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Chapter 1

Introduction

The number of aircraft movements is expected to increase by 50% in Europe
from 2012 to 2035. The capacity at airports will be the bottleneck limiting
future growth. Up to 12% of the demand in 2035 will not be satisfied (see
EUROCONTROL [34]). Airports face the challenge of improving efficiency
in order to cope with increasing demand while fully exploiting available
resources. In the recent past, capacity constraints and cost pressure tight-
ened flight schedules. This threatens smooth operations and punctuality. A
primary source of delays are disruptions in the turnaround process. Accord-
ing to EUROCONTROL [33] the turnaround process accounted for 36% of
delays at European airports in 2011. This work is dedicated to towing ac-
tivities as one of the major steps in the turnaround process. This chapter
introduces the towing process and the operational and strategic planning
problem of towing service providers. Finally, it lays out the structure of the
thesis.

1.1 Towing processes at airports

Planes do not have a reverse gear, so they need assistance to leave the park-
ing position. They can use their own engines to move forward on the ground.
However, over long distances towing is often more economical and ecological
(see Airport Authority Zürich Airport [2]). Towing is distinguished between
push-back, repositioning and maintenance towing.

• Push-back. The plane with the passengers (or cargo) on board is pushed
backwards from its parking position (e.g. the gate) to the taxiway. From
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1.1 Towing processes at airports 2

there the plane can move on its own to the runway for take off.

• Repositioning. The empty plane is towed from one parking position
to another. For instance, a repositioning takes place if an occupied gate
must be used by an incoming flight. Normally, the blocking plane has
ample time before departure.

• Maintenance towing. The empty plane is towed to the hangar area for
maintenance or repairs.

There are two main categories of tractors to carry out the jobs: tractors
with and without a towbar. Towbar tractors connect with the plane via a
towbar. Towless tractors raise the front part of a plane and position it on
the tractor itself (see Kazda and Caves [40]). The largest towless tractor
currently on the market is the Goldhofer AST 1X. Equipped with two 680
horsepower diesel engines, the tractor is capable of towing the 560-tonne
A380 (see Goldhofer AG [36]). Towbar tractors usually are more flexible
with respect to compatibility with plane types and have lower maintenance
and investment costs compared to towless tractors. However, each plane
type requires a different tow bar. Therefore, towbar tractors must return
to a depot to change the towbar between two jobs in case of different plane
types. Furthermore, a second person (e.g. the pilot) must be present in the
cockpit while the plane is towed by a towbar tractor.

In this thesis I investigate the optimization of towing processes taking
the perspective of a towing service provider. Operating costs as well as
investment costs of towing tractors are high. Investment costs can reach
around 1 million Euro per tractor (see Deutsche Lufthansa AG [27]). A
towing service provider faces two key questions (see Figure 1.1):

1. Operational planning problem: What is the cost optimal
assignment of towing jobs to towing tractors in daily operations?
The towing service provider is responsible for carrying out all towing jobs
on time. The assignment of tractors to towing jobs is part of their daily
operations. Today most towing service providers apply manual planning
tools, often resulting in inefficient schedules. The assignment significantly
impacts service quality, as well as operating costs. In the short-term the
available fleet for the assignment is given by the existing tractors.

2. Strategic planning problem: What is the cost optimal fleet
composition and respective (dis-)investment strategy? On a strate-
gic level the towing service provider is responsible for deciding on the fleet
size and mix and thereby determining in each period how many tractors are
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Figure 1.1: Operational and strategic planning problem of towing processes
at airports

to be bought, overhauled or sold. This decision impacts investment costs,
operating costs, as well as the service level.

Both planning problems are interlinked. An optimized tractor fleet,
which can be influenced by tackling the strategic planning problem, allows
for more efficient schedules in daily assignments. An efficient assignment,
which is addressed in the operational planning problem, can reduce the num-
ber of tractors required, i.e. impacts the fleet size. Hence, both problems
need to be examined in order to optimize towing processes from a holistic
perspective. This thesis addresses both the operational and the strategic
planning problem of towing processes at airports.

1.2 Structure of the thesis

The thesis contains four chapters. Chapter 1 introduces towing processes at
airports, the related planning problems and the structure of the thesis. The
two core chapters address the planning of towing processes from an opera-
tional perspective (Chapter 2) and from a strategic perspective (Chapter 3).
Chapter 2 introduces a vehicle routing based scheduling model. I present
a column generation heuristic as solution procedure and examine its per-
formance in a computational study. A case study demonstrates how the
model can be applied as a tool for identifying cost drivers and evaluating
the efficiency of manual schedules in retrospect. The case study aims to
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derive insights which support schedulers in their future work. This chapter
is based on Du et al. [30]. Chapter 3 addresses the problem of a cost mini-
mal fleet composition. A model is introduced which supports towing service
providers in their strategic investment decision. In a case study, a multi-
period fleet (dis-)investment plan is derived for a towing service provider
at a major European airport. Furthermore, a 4-step approach to aggre-
gate demand based on flight schedule information is presented. In several
scenarios I analyze the impact of demand, flight schedule disruptions and
cost structures on the optimal fleet and conclude on the robustness of the
investment plan with respect to these factors. This chapter is based on Du
et al. [29]. The work concludes with the main findings and a discussion on
potential directions for future research in Chapter 4.



Chapter 2

Scheduling of towing processes

In this chapter, I introduce a model that assigns tractors to towing jobs
in order to minimize costs from perspective of a towing service provider.
The assignment is subject to various operational restrictions and airport
dependent specifications. For instance, technical compatibility with plane
types and specific variable costs are associated with different tractor types.
Furthermore, the time window to start the push-back is linked to the plane
departure time, i.e. the service must take place during a fixed time window.
Penalty costs occur if the push-back is delayed. Multiple depots to which
tractor drivers can return for work breaks are considered. This implicates
multiple uses of tractors in one planning period.

The remainder of this chapter is organized as follows: In the following,
I provide an overview of push-back literature in the first part and literature
on vehicle routing problems (VRP) in the second part. Section 2.2 intro-
duces a mixed integer programming (MIP) formulation for the problem,
followed by a description of the column generation heuristic (see Section
2.3). Computational experiments using real-world data from a major Eu-
ropean airport are presented in Section 2.4. In Section 2.5 I discuss the
results of a case study. This chapter concludes with a summary of the main
findings in Section 2.6.

2.1 Related literature

The model formulation is based on the vehicle routing problem (VRP).
Since the capacity constraint is negligible, the problem is also referred to as
the multiple traveling salesman problem (mTSP), e.g. see Toth and Vigo
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[60] and Laporte [44]. The problem considered can be categorized as an
asymmetric mTSP with time windows, multiple trips, multiple depots and
a heterogeneous fleet.

Operations research is widely applied in the air transport industry. Typ-
ical application areas are schedule design, fleet assignment and crew schedul-
ing. Taking the perspective of airports, keywords in this context are runway
scheduling, gate assignment and check-in procedures. However, push-back
has received little attention by researchers so far. To the best of my knowl-
edge, there is no literature addressing the planning and scheduling of push-
back activities explicitly.

2.1.1 Literature on push-back

Several papers address the forecasting of ready-to-push-back-times, among
others Schlegel [58], Carr et al. [17], Andersson et al. [4]. Schlegel [58] breaks
down the ground handling process into de-boarding, cleaning, catering, fu-
eling, boarding, loading and push-back. A simulation model evaluates the
impact of changes in one or more sub-processes. The author proposes a fore-
casting model that predicts the ready-to-push-back-times during any step
of the ground handling process. The model takes into account the current
status of the system. The author points out the importance of efficient and
on time ground handling processes for airports and airlines. Both contribute
to profit maximization and smooth operations. Carr et al. [17] analyze the
performance of push-back time forecasting techniques. The authors point
out that a high quality forecast may improve the performance of decision
support tools for airport surface traffic and thus reduce delays. However,
Carr et al. [17] conclude that the stochastic nature of turnaround operations
complicates precise forecasts.

The majority of push-back related literature refers to ready-to-push-
back-time as an input parameter to gate assignment, taxiway optimization
and runway scheduling. Cheng [19] presents a simulation study on the
ground movement of aircraft at the gate during push-back. The simulation
identifies push-back conflicts which might occur when two planes at neigh-
boring gates enter or exit at the same time and block each other on the
taxiway. The author demonstrates that assessing gate assignment decisions
with the simulation reduces delays and increases gate utilization. Atkin
et al. [5] present models for take-off sequencing, one of which includes a
push-back time allocation subproblem, which is solved after the take-off se-
quence has been set. The basic idea is to determine the take-off sequence
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first, then calculate the push-back time using forecasts on push-back dura-
tion and taxi time. The main goal is to avoid congestion or re-sequencing
at the holding area, i.e. to absorb delays at the gate and thus reducing fuel
consumption. A simulation experiment shows that delay reductions of 20%
or more are possible. In a more recent paper Atkin et al. [6] calculate push-
back times after predicting departure delays. Balakrishnan and Jung [9],
Keith and Richards [41], Lee et al. [45] and Roling and Visser [57] are other
examples addressing the idea of gate holding or push-back control that is
giving push-back permission using up-to-date information on taxiway traffic
and runway schedules.

2.1.2 Literature on vehicle routing problem

In contrast to the sparse push-back literature there exists a wide range of
VRP literature. Since Dantzig and Ramser [22] introduced the Truck Dis-
patching Problem more than 60 years ago, a great number of VRP papers
have emerged. A comprehensive overview of the development of modeling
and solving different variants of VRP is given in Golden et al. [35], Laporte
[44] and Toth and Vigo [60]. Bektas [12] focuses on the mTSP and pro-
vides a literature review on integer programming formulations and solution
procedures. The author notes that thus far the mTSP has not received as
much attention as the TSP or VRP. Desrochers et al. [26] and Eksioglu et al.
[31] introduce a classification scheme for VRP. Desrochers et al. [26] clas-
sify VRP according to the four main dimensions of addresses (customers),
vehicles, problem characteristics and objective. Addresses can further be
specified by, e.g. the number of depots or scheduling constraints. Subcate-
gories of vehicles are for instance the number of vehicles or route duration
constraints. Problem characteristics contain type of network and address-
to-address restrictions to name a few. The authors state that most models
in the literature can be categorized according to their classification.

Despite the large number of VRP papers, the number of papers which
address the problem with of a mixed fleet mTSP with time windows, multi-
ple trips and multiple depots is very limited. Nevertheless, literature can be
found on single aspects of the introduced problem, e.g. considering either
time windows or multiple depots only. I will refer to literature reviews for
each aspect and point out some rich VRP papers with the most similarities
to my work.

Baldacci et al. [10] give an overview of formulations and solution pro-
cedures for the VRP with time window (VRPTW). The authors conclude
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that column generation based algorithms succeed in solving problems with
more than 100 jobs. Golden et al. [35] provide a literature review on het-
erogeneous fleet VRP (HVRP), also called mixed fleet VRP. They classify
variants of HVRP in the literature and compare solution algorithms. The
authors observe that no exact algorithm has been introduced for HVRPs
so far. Multiple depot VRP (MDVRP) literature is reviewed in Liu et al.
[46]. The authors classify the papers by problem variant, model formula-
tion and solution method. The following categories for MDVRP are used:
with stochastic demand, mixed fleet, period, backhauling, pickups and de-
liveries, with time window, with time window and mixed fleet, inter-depot
routes and multi objective. They describe nine variants of MDVRP and
thereby cover nearly all contributions in this area. So far, researchers have
neglected the multiple trip VRP (MTVRP), although this problem variant
is of high relevance in practice (see Mingozzi et al. [49]). Multiple trips are
needed whenever the number of vehicles is limited. Azi et al. [7] propose an
exact algorithm for a single vehicle VRP with time windows and multiple
trips. In a subsequent work, the authors extend the problem to multiple
vehicles and use a column generation approach (see Azi et al. [8]). Azi
et al. [8] are the first to use an exact algorithm to solve a MTVRP with
time window. Their algorithm solves all instances with 25 customers and
some instances with 50 customers. Macedo et al. [48] also propose an exact
algorithm using a pseudo-polynominal network flow model for the MTVRP
with time windows, which solves more instances in less time compared to
other approaches.

Recent papers combining several generalization aspects and, thus, be-
ing most similar to my problem variant are Dondo and Cerda [28], Norin
et al. [52], Rieck and Zimmermann [56],Cornillier et al. [20] and Kuhn and
Loth [43]. Dondo and Cerda [28] deal with a mixed fleet, multiple depot
VRPTW and describe a three-phase heuristic solution approach. In phase I
a set of cost efficient feasible clusters is defined. Phase II assigns vehicles to
clusters and phase III schedules the tour for one vehicle within one cluster.
This so-called cluster-based hierarchical hybrid approach solves problem in-
stances with 100 nodes, 2 depots and a heterogeneous fleet of 10 vehicles
within 38 minutes. Norin et al. [52] propose an integrated simulation and
optimization approach to improve ground handling processes at airports.
The authors investigate the de-icing process. A MIP to schedule de-icing
trucks to de-icing jobs is introduced. This MIP is solved with a greedy ran-
domized adaptive search procedures GRASP. Their model include a point
of time to deliver the service and the vehicles need to return to the depot
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to refill de-icing fluid, thus allowing multiple trips. The de-icing model is
embedded in an airport operations simulation. The simulation proves supe-
riority of the optimized de-icing schedule over the schedule generated with
simple priority rules. The authors present results for a single operating day.
Best results regarding delays can be achieved by considering the total air-
port performance instead of optimizing from the perspective of the de-icing
company.

Rieck and Zimmermann [56] present a mixed fleet, multiple trips VRPTW
with simultaneous delivery and pick-up. Additionally, a docking bay at the
depot for loading and unloading is considered. A time slot for each depart-
ing and arriving vehicle at the docking bay must be assigned. The authors
test the model with instances up to 30 customers using CPLEX requiring
up to 22 minutes runtime.

Cornillier et al. [20] provide a heuristic for the petrol station replenish-
ment problem. Similar to the towing problem, they consider time windows,
a heterogeneous fleet, multiple trips and multiple depots. Cornillier et al.
[20] describe a procedure to generate a set of feasible trips and a model
which finds a solution using this set of restricted trips. The heuristic is
capable of solving instances with 50 customers, 10 vehicles and up to 6 de-
pots in 47 - 58 minutes on average. A main difference to this work is the
handling of multiple depots. Cornillier et al. [20] assign the vehicles at the
beginning of the day to one home depot. During the day the vehicles can
only return to the home depot during specified time windows. Contrary,
in this work vehicles can return to any depot at any time. Moreover, the
fleet heterogeneity is defined differently. Vehicles differ by capacity Cornil-
lier et al. [20], while the vehicles in this work differ by variable costs and
technical compatibility.

