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ABSTRACT

The wiretap channel models the communication scenario where two
legitimate users want to communicate in such a way that an exter-
nal wiretapper is kept ignorant. In this paper, the wiretap channel
with side information is studied, where the wiretapper has additional
side information about the transmitted message available for post-
processing. The secrecy of the message is modeled by the decoding
performance of the wiretapper. It is required for the wiretapper to
have worst behavior of decoding performance regardless of the de-
coding strategy that is used. The secrecy capacity is derived and
shown to be equal to the one of the classical wiretap channel without
side information available at the wiretapper. Further, the correspond-
ing optimal transceiver design is characterized.

Index Terms— Wiretap channel, strong secrecy, side informa-
tion, secrecy capacity, optimal transceiver design.

1. INTRODUCTION

The concept of physical layer security is becoming more and more
attractive, since it solely uses the physical properties of a wireless
channel to establish security. So, regardless of the applied post-
processing at non-legitimate receivers, the confidential information
cannot be reproduced from the received signal with arbitrarily high
probability. Recently, there is growing interest in physical layer se-
curity; for instance see [1–4] and references therein.

Physical layer security was initiated by Wyner, who introduced
the wiretap channel [5]. It describes the simplest scenario involving
security with one legitimate transmitter-receiver pair and one exter-
nal wiretapper to be kept secret. The aim is to encode and transmit
the message in such a way that the legitimate receiver is able to de-
code the message and, at the same time, the wiretapper is prevented
to infer the confidential information from the received signal. The
wiretap channel is widely studied under several aspects, cf. [5–15].

All these works have in common that the wiretapper has only the
received channel output available for post-processing. Here we study
the wiretap channel with side information, where we consider a wire-
tapper which has additional side information about the transmitted
message available. This models a priori knowledge about the trans-
mitted message which allows the wiretapper to restrict the message
to a certain subset of all possible messages. Such side information
can originate from previous transmissions or from other cooperating
wiretappers which share some knowledge with each other.

In this paper we model the secrecy of the confidential message
from a signal processing point of view. We require the wiretapper
to have worst behavior of decoding performance regardless of the
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applied decoding strategy. For this secrecy criterion we establish
the secrecy capacity and show that it equals the one of the classical
wiretap channel (without side information). In addition, we derive
necessary and sufficient conditions for a characterization of the cor-
responding optimal transceiver design.1

2. WIRETAP CHANNEL

2.1. Classical Wiretap Channel without Side Information

In practical systems a transmitter usually uses a finite modulation
scheme and a receiver quantizes the received signal before further
processing so that it is reasonable to assume finite input and output
alphabets denoted by X , Y , and Z . Then the channels W : X →
P(Y) and V : X → P(Z) represent the communication links to
the legitimate receiver and the wiretapper respectively. For input and
output sequences xn ∈ Xn, yn ∈ Yn, and zn ∈ Zn of block length
n, the discrete memoryless channels are given by Wn(yn|xn) :=∏n
i=1W (yi|xi) and V n(zn|xn) :=

∏n
i=1 V (zi|xi).

Definition 1. An (n, Jn)-code Cn for the wiretap channel consists
of a stochastic encoder at the transmitter

E : Jn → P(Xn)

with a set of messages Jn := {1, ..., Jn} and a decoder at the legit-
imate receiver described by a collection of disjoint decoding sets{

Dj ⊂ Yn : j ∈ Jn
}
. (1)

It is clear that every transmitter-receiver strategy results in a cer-
tain partition of the output alphabet as given in (1). This partition
depends on the applied transmit and receive processing strategies.

Then for an (n, Jn)-code Cn the average and maximum proba-
bility of error are given by

ē(Jn) :=
1

|Jn|
∑
j∈Jn

∑
xn∈Xn

E(xn|j)Wn(Dcj |xn)

and
emax(Jn) := max

j∈Jn

∑
xn∈Xn

E(xn|j)Wn(Dc
j |xn).

To keep the transmitted message secret from the non-legitimate wire-
tapper, it is required

I(J ;Zn) ≤ εn (2)
with J the random variable uniformly distributed over the set of mes-
sages Jn and Zn = (Z1, Z2, ..., Zn) the output at the wiretapper.
This criterion is known as strong secrecy [7, 8].

1Notation: P(·) is the set of all probability distributions; X − Y − Z
denotes a Markov chain of random variables X , Y , and Z in this order;
‖µ− ν‖ is the total variation distance of measures µ and ν.
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Fig. 1. Wiretap channel with side information. The side information
fside(J) restricts the message to the subset J̃ ⊆ Jn with |J̃ | ≥ 2.

