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Abstract

This thesis is devoted to the modeling and simulation of particle dispersions with
smoothed dissipative particle dynamics (SDPD). SDPD is a multiscale framework linking
macroscopic smoothed particle hydrodynamics (SPH) method to mesoscopic dissipative
particle dynamics (DPD) method. We apply SDPD to model rigid structures of arbi-
trary shape embedded in a fluid and enforce exactly the no-slip boundary condition on
the liquid-solid interface. Demonstrated by numerous benchmark problems, the correct
scaling of the SDPD thermal fluctuations with the fluid-particle size allows to describe
the dynamics of solid particles on spatial scales ranging continuously from the non-
Brownian regime, characterizing macro-continuum flow conditions, down towards the
diffusion-dominated regime, typical of sub-micron-sized objects. The correct coupling
between a colloidal particle and external walls is also validated.

Simulating many nearly contacting solid particles in suspension is a challenging task
due to the diverging behavior of short-range lubrication forces, which pose a serious
time-step limitation for explicit integration schemes. We propose a splitting integration
scheme, which separates the contributions of different forces acting on the solid particles.
In particular, intermediate- and long-range multi-body hydrodynamic forces, which are
computed from SPH method, are taken into account using an explicit integration; for
short-range lubrication forces, velocities of pairwise interacting solid particles are up-
dated implicitly by sweeping over all the neighboring pairs iteratively, until convergence
in the solution is obtained. By using the splitting integration, simulations can be run
stably and efficiently up to very large solid particle concentrations. Moreover, the pro-
posed scheme is not limited to the SPH method presented, but it can be easily applied
to other simulation techniques employed for particulate suspensions.

With the proposed model accelerated by the splitting integration scheme, we study
the rheology of dense suspension of non-Brownian repulsive particles. The suspension
of two-dimensional discoidal particles is confined by walls orthogonal to the shear gra-
dient direction. According to previous literature, we observe continuous/hydrodynamic
shear thickening and we find the strength to be determined by distribution of hydrody-
namic clusters while confinement plays a geometrical role and indirectly affects viscosity.
Under strong confinement the percolating network of clusters develop into a jamming
structure at high shear rate and as a result, the viscosity increases substantially. Ex-
trapolating the viscosity to the limit of very weak confinement shows that confinement
is important for non-negligible hydrodynamic shear thickening. The shear thickening of
hydrodynamically interacting particles being continuous also implies that discontinuous
shear thickening observed experimentally requires additional inter-particle stresses, such
as those resulted from frictional contact.
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Zusammenfassung

Diese Dissertation ist anhänlich zur Modellierung und Simulationen von der Partikel Dis-
persion mit “smoothed dissipative particle dynamics (SDPD)”. SDPD ist ein Rahmen
mit mehreren Skalen und eine Verbindung von der makroskopische “smoothed parti-
cle hydrodynamics (SPH)” Methoden zur mittelskopische “dissipative particle dyanmics
(DPD)” Methoden. Wir wenden SDPD an, um die rigide Struktur mit arbitärem Form
eingebaut im Fluid zu modellieren und die Haftbedingung der Grenzfläche durchzuführen.
Die wärme Bewegung in der SDPD hängt von Fluid Parikel Größe ab. Diese korrekte
Skalierung ermöglicht die Dynamik von rigid Partikel richtig zu berscheiben. Dies wurde
bereits durch vielen Benchmark-Tests bewiesen, die die Bereichen von der determin-
istisch Strömungen bei Kontinuitätsgleichung bis zur Brownsche Bewegung umfasst.
Außerdem ist die Kopplung zwischen ein Kolloid und dem außen Walls bestätigt.

Aufgrund der außerordentliche hydrodynamischer Schmierung sind die Simulationen
für vielen nahezu rigide Partikels im Dispergiermittel anspruchsvoll. Wir schlagen eine
aufgeteilte Integration-Maßnahme vor. Die hydrodynamische Beeinflussung der lange
Entfernung werde von SPH versorgt und explizit integriert. Die Beeinflussung der
Kurzstrecke werde von paarweise Schmeierung Kraft modellieret und bedingungslos
berechnet. Mit dieser neuem Method laufen die Simulationen bis zur große Konzen-
tration des Festköper effizienter und dauerhafter.

Mit dem vorgeschlagene Model und vorverlegter aufgeteilte Integration untersuchen
wir die Rheologie des Partikel Suspensionen unter Beschränkung des Walls. Dichte Sus-
pensionen zeigen unter Schere Bewegungen nichtnewtonschere Eigenschaften, nämlich
bei hohen Scherkräften eine höhere Viskosität: Scherverzähung. Bei Simulationen ent-
decken wir dass begleitenden hydrodynamische Clusters in der Scherverzähung immer
existieren. Die Beschränkung des Walls spielt nur eine geometrische Rolle, das bedeutet:
die Formulierung der Clusters werde durch die Reduzierung des Raumes vereinfacht.
Dennoch hängt die Stärke der Scherverzähung von der Wahrscheinlichkeitsverteilung
des Cluster einzig ab. Trotzdem ist die Beschränkung des Walls für ungeringfügig
Scherverzähung erforderlich.
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1 Introduction

According to the terminology and nomenclature of polymers defined by International
Union of Pure and Applied Chemistry (IUPAC) [1, 2, 3], a dispersion is a system in
which particles are suspended in a continuous phase of a different composition or state.
Depending on the size of the dispersed particles in relation to the size of molecules of
the continuous phase, a dispersion may be classified into three types:

• coarse dispersion or suspension: it is a heterogeneous mixture containing internal
phase dispersed throughout the external phase. The size of the suspended particles
is typically well above 1µm (10−6m) and visible under an optical microscope. If a
density difference between the two phases is present, the particles will eventually
sediment or float under gravity or centrifugal force.

• colloidal dispersion or colloid [4]: the size of the particle is well below 10µm and
down to a few nm (10−9m). Such particles are normally invisible under an optical
microscope, as the wavelength of the visible light is around 500nm, comparable
to the size of the target object. Nevertheless, their presence can be confirmed
with the use of an ultramicroscope or an electron microscope. The term colloid is
derived from the Greek word “κoλλα” for “glue”. It has been coined by a Scottish
chemist, Thomas Graham (1805 – 1869), who actually introduced the field of study
and defined colloids as substances that cannot pass through a membrane, such as
in dialysis [5, 6].

• solution: it is a homogeneous mixture on molecular level, such as for example,
a saline water solution, where a solute (NaCl) is dissolved in another substance
(H2O) known as solvent. In this case, the dispersed particles are with the size
(< 1nm) of the host medium molecules and not considered in a separated internal
phase or solid state.

In this work, we are only interested in the first two types of dispersion, which are
characterized by discrete particles dispersed in a continuous medium and are considered
as multiphase dispersion, in distinction to the solution dispersion. The boundary between
particle sizes in two types of dispersion is not always clear and often depends on the
application. Both dispersed phase and continuous phase may be gas, liquid, or solid.
Different combinations of the two substances result in 9 types of binary dispersions: gas
in gas is gas mixture (e.g., air); liquid in gas is known as aerosol (e.g., fog and mist);
solid in gas is known as solid aerosol (e.g., dust and smoke); gas in liquid is known as
foam; liquid in liquid is known as emulsion; solid in liquid is known as suspension or
sol; gas in solid is known as solid foam; liquid in solid is known as gel; solid in solid
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1 Introduction

is known as solid gel. We focus particularly on dispersions of solid particles dispersed
in a liquid medium, where a dispersion with coarse (big) particles is named suspension
while a dispersion with colloidal (small) particles is named sol. Sol is a particular type
of colloid, therefore terms of sol and colloid may be used interchangeably. To alleviate
the load of many nomenclatures in this thesis, we simply term them colloidal dispersion
with small particles and non-colloidal dispersion with coarse particles respectively.

Non-colloidal and colloidal dispersions are ubiquitous. Blood, pharmaceuticals, cos-
metics, mud, cement, paint, ink, slurries and cornstarch in water are some common
examples [5, 6]. Understanding the dynamics, transport phenomena and rheology of
such dispersions is of industrial interest, medical relevance and scientific importance
[7, 8, 9, 10].

1.1 Physical model

To study multiphase dispersions — non-colloidal and colloidal dispersions — it is rea-
sonable to assume that the fluid phase is continuous and can be described by the hydro-
dynamic equations.

1.1.1 Fluid phase: hydrodynamics

An isothermal, Newtonian fluid can be described by the continuity equation and momen-
tum equations of Navier-Stokes [11, 12, 13, 14]. By considering the fluid in Lagrangian
framework, they can be written as

dρ

dt
= −ρ∇·v, (1.1)

and
dv

dt
= −∇p

ρ
+ F + g, (1.2)

where ρ, v, p, F, and g are material density (kg/m3), fluid velocity (m/s), pressure (Pa),
viscous force, and body force per unit mass (N/kg or m/s2) respectively. For certain
applications, it is convenient to write and solve Eq. (1.2) in an Eulerian framework as

∂v

∂t
+ v · ∇v = −∇p

ρ
+ F + g. (1.3)

Note that the convective acceleration v ·∇v of the flow is present, which is an additional
source of numerical errors in an Eulerian discretization scheme. As we use a Lagrangian
particle method to discretize the continuum equations in this work, we consider only the
Lagrangian form of hydrodynamics presented in Eqs. (1.1) and (1.2).

Assuming a Newtonian constitutive equation for the fluid stress, the viscous force F
simplifies to

F = ν∇2v, (1.4)
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1.1 Physical model

where ν is the kinematic viscosity (m2/s) related to dynamic viscosity (Pa·s or kg/(s·m))
by ν = η/ρ.

In our particular case of particle dispersion, the fluid medium is a liquid, such as
water, and is weakly compressible. The speed of sound cs within the liquid is generally
much higher than the maximal speed v of the bulk flow. Under these conditions, relative
fluctuations in the fluid density ∆ρ/ρ are proportional to M2

a , where Ma = v/cs is the
Mach number, and are therefore extremely small [15]. It is customary to approximate
the real fluid by an artificial fluid which is exactly incompressible [16, 17, 18], namely,
dρ/dt = 0 ⇒ ∇ · v = 0. We take a different approach following Monaghan 1994
[15], where the real fluid is approximated by an artificial one being more compressible
than the real one. The sound speed cs of the artificial fluid must be chosen still much
larger than the speed v of bulk flow, in order to have very small density variations.
Under these conditions, sound waves propagate very quickly, namely the typical time
τcs = a/cs required by the sound wave to travel over a characteristic length ‘a’ (m) of the
problem is very small. Nevertheless, cs should not be unnecessarily large, which would
limit severely the simulation time step ∆t according to the Courant-Friedrichs-Lewy
condition [19, 20].

To model a weakly compressible fluid, an equation of state taken from Batchelor 1967
[11, 15] relating pressure to density reads

p = p0

[(
ρ

ρr

)γ
− 1

]
, (1.5)

where p0 (related to sound speed cs), γ = 7 and ρr are parameters chosen based on a
scale analysis [15, 21] such that pressure field reacts strongly to small deviations in mass
density and quasi-incompressibility is enforced [11, 15, 22].

In fluid dynamics, a very important dimensionless number that indicates the relative
importance of inertial force and viscous force for given flow conditions is the Reynolds
number defined as

Re =
inertial force

viscous force
. (1.6)

For many applications, such as shear flow, it is convenient to define an equivalent ex-
pression as follows

Re =
ρva

η
=
va

ν
=
γ̇a2

ν
, (1.7)

where v, a, and γ̇ are the characteristic velocity, length scale, and shear rate (1/s) of
the problem. The turbulent flow, for example, often starts with Re > O(103) [23].

Within the majority of applications in particle dispersions, the inertia in the system is
so small thatRe� 1. In practice, Re = 0 is often used to simplify the problem, assuming
vorticity propagation from viscous force infinitely fast. Under this assumption, the
inertia in the momentum equations can be completely neglected and the Navier-Stokes
equations are simplified to the steady Stokes equations [12, 14, 8],

0 = −∇p
ρ

+ ν∇2v + g, (1.8)
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1 Introduction

or the unsteady Stokes equations [12, 14, 8],

∂v

∂t
= −∇p

ρ
+ ν∇2v + g. (1.9)

It should be remarked, however, that if one is interested in the transient behavior of a
particle in a viscous flow, where time scale of vorticity propagation can not be neglected,
namely, τv = a2/ν > 0, the full Navier-Stokes equations should be solved.

1.1.2 Solid phase: dispersed (or suspended) particles

In various applications of multiphase dispersions, the discrete particles may be very dif-
ferent. In some cases they are treated as soft deformable bodies, such as for example,
red blood cells in blood flow through the circulatory systems, where appropriate internal
stress-strain relation for the solid phase must be used [24]. For most industrial applica-
tions, the discrete particles are often hard and considered as rigid body. As there is no
internal relative motion between each portion of the particle, it is relative easy to model
such particles. Only rigid particles are considered in this thesis.

Moreover, we focus also on spherical particles, although the description of the model
will not be restricted to spherical shapes. As it will be demonstrated, it is straightforward
for particle methods described in this work to model arbitrary shape objects.

1.1.3 Fluid-solid interaction

A dispersion system is just a particular case of studies on fluid-structure interaction
(FSI). In order to describe the interaction between the two phases, a boundary condition
at the interface must be specified.

interface between fluid phase and solid phase

Usually sticky or no-slip boundary condition [25] is observed empirically, which means
that a very thin layer of fluid adjacent to the solid phase has the same velocity as the
solid. Because the solution is prescribed at the interface, the no-slip condition is an
example of Dirichlet boundary condition in mathematics.

The no-slip condition allows to compute the flow solution in a domain defined by
any arbitrary (moving) boundaries. In the specific case of a dispersed solid particle, its
dynamics induced by the surrounding flow can be described by evaluating the total fluid
force exerted on the solid structure (fluid-structure coupled problem). For example, the
Stokes’s drag of a sphere moving in a fluid is calculated by integrating the total friction
on the sphere surface — resistance problem [12]; Similarly the terminal velocity of a
sphere under a constant force (gravity) can also be calculated — mobility problem [12].

An external solid boundary, such as a plane wall, is just a simplified case of a solid
particle with arbitrary shapes and predefined velocity (one way structure-fluid coupling).

A variety of boundary conditions at the interface, such as, slip or slip-sticky hybrid
boundary condition [26] can be found in the literature and depend on the specific prob-
lem under study. More models concerning slip flow near boundaries are referred to

14



1.1 Physical model

Karniadkais et al. 2005 [8]. We focus primarily on the no-slip boundary condition in
this work.

Brownian versus non-Brownian particle

To differentiate between multiphase dispersions of non-colloidal and colloidal particles, a
remarkable phenomenon named Brownian motion of the dispersed particle may be used.

This transport phenomenon was first discovered by a Scottish botanist, Robert Brown
(1773 – 1858), who noted the random motion of pollen grains in water by looking through
a microscope. Albert Einstein published a paper in 1905 [27], and independently von
Smoluchowski in 1906 [28], that explained in precise detail how the Brownian motion of
the dispersed particle results from the agitation of the fast-moving molecules of the fluid.
The explanation served as a definitive confirmation that molecules actually exist. The
corresponding calculation of the diffusion coefficient (D) via mean squared displacement
(MSD) [27, 28, 29] provided a novel way to measure the size of a microscopic particle.
It is explained as follows: if a series of positions RC(t) of a spherical particle is recorded
for each t, the MSD can be calculated as

MSD(τ) =
〈
R2
C(t+ τ)−R2

C(t)
〉
, (1.10)

where <> is the ensemble average taken over at time t with a time interval τ . According
to the Einstein-Smoluchowski relation, diffusion coefficient D of the spherical particle is
related to the MSD as

D =
1

6
lim
τ→∞

d

dτ
(MSD). (1.11)

According to the Stokes’ law of creeping fluid motion around a sphere, the frictional/drag
force exerted on a sphere of radius a, moving with a velocity v in a fluid with viscosity
η is

Fd = 6πηav, (1.12)

thus mobility µ can be defined as the inverse of drag coefficient λ

µ =
1

λ
=

1

6πηa
. (1.13)

Further application of the linear response theory [27, 30] for an isolated sphere in viscous
fluid leads to

D0 = µkBT =
kBT

6πηa
, (1.14)

where kB is Boltzmann’s constant (1.381× 10−21JK−1), T is the absolute fluid temper-
ature (K). Eq. (1.14) is called Stokes-Einstein relation. The radius a of the particle can
be deduced by equalizing the right hand side of Eq. (1.11) and Eq. (1.14).

A French physicist, Jean Perrin, validated experimentally [31] the prediction of Ein-
stein and von Smoluchowski by recording series of positions for colloidal particles, as
shown in Fig. 1.1. With these data, the diffusion coefficient was calculated, and there-
fore the radius of the colloidal particle. He further applied the work of Einstein and von
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1 Introduction

Figure 1.1: Locations and trajectories of colloidal particles released at t = 0 and mea-
sured for t = [0, τ ]: useful for calculation of mean squared displacement and
thereafter diffusion coefficient of the particle.

Smoluchowski and back-calculated the Avogadro’s number, the number of atoms in one
mole, which earned him 1926 Nobel prize for physics.

