞ 1 1 1 1 1 ∞ . . .

x2 0 0 0 0 ∞ 2 2 2 . . .

which does not terminate. �

We present modified versions of the round-robin solver as well as of the
worklist solver for which termination can be guaranteed. The worst case
complexity for the new round-robin solver turns out to be faster than
ordinary round-robin iteration, even by a factor of 2. For the new worklist
solver, the theoretical complexity is at least not far away from the classical
iterator.

For both algorithms, we assume that we are given a fixed linear ordering
on the set of variables so that V = {x1, . . . , xn}. The ordering will affect
the iteration strategy, and therefore, as shown by Bourdoncle [1990], has a
significant impact on performance. Hence, the linear ordering should be
chosen in a way that innermost loops would be evaluated before iteration
on outer loops. For variables xi for i = 1, . . . , n, the new round-robin
algorithm is shown in Figure 4.3.

Let us call the new algorithm SRR (structured round-robin). For a given
initial mapping ρ0, structured round-robin is started by calling solve n.
The idea of the algorithm is, when called for a number i, to iterate on
the variable xi until stabilization. Before every update of the variable

65

4 Adding Widening and Narrowing

�

�

�

�

void solve(i) {
if i = 0 then return;
solve(i−1);
new ← ρ[xi] F xi ρ;
if ρ[xi] 6= new then
ρ[xi] ← new;
solve(i);

}

Figure 4.3: The new solver SRR .

�

�

�

�

Q ← ∅;
for i = 1 to n do add Q xi;
while Q 6= ∅ do
xi ← extract_min(Q);
new ← ρ[xi] F xi ρ;
if ρ[xi] 6= new then
ρ[xi] ← new;
foreach xj ∈ infli

do add Q xj
done

Figure 4.4: The new solver SW .

xi, however, all variables xj , j < i are recursively solved. Clearly, the
resulting algorithm is a generic -solver.

Recall that a lattice D has height h if h is the maximal length of a strictly
increasing chain ⊥@ d1 @ . . .@ dh. We find:

Theorem 5. Consider the algorithm SRR for a system of n equations
over a complete lattice where all right-hand sides are monotonic and

= . Then the following holds:

a) Assume that the lattice has bounded height h and = t. Then
SRR when started with the initial mapping ρ0 = {xi 7→ ⊥ | i =
1, . . . , n}, terminates after at most n + h

2n(n + 1) evaluations of
right-hand sides.

b) Also in presence of unbounded ascending chains, the algorithm
SRR will terminate for every initial mapping. �

Proof. Recall that ordinary round-robin iteration performs at most h · n
rounds due to increases of values of variables plus one extra round to
detect termination, giving in total

n+h ·n2

66

4.6 Enforcing termination

evaluations of right-hand sides. In contrast for structured round robin
iteration, termination for variable xi requires one evaluation when solve i
is called for the first time and then one further evaluation for every up-
date of one of the variables xn, . . . , xi+1. This sums up to h · (n− i) + 1
evaluations throughout the whole iteration. This gives overhead

n+h ·
n∑
i=1

(n− i) = n+ h

2 ·n · (n− 1)

Additionally, there are h ·n evaluations that increase values. In total, the
number of evaluations, therefore, is

n+ h

2 ·n · (n− 1) +h ·n= n+ h

2n(n+ 1)

giving us statement a).

For the second statement, we proceed by induction on i. The case i= 0 is
vacuously true. For the induction step assume i > 0. For a contradiction
assume that solve i for the current mapping does not terminate. First
assume that fi ρ returns a value smaller than ρ[xi] while for all j < i,
ρ[xj] = ρ[xj] (F xj ρ) implying that ρ[xj] w F xj ρ for all j < i. Then
due to monotonicity, the subsequent iteration of solve i will produce a
decreasing sequence of mappings implying that the operator during all
occurring updates behaves like . Since all decreasing chains produced
by narrowing are ultimately stable, the call solve i will terminate—in con-
tradiction to our assumption.

Therefore during the whole run of solve i the mapping ρ′ when evaluat-
ing fi, must always return a value that is not subsumed by ρ[xi]. Since all
calls solve (i− 1) in-between terminate by induction hypothesis, a strictly
increasing sequence of values for xi is obtained that is produced by re-
peatedly applying the widening operator. Due to the properties of widen-
ing operators, any such sequence is eventually stable—in contradiction
to our assumption. We conclude that solve i is eventually terminating.�

Example 10. Recall the equation system, for which round-robin iteration
did not terminate. With structured round-robin iteration, however, we
obtain the following sequence of updates:

67

4 Adding Widening and Narrowing

i 2 1 2 1 3 2 1
x1 0 0 ∞ ∞ 1 1 1 ∞
x2 0 ∞ ∞ 1 1 1 ∞ ∞
x3 0 0 0 0 0 ∞ ∞ ∞

where the evaluations of variables not resulting in an update have been
omitted. Thus, structured fix-point solving quickly stabilizes for this ex-
ample. �

The idea of structured iteration can also be lifted to worklist iteration.
Consider again a system with V = {x1, . . . , xn}. As before for each vari-
able xj , let inflj denote the the set consisting of the variable xj together
with all variables influenced by xj . Instead of a plain worklist, the mod-
ified algorithm maintains the set of variables to be reevaluated within
a priority queue Q. In every round, not an arbitrary element is extracted
from Q—but the variable with the least index. The resulting algorithm
is presented in Figure 4.4.

Here, the function add inserts an element into the priority queue or leaves
the queue unchanged if the element is already present. Moreover, the
function extract_min removes the variable with the smallest index from
the queue and returns it as result.

Let us call the resulting algorithm SW (structured worklist iteration).
Clearly, the resulting algorithm is a generic solver.

Example 11. Consider again the system from example Example 9. Struc-
tured worklist iteration using for this system results in the following
iteration:

Q [x1, x2] [x1, x2] [x1, x2] [x2] [x1, x2] [x1, x2] [x2] []
x1 0 ∞ 1 1 1 ∞ ∞ ∞
x2 0 0 0 0 ∞ ∞ ∞ ∞

and thus terminates. �

In general, we have:

68

4.6 Enforcing termination

Theorem 6. Assume the algorithm SW is applied to a system of equa-
tions over a complete latticeD and that each right-hand side is monotonic.

a) Assume that the maximal length of a strictly ascending chain is
bounded by h. When instantiated with = t, and started with an
initial variable assignment ρ, mapping each variable to ⊥, the algo-
rithm terminates after at most h ·N evaluations of right-hand sides
where N=

∑n
i=1(2 + |depi|).

b) When instantiated with = and started on any mapping, the
algorithm is guaranteed to terminate and, thus, always to return a
post-solution. �

The first statement of the theorem indicates that SW behaves complexity-
wise like ordinary worklist iteration: the only overhead to be paid for
is an extra logarithmic factor for maintaining the priority queue. The
second statement, perhaps, is more surprising: it provides us with a
termination guarantee for the operator .

Proof. We proceed by induction on the number n of variables. The case
n= 1 is true by definition of widening and narrowing. For the induction
step assume that the assertion holds for systems of equations of n − 1
variables. Now consider a system of equations for a set V of cardinality n,
and assume that xn is the variable which is larger than all other variables
in V .

For a contradiction assume that SW does not terminate for the system
of equations for V . First assume that the variable xn is extracted from the
queue Q only finitely many times, say k times where d is the last value
computed for xn. This means that after the last extraction, an infinite
iteration occurs on the subsystem on the variables V ′ = V \ {n} where
for xr ∈ V ′, the right-hand side is given by F ′ xr ρ= F xr (ρ⊕{xn 7→ d}).
By inductive hypothesis, however, the algorithm SW for this system
terminates—in contradiction to our assumption. Therefore, we may as-
sume that the variable xn is extracted infinitely often from Q.

Let ρi, i ∈N, denote the sequence of mappings at these extractions. Since
Q is maintained as a priority queue, we know that for all variables xr

69

4 Adding Widening and Narrowing

with r < n, the inequalities ρi[xr] w F xr ρi hold. Let di = ρi[xn]. If for
any i, fn ρi v di, the next value di+1 for xn then is obtained by di+1 =
di F xn ρi which is less or equal to ρi. By monotonicity, this implies
that in the subsequent iteration, the values for all variables xr, r ≤ n,

may only decrease. The remaining iteration is a pure narrowing iteration
and therefore terminates.

In order to obtain an infinite sequence of updates for z, we conclude that
for no i, F xn ρi v di. Hence for every i, di+1 = di F xn ρi where di v
di+1. This, however, is impossible due to the properties of the widening
operator. In summary, we conclude that xn is extracted only finitely often
from Q. Hence the fixpoint iteration terminates. �

Since the algorithm SW is a generic solver, it can also be applied to non-
monotonic systems. There, however, termination can no longer be guar-
anteed. One generic idea, though, to enforce termination for all -solvers
and in all cases, is to equip each variable with a separate counter that
counts how often the solver has switched from narrowing back to widen-
ing. That number then may be taken into account by the -operator, e.g.,
by choosing successively less aggressive narrowing operators 0, 1, . . .,
and, ultimately, to give up improving the obtained values. The latter is
achieved by defining a k b= a for a certain threshold k.

4.7 Local generic solvers

Similar to generic solvers, we define generic local solvers. For that, it
seems convenient that the dynamic dependences between variables are
approximated. For the left-hand side x and a mapping ρ, a set depx ⊆ V
subsumes all dynamic dependences of a function F x : (V→D)→Dw.r.t.
ρ in the case that F x ρ = F x ρ′ whenever ρ′|depx

= ρ|depx
. Such sets can

be constructed on the fly whenever the function F x is pure in the sense
of [Hofmann et al., 2010a].

Essentially, purity for a right-hand side f means that evaluating f for a
mapping ρ operationally consists of a finite sequence of value lookups
in ρ where the next variable whose value has to be looked up, may only

70

4.7 Local generic solvers

depend on the values that have already been queried. Once the sequence
of lookups has been completed, the final value is determined, depending
on the sequence of values, and finally returned.

In this case, the setX ′ can be chosen as the set of all variables y for which
the value ρ y is queried when evaluating (an implementation of) the func-
tion f for the argument ρ. Let us denote this set by depx ρ.

Definition 4.7.1 (Partial -solution).
A partial -solution of an (infinite) system of pure equations F is a set
dom⊆ V and a mapping ρ : dom→D with the following two properties:

a) ρ[x] = ρ[x] (F x ρ) for all x ∈ dom; and

b) depx ρ⊆ dom for all x ∈ dom . �

In essence, a partial -solution is a set dom and a -solution of the sub-
system of F restricted to variables in dom.

Example 12. The following equation system (for n ∈N=D)

y2n = max(yy2n , n)
y2n+1 = y6n+4

is infinite as it uses infinitely many variables. However, the equation sys-
tem has at least one finite partial max-solution—the set dom = {y1, y2, y4}
together with the mapping ρ= {y1 7→ 2, y2 7→ 2, y4 7→ 2}. �

Definition 4.7.2 (Local generic -solver).
A local generic solver instantiated with an operator , then, is an algo-
rithm that, when given a system of pure equations F , a initial mapping
ρ0 for all variables, and an variable x0 ∈ V , performs a sequence of up-
date steps that, upon termination, results in a partial -solution (dom, ρ),
such that x0 ∈ dom. �

71

4 Adding Widening and Narrowing

�

�

�

�

let rec solve x =
if x /∈ stable then
stable ← stable ∪ {x};
tmp ← σ[x] tF x (eval x);
if tmp 6= σ[x] then
W ← infl[x];
σ[x] ← tmp;
infl[x] ← ∅;
stable ← stable \W;
foreach x ∈W do solve x

end
end

and eval x y =
solve y ;
infl[y] ← infl[y] ∪ {x};
σ[y]

in
stable ← ∅;
infl ← ∅;
σ ← ∅;
solve x0;
σ

Figure 4.5: The solver RLDt from [Hofmann et al., 2010b].

