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Abstract— The integration of Electric Vehicles (EVs) into the
power grid is a challenging task. From the control perspective,
one of the main challenges is the definition of a comprehensive
control structure that is scalable to large EV numbers. This
paper makes two key contributions: (i) It defines the EV
ADMM framework for decentralized EV charging control. (ii)
It evaluates EV ADMM using actual data and various EV
fleet control problems. EV ADMM is a decentralized optimiza-
tion algorithm based on the Alternating Direction Method of
Multipliers (ADMM). It separates the centralized optimal fleet
charging problem into individual optimization problems for the
EVs plus one aggregator problem that optimizes fleet goals.
Since the individual problems are coupled, they are solved
consistently by passing incentive signals between them. The
framework can be parameterized to trade-off the importance
of fleet goals versus individual EV goals, such that aspects like
battery lifetime can be considered. We show how EV ADMM
can be applied to control an EV fleet to achieve goals such
as demand valley filling and minimal-cost charging. Due to
its flexibility and scalability, EV ADMM offers a practicable
solution for optimal EV fleet control.

I. INTRODUCTION

Integrating large fleets of Electric Vehicles (EVs) into

the power grid requires a comprehensive control structure.

EVs represent a significant load increase to the system and

without control they may cause stability problems and lead

to an undesirable grid operation state [1]. However, EVs

may also benefit the grid and improve its operation, e.g.,

by supplying regulation power [2]. If EVs are allowed to

discharge, they could be used as mobile storage units. Such

storage units would support the grid and help integrate

renewable energy resources [3]. The challenge lies in the

definition of a control structure that is able to deal with this

large number of distributed devices.

The control of power system devices is usually done in a

centralized manner, i.e., centralized optimization for open-

loop control. Many pilot projects on EV integration, like [4],

follow this approach. However, the introduction of thousands

or even millions of EVs as controllable devices would make

a centralized optimization impracticable. The centralized

optimization of as many as 50 EVs can already be a

daunting task (cf., [5]). To address this issue, we consider
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a decentralized control structure, where computation is

distributed across many nodes and coordinated by a central

instance. Similar structures for decentralized EV charging

control have already been applied to solve the valley filling

problem in [6], [7] and [8]. However, many other relevant

control objectives besides valley filling exist, such as

price-based optimization [5], and direct coupling between

Renewable Energy (RE) and EV demand [9]. It is not

clear whether these control problems can also be solved

using the methods proposed in [6], [7] and [8], since they

require a strictly convex cost function. To address this

shortcoming, in this paper we introduce EV ADMM, a

decentralized optimization framework that is able to deal

with various EV control problems. EV ADMM is based on

the Alternating Direction Method of Multipliers (ADMM),

which can deal with non-strictly convex cost functions. We

build upon recent work in [10] that offers a framework for

decentralized dynamic energy network management. Our

contribution is to derive the ADMM algorithm focusing on

EV charging and evaluate its performance by applying it to

a range of EV charging control problems, including valley

filling, price-based optimization, and direct coupling with

renewable energy sources.

The remainder of this paper is organized as follows: In

Section II, the optimal fleet charging problem and its solution

via ADMM is presented. In Section III, we propose the EV

ADMM framework and define its application to several EV

control problems. In Section IV, we evaluate EV ADMM

based on numerical simulations using actual data.

II. PROBLEM FORMULATION

We consider a hierarchical control structure where an

aggregator influences EV charging behavior through an in-

centive signal to reach certain goals. The aggregator could

be any party interested in a particular aggregate EV fleet

consumption profile, e.g., a utility or an Independent System

Operator (ISO). As mentioned in [11] and [12], the goal of

the aggregator is usually in conflict with the individual EV

goals. While the aggregator wants to use EVs to minimize

their operational costs, the individual EVs want to minimize

their charging and battery depreciation costs. Any solution

of the EV charging problem therefore has to trade-off the

aggregator’s goal against the goals of individual EVs. To

address this, we define the optimal fleet charging problem as

a joint optimization with a trade-off parameter γ:



TABLE I

OPTIMAL FLEET CHARGING PROBLEM VARIABLES DESCRIPTION

Variable Description Type

xa Aggregated EV profile for all time slots Vector ∈ R
T

xi Profile of a single EV for all time slots Vector ∈ R
T

fa(xa) Cost function of the aggregator Convex function

fi(xi) Cost function of the EV i Convex function

Xa Constraints set of the aggregator Convex set

Xi Constraints set of EV i Convex set

γ Goals trade-off parameter Scalar

minimize
xa,xi

fa(xa)+ γ ∑
NEV

i=1 fi(xi)

subject to xa = ∑
NEV
i=1 xi

xa ∈ Xa

xi ∈ Xi; i = 1, . . . ,NEV .

(1)

The variables of the EV fleet charging problem are described

in Table I. We use a discrete time model with time slots

t ∈ {1, . . . ,T}. The aggregated EV charging profile is defined

as the vector xa = [xa(1), . . . ,xa(T )]
T . We consider a specific

number of EVs defined by NEV . The charging profile of

each EV i is defined by a vector xi = [xi(1), . . . ,xi(T )]
T for

i = 1, . . . ,NEV . For an EV i a value xi(t)> 0 means that the

EV is consuming energy, i.e., charging, at time slot t. For

xi(t) < 0 an EV i is feeding energy back to the grid, i.e.,

discharging. The same convention is used for the aggregated

EV profile xa. Intuitively, the fleet charging optimization

problem minimizes the aggregator and the EVs objective

functions subject to its local individual constraints. However,

the individual problems are coupled by the equilibrium

constraint, xa = ∑
NEV
i=1 xi.

This problem can be formulated as a standard exchange

optimization problem. To do this, we consider the EVs and

the aggregator as agents and define the number of agents as:

N = NEV + 1. (2)

The aggregator is redefined as agent N, where:

xN =−xa. (3)

The cost function of agent N is:

fN(xN) =

{

fa(−xN) if − xN ∈ Xa

∞ otherwise.
(4)

The EVs are agents i = 1, . . . ,N−1 and their cost function

is:

fi(xi) =

{

γ fi(xi) if xi ∈ Xi

∞ otherwise.
(5)

With this definition the optimal fleet charging problem

becomes an exchange problem:

minimize
xi

∑N
i=1 fi(xi)

subject to ∑N
i=1 xi = 0.

(6)

The exchange problem considers N agents exchanging

a common good under an equilibrium constraint. It is a

canonical optimization problem with many applications. In

economics, e.g., this formulation is used to solve market

equilibrium problems. According to [10], the ADMM so-

lution of the exchange problem is:

xk+1
i = minxi

fi(xi)+ ykxi +
ρ
2
||xi − xk

i + xk||22
yk+1 = yk +ρxk+1,

(7)

where k is the current iteration number, ρ > 0 is the

augmented Lagrangian parameter also known as penalty

parameter, x = 1/N ∑N
i=1 xi is the average profile of all the

agents, and y ∈ R
T is the dual variable, which one can

interpret as price vector. With u= y/ρ the solution becomes:

xk+1
i = minxi

fi(xi)+
ρ
2
||xi − xk

i + xk + uk||22
uk+1 = uk + xk+1.

(8)

Using the exchange problem solution (8) and taking into

account the definitions in (3), (4) and (5), we can formulate

the ADMM solution to the optimal fleet charging problem

as follows:

EV ADMM

1) For each EV i = 1, . . . ,NEV :

xk+1
i =
minimize

xi

γ fi(xi)+
ρ
2
||xi − xk

i + xk + uk||22

subject to xi ∈ Xi.