Kuhn and Loth [43] deal with the scheduling of airport service vehi-
cles which comprise among other vehicles, passenger buses, luggage trailers
and fuel trucks. The authors formulate a MIP model and apply an ex-
act solution method as well as a genetic algorithm. They solve real-world
scheduling problems at Hamburg Airport involving 17 planes requiring ser-
vice by 6 service vehicles. Thereby, they demonstrate that travel distances
as well as delays can be reduced by at least 20% compared to the manual
approach. However, their model does not take into account all specifications
of push-back processes. For instance, mixed fleet or multiple trips are not
considered.



2.2 Mathematical model 10

Overall, there is no literature addressing the scheduling of push-back
services. The paper of Kuhn and Loth [43] is most similar to the towing
problem. However, their model does not consider the specific characteristics
of push-back processes. By combining time windows, mixed fleet, multiple
depots and multiple trips in one model, this work contributes to the few
existing VRP papers in this area.

2.2 Mathematical model

The model considers a set of planes P , each one requiring a towing job.
Each towing job i ∈ P is characterized by the plane type, a time window
to start the service, set by the earliest time ETi and the latest time LTi,
a service duration SDi and a pick up and target location. Each job must
be carried out. The service provider faces delay costs DC per time unit if
the time window is violated. The maximum aspired delay per job is set to
Dmax, which reflects the service level agreement between the towings service
provider and the airlines.

To carry out the jobs, there is a set of heterogeneous vehicles V (towing
tractors). Vehicle v ∈ V is characterized by the variable costs V Cv per
operating time unit. The compatibility with plane type i is given by CPv,i,
i.e. tractor v is compatible with job i if CPv,i = 1, 0 otherwise.

Moreover, multiple depots of which at least one is a central depot are
taken into account. At the start and the end of each planning horizon trac-
tors must depart from and return to (one of) the central depot(s). During
the day the tractors (and their drivers) can return to any depot to take a
rest. Leaving and returning to a depot is defined as one trip. In contrast to
classical VRP the model permits multiple trips per vehicle. The maximum
time per trip is set to Tmax, i.e. each driver must return by the latest every
Tmax time units to a depot for a rest. The travel time TTv,i,j reflects the
time vehicle v ∈ V travels from plane i ∈ P to plane j ∈ P . The travel
time matrix is obtained by pre-processing information on pick-up and target
location of job i, j ∈ P , taking into account the necessity of changing the
towbar between job i ∈ P and job j ∈ P .

In the following, I present two models, which assign tractors to tow-
ing jobs while minimizing variable costs. The models are two variants of
reflecting multiple trips in the formulation.
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2.2.1 Depot model

In the depot model, multiple trips are reflected by determining the number
of trips NT per vehicle and adding virtual depots for each trip. Figure
2.1 shows an example for a problem with two real depots with depot 1 as
central depot and three trips (the rows refer to the depots and each trip
is represented by a gray box in the figure). The number of depot nodes in
this example is ten (S1 to S5 and E1 to E5). For each trip one depot is
represented by one starting depot node (tractor leaves the depot) and one
ending depot node (tractor returns to the depot). With two depots, there
are four nodes per trip. With three trips there are in total twelve nodes.
However, since the first trip must start and the last trip must end in the
central depot, starting depot 2 of the first trip and ending depot 2 of the
last trip can be discarded. This results in ten depot nodes.

Figure 2.1: Depot structure (example)

S denotes the set of starting depot nodes and E the set of ending depot
nodes. The number of trips depends on the length of the planning horizon,
the maximum time per trip, the number of jobs and the number of tractors.
Allowing more trips than required does not impact the optimal objective
function value, but increases the runtime. Since returning to the depot
typically means extra time and costs, the model minimizes the number of
trips per vehicle. Previous computational test have shown that, as a rule of
thumb, dividing the length of the planning horizon by the maximum time
per trip Tmax and adding 1-2 “buffer trip” usually is a reasonable value.

A possible solution is shown in Figure 2.2. Ten planes represented by
nodes P1 to P10 require a towing job. There are two tractors: tractor A
and B. Each one can perform a maximum of three trips. Between each trip
the tractor can return to either one of the two depots, with depot 1 being
the central depot. In this example, tractor A leaves the central depot S1 to
serve P2, P1, P6 and returns to depot 2 (E2). Consequently, its second trip
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Figure 2.2: Output of depot model (example)

starts in depot 2 (S3), and after serving P9 the tractor returns to depot 1
(E5). The third trip is an empty trip, i.e. tractor A remains in the central
depot. To connect the trips of a vehicle v ∈ V , the travel time from an
ending depot node to the starting depot node of the following trip is set to
0. An example of a travel time matrix for the depot model is given in Figure
2.3. Each column and line represent a node, the figure shows the travel time
from one node (row) to another (column). The travel time matrix contains
following preprocessed information and assumptions:

Forbidden routes. The travel time between forbidden routes is set to
infinity. This includes

- routes from plane i ∈ P to the same plane i,
- routes from plane i ∈ P to starting depot node j ∈ S,
- routes from ending depot node i ∈ E to plane j ∈ P ,
- routes between starting depot nodes i, j ∈ S and
- routes between ending depot node i, j ∈ E .

Decision variables related to arcs with a value of infinity (infeasible routes)
are set to 0 in the model implementation.



2.2 Mathematical model 13

Figure 2.3: Travel time matrix (example for depot model)

Empty trips. Tractors can stay in the depot (empty trip). In the
model, the tractor drives from the starting node directly to the ending
node. Therefore, the travel time from the starting depot node to the ending
depot node of the same trip is set to 0 if both nodes represent the same
depot. These cases are marked in black in Figure 2.3. For instance, the
travel time from S1 to E1 is set to 0 since S1 and E1 represent both depot
1 of the trip 1.

Connection between trips. To connect the trips of vehicle v ∈ V , the
travel time from an ending depot node to the starting depot node of the
following trip is set to 0 (marked dark gray in Figure 2.3). For instance, the
travel time from E1 to S2 is 0, since both E1 and S2 represent the same
depot (depot 1) and E1 is the ending depot node for the first trip, while S2
is the starting depot node for the second trip.

Change of towbars. The travel time in the matrix already includes
the additional time to return to the depot to change the towbar. Changing
the towbar at the depot is not considered as returning to the depot. In
other words, a tractor returning to the depot in order to change the towbar
only, does not end a trip. Furthermore, returning to the depot to take a
rest already includes the time to change the towbar before starting the new
trip after the break.

Pick-up and target location. Maintenance towing and repositioning
have different pick-up and target locations. This results in an asymmetric
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travel time matrix. For instance, the time to drive from job P1 to job P2
is 6 time units, while it takes 8 time units the other way round.

The following notation to formulate the depot model is used:

Sets:
P Set of planes requiring towing
Sr Set of depots where the r-th trip can be started,

with S = S1 ∪ S2 ∪ ... ∪ SRmax

Er Set of depots where the r-th trip can be ended,
with E = E1 ∪ E2 ∪ ... ∪ ERmax

N Set of all nodes with N = {P ∪ S ∪ E}
V Set of vehicles

Parameters:
V Cv Variable costs of vehicle v per operating time unit
DC Delay costs per time unit
TTv,i,j Travel time of tractor v to drive from node i to node j
SDi Service duration to serve plane i

or resting time at ending depot node i
CPv,i 1, if tractor v is compatible with plane i, 0 otherwise
ETi Earliest time to start service at node i
LTi Latest time to start service at node i
Dmax Maximum delay per job
Tmax Maximum duration of one trip
Rmax Number of trips per vehicle
Mv,i,j Parameter specific big M with

(Mv,i,j ≥ LTi +Dmax + SDi + TTv,i,j − ETj)
Functions:
SD(i) Maps ending depot i to

each potential starting depot of the same trip
ED(i) Maps starting depot i to

the ending depot of the directly preceding trip
Variables:
xv,i,j 1, if tractor v visits node j immediately after

having visited node i, 0 otherwise
bv,i Beginning time of tractor v to serve node i
di Delay of service at plane i (compared to LTi)
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Minimize
∑
v∈V

V Cv · (
∑
i,j∈N

TTv,i,j · xv,i,j+ (1a)∑
i∈P

∑
j∈N

SDi · xv,i,j) +DC ·
∑
i∈P

di

subject to∑
v∈V

∑
j∈P∪E

CPv,i · xv,i,j = 1 ∀i ∈ P (1b)∑
i∈Sr

∑
j∈P∪Er

xv,i,j = 1 ∀v ∈ V , r ∈ {1, . . . , Rmax} (1c)∑
i∈N

xv,i,h −
∑
j∈N

xv,h,j = 0 ∀v ∈ V , h ∈ N \ {S1 ∪ ERmax} (1d)

ETi ·
∑
j∈N

xv,i,j ≤ bv,i ∀v ∈ V , i ∈ P (1e)

bv,i + SDi + TTv,i,j

≤ bv,j +Mv,i,j · (1− xv,i,j) ∀v ∈ V , i, j ∈ N (1f)∑
v∈V

bv,i − LTi ≤ di ∀i ∈ P (1g)

bv,i − bv,̃i ≤ Tmax, ∀v ∈ V , i ∈ E , ĩ ∈ SD(i) (1h)

bv,ED(i) ≤ bv,i ∀v ∈ V , i ∈ S \ {S1} (1i)

xv,i,j ∈ {0, 1} ∀v ∈ V , i, j ∈ N (1j)

bv,i ≥ 0 ∀v ∈ V , i ∈ N (1k)

0 ≤ di ≤ Dmax ∀i ∈ P (1l)

The objective function (1a) minimizes the variable costs which arise for
the tractor operation time (driving and service time) and the penalty costs
due to delays. The model takes an operational perspective for which the
fleet is given and therefore depreciation costs of the tractors are not taken
into account. Demand constraints (1b) ensure that each plane i is served
by exactly one compatible vehicle v.

Constraints (1c) force each tractor to start a trip r in one of the starting
depots Sr. The travel time matrix ensures the connection between trips.
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Taking the example shown in Figure 2.2, the first and second trips are
connected by setting the travel time from E1 to S2 and from E2 to S3 to
0, while all other travel times starting from nodes E1 and E2 are set to ∞.
Therefore, to start the second trip, vehicle v has to return to either E1 or
E2 at the end of the first trip. Flow balance constraints (1d) force vehicle
v to depart from node h if it has entered in node h.

Constraints (1e) ensure that the start time of tractor v to serve plane
i is not earlier than ETi. Constraints (1f) consider time consistency: If
tractor v serves plane i first and plane j next, the service at plane j cannot
start before tractor v has finished service at plane i and driven from plane
i to plane j. Constraints (1g) define the delay at plane i. Since di is non-
negative the delay is zero if the start time bv,i is earlier than LTi, otherwise
the delay is the difference between the start time and the latest possible
start time, i.e. bv,i − LTi.

Constraints (1h) ensure each trip duration (time between leaving and
returning to the depot) not to exceed the maximum trip duration Tmax.
SD(i) is a function that maps each ending depot i to each potential starting
depot of the same trip. Looking at the example in Figure 2.1, it maps E1
to S1, E2 to S1, E3 to S2, E3 to S3, E4 to S2, E4 to S3, E5 to S4 and E5
to S5. Constraints (1i) ensure that the next trip can only start after the
previous trip has ended. Here, ED(i) is a function that maps each starting
depot i to the ending depot of the directly preceding trip, i.e. in Figure 2.1
S2 to E1, S3 to E2, S4 to E3 and S5 to E4.

Variable definitions are given in (1j)-(1l). Dmax reflects the service as-
piration level of the service provider. However, if no feasible solution exists
given this restriction, Dmax needs to be increased in the model.

2.2.2 Tractor model

In contrast to the depot model, not depots but tractors are duplicated to
reflect multiple trips. In this model, one tractor is represented by several
virtual tractors. Each virtual tractor can accomplish one trip, by stringing
together the trips of all virtual tractors representing the same actual tractor,
a feasible tour is generated for this tractor. Figure 2.4 shows the result of
the tractor model. In this example, three trips are permitted and there are
two actual tractors available. For each additional trip, the set of actual
tractors is duplicated, resulting in six tractors in total. Tractors A1, A2
and A3 represent one actual tractor. A2 refers to the second trip of tractor
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A. Both Figure 2.2 and Figure 2.4 are representations of the same result.

Figure 2.4: Output of tractor model (example)

The following notation is used to formulate the tractor model:

Sets:
P Set of planes requiring towing
S Set of depots to start a trip with

S = {s1, ..., sW} , s1 as central depot
E Set of depots to end a trip with

E = {e1, ..eW} , e1 as central depot
N Set of all nodes with N = {P ∪ S ∪ E}
V Set of vehicles (tractors), with V = {V1∪, ...,∪VR}
Vr Set of vehicles for r-th trip

Parameters:
Z Number of actual vehicles with Z =| Vr |
V Cv Variable cost of tractor per operating time unit
DC Delay cost per time unit
TTv,i,j Travel time of tractor v to drive from plane i to plane j
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SDi Service duration to serve plane i
or resting time at ending depot node i

CPv,i 1, if tractor v is compatible with plane i, 0 otherwise
ETi Earliest time to start service at node i
LTi Latest time to start service at node i
Dmax Maximum delay per job
Tmax Maximum duration of one trip

(time between leaving and returning to a depot)
Mv,i,j Parameter specific big M with

(Mv,i,j ≥ LTi +Dmax + SDi + TTv,i,j − ETj)
Functions:
f(e) Maps ending depot to starting depot

of same depot w (e.g. f(e1) = s1, f(e2) = s2)
Variables:
xv,i,j 1, if tractor v visits node j immediately after

having visited node i, 0 otherwise
bv,i beginning time of tractor v to serve node i
di delay of service at plane i (compared to LTi)

Minimize
∑
v∈V

∑
i,j∈N

V Cv · TTv,i,j · xv,i,j+ (2a)∑
v∈V

∑
i∈P

∑
j∈N

V Cv · SDi · xv,i,j +DC ·
∑
i∈P

di

subject to∑
v∈V

∑
j∈P∪E

CPv,i · xv,i,j = 1 ∀i ∈ P (2b)∑
j∈P∪E

xv,s1,j = 1 ∀v ∈ V1 (2c)∑
i∈P∪S

xv,i,e1 = 1 ∀v ∈ VR (2d)∑
s∈S

∑
j∈P∪E

xv,s,j = 1 ∀v ∈ V2, ...,VR (2e)∑
i∈P∪S

∑
e∈E

xv,i,e = 1 ∀v ∈ V1, ...,VR−1 (2f)
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∑
i∈P∪S

xv,i,e −
∑

j∈P∪E

xZ+v,f(e),j = 0 ∀v ∈ V1, ...,VR−1, e ∈ E (2g)∑
i∈P

xv,i,h −
∑
j∈P

xv,h,j = 0 ∀v ∈ V , h ∈ P (2h)

bv,e −Mv,i,j ·
∑

i∈P∪S

xv,i,e ≤ 0 ∀v ∈ V , e ∈ E (2i)

bv,s −Mv,i,j ·
∑

j∈P∪E

xv,s,j ≤ 0 ∀v ∈ V , s ∈ S (2j)∑
e∈E

bv,e ≤
∑
s∈S

bZ+v,s ∀v ∈ V1, ...,VR−1 (2k)

ETi ·
∑

j∈P∪E

xv,i,j ≤ bv,i ∀v ∈ V , i ∈ P (2l)

bv,i + SDi + TTv,i,j

≤ bv,j +Mv,i,j · (1− xv,i,j) ∀v ∈ V , i, j ∈ N (2m)∑
v∈V

bv,i − LTi ≤ di ∀i ∈ P (2n)∑
e∈E

bv,e −
∑
s∈S

bv,s ≤ Tmax ∀v ∈ V (2o)

xv,i,j ∈ {0; 1} ∀v ∈ V , i, j ∈ N (2p)

bv,i ≥ 0 ∀v ∈ V , i ∈ N (2q)

0 ≤ di ≤ Dmax ∀i ∈ P (2r)

The objective function (2a) minimizes the variable costs which incur for
the tractor operation time (driving and service time) and the penalty costs
due to delays. Demand constraints (2b) ensure that each plane i is exactly
served by one vehicle v which is compatible with the plane type.