4.8 The structured local recursive solver

One more elaborate algorithm for local solving is formalized by Hofmann
et al. [2010b], namely the solver RLDt as shown in Figure 4.5. This algo-
rithm has the benefit of visiting nodes in a more efficient order, first sta-
bilizing innermost loops before iterating on outer loops. However, when
enhanced with an operator , this algorithm is not a generic solver in
our sense, since it is not guaranteed to execute as a sequence of atomic
updates. Due to the recursive call to procedure solve at the beginning
of eval, one evaluation of a right-hand side may occur nested into the
evaluation of another right-hand side. Therefore, conceptually, it may
happen that an evaluation of a right-hand side uses the values of vari-
ables from several different mappings ρi from the sequence ρ0, ρ1, . . . , ρn,
instead of the latest mapping ρn. Accordingly, the algorithm RLD is not
guaranteed to return a -solution—even if it terminates. Here, we there-
fore, provide a variant of RLDt where right-hand sides (conceptually)
are executed atomically.

Clearly, a local generic solver does not terminate if infinitely many vari-
ables are encountered. Therefore, a reasonable local solver will try to
consider as few variables as possible. Our solver, thus, explores the val-

72

4.8 The structured local recursive solver

ues of variables by recursively descending into solving variables newly
detected while evaluating a right-hand side.

Certain equation systems, though, introduce infinite chains of depen-
dences for the variables of interest. Those systems then cannot be solved
by any local solver. Here, we show that the new solver is guaranteed
to terminate for the operator at least for equation systems which are
monotonic and either finite or infinite but where only finitely many vari-
ables are encountered.

Let us call the new solver, on Figure 4.6, SLR1 (structured local recursive
solver). The new algorithm maintains an explicit set dom ⊆ X of vari-
ables that have already been encountered. Beyond RLDt, it additionally
maintains a counter count which counts the number of elements in dom,
and a mapping key : dom→Z that equips each variable with its priority.
Moreover, a global assignment infl : dom→ 2X records for each variable
in y ∈ dom, the variable y itself together with the set of variables x ∈ dom
with the following two properties:

• the last evaluation of F x has accessed the variable y;

• since then, the value of the variable y has not changed.

Variables whose equations may possibly be no longer valid, will be sched-
uled for reevaluation. This means that they are inserted into the global
priority queue Q. Finally, there is a global mapping ρ : dom → D that
records the current values for the encountered variables.

As in the algorithm RLDt, right-hand sides F x are not directly evalu-
ated for the current mapping ρ, but instead for a helper function eval
which in the end, returns values for variables. Before that, however, the
helper function eval provides extra book keeping of the encountered de-
pendence between variables. Also, if the encountered variable is new,
then it tries not just to return the value ⊥, but to compute the best possi-
ble value for the new variable before-hand.

In order to be able to track dependences between variables, the helper
function eval receives as a first argument the variable x whose right-hand
side is under evaluation. The function eval first checks whether the vari-
able y is already contained in the domain dom of ρ. If this is not the

73

4 Adding Widening and Narrowing

�

�

�

�

let rec solve x =
if x /∈ stable then
stable ← stable ∪ {x}
tmp ← ρ[x] F x (eval x);
if tmp 6= ρ[x] then
W ← infl[x] ∪ {x};
foreach y ∈W do add Q y;
ρ[x] ← tmp;
infl[x] ← ∅;
stable ← stable \W;
while (Q 6= ∅) ∧

(min_key Q ≤ key[x]) do
solve (extract_min Q);

and init y =
dom ← dom ∪ {y};
key[y] ← −count; count++;
infl[y] ← {y};
ρ[y] ← ρ0[y]

and eval x y =
if y /∈ dom then
init y;
solve y;

infl[y] ← infl[y] ∪ {x};
ρ[y]

in
stable ← ∅;
infl ← ∅;
ρ← ∅;
dom ← ∅;
Q ← empty_queue();
count ← 0;
init x0;
solve x0;
ρ

Figure 4.6: The new solver SLR1 .

case, y is first initialized by calling the procedure init. Subsequently, the
best possible value for y is computed by calling the procedure solve for
y. Then eval records the fact that x depends on y, by adding x to the set
infl[y]. Only then is the corresponding value ρ[y] returned.

Initialization of a fresh variable y means that y is inserted into domwhere
it receives a key less than the keys of all other variables in dom. For that,
the variable count is used. Moreover, infl[y] and ρ[y] are initialized with
{y} and ρ0[y], respectively. Thus, the given function eval differs from the
corresponding function in RLDt in that solve is recursively called only
for fresh variables, and also that every variable y always depends on itself.

The main fixpoint iteration is implemented by the procedure solve. When
solve is called for a variable x, we assume that there is currently no vari-
able x′ ∈ dom with key[x′] < key[x] that violates its equation, i.e., for
which ρ[x′] 6= ρ[x′] (F x′ ρ) holds. In the procedure solve for x, the call

74

4.8 The structured local recursive solver

min_keyQ returns the minimal key of an element in Q, and extract_minQ
returns the variable in Q with the minimal key and additionally removes
it from Q.

Besides the global priority queue Q, the procedure solve also requires a
set stable. For all variables x′ in stable⊆ dom one of the following prop-
erties holds at each call of the procedure solve:

• a call to the procedure solvex′ has been started and the update of
ρ[x′] has not yet occurred; or

• the equality ρ[x′] = ρ[x′] (F x′ ρ) holds.

The new function solve essentially behaves like the corresponding func-
tion in RLDt with the notable exception that not necessarily all variables
that have been found unstable after the update of the value for x in ρ,
are recursively solved right-away. Instead, all these variables are inserted
into the global priority queue Q and then solve is only called for those
variables x′ in Q whose keys are less or equal than key[x]. Since x0 has
received the largest key, the initial call solvex0 will result, upon termina-
tion, in an empty priority queue Q.

Example 13. Consider again the infinite equation system from Exam-
ple 12. The solver SLR1

t, when solving for y1, will return the partial
max-solution {y0 7→ 0, y1 7→ 2, y2 7→ 2, y4 7→ 2}. �

The modifications of the algorithm RLDt to obtain algorithm SLR1 allow
us not only to prove that it is a generic local solver, but also a strong result
concerning termination. Our main theorem of this chapter is:

Theorem 7. The following two statements about SLR1 hold:

a) When applied to any system of pure equations and an interest-
ing variable x0, the algorithm SLR1 returns a partial -solution—
whenever it terminates.

b) Assume that SLR1 is applied to a system of pure equations over
a complete lattice D where each right-hand side is monotonic. If
the operator is instantiated with , then for any initial mapping
ρ0 and interesting variable x0, SLR1 is guaranteed to terminate

75

4 Adding Widening and Narrowing

and thus always to return a partial post solution—whenever only
finitely many variables are encountered. �

Proof. We first convince ourselves that, upon termination, each right-
hand side can be considered as being evaluated atomically. For that, we
notice that a call solve y will never modify the value ρ[x] of a variable x
with key[x] > key[y]. During evaluation of right hand sides, a recursive
call to solve may only occur for a variable y that has not been considered
before, i.e., is fresh. Therefore, it will not affect any variable that has
been encountered earlier. From that, we conclude that reevaluating a
right-hand side F x for ρ immediately after a call F x (evalx), will return
the same value—but by a computation that does not change ρ and thus
is atomic.

In order to prove that SLR1 is a local generic solver, it therefore remains
to verify that upon termination, ρ is a partial -solution with x0 ∈ dom.
Since x0 is initialized before solve x0 is called, x0 must be contained
in dom. Upon termination, no evaluation of a variable is still in pro-
cess and the priority queue is empty. All variables in dom \ stable are
either fresh and therefore solved right-away, or non-fresh and then in-
serted into the priority queue. Therefore, we conclude that the equation
ρ[x] = ρ[x] (F x ρ) holds for all x ∈ dom. Furthermore, the invariant for
the map infl implies that upon termination, x ∈ infl[y] whenever x= y or
y ∈ depx ρ. In particular, infl is defined for y implying that y ∈ dom.

In summary, correctness of the algorithm SLR1 follows from the stated
invariants. The invariants themselves follow by induction on the number
of function calls. Therefore, statement a) holds.

For a proof of statement b), assume that all equations are monotonic and
only finitely many variables are encountered during the call solvex0. Let
dom denote this set of variables. We proceed by induction on key values
of variables in dom. First consider the variable x ∈ dom with minimal key
value. Then for all mappings ρ and infl, the call solve x will perform a
sequence of updates to ρ[x]. In an initial segment of this sequence, the op-
erator behaves like . As soon as the same value ρ[x] or a smaller value
is obtained, the operator behaves like the operator . Due to mono-
tonicity, the remaining sequence may only consist of narrowing steps.

76

4.9 Localized in SLR

By the properties of widening and narrowing operators, the sequence
therefore must be finite.

Now consider a call solve x for a variable x ∈ dom where by inductive
hypothesis, solve y terminates for all variables y with smaller keys and all
mappings ρ, infl, sets stable and priority queue Q satisfying the invariants
of the algorithm. In particular, this means that every recursive call to a
fresh variable terminates.

Assume for a contradiction that the assertion were wrong and the call to
solve x would not terminate. Then this means that the variable x must
be destabilized after every evaluation of F x (eval x). Upon every suc-
cessive call to solve x all variables with keys smaller than key[x], are no
longer contained in Q and therefore are stable. Again we may deduce
that the successive updates for ρ[x] are computed by applied to the
former value of ρ[x] and a new value provided by the right-hand side
for x, until a narrowing phase starts. Then, however, again due to mono-
tonicity a decreasing sequence of values for ρ[x] is encountered where
each new value now is combined with the former value by means of .
Due to the properties of and , we conclude that the iteration must
terminate. �

4.9 Localized in SLR

So far we have applied the operator at every right-hand side. It has
been long known for the 2-phase widening and narrowing approach,
however, that precision can be gained by applying widening and thus
also narrowing only at selected variables. In case, the equation systems
are derived from control-flow graphs, for example, it suffices to apply
these operators at one node of each loop only. For the more general set-
ting of systems of equations with static dependences between variables,
a sufficiently large set of variables where widening and narrowing is to
be placed, can be determined by means of a weakly topological ordering
[Bourdoncle, 1993].

In our application where variable dependences may change, we cannot
perform any pre-computation on the dependence graph between vari-

77

4 Adding Widening and Narrowing

ables. What we are given, though, is an assignment key of variables to
priorities together with a linear ordering on the priorities. This enables
us to dynamically identify back-edges. Here, a back-edge x→ y consists
of variables x, y where the value of x is queried in the right-hand side
of y where key[x] ≥ key[y]. Note that this does not correspond to the
standard definition of back-edge, but we use the same terminology since
both may be used to identify the head of loops. Evaluations within which
no back-edges are encountered will necessarily terminate (given that the
evaluation of each single right-hand side terminates). Therefore, it suf-
fices to apply the operator at variables x only for which a back-edge
x→ y has been detected. The resulting improvement to the solver, when
applied to the algorithm SLR1 , will be called SLR2 .

Interestingly for our suite of benchmark programs, the algorithm SLR2

did not significantly improve the precision of the resulting interval anal-
ysis.

Example 14. Consider, e.g., the program in Figure 4.8. The control-flow
graph corresponding to this program is also shown in the same figure
where each node v is marked with the priority assigned to v when the
function solve of SLR1 is called for the endpoint of the program for an
interval analysis.

We are looking for nodes that influence nodes with smaller priority. In
the example, these are the nodes with priorities −1 and −5, respectively,
i.e., exactly the loop heads.

After the first iteration for interval analysis on this program, the interval
[0, 0] has been established for the program variable i at all program points
of the inner loop. Then a second iteration of the outer loop is performed.
Even if the operator is only applied at the loop heads, we obtain the
interval [0,∞] for i at the loop head of the outer loop. In the subsequent
iteration of the inner loop, the new interval for variable i at the inner
loop head is [0, 99].