Definition 2. A non-negative number RS is an achievable secrecy
rate for the wiretap channel if for all δ > 0 there is an n(δ) ∈ N and
a sequence of (n, Jn)-codes {Cn}n∈N such that for all n ≥ n(δ) we
have 1

n
log Jn ≥ RS − δ and

I(J ;Zn) ≤ εn

while ē(Jn) → 0 (or emax(Jn) → 0 respectively) and εn → 0 as
n → ∞. The secrecy capacity CS is given by the supremum of all
achievable secrecy rates RS .

The classical wiretap channel is well studied for different se-
crecy criteria and its secrecy capacity can be found in [5–8, 14, 15].

Theorem 1. The secrecy capacity CS of the wiretap channel is

CS = max
V−X−(Y Z)

(
I(V ;Y )− I(V ;Z)

)
.

2.2. Wiretap Channel with Side Information

In this paper the focus is on more powerful wiretappers. Addition-
ally to its received channel output, the wiretapper has side informa-
tion about the transmitted message available as depicted in Figure 1.
Such side information can originate from prior transmissions due to
a certain network structure or from other cooperating wiretappers
which help each other to infer the confidential communication.

The side information at the wiretapper is modeled with the help
of a deterministic function

fside : Jn → P2(Jn)

with P2(Jn) the power set of all subsets of Jn with cardinality at
least 2. This means for transmitted message J ∈ Jn, the wiretapper
is aware of fside(J) ∈ P2(Jn) so that he (or she) can restrict the
transmitted message to a subset J̃ ⊆ Jn, i.e., he knows that the
message belongs to J̃ . The restriction |J̃ | ≥ 2 avoids the trivial
case |J̃ | = 1 where the transmitted message would be completely
known to the wiretapper.

To incorporate the side information at the wiretapper, a natural
extension of the security requirement (2) would be as follows. There
has to be a universal εn (independent of the actual side information
J̃ ) such that for all subsets J̃ ⊆ Jn with |J̃ | ≥ 2 it holds

I(J̃ ; Z̃n) ≤ εn (3)

where J̃ is the random variable uniformly distributed on the side
information set J̃ ⊆ Jn and Z̃n = (Z̃1, Z̃2, ..., Z̃n) the corre-
sponding output at the wiretapper with side information. With (3)
the definition of an achievable secrecy rate for the wiretap channel

with side information and the corresponding secrecy capacity follow
accordingly as in Definition 2.

Instead of defining the secrecy by mutual information terms as
in (3), here we use a criterion motivated from the signal processing
point of view. We require worst behavior of decoding performance
at the wiretapper regardless of the decoding strategy the wiretapper
use. In more detail, for any side information J̃ ⊆ Jn, the average
probability of decoding error at the wiretapper has to satisfy

ē(J̃ ) ≥ 1− 1

|J̃ |
− λn (4)

with λn → 0 as n → ∞. This means the decoding performance of
the wiretapper is the same as if the wiretapper ignores its received
signal and guesses the transmitted message based on its side infor-
mation J̃ ⊆ Jn. Thus, we require that the wiretapper does not take
any advantage from its observation and simply selects a message
j ∈ J̃ uniformly at random (regardless of its received zn ∈ Zn).
We call this a wiretapper with maximum uncertainty.

Definition 3. A non-negative number RS is an achievable secrecy
rate with maximum uncertainty for the wiretap channel with side in-
formation if for all δ > 0 there is an n(δ) ∈ N, a universal sequence
{λn}n∈N, and a sequence of (n, Jn)-codes {Cn}n∈N such that for
all n ≥ n(δ) we have 1

n
log Jn ≥ RS − δ and

ē(J̃ ) ≥ 1− 1

|J̃ |
− λn

for all subsets J̃ ⊆ Jn with |J̃ | ≥ 2, while ē(Jn) → 0 (or
emax(Jn) → 0 respectively) and λn → 0 as n → ∞. The secrecy
capacity with maximum uncertaintyCS,side is given by the supremum
of all achievable secrecy rates RS with maximum uncertainty.

For the analysis of the wiretap channel, it has been shown that
the following property of a wiretap code is essential.

Definition 4. A code for the wiretap channel (with side information)
has exponentially fast vanishing output variation at the wiretapper if
there is a measure ϑ on Zn such that for all j ∈ Jn and

V
n
(zn|j) := PZ|J(zn|j) =

∑
xn∈Xn

E(xn|j)V n(zn|xn)

it holds ∥∥V n(·|j)− ϑ
∥∥ ≤ εn

with εn = 2−nβ for some β > 0.