Theoretically, a particle in both types of dispersion undergoes Brownian motion: the
diffusion for a big particle in coarse dispersion is however very small, as D0 is inversely
proportional to a (see Eq. (1.14)). This also implies that a big particle does not feel
much the agitation of the fast movements of surrounding fluid molecules. The time scale
of diffusion can be estimated as

τD = a2/D0 = 6πηa3/kBT, (1.15)

which defines the time required by an isolated particle to diffuse over a length of its
own size. For example, for a colloid with 1µm diameter in water at room temperature
(298K) τD ≈ 1s. In a coarser dispersion, diffusion might be hardly observed due to the
fact that τD ∝ a3, e.g., 2a = 100µm→ τD ≈ 106s.

There is no clear distinction between the sizes of particles in a non-colloidal dispersion
and colloidal dispersion. Therefore, within a time scale of practical interest, whether
particles in a dispersion are Brownian or non-Brownian effectively defines whether the
dispersion is colloidal or non-colloidal. Vice versa, particles in colloidal disper-
sion are considered Brownian while particles in non-colloidal dispersion are considered
non-Brownian. The differentiation between Brownian and non-Brownian particles is
also extremely important in distinguishing the capabilities between numerical modeling
schemes, as will be discussed in Section 1.2.

If a colloidal dispersion undergoes a shear flow characterized by a shear rate γ̇, the
Péclet number Pe is an important dimensionless quantity characterizing the ratio of
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1.1 Physical model

advective and diffusive rate,

Pe =
advection

diffusion
=
va

D0

=
γ̇a2

D0

=
6πηγ̇a3

kBT
. (1.16)

Péclet number also determines the degree to which the hydrodynamic force competes
with the Brownian force, and this, as will be shown in Sec. 5, is important for deter-
mining the microstructure of a Brownian dispersion. For a very high Péclet number,
e.g., O(103), the diffusion rate is negligible compared to the advection due to the shear,
therefore the Brownian motion can be neglected.

A remark is here in order: in a real dispersion of particles, the following hierarchy
must hold, τcs � τv � τD, namely the time scales of different physical processes are
widely separated, e.g., for a colloid with 1µm diameter in water at room temperature,
τD = 109τcs . Actually, the ratio between τD and τv results in the so called Schmidt
number,

Sc =
ν

D0

=
6πν2ρa

kBT
, (1.17)

which characterizes the ratio of momentum diffusivity (viscosity) and mass diffusivity.
For example, in a simple liquid like water, taking a as the molecule size, Sc is in the
order of O(103); taking a as the size (e.g., 1µm ) of a colloidal particle in water, Sc is
in the order of O(107). This huge separation of time scales, often termed as Schmidt
number problem, limits severely modeling and simulation schemes [32, 33].

Nevertheless, it is proved that the ratio of different time scales does not need to be
realistic in simulations, as long as different physics processes are clearly identified or
separated [34]. In a colloidal dispersion, this means that if Ma � 1, Re � 1, and
Sc � 1 are specified, e.g., by choosing τν/τcs ∼ O(10) and τD/τν ∼ O(10), the correct
physics is qualitatively captured [34].

1.1.4 Solid-solid interaction: inter-particle forces

Due to the presence of a particle in a suspending medium, the disturbance induced in
the fluid flow will cause hydrodynamic interactions (HIs) mediated by the medium with
other particles. Due to the fact the HIs decay slowly in space, all particles may interact
with all others, therefore the problem is intrinsically many-body. The HIs are source of
the major force considered in this thesis.

By assuming that two spherical particles move towards each other with opposite con-
stant velocities, the normal hydrodynamic forces experienced by them are repulsive and
diverge as the gap between the two solid surfaces s vanishes, as shown in Fig. 1.2.
The other two components of the HIs for two particles, namely shear force and torque,
in close proximity are also singular, but their divergence is much smoother than for
the normal force as s → 0. The pairwise hydrodynamic forces between near-by parti-
cles are termed lubrication forces [12, 4, 14, 6], and have an extremely important role
in determining the particle dynamics in a dispersion. For example, in a dispersion of
two non-Brownian particles under shear, depending on their initial relative positions, a
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1 Introduction

Figure 1.2: Lubrication force between two approaching particles and trajectories of two
particles under shear flow, taken from Ref. [35].

closed or open relative trajectory can be formed [36, 37, 38, 39], as shown in the inset
of Fig. 1.2. The two-particles’ dynamics can be further extended and extrapolated to
understand microstructure, and its link to the rheology of a dispersion with multiple
particles [40, 41, 42, 43].

Although the hydrodynamic forces between particles are the same for non-colloidal
and colloidal dispersions, the non-hydrodynamic inter-particle forces at short range are
fundamentally different in the two cases, and need to be considered with caution in both
analytical and numerical modeling.

In a colloidal dispersion, there are at least three possible types of inter-particle forces:
dispersion forces arise from the quantum mechanical effects caused by fluctuations in the
electron clouds surrounding atoms, which constitute the colloidal particles [4, 6]. The
dispersion force is known as the London-van der Waals force between particles, and is the
net effect of the polarizations on the atoms of one colloid caused by fluctuating electron
cloud of atoms on another colloid. The dispersion force, under most circumstances, is
an attractive force over a relatively long separation range r and can be calculated as
the derivative of the interaction potential Φd(r) (see Refs. [44, 4, 45, 46, 6] for different
potentials). In the absence of a stabilizing force, the particles will simply aggregate and
settle out (for denser particles) or cream out (for lighter particles). Therefore, to impart
stability, colloid must have some explicit means, to counteract this attraction, such as,
surface force.

Surface forces arise from the proximity of colloidal surfaces, which can be either
charged, or covered with ions, nanoparticles, surfactants, or surface-grafted polymers
[4, 6]. For example, if the surface of a colloid is negatively charged via certain chemi-
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1.1 Physical model

Figure 1.3: electrical double layer of ions and potential Φel(r) as a function of distance
from the surface of a colloidal particle: the particle is negatively charged and
dispersed in an electrolyte medium [44].

cal interactions (such as dissociated acid groups), a layer of cations (positively charged
ions) from the dispersion medium is absorbed onto the surface. Another layer of anions
(negatively charged ions) are attracted to the first layer due to the Coulomb’s force,
electrically screening the first layer [4, 6], as shown in Fig. 1.3. This structure is called
electrical double layer or simply double layer in colloid science. The first layer, also
named as Stern layer, of ions is considered immobile and this region acts as a capaci-
tor over which the potential Φel(r) decays linearly, as first demonstrated by Hermann
von Helmhotlz in 1850s [47]. The second layer of ions has both electric attraction and
thermal motion rather than being firmly anchored. This region can be described by a
diffuse model, as first proposed by Louis Georges Gouy [48] and David Chapman [49]
independently, where the potential Φel(r) taken as zeta (ζ) potential decays rapidly
with a decay constant know as Debye length, κ−1. Two colloidal particles interact when
they approach each other closely enough that their electrostatic potential Φel(r) over-
lap, that is, when their surfaces are within a few multiples of κ−1 [6]. When multiple
particles are within the range of electrostatic interaction of each other, the repulsions
are sophisticated many-body interactions.

For particles larger than a micron (10−6m) in size, the double layers are usually small
compared with the particle radius and the repulsive electrostatic force can be calculated
in a pairwise manner as [50, 51, 52, 53]

Frep
αβ (s) = F0

τe−τs

1− e−τs
eαβ, (1.18)
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Figure 1.4: Energy of Derjaguin-Landau-Verwey-Overbeek potential: addition of
London-van der Waals attraction and electrostatic repulsion [44]. Left: net
potential being long-range repulsive; Right: net potential being long-range
attractive.

to describe the force on particle α due to particle β by assuming constant surface charge
of particles. s is the separation between particle surfaces; τ = κa, where a is particle
radius and κ−1 is the Debye length; F0 sets the magnitude and is given by

F0 = 2πεψ2, (1.19)

where ε is the electrical permittivity of the fluid and ψ is the surface potential when
s→∞; τ−1 sets the active range and |Frep

αβ | decays below O(10−2F0τ) when s > 5.0τ−1.
This is a popular type of short-range repulsive force used for numerical modeling of
colloidal and non-colloidal dispersions, and will also be considered in this thesis. A
repulsive force is also extremely important to achieve practically an asymptotic state for
an ideal non-Brownian suspension under shear flow [54, 55, 53].

Derjaguin and Landau, independently, Verwey and Overbeek proposed that the London-
van der Waals attractive potential and electrostatic repulsive potential can be linearly
added up, namely, ΦDLV O = Φd + Φel, which is denoted as Derjaguin-Landau-Verwey-
Overbeek (DLVO) theory or potential [56], as shown in Fig. 1.4. Whether the net
potential is repulsive or attractive in long range, how deep is the primary and secondary
minimum, and how high is the electrostatic barrier are all crucial aspects to consider for
the phase behavior of a colloidal dispersion [44, 4, 45, 46, 6]. A detailed discussion is
beyond the scope of this thesis.

Besides the electrostatically stabilization, polymer brushes may be grafted on the sur-
face of a colloidal particle to provide another type of surface force. With sufficient graft
density and molecular weight, the steric repulsion between polymers on different parti-
cles can also prevent aggregation of particles. This is called sterically stabilization [4, 6].
The absorbed polymers may be replaced by nanoparticles or surfactants to provide the
similar functionality.
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1.1 Physical model

Unlike the graft polymer used for stabilization, dissolved polymer can induce an at-
traction between particles. This is the third type of force, termed as depletion force.
The attractive force between particles arises from the relative lower osmotic pressure in
the inter-particle region, where polymers are excluded [4, 6].

In contrast to a colloidal dispersion, where non-hydrodynamic forces between particles
are considered microscopically based on atomic level, non-hydrodynamic forces between
particles in a coarse dispersion or non-colloidal dispersion are taken into account in a
macroscopic manner. Repulsive force Frep

αβ of solid contact is generally present in the

normal direction between particles. In addition, frictional tangential force Ffr
αβ and

torque Tfr
αβ co-exist, both of which are proportional to the tangential spring ξαβ [57, 58,

59, 60]. As Ffr
αβ and Tfr

αβ are subject to Coulomb’s law, they are limited by µfrFrep
αβ being

µfr the static friction coefficient, which means the dynamic friction is not bigger than
the static one. Since we do not intend to model frictional spheres in this thesis, details
are omitted and can be found in the references given above.

1.1.5 Summary

Under the conditions and assumptions mentioned in the previous sections, namely, for
the suspending fluid continuous hydrodynamic equations, no-slip boundary condition at
fluid-solid particle interface, time scales separation (τcs � τv � τD), and inter-particle
forces, a proper model of a particle dispersion can be established.

It is since the work of Einstein and von Smoluchowski [27, 29, 28], more than a century
ago, that the dynamics of a single Brownian particle is understood. However, it was not
until 1970s that a series theoretical work of Batchelor [40, 41, 61, 42, 43] established a full
micromechanical framework for the dynamics, microstructure, diffusion and rheology of
dispersions of multiple particles, by combining statistical mechanics and hydrodynamics
concepts. The theoretical work is not only important for our fundamental understanding
of dispersions in simple scenarios, but also paved ways of applying computer program-
ming to model and simulate more complex applications. A remarkable numerical scheme
termed Stokesian dynamics [62] is built upon such micromechanical framework and will
be explained in Sec. 1.2.

As the spectrum of applications for dispersions is extremely wide, we focus here on
the aspects of hydrodynamics, diffusion, microstructure and rheology. We arm ourselves
with numerical modeling and simulation as tools to study those targets. The modeling
and simulation are not only topics which are still subject of intense research [10], but
also become an indispensable tool to target and optimize specific functionality of novel
devices operating under microfluidics conditions [8, 63]. Manipulation, sorting and mix-
ing of micro/nano-size objects are becoming the central focus of nanoparticle technology
as well as, in the biomedical field, of novel platforms for hand-held diagnostics [64]. It
is therefore extremely important to develop simultaneously theoretical and numerical
models to fill the gap with rapidly evolving industrial applications. In Section 1.2, we
review a large, but not exhaustive, list of existing numerical schemes used for modeling
multiphase dispersion. More attention is paid to the schemes, which are widely used,
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such as, Stokesian dynamics; only key concepts are explained, if the schemes are only
used within few groups. Advantages and disadvantages are pointed out for all numerical
schemes. Details of the numerical scheme used in this work, namely, smoothed dissi-
pative particle dynamics (SDPD), with all its unique features, will be explained in
a separate Chapter 2.

1.2 Review on numerical modeling schemes

There are several review articles on the topic of particle dispersion, and probably even
more review articles on the subject of numerical discretization schemes. However, there
are only few articles reviewing numerical modeling in the context of particle dispersion.
For example, an early review of Brady & Bossis in 1988 [62] discusses exclusively applica-
tions of Stokesian dynamics in (non)colloidal dispersion; Whittle & Dickinson 2001 [65]
pointed out some issues and complications at the initial development of dissipative par-
ticle dynamics method on simulating colloids; Koumoutsakos 2005 [66] gives a review of
particle methods used for general multiscale flows; van der Sman 2009 [67] favors lattice
Boltzmann method by comparing with other methods to simulate confined suspension
flow at multiple length scales; Fujita & Yamaguchi 2010 [68] reviews briefly some re-
cent contributions to different representative methods used for mesoscopic modeling of
colloidal dispersions.

Here we intend to provide an extensive, but not exhaustive, review of numerical
schemes developed for modeling colloidal and noncolloidal dispersions. Some methods
are explained clearly, as they have great influence; others are only presented with key
concepts without going into technical details. The key issue of all numerical schemes is
on the modeling of hydrodynamic interactions (HIs) among the particles, where Navier-
Stokes (or Stokes) equations are solved. In particular, for a colloidal dispersion of Brow-
nian particles the fluctuation-dissipation theorem (FDT) has to be satisfied [13, 69] to
form the so-called fluctuating hydrodynamic equations (FHE). If the fluid flows described
by Navier-Stokes equations or FHE are solved explicitly by a numerical scheme and no
additional model is assumed, it is called a direct numerical simulation (DNS). Some
other simulations apply certain model, to avoid a thorough computation. An example
is Stokesian dynamics method, which applies analytical or semi-analytical solutions of
Stokes flow on multiple spheres. In this way, the fluid flows are implicitly or partially-
implicitly modeled, it does not need to be solved numerically over the entire domain and
the computational cost is significantly reduced. General advantages and disadvantages
of various schemes for the solutions of deterministic HIs or FHE in different applications
will be pointed out and compared.

Another crucial aspect of these schemes is how solid particles are coupled with fluid
flow, the so-called fluid-structure interaction (FSI) problem. The treatment of particles is
mostly done in Lagrangian framework so they can translate and rotate freely. Depending
on how fluid flow are modeled, we classify existing numerical schemes into Eulerian-mesh-
based and Lagrangian-mesh-free methods. Therefore, a resultant model for dispersion is
either Eulerian-Lagrangian coupling or Lagrangian-Lagrangian coupling.
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1.2 Review on numerical modeling schemes

1.2.1 Mesh-based methods

The majority of numerical schemes are mesh-based methods, such as finite difference
(FDM)/finite volume (FVM)/finite element method (FEM) [70, 71], spectral/hp element
(high order FEM) [72], and boundary element [73], which are all widely used in compu-
tational fluid dynamics for general purpose.

The major applications of these methods are concerning macroscopic flows including
aerodynamics, free surface flow, turbulence, and so on. The application of these methods
in multiphase flows is also quite active. Since the discretizations using these methods
are based on Eulerian meshes, the interfaces among different fluid phases or between
fluid phase and solid phase must be identified dynamically using an advanced technique
during a simulation.

Interface tracking techniques

In combination with a mesh-based discretization, different techniques for tracking inter-
faces may be used, such as, immersed boundary method [74, 75, 76], volume of fluid [77],
front tracking method [78, 79], and level set method [80]. These techniques are usually
either good at maintaining a sharp interface or for conserving mass, and are active re-
search areas under continuous improvement. They are used for general multiphase flows,
including different fluids mixing, fluid-solid coupling, and fluid-structure interaction.

For the particular simulation of a fluid-solid two phase dispersion, there are also other
simpler techniques with relative short history: by considering a non-zero thickness at
fluid-solid interface, Yamamoto and co-workers have developed a technique describing
the interface by a smooth function, and termed the technique as smoothed profile method
(SPM) [81, 82, 83, 84]; Glowinski and colleagues proposed distributed Lagrange multiplier
(DLM) to constrain the motion of rigid particles in a fictitious domain (FD) [85, 86];
Tanaka and collaborators have proposed fluid particle dynamics (FPD) [87, 88] by as-
suming the solid phase being a fluid with viscosity ηs much larger than the fluid viscosity
η. If the ratio ηs/η →∞, rigid motions of particles are achieved. In practice, however,
the ratio is kept finite leading to particles with certain internal elasticity. These tech-
niques are designed specifically for fluid-solid two phase dispersion, and can be often
considered as subset of those techniques (immersed boundary method, level set method,
etc) developed for general multiphase flow. They are computationally effective, but
not very versatile. Coupled with these techniques, the host fluid flows must be solved
explicitly by a DNS method, such as FDM/FVM/FEM.

It is interesting to note another promising method termed force coupling method
(FCM), which has been developed by Maxey and his students. FCM solves Navier-
Stokes flow around particles by a finite-valued force multipole expansion, where the
force distribution of any spherical particle acting on the fluid is coupled by a Gaus-
sian envelope function [89]. This envelop function plays a similar role as the smooth
function in SPM, to locate fluid-solid interface. The slip or no-slip boundary condition
on a particle’s surface is only approximately satisfied, which alleviates the severe nu-
merical stiffness of the problem associated with exact boundary condition enforcement.
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Lubrication force between particle and particle or particle and wall is also incorporated
into an improved version of FCM [90, 91, 92, 93], which is then used to study the dy-
namics, microstructure and rheology of non-Brownian suspensions under Couette flow
[94, 95, 96, 97]. FCM is also extended to model non-spherical particles, such as ellip-
soids [98]. The host fluid flows must be solved explicitly by a DNS method, such as,
spectral/hp element method.