Since the update operator is meant to be applied at that program point
−5, the interval [0, 0] [0, 99] = [0,∞] is recorded for i and subsequently
also propagated to all other program points of the inner loop. Subse-

78

4.9 Localized in SLR

quent narrowing will not be able to recover from the loss of the upper
bound for i. �

Such loss of precision, as seen in Example 14, could be avoided, if we al-
low the set wpoint of variables where to apply not only to grow mono-
tonically, but also to shrink. Our second idea therefore is to remove a vari-
able x from wpoint before the right-hand side of x is evaluated. The re-
sulting algorithm SLR3 is shown in Figure 4.7. Note that back-edges
are detected by the call eval x y which therefore may insert y into the
set wpoint, while the variable x is removed from wpoint inside the call
solve x.

Theorem 8. When applied to any system of pure equations over a com-
plete lattice D and interesting variable x0, the algorithm SLR3 returns a
post solution, whenever it terminates. If each right hand side is mono-
tonic, then SLR3 is guaranteed to terminate, whenever only finitely many
variables are encountered. �

Proof. The considerations in the original proof for SLR1 regarding atom-
icity of evaluation of right-hand sides still hold. The same is true for
partial correctness. The only difference w.r.t. SLR3 is that, upon termi-
nation, for a variable x either ρ[x] = ρ[x] F x ρ or ρ[x] = F x ρ. In both
cases, ρ is a post-solution.

The most interesting part is the proof of termination. So, assume all right
hand sides are monotonic and only finitely many variables are encoun-
tered during the call of solve x0. Assume the algorithm does not termi-
nate. It means there are variables x whose value ρ[x] is updated infinitely
many times. Let x be one of such variables, namely the one with maxi-
mum priority. From a certain point in the execution of the algorithm, no
fresh variable is encountered and no ρ[y] for a variable y with priority
bigger than x is ever updated.

Assume we have reached this point in the execution of the algorithm.
Moreover, assume that x is extracted. This means that in the queue there
are no variables with priority less than y. Since all variables with priori-
ties greater than x are not subject to update (hence their evaluation does
not add elements to the queue), but x should be extracted again, the only
possibility is that:

79

4 Adding Widening and Narrowing

�

�

�

�

let rec solve x =
wpx ← if x ∈ wpoint then true else false;
wpoint ← wpoint \ {x};
if x /∈ stable then
stable ← stable ∪ {x};
tmp ← if wpx
then ρ[x] F x (eval x)
else F x (eval x)

if tmp 6= ρ[x] then
ρ[x] ← tmp;
W ← if wpx then infl[x] ∪ {x} else infl[x];
foreach y ∈W do add Q y;
infl[x] ← ∅;
stable ← stable \W;
while (Q 6= ∅) ∧ (min_key Q ≤ key[x]) do
solve (extract_min Q);

and init y =
as in the original SLR1

and eval x y =
if y /∈ dom then
init y; solve y;

if key[x] ≤ key[y] then wpoint ← wpoint ∪ {y};
infl[y] ← infl[y] ∪ {x};
ρ[y]

in
wpoint ←∅
as in the original SLR1

Figure 4.7: The algorithm SLR3 , which is SLR with simple localized
widening. Colored in red are then changes w.r.t. SLR1 .

80

4.9 Localized in SLR

�

�

�

�

i = 0;
while (i < 100) {
j = 0;
while (j < 10) {
// Inv: 0 ≤ i ≤ 99
j = j + 1;

}
i = i + 1;

}

-1

-5

0

-2

-6

-4

-3

-8

-7

i = 0;

i≥ 100

j = j + 1;

j < 10

j = 0;

j ≥ 10

i = i + 1;

i < 100

Figure 4.8: Example program with nested loops and its control-flow
graph.

a) in solve x should be tmp 6= ρ[x];

b) there is y ∈ infl[x] with key[y]≤ key[x], and y is put in the queue.

When y is evaluated (it will happen before solve x is called again), x
will be added to wpoint, hence wpx will always be true when evaluat-
ing solve x. However, by properties of , this means that x cannot be
updated infinitely many times, which is an absurd. Therefore the algo-
rithm terminates.

Example 15. Let us again consider the program from Figure 4.8. The
solver SLR3 iterates through the program points of the inner loop until
stabilization before the next iteration on the program points of the outer
loop is performed. After this iteration, the interval [0, 0] has been estab-
lished for the program variable at all program points of the inner loop.
Since the variable corresponding to the loop head of the inner loop is
now stable, it is no longer contained in the set wpoint.

When during the next iteration of the outer loop the interval [0, 99] arrives
for program variable i, this interval will replace the current interval [0, 0]
for i (without application of the operator). Accordingly, the subsequent
iteration on the inner loop will propagate this interval throughout the

81

4 Adding Widening and Narrowing

�

�

�

�

i = 0;
while (TRUE) {
i = i + 1;
j = 0;
while (j < 10) {
// Inv: 1 ≤ i ≤ 10
j = j + 1;

}
if (i > 9) i = 0;

}

0

-2

-1

-8

-7

-6

-10-5

-3

-4 -9

i = 0;

0 1

i = i + 1;

j = 0;

j = j + 1;

j < 10j ≥ 10

i = 0;

i > 9
i≤ 9

Figure 4.9: Example program hybrid from [Halbwachs and Henry, 2012]
together with its control-flow graph.

inner loop without change. Therefore no upper bound ∞ for i is ever
generated within the inner loop. This effect is comparable to the concept
of localized widening as proposed by Amato and Scozzari [2013]. �

4.10 Restarting in SLR

Besides localization of widening and narrowing, Amato and Scozzari
[2013] present a second idea to improve precision of fixpoint iteration in
presence of infinite increasing chains.

Example 16. Consider the program in Figure 4.9. In this example, the
program variable i takes values from the interval [0, 10] whenever the
inner loop is entered.

The upper bound 10, though, is missed both by the vanilla version of
SLR as well as of SLR enhanced with localized placement of . The
reason is that the inner loop is iterated with the interval [1,∞] for i until

82

4.10 Restarting in SLR

stabilization before, triggered by a narrowing iteration of the outer loop,
the value [1, 10] for i arrives at the entry point of the inner loop. Since
[1, 10] t [1,∞] = [1,∞], the finite upper bound of i at the entry point
cannot be recovered. �

In order to improve on this and similar kinds of precision loss, Amato
and Scozzari propose to restart the iteration for sub-programs. The restart
could be triggered, e.g., for the body of a loop as soon as the value for
the head has decreased.

In the following, we indicate how this strategy may be integrated into
the generic solver SLR3 (see Figure 4.10). The resulting algorithm SLR4

requires a function restart. This function when called with a priority r
and a variable x, recursively traverses the infl[x] and sets it to the empty
set. Each found variable y is added to the priority queue Q and removed
from the set stable. Moreover, if the priority of y is less than r, then the
value ρ[y] is reset to ⊥ and restarting recursively proceeds with r and the
variables from the set infl[y]. The function restart then is called within
the function solve for a variable x whenever x is currently contained in
wpoint and the new value tmp for x is less than the current value for x.
In this case, all variables in the set infl[x] are restarted (w.r.t. the priority
of x). Otherwise, the algorithm behaves like the algorithm SLR3 .

Example 17. Consider again the program from Figure 4.9. As soon as
narrowing the head of the outer loop recovers the interval [0, 9] for the
program variable i, recursively, the values for the reachable program
points with lower priorities are reset to ⊥. This refers to all program
points in the body of the outer loop and thus also to the complete in-
ner loop. Reevaluation of all these program points with the value [0, 9]
for i at the outer loop head provides us with the invariant 1 ≤ i ≤ 10
throughout the inner loop. �

The algorithm SLR4 will return a -solution whenever it terminates. A
guarantee, however, of termination is no longer possible even if right-
hand sides are monotonic and only finitely many variables are visited.
Intuitively, the reason is the following. Assume that the value for a vari-
able x has decreased. Then we might expect that restarting the iteration

83

4 Adding Widening and Narrowing

�

�

�

�

let rec restart r y =
add Q y;
stable ← stable \ {y};
if key[y] < r then
ρ[y] ← ⊥;
M ← infl[y];
infl[y] ← ∅;
foreach z ∈M do restart r z

in
let rec solve x =
...
if tmp 6= ρ[x] then
if wpx ∧ tmp v ρ[x] then
foreach z ∈ infl[x] ∪ {x} do restart key[x] z;

else
W ← if wpx then infl[x] ∪ {x} else infl[x];
foreach y ∈W do add Q y;
stable ← stable \W;

infl[x] ← ∅;
ρ[x] ← tmp;
while (Q 6= ∅) ∧ (min_key Q ≤ key[x]) do
solve (extract_min Q);

Figure 4.10: Parts of the solver SLR3 with restarting.

for lower priority variables results in a smaller next approximation for
x. Due to the non-monotonicity introduced by widening, this need not
necessarily be the case. Accordingly, we are no longer able to bound
the number of switches between increasing and decreasing phases for
x. There are simple practical remedies for nontermination, though. We
may, for example, bound for each variable the number of restarts which
do not lead to the same value or a decrease.

84

4.11 Solver for side-effecting equations systems

4.11 Solver for side-effecting equations systems

Example 18. Consider the following program.
int g = 0;
void f (int b){
if (b) g = b + 1;
else g = −b − 1;

}
int main(){
f (1);
f (2);
return 0;

}

The goal is to determine a tight interval for the global program variable
g. A flow-insensitive analysis of globals aims at computing a single in-
terval which should comprise all values possibly assigned to g. Besides
the initialization with 0, this program has two assignments, one inside
the call f (1), the other inside the call f (2). A context-sensitive analysis of
the control-flow should therefore collect the three values 0, 2, 3 and com-
bine them into the interval [0, 3] for g. This requires to record for which
contexts the function f is called. This task can nicely be accomplished by
means of a local solver. That solver, however, has to be extended to deal
with the contributions to global variables. �

Generic solving, as we have discussed in the preceding sections cannot
generally be extended to right-hand sides that not only return a value
for the left-hand side x of the equation, but additionally may produce
side-effects to other variables. In general, several side effects may occur
to the same variable z. Over an arbitrary domain of values, though, it
remains unclear how the multiple contributions to z should be combined.
Therefore in this section, we assume that the values of variables are taken
from a lattice D and also that right-hand sides are pure.

For side-effecting constraint systems this means that evaluating a right-
hand side F x applied to functions get : X→D and side : X→D→ unit,
consists of a sequence of value lookups for variables by means of calls

85

4 Adding Widening and Narrowing

to the first argument function get and side effects to variables by means
of calls to the second argument function side which is terminated by re-
turning a contribution in D for the corresponding left-hand side. Subse-
quently, we assume that each right-hand side F x produces no side effect
to x itself and also to each variable z 6= x at most one side effect.

Technically, the right-hand side F x of x with side effects can be consid-
ered as a succinct representation of a function

F x ∈ (V →D)→ (V →D)

that takes a mapping ρ and does not just return a single value, but again
another mapping ρ′ where ρ′[x] equals the return value computed by F x
for get = ρ, and for z 6= x, ρ′[z] = d if during evaluation of F x get side,
side is called for z and d. Otherwise, i.e., if no side effect occurs to z,
ρ′[z] =⊥.

Similarly to constraint systems, a post solution of an equation system
with side-effects F is a mapping ρ : V→D such that for every x ∈ V,
ρwF x ρ. A partial post solution with domain dom ⊆ V is a mapping
ρ : dom→D such that for every x ∈ dom, evaluation of F x for ρ accesses
only variables in dom and also produces side effects only to variables in
dom.

Moreover, for equation systems (5) and (6), it can be shown that ρwF x ρ
where ρ is the total variable assignment obtained from ρ by setting ρ[y] =
⊥ for all y 6∈ dom. This demonstrates that partial solutions of equation
systems generated for static program analysis can sometimes be extended
to “full” solutions.

In the following, we present a side-effecting variant SLR1+ of the algo-
rithm SLR1 from Section 4.7 that for such systems returns a partial -
solution—whenever it terminates. Moreover, the enhanced solver SLR1+

is guaranteed to terminate whenever all right-hand sides F x are mono-
tonic, i.e., the functions F x are all monotonic.