In [14, 15] the vanishing output variation property was used to
realize strong secrecy, cf. (2), for compound wiretap channels. Here,
we show that it also allows realizing maximum uncertainty, cf. (4).

Proposition 1. For any given code of Definition 1, the wiretapper
with side information J̃ ⊆ Jn has arbitrary decoding sets {D̃j ⊂
Zn : j ∈ J̃ } with

⋃
j∈J̃ D̃j = Zn. If the code has vanishing

output variation, i.e., there is a measure ϑ on Zn such that∥∥V n(·|j)− ϑ
∥∥ ≤ 2−nβ (5)

for all j ∈ Jn, cf. Definition 4, then for the average probability of
error ē(J̃ ) at the wiretapper it holds

ē(J̃ ) =
1

|J̃ |

∑
j∈J̃

V
n
(D̃cj |j) ≥ 1− 1

|J̃ |
− λn (6)

with λn → 0 exponentially fast as n→∞.
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Proof. If a code has the vanishing output variation property, i.e., it
satisfies (5), then we have∥∥PZ̃nJ̃ − PZ̃n ⊗ PJ̃∥∥ =

1

|J̃ |

∑
j∈J̃

∥∥V n(·|j)− PZ̃n
∥∥

≤ 1

|J̃ |

∑
j∈J̃

(∥∥V n(·|j)− ϑ
∥∥+

∥∥ϑ− PZ̃n∥∥)
≤ 1

|J̃ |

∑
j∈J̃

(
2−nβ +

1

|J̃ |

∑
k∈J̃

∥∥ϑ− V n(·|k)
∥∥)

≤ 2 · 2−nβ =: λn (7)

where PZ̃n ⊗ PJ̃ is the product distribution defined by (PZ̃n ⊗
PJ̃)(zn, j) = PZ̃n(zn)PJ̃(j) for all zn ∈ Zn and j ∈ J̃ . The
first inequality follows from the triangle inequality and the second
and third inequalities from (5). On the other hand, we can write the
average probability of error at the wiretapper as

ē(J̃ ) =
1

|J̃ |

∑
j∈J̃

V
n
(D̃cj |j) =

∑
j∈J̃

V
n
(D̃cj |j)PJ̃(j)

=
∑
j∈J̃

PZ̃nJ̃
(
D̃cj × {j}

)
= PZ̃nJ̃

( ⋃
j∈J̃

D̃cj × {j}
)
. (8)

Now, with ‖PZ̃nJ̃ − PZ̃n ⊗ PJ̃‖ ≤ λn and λn → 0 as n→∞, cf.
(7), we can bound ē(J̃ ) in (8) from below by

ē(J̃ ) ≥ (PZ̃n ⊗ PJ̃)
( ⋃
j∈J̃

D̃cj × {j}
)
− λn

=
∑
j∈J̃

(PZ̃n ⊗ PJ̃)
(
D̃cj × {j}

)
− λn =

1

|J̃ |

∑
j∈J̃

PZ̃n(D̃cj)− λn

=
1

|J̃ |

∑
j∈J̃

(
1− PZ̃n(D̃j)

)
− λn = 1− 1

|J̃ |
− λn

where the last equality follows from the observation that for any non-
negative numbers a1, ..., aN with

∑N
i=1 ai = 1 we have

∑N
i=1(1−

ai) = N − 1. Note that λn is universal in the sense that it does not
depend on the actual side information J̃ ⊆ Jn.

Proposition 1 analyzed the pre-processing at the transmitter
which leads to maximum uncertainty at the wiretapper. It established
the property of vanishing output variation as a sufficient condition
for maximum uncertainty and further showed that we can achieve
maximum uncertainty exponentially fast.

3. SECRECY CAPACITY UNDER SIDE INFORMATION

In the following, we analyze the wiretap channel with side informa-
tion in detail. In particular, we show that the secrecy capacity with
maximum uncertainty of the wiretap channel with side information
equals the secrecy capacity of the classical wiretap channel (without
side information), cf. Theorem 1.

Theorem 2. The secrecy capacity with maximum uncertainty of the
wiretap channel with side information equals the secrecy capacity of
the classical wiretap channel (without side information), i.e.,

CS,side = CS .