All the discretization methods in this class rely on the deterministic Navier-Stokes
equations for macroscopic flows. Therefore, on the one hand, they are promising for
considering also the inertial effects, in contrast to the Stokesian dynamics (explained
later); on the other hand, without further extensions, they can only simulate coarse
noncolloidal dispersions, namely, non-Brownian particles in suspension.

Fluctuating hydrodynamics

For modeling a colloidal dispersion, thermal fluctuations need to be incorporated into
the Navier-Stokes equations, meanwhile satisfying the fluctuation-dissipation theorem
(FDT) [13]. The resulted form is the so-called fluctuating hydrodynamic equations
(FHE) [13] and it corresponds to a set of stochastic partial differential equations. It
must be noted that even if the continuum differential equations satisfy the FDT, it does
not automatically imply that the corresponding discrete equations, (e.g., central differ-
ence scheme in FDM) will necessarily satisfy the FDT too [99, 100]. Thermodynamic
consistency of the discrete equations can be ensured if the discretizations are derived
within the GENERIC (general equation for the nonequilibrium reversible-irreversible
coupling) framework proposed by Grmela & Öttinger 1997 [101, 102]. Obeying the
GENERIC structure, Español and co-workers discretized the FHE for a pure fluid with
thermodynamic consistency by using FVM on Voronoi tessellations [99, 103]. Following
the same methodology, Pantankar and collaborators cast a Brownian particle together
with fluid in the GENERIC structure [100, 104]. Their discretization is FVM performed
on cubic grids meanwhile DLM/FD technique is used to incorporate the motion of rigid
particles [85, 86, 100, 104].

Solutions of the Boltzmann equation

There are also numerical methods, which do not rely directly on the Navier-Stokes
equations. For example, the direct simulation Monte Carlo (DSMC) method proposed
by Bird uses a probabilistic simulation to solve Boltzmann equation [105, 106, 107]. It is
a powerful approach, and in fact the only possible numerical method for simulating high
Knudsen number (Kn) rarefied flows in complex geometries, where Kn = λ/a being λ
the molecule mean free path and a characteristic geometric length. Although DSMC is
extended to solve low Kn number continuum flows, it is neither efficient nor accurate
as a continuum approach solving Naiver-Stokes equations.

A recently modified version of DSMC receives great attention, which has been derived
by Malevanets & Kapral 1999 [108]. The novel version is named multiple particle collision
dynamics (MPCD) and sometimes termed stochastic rotation dynamics (SRD) [109, 110,
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111, 34]. In MPCD/SRD, the system is coarse-grained into cells of regular lattice and
the fluid is represented by particles. Positions and velocities of the particles are treated
as continuous variables, which are advanced with a streaming step. As a second step,
within each cell particles exchange momentum through a multiple collision and rotate
velocities relatively to the velocity of the cell-mass-center. The dynamics satisfies the
conservation of mass, momentum and energy and thermal fluctuations are naturally
present during the collision step. Couplings of mesoscopic MPCD/SRD solvent with
solute [112] or polymer chain [113] using molecular dynamics (MD) is straightforward.
The HIs between the solvent and solid inclusions or walls are also validated [114]. Ihle
& Kroll 2001 [109] realized that the lattice needs to be shifted carefully to satisfy the
Galilean-invariance, a feature that lattice gas automata [115] does not have for free
either.

It is also worth to mention the lattice Boltzmann method (LBM) [116, 117, 118,
119, 120, 121, 122], which solves the discrete linearized and pre-averaged Boltzmann
equation on a lattice and can be used for gas or liquid flows as well as for particu-
late microflows. The solutions are provided by a streaming process to advance position
and a collision process to exchange momentum using Bhatnagar-Gross-Krook operator
[123]. The macroscopic hydrodynamics can be recovered correctly by the LBM [119].
To have a thermal LBM, fluctuations can be introduced using different approaches, such
as, multi-speed approach [124], passive scale approach [125], and thermal energy distri-
bution approach [126]. A notable problem occurring in the LBM simulations of particle
dispersion is, however, related to the unclear solid particle size, which is not known a
priori. This deficiency is in part related to the representation of particle using finite
number of grid points and the bounce-back rules for ensuring no-slip boundary condi-
tion. One needs, therefore, to calibrate the simulations with a so-called hydrodynamic
radius [127], which can be a complex function of the lattice size [128], as well as the
solvent kinematic viscosity [129]. Recently, some of these deficiencies have been signifi-
cantly reduced by employing multiple relaxation time approaches [129] or higher-order
boundary conditions [130].

1.2.2 Mesh-free methods

To model a multiphase dispersion, one could follow Newton’s equation of motion for
solvent molecules and perform molecular dynamics (MD) [131, 132], which would need
to take into account each microscopic detail. Although the modern computing power is
very large, the MD simulations are still restricted to a very small length or time scale.
The longest MD simulation achieved so far is in the order of 1ms (10−3s) [133, 134],
which is still far from the typical diffusion time ∼ 1s of a colloid. In addition, there is
also a huge spatial gap between molecules (∼ 0.1nm) and colloidal particles (∼ 1µm).
MD is more often used for simulations of the third type of dispersion, namely, solution,
but rarely for multiphase dispersion.

Brownian dynamics (BD) method [135] was invented to describe the motion of macro-
molecules or colloids at the simplest level of overdamped limit. In this limit, the kinematic
viscosity (ν = η/ρ) is so high that momentum of a colloid already relaxes in a time scale,
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in which its position barely moves. Therefore, BD method can be derived by neglecting
the inertial term in Langevin dynamics. The latter accounts for the omitted degrees
of freedom by stochastic differential equations and assumes the collisions with solvent
molecules introducing a random displacement of the colloid [136]. BD has often been
amended with simple analytical representations of HIs, such as the Oseen tensor [137],
but still lack for the accurate description of HIs, especially in simulating dispersion of
multiple particles.

BD is considered as a subset of Stokesian dynamics (SD) [62], which takes into ac-
count proper HIs between multiple particles [52]. The Brownian motion of particles can
also be incorporated in SD, just as it is done in BD, satisfying the FDT [138]. SD is
very efficient for computing HIs between spherical particles within Stokes flow and has
been dominating the simulation work on multiphase dispersions almost two decades and
therefore, deserves detailed explanations.

SD was first invented by Bossis and Brady in 1984 [52]. In this original article, the
authors simulated dynamics of a monolayer of spherical particles under linear shear
flow with shear rate γ̇, where particles interact through both hydrodynamic forces and
Derjaguin-Landau-Verwey-Overbeck type colloidal forces [56]. In the application con-
sidered, particle Reynolds number or Bagnold number [139] Re = va/ν = γ̇a2/ν ≈ 10−5

is neglectable; Péclet number Pe = 6πµaγ̇/kBT is O(102) such that Brownian motion
is not important and also neglected. Due to the difficulty of modeling many-body HIs
between particles, HIs are assumed to be pairwise-additive, which was motivated by MD
simulations. However, pairwise additivity provided two options for the authors. Pair-
wise additivity in the mobility matrix R−1 corresponds to a superposition of velocities
(referred to as superposition), while in the resistance matrix R it is a superposition of
forces (referred to as inversion, since R needed to be inverted to calculate velocities).
The former one proves to be unrealistic, since relative velocity between two particles is
not guaranteed to vanish as their separation becomes small, i.e., as surface gap s → 0,
but it should disappear according to lubrication theory [39]. In contrast, pairwise addi-
tivity in R is quite different. Rather than considering pairs of particles alone in the fluid,
when matrix R is inverted to calculate velocities, all particles are considered simultane-
ously to have zero total force, which may be considered as semi-many-body interactions
in some sense. Moreover, lubrication forces are preserved for the methodology of in-
version, which is very important for small separations between particles, especially in a
concentrated dispersion.

There is no closed-analytical-solution for all relative separations between pairs of
spheres: at large surface-surface separations, far-field analytical expressions are available
by the method of reflection [12]; at smaller distance compared to the radius (s = 0−0.2a),
analytical results are used from lubrication theory [14, 140]; tabulated numerical results
are used for intermediate separations (s = 0.2a − 3, 4a). These results are pieced to-
gether to construct the final resistance matrix R in SD. At the time of their original
article [52], the complete compilation for all separations by Jeffrey and Onishi [140] was
not available yet, they had to use certain approximations.

A series theoretical work of Batchelor, combining hydrodynamics with statistical me-
chanics, established a full micromechanical framework for suspensions of multiple parti-
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cles [40, 41, 61, 42, 43]. Based on this framework, dynamics, microstructure, diffusion
and rheology can all be calculated in SD simulations of suspensions [141, 142, 143, 144,
145, 146, 147, 148, 149]. However, the SD simulations had been limited to a small number
of particles until an accelerated version was proposed [150, 151], which enabled simula-
tion of a total number of particles in the order of O(103). To calculate the many-body
long-range HIs, the accelerated Stokesian dynamics (ASD) uses an Ewald-summation
technique transformed in Fourier space, leading the algorithm scaling as O(NlnN) be-
ing N the total number of particles [150, 151].

Despite of the important contributions of SD to our understanding of dynamics, diffu-
sion, microstructure and rheology of particle dispersions, there are at least three obvious
limitations of the method:

1. SD assumes that the fluid is perfectly incompressible and infinitely viscous (Re =
0), which are strong approximations under specific conditions. In addition, the
time scales between motions of fluid and those associated with particles are com-
pletely separated in SD, which excludes the short-time motion of Brownian par-
ticles over kinematic time scale. Transitional behavior with small inertia is not
considered, although inertia is ineluctable and sometimes crucial [152, 153, 154];

2. Modeling arbitrarily shaped objects is not an easy task in SD and requires essential
modification of the standard framework [155]. Generalization of SD to model
nonspherical particles has been recently proposed in Ref. [156]. In this approach
arbitrarily shaped rigid particles are modeled as clusters of several spheres which
still interact via the usual SD forces, therefore extending its range of applicability
while increasing significantly the computational cost of the method;

3. External/complex boundary geometries, such as confining walls, are difficult to
model within the SD framework. One way is to fix a plane layer of spheres to
represent a wall, and allow wall spheres to interact with dispersed spheres us-
ing the SD algorithm [157, 158]. Thereafter, stress on the wall is obtained by
collecting forces on the wall spheres. However, this approach does not give satis-
factory results in many applications, especially it is difficult to model an arbitrary
boundary surface. In low-Reynolds-number hydrodynamics, mobility and resis-
tance tensors for particles must be symmetric, positive definite, even with external
wall boundaries. This constrain was not always guaranteed in previous published
work, until an improved version of SD by Swan & Brady 2007 [155], where extra
care was taken to ensure the genuine properties of mobility and resistance tensors.
However, this work was restricted to particles near a single wall. Swan & Brady
2010 [159] further investigated hydrodynamics between two walls, but this time
the total number of particles was only one. Finally, in the work of Swan & Brady
2011 [160], HIs of multiple particles between two parallel plane walls can be com-
puted completely and accurately. As in the work of Sierou & Brady 2001 [150],
Swan & Brady 2011 [160] also considered Ewald-like summation to accelerate the
algorithm with O(NlnN) scaling. Nevertheless, all SD simulations involving parti-
cles coupled with external wall(s) require massive knowledge and implementation
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of algebra, which is far from making the method eligible for practical problems
in micro-channel. Based on the complex work for planar walls, the extension to
arbitrary boundaries in SD is imagined to be very difficult, if possible at all.

SD is based on the solutions around spheres in Stokes flow, therefore, solvent is mod-
eled implicitly already and computations of dynamics are significantly simplified. How-
ever, this simplification also represents its weakness. Another approach based on the
Stokes equations but allowing for arbitrarily shaped particles uses boundary integral anal-
ysis [161]. Here, particle surfaces are discretized and a set of boundary integral equations
based on the expansion of the Stokes equations must be solved for each surface element.

A promising group of mesh-free methods, namely, smoothed particle hydrodynamics
(SPH) [162, 163], dissipative particle dynamics (DPD) [164, 165], and smoothed dissipa-
tive particle dynamics (SDPD) [166], emerge in the comparison due to their flexibility
and efficiency. In particular, they do not need to assume Stokes regime and can be con-
sidered to solve many of the limitations residing in other methods mentioned above, for
example, no need of interface tracking. In fact, SPH used as a macroscopic solver for the
Navier-Stokes equations is a DNS resolving fluid flow explicitly, while DPD and SDPD
can be considered as mesoscopic solutions of the fluctuating hydrodynamic equations.
SPH/DPD/SDPD methods are selected and investigated in this thesis, therefore they
will be explained separately in details in Chapter 2.

A similar method to SPH was invented separately by Koshizuka and colleagues in
1990s [167, 168] and termed moving particle semi-implicit method (MPS). MPS is fun-
damentally not much different from SPH, except that the solutions are obtained using
a semi-implicit prediction-correction process rather than a fully explicit one as used in
SPH method. Formally, the Navier-Stokes equations can be transformed into vorticity
equations by taking the curl of the velocity vector in the former and then be solved nu-
merically by vortex method (VM) [169, 66], which has similar approximation techniques
as those used in SPH. However, no effort has been shown to incorporate fluctuations
into MPS or VM method and are therefore limited approaches to simulations of colloidal
dispersions.

1.2.3 Summary

All the DNS methods mentioned above suffer of a common inaccuracy in the case of a
dense dispersion, where particles are in close proximity and occupy the major volume
of the dispersion. This deficiency is generally a difficult task to solve, as the numerical
resolution needs to be sufficiently high to model accurately the flows of extremely thin
film, namely, lubrication forces, between the particles. Some groups target this problem
with multi-resolutions, e.g. Hulsen and co-workers adapted the mesh resolutions near the
surface of spherical particles in an extended FEM [170, 171, 172, 173]. Nevertheless, only
solutions with few particles are possible, due to the extremely expensive computational
cost. A common strategy circumventing this difficulty is by incorporating in addition to
the long- and intermediate-range HIs resolved by a DNS method, a pairwise lubrication
model [118, 120, 122] at short distances between particles, just as it is done in SD method.
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Although HIs are truly multi-body, the (pairwise) incorporation of lubrication force can
be justified by the following fact: lubrication force takes place at very short range
between particles and therefore the many-body HIs of lubrication forces among multiple
near-by particles are hindered and screened by the presence of the other particles. This
is the approach considered also in this work.

Besides the advantages and disadvantages pointed out above, we provide below a
general comparison between various schemes in different aspects.

• interface tracking: due to the physical nature of multiphase dispersion, in-
terface between fluid phase and solid phase must be identified with care in any
scheme. The mesh-based methods coupled with particles, or Eulerian-Lagrangian
coupling methods, always have to use advanced techniques to track such interface,
which is tedious and computationally expensive. Moreover, the interface tracking
techniques often need to be adjusted according to different scenarios. Mesh-free
schemes have clearly advantage in this aspect, where both fluid and particles move
in a Lagrangian framework and interface is therefore automatically captured. Nev-
ertheless, boundary condition at the interface must be implemented with a small
extra effort in the mesh-free schemes.

• computational cost: whereas BD/SD methods model the solvent implicitly using
analytical solutions, other methods (either mesh-based or mesh-free) have to model
the solvent explicitly. It is apparent that the implicit-solvent modeling, although
less flexible, is computationally more efficient.

For more realistic and complex problems, such as moving multiple-particles with
possibly arbitrary shapes, mesh-based methods are more flexible but require fre-
quent remeshing of the fluid domain and exhausting tracking of interfaces. In
contrast, mesh-free methods need only a small extra effort for this problem.

• error analysis: mesh-based methods have clear advantages over mesh-free meth-
ods in the aspect of error analysis. For the former using regular meshes, numerical
errors are obtained analytically, for example, by using a Taylor expansion; for
the latter using Lagrangian elements or numerical particles, error analysis can be
much more difficult. To get an estimated error, the analysis of a mesh-free particle
method often assumes the numerical elements on a regular lattice [174], which
does not take place under real flow conditions, where random configurations usu-
ally occur. Due to the disorder of particle configurations in a mesh-free method,
the numerical error is difficult to control and often relatively larger than in a mesh-
based method. This deficiency, however, may be reduced via remeshing procedures
[175].

Regardless of the discretization adopted is mesh-based or mesh-free, the incorporation
of thermal fluctuations into the model can also determine the potential applications:

• fluctuations on particle: if thermal fluctuations are introduced directly on the
colloid level (BD/SD and similar methods), the shape of the colloid is restricted
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to be spherical, since the agitations of fluid molecules on the colloid are assumed
to be symmetric on the surface.

• fluctuating stress in hydrodynamic equations: if thermal fluctuations are
introduced on the fluid element level, Brownian motion of a colloid results from the
coupling at the fluid-solid interface and there is no need to add extra fluctuations
on the colloid level. Therefore, in principle any shape of a colloid can be modeled
(DPD/SDPD, LBM, and DLM/FD methods).

1.3 Outline

In Chapter 2, we present different fundamental formulations of the particle methods
used in this work, namely SPH, DPD, and SDPD and also give general remarks on their
applications.

In Chapter 3, we give a summary of our paper published in the international peer-
reviewed journal Physics of Fluids. This paper proposes a multiscale modeling of particle
dispersions with SDPD method. It validates the non-Brownian dynamics of a single
particle with fluid interactions and hydrodynamic interactions between two particles. It
also examines the dynamics of a single Brownian particle, especially its coupling with
an external wall boundary.