(9)

2) For the aggregator:

xk+1
N =
minimize

xN

fa(−xN)+
ρ
2
||xN − xk

N + xk + uk||22

subject to −xN ∈Xa.
(10)

3) Incentive signal update:

xk+1 =
1

N

N

∑
i=1

xk+1
i (11)

uk+1 = uk + xk+1. (12)

The EVs and the aggregator solve the above optimization

problems independently in each step k while the continuous

update of the incentive signal drives the solution to the

optimum of the original EV fleet charging problem.

Convergence criteria: As defined in [13], the convergence

criteria for ADMM are given by the primal feasibility rk ∈
R

T and the dual feasibility sk
i ∈ R

T :

rk = xk (13)

sk
i = −ρN(xk

i − xk−1
i +(xk−1 − xk)), (14)

with sk = [sk
1, . . . ,r

k
N ]

T , the stopping criteria is:

||rk||2 ≤ ε pri

||sk||2 ≤ εdual ,
(15)

where ε pri > 0 and εdual > 0.



Penalty parameter ρ: Although some guidelines for

choosing ρ can be found in [13] and [10], the literature does

not offer a comprehensive method for this task. In this work

we used empirical values.

III. THE EV ADMM FRAMEWORK

The EV ADMM framework is the application of the

ADMM solution to the optimal fleet charging problem. Fig.

1 describes the framework using a sequence diagram. As

we can see, the aggregator first sends an incentive signal

to the EVs. This incentive signal is composed of the scaled

price uk and the average profile of all agents xk. Based on

this incentive signal, the EVs and the aggregator solve their

individual optimization problem, defined in (9) and (10).

The EVs then send their solution to the aggregator as an

aggregated response, xk+1
EV = 1

N ∑
NEV

k=1 xk+1
i . This aggregated

response can be computed by a router, who receives the

individual EV responses and sends the aggregated response

to the aggregator. The aggregator later adds its result to

obtain the average of all agents, xk+1 = xk+1
EV +

xk+1
N
N

. With

this value, the aggregator then updates the scaled price

uk+1 according to (12). This sequence is repeated until the

convergence criteria in (15) are met.

Using EV ADMM, the aggregator and the EV optimization

problems can be defined independently of each other. The

solution to the original optimal fleet charging problem

is obtained by incorporating these problems into the

EV ADMM framework. Let us now define the EV

ADMM formulation for some common aggregator and EV

optimization problems. In the following, we consider convex

optimization problems, which guarantee globally optimal

solutions. Furthermore, to allow for a trade-off comparison

between the aggregator and EV goals, the unit of their cost

functions have to be equal, in this case they are measured

in EUR.
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Fig. 1. EV ADMM sequence diagram.

A. Aggregator optimization problem

We defined three aggregator optimization problems that

represent typical goals for EV fleet charging found in the

literature. These lead to different objective functions fa(xa)
and constraint set Xa in problems (1) and (10), respectively.

Valley filling: In the valley filling problem, the goal is to

flatten a given fixed demand profile as much as possible, e.g.,

by filling the overnight valley in the fixed demand with the

demand caused by the EVs. Our formulation of the valley

filling problem is similar to the one in [7]:

minimize
xa

δ ||D+ xa||
2
2, (16)

where the fixed demand profile D ∈ R
T is assumed to

be known and the parameter δ is empirically obtained by

dividing the average energy price by the average of the fixed

demand and multiplying it by the time step ∆t. Parameter

δ guarantees that the cost of the aggregator’s optimization

problem is in EUR.

Using the formulation in (10), the valley filling problem in

the EV ADMM framework becomes:

xk+1
N =
min
xN

δ ||D− xN||
2
2 +

ρ
2
||xN − xk

N + xk − uk||22.
(17)

This problem can be solved analytically:

xk+1
N =

ρ
ρ−2δ (x

k
N − xk + uk)− 2δ

ρ−2δ D.
(18)

Price-based: In the case of a price-based optimization,

the goal is to minimize the charging costs of an EV fleet

while satisfying constraints on the minimal and maximal

aggregated (dis)charging power. In [5], a centralized solution

to this problem is presented, where the aggregated charging

is constrained by the available renewable energy (RE) gener-

ation. Using EV ADMM, we can formulate a decentralized

solution to this problem. We define the following aggregator

problem:

minimize
xa

pT xa∆t

s.t. xa ≤ xa ≤ xa,
(19)

where ∆t is the time step duration. The maximal aggregated

demand profile xa ∈R
T , the maximal power profile that can

be fed back into the grid xa ∈ R
T , and the electricity price

p ∈ R
T are assumed to be known.