3.1. Proof of Achievability

First, we prove the following inequality CS,side ≥ CS by giving an
explicit construction of a transceiver design. Therefore, we need a
wiretap code that realizes two tasks simultaneously: reliable com-
munication at the desired rate CS to the legitimate receiver, i.e.,
emax(Jn) → 0 as n → ∞, and maximum uncertainty at the wire-
tapper, i.e., ē(J̃ ) → 1 − 1

|J̃ |
for all J̃ ⊆ Jn with |J̃ | ≥ 2 as

n→∞.
To do so, we use a wiretap code with exponentially fast decreas-

ing vanishing output variation, i.e., with εn = 2−nβ in Definition 4.
This means the code has the property that there is a measure ϑ on
Zn such that for all j ∈ Jn we have∥∥V n(·|j)− ϑ

∥∥ ≤ 2−nβ . (9)

In [14, 15] it is shown that such a code (with vanishing output vari-
ation property) achieves the secrecy capacity of the wiretap channel
(without side information), cf. Theorem 1. Thus, the first task, i.e.,
the reliable communication at the desired rate CS is immediately
given by [14, 15].

It remains to check, if the second task, i.e., the maximum uncer-
tainty at the wiretapper with side information, is also satisfied. Since
the code satisfies (9), we immediately obtain from Proposition 1 that
the average decoding error at the wiretapper with side information
satisfies ē(J̃ ) ≥ 1 − 1

|J̃ |
− λn with λn = 2 · 2−nβ , β > 0. Thus,

the maximum uncertainty at the wiretapper is simultaneously guar-
anteed by the vanishing output variation property. This completes
the proof of achievability.

3.2. Proof of Converse

The previous analysis has shown that for the wiretap channel with
side information under the maximum uncertainty criterion (4), we
can achieve the same rates as for the classical wiretap channel (with-
out side information) under the strong secrecy criterion (2).

If we would analyze the wiretap channel with side information
under the corresponding strong secrecy criterion (3), the inequality
CS,side ≤ CS would immediately follow, since additional side in-
formation at the wiretapper can only decrease the secrecy capacity.
But here we consider secrecy based on the maximum uncertainty
criterion (4), which relies on the decoding performance at the wire-
tapper and not on mutual information quantities. This makes the
corresponding inequality by no means self-evident.

The following proposition allows to show that the inequality
CS,side ≤ CS holds also under the maximum uncertainty criterion.
In addition, the result is interesting for itself as it characterizes the
optimal pre-processing at the transmitter and establishes the vanish-
ing output variation property also as a necessary condition for max-
imum uncertainty at the wiretapper.

Proposition 2. Let {Cn}n∈N be a sequence of wiretap codes
achieving the secrecy capacity with maximum uncertainty of the
wiretap channel with side information. Let E : Jn →
P(Xn) be the corresponding stochastic encoder and V

n
(zn|j) :=∑

xn∈Xn E(xn|j)V n(zn|xn). Then, there exists an εn = 2−nβ ,
β > 0 and a measure ϑ on Zn such that for all j ∈ Jn it holds∥∥V n(·|j)− ϑ

∥∥ ≤ εn,
i.e., the optimal code has the vanishing output variation property.

Proof. Let J̃ = {j1, j2} ⊆ Jn be an arbitrary message subset
with two elements. By the assumption of maximum uncertainty we
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have at the wiretapper for arbitrary decoding sets D̃j1 and D̃j2 (with
D̃j1 ∩ D̃j2 = ∅ and D̃j1 ∪ D̃j2 = Zn)

ē(J̃ ) =
1

|J̃ |

∑
j∈J̃

V
n
(D̃cj |j) ≥ 1− 1

|J̃ |
− λn =

1

2
− λn (10)

with universal λn → 0 exponentially fast by assumption. Let
PZ̃nJ̃(zn, j) = V

n
(zn|j)PJ̃(j) be the joint distribution and PJ̃

and PZ̃n be the marginals. Since the messages are uniformly dis-
tributed, we have PJ̃(j1) = PJ̃(j2) = 1

2
. We can write (10) as

1

2

∑
zn∈D̃cj1

V
n
(zn|j1) +

1

2

∑
zn∈D̃cj2

V
n
(zn|j2) (11)

=
1

2

(
1−

∑
zn∈D̃cj2

V
n
(zn|j1) +

∑
zn∈D̃cj2

V
n
(zn|j2)

)
≥ 1

2
− λn

where the equality follows from the substitutions D̃cj1 = D̃j2 and
D̃j2 = Zn\D̃cj2 . This can easily be rewritten as∑

zn∈D̃cj2

(
V
n
(zn|j1)− V n(zn|j2)

)
≤ 2λn. (12)

Since the decoding set D̃j2 can be arbitrary by assumption,
we obtain for an arbitrary set A ⊂ Zn from (12) that∑
zn∈A(V

n
(zn|j1)− V n(zn|j2)) ≤ 2λn. Now, interchanging the

roles of j1 and j2 and substituting D̃cj2 = D̃j1 in (11), we similarly
obtain

∑
zn∈A(V

n
(zn|j2)− V n(zn|j1)) ≤ 2λn so that we end up

with ∣∣∣ ∑
zn∈A

V
n
(zn|j1)− V n(zn|j2)

∣∣∣ ≤ 2λn.