Constraints (2c) and (2e) require each tractor of the first trip V1 to
depart from starting node s1 (central depot) and each tractor Vr of the r-th
trip (r = 2..R) to depart from one of the starting depots S. Constraints
(2d) and (2f) ensures that each tractor of the last trip VR ends in Ending
Node e1 (central depot)and that each tractor Vr of trip r = 1..(R− 1) ends
in one of the ending depots E . Constraints (2g) ensure vehicle z+v to start
the direct succeeding trip in the same depot in which vehicle v has ended
the previous trip. Tractor v and tractor z + v represent the same tractor.
Flow balance constraints (2h) require vehicle v to leave node h, if it has
enters node h.
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Constraints (2i) and (2j) set all bv,e and bv,s to 0, if the respective depot is
not visited by tractor v. Constraints (2k) ensure that a actual same tractor
v and z + v can start a new trip only after the previous trip has ended.
Constraints (2l) ensure that the starting time of tractor v to serve plane i
is not earlier than ETi. Constraints (2m) ensure, if tractor v serves plane
i and directly afterwards plane j, service at plane j cannot start before
tractor v has finished service at plane i and drove from plane i to plane j.
Constraints (2n) define the delay at plane i. Since di is non-negative, the
delay is zero if the actual starting time bv,i is earlier than LTi, otherwise
the delay is the difference between the actual starting time and the latest
starting time. Constraints (2o) ensure that each trip (time between leaving
from and returning to depot) does not exceed the maximum trip duration
Tmax. Variable definitions are given in (2p)-(2r).

Initial computational tests show that the depot model is equivalent or
even outperforms the tractor model with regards to solution quality and
runtime (see Appendix B). Therefore, the remaining chapter focuses on the
depot model formulation.

2.3 Column generation heuristic

The TSP and VRP is NP-hard, adding aspects like multiple depots and trips
makes the problem more difficult to solve. Baldacci et al. [10] investigate ex-
act algorithms for solving VRP and conclude that column generation based
algorithms handle VRP successfully and provide a lower bound very close
to the optimal solution value. Therefore, I propose a column generation
based heuristic to solve the scheduling model (1a) - (1l). Desaulniers et al.
[24] describe the basic idea of column generation and provide an overview
on solution methods and applications. Examples for recent papers applying
a column generation approach to solve VRP are Azi et al. [8], Ceselli et al.
[18] and Oppen et al. [53].

For column generation the MIP is decomposed into a Master Problem
(MP) and one or several Subproblems (SP). Column generation is an it-
erative procedure that considers a subset of feasible columns (tours) at a
time. It generates new columns via one or more separated optimization
problem(s), the so-called Subproblem(s), on an as needed basis (see Barn-
hart et al. [11], Dantzig and Wolfe [23], Vanderbeck and Wolsey [61]), while
MP provides a coordination structure. The procedure starts with a sub-
set of columns in the Restricted Master Problem (RMP). Then the linear
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relaxation of RMP is solved to optimality. In the next step, the dual vari-
able information is used to price out absent columns with the use of SP.
If a promising column is identified, it is added to RMP and the RMP re-
laxation is re-optimized. Otherwise, the procedure terminates with a valid
lower bound in case of a minimization problem for the original MIP. In the
following, MP is stated using constraints (1b) as a set covering type model.
The remaining constraints form the solution space of SP.

Master Problem. The following additional notation is used to formu-
late MP:
Sets:
B Set of vehicle types
A(b) Set of routes associated with vehicle type b

Parameters:
RCb,a Costs of route a associated with vehicle type b
CW Costs associated with auxiliary variable wi

Yb,a,i 1, if route a associated with type b
covers plane i, 0 otherwise

NVb Number of vehicles of type b
Variables:

λb,a 1, if route a associated with type b is selected, 0 otherwise
wi 1, if plane i is not served by selected routes, 0 otherwise

Minimize
∑
b∈B

∑
a∈A(b)

RCb,a · λb,a +
∑
i∈P

CW · wi (3a)

subject to

∑
b∈B

∑
a∈A(b)

Yb,a,i · λb,a + wi ≥ 1 ∀i ∈ P (3b)

∑
a∈A(b)

λb,a ≤ NVb ∀b ∈ B (3c)

λb,a;wi ∈ {0, 1} ∀b ∈ B, a ∈ A(b); i ∈ P (3d)

The objective function (3a) minimizes the costs associated with selected
routes for each tractor type and the penalty costs for not serving planes. The
auxiliary variables ensure feasibility in the course of the column generation
procedure. They can be seen as unit columns with which RMP is initialized.
Such a column covers exactly one flight and has very high costs (RCb,a �
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CW for all a ∈ A(b)). Constraints (3b) ensure that each plane i ∈ P is
served. If plane i is not included in any of the selected routes, the auxiliary
variable wi is set to 1 to ensure feasibility. The algorithm starts with no
columns. Therefore wi for all i ∈ P are set to 1 in the first iteration.
Constraints (3c) ensure for each tractor type that the number of selected
routes does not exceed the number of available vehicles of that type. The
range for the decision variables are given in (3d).

The dual solution of RMP is obtained from relaxing the integrality con-
dition and solving RMP with a subset of columns. Let δi ≥ 0 denote the
dual values of the demand constraints (3b) and µb ≤ 0 the dual values of
the convexity constraints (3c). In terms of MP notation, the reduced costs
of column a associated with tractor type b is

c̄b,a = RCb,a −

(∑
i∈P

δi · Yb,a,i + µb

)
(4)

with RCb,a (costs of tour a for vehicle type b) defined as

RCb,a =
∑
i,j∈N

V Cb · TTb,i,j ·Xb,i,j+ (5)∑
i∈P

∑
j∈N

V Cb · SDi ·Xb,i,j +DC ·
∑
i∈P

Db,i.

Here, V Cb denotes the variable costs and TTb the travel time matrix of
tractor type b. Xb,i,j and Db,i represent the values of the decision variables
in SP. To verify LP optimality of RMP, c̄a ≥ 0 has to hold for all absent
columns a /∈ A(b) and any tractor type b ∈ B. For each tractor type b one
SP is created. Index a in (4) dropped to derive the objective function for
SP(b). The new binary variable yb,i replaces the parameter Yb,a,i with

yb,i =

{
1, if plane i ∈ P is served by tractor b

0, otherwise.

Whenever a new column is found with negative reduced costs (i.e. the
objective value of SP is negative), the column is added to RMP and a new
iteration starts. The procedure terminates as soon as no further column
with negative reduced costs exists.

Subproblem (b). The formulation of SP(b) looks as follows:
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Minimize
∑
i,j∈N

V Cb · TTb,i,j · xi,j +
∑
i∈P

∑
j∈N

V Cb · SDi · xi,j (6a)

+DC ·
∑
i∈P

di −

(∑
i∈P

δi · yb,i + µb

)

subject to

∑
j∈N

xi,j − yb,i = 0 ∀i ∈ P (6b)

CPb,i ≤ yb,i ∀i ∈ P (6c)∑
i∈Sr

∑
j∈P∪Er

xi,j = 1 ∀r ∈ {1, . . . , Rmax} (6d)∑
i∈N

xi,h −
∑
j∈N

xh,j = 0 ∀h ∈ N \ {S1 ∪ ERmax} (6e)

ETi ·
∑
j∈N

xi,j ≤ bi ∀i ∈ P (6f)

bi + SDi + TTb,i,j ≤ bj +Mi,j · (1− xi,j) ∀i, j ∈ N (6g)

bi − LTi ≤ di ∀i ∈ P (6h)

bi − bĩ ≤ Tmax, ∀i ∈ E , ĩ ∈ SD(i) (6i)

bED(i) ≤ bi ∀i ∈ S \ {S1} (6j)

xi,j ∈ {0, 1} , bi ≥ 0 ∀i, j ∈ N (6k)

yb,i ∈ {0, 1} , 0 ≤ di ≤ Dmax ∀i ∈ P (6l)

The objective function (6a) minimizes the reduced costs of a new poten-
tial column to be added to RMP. Thereby the improvement of the objective
function in RMP over the current iteration is maximized. The constraints
(6d)-(6j) are equivalent to the constraints (1c)-(1i). Constraints (6b) link
the x variable to the y variable. Constraints (6c) ensure the compatibility
of vehicles type b with plane type i ∈ P . Finally, constraints (6k) and (6l)
define the decision variables.

A new tour is given by the solution of SP(b). Particularly, the new
column a associated with tractor type b is given as
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 RCb,a
−→
Y b,a

1b


where RCb,a is defined by (5),

−→
Y b,a is a vector with |P| elements with

Yb,a,i = yb,i for all i ∈ P and 1b is a unit vector with length |B| where at
position b is 1 and else 0. After solving the LP-relaxation of RMP, the
existing columns are used to find a feasible solution. In other words, RMP
is solved as IP.

2.4 Computational study

In this section I investigate the performance of the column generation heuris-
tic (CGH). The computational tests serve to determine the manageable
problem size for the case study in Chapter 2.5. All computations are per-
formed on a 3.3 GHz PC (Intel(R) Core(TM) i3-2120 CPU) with 4 GB RAM
running under Windows 7 operating system. I use IBM ILOG CPLEX Op-
timization Studio 12.2 in its default settings to code and solve the model
in the compact formulation (in the following referred to as MIP). CGH is
implemented in IBM ILOG CPLEX Optimization Studio 12.2, extended by
some java methods. No runtime limit is set for the tests.

The CGH procedure starts with zero real columns in RMP. Initial tests
showed that solving SP in the first few iteration not to optimality positively
impacts the runtime. Therefore, the CGH procedure does not solve SP
optimally in the first 50 iterations for problem instances with 10 or 25
planes and in the first 100 iterations for problem instances with 50 planes.
Instead, the first feasible solution with negative reduced costs of SP is added
as a new column to RMP. Thus, the time per iteration decreases while the
total number of required iterations increases. The test design is described
in the following. I examine problem instances with

• a heterogeneous fleet of 15 tractors (10 of type A and 5 of type B),

• 10, 25 and 50 planes,

• 1 and 2 depots, with depot 1 as the central depot and

• 1, 2 and 3 trips.
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All possible combinations of the parameter settings described above re-
sult theoretically in 18 problem instances in total. However, instances with
one trip cannot be combined with multiple depots since each route has to
start and end at the central depot. This results in 15 instances. For a ho-
mogenous fleet of 15 tractors I investigate problem instances with 10 planes,
1 or 2 depots and 1, 2 or 3 trips yielding in 5 additional instances. Again
one trip cannot be combined with multiple depots. Thus, there are in in
total 20 problem instances. Table 2.1, Table 2.2 and Table 2.3 provide an
overview of the test results.

Prob # # # # MIP CGH
Pln Dpt Trp Tmax Trctr IP Gap* LP Time IP Gap* LP Time SP

Val % Relax Sec Val % Relax Sec Sec

1 10 1 1 60 10/5 237 0.0 180.0 1 237 0.0 237.0 1 1
2 10 1 2 60 10/5 225 0.0 178.0 10 225 0.0 225.0 1 1
3 10 1 3 60 10/5 225 0.0 178.0 10 225 0.0 225.0 2 1
4 10 2 2 60 10/5 212 0.0 177.0 122 212 0.0 212.0 1 1
5 10 2 3 60 10/5 212 0.0 177.0 4,012 212 0.0 212.0 4 4

*Gap=(IP Value - LP Relax) / IP Value · 100

Table 2.1: Computational test results - Heterogeneous fleet, 10 planes

Each line in the tables represents one problem instance. The problem
number is given in the first column. Columns 2 to 6 describe the problem
instance by stating the number of planes (# Pln), the number of depots
(# Dpt), the number of trips (# Trp), the maximum time per trip (Tmax)
and the number of tractors (# Trctr). The next four columns display the
results of compact MIP (1a) - (1l). The objective function value of the IP,
the optimality gap, the value of the LP relaxation and the total runtime are
given. Columns 11 to 14 show the results for the CGH. Additionally, the
runtime of the SP for the CGH is stated in the last column.

The variable costs V C per minute are set to 2 Euro for vehicle type A
(towless tractor) and 1 Euro for vehicle type B (towbar tractor). The delay
costs DC are set to 79 Euro for each minute of delay. For confidentiality
reasons these are not the actual costs. However, the ratio between the
various costs corresponds to the real-life data.

Comparing the results of problem instance 1 to 5 with a heterogeneous
fleet and 10 planes (see Table 2.1), the following conclusions can be drawn:

• The runtime of the MIP increases significantly with increasing number of
depots and trips. While the runtime to solve problem instance 1 (1 depot,



2.4 Computational study 26

Prob # # # # MIP CGH
Pln Dpt Trp Tmax Trctr IP Gap* LP Time IP Gap* LP Time SP

Val % Relax Sec Val % Relax Sec Sec

6 10 1 1 60 15 167 0.0 137.0 1 167 0.0 167.0 2 1
7 10 1 2 60 15 167 0.0 130.0 29 167 0.0 167.0 1 1
8 10 1 3 60 15 167 0.0 130.0 1,121 167 0.0 167.0 2 1
9 10 2 2 60 15 158 0.0 129.0 1,634 158 0.0 158.0 2 1

10 10 2 3 60 15 158 0.0 129.0 611,012 158 0.0 158.0 5 3

*Gap=(IP Value - LP Relax) / IP Value · 100

Table 2.2: Computational test results - Homogeneous fleet, 10 planes

1 trip) is just 1 second, a runtime of 10 seconds is required for problem
instance 2 (1 depot, 2 trips). Also, adding a depot impacts the runtime.
This can be observed when comparing instance 2 with 4 (10 seconds vs.
122 seconds) or instance 3 with 5 (10 seconds vs. 67 minutes).