86

4.11 Solver for side-effecting equations systems

Example 19. Consider again the analysis of Example 18. The contribu-
tions to the global program variable g by different contexts may well be
combined individually by widening to the current value of the global.
When it comes to narrowing, though, an individual combination may
no longer be sound. Therefore, the extended local solver SLR1+ should
collect all occurring contributions into a set, and use the joint value of all
these to possibly improve the value of g. �

Conceptually, the algorithm SLR1+ therefore creates for each side effect
to variable z inside the right-hand side of x, a fresh variable 〈x, z〉 which
receives that single value during evaluation of the right-hand side F x.
Furthermore, the algorithm maintains for every variable z an auxiliary
set set[z] which consists of all variables x whose right-hand sides may
possibly contribute to the value of z by means of side effects. Accordingly,
the original system of side-effecting equations is (implicitly) transformed
in the following way:

a) Inside a right-hand side fx, the side effect side z d is implicitly re-
placed with

side 〈x, z〉 d

while additionally, x is added to the set set[z].

b) The new right-hand side for a variable x is extended with a least
upper bound of all 〈z, x〉, z ∈ set[x].

The -operator is applied whenever the return value of the new right-
hand side for x is combined with the previous value of x. Let us now
list the required modifications of the algorithm SLR.

First, the function init y is extended with an extra initialization of the set
set[y] with ∅. The function eval remains unchanged. Additionally, a func-
tion side is required for realizing the side-effects during an evaluation
of a right-hand side. As the function eval, also function side receives the
left-hand side of the equation under consideration as its first argument.

87

4 Adding Widening and Narrowing

We define:

side x y d = if 〈x,y〉 /∈ dom then
ρ[〈x,y〉] ← ⊥;

if d 6= ρ[〈x,y〉] then
ρ[〈x,y〉] ← d;
if y ∈ dom then
set[y] ← set[y] ∪ {x};
stable ← stable \ {y};
add Q y

else
init y;
set[y] ← {x};
solve y

When called with x, y, d, the function side first initializes the variable
〈x, y〉 if it is not yet contained in dom. If the new value is different from
the old value of ρ for 〈x, y〉, ρ[〈x, y〉] is updated. Subsequently, the set
set[y] receives the variable x, and the variable y is triggered for reevalu-
ation. If y has not yet been encountered, y is initialized, set[y] is set to
{x}, and solve y is called. Otherwise, x is only added to set[y], and y is
scheduled for re-evaluation by destabilizing y first and then inserting y
into the priority queue Q.

The third modification concerns the procedure solve. The call of the right-
hand side F x now receives sidex as a second argument and additionally
evaluates all variables collected in set[x]. The corresponding new line
reads:

tmp← ρ[x] (F x (evalx) (sidex)t
⊔
{ρ[〈z, x〉] | z∈set[x]});

Additionally, recursive solving of variables with smaller or equal priori-
ties in solve has to be done even if the return value does not change. This
is due to the fact that the side-effects, implemented in side, might have
destabilized some variables during the evaluation of the right-hand side
F x.

Example 20. Consider again interval analysis for the program from Ex-
ample 18. Concerning the global program variable g, the initialization

88

4.11 Solver for side-effecting equations systems

g = 0 is detected first, resulting in the value ρ[g] = [0, 0]. Then g is sched-
uled for reevaluation. This occurs immediately, resulting in no further
change. Then the calls f(1), f(2) are analyzed, the side effects of 2 and
3 are recorded and g is rescheduled for evaluation. When that happens,
the value ρ[g] is increased to

[0, 0] [0, 3] = [0, 0] [0, 3] = [0,∞]

if the standard widening for intervals is applied. Since ρ[g] has changed,
z again is scheduled for evaluation resulting in the value

[0,∞] [0, 3] = [0,∞] [0, 3] = [0, 3]

Further evaluation of g will not change this result any more. �

Analogously to Theorem 7 from the last section, we obtain:

Theorem 9. The following two statements about SLR1+ hold:

a) When applied to any system of pure equations with side effects
and interesting variable x0, the algorithm SLR1+ returns a partial
post solution—whenever it terminates.

b) Assume that SLR1+ is applied to a system of pure equations over a
complete lattice D where each right-hand side is monotonic. Then
for any initial mapping ρ0 and interesting variable x0, SLR1+ is
guaranteed to terminate and thus always to return a partial post
solution—whenever only finitely many variables are encountered.
�

The proof of Theorem 9 is analogous to the proof of Theorem 7. It is
worth-while noting, though, that the argument there breaks down if the
assumption on the priorities in side-effects is not met: in that case, any
re-evaluation of a high-priority variable x may have another effect onto a
low-priority variable y—even if x does not change. No guarantee there-
fore can be given that the overall sequence of values for y will eventually
become stable. If on the other hand, the side-effected variable y has pri-
ority greater than x, at re-evaluation time of y, the evaluation of x has
already terminated where only the final contributions to y are taken into

89

4 Adding Widening and Narrowing

account. Since only finitely many such contributions are possible, the
algorithm is overall guaranteed to terminate.

The extra condition on the side effects incurred during fixpoint compu-
tation is indeed crucial for enforcing termination—as can be seen from
the following example.

Example 21. Consider the following program:

int g = 0;
int main(){
g = g + 1;
return 0;

}

where the global is meant to be analyzed flow-insensitively. Consider
an interval analysis by means of solver SLR1+, and assume that the un-
known for the global g has lesser priority than the unknown for the end-
point of the assignment to g. The first side effect to g is the interval [1, 1]
resulting in the new value [0, 1] which is combined with the old value
[0, 0] by means of and then again by means of . Since

([0, 0] [0, 1]) [0, 1] = [0,∞] [0, 1] = [0, 1]

the widening is immediately compensated by the consecutive narrowing.
The same phenomenon occurs at every successive update of the value
for g, implying that SLR1+ will not terminate.

The solver SLR1+ behaves differently if the priority of the unknown for
g exceeds the priority of the unknown for the endpoint of the assign-
ment. In this case after the first application of at g, the assignment is
processed again. Since the first application of behaves like a widen-
ing, this means that the second side effect to g is with the interval [1,∞].
Accordingly, the following recomputation of the new value for g will be

[0,∞] [0,∞] = [0,∞]

and the fixpoint computation terminates. �

90

4.12 Experimental evaluation

In practical applications where the side-effected unknowns correspond
to globals, the extra condition on priorities in Theorem 9 can be enforced,
e.g., by ensuring that the initializers of globals are always analyzed before
the call to the procedure main.

Theorem 9 only speaks about the extension of the base version of the
algorithm SLR1 to systems of equations with side effects. A similar ex-
tension is also possible to the solvers with localized application of . In
order to ensure termination also in this case, however, we additionally
must insert every side-effected unknown into the set wpoint of unknowns
where the operation is to be applied. For the side-effecting version of
SLR3 , we therefore define:

side x y d = wpoint ← wpoint ∪ {y};
if 〈x,y〉 /∈ dom then
ρ[〈x,y〉] ← ⊥;

if d 6= ρ[〈x,y〉] then
ρ[〈x,y〉] ← d;
if y ∈ dom then
set[y] ← set[y] ∪ {x};
stable ← stable \ {y};
add Q y

else
init y;
set[y] ← {x};
solve y

With this definition, termination of the algorithm SLR3+ can be guaran-
teed under the same assumptions as for the algorithm SLR1+.

4.12 Experimental evaluation

We have implemented the various generic local solvers and included
them into the analyzer Goblint for multi-threaded C programs. Goblint
uses CIL as C front-end [Necula et al., 2002] and is written in OCaml.

91

4 Adding Widening and Narrowing

The tests were performed on a 2.7GHz Intel Core i7 laptop, with 8GB
DDR3 RAM, running OS X 10.9.

In a first series of experiments we tried to clarify the increase of precision
possibly attained by means of the various -solvers w.r.t. the standard
two-phase solving using widening and narrowing according to [Cousot
and Cousot, 1976]. For these experiments, we used the benchmark suite1
from the Märdalen WCET research group [Gustafsson et al., 2010] which
collects a series of interesting small examples for WCET analysis, vary-
ing in size from about 40 lines to 4000 lines of code. We have extended
this benchmark suite by four tricky programs from [Amato and Scozzari,
2013]: a) hh.c, b) hybrid.c, c) nested.c, and d) nested2.c.

On top of standard analyses of pointers, we performed an interval anal-
ysis which soundly approximates 32bit integers with wrap-around se-
mantics. For widening, this means that the operator widens the lower
and upper bounds first to minint and maxint, respectively, and, if an un-
derflow or overflow cannot be excluded, also the corresponding upper
and lower bounds. In order to enable two-phase solving, we performed
context-insensitive analysis only.

Within this setting, we determined the precision achieved by the -
solvers compared to the corresponding solver which realizes a distinct
widening phase, followed by a distinct narrowing phase. The results
of this comparison are displayed in Figures 4.11 to 4.14. Figure 4.11
reports the percentage of program points where solver SLR1+ returns
better results than two-phase solving. In the vast majority of cases,
SLR1+ returned significantly better results—supporting the claim that
-solving may improve the precision.

Figure 4.12 reports the percentage of program points where an improve-
ment over SLR1+ can be achieved if the operator only is applied at
widening points, as implemented by solver SLR2+. Here, our experi-
ments show that, at least for the given simple form of interval analysis,
an improvement can only be observed for very few examples. The reason
might be that, applying narrowing, intertwined with widening can quite
often recover some of the precision lost by the superfluous widenings.
1available at www.mrtc.mdh.se/projects/wcet/benchmarks.html

92

4.12 Experimental evaluation

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 a b c d
0%

20%

40%

60%

80%

100%

Figure 4.11: The relative improvement of SLR1+ over two-phase solving.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 a b c d
0%

20%

40%

60%

80%

100%

Figure 4.12: The relative improvement of SLR2+ over SLR1+.

93

4 Adding Widening and Narrowing

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 a b c d
0%

20%

40%

60%

80%

100%

Figure 4.13: The relative improvement of SLR3+ over SLR2+.

Figure 4.13 then reports the relative further improvement when addition-
ally widening points can dynamically be removed during solving. In 15
of 37 cases, we again obtain an improvement, in some cases even for over
70% of program points! This strategy therefore seems highly recommend-
able to achieve good precision.

Figure 4.14 finally explores the impact of restarting. Here, the picture
is not so clear. For the second benchmark, restarting resulted even in a
loss of precision for a small fraction of program points, while still for a
larger fraction improvements were obtained. In two further benchmarks,
program points with incomparable results where found. For benchmark
program 3, these make up about 4% of the program points, while for
program 7, the fraction goes even up to 31%. In principle such a behavior
is not surprising, considering the non-monotonicity of widening. Still, for
two more example programs, drastic improvements are found. One of
these comes from the WCET benchmark suite, while the other has been
provided in [Amato and Scozzari, 2013], admittedly, as an example where
restarting is beneficial.

In a second experiment, we explored the relative efficiencies of our imple-
mentation of the generic local -solvers. For this type of experiments, we
selected all benchmarks from the SpecCpu2006 benchmark suite, which
can be handled by the C front-end CIL that is used in our analyzer. The

94

4.12 Experimental evaluation

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 a b c d
0%

20%

40%

60%

80%

100%

Figure 4.14: Comparison of SLR4+ with SLR3+ indicating the percent-
age of program points where the results are incomparable
(brown), better (blue) or worse (red).

set of selected benchmarks consist of seven programs in the range of 1
to 33 kloc, 400.perlbench with 175 kloc, and 445.gobmk with 412 kloc
of C code.

For the chosen programs, we performed interval analysis where local
variables are analyzed depending on a calling context which includes all
non-interval values of locals, while the values of globals are analyzed
flow-insensitively. Such kind of analysis cannot be performed by the two-
phase approach, since right-hand sides are not monotonic and the sets
of contexts and thus also the sets of unknowns encountered during the
widening and narrowing phases may vary. The numbers of evaluations
of right-hand sides for the side-effecting solvers SLR1+ to SLR4+ are re-
ported in Figure 4.15. For a comparison we also included the numbers
of evaluations if the solver SLR1+ uses plain widening only.