The price-based optimization problem in (19) is reformulated

for the EV ADMM framework according to (10) as:

xk+1
N =
min

xN

−pT xN∆t + ρ
2
||xN − xk

N + xk + uk||22

s.t. −xa ≥ xN ≥−xa.

(20)

Direct coupling: The direct coupling of RE and EVs

considers that RE generation has been purchased to serve

the EV demand. If the RE generation is not able to satisfy

the EV demand, the required energy must be purchased on

the spot market, which could be financially unattractive [9].



In our formulation RE generation excess is lost. Therefore, a

careful matching should be made between RE production and

EV fleet demand. The aggregator’s role herein is to match

EV demand and RE generation such that the cost of market

purchased energy is minimized. For this case, we define the

following optimization problem for the aggregator:

minimize
xp,xa

pT xp∆t

s.t. re+ xp ≥ xa,
(21)

where ∆t is the time step duration and xp ∈ R
T is the

amount of extra power that needs to be purchased. The

renewable energy power profile re ∈ R
T and the energy

price p ∈ R
T are known.

We introduce a slack variable yslack ∈ R
T in order to

transform the inequality constraint of our problem into an

equality constraint. The problem then becomes:

minimize
xp,xa,yslack

pT xp∆t

s.t. re+ xp = xa + yslack

yslack ≥ 0.

(22)

Considering that xp = yslack−re−xN and after some math-

ematical reformulation, the direct coupling problem in (22)

is reformulated using (10) for the EV ADMM framework.

The resulting aggregator problem is then:

xk+1
N =

min
xN ,yslack

pT (yslack − xN)∆t + ρ
2
||xN − xk

N + xk + uk||22

s.t. yslack ≥ 0.
(23)

B. EV optimization problem

For each EV i, we consider the following linear battery

model:

Ei(t + 1) = Ei(t)+∆txi(t), (24)

where at time slot t, Ei(t) is the energy stored in the battery

and xi(t) is the power used to (dis)charge the battery. We

assume that the EV’s driving profile and energy requirements

are known. We also assume as initial condition that the EV’s

battery is fully charged before its first trip. As in [5], we use

this information and the battery model in (24) to formulate

the charging requirements, as well as the bounds on the

battery’s energy state and power input, as series of inequality

constraints that depend only on the EV’s power profile xi.

With these constraints, we define the optimization problem

of each EV i as:

minxi
αi||xi||

2
2

s.t Ri ≤ Aixi ≤ Ri

Si ≤ Bixi ≤ Si

xi ≤ xi ≤ xi.

(25)

The variables description of problem (25) can be found

in Table II, where ci is the number of times that the EV is

connected to the grid and Tci
is the total number of time

slots that the EV is connected during the entire optimization

horizon. We model the EV’s goal of minimizing its battery

TABLE II

EV OPTIMIZATION PROBLEM VARIABLES DESCRIPTION

Variable Description Type

xi EV charging profile Vector ∈ R
T

xi Minimal charging power Vector ∈ R
T

xi Maximal charging power Vector ∈ R
T

αi Battery depreciation parameter Scalar

Ai Connection matrix Matrix ∈ R
ci×T

Bi Input matrix Matrix ∈ R
Tci

×T

Ri Minimal charging requirements Vector ∈ R
ci

Ri Maximal charging requirements Vector ∈ R
ci

Si Minimal state charging power Vector ∈ R
Tci

Si Maximal state charging power Vector ∈ R
Tci

depreciation costs as a quadratic cost function of charging

power. This cost function corresponds to the objective

function fi(xi) in problems (1) and (9). The first set of

inequality constraints, Ri ≤ Aixi ≤ Ri, defines a bound on

the energy requirements of the EV. Each row represents

an energy requirement for each time the EV is connected.