• CGH provides a tighter lower bound than MIP. While the lower bound
provided by CGH equals the optimal solution, CPLEX calculates for MIP
an initial lower bound of 177 to 180. The solution gap of MIP is on average
20%.

• CGH clearly outperforms MIP regarding runtime for problem instances
with multiple depots and/or multiple trips. For instance, MIP runtime
for problem instance 5 is more than 1,000 times higher compared to the
CGH runtime (67 minutes vs. 4 seconds).

• Both, MIP and CGH solve the small problem instances with 10 planes
optimally.

Analogous to the heterogeneous fleet results, the same conclusions can be
drawn for the homogeneous fleet (see problem instance 6 to 10 in Table 2.2).
The superiority of CGH in terms of runtime becomes even more evident in
the homogeneous case. For instance, the runtime of problem instance 10 is
611,012 seconds for the MIP, while CGH requires only 3 seconds to find an
optimal solution.

Therefore, the focus in the following is on the CGH test results for the
larger problem instances with 25 and 50 planes and a heterogeneous tractor
fleet. Table 2.3 summarize the test results of problem instances 11 to 20.
The key observations are:

• Runtime is primarily driven by the number of planes to be served, the
number of depots and the number of trips. Problem instances 16 to 20
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Prob # # # # MIP CGH
Pln Dpt Trp Tmax Trctr IP Gap* LP Time IP Gap* LP Time SP

Val % Relax Sec Val % Relax Sec Sec

11 25 1 1 60 10/5 – – – – 477 0.0 477.0 8 5
12 25 1 2 60 10/5 – – – – 461 0.0 461.0 24 18
13 25 1 3 60 10/5 – – – – 461 0.0 461.0 44 38
14 25 2 2 60 10/5 – – – – 438 0.2 437.0 32 26
15 25 2 3 60 10/5 – – – – 441 0.9 437.0 86 78
16 50 1 1 120 10/5 – – – – 691 0.6 687.0 775 646
17 50 1 2 90 10/5 – – – – 692 0.1 691.0 1,964 1,753
18 50 1 3 60 10/5 – – – – 712 0.8 706.0 2,513 2,409
19 50 2 2 90 10/5 – – – – 671 1.6 660.0 2,610 2,413
20 50 2 3 60 10/5 – – – – 682 1.9 669.0 12,836 12,741

*Gap=(IP Value - LP Relax) / IP Value · 100

Table 2.3: Computational test results - Heterogeneous fleet, 25/50 planes

with 50 planes require the longest runtime of all instances. Again, the
runtime increases with an additional depot (e.g. instance 16 with 646
seconds vs. instance 19 with 2,413 seconds) and additional trips (e.g.
instance 19 with 2,413 seconds vs. instance 20 with 12,741 seconds).

• A large portion of the total runtime is consumed by solving SP, e.g. in
problem instance 20, 99% of total runtime is accounted for solving SP.
On average, 78% of total runtime is required to solve SP.

• CGH delivers good results. Feasible solutions derived by CGH deviate
at most 1.9% from the lower bound. This is in line with the observation
made in Desrochers et al. [25]. The authors present a column generation
approach for the VRPTW and report an average integrality gap of 1.5%,
see Bramel and Simchi-Levi [15] for an explanation of this behavior.

Figure 2.5 displays the development of the lower bound per iteration for
problem instance 19 (50 planes, 2 depots, 2 trips, heterogeneous fleet). The
ordinate show the objective value of the LP relaxation of RMP, the abscis-
sae the iteration number. I conclude that CGH works well for the towing
problem and the well-known tailing-off effect is negligible. SP runtime per
iteration increases over time as displayed in Figure 2.6 for problem instance
19. The ordinate show the runtime of SP in seconds, the abscissae the iter-
ation number. As previously mentioned, in the first 100 iterations SP is not
solved optimally, but the first feasible solution with negative reduced costs
is added to RMP. Thus, the runtime per iteration for the first 100 iterations
is significantly lower than the runtime in the later stage.
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Figure 2.5: Development of the lower bound per iteration of problem in-
stance 19

Figure 2.6: SP runtime per iteration of problem instance 19

2.5 Case study

The manual assignment of towing jobs to tractors is common practice at
many airports. This section evaluates the cost efficiency of a manual sched-
ule with regards to scheduling efficiency as well as efficiency of using the
given fleet of tractors. This is done in two steps: In a first step I create an
optimized schedule (schedule A) assuming that the fleet consists of those
tractors, which have been used in the manual schedule. In a second step I
examine the impact of extending the fleet to the full fleet available at the
airport (schedule B).

I investigate 50 planes, which corresponds to roughly 3 working hours
during a medium busy period of a day at the partner airport. According
to the airport’s infrastructure I take into account 2 depots, a maximum of



2.5 Case study 29

Total variable Delay Travel Service Delay Travel Service
costs in % costs in % costs in % costs in % minutes minutes minutes

Manual sched. 100 100 100 100 12 222 293
Schedule A 40 0 72 105 0 152 293
Schedule B 30 0 54 76 0 149 293

Table 2.4: Case study results - Variable costs and time

# of tractors available # of tractors used VC of tractors in use in %
Manual schedule 23 14 100
Schedule A 14 10 105
Schedule B 23 10 80

Table 2.5: Case study results - Tractors

2 trips with a maximum trip length of 90 minutes. Table 2.4 and Table
2.5 summarize the case study results. Each line in the tables correspond to
one schedule. For each schedule Table 2.4 shows the total variable costs,
delay costs, travel costs and service costs as well as delay minutes, travel
minutes and service minutes. In Table 2.5 the number of tractors available,
the number of tractors used and the average variable costs of the used fleet
is given for each schedule. Due to confidentiality reasons, not the absolute
costs are given, but the relative costs compared to the manual schedule.
Additionally, for each of the three schedules the travel time and variable
costs per vehicle are shown in Figure 2.7. Each bar displays the travel time
of one vehicle. Each sub-element of a bar indicates the travel time from
one node to the next node. The normalized variable costs VC are given in
brackets in the tractor labels. The variable costs of tractor 01 is set to 1.
The ratio between the various variable costs corresponds to the real-world
data.

The total costs and each cost component of the manual schedule is set
to 100%. Although 14 tractors are in use, the manual schedule contains 12
delay minutes. These delays account for roughly 50% of the total variable
costs. Schedule A assumes that the fleet consists of the same 14 tractors
which have been utilized in the manual assignment. It took 655 seconds
to find the near optimal solution (1.2% optimality gap). Compared to the
manual schedule, the total variable costs of schedule A decreases by 60%, of
which eliminating the delays account for roughly 90% of the total savings.
Schedule A also reduces the travel time from 222 minutes to 152 minutes,
i.e. the travel costs for schedule A is 20% lower than the travel costs of the
manual schedule. Out of the 14 tractors employed in the manual schedule,
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Figure 2.7: Overview travel time per tractor
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schedule A utilizes 10 tractors only, but utilizes tractors with high flexibility
(in terms of compatibility with plane types) and high variable costs. The
average variable costs of the fleet utilized in schedule A is 5% higher than
the average variable costs of the fleet used in the manual schedule. This
impacts the service costs, which increases for schedule A by 5% compared
to the manual schedule. Using at most 10 instead of 14 tractors at the
same time indicates further savings potential in personnel costs which the
objective function does not capture.

Schedule B considers the full fleet of 23 tractors, which is available at the
airport. It takes 18 minutes to solve this problem instance and the objective
function value of schedule B has an optimality gap of 1.8%. Schedule B
results in a cost reduction by 70% compared to the manual schedule and
24% compared to schedule A. Like schedule A, schedule B eliminates all
delays and utilizes 10 tractors. However, schedule B changes the tractors
to a set of vehicles with lower variable costs (20% lower than the manual
schedule). In the manual assignment, no towbar tractors are used. In
contrast, schedule B utilizes 3 towbar tractors with high flexibility in terms
of technical compatibility. Since the travel time reduces from schedule A
to schedule B by 3 minutes only (152 minutes vs. 149 minutes) the total
savings of 24% compared to schedule A can be attributed to a great extend
to the new fleet mix.

Overall, the case study results emphasize on the importance of deciding
on the optimal tractor mix for daily operations.

2.6 Summary

This chapter addresses the planning and scheduling of towing jobs at air-
ports. The presented model assigns tractors to towing jobs. The objective
function minimizes operating costs that vary by tractor type, subject to
various operational restrictions and airport dependent specifications. De-
spite its practical relevance, this application area has been neglected in the
literature thus far. The problem is stated as MIP based on the VRP. The
model incorporating relevant operational restrictions and specifications such
as time window, mixed fleet, multiple depots and multiple trips. I propose a
column generation heuristic as solution procedure. The column generation
heuristic finds (near) optimal solutions and is capable of solving problem
instances with up to 50 planes, 2 depots and 3 trips, which corresponds to
approximately 3 working hours at an international hub airport. In compar-
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ison, the original MIP formulation using a standard solver fails in solving
such problems in reasonable time.

In a case study with data from a major European hub airport, I compare
a manual schedule with an optimized schedule to gain insights on main cost
drivers and characteristics of efficient schedules. Compared to the manual
schedule, the optimized schedule contains no delays and reduces travel time
by 33%.



Chapter 3

Fleet composition of towing
tractors

For the operational planning problem in Chapter 2 I assume a set of given
tractors, which can be assigned to towing jobs. This assumption holds true
from a day-to-day operational perspective. However, in the long-term the
towing service provider can define its fleet. Usually the fleet consists of
a set of heterogeneous tractors. These towing tractors differ with respect
to investment costs, variable costs and a technical compatibility with plane
types. The optimal fleet size and mix is critical for a towing service provider
to operate cost effective and fulfill service level agreements. This chapter
introduces a model that generates a cost optimal (dis-)investment plan for a
heterogeneous set of towing tractors considering a multi-year horizon. The
model builds on a column generation approach (see Desaulniers et al. [24]).
It consider a selling option, a general overhaul option, a minimum duration
of use, a maximum lifetime and the technical compatibility of tractor types
with plane types. The fleet size and mix can change from period to period.
In the following, an ”investment plan” in the broader sense refers to a plan
which includes decision on buying, overhauling and selling, it can invest and
divest.

The remainder of this chapter is organized as follows: I refer to related
literature in the next section. In Section 3.2, I introduce the problem, ex-
plain the mathematical formulation and the solution approach. Section 3.3
presents an approach to aggregate demand using flight schedule information
and describes how the existing fleet can be incorporated in the model. In
Section 3.4 I demonstrate an application of the model in a real-world setting.
For this purpose, I determine the investment plan for a major European air-

33
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port. Additional scenario analyses investigate the impact of demand and
cost deviations. I conclude with a summary of the main findings in Section
3.5.

3.1 Related literature

A Fleet Sizing Problem (FSP) determines the number of vehicles for a ho-
mogeneous fleet, while a Fleet Composition Problem (FCP) refers to the
problem of deciding on the fleet size and mix for a heterogeneous set of
vehicles (e.g. see Etezadi and Beasley [32]). FSP and FCP literature can be
categorized in those considering routing and those ignoring routing. Hoff
et al. [38] and Bielli et al. [13] provide an overview of papers combining
FCP with vehicle routing, the so-called Fleet Size and Mix Vehicle Routing
Problems (FSMVRP). The model proposed in this chapter does not include
routing aspects, since I focus on a long-term strategic perspective. At a
strategic level demand, costs and revenue uncertainties related to fleet op-
erations are high, thus taking into account routing aspects on a detailed level
is ineffective (see Hoff et al. [38]). Hoff et al. [38] recommend considering
routing, e.g. in tactical settings of several months in road transportation.
To the best of my knowledge, there is no FCP literature addressing the
towing fleet composition problem that covers this specific problem in one
model.

Kirby [42] and Wyatt [64] are among the first to address the FSP. Kirby
[42] investigates the wagon fleet size of a railway system. He concludes that
the ratio of days to hire external vehicles to own vehicles should be set to the
ratio of costs of renting external vehicles to fixed costs of internal vehicles.
Wyatt [64] considers a fleet of barges. He extends the idea of Kirby [42]
by adding variable costs to the formula. Other examples of FSP papers are
Alsbury [3], Parikh [54], Imai and Rivera [39] and Wu [63].

Papers investigating a heterogeneous fleet are Gould [37], Loxton et al.
[47] and Redmer et al. [55]. In contrast to this work, their fleet composition
is determined for one period only or are constant in all periods in these pa-
pers. Gould [37] formulates a linear programming model, which minimizes
the total annual costs of a road transport department while satisfying de-
mand with a seasonal pattern. The model takes into account fixed costs,
variable costs and costs of hiring external vehicles. Loxton et al. [47] also
present an approach which minimizes fixed, variable and hiring costs. The
authors determine a fleet composition, in a setting, where the demand, given
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by the number of required vehicles per type, changes from period to period.
The proposed algorithm combines dynamic programming and golden sec-
tion search and solves instances with up 200 vehicle types within seconds.
The work of Redmer et al. [55] determines an optimal fleet composition
of road tankers for fuel distribution. The authors present two integer pro-
gramming formulations of the problems and implement several heuristics.
Finally, they compare the performance of the different formulations using
their heuristic procedures.

Mole [50] and Simms et al. [59] allow a dynamic fleet size for a homoge-
neous fleet. Similar to Kirby [42] and Wyatt [64], Mole [50] determines the
number of own vehicles, while minimizing fixed, variable and hiring costs.
The author develops a dynamic programming model which determines the
timing of investments in new vehicles in order to react to demand trends.
Simms et al. [59] combines dynamic programming with linear programming
to derive the optimal buy, operate and sell policy for buses.