The analysis of the seven smallest programs could be handled in less than
13 seconds. The program 400.perlbench could also be handled by our
solvers but with running times between 18 minutes (using SLR3+) and
4 hours (using SLR4+). For the largest benchmark 445.gobmk with 412
kloc, however, interprocedural interval analysis by means of our solvers
did not terminate within 5 hours.

95

4 Adding Widening and Narrowing

429.mcf
458.sjeng

470.lbm
401.bzip2

456.hmmer

482.sphinx
433.milc

400.perlbench

103

104

105

106

107

nr
.o

fr
ig
ht
-h
an

d
si
de

ev
al
ua

tio
n

SLR1+ SLR1+ SLR2+ SLR3+ SLR4+

Figure 4.15: Interval analysis of SpecCpu2006 programs.

The first observation is that SLR1+ is only marginally slowed down if
widening is enhanced to , i.e., narrowing is added. The second obser-
vation is that the efficiency of fixpoint computation is greatly improved
when restricting the application of to widening points. Improvements
of about 30% could consistently be obtained. Enhancing solver SLR2+ to
solver SLR3+, on the other hand, comes with a significant improvement
in precision, and additionally results in another slight reduction of the
number of evaluated right-hand sides. To us, these numbers came at a
surprise, since even in those scenarios where we could theoretically es-
tablish termination of the algorithms, still exponentially worse behavior
than for widening alone, could not be excluded.

Restarting, finally, adds another dimension of potential inefficiency to
fixpoint iteration. Yet, our numbers for SLR4+ on the benchmark suite

96

4.13 Conclusion

show that the practical slowdown over the fastest solver SLR3+ is in many
cases still better than solving with SLR1+ with widening alone. For the
programs 458.sjeng and 400.perlbench, however, SLR4+ is slower by
a factor of 5 and 14, respectively.

In summary, the solver SLR3+ turns out to be a robust algorithm with de-
cent run-times. Interestingly, the increase in precision over plain widen-
ing as well as over -solving by means of SLR1+ is combined with a
significant speedup. The new solver allows to significantly improve pre-
cision over the two-phase widening/narrowing approach and also is suc-
cessfully applicable in more general analysis scenarios, where the two-
phase approach was not applicable.

4.13 Conclusion

We have presented a generic combination of widening and narrowing
into a single operator and systematically explored solver algorithms
which, when instantiated with will solve general systems of equations.
Perhaps surprisingly, standard versions of fixpoint algorithms, when en-
hanced with , may fail to terminate even for finite systems of monotonic
equations. Therefore, we presented variants of round-robin iteration, of
ordinary worklist iteration as well as of recursive local solving with and
without side effects where for monotonic equations and finitely many
variables, termination can be guaranteed whenever only finitely many
unknowns are encountered, and side-effects are to higher-priority un-
knowns only. In order to enforce termination, we assigned static priori-
ties to the unknowns of the system. In order to construct generic solvers
for arbitrary systems of equations, we heavily relied on self-observation
of the solvers. Thus, we assign the priorities in the ordering in which
the unknowns are encountered. We let the fixpoint iterator itself deter-
mine the dependences between unknowns. Together with the static pri-
orities, also the places where to apply the operator are dynamically
determined.

It has not been clear before-hand, though, how well the resulting algo-
rithms behave for real-world program analyses. In order to explore this

97

4 Adding Widening and Narrowing

question, we have provided an implementation within the analysis frame-
work Goblint. In our experimental set-up, we considered interproce-
dural interval analysis. Our experiments confirm that fixpoint iteration
based on the combined operator may increase precision considerably,
and that it behaves well for interprocedural analysis where right-hand
sides of equations can no longer be considered as monotonic. We demon-
strated that the add-on of localizing operators increases precision fur-
ther, while efficiency is improved at the same time. An equally clear
picture could not be identified for the extra optimization of restarting.
While we found clear improvements in selected cases and generally still
an acceptable efficiency, we also found exceptional cases where a (minor)
loss of precision occurs at some program points or where analysis time
is considerably increased.

Our experiments were performed for standard interval analysis with the
obvious widening and narrowing operators. It remains for future work
to explore how well our methods work also for other domains and for
more sophisticated widening and narrowing operators.

98

5 Implementation inGoblint

The methods described in the previous two chapters were used to im-
prove the Goblint analyzer that is developed at Technische Universität
München (TUM) and University of Tartu (UT). Goblint is a constraint
system based static analysis framework with a focus on analyzing lock-
ing behavior of multi-threaded C programs. It is written in OCaml and
it makes use of the CIL [Necula et al., 2002] framework as the front-end.

A high-level overview of Goblint is given in Figure 5.1. First, the con-
trol flow graph is constructed from the standard textual representation.
From the control flow graph and a given analysis specification, the side-
effecting constraint system is then generated. Next, the constraint sys-
tem is solved by the selected generic solver. All of the presented high
level components are implemented in Goblint as modules or functors in
OCaml—more detail is given in Section 5.2.

The rest of the chapter will be used to look at some of the improvements
and more interesting implementation details: the configuration subsys-
tem, architecture of the analyzer, handling of unreachable code for anal-
yses, an optimization to save memory, the query subsystem, and compo-
sition of analysis specifications, implementation of a precision improve-
ment coming from conditional locking, and dynamic solver selection im-
plemented as a static OCaml module.

5.1 Configuration

Most of the analyses implemented in Goblint are parametrized in some
way. Different analysis parameters are used, for example, to enable ex-
perimental features in the hope to increase the precision of the analysis,

99

5 Implementation in Goblint

Analysis Specification

Control Flow Graph

Solver

Constraint System

Analyzer

Figure 5.1: General structure of constraint system based analysis tool.

or to decrease the precision in the hope to increase the speed of the anal-
ysis. In some cases an analysis requires extra information about the code
to be analyzed, e.g., is it a Linux device driver, an OSEK program, or a
program using the POSIX interface. At time of writing this thesis, the
Goblint tool contained 92 different parameters.

To allow flexible configuration of the analyzer, a JSON (JavaScript Object
Notation) based sub-framework was developed. The framework simpli-
fies the task of adding new options and querying the value of the options
inside the analyzer. All options and values are stored centrally to allow
for better overview of the settings. Additionally, the system allows group-
ing of settings, merging of settings from different sources, and writing
the active settings back to a file.

Inside Goblint, all configuration options are stored in a specific JSON
object—a mapping of string to JSON values. A JSON value can be NULL,
true or false, a number, a string, a mapping of strings to JSON values,
or a list of JSON values. An example configuration file can be seen in
Figure 5.2.

At start-up, the default configuration is active, however, there are several
ways to change the settings—before they are accessed. One way is to
merge an external JSON file with the currently active configuration. For
that, the name and path of the external file can be passed to Goblint

100

5.1 Configuration

� �
{ "ana" : { "activated" : [["base", "mutex"]],

, " int " : { " interval " : true
, " trier " : false
}

}
, "dbg" : { "verbose" : true

}
, "printstats " : true
, "noverify" : false
, " result " : "html"
, "solver" : "slr3 "
}� �

Figure 5.2: Example configuration file.

via the ––conf command line option. The merging works as follows: all
JSON values except the mappings are over-written form the external file,
mappings, however, are merged in a way that retains the values for keys
that are missing in the external source.

Another way to change the active configuration is by specifying the val-
ues using the command line parameter ––set. This parameter takes two
arguments: first the path inside the configuration value to the sub-value
to be changed, and second, the new value. Paths inside the configura-
tion are specified using a dot for selecting a field and square brackets for
lists—the usual way for JavaScript and other programming languages of
the C language family, e.g., one might specify ––set dbg.verbose false.
The value portion of the ––set parameter is JSON with the exception that
single quotes (’) are used as string delimiters instead of double quotes
(").

There is a convenience command line parameter ––sets that behaves
similarly to ––set, but interprets the value as a string. This is convenient
as it allows to avoid the otherwise necessary double quoting, e.g., ––sets
v test instead of ––set v “ ’test’ ” .

Finally, there is a command line option ––writeconf that prints out the
currently active configuration. Note, however, that the command line
parameters are parsed from left to right and all other parameters as well
as ––writeconf will be performed during parsing. E.g., after running

101

5 Implementation in Goblint

./goblint ––writeconf x.json ––sets result html the file x.json will
contain the default values only—as the analysis result will be switched
to output HTML files only after writing to x.json.

From the analyzer side, querying configuration is most often done using
one of the following functions:

get_bool : string → bool
get_int : string → int
get_string : string → string

In each case, the first argument to these functions is the path—similarly
to the command line arguments. The resulting value is either the value
in the configuration or an OCaml exception in the case that the value
is not of the correct type. Additionally, more general functions exist to
cover other, more involved, use cases, e.g., lists.

MCP

FromSpec

MyCFG
GlobConstrSystem

CfgBackward

…

Spec

Control

Spec

SelectorGenericGlobalSolver

Analysis 1

Analysis n

Spec

GlobSolverFrom-
IneqSolver

GlobSolverFrom-
EqSolver

SLR

GenericEqBoxSolver

Topdown

EffectWCon

GenericGlobalSolver

GenericIneqBoxSolver

Figure 5.3: Overview of important module signatures.

102

5.2 Structure of Goblint

5.2 Structure of Goblint

To get a more detailed overview of the analyzer, we next look at how
the different modules are abstracted, i.e., which module signatures are
used, and how different important modules can be combined. A simpli-
fied overview of the most important module signatures is presented in
the Figure 5.3 where the nodes are module names and edges between
modules represents use of the module. Labels on graph edges specify
module types that the using module relies on, e.g., the Selector can use
any solver module that has the type GenericGlobalSolver. Edges that join
together allow for a choice, e.g., Selector can either use the EffectWCon
solver directly, or SLR through GlobSolverFromEqSolver, depending on the
active configuration.

The analysis combining mechanism MCP is able to use any analysis
specification that conforms to the module type Spec. Analysis specifica-
tions can be applied to FromSpec to generate constraint systems of type
GlobConstrSystem, given a control flow graph of type CfgBackward, which
is provided by the MyCFG module.

There are three different module types for solvers: -solvers for equation
systems GenericEqBoxSolver, -solvers for constraint systems GenericIneq-
BoxSolver, and solvers with separate local and global variables Generic-
GlobalSolver. SLR implements an equation system solver, Topdown imple-
ments a constraint system solver, and EffectWCon is an implementation
of RLD that separates local and global variables.

The module Control, then, takes the constraint system that was made with
FromSpec and solves it with the Selector solver.

One of the most central pieces of abstraction is the abstraction of the
lattice structure. In Goblint there exists a module signature Lattice and
its subtype Printable (Figure 5.4). Printable means that the type t can be
used inside compare-based tree data structures as well as inside hash-
tables. Additionally Printable requires functions to convert the value into
short textual form, into pretty-printable textual form, or to XML form.

The Lattice module type builds on top of Printable by requiring lattice
functions for the greatest and least elements, a function that defines the

103

5 Implementation in Goblint

� �
module type Printable =
sig
type t
val short : int → t → string
val pretty : unit → t → doc
val printXml : α output → t → unit

val compare : t → t → int
val equal : t → t → bool
val hash : t → int
· · ·

end� �

� �
module type Lattice =
sig
include Printable
val top : unit → t
val bot : unit → t
val leq : t → t → bool
val join : t → t → t
val meet : t → t → t
val widen : t → t → t
val narrow : t → t → t
· · ·

end� �
Figure 5.4: The Printable and Lattice module signatures.

ordering relation, a binary least upper bound operator as well as a bi-
nary greatest lower bound operator. In addition, implementations of the
widening and narrowing operators are required.

Specifications for analyses conform to the module signature of Spec
(Figure 5.5). Each specification must define a lattice D, a context C, and
functions context and val_of to move between them. Context values are
used as a part of equation system variables, as described in Section 3.8,
whereas elements of D are used as values representing abstract states.