In Chapter 4, we give a summary of our paper published in the international peer-
reviewed journal Computer Physics Communications. This paper points out the diffi-
culty of integrating the dynamics of multiple particles, due to the diverging lubrication
force at short inter-particle range. It provides a novel integration scheme by splitting
the force contributions on particles, which allows to simulate highly concentrated sus-
pensions.

In Chapter 5, a special application is considered, namely, the shear thickening of
concentrated particle dispersions, which has been attracting significant attention in the
last decades. This is selected as an application area of our numerical model using SDPD.
The topic is still under intense debates in the community, for which we shall give a re-
view in the beginning of the chapter. In the second part of the same chapter, we give
a summary of our paper submitted to the international peer-reviewed journal Physical
Review E. This paper contains a simulation work of concentrated suspension under con-
fined Couette flow. The hydrodynamic/continuous shear thickening rheological behavior
is observed and confinement effects are examined in details. From our knowledge, it is
the first work done on hydrodynamic shear thickening of concentrated suspension under
confinement. The work has been conducted at the TUM and Xin Bian has initiated the
collaboration with Prof. Norman J. Wagner at University of Delaware, U.S., who has
prominent experience and reputation on shear thickening of colloidal dispersions.

30



2 Smoothed dissipative particle
dynamics

2.1 Smoothed particle hydrodynamics

Smoothed particle hydrodynamics (SPH) method was invented in 1970s in the astro-
physics community [162, 163], where the inviscid hydrodynamics described by Euler
equations needed to be solved. Problems involved in astrophysics are often too complex
to handle by a mesh-based method, as open-boundaries are often encountered. The La-
grangian and meshless feature of SPH received attention very soon and attained great
popularity [176, 177, 178].

The essence of SPH is an interpolation process allowing any function defined on a
given domain to be expressed in terms of values at a discrete set of N disordered points
— the particles [177]. The algorithm may be interpreted as two steps of approximation:

Kernel approximation

This first step is the so called integral representation or kernel approximation, of a given
field function. The concept of integral representation of a function f(r) starts from the
following identity:

fI(r) =
∫
Ω

f(r′)δ(r− r′)dr′, (2.1)

where f(r) is a function of a two or three-dimensional position vector r, fI(r) is the
integral representation, Ω is the area or volume of the domain, and δ(r− r′) is the Dirac
delta function defined as

δ(r− r′) =

{
∞ r = r′;
0 r 6= r′.

(2.2)

As long as f(r) is continuous in Ω, fI(r) = f(r) is exactly satisfied. If δ(r − r′) is
replaced by a bell-shaped smoothing function W (r − r′, h), the integral representation
of f(r) becomes

fI(r) =
∫
Ω

f(r′)W (r− r′, h)dr′, (2.3)

where W is termed smoothing kernel, h is the smoothing length defining the influence
area or volume of W . In addition, to be consistent W must satisfy the delta function
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2 Smoothed dissipative particle dynamics

property and normalization condition

lim
h→0

W (r− r′, h) = δ(r− r′),
∫
Ω

W (r− r′, h)dr′ = 1. (2.4)

In practice, W usually has a compact support such that

W (r− r′, h) = 0, for |r− r′| > κh, (2.5)

where κ is a constant defining the effective (non-zero) area or volume of W . The compact
area or volume is called support domain of the smoothing kernel W with a spherical cut
off radius rc = κh.

As long as h > 0, W (r − r′, h) is not exactly equal to δ(r − r′), therefore fI(r) only
approximates f(r). It can be shown that

f(r) = fI(r) + e1(h2), (2.6)

where we ensure W to be an even function and the integral representation is second
order accurate with a residual error e1(h2) [179].

In this work we use a quintic spline kernel [21]

W (s) = cD


(3− s)5 − 6(2− s)5 + 15(1− s)5, 0 ≤ s < 1;
(3− s)5 − 6(2− s)5, 1 ≤ s < 2;
(3− s)5, 2 ≤ s < 3;
0, s ≥ 3,

(2.7)

where W (s) is symmetric and the scalar s = |r−r′|/h; the cut off radius of compact sup-
port is rc = 3h and normalization coefficient c2 = 63/(478πrc

2) and c3 = 81/(359πrc
3)

in two and three dimensions respectively [21, 179].
The integral representation of the derivatives of function f can be deduced similarly,

as shown in Refs. [177, 179, 180, 181, 166].

Particle approximation

For sake of numerical computation, the continuous integral representation fI(r) must
be converted to a summation over a finite number of discrete points (discrete represen-
tation), as shown in Fig. 2.1. The disordered points in Fig. 2.1 are termed particles in
SPH and the discretization process is carried out as follows.

The infinitesimal area or volume dr′ in Eq. (2.3) at location of particle j can be
replaced by the finite area or volume Vj, which is related to the mass of the particle mj

by

mj = Vjρj. (2.8)

ρj is the density of particle j, ∀j = 1, 2, ..., N , and N is the total number of particles.
Therefore, the continuous integral representation for f in Eq. (2.3) at position r can be
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2.1 Smoothed particle hydrodynamics

Figure 2.1: compact support of particle approximation using finite number of particles:
rc = 3h for a quintic spline

written in discrete form as follows,

fP (r) =
N∑
j=1

f(rj)W (r− rj, h)Vj (2.9)

=
N∑
j=1

mj

ρj
f(rj)W (r− rj, h) (2.10)

=
N∑
j=1

1

dj
f(rj)W (r− rj, h), (2.11)

where dj = mj/ρj = 1/Vj is the number density of particle j. The continuous integral
can be represented by the discrete form as

fI(r) = fP (r) + e2(∆x/h), (2.12)

where ∆x is the mean neighboring particle distance and e2(∆x/h) is the residual error.
Since N is finite, fP (r) is an approximation of fI(r) and e2(∆x/h) > 0, this process is
termed particle approximation.

To summarize, the approximations performed involve two steps:

f(r) = fI(r) + e1(h2) = fP (r) + e1(h2) + e2(∆x/h). (2.13)

Therefore, it is crucial to manipulate both the kernel smoothing length (e1(h2)) and
number of neighboring particles (e2(∆x/h)) to control the overall numerical error of a
SPH simulation.
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2 Smoothed dissipative particle dynamics

Discrete form of deterministic hydrodynamics

We apply the two-step approximations of SPH to discretize the hydrodynamic equations,
Eqs. (1.1) and (1.2) in space. The continuity, Eq. (1.1), is automatically satisfied if
particle density is evaluated as [166]

di =
1

Vi
=

ρi
mi

=
∑
j

Wij, ṙi = vi, (2.14)

where di, Vi, mi, ρi, ri and vi are number density, volume, mass, mass density, position,
and velocity of particle i, respectively; each particle has a constant mass m0; Wij =
W (rij) is the bell shaped quintic spline defined in Eq. (2.7), which depends on the
inter-particle distance rij and vanishes beyond a cutoff radius rc, that is, Wij = 0 for
rij > rc. Provided that the total number of SPH particles remains constant, total mass
is exactly conserved and Eq. (2.14) provides an operative way to calculate the density.

Application of the SPH approximations to Eq. (1.2) produces the following equations
for the particle momenta in the Lagrangian formulation [166, 182]

miv̇i =
∑
j

FC
ij +

∑
j

FD
ij + gi

= −
∑
j

(
pi
d2
i

+
pj
d2
j

)
∂W

∂rij
eij +

∑
j

η

(
1

d2
i

+
1

d2
j

)
∂W

∂rij

vij
rij

+ gi. (2.15)

FC
ij results from pressure gradient and represents a conservative repulsive force acting

along the unit vector eij = rij/rij = (ri − rj)/ |rij| joining particles j to i. Pressure p of
a particle is related to the density ρ of the particle according to the state equation, Eq.
(1.5). Since it is a central force and symmetric by interchanging particle indices, total
linear and angular momenta are exactly conserved.

FD
ij comes from the fluid viscosity and represents an irreversible dissipative force,

which reduces velocity differences between pair of particles. This force is symmetric by
interchanging particle indices therefore it conserves linear momentum strictly. However
it is non-central and acting alone the vector vij = vi − vj, providing only approximate
conservation of angular momentum [166]. If the conservation of angular momentum is
crucial for certain applications, such as a rotating solid particle [183], another viscous
formulation may be used

FD
ij = ξη

(
1

d2
i

+
1

d2
j

)
∂W

∂rij

eij·vij
rij

eij, (2.16)

where ξ is a calibrating parameter [182]. If the compact support rc/∆x is chosen suffi-
ciently large, ξ = D + 2, where D is the dimension of the problem [182].

The third term describes an external body force gi, as for example the gravity.

Eqs. (2.15) and (2.16) represent a discretization of the deterministic hydrodynamic
interactions of Newtonian fluid performed on Lagrangian elements.
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2.2 Dissipative particle dynamics

2.2 Dissipative particle dynamics

Dissipative particle dynamics (DPD) method was invented two decades ago [164], to
simulate hydrodynamic phenomena at mesoscale. DPD combines features from both
molecular dynamics (MD) and lattice-gas automata (LGA), yet is faster than MD and
more flexible than LGA. In a DPD method, the momentum equations are as follows

ṙi = vi, miv̇i =
∑
j

FC
ij +

∑
j

FD
ij +

∑
j

FR
ij, (2.17)

where FC
ij is referred as a conservative force from a described potential between particles

i and j, and it is repulsive causing particles to be evenly distributed in space; FD
ij is

dissipative and depends linearly on the velocity difference and FR
ij is a random force,

which injects energy into the system and is independent of the momentum. The last
two forces implement effectively a thermostat so that thermal equilibrium is achieved.
The interactions of particles are within a finite compact support with cut off radius rc.
The typical forms of the three forces are given as follows [165, 184]

FC
ij = αijW

C(rij)eij, (2.18)

FD
ij = −γWD(rij)(eij · vij)eij, (2.19)

FR
ij = σWR(rij)θijeij, (2.20)

where α, γ, and σ reflect the strength of each force respectively; WC , WD, and WR are
weight functions of relative distance rij; θ is a Gaussian white noise (θij = θji) with

< θij(t) > = 0, (2.21)

< θij(t)θkl(t
′) > = (δikδjl + δilδjk) δ(t− t′). (2.22)

All three forces act along the line of centers eij and are symmetric by interchanging
particle indices, therefore linear and angular momenta are strictly conserved.

The typical weighting function WC for a soft repulsion is given by

WC(rij) =

{
1− rij/rc, rij < rc,
0, rij > rc.

(2.23)

To satisfy the fluctuation-dissipation theorem (FDT) [13] in a DPD method, two condi-
tions must be further enforced as follows [165]

WD(rij) =
[
WR(rij)

]2
, (2.24)

2kBTγ = σ2, (2.25)

where kB is Boltzmann’s constant and T is the absolute temperature. Therefore the
weighting functions for dissipative and random forces are as follows

WD(rij) =
[
WR(rij)

]2
=

{
(1− rij/rc)2, rij < rc,
0, rij > rc.

(2.26)
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2 Smoothed dissipative particle dynamics

Extra care is taken into account for the random force, which becomes

FR
ij = σWR(rij)θij∆t

−1/2eij, (2.27)

where θij is a random number with zero mean and unit variance, chosen independently
for each pair of interacting particles at each time step ∆t; The appearance of ∆t−1/2 is
derived by the integration of the underlying stochastic differential equations and inter-
preting FR

ij as a Wiener process [184]. To integrate the dynamics of a DPD simulation,
different integration schemes may be selected from Refs. [184, 185]. We prefer the simple
Euler and velocity Verlet explicit schemes.

The link between the DPD equations with both the microscopic equations of the
solvent molecules and the continuum hydrodynamic equations has been established.
From one hand, Flekkøy and collaborators showed that by performing a systematic
coarse-graining procedure starting from molecular dynamics, the set of equations for
DPD on a Voronoi lattice [186, 187] can be obtained (microscopic→ mesoscopic); on the
other hand, with a standard technique of project operators, starting from the stochastic
differential equations corresponding to the updating algorithm of DPD, Español has
derived the continuum hydrodynamic equations [188] (mesoscopic → macroscopic).

The hydrodynamic interactions between fluid and solid structures can also be quan-
titatively captured within DPD simulations [189, 190, 191, 192]. Numerous works have
been conducted on improving the boundary conditions in DPD methods [193, 194, 195,
32, 32, 196]. Some general criticism has been made on the computational cost of mod-
eling colloidal particles, because each colloid is bigger than the fluid particle and needs
hundreds of boundary particles to represent its geometry. To resolve this deficiency,
efforts have been made by different research groups: one possibility is to represent each
colloid with a single DPD particle, such as, Pryamitsyn and collaborators [197, 198], Kar-
niadakis and co-workers [192, 199, 192], Whittle & Travis and their followers [200, 201].
However, a single-DPD-particle representation of a colloid restricts the shape of colloid
to be spherical.

Despite the good performance of DPD in simulating complex systems, the method
still suffers of some conceptual shortcomings. The price for the simplicity of DPD is
related to the lack of direct connection between the model parameters and the physical
parameters of the system one tries to simulate [202]. Usually, to specify the fluid trans-
port coefficients of the corresponding coarse-grained hydrodynamic model, one needs to
rely on kinetic theory [203] or map and calibrate the parameters in ways that are not
always systematic [204, 205]. Perhaps, the most serious problem is the specification of
the volume of a DPD particle and spatial scale at which a DPD simulation operates,
posing some difficulties on the separate identification of resolution and finite-size effects
in the output results [206, 207, 208, 209]. In particular, the latter problem is related to
the non-unique definition of the hydrodynamic fluctuations acting on the fluid elements
[202, 183].
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2.3 Smoothed dissipative particle dynamics

It was soon after the invention of DPD that the similarity of DPD algorithms described
in Eq. (2.17) to the SPH algorithms presented in Eq. (2.15) was already recognized
by Español and collaborators [210, 211]. Yet one major difference relies on the thermal
fluctuations being present only in the former method. By taking advantage of the simi-
larity between SPH and DPD methods, Español and Revenga cast the SPH method in
the GENERIC (general equation for the nonequilibrium reversible-irreversible coupling)
framework [101, 102], and consistently introduced thermal fluctuations, to derive a new
particle method. Similarly to SPH, the new method still allows for a direct specifica-
tion of the transport coefficients, e.g., viscosity, compressibility, as input parameters,
and further solves many previous drawbacks of DPD. Therefore it is named smoothed
dissipative particle dynamics (SDPD) method [166].

The deterministic forces of SDPD, i.e., FC
ij and FD

ij , are the same as in the SPH
method. However, for each particular viscous force FD

ij , there exists an additional unique
counterpart of random force FR

ij, causing thermal fluctuations of the momenta of particles
i and j. For the specific from of FD

ij defined in Eq. (2.15), FR
ij reads

FR
ij =

[
−4kBTη

(
1

d2
i

+
1

d2
j

)
1

rij

∂W

∂rij

]1/2

dWij · eij, (2.28)

where kB is the Boltzmann constant and T is the absolute temperature; dWij is the
traceless symmetric part of a matrix of independent increments of a Wiener process

dWij = dWji, i.e., dWij =
(
dWij + dWT

ij

)
/2 − tr[dWij]I/D, where D is the spatial

dimension [166, 182]. An intuitive view of the new method is as a consistent particle dis-
cretization of the continuum fluctuating hydrodynamic equations of Landau and Lifshitz
[13].

One very interesting property of SDPD is related to the scaling of the thermal fluc-
tuations with the fluid particle size [202]. It has been shown that the magnitude of FR

ij

increases as the inverse of the square root of the fluid particle volume, in agreement with
classical results in statistical mechanics, namely, particle-velocity statistics satisfy the
Maxwell-Boltzmann distribution, and their variance is given by

〈
v2
〉

= D
kBT

ρ0Vi
, (2.29)

where ρ0 is the input equilibrium fluid density [202]. Thus, velocity fluctuations emerge
naturally when the fluid description needs to be miniaturized, e.g., in microflow con-
ditions, and increase in magnitude following the correct scaling as the spatial scales of
the problem, i.e., the particle volumes Vi, become smaller. This property is naturally
embedded in the method and allows to prescribe the magnitude of fluctuations directly
from physical inputs, without any fine-tuning.

The introduction of the term in Eq. (2.28) into the particle momentum equations
allows for extending the applicability of the SPH method to micro/nano scales. Unlike

37



2 Smoothed dissipative particle dynamics

other mesoscopic methods, such as DPD, where finite-size/resolution effects are difficult
to control [207, 208], the strict connection with SPH enables SDPD to perform nu-
merical convergence studies in a Brownian environment by using established SPH error
analysis[174, 22]. Furthermore, whenever the physical scale of the problem ranges in the
macroscopic scale, it reduces to a version of SPH.

It is remarkable that the application of GENERIC together with a form of the dissipa-
tive terms taken from SPH allows for defining uniquely a size-dependent thermal noise,
which satisfies the FDT [13]. Obeying FDT on the discrete level is not a trivial task, as
shown in Ref. [99] for example, a simple central finite difference scheme for fluctuating
hydrodynamics may introduce additional thermodynamic inconsistency.

The SDPD method has been recently applied to simulations of polymer molecules in
suspension [212, 33], multiphase-fluid flows [182], particle dispersions [183], viscoelastic
liquids [213], and passive microrheology [214]. Some group makes an effort of applying
SDPD in a multiscale/multiresolution scenario [215].