New [51], Etezadi and Beasley [32], Couillard and Martel [21], Wu et al.
[62] and Burt et al. [16] examine a planning horizon of several periods and
allow fleet composition to change over time. None of these papers capture a
general overhaul option and a minimum duration of use. New [51] presents
a linear programming model,that minimizes the operating costs of an airline
fleet by deciding on the timing of investment and scrap of planes. Etezadi
and Beasley [32] propose a mixed integer program to determine the optimal
fleet composition of vehicles which serve several customers from a central
depot. The model minimizes the fixed and variable costs of own and hired
vehicles, while ensuring a sufficient number of vehicles in each period to
cover the distance to and capacity for all customers. Couillard and Martel
[21] introduce a stochastic programming model to tackle the FCP for road
carriers. The model determines the cost minimal purchase, sale and rental
policy for a set of heterogeneous trucks, while demand is subject to seasonal
fluctuations. It considers among others the age of vehicles in the fleet as
well as tax allowances for owning a vehicle. Wu et al. [62] apply the FCP
to the specifics of the truck-rental industry. The authors introduce a linear
programming model, which decides on truck investment and disinvestment,
demand allocation and repositioning of empty trucks. The solution pro-
cedure applies Benders decomposition and Lagrangian relaxation in a two
stage approach, with which they can solve instances with 3 tractor types,
60 periods and 25 locations within 12 hours. The work of Burt et al. [16]
investigates the FCP for the mining industry. The proposed integer pro-
gram determines the optimal buy and sell policy for trucks and loaders used



3.2 Mathematical formulation and solution approach 36

in a mining location. A unique aspect of this model is the consideration
of compatibility between trucks and loaders. In a case study the authors
determine the optimal solution for a problem with eight trucks, 20 loaders
and 13 periods within 2.5 hours.

In summary, no literature specifically addresses the towing fleet com-
position at airports. The papers of New [51], Etezadi and Beasley [32],
Couillard and Martel [21], Wu et al. [62] and Burt et al. [16] come closest to
this work. A general overhaul option and the minimum duration of use are
not included in any of the models. Furthermore, technical compatibility is
in most cases not taken into account. Yet, these aspects are essential when
determining the optimal investment strategy in a real-world towing setting.

3.2 Mathematical formulation and solution

approach

The model introduced in the following generates a cost optimal multi-period
investment plan for a set of heterogeneous towing tractors. It considers a
planning horizon of |T | periods. The model determines for each tractor
type b the number of required tractors in each period t in order to satisfy a
demand DMd,t of each demand pattern d in period t. To fulfill demand, a
tractor type b has to be technically compatible with demand pattern d, i.e.
CPb,d = 1. The model takes into account the existing fleet. NEb denotes
the number of available tractors of type b. The fleet size and mix can be
adjusted from period to period by buying new tractors and overhauling or
selling existing ones. A general overhaul is required, if a tractor is used
beyond its maximum duration of use DU . A general overhaul extends a
tractor’s lifetime by additional AD periods. A tractor can be sold on the
market if a tractor is not required anymore before reaching its maximum
lifetimeDU (without general overhaul) orDU+AD (with general overhaul).
However, a tractor has a minimum duration of use of MU periods, before it
can be sold. MU does not reflect a technical feature of a tractor, but rather
is set by the management. Buying, using, overhauling and selling a tractor
is associated with costs and earnings, denoted in the model with investment
costs ICt, variable costs V Ct, overhaul costs OCt and sales revenues SRt.
Cost changes and discount rate are important factors when considering a
planning horizon of several years. Therefore, period index t is attached to all
cost parameters. Both cost changes and the discount rate are incorporated
in the cost data, and do not appear explicitly in the model. Note that the
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parameters DU , AD, MU , ICt, V Ct, OCt and SRt are tractor type specific
and assume different values for each tractor type b.

A Column Generation Heuristic (CGH) is used as solution approach.
Column generation decomposes the problem into a Master Problem (MP)
and a Subproblem (SP), which generates feasible columns. A feasible col-
umn a ∈ A(b) represents one investment plan for a specific tractor type b.
The investment plan contains the information in which periods the tractor
should be used and accordingly when/if to buy, overhaul and sell this trac-
tor. It takes into account restrictions such as the maximum lifetime AD or
the minimum duration of use MU before a tractor can be sold. A(b) is the
set of all investment plans associated with tractor type b. Each investment
plan a ∈ A(b) is associated with total investment plan costs of TCb,a.

MP determines the fleet size and mix by selecting which investment plan
to follow. It minimizes the costs while ensuring demand satisfaction. Only
a subset of all feasible investment plans are considered and new columns
are added iteratively. The procedure starts with a small subset of columns
and solves the LP relaxation of the Restricted Master Problem (RMP). By
inserting the dual value information of RMP constraints into the objective
function of SP, a promising absent columns is generated. Those columns
are added to RMP and the LP relaxation of RMP is resolved. The proce-
dure terminates with a lower bound for the problem. In a second step, all
available columns which have been inserted in RMP thus far are taken and
RMP is solved as IP to generate a feasible solution.

Master Problem. The notation and mathematical formulation of MP
are as follows:
Sets:
B Set of tractor types (index b)
A(b) Set of investment plans associated with tractor type b (index a)
D Set of demand patterns (index d)
T Set of periods (index t)

Parameters:
TCb,a Costs of investment plan a associated with tractor type b
CW Costs associated with auxiliary variable wd,t

CPb,d 1, if tractor type b is compatible with at least one plane type
associated with demand pattern d, 0 otherwise

Xb,a,t 1, if investment plan a for tractor type b covers period t,
0 otherwise

DMd,t Demand of demand pattern d in period t
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NEb Number of existing tractors of tractor type b
Variables:

λb,a Number of tractors of type b bought and sold according to
investment plan a

wd,t Number of external tractors to cover demand pattern d
in period t

Minimize
∑
b∈B

∑
a∈A(b)

TCb,a · λb,a + CW ·
∑
d∈D

∑
t∈T

wd,t (7a)

subject to∑
b∈B:

CPb,d=1

∑
a∈A(b)

Xb,a,t · λb,a + wd,t ≥ DMd,t ∀d ∈ D, t ∈ T (7b)

∑
a∈A(b)

λb,a ≥ NEb ∀b ∈ B (7c)

λb,a ≥ 0 and integer ∀b ∈ B, a ∈ A(b)
(7d)

wd,t ≥ 0 and integer ∀d ∈ D, t ∈ T (7e)

The objective function (7a) minimizes the total costs of all tractors used
according to the selected investment plans. The first sum adds the costs of
all investment plans TCb,a which are selected. The auxiliary variables wd,t in
the second sum guarantee feasibility in the course of the column generation
procedure and are required to initialize RMP. They can be interpreted as
number of external tractors to cover demand pattern d in period t. The
use of external tractors is penalized with costs CW . Since renting external
tractors is not practical in reality, CW is set to a value, which is higher
than the most expensive column costs.

Demand constraints (7b) ensure that the demand in each period is ful-
filled for each demand pattern, i.e. there must be sufficient numbers of
compatible tractors to satisfy demand. Variable λb,a denotes the number of
tractor type b which are bought, overhauled and sold according to invest-
ment plan a. The auxiliary variables wd,t again ensure feasibility and can
be interpreted as number of external tractors used.

Constraints (7c) take the existing fleet into account. For each existing
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tractor I create one additional SP and adapt decision variable settings in SP
and parameter settings (see Section 3.3.3). Thus, one tractor type might be
represented by several SP. Constraints (7c) enforce NEb number of invest-
ment plans of tractor type b to be selected. NEb is greater than or equal to
1 for SP representing existing tractor types and NEb is 0 for all other SP.
Variable definitions are given in (7d) and (7e).

The dual solution of RMP is obtained by relaxing the integrality condi-
tions and solving RMP with a subset of columns. Let δd,t ≥ 0 denote the
dual values of constraints (7b), then δt ≥ 0 is defined as

δt =
∑
d∈D

δd,t ∀t ∈ T . (8)

And let δ̃b ≥ 0 denote the dual values of constraints (7c). Then the reduced
costs of column a associated with tractor type b is

c̄b,a = TCb,a −

(∑
t∈T

δt ·Xb,a,t + δ̃b

)
(9)

with TCb,a representing the total costs of investment plan a for tractor type
b defined as:

TCb,a =
∑
t∈T

V Ct ·Xb,a,t +
∑
t∈T

ICt · Y buy

b,a,t (10)

+Ocost

b,a,t −
∑
t∈T

∑
t̃∈T

SRt̃ · Ub,a,t,t̃

Xb,a,t, Y
buy

b,a,t, O
cost
b,a,t and Ub,a,t,t̃ represent the variables values in SP. A detailed

description of the cost components can be found in the explanation of SP’s
objective function (see (11a)). LP optimality of RMP is reached when
c̄a ≥ 0 holds for all absent columns a /∈ A(b) associated with any tractor
type b ∈ B. Whenever a new column is found with negative reduced costs
(i.e. the objective value of SP is negative), this column is added to RMP and
a new iteration starts. The procedure terminates when no further column
has negative reduced costs.
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Subproblem (b). One SP(b) is created for each tractor type and each
existing tractor. Each SP(b) generates investment plans for tractor type b.
Following additional notation is used to formulate SP(b):

Parameters
V Ct Variable costs in period t
ICt Investment costs in period t
SRt Sales revenue for one remaining use period,

if tractor is sold in period t
OCt General overhaul costs in period t
DU Maximum duration of use without general overhaul
AD Maximum additional duration of use after a general overhaul
MU Minimum duration of use before tractor can be sold

Variables
xt 1, if tractor is used in period t, 0 otherwise and x0 = 0, x|T | = 0
ybuy

t 1, if tractor is bought in period t, 0 otherwise
yov 1, if tractor is overhauled, 0 otherwise
ysell
t 1, if tractor is sold in period t, 0 otherwise
ut,t̃ Remaining lifetime if tractor is bought in period t

and sold in period t̃
ocostt Costs of general overhaul if tractor is bought in period t

The mathematical formulation of SP(b) then looks as follows:

Minimize
∑
t∈T

V Ct · xt +
∑
t∈T

ICt · ybuy

t +
∑
t∈T

ocostt (11a)

−
∑
t∈T

∑
t̃∈T

SRt̃ · ut,t̃ −

(∑
t∈T

δt · xt + δ̃b

)

subject to

xt−1 + ybuy

t ≤ 1 ∀t ∈ T (11b)

xt − xt−1 − ybuy

t ≤ 0 ∀t ∈ T (11c)

− xt−1 + ysell

t ≤ 0 ∀t ∈ T (11d)

xt + ysell

t ≤ 1 ∀t ∈ T (11e)

− xt + xt−1 − ysell

t ≤ 0 ∀t ∈ T (11f)
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yov ≤
∑
t∈T

ybuy

t (11g)∑
t̃∈T

t̃ · ysell

t̃ −
∑
t∈T

t · ybuy

t

≥ (DU + 1) · yov (11h)

ocostt ≥ OCt+DU · (ybuy

t + yov − 1) ∀t ∈ {1, ..., |T | −DU} (11i)

ut,t̃ ≤ (DU + AD) · ybuy

t ∀t, t̃ ∈ T (11j)

ut,t̃ ≤ (DU + AD) · ysell

t̃ ∀t, t̃ ∈ T (11k)

ut,t̃ ≤ AD · yov +DU (11l)

− (t̃ · ysell

t̃ − t · y
buy

t )

+ t̃ · (1− ybuy

t ) ∀t, t̃ ∈ T∑
t∈T

ybuy

t ≤ 1 (11m)

xt̃ ≥ ybuy

t ∀t ∈ {1, ..., |T | − 1} , t̃ ∈ (11n)

{t, ...,min{t+MU − 1, |T | − 1}}
1− xt+DU+AD ≥ yov + ybuyt − 1 ∀t ∈ {1, ..., |T | − 1− AD −DU} (11o)

1− xt+DU ≥ ybuy

t − yov ∀t ∈ {1, ..., |T | − 1−DU} (11p)

xt, y
buy

t , yov, ysell

t ∈ {0; 1} ∀t ∈ T (11q)

ocostt , ut,t̃ ≥ 0 ∀t, t̃ ∈ T (11r)

The objective function (11a) minimizes the reduced costs of a new in-
vestment plan. It takes into account (I) the variable costs of all periods in
which a tractor is used. The variable costs per period V Ct for a tractor
type b can be obtained by multiplying the variable costs per minute with
the target utilization time. Furthermore, it considers (II) the investment
costs ICt if a tractor is bought and (III) the overhaul costs ocostt in case of
a general overhaul. If a tractor is sold (IV) the earnings are deducted. The
earnings depend on the remaining lifetime ut,t̃ and the sales revenue for one
remaining use period SRt. I assume a liquidation of all tractors at the end
of the planning horizon. Finally, (V) the dual values δb and δ̃b obtained
from solving relaxed RMP are deducted.

Constraints (11b) and (11c), together with constraints (11n) detect a
shift of the x variable from 0 to 1 and thereby determine the buying period.
These constraints are the linearization of ybuy

t = xt · (1−xt−1). Accordingly,
constraints (11d), (11e) and (11f) detect a shift of the x variable from 1 to
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0, which determines the selling period. Again, these constraints linearize
ysell
t = xt−1 · (1− xt).

Constraints (11g), (11i) and (11h) set the rules for a general overhaul:
A general overhaul can only take place, if the tractor has been bought
previously (11g) and before the tractor is being sold (11h). Variable yov = 0,
if the tractor is sold before the maximum duration of use DU is reached.
Constraints (11i) determine the overhaul costs. A general overhaul takes
place at the end of the tractor’s lifetime, i.e. in period t+DU if the tractor
has been bought in period t. Therefore, ocostt is set to OCt+DU if ybuy

t = 1
and yov = 1. Here, OCt+DU denote the costs of a general overhaul, if this
overhaul takes place in period t+DU . In all other periods, ocostt is set to 0
since costs are minimized in the objective function.

Constraints (11j), (11k) and (11l) track the remaining number of periods
a tractor can be used (remaining lifetime). The remaining lifetime depends
on the period t in which the tractor is bought and the period t̃ in which the
tractor is sold. ut,t̃ is set to 0 for all periods, a tractors was not bought (11j)
or sold (11k). While in the periods, in which the tractor is bought or sold,
ut,t̃ is limited to an upper bound of DU + AD. For the period t in which
the tractor is bought and the period t̃ in which the tractor is sold, ut,t̃ is set
to AD+DU − t̃+ t (with general overhaul) or DU − t̃+ t (without general
overhaul), which equals the remaining lifetime (11l).

Constraint (11m) ensures that the tractor is bought not more than once.
Constraints (11n) enforce the use of a tractor once it was bought. The x
variable is set to 1 for the period a tractor is bought and the following
periods until the minimum usage duration MU or the end of the planning
horizon is reached. For example, if a tractor is bought in period 1 and the
minimum duration of use MU is 4 periods, x takes the value of 1 for periods
1, 2, 3 and 4. If the tractor is bought in period 8 and |T | = 11, then x is set
to 1 for periods 8, 9 and 10. Note, the last period is added only to liquidate
remaining tractors, i.e. DMd,|T | = 0, ∀d ∈ D. Thus, the model considers 21
periods for a planning horizon of 20 periods.