Another lattice G must be provided for analysis specifications, that will
represent the abstract values of global/flow-insensitive variables. Global
program variables will be used as the flow-insensitive constraint system
variables, and their values (from type G.t) will come exclusively from
side-effects.

Each analysis needs to have a name, a starting value for the state at the
beginning of the main function, and a query function. The name of the
analysis will be used in the configuration system to refer to the analysis.

The querying subsystem allows for communication between analyses—
each analysis must provide a function query that must be able to answer
questions according to the information available to the analysis at hand.
This is possible, as the resulting type of query is a complete lattice where

104

5.2 Structure of Goblint

� �
module type Spec =
sig
module D : Lattice
module C : Printable
module G : Lattice

val name : string

val context : D.t → C.t
val val_of : C.t → D.t

val startvalue : unit → D.t
val query : (D.t, G.t) ctx → Query.t → Answer.t

val assign : (D.t, G.t) ctx → lval → exp → D.t
val branch : (D.t, G.t) ctx → exp → bool → D.t
val body : (D.t, G.t) ctx → fundec → D.t
val return : (D.t, G.t) ctx → exp option → fundec → D.t
val special : (D.t, G.t) ctx → lval option → varinfo → exp list → D.t
val enter : (D.t, G.t) ctx → lval option → varinfo → exp list → (D.t * D.t) list
val combine : (D.t, G.t) ctx → lval option → exp → varinfo → exp list → D.t → D.t
· · ·

end� �

� �
type (α,β) ctx =
{ local : α
, global : varinfo → β
, ask : Query.t → Answer.t
, spawn : varinfo → α→ unit
, split : α → exp → bool → unit
, sideg : varinfo → β→ unit
}� �

Figure 5.5: Analysis specification signature, including type for ctx.

the greatest value > represents the fact that the answer is unknown to
the analysis. There is a risk of non-termination arising from circularly
defined queries—special care should be taken to avoid such situations.

Finally, each analysis needs to define seven specific transfer functions.
Transfer functions need to be provided for assignment statements, guard
statements, entering into, and returning from functions. The special
transfer function is applied for thread spawning and other API func-
tions whose code is not provided. For function calls, where the code is
provided, enter and combine, as introduced in Section 3.6, will be used.

The types lval, exp, fundec, and varinfo come from the CIL framework and
represent left-values, pure expressions, function definitions, and variable
names, respectively. The type doc also comes from CIL and represents
pretty-printed documents as introduced by Wadler [2003]. Italic is used
to emphasize standard OCaml types.

Note, that the first argument of each transfer function is an OCaml record

105

5 Implementation in Goblint

of the type (D.t,G.t) ctx. That argument contains several pieces of informa-
tion. Namely, the local and the global state, side-effecting function for
globals, function spawn for spawning threads, function split for splitting
paths, and a function ask that answers queries.

Using the function ask, other analyses can possibly be queried—in the
case that other analyses have been configured to run besides the analy-
sis at hand. Note, however, that as the resulting type of ask is a lattice,
one must always be prepared to act in a safe manner if the answer is
unknown, i.e., the result is >.

The function spawn is a specialized side-effecting function that is able to
send side-effects to appropriate starting points of spawned functions. In
the case that multiple analyses are combined together, spawn must first
gather all starting values for each spawned function.

A function call split a e b, however, is used to return multiple values form
a single function call. Each such value a that is returned using split is
considered to have passed a positive or negative guard (depending on
b) of the expression e. Such behavior is used to correlate the multiple
return values coming from multiple analyses.

The directory structure of Goblint is depicted in Figure 5.6; also show-
ing dependencies of important modules. Generic lattice modules, such
as lattices for maps and sets, can be found in the “domains” subdirec-
tory, whereas C language specific and analysis specific lattices are in
“cdomains”. All analyses specifications are in the directory “analyses”,
including the analysis combinator MCP that applies all the analyses
that are enabled using the configuration subsystem. All different solver
implementations and solver transformation combinators reside in the
“solvers” directory. Control flow graph generation, modules dealing with
constraint system generation and transformation live in the “framework”
directory. The module that combines all necessary modules into an
analyzer—Control—also resides in “framework”.

The Figure 5.7 shows module signatures for control flow graphs and
equation and inequation systems. Notice that here we only need to ac-
cess CFG edges in the reverse direction of control flow. Also, the figure

106

5.2 Structure of Goblint

/analyses

/framework /solvers

Base

Mutex

…

MCP

/domains

Hashcons

Deadcode

FromSpec

MyCFG

Printable

Lattice

/cdomains

Set

Map

…

LockDomain

BaseDomain

…

Control

EffectWCon

SLR

SLR
GlobSolverFrom-

EqSolver

GlobSolverFrom-
IneqSolver

…

…

VerifyPathSensitive

Figure 5.6: The directory structure in relation to important modules.

shows that equation and inequation systems only differ in the use of a
data type—a list for inequation systems and option for equation systems.

One simple way of transforming an inequation system into an equa-
tion system, as discussed in Section 4.2, can be realized by the functor
EqConstrSysOf—shown in Figure 5.8. Moreover, this method of transfor-
mation retains the types of values and of the variables.

Definitions of local equation- and inequation -solvers are displayed in
Figure 5.9. Each solver functor takes, first, the system argument, and,
second, the definition of a hash-map as arguments, and returns a module
that implements a solve function. The first argument to the solve function
is the -operator itself. Additionally, as the second argument of solve,
starting values can be provided—represented as an association list. The
final argument to solve is the list of interesting variables. The result is a
hash-map that stores a partial solution (candidate) of the system.

Another, more specialized, definition of constraint system is used in Gob-
lint—namely, GlobConstrSystem (Figure 5.10). This definition makes a
clear separation between flow-sensitive constraint system variables LVar

107

5 Implementation in Goblint

� �
module type CfgBackward =
sig
val prev : node → (edge * node) list

end
module type MonSystem =
sig
type αm
module V : Printable
module D : Lattice
val system : V.t → ((V.t → D.t) → (V.t → D.t → unit) → D.t) m

end
module type EqConstrSys = MonSystem with type αm ← α option
module type IneqConstrSys = MonSystem with type αm ← α list� �

Figure 5.7: the CFG and constraint systems.� �
module EqConstrSysOf (S:IneqConstrSys) : EqSystem =
struct
module V = S.Var
module D = S.Dom
let system x =
match S.system x with
| [] → None
| f :: fs →
let combine g h get set = D.join (g get set) (h get set) in
Some (fold_left combine f fs)

end� �
Figure 5.8: One way of transforming inequation system into equation

systems

and flow-insensitive variables GVar. Each kind of variable uses its own
separate lattice representation: D, or G, respectively. The function system,
representing the constraints, uses separate get and set functions for LVars
and GVars.

The Figure 5.11 shows, first, the module signature of a local solver for
constraint systems from type GlobConstrSys. The functor signature for
the solver is named GenericGlobSolver. Here, separate hash-map defini-
tions can be given for flow-sensitive and flow-insensitive constraint vari-
ables. For historical reasons, the -operator cannot be directly given to

108

5.2 Structure of Goblint

� �
module type GenericEqBoxSolver (S : EqConstrSys)

(H : Hash.H with type key=S.V.t) =
sig
let solve : (S.V.t → S.D.t → S.D.t → S.D.t)

→ (S.V.t * S.D.t) list → S.V.t list → S.D.t H.t
end

module type GenericIneqBoxSolver (S : IneqConstrSys)
(H : Hash.H with type key=S.V.t) =

sig
let solve : (S.V.t → S.D.t → S.D.t → S.D.t)

→ (S.V.t * S.D.t) list → S.V.t list → S.D.t H.t
end� �

Figure 5.9: Signatures for -solvers.� �
module type GlobConstrSystem =
sig
module LVar : Printable
module GVar : Printable
module D : Lattice
module G : Lattice
let system : LVar.t → ((LVar.t → D.t) → (LVar.t → D.t → unit) →

(GVar.t → G.t) → (GVar.t → G.t → unit) → D.t) list
end� �

Figure 5.10: Specialized inequation system with separate lattice for global
values.

the solver. However, starting values for both LVar and GVar variables
can be given, as well as the set of interesting flow-sensitive variables.
For obvious reasons, the set of interesting variables cannot contain flow-
insensitive solver variables—this would require to solve the constraint
system in its entirety. In addition, transformations into GenericGlobSolver
exist from both: GenericEqBoxSolver, and also from GenericIneqBoxSolver.

As shown in Figure 5.12, a given module specification S:Spec and control
flow graph Cfg:CfgBackward can be combined into a GlobConstrSys using
the functor FromSpec. The functor FromSpec does this by specifying the
constraint system types as follows:

109

5 Implementation in Goblint

� �
module type GenericGlobSolver (S : GlobConstrSys)

(LH : Hash.H with type key=S.LVar.t)
(GH : Hash.H with type key=S.GVar.t) =

sig
val solve : (S.LVar.t*S.D.t) list → (S.GVar.t*S.G.t) list

→ S.LVar.t list → S.D.t LH.t * S.G.t GH.t
end

module GlobSolverFromEqSolver (S:GenericEqBoxSolver) : GenericGlobSolver

module GlobSolverFromIneqSolver (S:GenericIneqBoxSolver) : GenericEqBoxSolver� �
Figure 5.11: Signatures for solvers with separate global values and

transformations.� �
module FromSpec (S:Spec) (Cfg:CfgBackward) : GlobConstrSys

module Verify
(S:GlobConstrSys)
(LH:Hash.H with type key=S.LVar.t)
(GH:Hash.H with type key=S.GVar.t) :

sig
val verify : D.t LH.t → G.t GH.t → unit

end� �
Figure 5.12: Generator of constraint systems and verification of a result.

type LVar.t = node * S.C.t
type GVar.t = varinfo
type D.t = S.D.t
type G.t = S.G.t

where node is the type representing the set N of all control flow graph
nodes, and varinfo, as already mentioned, the type of (global) program
variables.

An interesting difference between constraint systems from Chapter 3 and
FromSpec can be seen in the structure of flow-sensitive constraint system
variables. In the theoretical portion of the thesis, partial contexts were
realized using tuples as lattice elements. However, practically, this is
inconvenient as changes to the structure of the lattice would have to be

110

5.3 Dead-code lifting

made. Moreover, a fine-grained and configurable solution is preferred.
As the proposed result, not only projecting out the second component of
the tuple, but any projection is allowed.

In other aspects, the constraint system in FromSpec is defined similarly to
the constraint systems in Chapter 3—by pattern matching the edge labels
and applying appropriate functions from the specification S.

One advantage of the constraint system based approach is the fact that it
is straightforward to verify that a partial solution candidate is really a par-
tial solution. Simply, the solution condition is checked for each constraint.
In Goblint, this is done by the module Verify (signature in Figure 5.12).

5.3 Dead-code lifting

The fact that a program point is dead is in many cases detected by an anal-
ysis that resides deep inside the hierarchy of analyses and transforma-
tions. This information needs to be propagated to the appropriate level
so that the whole analysis can benefit from the information. For that pur-
pose, Goblint contains an analysis transformation DeadCodeLifter, that
extends its argument analysis with a special value for unreachable code.
To lessen the overhead of messaging DeadCodeLifter, this propagation is
done using an OCaml exception.

The described transformation allows to relegate handling of unreachable
code to one single analysis specification module and other analyses can
then assume that program points are live. Additionally, if an analysis
detects unreachable code, simply raising an exception is enough to notify
DeadCodeLifter of that fact.

In the default configuration of Goblint, the transformation DeadCodeLifter
will be done last—directly before generating the constraint system with
FromSpec.

111

5 Implementation in Goblint

� �
type α hobj = private {
obj : α;
tag : int ;
hcode : int ;

}� �
Figure 5.13: The hobj type from the Batteries library.

5.4 Hash consing

Hash consing is a technique used in functional programming languages
for reusing objects in memory with the hope to minimize memory usage.
It is particularly useful if, during execution, the program generates a large
amount of values of the same type.