In the following chapters, numerical modeling and simulations of SDPD in the area
of colloidal and noncolloidal dispersions will be briefly described. Details in referred
published work are included in the appendix.
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3 Multiscale modeling of particle
dispersions

This paper is published in the international peer-reviewed journal Physics of Fluids [183]
with DOI: http://dx.doi.org/10.1063/1.3676244. The candidate writing this thesis
is the first author.

Motivation: smoothed dissipative particle dynamics (SDPD) has been invented only
recently [166] and it has not yet been applied to model complex fluids. In this paper,
for the first time we apply SDPD to model and simulate within a simple framework the
multiscale phenomena of colloidal and non-colloidal dispersions.

Algorithm: rigid structures of arbitrary shape embedded in the fluid are modeled by us-
ing frozen boundary particles on which artificial velocities are assigned to satisfy exactly
the no-slip boundary condition on the solid-liquid interface. This boundary condition
was originally proposed for a fixed set of two dimensional periodic solid cylinders [21] and
I have extended it for solid walls and solid particles, which may be arbitrarily-shaped
and can translate and rotate in both two and three dimensions. The dynamics of the
suspended rigid structures is decoupled from the solvent by solving extra equations for
the rigid body translation/rotation velocities derived from the total drag/torque exerted
by the surrounding liquid. A crucial requirement highlighted in this paper is the need
to use an angular-momentum-conservative formulation for the viscous force to model a
rotating solid particle correctly. The rigid body motion needs to be calculated using a
rotation matrix instead of integrating individual boundary particles, as the finite time
step in simulations leads to artificial effects, such as non-preserving structure volume.

Software: by using a parallel particle-mesh library (PPM) [216], I have developed a
software package using Fortran 90/95 [217] and named it as multiscale complex fluids
simulation (MCF), in which I have implemented and verified all the algorithms proposed.
Besides the general communications implemented in PPM, MCF also extends many other
parallel functionalities, such as, calculation of forces, torques, and statistics for solid
particles, solid wall boundaries, using message passing interface (MPI). MCF is stable
and able to run up to O(107) SDPD particles with a good scalability on O(103) cores of
the super computer (SuperMUC) located at the Leibniz-Rechenzentrum: www.lrz.de.

Simulation: A) The problem of fluid flowing through a fixed set of spherical solid
particles in two and three dimensions was conducted first (steady flow through porous
media). By changing the areas/volumes ratio of solid particles and fluid, I have evaluated
the drag coefficients for different solid concentrations and results have been compared
against the theory. B) Thereafter, the transient behavior of an impulsively started solid
particle has been verified. C) The dynamics of a rotating solid particle has been correctly
simulated by using a specific angular-momentum-conservative formulation. D) Using
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3 Multiscale modeling of particle dispersions

finite resolutions, I have examined the limit, in which the hydrodynamic interactions
between two solid particles are correctly captured. The result suggests that at very
small inter-particle distance discretization of the continuum hydrodynamics fails and a
pairwise lubrication correction force between solid particle needs to be introduced. E)
Resolution effects for the translational and rotational diffusion of a Brownian spherical
particle have been studied. Diffusion coefficients have shown numerical convergences:
this is a remarkable result, as there has been so far no proper numerical convergence
study done in a Brownian environment. F) Finally, a colloidal particle coupled with
an external solid wall was studied and the anisotropic diffusion coefficients measured,
both parallel and perpendicular to the wall. Results have been compared with analytical
solutions [12] and experimental results [218], showing excellent agreement.

I have performed all the post-processing of data generated by A)—E) and co-advised
a student, Rui Qian, who has used MCF for his master project on problem F).
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This paper is published in the international peer-reviewed journal Computer Physics
Communications [219] with DOI: http://dx.doi.org/10.1016/j.cpc.2013.08.015.
The candidate writing this thesis is the first author.

Motivation: the simulation of nearly contacting solid particles in suspension is a chal-
lenging task due to the diverging behavior of short-range lubrication forces, which pose
a serious time-step limitation for explicit integration schemes. This general difficulty
limits severely the total duration of simulations of concentrated suspension and needs
to be solved in order to study the rheology of dense suspensions.

Algorithm: we propose a splitting integration scheme for the direct simulation of solid
particles suspended in a Newtonian liquid. The scheme separates the contributions of
different forces acting on the solid particles. In particular, intermediate- and long-range
multi-body hydrodynamic forces, which are computed from the discretization of the
Navier-Stokes equations using the smoothed particle hydrodynamics (SPH) method, and
short-range repulsive forces are taken into account using an explicit integration; for short-
range lubrication forces, velocities of pairwise interacting solid particles are updated
implicitly by sweeping over all the neighboring pairs iteratively, until convergence in the
solution is obtained. The criterion of choosing the number of sweeps Nsweep is dynamic
by comparing results from a) 2m and b) 2m+1 sweeps: Nsweep is halved or doubled,
depending on whether the dimensionless L2 norm of the difference between solutions a)
and b) is smaller or bigger than a pre-defined tolerance ε. Conceptually the proposed
scheme is not limited to the SPH method presented here, but can be easily applied to
other simulation techniques employed for particulate suspensions.

Software: I have used a free algebra software named Maxima to obtain the analyt-
ical solution of the implicit equations derived from pairwise lubrication force (http:
//maxima.sourceforge.net). The resulted expressions together with other parts of
the splitting schemes have been implemented using Fortran 90/95 [217] in the multiscale
complex fluids (MCF) simulation software package.

Simulation: By using the splitting integration, we start with a problem of two solid
particles approaching each other under a linear shear flow. Analytical solutions are
available for this problem. Our simulation can capture correctly both open and closed
trajectories of the two particles. Afterward, we simulate multiple particles in suspension
and demonstrate the relation between Nsweep and ε. By comparing the overall suspen-
sion viscosity using different ε, we find the optimal criterion (ε = 10−3) for obtaining
converged results at reasonable computational costs. Simulation results with the split-
ting integration scheme for solid concentrations of φ = 0 — 58.9% agree very well with
results obtained by using purely explicit integration. Concentration φ = 68.7% can not
be simulated using an explicit integration with a reasonable cost, whereas the splitting
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4 A splitting integration scheme

integration runs efficiently and stably. All the results of viscosity are compared against
empirical formula from literature. Besides the suspension viscosity, we also compare
the microstructure of solid particles from our simulations, including radial distribution
function and solid concentration profiles near the wall, with cited references with very
good agreement whereas preserving the accuracy, the benefit of the new method can be
quantified as a speedup of up to 10 over standard explicit integrations.
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5 Hydrodynamic shear thickening
under confinement

This paper is accepted to the international peer-reviewed Journal of Non-Newtonian
Fluid Mechanics [220]. The candidate writing this thesis is the first author.

Motivation: the property of shear thickening of concentrated particle dispersions, i.e.,
a monotonic increase of viscosity at elevated shear rates, is ubiquitous [6]. For one hand,
it is a challenging problem for pumping, coating and spraying operations [6], and on the
other hand, it opens up a series of new applications, such as, energy absorber [221] and
universal robotic gripper [222]. However, the physical mechanism for shear thickening
is still under debate. Effects of hydrodynamic clusters (hydroclusters) and confinements
are two popular hypotheses, but their interplay is poorly understood. As one particular
application of our numerical modeling proposed in previous two papers, we study the
two effects together in this work.

Algorithm: the suspension of two-dimensional discoidal particles is confined by walls
orthogonal to the shear gradient direction and undergoes a Couette flow. The many-body
hydrodynamic interactions (HIs) are modeled by the smoothed particle hydrodynamics
(SPH) method. To recover the HIs accurately at short distances, a pairwise lubrication
force is introduced between solid particles. To model surface roughness and exclude
volume effects, a very stiff pairwise repulsive force is considered between solid particles
at short ranges.

Software: the SPH modeling of non-Brownian solid particles and walls, and the short
range forces have been implemented in the MCF software package by the author.

Simulation: all simulations run on both a 8-core workstation (Intel Xeon CPU E5410@2.33
GHz) and a super computer located within Leibniz-Rechenzentrum (www.lrz.de). A
large set of relevant parameters has been studied, which includes solid concentration
φ ∈ [0, 58.9%]; nine orders of magnitude for the non-dimensional shear rate/stress;
channel height to particle radius ratio from 8 to 256.

With assistance of Mr. Sergey Litvinov, we perform post-processing of a large set of
generated data. After analyzing the results, we find that (i) hydrodynamic shear thicken-
ing exists for all the dense suspensions studied, i.e., φ ∈ [39.3%, 58.9%]. Accompanying
the shear thickening, there are always hydroclusters, defined as density fluctuations of
solid particles. The shear thickening observed is continuous and reversible upon flow
cessation. (ii) Confinement plays a geometrical role by reducing the maximum packing
fraction and enhancing HIs, therefore, it increases viscosities at both Newtonian and
shear-thickened states. (iii) Nevertheless, if we measure relative excessive viscosity com-
pared to the Newtonian value, the strength of shear thickening is uniquely determined by
the probability distribution of hydroclusters. (iv) Under strong confinement the perco-
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5 Hydrodynamic shear thickening under confinement

lating network of hydroclusters develops into a jamming structure at high shear rate and
as a result, the viscosity increases substantially. (v) Extrapolating the viscosity to the
limit of very weak confinement shows that confinement is important for non-negligible
hydrodynamic shear thickening.

Further implication of the paper is that continuous shear thickening (CST) and dis-
continuous shear thickening (DST) [223, 224, 225, 226] should be clearly distinguished.
The former is associated with hydroclusters and observed in our simulations, while the
latter is not seen. It is very likely that additional frictional forces play an important
role for DST. Facilitated by the strong HIs and frictional forces, wall confined dense
suspension may lead to DST [60].
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[16] M. Ellero, M. Serrano, and P. Español. Incompressible smoothed particle hydro-
dynamics. J. Comput. Phys., 226:1731–1752, 2007.

[17] X. Y. Hu and N. A. Adams. A incompressible multi-phase SPH method. J.
Comput. Phys., 227:264–278, 2007.

[18] X. Y. Hu and N. A. Adams. A constant-density approach for incompressible multi-
phase SPH. J. Comput. Phys., 228:2082–2091, 2009.

[19] R. Courant, K. Friedrichs, and H. Lewy. Über did partiellen Differenzengleichungen
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Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der
Physik, 322(8):549–560, 1905.

[28] M. von Smoluchowski. Zur kinetischen Theorie der Brownschen Molekularbewe-
gung und der Suspensionen. Annalen der Physik, 21(14):756–780, 1906.

46



Bibliography

[29] A. Einstein. Eine neue bestimmung der molekueldimensionen. Annalen der Physik,
pages 289–306, 1906.

[30] W. Sutherland. A dynamic theory of diffusion for non-electrolytes and the molec-
ular mass of albumin. Phil. Mag. 6, 9(54):781–785, 1905.

[31] J. Perrin. Mouvement brownien et réalité moléculaire. Ann. Chim. Phys., 18:1–
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[99] M. Serrano and P. Español. Thermodynamically consistent mescopic fluid particle
model. Phy. Rev. E, 64:046115, 2001.

[100] N. Sharma and N. A. Patankar. Direct numerical simulation of the Brownian
motion of particles by using fluctuating hydrodynamic equations. J. Comput.
Phys., 201:466–486, 2004.
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[194] M. Revenga, I. Zúñiga, and P. Español. Boundary conditions in dissipative particle
dynamics. Comput. Phys. Commun., 121-122:309–311, 1999.

[195] I. V. Pivkin and G. E. Karniadakis. A new method to impose no-slip boundary
conditions in disspative particle dynamcis. J. Comput. Phys., 207:114–128, 2005.

[196] S. Litvinov, M. Ellero, X. Y. Hu, and N. A. Adams. Particle-layering effect in wall-
bounded dissipative particle dynamics. Phys. Rev. E, 82(066704):066704, 2010.

[197] V. Pryamitsyn and V. Ganesan. A coarse-grained explicit solvent simulation of
rheology of colloidal suspensions. J. Chem. Phys., 122:104906, 2005.

[198] V. Pryamitsyn and V. Ganesan. Screening of hydrodynamic interactions in Brow-
nian rod suspensions. J. Chem. Phys., 128:134901, 2008.

[199] W. Pan, D. A. Fedosov, G. E. Karniadakis, and B. Caswell. Hydrodynamic in-
teractions for single dissipative-particle-dynamics particles and their clusters and
filaments. Phys. Rev. E, 78:046706, 2008.

[200] M. Whittle and K. P. Travis. Dynamic simulations of colloids by core-modified
dissipative particle dynamics. J. Chem. Phys., 132:124906, 2010.

[201] S. Jamali, M. Yamanoi, and J. Maia. Bridging the gap between microstructure
and macroscopic behavior of mododisperse and bimodal colloidal suspensions. Soft
Matter, 9:1506–1515, 2013.

[202] A. Vázquez-Quesada, M. Ellero, and P. Español. Consistent scaling of thermal fluc-
tuations in smoothed dissipative particle dynamics. J. Chem. Phys., 130(3):034901,
2009.

[203] C. A. Marsh, G. Backx, and M. H. Ernst. Fokker-Planck-Boltzmann equation for
dissipative particle dynamics. Europhys. Lett., 38(6):411–415, 1997.

[204] J. A. Backer, C. P. Lowe, H. C. J. Hoefsloot, and P. D. Iedema. Poiseuille flow to
measure the viscosity of particle model fluids. J. Chem. Phys., 122:154503, 2005.

[205] R. Qiao and P. He. Mapping of dissipative particle dynamics in fluctuating hydro-
dynamics simulations. J. Chem. Phys., 128:126101, 2008.

[206] E. S. Boek, P. V. Coveney, and H. N. W. Lekkerkerker. Computer simulation
of rheological phennomena in dense colloidal suspensions with dissipative particle
dynamics. J. Phys.: Condens. Matter, 8:9509–9512, 1996.

[207] E. S. Boek, P. V. Coveney, H. N. W. Lekkerkerker, and P. van der Schoot. Simulat-
ing the rheology of dense colloidal suspensions using dissipative particle dynamics.
Phys. Rev. E, 55(3):3124–3133, 1997.

58



Bibliography

[208] E. S. Boek and P. van der Schoot. Resolution effects in dissipative particle dy-
namics simulations. Int. J. Mod. Phys. C, 9(8):1307–1318, 1998.

[209] F. M. van der Kooij, E. S. Boek, and A. P. Philipse. Rheology of dilute suspensions
of hard platelike colloids. J. Colloid Interface Sci., 234:344–349, 2001.
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We apply smoothed dissipative particle dynamics (SDPD) [Español and Revenga,

Phys. Rev. E 67, 026705 (2003)] to model solid particles in suspension. SDPD is a

thermodynamically consistent version of smoothed particle hydrodynamics (SPH)

and can be interpreted as a multiscale particle framework linking the macroscopic

SPH to the mesoscopic dissipative particle dynamics (DPD) method. Rigid

structures of arbitrary shape embedded in the fluid are modeled by frozen particles

on which artificial velocities are assigned in order to satisfy exactly the no-slip

boundary condition on the solid-liquid interface. The dynamics of the rigid

structures is decoupled from the solvent by solving extra equations for the rigid

body translational/angular velocities derived from the total drag/torque exerted by

the surrounding liquid. The correct scaling of the SDPD thermal fluctuations with

the fluid-particle size allows us to describe the behavior of the particle suspension

on spatial scales ranging continuously from the diffusion-dominated regime typical

of sub-micron-sized objects towards the non-Brownian regime characterizing

macro-continuum flow conditions. Extensive tests of the method are performed for

the case of two/three dimensional bulk particle-system both in Brownian/

non-Brownian environment showing numerical convergence and excellent

agreement with analytical theories. Finally, to illustrate the ability of the model to

couple with external boundary geometries, the effect of confinement on the

diffusional properties of a single sphere within a micro-channel is considered, and

the dependence of the diffusion coefficient on the wall-separation distance is

evaluated and compared with available analytical results. VC 2012 American
Institute of Physics. [doi:10.1063/1.3676244]

I. INTRODUCTION

Particles suspended in a solvent matrix represent a common scenario embracing physical

processes that occur at different spatial scales, ranging from macroscopic scale (on the order of

millimeters and larger) typically found in processing engineering down to the sub-micron scale

characterizing micro/nano-fluidics.

The modeling of particle suspensions is not only important to improve our understanding of

the bulk rheological properties of complex particulate materials, a topic which is still subject of

intense research1 and industrial interest,2 but also becoming an indispensable tool to target/opti-

mize specific functionalities of novel devices operating under microfluidics conditions.3,4 Manipu-

lation/sorting/mixing of micro/nano-size objects is becoming the central focus of nanoparticle

technology as well as, in the biomedical field, of novel platforms for hand-held diagnostics.5 It is,

therefore, extremely important to develop simultaneously theoretical and numerical models to fill

the gap with rapidly evolving industrial applications.

Modeling of particle suspensions based on non-Brownian continuum approaches has often

been proposed in the past using several grid-based techniques, such as finite elements methods,6

distributed Lagrange-multiplier-based fictitious-domain methods (DLM)7,8 and smoothed profile

methods (SPM),9,10 to mention but a few. These approaches are very useful but they rely on a

a)Electronic mail: xin.bian@aer.mw.tum.de.
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deterministic discretization of the hydrodynamic equations and are, therefore, limited to large Péc-

let number (defined as ratio of shear rate and mass diffusion) flow of supra-micron-sized particle

suspensions. In several microflow conditions, the thermal noise, which manifests itself as the dif-

fusional motion of the suspended objects, plays a key role in the dynamics. For example, an accu-

rate description and measurement of the diffusion motion of a colloidal particle may be used as a

highly sensitive probe for structure properties, both in distance and orientation, in the presence of

complex boundaries.11,12 Therefore, it is crucial to incorporate it into the adopted formalism.