Let us define the sets

A+ :=
{
zn ∈ Zn : V

n
(zn|j1)− V n(zn|j2) ≥ 0

}
A− :=

{
zn ∈ Zn : V

n
(zn|j1)− V n(zn|j2) < 0

}
with A− = (A+)c. Then∑

zn∈A+

∣∣V n(zn|j1)− V n(zn|j2)
∣∣

=
∑

zn∈A+

(
V
n
(zn|j1)− V n(zn|j2)

)
≤ 2λn (13)

and similarly ∑
zn∈A−

∣∣V n(zn|j1)− V n(zn|j2)
∣∣ ≤ 2λn. (14)

With Zn = A+ ∪ A− we conclude from (13) and (14) on∥∥V n(·|j1)− V n(·|j2)
∥∥ =

∑
zn∈Zn

∣∣V n(zn|j1)− V n(zn|j2)
∣∣

=
∑

zn∈A+

∣∣V n(zn|j1)− V n(zn|j2)
∣∣

+
∑

zn∈A−

∣∣V n(zn|j1)− V n(zn|j2)
∣∣ ≤ 4λn.

Now, we set

ϑ(zn) =
1

|Jn|
∑
j∈Jn

V
n
(zn|j)

for all zn ∈ Zn, so that for any k ∈ J̃ we have∥∥V n(·|k)− ϑ
∥∥ =

∥∥∥∥V n(·|k)− 1

|J̃ |

∑
j∈J̃

V
n
(·|j)

∥∥∥∥
=

∥∥∥∥ 1

|J̃ |

∑
j∈J̃

(
V
n
(·|k)− V n(·|j)

)∥∥∥∥
≤ 1

|J̃ |

∑
j∈J̃

∥∥V n(·|k)− V n(·|j)
∥∥ ≤ 4λn =: ε.

This means an optimal code for the wiretap channel with side in-
formation and maximum uncertainty at the wiretapper always has to
have the vanishing output variation property.

Now, consider any code that achieves the secrecy capacity with
maximum uncertainty CS,side of the wiretap channel with side infor-
mation. From previous Proposition 2 follows that this code has the
vanishing output variation property. From [14, 15] we know that if
‖V n(·|j)− ϑ‖ ≤ 2−nβ for all j ∈ Jn, then I(J ;Zn) ≤ 2−n

β
2 for

n large enough. Thus, this code is also a good code for the wiretap
channel (without side information) so that this code cannot achieve
higher rates than CS , cf. Theorem 1. This proves CS,side ≤ CS .

4. DISCUSSION AND FURTHER EXTENSIONS

The wiretap channel under channel uncertainty is considered in
[14, 15], where the compound wiretap channel for strong secrecy
is studied. Here we assumed perfect channel state information at all
users, but made extensively use of the code construction presented
in [14, 15]. Having this in mind, it is straightforward to incorporate
the effects of channel uncertainty by extending the results derived in
this paper to the compound wiretap channel with side information.

If the channel to the wiretapper is not perfectly known, it can
also be interpreted as multiple wiretappers, where each possible
channel realization corresponds to another wiretapper. Thus, it cap-
tures also the scenario of multiple wiretappers so that our results can
be extended to an optimal transceiver design that works universally
for all wiretappers simultaneously. Due to space constraints we omit
the details.

5. RELATION TO PRIOR WORK

The secrecy of transmitted messages is usually characterized using
the (strong) secrecy criterion, cf. (2), which is based on mutual in-
formation terms, cf. for example [5–15]. In this paper, we use the
concept of maximum uncertainty to characterize the secrecy of the
confidential communication. This criterion is based on the decoding
performance of non-legitimate receivers. Thus, it has an operational
meaning in the sense that if maximum uncertainty is guaranteed, the
wiretapper cannot decode the transmitted message regardless of the
decoding strategy that is applied. This framework allows to explic-
itly characterize the optimal transceiver design which results in such
a decoding performance at the wiretapper.

The available side information at the wiretapper is another point
which distinguishes our paper from previous studies, cf. [5–15].
There, it is assumed that the wiretapper has only its received channel
output available for decoding. Here, the wiretapper has additional
side information available for further post-processing. Surprisingly,
our results show that this side information does not lead to an de-
crease in secrecy capacity compared to the case of no side informa-
tion.
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