In OCaml, hash consing consists of wrapping the values of some type in
values of hobj type using the hashcons function. The function will check
internally if a the same value has already been seen by the function—
using a hash-table. In the case that the value has not been seen, the value
will be wrapped inside a hobj and inserted into the hash-table, after that
the wrapped value is, additionally, returned. Otherwise, the equivalent
value from the hash-table will be returned.

Note that hashcons can be seen as an identity function. However, if only
the value returned by hashcons will be used, and not the input value,
then the memory allocated for the copy can be re-claimed by the garbage
collector of OCaml.

An additional possible advantage, for using hash consing is that the hash
of a value is stored with the object and does not have to be recomputed.
This detail minimizes the overhead of applying hash consing for use cases
where the values are stored in hash-maps anyway—like in the solver im-
plementation in Goblint. Also, using the hash consing, it is possible to
optimize equality checking—namely, using a unique integer identifica-
tion number tag that is generated for all hash-consed values.

In Goblint, hash consing is realized as an analysis specification trans-
formation and it is applied next to last—directly before DeadCodeLifter
is applied. Hash consing can be detrimental to efficiency in some cases,

112

5.5 The query system

e.g., for the analysis of small programs. For those cases it can be disabled
by setting the configuration variable "ana.hashcons" to false.

5.5 The query system

In the following section, a simplified formalization of the querying sys-
tem is presented. Details about the implementation are given in the Sec-
tion 5.6.

Given a n-tuple lattice D = D1 × . . . × Dn, where each component Di
is the analysis domain for the i-th analysis for some fixed ordering of
the performed analyses. Given a set of queries Q, a complete lattice of
answers A, and additionally, a query function for each analysis

qi ∈Di→ (Q→A)→Q→A .

The answer lattice, similarly to analysis domains, is interpreted using a
description relation. In this case, however, the description relation cor-
relates concrete states with tuples consisting of a query and its answer:
∆ ⊆ S × (Q×A) . In addition, though, the lattice must ensure that the
greatest lower bounds of x and y, ofA, that both describe a concrete state
s for a query k ∈Q, also describe s for the same query, i.e,

s ∆ (k, x) ∧ s ∆ (k, y) =⇒ s ∆ (k, xu y) .

The combined analysis that uses the domain D can implement its query
function as the following recursive function

qC (d1, . . . , dn) x=
l
{qi di (qC (d1, . . . , dn)) x | 1≤ i≤ n} .

Note that the combined query function qC with partially applied current
local state (d1, . . . , dn) is made available to all transfer functions and query
functions of the child-analyses. This allows a form of communication
between analyses, possibly using several levels of sub-queries. Care must
be taken, however, to avoid non-termination arising from cyclic queries.

113

5 Implementation in Goblint

5.6 Combining analysis specifications

Registering analyses

The Goblint framework allows combining analyses specifications in a
way that allows each analysis to benefit from other analyses. This feature
has proven to be very useful, as it allows users of Goblint to quickly
add new analyses without changing anything in the framework, other
analyses, or even the build system. The combinator itself is implemented
as the MCP analysis, conforming to the Spec module specification. First,
however, the available analyses must be collected.

Using new OCaml 4.00 features that allow to use modules as first-class
values, a function register_analysis is provided (see Figure 5.14). That func-
tion then populates a table of combinable analyses analyses_table in a way
that assigns each module an integer ID.

OCaml Obj module

The standard library of OCaml contains the module Obj (type in Fig-
ure 5.15), that allows to circumvent the type-system of OCaml by casting
a value of any type into a special type Obj.t and, more importantly, any
value of type Obj.t into a value of any type.

Obviously, these functions cannot be used for arbitrary type conversion.
The function repr can be used freely, however, the function obj must only� �

type spec_modules = { spec : (module Spec)
; dom : (module Lattice.S)
; glob : (module Lattice.S)
; cont : (module Printable.S)
}

val register_analysis : (module Spec) → unit
val analyses_table : (int * spec_modules) list ref� �

Figure 5.14: Registering analyses

114

5.6 Combining analysis specifications

be used to convert values back to their original type (or type with the
exact same structure).

The module Obj is a powerful tool that allows implementation of many in-
teresting features, e.g., printf style output functions and generic serializing/de-
serializing of any OCaml value. Its usage, however, is discouraged as it
is difficult to debug.

The Master Control Program analysis

At the initialization phase, the MCPmodule asks the configuration subsys-
tem to provide the set of active analyses—the analyses that are scheduled
to be run. Additionally, for each active analysis, it checks whether that
analysis should be run context sensitively or not.

The lattices for flow sensitive and insensitive constraint variables are then
constructed in the following manner: lattice elements are lists where each
active analysis is represented as one tuple in the list.

type MCP.D.t = (int * Obj.t) list
type MCP.G.t = (int * Obj.t) list
type MCP.C.t = (int * Obj.t) list

The first component of the tuple is the ID of the analysis and the second
is the Obj.t representation of the lattice value. This means that all used
lattice elements are lists where the list length equals the number of active
analyses.

The context values, however, only contain tuples for analyses that were
configured to run context sensitively. This means that the MCP.context

� �
module Obj :
sig
type t
val obj : t → α
val repr : α→ t
· · ·

end� �
Figure 5.15: The type of the Obj module.

115

5 Implementation in Goblint

function filters out all tuples that are context sensitive and the MCP.val_of
inserts > values of the “missing” analysis values.

Communication between analyses, as discussed earlier, is realized using
a query system. Each active child analysis has provided a query function
that answers questions based on the knowledge of the analysis alone, or
in combination with a recursive query.

Examples of currently implemented queries are: thread uniqueness,
thread priority, pointer reachability, may-points to information, and in-
teger evaluation queries. Evaluation of function pointers, to allow for
dynamic procedure calls, is also implemented using a query. Adding
new queries is done by simply extending the variant type Query.t with
a new constructor. The lattice of answers Answer.t is also a variant type,
allowing for integer, boolean, expression set, and left-value set values—
among others.

The recursive function MCP.query, as shown previously, then simply com-
putes the greatest lower bound of the answers of the active analyses, and
additionally, through the ctx value, provides itself for use in recursive
queries.

The query function of the MCP analysis is provided to all transfer func-
tion calls of active child-analyses. This means that each child-analysis
can query the greatest lower bound value of a set of centrally defined
questions.

� �
void foo(int do_work){
if (do_work)
lock(&m);
· · ·
if (do_work)
work++;
· · ·
if (do_work)
unlock(&m);

}� �
Figure 5.16: A path-sensitivity example.

116

5.7 Path-sensitivity

5.7 Path-sensitivity

The classical example that needs path-sensitivity [Vojdani and Vene,
2009] comes from data-race analysis, and deals with the case where
taking a lock and modifying some variable is done conditionally, as in
Figure 5.16. Note, that there are only two possible paths through the
code in the example (in the case that do_work is not modified in another
thread). Either the variable do_work is true in both if-statements or false
in both if-statements.

Given a value analysis domain V and must-lockset domain L, the naive
combination of these analyses using the Cartesian product D = L × V
would lose such conditional information. After each conditional state-
ment in the example, both domains from each branch must be joined, re-
spectively. The least upper bound operation for must-locksets will, there-
fore, not retain any information about the lock m.

The solution to the example, as presented by Vojdani and Vene [2009], is
to store the analysis information as implications from must-lockset to the
values that hold for that lockset: D= L→V. Given that the value anal-
ysis performs Conditional Constant Propagation [Wegman and Zadeck,
1991], data-race freedom can be shown for this example. Moreover, as
the lockset domain L is finite, the resulting implication domain will con-
tain infinite ascending chains only when V contains infinite ascending
chains.

The implementation of this feature in Goblint is realized as a transforma-
tion of the analysis specification—using the functor PathSensitive. By de-
fault, it is applied directly toMCP and is given as an input to the hash cons
lifter. The functor PathSensitive receives an analysis specification over the
lattice D, that additionally contains a function should_join, and returns
an analysis specification over a special power-set lattice. The binary least
upper bound operator for that lattice is defined as X t Y = n(X ∪ Y)
using normalization function

n(Z) =

n({xt y}∪ (Z \ {x, y})) if ∃x, y ∈ Z, x 6= y ∧ should_join(x, y)
Z otherwise .

117

5 Implementation in Goblint

Using this construction, the analysis that uses the Cartesian product lat-
tice D= L×V can be transformed to be path-sensitive using the function

should_join (l1, v1) (l2, v2) =

true if l1 = l2

false otherwise

A similar definition is given for the analysis combinator MCP. First, the
configuration subsystem is queried for analyses that should be run path-
sensitively. Then, it filters out non-path-sensitive components of both
arguments of should_join and then performs an equality check.

Although the functor PathSensitive modifies the analysis domain to rep-
resent a set of paths, the context is not changed. The different paths are
simply distributed to different contexts, where each context represents
only one path, e.g., instead of using a single solver variable for both called
paths [rf , {a, b}] we can instead use the union of [rf , a] and [rf , b]. This is
safe as the different paths cannot interfere with each other, but it is also
advantageous as it decreases the number of needed contexts and possi-
bly allows more reuse, e.g., [rf , a] and [rf , b] might be used separately for
other calls.

5.8 Solver selection

To simplify the dynamic selection of solvers, Goblint provides a special
solver Selector, that applies the solver specified by the configuration vari-
able "solver". Similarly to analysis specifications, solver implementations
that conform to the module type GenericGlobSolver can be registered us-
ing the function add_solver.

Registering a solver is implemented as adding the solver module to an
association list. At the call to solve, the association list is traversed and
one solver, according to configuration, is selected. The solve function of
the selected solver is then used.

As dynamic solver selection in this convenient way is only possible by
storing modules in a list data structure, it requires new features added
in OCaml 4.00.

118

6 Conclusion

Building static analysis tools takes a lot of time and effort. Novel ideas in
static program analysis are, in many cases, based on previous work, and
therefore, should theoretically allow to reuse previous implementations.
Those previously available tools, however, might not be flexible enough
to support the new ideas.

Building a new, fully featured analysis tool for each new analysis, on the
other hand, is not practical. Even for prototype implementations, a lot
of effort is required for reimplementing classical analyses—or other com-
monly needed structures.

As a partial solution, analyzers for toy-languages could be created instead.
This would allow to forego the issues that arise from supporting a non-
trivial subset of some widely used language. It is clear, however, that this
does not directly help to improve the quality of safety-critical software.

Having a single theoretical program analysis framework that is general
enough to support a large variety of analyses would help to concentrate
the efforts to write practical, useful implementations. The existence of
generic and configurable implementations would encourage incremental
research—it would make it easier to implement new analyses and test
new analyses against real-world examples.

As one candidate for such a single analysis framework, we presented side-
effecting constraint systems that extend the constraint systems that are
known in static program analysis. Additionally, side-effecting constraint
systems allows, among others, to implement partial context sensitivity—
a feature that could be crucial to achieve reasonable efficiency in some
situations. We saw that the techniques of widening and narrowing from

119

6 Conclusion

Cousot and Cousot can be efficiently used within the (side-effecting) con-
straint system framework—even in the case where local solving is re-
quired.

The side-effecting constraint system representation forms the core of Gob-
lint—making it possible, among other things, to add new analyses in a
straightforward manner, and to combine analyses in a way that allows
analyses to be combined to make use of the other analyses knowledge.
Goblint allows flexible configuration, vis-à-vis context-, flow-, and path-
sensitivity.

I hope that the presented theoretical frameworks and the implementation
in OCaml will be useful to others and provide interested people a better
starting position to develop new analyses for the C language.

Although only forward analyses were considered in this thesis (and in
Goblint), some backwards analyses, e.g., liveness of variables, are also
classically represented using a constraint system. For such cases, side-
effecting could also potentially be beneficial, however, it is still unclear
how to combine backward and forward analyses in a generic manner.

Context sensitive analysis, as presented in the thesis, start with a query
about the value of a program point in some specific context. One in-
teresting future direction is making the query to the analysis more fine-
grained, e.g., one might want to know whether a specific error can occur.
One might hope that such specific queries might be easier to compute
than the full information.