Conventional schemes for the simulation of Brownian suspensions include a stochastic

thermal force explicitly applied on the suspended bead while the effect of the hydrodynamic inter-

actions (HIs) among them is implicitly taken into account via Oseen tensor-based models or

higher-order expansions of the incompressible Stokes equations. Afterwards, a resulting set of al-

gebraical equations need to be inverted. These approaches include, for example, Brownian dynam-

ics (BD)13 and Stokesian dynamics (SD).14,15 Their main advantage is related to the good

scalability of the number of equations with the number of suspended particles, allowing for the

simulation of very large systems.16 On the other hand, SD assumes that the time scales between

the motions of fluid and those associated with particles are completely separated, which excludes

the short-time motion of Brownian particles over kinematic time scale. Moreover, modeling arbi-

trarily shaped objects and complex boundary geometries is not an easy task and requires essential

modification of the standard framework.17 Generalization of SD to model nonspherical particles

has been recently proposed in Ref. 18. In this approach, arbitrarily shaped rigid particles are mod-

eled as clusters of several spheres which still interact via the usual SD forces, therefore, extending

its range of applicability while increasing computational cost. Another approach which allows the

simulations of arbitrarily shaped particles is based on boundary integral analysis.19 Here, particle

surfaces are discretized and a set of boundary integral equations based on the expansion of the

Stokes equations must be solved for each surface element.

The direct numerical simulation (DNS) methods mentioned at the beginning of this section do

not require any explicit model of the hydrodynamic interactions among particles being the solvent

dynamics fully discretized. In order to be applied to microflow conditions, they need to be general-

ized. In Ref. 20, thermal fluctuations have been incorporated in an Eulerian finite volume scheme

by including them in the discretized momentum equations by a random stress term equivalent to

the fluctuating hydrodynamic equations of Landau and Lifshitz.21 In this approach, the Brownian

motion of a suspended object is implicitly induced by the thermal agitation of the solvent fluid

and does not need to be modeled. A similar approach was previously applied also to lattice-

Boltzmann (LB) simulation by Ladd and his coworker,22,23 where a random stress term was intro-

duced in the LB equation. A problem occurring in the LB simulations of suspended particles is,

however, related to their unclear size which is not known a priori. One needs, therefore, to cali-

brate the simulations with a so-called hydrodynamic radius,24 which can, however, be a complex

function of the lattice size,25 as well as the solvent kinematic viscosity.26 Recently, some of these

deficiencies have been significantly reduced by employing multiple relaxation time (MRT)

approaches26 or higher-order boundary conditions.27 Similar to SD method, thermal fluctuations

have been directly introduced on particles instead of fluid for SPM method, which was used to

study diffusive behavior of Brownian spherical particles.28,29 This poses again a potential diffi-

culty for the simulation of nonspherical Brownian particles.

Another popular method which incorporates thermal noise is dissipative particle dynamics

(DPD).30 This represents a grid-off method in which the elements of fluid are modeled by particles

interacting via soft conservative, frictional, and stochastic forces, the latter ones being related to

the dissipative via the fluctuation-dissipation theorem (FDT).31 The method is flexible, allowing

for modeling arbitrarily shaped rigid structures by simply freezing DPD particles located inside

the solid domain and letting them interact with the fluid particles.30,32 It has been used to investi-

gate the rheology of colloidal suspension under semi-dilute/concentrated flow conditions in

Refs. 33 and 34. Recently, good results have been also obtained by simulating colloidal particles

as single DPD particles interacting with the solvent ones via the ordinary DPD forces and among

them with extra colloid-colloid interactions.35,36 Although the results are qualitative and restricted

to spherical particles only, the authors were able to simulate large concentrated systems and obtain

the typical shear-thinning behavior observed experimentally.
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Despite the good performance of DPD in simulating complex systems, the method still suffers

of some shortcomings. The price for the simplicity of DPD is related to the lack of direct connec-

tion between the model parameters and the physical parameters of the system one tries to simulate.

Usually, to specify the fluid transport coefficient, one needs to rely on kinetic theory37 or map and

calibrate the parameters in ways that are not always systematic.38,39 Perhaps, the most serious

problem is the specification of the spatial scale at which a DPD simulation operates, posing some

difficulties on the separate identification of resolution and finite-size effects in the output

results.33,40 In particular, there is no unique definition of the hydrodynamic fluctuations acting on

the fluid elements. The previous drawbacks have been addressed and solved in a modification of

DPD (Ref. 41) denoted as smoothed dissipative particle dynamics (SDPD). The new particle

model is entirely embedded in the GENERIC framework;42,43 therefore, it maintains the thermo-

dynamic consistency of the original DPD method, but in addition allows for a direct specification

of the transport coefficient, i.e., viscosity, as input parameter. In fact, it has been shown that

SDPD represents a generalization of the well-known smoothed particle hydrodynamics (SPH)

which is a Lagrangian meshless Navier-Stokes solver proposed by Monaghan,44,45 albeit with con-

sistent introduction of thermal fluctuations.46

A remark on the amount of thermal fluctuations introduced in SDPD is in order. The scaling

of SDPD thermal fluctuations with the fluid particle size has been investigated in Ref. 47 where it

has been shown that their magnitude increases as the inverse of the square root of the fluid particle

volume, in agreement with classical results in statistical mechanics. Therefore, whenever the fluid

particle size is large enough, no thermal noise will be present in the hydrodynamic variables,

whereas it will show up when the fluid description needs to be miniaturized, e.g., in microflow

conditions. It is remarkable that the application of GENERIC together with a form of the dissipa-

tive terms taken from SPH allows for defining uniquely a size-dependent thermal noise which sat-

isfies the FDT. The method has been recently applied to simulations of polymer molecules in

suspension,48,49 multiphase flows,50 and viscoelastic liquids.51

In this paper, we present a multiscale model of arbitrarily shaped particle suspension based on

SDPD which is able to operate on different flow conditions ranging continuously from the

diffusion-dominated regime typical of micro/nano-sized objects to the non-Brownian regime typi-

cal of supra-micron-size particles. Moving rigid structures are modeled by freezing SDPD par-

ticles within the solid domain and letting them interact with the fluid particles. Artificial boundary

velocities are assigned to the frozen solid boundary particles during the interaction with the fluid

particles following Ref. 52, which allows for enforcing exactly the no-slip boundary condition on

the solid-liquid interface.

The strict connection of the SDPD method to SPH enables us to investigate resolution effects

in the Brownian regime by applying standard continuum convergence analysis to the results. The

resolution studies and exact quantitative comparison in a Brownian environment are crucial, for

example, to investigate the effect of particle-shape on microrheology which is based on many-

points particle correlation measurements53 and which represents our long-term research goal.51

The paper is organized as follows: Sec. II describes the deterministic and stochastic SDPD

model of the solvent as well as the specific model of the rigid suspended structures and their inter-

action with the fluid. Numerical results of the particle-suspension model based on a strict conver-

gence analysis under both non-Brownian and Brownian conditions are presented in Sec. III.

Finally, conclusions and further developments are discussed in Sec. IV.

II. THE PARTICLE MODEL

A. Lagrangian hydrodynamic equations

Let us consider the isothermal Navier-Stokes equations in a Lagrangian framework,

dq
dt
¼ �qr � v; (1)

dv

dt
¼ �rp

q
þ Fþ g; (2)
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where q, v, p, F, and g are material density, velocity, pressure, viscous force, and body force,

respectively. Following earlier studies of quasi-incompressible flow modeling,54–56 an equation of

state relating pressure to density can be written as

p ¼ p0

q
qr

� �c

�1

� �
; (3)

where p0 (related to sound speed cs), c ¼ 7, and qr are parameters chosen based on a scale

analysis52,55 such that pressure field reacts strongly to small derivations in mass density and quasi-

incompressibility is enforced. Assuming Newtonian flow, the viscous force F simplifies to

F ¼ �r2v; (4)

where � is the kinematic viscosity related to dynamic viscosity by � ¼ g=q.

B. Deterministic solvent modeling

Equations (1) and (2) can be discretized in space by using the SPH method. The essence of

SPH is an interpolation process allowing any function defined on a given domain to be expressed

in terms of values at a discrete set of N disordered points—the particles.44 Equation (1), the con-

servation of mass, is automatically satisfied if particle density is evaluated as41

di ¼
X

j

Wij; (5)

where di ¼ 1=V i is the number density associated to particle i, and V i the corresponding volume.

Accordingly, the mass density is evaluated as qi ¼ midi, where mi is the mass of particle i;
Wij ¼ Wðrij; hÞ is an even, bell shaped weighting function with smoothing length h, where

rij ¼ jri � rjj is the distance between particle i and j. For this work, we use a quintic spline52

kernel characterized by a compact support with cutoff radius rc ¼ 3h.

Application of the SPH approximation to Eq. (2) produces the following equations for the

particle positions and momenta:41,50

_ri ¼ vi; (6)

mi _vi ¼ �
X

j

pi

d2
i

þ pj

d2
j

 !
@W

@rij
eij þ

X
j

g
1

d2
i

þ 1

d2
j

 !
@W

@rij

vij

rij
þ gi: (7)

In the following, we will consider constant particle masses mi ¼ m0 (8i ¼ 1;…;N). The first part

on the rhs of the momentum equation represents a pressure force acting along the unit vector

eij ¼ rij=rij ¼ ðri � rjÞ= rij

�� �� joining particles i and j. Since it is a central force and symmetric by

interchanging particle indices, total linear and angular momenta are exactly conserved. The irre-

versible viscous force is calculated in the second term of the rhs in Eq. (7) to reduce velocity dif-

ferences between pair of particles. This force is symmetric by interchanging particle indices;

therefore, it conserves linear momentum strictly. However, it is non-central, providing only ap-

proximate conservation of angular momentum.41 The third term describes an external body force

gi as, for example, the gravity.

The SPH equations represent a discretization of the deterministic Newtonian hydrodynamics

performed on Lagrangian elements of fluid.

C. Stochastic solvent modeling: Thermal fluctuations

Micro/nano-scopic flow problems are characterized by the presence of thermal fluctuations in

the hydrodynamic variables. It was shown41 that the GENERIC framework42,43 allows for incor-

porating particle-fluctuations into Eq. (7) in a thermodynamically consistent way. In particular,

the fluctuations of the momentum of particle i caused by thermal noise for an isothermal incom-

pressible fluid are simply
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dePi ¼
X

j

�4kBTg
1

d2
i

þ 1

d2
j

 !
1

rij

@W

@rij

" #1=2

dWij � eij; (8)

where kB is the Boltzmann constant and T is the temperature; dWij is the traceless symmetric

part of a matrix of independent increments of a Wiener process dWij ¼ dWji, i.e.,

dWij ¼
�

dWij þ dWT
ij

�
=2� tr½dWij�I=d, where d is the spatial dimension.41,50 Particle-velocity

statistics satisfy the Maxwell-Boltzmann distribution, and their variance is given by47

v2
	 


¼ d
kBT

q0V i
; (9)

where q0 is the equilibrium fluid density. Thus, velocity fluctuations emerge naturally and increase

in magnitude following the correct scaling as the spatial scales of the problem, i.e., the particle

volumes V i, become smaller.47

The introduction of the term in Eq. (8) into the particle momentum equation corresponds to

the so-called smoothed dissipative particle dynamics method. SDPD allows for extending the

applicability of the SPH method to micro/nano scales. Unlike standard mesoscopic methods where

finite-size/resolution effects are difficult to control,33,40 the strict connection with SPH enables

SDPD to perform numerical convergence studies in a Brownian environment by using established

SPH error analysis,56,57; on the other hand, whenever the physical scale of the problem ranges in

the macroscopic scale, it reduces to a version of SPH by setting T¼ 0.

D. Modeling of a suspended solid particle

To model moving solid objects suspended in the fluid domain, one must be able to enforce

the no-slip velocity boundary condition on any, possibly arbitrary, solid-liquid interface. This can

be achieved by using the following strategy: initially, all SDPD particles are placed on regular lat-

tice with distance dx¼ dy(¼ dz) throughout the entire computational domain (solid and liquid).

Once a given object geometry is prescribed, we can detect all the SDPD particles lying inside the

solid domain B and identify them as solid boundary particles; the remaining ones are identified as

fluid particles, and their evolution of hydrodynamic properties is determined from Eqs. (6)–(8).

Solid boundary particles interact with fluid particles by the same Eqs. (7) and (8). However, unlike

the fluid particles, their properties are not prescribed in terms of an evolution equation but must be

assigned to enforce the correct conditions on the interface.

In the pioneering works on DPD modeling of colloidal suspensions,32,33 particles inside a

solid domain are "frozen" and their velocities are assigned to be equal to the rigid body motion of

the modeled structure. However, this choice introduces a zero-order no-slip boundary condition

and leads to an ill-defined effective structure surface at moderate resolution. To guarantee better

no-slip condition at the surface of the solid object, we extend the work of Morris et al.52 to

describe translation, rotation, and more general shapes of solid particles.

In the following, a solid particle is considered neutrally buoyant with density equal to the

equilibrium solvent density q0. During the simulation, its density is kept constant, and so is its

mass (MC ¼ q0VC), while density of solvent may slightly fluctuate. Let us assume that the solid

particle with center location RC is translating with velocity VC and rotating with angular velocity

XC. Before the velocity-dependent viscous force calculation between a solvent particle f and a

boundary particle b, an artificial velocity must be assigned to b which will result in an effective

no-slip condition on the surface. The artificial velocity is calculated as follows (schematic illustra-

tion in Fig. 1): the normal distance df from f to the surface point s is calculated, from which the

tangent plane (a line in two dimensions) ls is defined. Afterwards the normal distance db from b to

ls is calculated. An artificial velocity on particle b is extrapolated from the known velocity of parti-

cle f assuming zero relative velocity on the tangent plane, that is,

vb ¼ �ðdb=df Þ vf � vs

� �
þ vs; (10)

where vs ¼ VC þ XC � rs � RCð Þ and rs is the position vector of point s.
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s is always calculated as the closest point to fluid particle f. A distinction between convex and

concave surfaces, as suggested in Ref. 52 was found to be unnecessary. For both convex and concave

surfaces, the cutoff rc should be at least smaller than the smallest surface curvature radius to have a

converged result (in this article, convergence means that with a fixed number of neighboring par-

ticles, relevant results do not change as the total number of particles increases, see Sec. III). Note that

vb is not used to integrate boundary particle position but to enforce the correct interpolation only.

Assuming that the boundary particle b has the same viscosity g and temperature T as the sol-

vent particle f, viscous and stochastic forces between particles b and f can be evaluated. Concern-

ing the pressure boundary condition, we consider a Neumann condition with zero derivative

between a fluid particle and a boundary particle, i.e., by linear approximation pb ¼ pf , which

allows to determine the pairwise pressure force in Eq. (7). Boundary particles are treated in the

same way as solvent particles for the pair force calculation, except that two boundary particles

belonging to the same structure do not interact with each other.

The procedure is repeated for every particle pair ðb; f Þ. Once all pair interactions involving b
have been calculated, a total force Fb on b is summed up. Finally, a total force exerted by the sur-

rounding solvent particles on the entire solid object can be obtained as FC ¼
P

b2B Fb, where B is

the domain occupied by the solid object. Accordingly, the translational acceleration of the solid

particle is aC ¼ FC=MC. Similarly, a total torque on the solid can be calculated as

sC ¼
P

b2B ðrb � RCÞ � Fb, and its angular acceleration is evaluated as aC ¼ sC=IC, where IC is

momentum of inertia of the solid.

In practice, boundary particles do not fill the entire structure but are considered only within a

thin layer of width rc inside the surface of the solid. This choice saves computational time, espe-

cially for concentrated suspensions where the number of boundary particles can become compara-

ble to the fluid ones. The same approach discussed above can be applied also to the modeling of

arbitrary solid walls with random boundary particle distributions, which has been shown to repro-

duce better the mechanical properties of nano-systems.49

E. Time integration

An explicit modified velocity Verlet algorithm with k ¼ 1=2 is used as time integrator for sol-

vent particles,58

eviðtþ DtÞ ¼ viðtÞ þ 1=2Dtf iðtÞ;
riðtþ DtÞ ¼ riðtÞ þ Dteviðtþ DtÞ;
f iðtþ DtÞ ¼ fiðrðtþ DtÞ;evðtþ DtÞÞ;
viðtþ DtÞ ¼ eviðtþ DtÞ þ 1=2Dtf iðtþ DtÞ;

(11)

where by predicting velocity before updating position, ev does not need to be stored, as it can

occupy the same memory location as v.

FIG. 1. A convex portion of a solid particle: f is a fluid particle and b is a boundary particle; s is the closest point on the

surface to f and df ? ls, db? ls; artificial velocity vb ¼ �ðdb=df Þ vf � vs

� �
þ vs is used for viscous, stochastic force

calculation.
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Some pioneers of DPD used bvb ¼ VC þ ðrb � RCÞ � XC to update each solid-boundary-particle

position at every time step. However, when the tangential component (rb � RCÞ � XC is multiplied

by a finite Dt, the particle trajectory can cause an artificially expanding solid structure, which causes

numerical instability. We have followed Ref. 59 and used a rotation matrix to track rotational solid

structure. Both translational and rotational motions of a solid particle are updated using the same

time integrator as solvent particles.