Constraints (11o) and constraints (11p) ensures that the maximum du-
ration of use is not exceeded. In constraints (11o) the maximum duration of
use equals the initial lifetime DU of a tractors plus the additional duration
of use AD due to a general overhaul. The constraints set the variable x
in period t + DU + AD to 0, if a general overhaul takes place in period
t + DU . For example, if DU = AD = 4 and the tractor is bought in pe-
riod 1 (ybuy1 = 1), then constraints (11o) enforce x9 to take the value 0. In
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the second case no general overhaul takes place (11p), therefore the maxi-
mum duration of use corresponds to the initial lifetime DU of the tractors.
Variable definitions are given in (11q) - (11r).

t 1 2 3 4 5 6 7 8 9 10

xt 0 1 1 1 1 1 1 0 0 0

ybuyt 0 1 0 0 0 0 0 0 0 0
yovt 0 0 0 0 0 1 0 0 0 0
ysellt 0 0 0 0 0 0 0 1 0 0

yov 1

u2,8 2

TCb,a 1,305,289

Table 3.1: Example investment plan a for tractor type b

Table 3.1 gives an example of an investment plan a for tractor type b.
The table shows the values of the decision variables and the total investment
plan costs TCb,a in the periods P1 to P10. The maximum lifetime DU is
4 periods and the additional lifetime after a general overhaul is 4 periods.
According to the investment plan, the tractor is used in periods 2 to 7.
ybuy is set to 1 in the period, in which there is a shift from 0 to 1 in the x
variable, here ybuy2 = 1. Accordingly, ysell is set to 1 if there is a shift from
1 to 0 in the x variables, i.e. ysell8 = 1. The maximum lifetime is reached
and requires a general overhaul, i.e. yov = 1. The remaining lifetime of this
tractors, which was bought in period 2 and sold in period 8, is 2 periods,
i.e. u2,8 = 2, ut,t̃ = 0 in all other periods t, t̃.

The solution of SP(b) is a new investment plan (column) in RMP. Par-
ticularly, the new column a associated with tractor type b is given as TCb,a

−→
X b,a

1b


where TCb,a is the total costs of investment plan a associated with tractor

type b.
−→
X b,a is a vector with |T | elements indicating in which periods

the tractor is used, or in other words containing the values of the decision
variable xt of SP(b), i.e. Xb,a,t = xb,t ∀t ∈ T . 1b is a unit vector with length
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|B| and value 1 at position b and else 0. To find a feasible solution, all
columns that have been generated when solving the LP relaxation of RMP
are used and RMP is solved as IP.

3.3 Demand and fleet related input data

In the following, I introduce a procedure for demand aggregation based on
a flight schedule and present an example of demand forecasting. Moreover,
I explain how the existing fleet can be incorporated in the model.

3.3.1 Demand pattern generation

Constraints (7b) in MP ensure in each period a sufficient number of com-
patible tractors to satisfy demand. The demand for a period is expressed
by a set of demand patterns. One period equals a winter or summer flight
schedule, i.e. 6 months. The procedure for demand pattern generation
is summarized in Table 3.2. In the following, I explain the four steps of
demand pattern generation from a given flight schedule for one period.

Repeat for all periods t ∈ T
Input: Flight schedule period t

Step 1 : Select a representative peak day in period t
Step 2 : Determine for each job of selected day tractor occupation time
Step 3 : Repeat for all plane type

i) Determine for each time interval the number of simultaneous jobs
ii) Determine the daily maximum of number of simultaneous jobs

Step 4 : Determine sum of results from step 2 for
plane types with overlapping tractor compatibility structure

Output: Demand DMd,t of demand pattern d of period t

Table 3.2: Procedure for demand pattern generation

Step 1: Select a representative peak day in the period. Within
a summer or winter flight schedule the days usually are nearly identical in
terms of departure times and plane types.

Step 2: Calculate the time window of tractor occupancy for
each towing job of the selected day. The occupancy time comprises a
travel time, waiting time and processing time. The upper part of Figure 3.1



3.3 Demand and fleet related input data 45

Figure 3.1: Step 2 and step 3 - Tractor occupancy time per job and maxi-
mum number of simultaneous jobs

visualizes the outcome of step 2. The horizontal axis refers to the time of
the day, each row refers to one towing job. The bars shows the occupation
time of a tractor for each job. In the case study in Section 3.4 I set the
time interval length to five minutes. The average travel time of 5 minutes,
average waiting time of 10 minutes and real processing times are derived
from real-world data and are rounded to fit the time interval. The length
of the time interval does not influence the number of demand patterns and
therefore has no impact on the size of the model.

Step 3: Determine the number of simultaneous jobs for each
time interval and derive the maximum of the day per plane type.
The lower part of Figure 3.1 is a table showing for each plane type (rows)
and each time interval (columns) the number of simultaneous jobs. The
last column at the right displays the daily maximum for each plane type.
In this example, the daily maximum of plane type A is 3, i.e. a maximum of
3 jobs is running simultaneously related to plane type A during the day. The
model generates one demand constraint for each plane type. For example,
the demand constraint for the first row ensures that the number of tractors
compatible with plane type A is equal to or greater than 3.

Step 4: Ensure the aggregated demand of plane types is satis-
fied for overlapping tractor compatibility structures. In some cases
it is not sufficient to ensure demand satisfaction for each plane type sep-
arately. If tractor compatibility overlaps, one tractor might be used for
several jobs at the same time. There are three cases:

• Case 1. There is no overlap of tractor compatibilities. In Table 3.3 plane
type A is compatible with tractor type 1 and 2, while plane type B is com-
patible with tractor type 3. Here one constraint per plane type as done
in step 3 is sufficient. This results in two relevant demand constraints.
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Tractor type 1 2 3

Plane type A X X
Plane type B X

Table 3.3: Step 4 - Compatibility structure case 1

• Case 2. The compatibility structure of one plane type is a subset of the
compatibility structure of another plane type. In Table 3.4 plane type A
is compatible with all tractor types, and plane type B is only compatible
with tractor type 2, i.e. the compatibility structure of plane type B is a
subset of plane type A. In this case one additional demand constraint is
required to ensure the number of tractors compatible with plane types A
or B (here tractor types 1, 2 and 3) to be equal to or greater than the sum
of the maximum number of simultaneous jobs for plane types A and B
(here 4). This additional constraint makes the constraint for plane type
A from step 3 redundant. This results in two relevant demand patterns:
B and A+B.

Tractor type 1 2 3

Plane type A X X X
Plane type B X

Table 3.4: Step 4 - Compatibility structure case 2

• Case 3. There is an overlap of tractor compatibility without subset
structure. An example is given in Table 3.5. Here plane type A is com-
patible with tractor type 1 and 2 and plane type B is compatible with 2
and 3, i.e. both plane types are compatible with 2. This results in three
relevant demand patterns: A, B and A+B. In this example I assume two
plane types, for n plane types the number of relevant demand patterns is∑n

k=1
n!

(n−k)!k! .

3.3.2 Demand forecasting

A key driver for fleet size and mix is demand. Therefore, a high quality
demand forecasting as input is essential for a reliable investment plan as
output. Demand, and thus demand patterns, are primarily influenced by
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Tractor type 1 2 3

Plane type A X X
Plane type B X X

Table 3.5: Step 4 - Compatibility structure case 3

three factors: I) The total number of towing jobs per day, II) the plane
type mix and III) the number of towing jobs at each time of the day (in the
following called ”temporal distribution”).

In the following, I present an example of demand forecasting for a major
European hub airport. The data is used as input for the case study in
Section 3.4. All relevant information for generating the demand patterns is
available for the first two periods of the planning horizon in the case study
(flight schedule summer 2013 and winter 2013/14). I use the following
approach and assumptions to derive the demand for the following periods:

Table 3.6: Forecasting of numbers of towing jobs per day

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Summer 554 566 579 592 605 617 630 643 656 668
Winter 552 564 576 589 601 614 626 638 651 663

i) The forecast for the number of towing jobs is based on the forecast for
the number of flight movements. We assume a constant ratio between the
number of flight movements to the number of push-backs, repositionings
and maintenance towings (0.8 , 0.11 and 0.09 for the winter schedule and
0.83, 0.09 and 0.08 for the summer schedule). The forecasts for the number
of towing jobs per day is displayed in Table 3.6. The table gives the forecast
of the number of towing jobs for one peak day in summer 2013 to 2022 and
winter 2014 to 2023. Note that winter 2014 refers to winter 2013/14. The
number of towing jobs is expected to increase at a compounded annual
growth rate (CAGR) of 2%.

ii) and iii) To derive changes in the plane mix and the temporal distri-
bution of towing jobs, I rely on the standard flight schedule 2020, which is
available for the partner airport. The standard flight schedule 2020 does
incorporate a change in the plane mix. Other relevant sources for the future
development of the fleet mix are amongst others Airbus S.A.S. [1] and Boe-
ing Commercial Airplanes [14]. Real processing times were used as input
data for flight schedule summer 2013 and winter 2014. For flight schedule
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Figure 3.2: Temporal distribution of jobs (summer 2013)

Figure 3.3: Temporal distribution of jobs (winter 2014)
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Figure 3.4: Temporal distribution of jobs (2020)

2020 I assume the average processing time. Furthermore, I assume the tem-
poral distributions of maintenance towings and repositionings to remain the
same as in 2013 and 2013/14. Based on these assumptions the temporal
distribution of towing jobs in a day is visualized in Figure 3.2 (summer flight
schedule 2013), Figure 3.3 (winter flight schedule 2013/14) and Figure 3.4
(2020). These figures show the total number of simultaneous jobs on the
ordinate and time of the day on the abscissae. This information is available
for each plane type. I assume a linear growth of the temporal distribution
and change in plane type mix from summer 2013 and winter 2014 towards
the distribution in 2020 and a constant distribution thereafter. Since the
distribution 2020 is not divided into winter and summer, I assume the same
distribution for both seasons. This assumption seems reasonable since the
temporal distribution of the schedule summer 2013 and winter 2014 resem-
ble each other (see Figure 3.2 and 3.3).

By combining the i) total number of jobs per day, ii) plane type mix and
iii) temporal distribution, all relevant input data are available to generate
the demand patterns for the forecasting periods.
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3.3.3 Consideration of the existing fleet

A workable investment plan needs to take into account the existing fleet.
The fleet can be distinguished between three tractor categories. The pool of
potential tractor types on the market is category 1. For each tractor type,
one SP is created. Category 2 are the pool of existing tractors without
decision options. These are primarily tractors, which have a remaining
lifetime of one or two periods. Each category 2 tractor is inserted directly
as a column in MP and the selection of the column is ensured. Category
3 are existing tractors with decision options, i.e. the decision regarding an
overhaul or selling has not been made yet. One additional SP is created
and parameter and decision variable settings are adapted for each tractor
type in category 3. For instance, if a tractor is bought in summer 2012,
I set ybuy1 = 1, i.e. the tractor has to be bought in the first period of the
planning horizon (in the case study summer 2013). Furthermore, I decrease
the lifetime DU and investment costs ICt for those two periods, which are
not in the model’s planning horizon. Constraints (7c) in MP ensure the
selection of NE number of columns from this SP(b) in the final solution.

3.4 Case study

This section illustrates the application of the model at a major European
airport. I derive an investment plan for a planning horizon of ten years.
Additional scenarios demonstrate the robustness of investment decisions
with respect to changes in demand, flight schedule disruptions and costs.

IBM ILOG CPLEX Optimization Studio 12.2 is used to code and solve
MP and SP. All computations are performed on a 3.3 GHz PC (Intel(R)
Core(TM) i3-2120 CPU) with 4 GB RAM running under the Windows 7
operating system. For the basic scenario with a problem size of 22 SPs,
21 periods and 76 demand patterns, the CGH obtains an optimal solution
within 5 minutes. All other instances are solved to optimality with a runtime
of between 3 and 37 minutes; the average runtime across all instances is 7
minutes. Column generation terminates with a lower bound for the optimal
solution. Solving RMP as IP led to the same values as the lower bound.
Therefore, I conclude on the optimality of the feasible solutions obtained
from CGH.
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3.4.1 Basic scenario

The parameters in the basic scenario are derived from real-world data and
exhibited in Table 3.7:

Selling price SPt 70% of investment costs
General overhaul costs OCt 60%-80% of investment costs
Minimum duration of use MU 6 periods
Maximium duration of use DU 10 periods
Additional lifetime after overhaul AD 11 periods
Waiting time per job 10 minutes
Average utilization per tractor and day 5 hours

Table 3.7: Parameter settings and input data for the basic scenario

The optimal solution in the basic scenario is displayed in Figure 3.5. The
four parts of the figure show the number of tractors to be used, bought, sold
and overhauled for tractor types T01 to T13 in periods 1 to 20. In total,
55 tractors are bought, 11 tractors are sold and 10 tractors are overhauled.
I only list tractors in the table which really are sold on the market, i.e.
tractors with a positive remaining lifetime ut,t̃ ≥ 0 and sold in periods 1
to 20. The sum of tractor periods is 371. If all 55 bought tractors were
to be overhauled and kept until the end of their lifetime, the sum would
be 816. Thus, the average duration of use per tractor is approximately
seven periods, while the average potential duration of use including general
overhaul is approximately 15 periods.

Figure 3.6 visualizes the number of tractors to be bought and sold over
time. Figure 3.7 shows the number of tractors in use per period and tractor
type and Figure 3.8 displays the number of tractors to be used per period
and in the categories of ”existing” versus ”new” tractors (see Section 3.3.3).
The abscissae refers to the period, the ordinate to the number of tractors
bought, sold or used. After looking at the figures, two conclusions can be
drawn: First, there is a clear preference for certain tractor types, namely
T10, T12 and T13. The fleet mix is dominated by these three tractor types
starting from period 7. From period 13 onwards, the fleet consists of only
these three tractor types. In particular, T10 and T12 are characterized by
high flexibility in terms of technical compatibility, while T13 has compar-
atively low investment and variable costs. Second, the current number of
existing tractors is too high: In the first period, the number of tractors used
is predetermined by the existing fleet. With a reduction in the existing fleet
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Figure 3.5: Number of tractors used, bought, sold and overhauled per pe-
riod and tractor type (basic scenario)
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Figure 3.6: Number of tractors bought and sold per period (basic scenario)

Figure 3.7: Number of tractors used per period and tractor type (basic sce-
nario)

size due to aging, the total fleet size then decreases in periods 2 and 3. As
demand increases the fleet size increases again in period 4. Demand with
respect to number of jobs is lower in winter than summer (see Table 3.6).
However, processing time per job is longer during winter, thus total tractor
occupation time is higher during winter. The zig-zag-pattern in periods 4
to 14 (winter 2020) results from this seasonal variation. The fleet size sta-
bilizes after period 14, since I assume one temporal distribution for both
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Figure 3.8: Number of tractors used per period and categories of ”existing”
vs. ”new” (basic scenario)

seasons from 2020 onwards.