Another open question is the possibility of combining side-effecting con-
straint systems based analyses with other, more precise, techniques, e.g.,
strategy iteration [Gawlitza and Seidl, 2007].

120

Bibliography

G. Amato and F. Scozzari. Localizing widening and narrowing. In F. Lo-
gozzo and M. Fändrich, editors, Static Analysis, pages 25–42. Springer,
2013.

L. O. Andersen. Program Analysis and Specialization for the C Programming
Language. PhD thesis, DIKU, University of Copenhagen, 1994.

B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. A static analyzer for large safety-critical
software. In ACM SIGPLAN Notices, volume 38, pages 196–207. ACM,
2003.

F. Bourdoncle. Interprocedural abstract interpretation of block structured
languages with nested procedures, aliasing and recursivity. In Program-
ming Language Implementation and Logic Programming, 2nd International
Workshop PLILP’90, volume 456 of Lecture Notes in Computer Science,
pages 307–323. Springer-Verlag, 1990.

F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In In
Proceedings of the International Conference on Formal Methods in Program-
ming and their Applications, pages 128–141. Springer-Verlag, 1993.

C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional
shape analysis by means of bi-abduction. In POPL’09, pages 289–300.
ACM Press, 2009.

A. Cortesi and M. Zanioli. Widening and narrowing operators for ab-
stract interpretation. Computer Languages, Systems & Structures, 37(1):
24–42, 2011.

121

Bibliography

P. Cousot. Semantic foundations of program analysis. In S. Muchnick
and N. Jones, editors, Program Flow Analysis: Theory and Applications,
chapter 10, page 303—342. Prentice-Hall, Inc., Englewood Cliffs, New
Jersey, U.S.A., 1981.

P. Cousot and R. Cousot. Static determination of dynamic properties
of programs. In B. Robinet, editor, Second International Symposium on
Programming, Paris, France, page 106—130. Dunod, Paris, 1976.

P. Cousot and R. Cousot. Abstract Interpretation: A unified lattice model
for static analysis of programs by construction or approximation of
fixpoints. In 4th ACM Symp. on Principles of Programming Languages
(POPL’77), pages 238–252. ACM Press, 1977a.

P. Cousot and R. Cousot. Static Determination of Dynamic Properties of
Recursive Procedures. In IFIP Conf. on Formal Description of Program-
ming Concepts, pages 237–277. North-Holland, 1977b.

P. Cousot and R. Cousot. Comparing the galois connection and
widening/narrowing approaches to abstract interpretation. In
M. Bruynooghe and M. Wirsing, editors, PLILP, volume 631 of LNCS,
pages 269–295. Springer, 1992.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In POPL’78, pages 84–96. ACM Press,
1978.

P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and
X. Rival. The ASTRÉE analyzer. In ESOP’05, volume 3444 of LNCS,
pages 21–30. Springer, 2005.

P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and
X. Rival. Combination of abstractions in the Astrée static analyzer.
In M. Okada and I. Satoh, editors, Eleventh Annual Asian Computing
Science Conference (ASIAN’06), pages 272–300, Tokyo, Japan, LNCS 4435,
2007. Springer, Berlin.

M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program verification
in polynomial time. In PLDI’02, pages 57–68. ACM Press, 2002.

122

Bibliography

C. Fecht. Abstrakte Interpretation logischer Programme: Theorie, Implemen-
tierung, Generierung. PhD thesis, Universität des Saarlandes, 1997.

C. Fecht and H. Seidl. A Faster Solver for General Systems of Equations.
Sci. Comput. Programming, 35(2):137–161, 1999.

A. Flexeder, B. Mihaila, M. Petter, and H. Seidl. Interprocedural control
flow reconstruction. In APLAS’10, volume 6461 of LNCS, pages 188–
203. Springer, 2010.

T. Gawlitza and H. Seidl. Precise fixpoint computation through strat-
egy iteration. In Programming Languages and Systems, pages 300–315.
Springer, 2007.

D. Gopan and T. Reps. Lookahead widening. In T. Ball and R. Jones,
editors, Computer Aided Verification, volume 4144 of LNCS, pages 452–
466. Springer, 2006.

D. Gopan and T. Reps. Guided static analysis. In H. Nielson and G. Filé,
editors, Proc. of the 14th International Static Analysis Symposium (SAS),
volume 4634 of LNCS, pages 349–365. Springer, 2007.

D. Grove and C. Chambers. A framework for call graph construction
algorithms. ACM Trans. Prog. Lang. Syst., 23:685–746, Nov. 2001.

B. Gulavani, S. Chakraborty, A. Nori, and S. Rajamani. Automatically
refining abstract interpretations. In C. Ramakrishnan and J. Rehof, ed-
itors, Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’08), volume 4963 of LNCS, pages 443–458. Springer, 2008.

S. Gulwani, S. Jain, and E. Koskinen. Control-flow refinement and
progress invariants for bound analysis. In Proceedings of the 2009 ACM
SIGPLAN conference on Programming language design and implementation
(PLDI’09), page 375–385, June 2009.

J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The Mälardalen
WCET benchmarks — past, present and future. In B. Lisper, editor,
WCET2010, pages 137–147, Brussels, Belgium, July 2010. OCG.

S. Z. Guyer and C. Lin. Client-Driven pointer analysis. In SAS’03, volume
2694 of LNCS, pages 214–236. Springer, 2003.

123

Bibliography

N. Halbwachs and J. Henry. When the decreasing sequence fails. In
A. Miné and D. Schmidt, editors, SAS, volume 7460 of LNCS, pages
198–213. Springer, 2012. ISBN 978-3-642-33124-4.

J. Henry, D. Monniaux, and M. Moy. Succinct representations for abstract
interpretation. In A. Miné and D. Schmidt, editors, Static Analysis Sym-
posium (SAS’12), volume 7460 of LNCS, pages 283–299. Springer Berlin
/ Heidelberg, 2012.

M. Hofmann, A. Karbyshev, and H. Seidl. What is a pure functional? In
ICALP (2), pages 199–210. LNCS 6199, Springer, 2010a.

M. Hofmann, A. Karbyshev, and H. Seidl. Verifying a local generic solver
in Coq. In SAS’10, pages 340–355. LNCS 6337, Springer, 2010b.

B. Jørgensen. Finding fixpoints in finite function spaces using neededness
analysis and chaotic iteration. In SAS’94, volume 864 of LNCS, pages
329–345. Springer, 1994.

G. Kildall. A unified approach to global program optimization. In
POPL’73, pages 194–206. ACM Press, 1973.

J. Knoop and B. Steffen. The Interprocedural Coincidence Theorem. In
Fourth International Conference on Compiler Construction, CC’92, pages
125–140, Paderborn, Germany, 1992. Springer-Verlag, LNCS 641.

C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In CGO’04, pages 75–88. IEEE
Press, 2004.

B. Le Charlier and P. Van Hentenryck. A Universal Top-Down Fixpoint
Algorithm. Technical Report 92–22, Institute of Computer Science, Uni-
versity of Namur, Belgium, 1992.

N. G. Leveson and C. S. Turner. An investigation of the therac-25 acci-
dents. Computer, 26(7):18–41, 1993.

O. Lhoták and K.-C. A. Chung. Points-to analysis with efficient strong
updates. In POPL’11, pages 3–16. ACM Press, 2011.

124

Bibliography

A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object sen-
sitivity for points-to analysis for java. ACM Transactions on Software
Engineering and Methodology, 14:1–41, Jan. 2005.

D. Monniaux and J. L. Guen. Stratified static analysis based on variable
dependencies. In The Third International Workshop on Numerical and Sym-
bolic Abstract Domains, 2011.

G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate
Language and Tools for Analysis and Transformation of C Programs.
In CC’02, volume 2304 of LNCS, pages 213–228. Springer, 2002.

K. Poulsen. Software bug contributed to blackout, Feb. 2004. URL http:
//www.securityfocus.com/news/8016.

T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow anal-
ysis via graph reachability. In POPL’95, pages 49–61. ACM Press, 1995.

N. Rinetzky, J. Bauer, T. W. Reps, S. Sagiv, and R. Wilhelm. A semantics
for procedure local heaps and its abstractions. In POPL’05, pages 296–
309, 2005.

H. Seidl and V. Vojdani. Region analysis for race detection. In SAS’09,
volume 5673 of LNCS, pages 171–187. Springer, 2009.

H. Seidl, V. Vene, and M. Müller-Olm. Global invariants for analyzing
multithreaded applications. Proc. of the Estonian Academy of Sciences:
Phys., Math., 52(4):413–436, 2003.

M. Shapiro and S. Horwitz. Fast and accurate flow-insensitive points-to
analysis. In POPL’97, pages 1–14. ACM Press, 1997.

M. Sharir and A. Pnueli. Two approaches to interprocedural data flow
analysis. In S. Muchnick and N. Jones, editors, Program Flow Analysis:
Theory and Application, pages 189–233. Prentice-Hall, 1981.

R. Sharma, I. Dillig, T. Dillig, and A. Aiken. Simplifying loop invari-
ant generation using splitter predicates. In G. Gopalakrishnan and
S. Qadeer, editors, Computer Aided Verification (CAV’11), volume 6806
of LNCS, pages 703–719. Springer, 2011.

125

http://www.securityfocus.com/news/8016
http://www.securityfocus.com/news/8016

Bibliography

A. Simon and A. King. Widening polyhedra with landmarks. In
N. Kobayashi, editor, APLAS, volume 4279 of LNCS, pages 166–182.
Springer, 2006. ISBN 3-540-48937-1.

B. Steensgaard. Points-to analysis in almost linear time. In POPL’96, pages
32–41. ACM Press, 1996.

R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan.
Soot: A java bytecode optimization framework. In CASCON’99. IBM
Press, 1999.

B. Vergauwen, J. Wauman, and J. Lewi. Efficient fixpoint computation.
In SAS’94, volume 864 of LNCS, pages 314–328. Springer, 1994.

V. Vojdani. Static Data Race Analysis of Heap-Manipulating C Programs. PhD
thesis, University of Tartu, 2010.

V. Vojdani and V. Vene. Goblint: Path-sensitive data race analysis. Annales
Univ. Sci. Budapest., Sect. Comp., 30:141–155, 2009.

P. Wadler. A prettier printer. The Fun of Programming, Cornerstones of
Computing, pages 223–243, 2003.

M. N. Wegman and F. K. Zadeck. Constant propagation with conditional
branches. ACM Trans. Program. Lang. Syst., 13(2):181–210, Apr. 1991.

R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M. Anderson,
S. W. K. Tjiang, S.-W. Liao, C.-W. Tseng, M. W. Hall, M. S. Lam, and
J. L. Hennessy. SUIF: An infrastructure for research on parallelizing
and optimizing compilers. SIGPLAN Not., 29:31–37, 1994.

126

	Abstract
	Introduction
	A Unified Framework for Program Analysis
	Programs
	Semantics
	Abstraction
	Constraint Systems
	Intra-Procedural Constraint Systems
	Analyzing Procedures
	The Functional Approach
	The Call-stack-0 Approach
	Partial tabulation

	Local Solving
	Partial Context-Sensitivity
	Proof of soundness
	Flow-insensitive Analyses
	Constraint Systems with Side-Effects
	A Generic local solver
	Dynamic Procedure Calls
	Forward Propagation
	Experimental Evaluation
	Conclusion

	Adding Widening and Narrowing
	Classical widening/narrowing
	Equation systems
	Chaotic fixpoint iteration
	Two-phased widening/narrowing
	The combined update operator
	Enforcing termination
	Local generic solvers
	The structured local recursive solver
	Localized [] in SLR
	Restarting in SLR
	Solver for side-effecting equations systems
	Experimental evaluation
	Conclusion

	Implementation in Goblint
	Configuration
	Structure of Goblint
	Dead-code lifting
	Hash consing
	The query system
	Combining analysis specifications
	Path-sensitivity
	Solver selection

	Conclusion