The second set of inequality constraints, Si ≤ Bixi ≤ Si,

guarantees, that the power input does not violate the

maximal and minimal energy that the battery can support at

any time slot when the EV is connected. These constraints

contain the EV dynamics while connected. Thus, matrix Bi

is actually the input matrix that results from Equation (24)

for the time slots when the EV is connected. The last set

of constraints, xi ≤ xi ≤ xi, define the maximal and minimal

EV (dis)charging power for the optimization horizon. If

EV i is not connected at time t, then xi(t) = xi(t) = 0, else

xi(t) = xmin
i and xi(t) = xmax

i , where xmin
i and xmax

i are the

maximal and minimal power that the EV charger supports.

For more details on how to derive these parameters we refer

the reader to [14].

For EV ADMM, the EV optimization problem in (25) is

reformulated according to (9) into the following problem:

xk+1
i =
minxi

γαi||xi||
2
2 +

ρ
2
||xi − xk

i + xk + uk||22
s.t Ri ≤ Aixi ≤ Ri

Si ≤ Bixi ≤ Si

xi ≤ xi ≤ xi.

(26)

In this optimization problem, the scaled price u can be

considered an energy price that the aggregator defines for

the EVs. The mean value of all agents x can be thought

of as a social cost caused by the EVs not cooperating to

achieve global convergence. Upon convergence this social

cost should be close to zero.

IV. EVALUATION

In this Section, we evaluate the three aggregator

control problems formally defined in Section III: Valley

filling, price-based optimization, and direct coupling with

renewables.

For each of these problems, we simulated EVs charging



TABLE III

EVALUATION PARAMETERS

Variable Description Value

Electric Vehicle parameters

Capnom Nominal battery capacity 20 kWh

Ebat Effective energy capacity 0.85∗20 kWh

Con Power Consumption 0.15 kWh/km

αi Battery depreciation parameter 0.0125 EUR/kW2

xmax
i Maximal charging power 4 kW

xmin
i Maximal discharging power -4 kW

Valley filling parameters

δ Empirical parameter 2.95∗10−5 EUR
kW2

ε pri Primal feasibility threshold 20

εdual Dual feasibility threshold 202

Price-based parameters

xa Aggregated maximal energy feed back -137.6 kW

xa Aggregated maximal consumption 137.6 kW

ε pri Primal feasibility threshold 0.1

εdual Dual feasibility threshold 0.1

Direct coupling parameters

ε pri Primal feasibility threshold 0.2

εdual Dual feasibility threshold 0.1

minimal energy, i.e., EVs only charge the amount of energy

needed for their trips. We therefore assume that EVs are

able to accurately predict their driving energy requirements

for each trip. The option of having Vehicle-to-Grid (V2G)

services, i.e., allowing the EVs to feed energy back to

the grid, and different trade-off parameters γ for the

individual EV goals were also considered. We assume a

time horizon of 24 hours and a 15 minute time step duration.

Our EVs are based on the MovE specifications [15],

an EV developed by Siemens. We obtained vehicle trip

patterns from the National Household Travel Survey (NHTS)

data using the method described in [2]. The NHTS data

set contains trips reported by more than 150,000 U.S.

households [16]. Based on this data we computed the EVs

charging requirements for each connection period. The

fixed demand and renewable in-feed profiles, D and re,

were obtained from the Munich distribution system operator

website [17]. The latter profiles were scaled to correspond

with the power consumption of 100 EVs. Finally, the energy

price profile p was obtained from the European Energy

Exchange (EEX) website [18]. All the mentioned data is

publicly available and corresponds to Nov 21, 2011. Other

relevant parameters for our evaluation can be found in

Table III. We simulated a sequential implementation of EV

ADMM, i.e., the agents solve their optimization problems

one at a time. One ADMM iteration is finished once all

agents have found the optimal solution of their subproblem

in that iteration. The simulation environment was MATLAB

and for the optimizations we used CVXGEN [19]. Table IV

provides an overview of the results obtained.
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Fig. 2. Valley filling for 100 EVs charging minimal energy. Left without
V2G and right with V2G for different individual EV goal importance, γ =
0,0.01,1.