3.4.2 Demand and risk scenarios

Demand increases with a CAGR of 2% in the basic scenario. Furthermore,
an average waiting time of 10 minutes is added to each job based on histor-
ical data. Both factors impact the fleet size. I analyze in the following the
impact of an increase and a decrease in demand by 10% (scenarios D+10%
and D-10%), an increase of the average waiting time to 15 minutes (WT15)
and a decrease of the average waiting time to 0 minutes (WT0).

Figure 3.9 compares the waiting time scenarios with the basic scenario.
The bars show the total costs TC of the investment plan in percentage of
the basic scenario costs (left x-axis). The lines show the number of tractors
to be bought, overhauled and sold (right x-axis). Waiting time itself is an
indicator of the robustness of an investment plan regarding disruptions in
the flight schedule and daily operations. The fleet size decreases consider-
ably when ignoring waiting time (WT0). However, there is a high risk of
push-back delays due to flight schedule disruptions. Increasing the average
waiting time from 10 minutes to 15 minutes (WT15) creates a greater buffer
for disruptions. The comparison of WT0 with the basic scenario can also
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Figure 3.9: Waiting time scenarios vs. basic scenario

be interpreted from the following perspective: Due to disruptions in daily
operations, the towing service provider faces about 30% higher investment
costs.

Figure 3.10: Demand scenarios vs. basic scenario

Figure 3.10 shows the results of the demand scenarios. An increase
or decrease of demand by 10% is roughly equivalent to a cost increase or
decrease of 5%. A demand increase does not expose the towing service
provider to any risks, since new tractors can be bought anytime. However, a
demand decrease might lead to a suboptimal fleet, if part of the investment
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plan has already been realized. The greater the differences between the
various scenarios, the higher the risk of a suboptimal decision. The later in
the planning horizon the differences occur, the higher the chance of revising
the investment plan without losing optimality.

Figure 3.11: Delta of D-10% scenario and basic scenario

Figure 3.11 shows the delta of number of tractors to be bought and sold
per period between the D-10% and the basic scenario. A positive number in
the chart means more tractors are bought or sold in the D-10% scenario. In
total the same number of tractors are bought in both scenarios. Looking at
the first 8 periods (i.e. 4 years), the net difference is one additional tractor
bought and three additional tractors sold in the D-10% scenario. Buying or
selling more tractors if demand does not develop as expected are decision
that easily can be carried out. Thus, the investment plan in the case study
seems rather robust with respect to demand variations, while waiting time
or schedule disruptions have a greater influence on the optimal fleet size.

3.4.3 Cost scenarios

In this section I investigate how the ratio between investment costs and
selling prices, and the ratio between investment costs and general overhaul
costs influence the investment plan. Moreover, I analyze the impact of
utilization rates on the optimal fleet composition.

In the selling price scenarios (S100% - S0%), I vary the revenues for
selling tractors. The percentage number in the scenario label indicates the
selling price that can be realized on the market in percentage of the initial
investment costs. In scenario S100% I assume a tractor can be sold to the
market without any loss of value, while scenario S40% assumes a loss of
60% in value if a tractor is sold. Scenario S0% reflects the scenario of not



3.4 Case study 57

Figure 3.12: Selling price scenarios vs. basic scenario

having a selling option at all. Figure 3.12 summarizes the results for the
selling price scenarios. In the basic scenario I assume the selling price equals
70% of the initial investment costs (i.e. a 30% loss of value). Decreasing
the selling price has limited impact on the investment plan and costs (see
scenarios S60%-S0% in Figure 3.12). Compared to the basic scenario, the
total costs increases at most by 2%. In contrast to the negligible changes in
scenarios S60%-S0%, an increase in selling prices (scenarios S80%-S100%)
does change buying and selling behavior. In scenario S100% in which I
assume that tractors can be sold to the market without any loss of value,
the number of tractors to be sold triples, and accordingly the number of
tractors to be bought increases by almost 30%. Without loss of value when
selling a tractor, the fleet more frequently adapts to better fit changing
demand.

Analogously to the selling price, I vary the general overhaul costs in
scenarios OV-20% - OV+20%. Here the percentage number in the scenario
label indicates an increase or reduction of the general overhaul costs com-
pared to the basic scenario. In the basic scenario the general overhaul costs
are between 60%-80% of the investment costs for the different tractor types.
In scenario OV-10% I decrease the overhaul costs to 50%-70% of the invest-
ment costs. The scenario results are displayed in Figure 3.13. As expected,
the number of overhauls increases slightly with decreasing overhaul costs,
while total costs decrease by up to 4% compared to the basic scenario.

The variable costs per period are determined by the variable costs per
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Figure 3.13: Overhaul cost scenarios vs. basic scenario

Figure 3.14: Utilization scenarios vs. basic scenario

operating time unit and the utilization time of a tractor. In the basic sce-
nario I assume an average target utilization time of 5 hours per tractor per
day. Figure 3.14 shows that an increase (scenarios U6h-U10h) or decrease
(scenarios U3h-U4h) of utilization time has little effect on the investment
plan itself; it only impacts the total costs. This leads to the conclusion that
the assumptions about utilization time is not important for determining the
optimal fleet in the case study.
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3.4.4 Fleet management scenarios

Figure 3.15: Fleet management scenarios vs. basic scenario

In the fleet management scenarios, I investigate the impact of the fleet
management policy on the investment plan. The minimum duration of use
MU does not reflect a technical feature of a tractor, but rather a manage-
ment decision. A small MU value allows more flexibility to adjust fleet
composition more frequently, while a high MU value results in greater sta-
bility in daily operations and less fleet management effort. In the basic
scenario the minimum duration of use is set to 6 periods. The scenario
analyses show that setting MU to a value of 4, 8 or 10 periods increase or
decrease total costs by less than 1% (see Figure 3.15). Further flexibility
decreases costs (up to 3% cost reduction in scenario MU1); however, allow-
ing vehicles to be sold after one period does not seem reasonable from a
fleet management effort perspective. That is, setting MU to the maximum
lifetime of a tractor, i.e. MU = 10, is the recommended policy.

3.4.5 Green field scenario

In the green field scenario I ignore the existing fleet and assume the fleet
is built from scratch. Compared to the basic scenario, the total costs in
the green field scenario decreases by 11% (see Figure 3.16). This equals the
savings potential which can be achieved in the long run. Compared to the
green field scenario, more tractors are bought in the basic scenario. This
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Figure 3.16: Green field scenario vs. basic scenario

can be explained by those tractors in the existing fleet with a remaining
lifetime of 1 or 2 periods. Figure 3.17 shows that without an existing fleet,
the dominance of tractor types T10, T12 and T13 becomes clear from the
first period. In the entire planning horizon, the fleet mix consists of only
these three tractor types.

Figure 3.17: Number of tractors used per period and tractor type (green
field scenario)
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3.5 Summary

In this chapter I address the fleet composition problem of towing tractors at
airports at a strategic level. The set-covering formulation derives a multi-
period investment plan for set of a heterogeneous towing tractors. The
model optimizes fleet size and mix by determining the timing of buying,
overhauling and selling tractors. The model takes into account restrictions
such as technical compatibility of tractor types with plane types, a mini-
mum and a maximum duration of use. The model incorporates an existing
fleet. Period-specific costs in the model factor in assumed cost changes and
the discount rate. No literature exists specifically addressing the FCP for
towing tractors at airports. The inclusion of the broad spectrum of aspects
better captures investment decisions in real-world situations. Furthermore,
I introduce a 4-step approach to aggregate demand using flight schedule in-
formation. The proposed column generation heuristic solves all 32 scenario
instances to optimality with an average runtime of 7 minutes.

I illustrate the application of the model for a major European airport
in a case study. Using the model I derive optimal investment plans for a
basic scenario and a number of additional scenarios. The scenario analysis
results demonstrate the robustness of the investment plan of the basic sce-
nario towards changes in demand, flight disruptions and costs. 11% savings
potentials are identified if the model is applied in the long-run.



Chapter 4

Conclusion

This chapter summarizes the implications for towing service providers and
the contributions of this work. Furthermore, it outlines potential directions
for future research.

4.1 Implications for towing service providers

I applied both proposed models to derive recommendations for the tow-
ing service provider in a case study with a major European hub airport.
The case study in Chapter 2 leads to insights on main cost drivers and
characteristics of efficient schedules. These insights from the comparison
of the manual and the optimized schedule can support schedulers in their
daily work. In particular, the case study points out the importance of the
fleet mix, i.e. which tractors should be used or left in the depot in dif-
ferent periods of the day. Although the average variable costs of the fleet
are higher in the optimized schedule than in the manual schedule, the to-
tal costs decreased. Compared the the manual assignment, the optimized
schedule contains no delays and reduces travel time by more than 30%. The
improvements are primarily realized by using the optimal mix of tractors.
Thus, the towing service provider should actively manage a driver’s tractor
choice during the working day.

In Chapter 3, I determine optimal investment plans for various scenar-
ios. The basic scenario reveals an overcapacity of the current fleet and
identifies favorable tractor types. Tractor types with low investment and
variable costs or flexible compatibility structure predominate the optimal
fleet composition in the basic scenario. Further scenario analyses investigate

62
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the impact of demand, flight disruptions and costs on the optimal invest-
ment strategy. The scenarios show: (i) Compared to disruptions in flight
schedules, the impact of demand changes is rather low; (ii) due to flight
schedule disruptions towing service providers face 30% higher fleet invest-
ment costs; (iii) selling prices and overhaul costs have little influence on the
optimal fleet; and (iv) changing tractor utilization increases or decreases
operating costs, with limited influence on fleet composition. Overall, the
scenario analyses show that the optimal investment plan derived from the
model in the case study is robust with respect to changing demand and
costs. Finally, I ignore the existing fleet in the green field scenario, i.e. I
assume the fleet is being built from scratch. Compared to the basic sce-
nario, which reflects the current situation, the total costs decrease by 11%.
This can be interpreted as savings potentials of applying the model in the
long-run.

4.2 Contributions of this work

This work optimizes towing processes at airports, as one of the major steps
in the ground handling process. I investigate the optimization from an oper-
ational and a strategic perspective. Both the scheduling of towing jobs and
the towing fleet composition problem have been neglected in the literature
thus far. In Chapter 2, I introduce a MIP model based on a vehicle routing
formulation. The model incorporates all relevant operational restrictions
and specifications of scheduling towing jobs. By combining time windows,
mixed fleet, multiple depots and multiple trips in one model, my work con-
tributes to the small number of vehicle routing problem literature in this
area. In Chapter 3, I present a set-covering formulation to determine the
optimal buy, overhaul and sell policy for a heterogeneous set of towing trac-
tors for a multi-year planning horizon. None of the models in the literature
cover all important aspects for deriving an investment strategy for towing
tractors in a real-world setting. The model proposed includes restrictions
such as a heterogeneous fleet, technical compatibility of tractor types with
plane types, a minimum and maximum duration of use, an overhaul and a
sell option, as well as a changing fleet composition from period to period.
I introduce a column generation based heuristic for solving both models.
While applying CPLEX to the original MIP formulations fails to find near
optimal solutions at all, the CGH solves all instances of the scheduling model
with an optimality gap smaller than 2% and all scenarios of the FCP model
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optimally. Finally, I derived recommendations for towing service providers
based on insights from case studies with a major European hub airport.

4.3 Directions for future research

Future research could be directed at extending the scheduling model to in-
corporate preferences of airlines for certain tractor types or personnel costs.
Also, modifying the scheduling model for an online scheduling application
would allow taking into account disruptions in the flight schedules, which
are revealed over the course of a day. Thus far the deterministic schedul-
ing model is used to derive insights which are immediately implementable
and support schedulers in their future work. However, with minor amend-
ments (for example consideration of the current position of the tractors), the
model can be used for an online scheduling approach with periodic schedul-
ing (e.g. every 5 minutes) and a rolling planning horizon (e.g. 60 minutes).
From a technical point of view, reformulating the Subproblem (currently
the bottleneck in terms of runtime) is a promising research direction. The
fleet composition model in Chapter 3 might be adapted to other applica-
tion areas, such as other vehicles at airports (e.g. de-icing trucks, passenger
transport buses, towable passenger boarding stairs), as well as road vehi-
cles (e.g. street buses, trucks). Moreover, the model might be extended
by incorporating temporary unavailability of tractors due to maintenance
cycles or a general overhaul. Lifetime dependent variable costs might be
considered in a model extension.
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Appendix A

Tractor model - MP and SP

Master problem

Sets:
B Set of vehicle types
A(b) Set of routes associated with vehicle type b

Parameters:
RCb,a Costs of route a associated with vehicle type b
CW Costs associated with auxiliary variable wi

Yb,a,i 1, if route a associated with type b
covers plane i, 0 otherwise

NVb Number of vehicles of type b
Decision variables:

λb,a 1, if route a associated with type b is selected, 0 otherwise
wi 1, if plane i is not served by selected routes, 0 otherwise

Minimize
∑
b∈B

∑
a∈A(b)

RCb,a · λb,a +
∑
i∈P

CW · wi (12a)

subject to∑
b∈B

∑
a∈A(b)

Yb,a,i · λb,a + wi ≥ 1 ∀i ∈ P (12b)

∑
a∈A(b)

λb,a ≤ NVb ∀b ∈ B (12c)

λb,a;wi ∈ {0, 1} ∀b ∈ B, a ∈ A(b); i ∈ P (12d)
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Subproblem(b)

Sets:
P Set of planes requiring towing
S Set of depots to start a trip with

S = {s1, ..., sW} , s1 as central depot
E Set of depots to end a trip with

E = {e1, ..eW} , e1 as central depot
N Set of all nodes with N = {P ∪ S ∪ E}
R Set of trips a tractor has to drive

Parameters:
δi Dual value of demand constraint of plane i in MP
µb Dual value of convexity constraint b in MP
V C Variable costs per operating time unit
DC Delay costs per time unit
SDi Service duration to serve plane i

or resting time at ending depot node i
TTi,j Travel time to drive from plane i to plane j
CPi 1, if tractor type b is compatible with plane i, 0 otherwise
ETi Earliest time to start service at node i
LTi Latest time to start service at node i
Dmax Maximum delay per job
Tmax Maximum duration of one trip

(time between leaving and returning to depot)
Mi,j Parameter specific big M with

(Mi,j ≥ LTi +Dmax + SDi + TTi,j − ETj)
Functions:
f(e) Maps ending depot to starting depot

of same depot w (e.g. f(e1) = s1, f(e2) = s2)
Decision variables:

yi 1 if plane i served, 0 otherwise
xi,j 1, if tractor visits node j immediately after

having visited node i, 0, otherwise
bi beginning time to serve node i
di delay of service at plane i (compared to LTi)
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Minimize
∑
r∈R