To maintain numerical stability of the explicit scheme, the time-step size Dt must be restricted

by two conditions:52 Dt � ð1=8Þh2=� and Dt � ð1=4Þh=cs. For deterministic low Reynolds

number flow problems with large resolutions, the viscous constraint is usually the dominating

criterion.52 However, in flow problems where the Brownian motion is important, the Courant-

Friedrichs-Lewy (CFL) condition60 may be the most strict limitation.

III. NUMERICAL RESULTS

In this section, we validate the SDPD model for suspended particles. A parallel version of the

SDPD algorithm has been implemented using the parallel particle mesh (PPM) library61 Non-

Brownian test cases include: (1) flow through porous media, (2) dynamics of an isolated impul-

sively started solid particle, (3) a rotating particle under shear flow, and (4) hydrodynamic interac-

tions between two approaching spheres; validation under Brownian conditions are considered by

studying the translational/rotational diffusive behavior of a neutrally-buoyant rigid particle sus-

pended in a solvent medium with periodic boundaries and anisotropic diffusion of a rigid particle

near a planar wall.

In non-dimensional units, the solid particle radius RC and equilibrium density q0 are both

equal to one. Simulations start with SDPD particles initially placed on a square (cubic) lattice

with distance dx ¼ dyð¼ dzÞ.
For deterministic simulations, the typical velocity V (either inflow velocity or solid particle’s

velocity) has the value of unity. Therefore, time has unit of RC=V. A smoothing length h ¼ jdx
with j ¼ 1:6 (2D) or j ¼ 1:33 (3D), corresponding to an average number of neighboring particles

of approximately 70 or 250, is adopted.

For Brownian simulations, the input energy kBT ¼ 1. Therefore, the velocity has unit offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=MC

p
and time has unit of RC=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=MC

p
. j ¼ 1:0 is universally used in both 2D and 3D

simulations, corresponding to an average number of neighbors equal approximately to 27 and 106,

respectively.

The speed of sound cs is chosen to be at least 10 times larger than the typical velocity to keep

fluid density variations reasonably small,55 to balance pressure, viscous, and body forces,52 and to sat-

isfy time scale separation62 (sonic time sc much smaller than viscous time s� , i.e., RC=cs � R2
C=�).

A. Flow through porous media

As the first test case, we consider the flow through a square/cubic periodic array of fixed cir-

cular/spherical objects. Hasimoto63 derived an analytical expression of the drag coefficients for

dilute arrays of disks and spheres by solving the Stokes equations of motion in Fourier space.

Later, Sangani and Acrivos64 extended Hasimoto’s expressions to the semi-dilute case by includ-

ing higher-order terms. In the two-dimensional case, the drag coefficient k2D is

F

gV
¼ 4p � 1

2
ln C� 0:738þ C� 0:887C2 þ 2:039C3 þ OðC4Þ

� ��1

; (12)

where F is the drag on the disk, V is a far-field velocity, and C ¼ pR2
C=L2 is the disk concentration.

SDPD simulations have been performed with kinematic viscosity � ¼ 41:67, maximum chosen

sound speed cs ¼ 2000, and temperature T¼ 0 (non-Brownian regime). A fixed disk radius

RC ¼ 1:0 is considered while different box lengths L are used to obtain different concentrations C.

An inflow velocity V ¼ 1:0 is chosen which defines a Reynolds number Re ¼ VRC=� � 0:024 and

a Mach number Ma ¼ V=cs ¼ 5:0� 10�4.

By fixing the kernel overlap (rc ¼ 3h ¼ 4:8dx) and changing resolutions (total number of

particles), converged results were achieved according to the resolutions given in Table I. By increasing

012002-7 Multiscale modeling of particle in suspension Phys. Fluids 24, 012002 (2012)

Downloaded 20 Jan 2012 to 129.187.254.46. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



L, the only constraint on resolution was the geometry of disk, which did not change. Therefore, resolu-

tions are the same in Table I for box lengths L 	 5:0. It has been suggested previously that, to obtain

converged results, each pore throat/gap should be spanned by at least 15 fluid particles.65 Therefore,

when decreasing L, the number of particles in the gap between disks should be kept around 15.

Sangani and Acrivos64 obtained a two-dimensional “lubrication approximation” for k2D in

concentrated cases,

F

gV
¼ 9p

2
ffiffiffi
2
p 1� C

Cmax

� �1=2
" #�5=2

; (13)

where the highest packing ratio is estimated as Cmax ¼ pðRCÞ2=ð2RCÞ2 � 0:785 in the case of a

square array of disks. Concentrated case up to C¼ 0.649 has been simulated and converged results

obtained with the resolutions given in Table I. For C¼ 0.649, the total number of particles accord-

ing to the converged resolution should be N ¼ Nx � Ny ¼ 2502 ¼ 62 500. However, the thin-layer

surface model for the disk (see Fig. 2) allow to reduce N to 25 424 which reduces the number of

particles of 60%. The thin-layer model becomes clearly even more effective in a concentrated

three-dimensional system where the volume occupied by the solid objects increases as R3
c .

Converged results for the drag coefficient are shown in Fig. 3, where good agreement with an-

alytical theories and the two-dimensional direct DNS of Sangani and Acrivos64 are achieved.

According to Table II, three-dimensional simulations of spheres for concentrations ranging

from the dilute to semi-dilute regime have also been performed and again k3D compared with the

theory of Sangani and Acrivos,66 which in this case reads

TABLE I. Converged resolutions used in the simulation of flow through array of disks: dx¼ dy, Nx¼Ny.

L 15.0 7.5 5.0 4.0 3.5 3.0 2.7 2.5 2.3 2.2

dx 0.1 0.1 0.1 0.05 0.0357 0.03125 0.025 0.02 0.0115 0.0088

Nx 150 75 50 80 98 96 108 125 200 250

FIG. 2. A square periodic array of disks at the maximal concentration Cmax ¼ 0:649 simulated: light color are boundary

particles and dark color are solvent particles. Number of particles used for converged results was N¼ 25424 while N could

have been 62 500 without thin-layer model. Simulation was performed only within the black square box with periodic

boundary conditions applied at its boundaries.
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F

6pgRV
¼ ½1� 1:7601C1=3 þ C� 1:5593C2 þ 3:9799C8=3 � 3:0734C10=3 þ OðC11=3Þ��1; (14)

where the spheres concentration is C ¼ 4pR3
C=3L3. The comparison of the converged simulation

results with Eq. (14) is shown in Fig. 4, and again good agreement is achieved.

As shown from the 2D/3D drag coefficients above, the improvement on the no-slip boundary

condition adopted gives effective hydrodynamic radius RH equal to the input RC even at moderate

resolution. We have simulated problem described above also with frozen boundary particles

(results not shown), i.e., without interpolation for the boundary particle velocity: the convergence

of drag on the disk/sphere is much slower; therefore, RH 6¼ RC, similar to LB method.

B. Impulsively started non-Brownian particle

To test our particle model under unsteady situations, we have considered a circular/spherical

particle moving in a Newtonian fluid. The fluid is initially at rest with kinematic viscosity

� ¼ 20:0, cs ¼ 100:0, and T¼ 0. A square(2D)/cubic(3D) computational domain with length L is

considered with periodic boundary conditions applied in every direction. L ¼ 30 is chosen to ap-

proximate the limiting case of an infinite solvent medium and to eliminate artificial effects due to

the presence of periodic images.

At time t¼ 0, a velocity VCðt ¼ 0Þ ¼ V0 ¼ 1:0 is assigned to the solid particle which approxi-

mates a Stokes flow, the corresponding Reynolds number is Re ¼ RCV0=� ¼ 0:05� 1 and Mach

number is Ma ¼ 0:01� 1.

We monitor the particle-velocity decay VðtÞ as a function of time in the reference frame of

the total system’s center of mass, i.e., VðtÞ ¼ VCðtÞ � VCMð Þ= V0 � VCMð Þ, where VCM is the veloc-

ity for center of total mass. Since the total mass and momentum are conserved,

VCM ¼ MCV0= MC þMf

� �
is constant also, where Mf ¼

P
i mi; 8i 62 B.

The evolution of VðtÞ in a two-dimensional simulation is shown in Fig. 5(a). After an ini-

tial exponential decay, the typical long-time algebraic decay67,68 / t�1 is observed which is

due to the hydrodynamic self-particle interaction. An enlarged logarithmic plot of the veloc-

ity decay is shown in the inset of the figure where the correct algebraic time-dependence can

be observed.

FIG. 3. Two-dimensional dimensionless drag coefficient: comparison with theories and DNS of Sangani and Acrivos.64

TABLE II. Converged resolutions used in the simulation of flow through array of spheres: dx¼ dy¼ dz, Nx¼Ny¼Nz.

L 7.0 6.0 5.0 4.5 4.0 3.5 3.2 2.8 2.5

dx 0.1 0.1 0.1 0.1 0.1 0.07 0.05925 0.04 0.025

Nx 70 60 50 45 40 50 54 70 100
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Same arguments apply to the three-dimensional case where the VðtÞ of the corresponding

sphere is shown in Fig. 5(b). Here, algebraic decay is also observed but the scaling is / t�3=2 in

agreement with the theory.67

C. A rotating particle under shear flow

As mentioned earlier in Sec. II B, the viscous force formulation adopted in Eq. (7) (formula-

tion A for brevity) does not conserve strictly the angular momentum. We examine the accuracy of

torque sC acting on a particle by performing two dimensional simulations of a rotating disk under

a simple shear flow. The Stokes solution of sC in the case of low Reynolds number is given69 as

sC ¼ 4p _cq0�R2
C

1

2
� X

_c

� �
; (15)

where _c is the shear rate and X is the angular speed of the disk. The solvent particles are placed at

distance with dx¼ 0.2, g¼8.46; therefore � ¼ g=q0 ¼ 8:46, Cs¼ 15.0. Box size is taken as

Lx ¼ Ly ¼ 20:0, which is sufficiently large to minimize the wall or periodic image effects. Shear

rate between two parallel walls is _c ¼ 0:10575, which defines Re ¼ _cR2
C=� ¼ 0:0125 for the disk.

The rotating speeds of the disk are taken as �0:14, �0:07, 0:0, 0:07, 0:14, where “—” means op-

posite direction of the shear rate. The results are shown in Fig. 6, where formulation A produces

incorrect results, and the error of the torque is proportional to the absolute value of the angular

speed. We compare the slope of the linear fit for torques at different speeds with the analytical so-

lution. With resolution dx¼ 0.2, the slope has 52% relative error and with a doubled resolution

dx¼ 0.1, the error reduces only to 48%. This error does not result from the thin-layer model, since

during the rotation the mass of the disk is assumed to be evenly distributed. The discrepancy of

FIG. 4. Three-dimensional dimensionless drag coefficient: comparison with theories of Sangani and Acrivos.66

FIG. 5. Algebraical decay of normalized velocity: (a) 2D disk and (b) 3D sphere.
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the torque should be due to the fact that the viscous force of formulation A is not acting along the

center-to-center line between particle pairs; therefore, the angular momentum is not exactly

conserved.

The torque may be captured accurately by selecting a type of viscous force acting along the

center-to-center line of two particles. We select Fvis
ij ¼ 4g

�
1
d2

i

þ 1
d2

j

�
@W
@rij

eij�vij

rij
eij (formulation B for

brevity) from Ref. 70 to replace the viscous force in Eq. (7) and perform the same simulations.

The results are also shown in Fig. 6 for comparison, where torque is captured accurately at all

rotating speeds, with the error of the slope of linear fit below 3%.

Note that according to FDT viscous formulation B has different expression for thermal fluctu-

ations as counterpart. Formulation B, although improving the results in case of rotating particles,

has no effect on their drag. We have explicitly checked this by repeating the simulations presented

in Sec. III, obtaining derivations in the results with respect to formulation A below 1%; therefore,

the conclusions remain invariant. In the following test cases, standard formulation A will be

considered.

D. Hydrodynamic interactions between moving particles

In a concentrated suspension of solid particles, the HIs between them play a crucial role for

the macroscopic properties of the bulk system.71 In this section, we investigate the accuracy of

SDPD in describing them. This is an important test case for dynamic simulations of particle sus-

pension, as it can estimate the minimal fluid resolution needed for the correct modeling of the in-

terstitial fluid.

Analytical solutions are available for two spheres defined in a unbounded domain and inter-

acting implicitly through the solvent. In particular, we consider the two following situations: (1)

two spheres approaching each other with equal but opposite velocity along their center-to-center

line; (2) two spheres moving with relative velocity perpendicular to their center-to-center line.

1. Squeezing motion

Two identical spheres (R1
C ¼ R2

C ¼ 1:0) are immersed in a quiescent solvent characterized by

� ¼ 40:0, cs ¼ 400:0, and T¼ 0. At time t¼ 0, they are forced to start moving with constant ve-

locity magnitude jVxj ¼ 1:0 towards each other along their center-to-center line until touching.

The corresponding Reynolds number Re ¼ VRC=� ¼ 2:5� 10�2 and Mach number

Ma ¼ V=cs ¼ 2:5� 10�3. A rectangular domain of size ½14; 9; 9� is found to be necessary to

remove box size effects due to periodic images.

The three-dimensional solution for the drag coefficient Fk of two nearly touching spheres par-

allel to their center-to-center line can be obtained by using the method of reflections.72,73 This is

FIG. 6. Torque of a rotating disk under shear flow: formulation A does not conserve angular momentum and produces

wrong torque; formulation B conserves angular momentum and produces accurate torque.
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plotted in Fig. 7 (solid line) and compared with SDPD simulations for several particle resolutions.

Note that for gap distances s � rc, kernels centered on boundary particles of different solid spheres

could start overlapping and the corresponding SDPD particles could in principle interact.

We consider first the situation where no interaction between different boundary particles is

allowed (Fig. 7(a)), and the HIs are mediated uniquely by the solvent. HI are well resolved at mod-

erate inter-particle distances, whereas they start deviating from the theoretical solution as s is get-

ting smaller and eventually they fail completely to recover the expected singular behavior for

s! 0. Symbols on the abscissa correspond to the typical cutoff radii rc used for different resolu-

tions. It can be observed that HI deviate typically for s � rc=2, corresponding to less than two fluid

particles in the interstitial region along the center-to-center line. At smaller distances, fluid par-

ticles in the gap are completely squeezed out, producing smaller repulsive forces and, eventually,

depleted layers. Therefore, for two freely moving spheres in a real dynamic simulation, penetra-

tion could occur due to absence of any extra force between nearly touching spheres other than the

implicit one mediated by the SDPD solvent.

To increase pressure and viscous force between solid particles at small gap distances, we con-

sider the next case in which two boundary particles belonging to different spheres are allowed to

interact through the forces described in Eq. (7). Since in this case no specific boundary condition

must be enforced, we assign to the boundary particles the "real" rigid body velocity of the corre-

sponding solid structure. This second type of model is denoted for brevity as BB (boundary-

boundary). Again, we have performed simulations with different resolutions, and the results are

shown in Fig. 7(b). Due to the extra boundary-boundary particle interactions, HIs are recovered up

to smaller gap distances and, unlike the previous case, they increase monotonically as decreasing

s. This modification introduces extra forces between boundary particles of different spheres which

should not be present in a continuum description. However, the range of interaction falls below

the typical cutoff radius rc, and therefore, they can be interpreted as a sub-particle scale lubrication

model which prevents penetration. Although improved, the singular behavior is not correctly cap-

tured for s! 0. This is, however, not surprising as the interaction forces between particle-pair in

Eq. (7) are themselves not singular.

To capture the correct singular behavior at s! 0, either larger resolutions or explicit lubrica-

tion corrections could be considered, similar to those presented in Ref. 74, for example, which are,

however, limited to spherical particle and do not apply to the arbitrarily shaped objects considered

in this work. A more general approach to model the short-range lubrication could be represented

by the introduction of extra pair forces between boundary particles belonging to different solid

objects with functional form, for example, of the type used in Ref. 36. This approach is currently

under investigation and will be presented in a future work.

2. Shear motion

The three-dimensional solution for two spheres moving perpendicular to their center-to-center

line is also given in Refs. 72 and 73. Simulations have been performed with two spheres moving

FIG. 7. Drag coefficients vs. gap s between two spheres approaching each other along their center-to-center line (squeezing

motion): (a) interactions allowed only through solvent particles; (b) interactions between boundary-boundary particles of

different spheres also allowed. The symbols on s axis are rc corresponding to different resolutions.
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with the same constant velocity magnitude (jVyj ¼ 1:0) in opposite directions. In this case, box

size ½12; 8; 8� is considered sufficient to eliminate image effects. Similar to Sec. III D 1, results for

two spheres interacting only through solvent particles are shown in Fig. 8(a) for different resolu-

tions. Since for the shear motion considered here there is no squeezing of solvent particles in the

gap, good results for F? are obtained up to gap distances 
rc=4 corresponding to one single

SDPD particle only describing the interstitial fluid. Again, slightly better results at smaller distan-

ces are achieved by considering extra boundary-boundary particle interactions, see Fig. 8(b).

Note also the much softer logarithmic dependence of F? on s compared to Fk in Fig. 7, sug-

gesting that Fk produced by fluid squeezing between nearly touching spheres should dominate the

dynamics for concentrated suspensions.