Valley filling: The goal in valley filling is to use the

EVs to fill the overnight valley in the fixed demand. As

seen in Fig. 2, valley filling is achieved if the individual

EV goals are ignored, i.e., γ = 0. Moreover, allowing V2G

services results in an almost flat aggregated demand profile.

However, our evaluation shows that, allowing V2G services

does not translate into a major cost reduction. In Table IV,

we can see that the cost difference between V2G and no

V2G for the same γ value is very small. Nevertheless, an

all flat aggregated demand profile offers several advantages

in terms of grid operation that are not taken into account

by our cost function, e.g., the fact that with a flat valley no

expensive peak plants need to be turned on.

Price-based: Here, the goal is to minimize the charging

cost of an EV fleet and maintain the fleet demand/energy

feedback within a given bound. To achieve this, the

aggregator modifies the energy price it gives to the

EVs. Fig. 3 shows the modified energy price and the

fleet behavior for the V2G case. We can see that the

price only changes if the EVs meet the bound. We can

also see in Table IV, that for low γ values allowing V2G

services significantly reduces the costs for the whole system.

TABLE IV

PERFORMANCE METRICS FOR DIFFERENT IMPORTANCE LEVELS OF

INDIVIDUAL EV GOALS γ

Number of ADMM iterations - Total cost [EUR]

γ = 0 γ = 0.01 γ = 1

Valley filling

No V2G 293 - 693 283 - 693 275 - 737

V2G 293 - 687 293 - 689 290 - 737

Price-based

No V2G 824 - 41 881 - 42 664 - 79

V2G 1394 - 27 1266 - 31 664 - 79

Direct coupling

No V2G 341 - 13 284 - 12 328 - 53

V2G 485 - 12 300 - 13 278 - 53
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Fig. 3. Price-based optimization for 100 EVs charging minimal energy
with V2G. Above the optimal incentive price and bellow the aggregated
fleet demand, both for different individual EV goal importance values, γ =
0,0.01,1.

Direct coupling: In direct coupling the aggregator has

purchased renewable energy to supply the EVs’ demand. As

in the price-based problem, the aggregator modifies the price

as an incentive for the EVs to absorb this renewable energy.

This lowers the aggregator’s energy sourcing costs. Table

IV reveals that even with low γ values, V2G services do

not produce any significant cost reduction. Therefore, based

on our evaluation, V2G services do not offer a major cost

advantage in the direct coupling of RE generation and EVs

consumption.

V. CONCLUSIONS

In this work, we introduced EV ADMM as a framework

for decentralized EV charging control. We provided the

implementation details for several EV fleet control problems:

Valley filling, price-based optimization and direct coupling

of EVs and renewable energy. The evaluation shows that,

for 100 EVs, a sequential EV ADMM is able to deliver

results in an average time of 2 minutes. As discussed in

[10], ADMM has a linear computational complexity with

respect to the number of agents. Therefore, we can estimate

that EV ADMM has a linear computational complexity with

respect to the number of EVs. In a parallel implementation,

the decentralized structure of EV ADMM can offer great

scalability advantages over a centralized implementation.

Our simulation-based evaluation also showed that the

relative weight of the individual EV goals has to be rather

small to make the control approach useful on the system

level.

We have shown that EV ADMM can be implemented in a

decentralized manner for various EV fleet control problems.

However, the communication overhead resulting from the

ADMM algorithm makes it only practical for offline calcu-

lations. Nevertheless, the flexibility and scalability that EV

ADMM offers are a necessary requirement for the optimal

control of large EV fleets.
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