∑
i,j∈N

V C · TTi,j · xr,i,j

+
∑
r∈R

∑
i∈P

∑
j∈N

V C · SDi · xr,i,j +DC ·
∑
i∈P

di

−

(∑
i∈P

δi · yi + µb

)
(13a)

subject to

∑
r∈R

∑
j∈N

xr,i,j − yi = 0 ∀i ∈ P (13b)

CPb,i ≤ yb,i ∀i ∈ P (13c)∑
j∈P∪E

x1,s1,j = 1 (13d)∑
i∈P∪S

xR,i,e1 = 1 (13e)∑
s∈S

∑
j∈P∪E

xr,s,j = 1 ∀r = 2..R (13f)∑
i∈P∪S

∑
e∈E

xr,i,e = 1 ∀r = 1..(R− 1) (13g)∑
i∈P∪S

xr,i,e −
∑

j∈P∪E

xr,f(e),j = 0 ∀r = 1..(R− 1), e ∈ E (13h)∑
i∈P

xr,i,h −
∑
j∈P

xr,h,j = 0 ∀r ∈ R, h ∈ P (13i)

br,e −Mi,j ·
∑

i∈P∪S

xr,i,e ≤ 0 ∀r ∈ R, e ∈ E (13j)

br,s −Mi,j ·
∑

j∈P∪E

xr,s,j ≤ 0 ∀r ∈ R, s ∈ S (13k)∑
e∈E

br,e ≤
∑
s∈S

br,s ∀r = 1..(R− 1) (13l)

ETi ·
∑

j∈P∪E

xr,i,j ≤ br,i ∀r ∈ R, i ∈ P (13m)
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br,i + SDi + TTr,i,j

≤ br,j +Mi,j · (1− xr,i,j) ∀r ∈ R, i, j ∈ N (13n)∑
r∈R

br,i − LTi ≤ di ∀i ∈ P (13o)∑
e∈E

br,e −
∑
s∈S

br,s ≤ Tmax ∀r ∈ R (13p)

xr,i,j ∈ {0; 1} ∀r ∈ R, i, j ∈ N (13q)

bi ≥ 0 ∀i ∈ N (13r)

yi ∈ {0; 1} ∀i ∈ P (13s)

0 ≤ di ≤ Dmax ∀i ∈ P (13t)



Appendix B

Computational test results -
CGH depot model vs. CGH
tractor model

Prob # # # # CGH depot model CGH tractor model
Pln Dpt Trp Tmax Trctr IP Gap* LP Time IP Gap* LP Time

Val % Relax Sec Val % Relax Sec

3 10 1 1 60 23 702 0.0 702 4 702 0.0 702 9
2 10 1 2 60 23 702 0.0 702 5 702 0.0 702 11
1 10 2 2 60 23 672 0.0 672 13 672 0.0 672 22
6 25 1 1 60 23 1,505 0.0 1,505 47 1,501 0.0 1,505 53
5 25 1 2 60 23 1,618 0.0 1,618 3,376 1,620 0.0 1,618 9,832
4 25 2 2 60 23 1,500 0.0 1,500 5,637 1,500 0.0 1,500 25,732

*Gap=(IP Value - LP Relax) / IP Value · 100

Table B.1: Computational test results CGH depot model vs. CGH tractor
model - Heterogeneous fleet of 23 tractors and 12 types, 10/25
planes
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Appendix C

Fleet composition model - MIP

Sets:
V Set of tractors
D Set of demand patterns (index d)
T Set of periods (index t)

Parameters:
V Cv,t Variable costs of tractor v in period t
ICv,t Investment costs of tractor v in period t
OCv,t General overhaul costs of tractor v in period t
SRv,t Sales revenue for one remaining usage period,

if tractor v is sold in period t
CPv,d 1, if tractor v is compatible with at least one plane type

associated with demand pattern d, 0 otherwise
DUv Maximum duration of use of tractor v

without general overhaul
ADv Maximum additional duration of use of tractor v

after a general overhaul
MUv Minimum duration of use after a general overhaul

before tractor v can be sold
DMd,t Demand of demand pattern d in period t

Variables:
xv,t 1, if tractor is used in period t, 0 otherwise
ybuy

v,t 1, if tractor v is bought in period t, 0 otherwise
yov
v 1, if tractor v is overhauled, 0 otherwise
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ysell
v,t 1, if tractors v is sold in period t, 0 otherwise
uv,t,t̃ Remaining lifetime if tractor v is bought in period t
ocostv,t Costs of general overhaul if tractor v is bought in period t

and sold in period t̃

Minimize
∑
v∈V

∑
t∈T

V Cv,t · xv,t +
∑
v∈V

∑
t∈T

ICv,t · ybuy

v,t

+
∑
v∈V

∑
t∈T

ocostv,t −
∑
v∈V

∑
t∈T

∑
t̃∈T

SRv,t̃ · uv,t,t̃ (14a)

subject to

xv,t−1 + ybuy

v,t ≤ 1 ∀v ∈ V , t ∈ T (14b)

xv,t − xv,p−1 − ybuy

v,p ≤ 0 ∀v ∈ V , t ∈ T (14c)

− xv,t−1 + ysell

v,t ≤ 0 ∀v ∈ V , t ∈ T (14d)

xv,t + ysell

v,t ≤ 1 ∀v ∈ V , t ∈ T (14e)

− xv,t + xv,t−1 − ysell

v,t ≤ 0 ∀v ∈ V , t ∈ T (14f)

yov

v ≤
∑
t∈T

ybuy

v,t ∀v ∈ V (14g)∑
t̃∈T

t̃ · ysell

v,t̃ −
∑
t∈T

t · ybuy

v,t

≥ (DUv + 1) · yov

v ∀v ∈ V (14h)

ocostv,t ≥ OCv,t+DUv ·
(ybuy

v,t + yov

v − 1) ∀v ∈ V ,∀t ∈ {1, ..., |T | −DUv} (14i)

uv,t,t̃ ≤ (DUv + ADv) · ybuy

v,t ∀v ∈ V , t, t̃ ∈ T (14j)

uv,t,t̃ ≤ (DUv + ADv) · ysell

v,t̃ ∀v ∈ V , t, t̃ ∈ T (14k)

uv,t,t̃ ≤ ADv · yov

v +DUv

− (t̃ · ysell

v,t̃ − t · y
buy

v,t )

+ t̃ · (1− ybuy

v,t ) ∀v ∈ V , t, t̃ ∈ T (14l)∑
t∈T

ybuy

v,t ≤ 1 ∀v ∈ V (14m)

xv,t̃ ≥ ybuy

v,t ∀v ∈ V , t ∈ {1, ..., |T | − 1} , t̃ ∈
{t, ...,min{t+MUv − 1, |T | − 1}}

(14n)
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1− xv,t+DUv+ADv ≥ yoh

v + ybuyv,t − 1 ∀v ∈ V ,
t ∈ {1, ..., |T | − 1− ADv −DUv}

(14o)

1− xv,t+DUv ≥ ybuy

v,t − yoh

v ∀v ∈ V , t ∈ {1, ..., |T | − 1−DUv}
(14p)∑

v∈V

CPv,d · xv,t ≥ DMd,t ∀d ∈ D, t ∈ T (14q)

xv,t, y
buy

v,t , y
ov

v , y
sell

v,t ∈ {0; 1} ∀v ∈ V , t ∈ T (14r)

ocostv,t , uv,t,t̃ ≥ 0 ∀v ∈ V , t, t̃ ∈ T (14s)



Appendix D

Abbreviations and notations

D.1 General abbreviations

# Dpt Number of depots

# PLN Number of planes

# Trctr Number of tractors

# Trp Number of trips

CAGR Compounded Annual Growth Rate

CG Column Generation

CGH Column Generation Heuristic

FCP Fleet Composition Problem

FSMVRP Fleet Size and Mix Vehicle Routing Problem

FSP Fleet Sizing Problem

GRASP Greedy Randomized Adaptive Search Procedures

HVRP Heterogeneous fleet Vehicle Routing Problem
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IP Integer Program

LP Linear Program

LP Relax LP Relaxation

MDVRP Multiple Depot Vehicle Routing Problem

MIP Mixed Integer Program

MP Master Problem

mTSP multiple Traveling Salesman Problem

MTVRP Multiple Trip Vehicle Routing Problem

NP-hard Non-deterministic Polynomial-time hard

RMP Restricted Master Problem

Sec Seconds

SP Subproblem

VRP Vehicle Routing Problem

VRPTW Vehicle Routing Problem with Time Window
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D.2 Notations depot model - MIP

Sets:

Er Set of depots where the r-th trip can be ended,

with E = E1 ∪ E2 ∪ ... ∪ ERmax

N Set of all nodes with N = {P ∪ S ∪ E}

P Set of planes requiring towing

Sr Set of depots where the r-th trip can be started,

with S = S1 ∪ S2 ∪ ... ∪ SRmmax

V Set of vehicles

Parameters:

CPv,i 1, if tractor v is compatible with plane i, 0 otherwise

Dmax Maximum delay per job

DC Delay costs per time unit

ETi Earliest time to start service at node i

LTi Latest time to start service at node i

Mv,i,j Parameter specific big M with

(Mv,i,j ≥ LTi +Dmax + SDi + TTv,i,j − ETj)

Rmax Number of trips per vehicle

SDi Service duration to serve plane i

or resting time at ending depot node i

Tmax Maximum duration of one trip

TTv,i,j Travel time of tractor v to drive from node i to node j

V Cv Variable costs of vehicle v per operating time unit



D.3 Notations tractor model - MIP 77

Functions:

ED(i) Maps starting depot i to

the ending depot of the directly preceding trip

SD(i) Maps ending depot i to

each potential starting depot of the same trip

Variables:

bv,i beginning time of tractor v to serve node i

di delay of service at plane i (compared to LTi)

xv,i,j 1, if tractor v visits node j immediately after

having visited node i, 0 otherwise

D.3 Notations tractor model - MIP

Sets:

E Set of depots to end a trip with

E = {e1, ..eW} , e1 as central depot

N Set of all nodes with N = {P ∪ S ∪ E}

P Set of planes requiring towing

S Set of depots to start a trip with

S = {s1, ..., sW} , s1 as central depot

V Set of vehicles (tractors), with V = {V1∪, ...,∪VR}

Vr Set of vehicles for r-th trip
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Parameters:

CPv,i 1, if tractor v is compatible with plane i, 0 otherwise

Dmax Maximum delay per job

DC Delay costs per time unit

ETi Earliest time to start service at node i

LTi Latest time to start service at node i

Mv,i,j Parameter specific big M with

(Mv,i,j ≥ LTi +Dmax + SDi + TTv,i,j − ETj)

SDi Service duration to serve plane i

or resting time at ending depot node i

Tmax Maximum duration of one trip

(time between leaving and returning to depot)

TTv,i,j Travel time of tractor v to drive from plane i to plane j

V Cv Variable costs of tractor per operating time unit

Z Number of actual vehicles with Z =| Vr |

Functions:

f(e) Maps ending depot to starting depot

of same depot w (e.g. f(e1) = s1, f(e2) = s2)

Variables:

bv,i beginning time of tractor v to serve node i

di delay of service at plane i (compared to LTi)

xv,i,j 1, if tractor v visits node j immediately after

having visited node i, 0 otherwise
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D.4 Notations depot model - MP and SP

Sets:

A(b) Set of routes associated with vehicle type b

B Set of vehicle types

Er Set of depots where the r-th trip can be ended,

with E = E1 ∪ E2 ∪ ... ∪ ERmax

N Set of all nodes with N = {P ∪ S ∪ E}

P Set of planes requiring towing

Sr Set of depots where the r-th trip can be started,

with S = S1 ∪ S2 ∪ ... ∪ SRmax

Parameters:

δi Dual value of demand constraint of plane i in MP

µb Dual value of convexity constraint b in MP

CPb,i 1, if tractor type b is compatible with plane i, 0 otherwise

CW Costs associated with auxiliary variable wi

Dmax Maximum delay per job

DC Delay costs per time unit

ETi Earliest time to start service at node i

LTi Latest time to start service at node i

Mi,j Parameter specific big M with

(Mi,j ≥ LTi +Dmax + SDi + TTi,j − ETj)

NVb Number of vehicles of type b

Rmax Number of trips per vehicle
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RCb,a Costs of route a associated with vehicle type b

SDi Service duration to serve plane i

or resting time at ending depot node i

Tmax Maximum duration of one trip

TTi,j Travel time to drive from node i to node j

V C Variable costs per operating time unit

Yb,a,i 1, if route a associated with type b

covers plane i, 0 otherwise

Functions:

ED(i) Maps starting depot i to

the ending depot of the directly preceding trip

SD(i) Maps ending depot i to

each potential starting depot of the same trip

Variables:

λb,a 1, if route a associated with type b is selected, 0 otherwise

wi 1, if plane i is not served by selected routes, 0 otherwise

xi,j 1, if tractor visits node j immediately after

having visited node i, 0 otherwise

bi beginning time of service at node i

di delay of service at plane i (compared to LTi)

yi 1 if plane i served, 0 otherwise
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D.5 Notations fleet composition model - MP

and SP

Sets:

A(b) Set of investment plans associated with tractor type b

B Set of tractor types

D Set of demand patterns (index d)

T Set of periods (index t)

Parameters:

δd, t Dual value of demand pattern d in period t in MP

δ̃b Dual value of existing fleet constraint b in MP

AD Maximum additional duration of use after

a general overhaul

CW Costs associated with auxiliary variable wi

CPb,d 1, if tractor type b is compatible with at least one plane

type associated with demand pattern d, 0 otherwise

DMd,t Demand of demand pattern d in period t

DU Maximum duration of use without general overhaul

(in periods)

TCb,a Costs of investment plan a associated with tractor type b

ICt Investment costs in period t

MU Minimum duration of use before tractor can be sold

(in periods)
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NEb Number of existing tractors of tractor type b

OCt General overhaul costs in period t

SRt Selling price for one remaining usage period,

if tractor is sold in period t

Xb,a,t 1, if (dis-)investment plan a for tractor type b

covers period t, 0 otherwise

V Ct Variable costs in period t

Variables:

λb,a Number of tractors of type b bought and sold

according to (dis-)investment plan a

ut,t̃ Remaining lifetime if tractor is bought in period t

and sold in period t̃

wd,t Number of external tractors to cover demand pattern d

in period t

xt 1, if tractor is used in period t, 0 otherwise

ybuy

t 1, if tractor is bought in period t, 0 otherwise

yov 1, if tractor is overhauled, 0 otherwise

ysell
t 1, if tractors is sold in period t, 0 otherwise

ocostt Costs of general overhaul if tractor is bought in period t
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