E. Brownian translation/rotation of solid particle

A micro/nano-sized solid particle is affected by the presence of thermal fluctuations produc-

ing its ultimate Brownian diffusive dynamics. In this section, we validate our method for tempera-

ture T 6¼ 0 in Eq. (8). A single solid particle is defined in a two/three dimensional domain and its

diffusional behavior studied. In particular, we focus on a convergence analysis of its mean square

displacements (MSDs) in two-dimensional domain, to understand possible resolution-dependent

effects, which provide a guideline for 3D simulations.

1. Brownian disk

A disk of radius Rc ¼ 1:0 free to translate and rotate is contained in a periodic square domain

of size Lx;y ¼ 5:0. Fluid solvent is modeled as SDPD particles and characterized by kinematic vis-

cosity � ¼ 15:0 and thermal energy kBT ¼ 1:0. One such simulation with tend � 340 is called one

realization. To check numerical convergence of the results, three different particle-resolutions are

considered: dx¼ 0.2, 0.125, and 0.1.

According to Eq. (9), the maximum variance of solvent thermal velocity (vmax
th ) occurs in the

case of highest resolution (dx¼ 0.1). Therefore, we chose the sound speed cs � 15vmax
th ¼ 343:24 to

all the resolutions considered so that a small density variation is obtained. The thermal velocity of the

disk is Vth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=Mc

p
¼ 1:414; therefore, Re ¼ VthRC=� ¼ 0:094 and Ma ¼ Vth=cs ¼ 0:00412.

To obtain statistical averages, 50 realizations have been performed for each resolution starting

with different random number seed. Velocity probability distribution functions (PDF) for both sol-

vent particles and solid disk satisfy Maxwell-Boltzmann distribution,47

f ðvÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

m

2pkBT

r
exp

�mv2

2kBT

� �
: (16)

It has been shown that the PDF for solvent particles velocity scales consistently with resolutions

while for a solid particle with predefined volume is fixed independent of resolutions.47

We check further the diffusive behavior of the disk by calculating its translational and rota-

tional MSD, which are defined as

FIG. 8. Drag coefficient vs. gap s between two spheres in opposite motion perpendicular to their center-to-center line

(shear motion): (a) interactions through only solvent particles; (b) interactions between boundary-boundary particles of dif-

ferent spheres also allowed. The symbols on s axis are rc corresponding to different resolutions.
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MSDtðsÞ ¼ R2
Cðtþ sÞ � R2

CðtÞ
	 


(17)

and

MSDrðsÞ ¼ H2
Cðtþ sÞ �H2

CðtÞ
	 


; (18)

where HC is rotating angle and hi is the ensemble average taken over at time t with a time inter-

val s. The translational MSDs for different resolutions are shown in Fig. 9, where the correct

behavior is captured at a rather rough resolution (dx¼ 0.2). The rotational MSDs for different

resolutions are plotted in Fig. 10 showing converged results at dx¼ 0.125. Since the momentum

of inertia for the disk is fixed for different resolutions, the relative slower convergence of resolu-

tion (compared to translation) can be due to the deficiency of torque calculation at low

resolution.

The simulations show consistent diffusion behavior for a predefined inclusion as long as the

resolution is high enough to calculate force/torque correctly. Due to the connection with SPH, re-

solution effects, which are somehow difficult to control in DPD methods,33,40 can be analyzed

straightforward in SDPD.

2. Brownian sphere

We performed 15 realizations of a single spherical particle diffusing in a three-dimensional

periodic box of size Lx;y;z ¼ 5:0. We chose dx¼ 0.2, since it is sufficient to capture the transla-

tional behavior. All other parameters in these simulations are the same as in the two-dimensional

case.

We checked the velocity PDF of solvent particles and compared it with Maxwell-Boltzmann

distribution in Fig. 11, where good agreement is obtained. The PDF of the spherical-particle veloc-

ity is also validated in Fig. 12.

According to the Einstein-Stokes equation,

D0 ¼
kBT

6pgRC
; (19)

the diffusion coefficient D0 of a sphere suspended in an infinite fluid medium can be predicted by

the temperature and viscosity of the fluid. If the fluid domain is finite and periodic, the dynamics

of the sphere is affected by the complex hydrodynamic interactions with its images. The actual

diffusion coefficient D has a correction from D0 which reads20

FIG. 9. Convergence of translational mean square displacement for a disk: the slope represents the translational diffusion

coefficient in 2D; the inset shows the transition from ballistic to diffusive regime in log-log scale.
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D ¼ D0

k
¼ kBT

6pgRCk
; (20)

where k is the drag coefficient at corresponding concentration of spheres (see Sec. III A. k � 2:15

in this case).

Analytically, D is related to the translational MSD as

D ¼ 1

6
lim
t!1

d

dt
ðMSDÞ: (21)

In Fig. 13, we compare D0t=k with the MSD extracted from simulations in a range of sufficiently

long time. The linear fit of the MSD in diffusive regime produces a diffusion coefficient with dis-

crepancy to analytical solution smaller than 2%.

F. A colloidal particle near a rigid wall

In this section, we show the ability of the SDPD method to model a particle in the vicinity of

an external boundary. The diffusion of a colloidal particle near a flat wall is hindered, as the drag

coefficient k of the particle is enhanced by the complex hydrodynamic interactions. Close to the

wall, diffusion D is anisotropic75 and, therefore, can be split into the motion parallel (along the

FIG. 10. Convergence of rotational mean square displacement for a disk: the slope represents the rotational diffusion coef-

ficient in 2D; the inset shows the transition from ballistic to diffusive regime in log-log scale.

FIG. 11. Probability distribution function for velocity of solvent particles in 3D.
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plane x; y) and perpendicular (normal to the plane z) to the wall, with both quantities depending on

the gap s between the particle surface and the wall, i.e.,

D?ðsÞ ¼
D0

k?ðsÞ
¼ 1

2
lim
t!1

d

dt
ðMSD?ðsÞÞ;

DjjðsÞ ¼
D0

kjjðsÞ
¼ 1

2
lim
t!1

d

dt
ðMSDjjðsÞÞ:

(22)

The exact solution of k? has been given as an infinite series,76

k?ðsÞ ¼
4

3
sinh a

X1
n¼1

nðnþ 1Þ
ð2n� 1Þð2nþ 3Þ

2 sinhð2nþ 1Þaþ ð2nþ 1Þ sinh 2a

4 sinh2ðnþ 1
2
Þa� ð2nþ 1Þ2 sinh2 a

� 1

" #
; (23)

where a ¼ cosh�1ð1þ s=RCÞ. Without closed analytical form, the kjj approximation is derived up

to fifth order using the method of reflections,76

kjjðsÞ � 1� 9

16
bþ 1

8
b3 � 45

256
b4 � 1

16
b5 þ Oðb6Þ; (24)

FIG. 12. Probability distribution function for velocity of a sphere in 3D.

FIG. 13. Comparison of translational mean square displacement of a sphere: the slope represents the translational diffusion

coefficient in 3D; the inset shows the transition from ballistic to diffusive regime in log-log scale.
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where b ¼ ð1þ s=RCÞ�1
. Both k? and kjj show monotonic increase as the gap s decreases.

However, experimental verification of such predictions has been difficult. This is mainly due

to the fact that accurate 3D trajectories of a sub-micro-sized colloidal particle are difficult to

obtain, since the particle may be out of the focal plane of microscopy at any time. Lin et al.11

used optical tweezers to trap the particle location and have a control over s; Carbajal-Tinoco

et al.12 found a monotonic relation between the radius of the external ring of the point spread

function (PSF) and s, when the fluorescent particle is out of focus. Both of the novel experi-

ments have measured D as a function of s and corroborated the theoretical predictions of

Eqs. (23) and (24).

Numerical simulations have no difficulty in this situation, since they record a complete history

of the dynamics of the system. We perform a set of SDPD simulations of a sphere near a rigid

wall to corroborate Eqs. (23) and (24) and experimental results, meanwhile validate our model of

a colloidal particle coupled with an external boundary. A schematic system is illustrated in

Fig. 14. A recent similar DPD simulation was performed for the case of a Brownian sphere diffus-

ing between two parallel walls.77

Simulations parameters are taken to be the same as in Sec. III E except that the computational

domain is increased to be [13, 13, 16] with periodic boundaries in x; y directions and two planar

walls in z direction. No-slip boundary conditions as described in Sec. II D are applied at both

walls. About 150 realizations have been computed with a spherical particle located at different ini-

tial positions ZC along the direction z normal to the wall. Each ZC is chosen to be in the vicinity

(ZC <¼ 5) of the bottom wall, which reduces the effect of the upper wall on the results. A post-

processing procedure as described in Ref. 12 is adopted, which divides the particle trajectory for

each realization into sub-trajectories. Each piece is sufficient long to capture the particle dynamics

in the linear diffusive regime. Depending on the initial separations s of each sub-trajectory, ensem-

ble averages of MSD perpendicular/parallel to the wall are calculated, from which D?ðsÞ and

DjjðsÞ are extracted.

D0 is known according to Eq. (19). In Fig. 15, we compare simulation results of DðsÞ=D0

with Eqs. (23) and (24). Quantitative agreement is achieved except the region very close to the

wall (s < rc=2), where hydrodynamic effects can not be fully captured. The density profile using

Eq. (5) for the fluid near the wall is averaged over time and shown in the inset of Fig. 15, where

fluctuation near the wall is hardly observed.

FIG. 14. Scheme of a colloidal particle moving near a rigid plane wall: periodic boundaries in x; y direction and walls in z
direction; upper wall is placed sufficiently far; and the diffusion coefficient is anisotropic in perpendicular and parallel

directions to the wall.
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IV. CONCLUSION

We have presented a model for solid particles in suspension using SDPD.41 By extending the

boundary condition method of Morris et al.,52 particles with general shapes, with arbitrary transla-

tion and rotation, can be simulated. With regards to the numerical performance of the present

SDPD model, similar to a conventional DPD, the computational cost scales linearly with the total

number of suspended solid particles NC, which is superior to OðNC ln NCÞ of the accelerated SD

(Ref. 16) in number of solid particles. On the other hand, SD takes into account fluid implicitly

while SDPD needs to model solvent explicitly. Moreover, the exact representation of the solid par-

ticle requires a large number of SDPD boundary particles with consequent increase of the compu-

tational cost, which is necessary for description of arbitrarily shaped solid particle. Note that the

thin-layer model presented here, by reducing the number of boundary particles to only those lying

within a distance rc from the solid-liquid interface, can speed up dramatically the search of neigh-

boring particles in the cell list, especially in the case of concentrated suspension.

A remark on the comparison of the present model with DPD is in order. The cutoff radius rc

in a SDPD simulation should be 2� 4 times bigger than a typical one used in DPD,58 with conse-

quent increase in the number of neighbors for each particle and CPU time. This is the price to pay

to have an accurate description of the Navier-Stokes equations in the fluid domain. However, this

does not prevent us to choose a smaller cutoff radius to reduce the amount of numerical opera-

tions, in which case kinetic theory or pre-run would be needed to calibrate the viscosity as in con-

ventional DPD model.

The SDPD particle model presented here has been implemented in the parallel framework of

PPM,61 which is based on message passing interface (MPI) and has communication cost in the

order of 10% of the total time by using up to 100 processors, enabling us to run realistic SDPD

simulations of particle suspension. Validations ranging from diffusion-dominated regime typical

of sub-micro-sized objects towards the non-Brownian regime characterizing macro-continuum

flow conditions show good agreement with analytical results. Simulation of anisotropic diffusive

behavior of a colloidal particle near a rigid wall has also been performed and validated by analyti-

cal solutions.

The development of a lubrication model based on extra “local" pair forces between SDPD

boundary particles is currently under investigation and should allow to extend the generality of the

current method to the case of concentrated suspensions of arbitrarily shaped objects.
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a b s t r a c t

Simulating nearly contacting solid particles in suspension is a challenging task due to the diverging be-
havior of short-range lubrication forces, which pose a serious time-step limitation for explicit integration
schemes. This general difficulty limits severely the total duration of simulations of concentrated suspen-
sions. Inspired by the ideas developed in [S. Litvinov, M. Ellero, X.Y. Hu, N.A. Adams, J. Comput. Phys. 229
(2010) 5457–5464] for the simulation of highly dissipative fluids, we propose in this work a splitting inte-
gration scheme for the direct simulation of solid particles suspended in a Newtonian liquid. The scheme
separates the contributions of different forces acting on the solid particles. In particular, intermediate-
and long-range multi-body hydrodynamic forces, which are computed from the discretization of the
Navier–Stokes equations using the smoothed particle hydrodynamics (SPH) method, are taken into ac-
count using an explicit integration; for short-range lubrication forces, velocities of pairwise interacting
solid particles are updated implicitly by sweeping over all the neighboring pairs iteratively, until conver-
gence in the solution is obtained. By using the splitting integration, simulations can be run stably and
efficiently up to very large solid particle concentrations. Moreover, the proposed scheme is not limited to
the SPH method presented here, but can be easily applied to other simulation techniques employed for
particulate suspensions.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Particulate suspensions are used in foodstuffs, pharmaceuticals,
cosmetics and intermediates inmany other industrial manufactur-
ing processes [1]. Understanding the rheological properties of such
particulate material is a subject both of industrial interest and sci-
entific importance [2,3].

Unlike experiments, numerical simulations can provide full de-
tails on the dynamics in a particulate suspension, assuming that
a proper physical model is established. There are generally two
mainstream directions to model a particulate suspension: in the
first type of methods the suspending medium is modeled implic-
itly and hydrodynamic interactions are embraced in a grand resis-
tancematrixM by relating velocitieswith forces acting on the solid
particles. The most representative method in this class is Stoke-
sian dynamics (SD) [4,5]. In the SD method,M has a size 6N × 6N ,
where 6 is the number of degrees of freedom for translation and ro-
tation in three dimensions, and N is the total number of particles.
The velocities of the particles at a new time step are updated im-
plicitly by inverting M and afterward the positions are integrated
explicitly [5]. Computational cost of SD scales well as N lnN in the

∗ Corresponding author. Tel.: +49 89 15999.
E-mail addresses: xin.z.bian@gmail.com, xin.bian@aer.mw.tum.de (X. Bian).

accelerated version of SD [6]. However, since SD relies on the an-
alytical solutions of the Stokes flow around spheres, it poses some
difficulties to extend its application to model arbitrarily-shaped
objects, non-zero particle inertia, non-periodic boundary condi-
tions such as solidwalls [7,8], aswell as transient and compressible
effects.

The second type of approaches represented by direct numer-
ical simulation (DNS), where the hydrodynamic interactions be-
tween solid particles are taken into account explicitly by solving
the full set of hydrodynamic equations within the fluid domain,
does not suffer from the shortcomings mentioned above. This type
includes extended finite element (xFEM) [9,10] and the like, lattice
Boltzmann (LB) [11,12], dissipative particle dynamics (DPD) [13]
and smoothed particle hydrodynamics (SPH) [14], among others.
With the exception of the work of Hulsen and collaborators [9,
10], where adaptive resolution is considered, limited resolution
generally requires the introduction of pairwise lubrication forces
between solid particles, to capture accurately the unresolved hy-
drodynamic interactions at very short distances. The number of op-
erations in DNSmethods usually scales linearly as C×N , where C is
independent ofN . Nevertheless, asDNS recovers theNavier–Stokes
equations for the fluid explicitly, C is usually large and related to
numerical resolution. Therefore, DNS methods are often computa-
tionally more expensive than the SD method. Computational cost
can be further increased in a DNS method coupled with an explicit

0010-4655/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
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integration scheme in the case of highly concentrated suspension,1
where the lubrication forces are dominating and extremely small
time steps must be used for stabilization.

To circumvent limitations of explicit integration in a highly
concentrated suspension, Nguyen and Ladd [15] proposed in the
LB method an implicit integration algorithm applied to ‘‘cluster’’
regions of solid particles, where each dynamic cluster is defined
based on the current distances between neighboring solid parti-
cles. Thereafter, velocities in each cluster are updated implicitly
and simultaneously. However, this implicit algorithm requires the
proper identification of new clusters at every time step, which
is a computationally expensive task and, more seriously, clusters
might not be uniquely defined.

Motivated by previous work on the DPD method of highly vis-
cous fluids [16,17], we propose here an integration scheme based
on splitting of forces acting on solid particles suspended in a
Newtonian fluid modeled via SPH. In particular, the dominating
pairwise lubrication forces are taken into account implicitly by up-
dating the velocities over each pair of solid particles iteratively,
until a given threshold residual in the solution is reached. The re-
maining forces acting on the solid particles, such as multi-body
SPH hydrodynamic forces and repulsive force, are integrated ex-
plicitly, as in the usual SPH scheme for the fluid. The concept of the
splitting scheme is simple, effective and allows us to speed up the
simulations significantly. Moreover, although the simulations pre-
sented in this work are based on SPH, no obstacles are foreseen in
applying the splitting integration scheme to LB, FEM or other DNS
methods, which solve hydrodynamics explicitly together with lu-
brication correction forces at short inter-solid-particle distances.

This work is organized as follows. In Section 2 the SPH-based
model of solid particle suspension is briefly reviewed; details of the
splitting integration scheme are given in Section 3; performance
analysis and results of accuracy are presented in Section 4,
followed by a discussion with conclusions in Section 5.

2. The SPH-based suspension model

2.1. SPH discretization of Navier–Stokes equations

In this section we briefly review the SPH formulation adopted
to discretize the Navier–Stokes equations on the fluid domain.
SPH is a Lagrangian meshless method in which the hydrodynamic
equations are solved on a set of numerical particles advected with
the local flow velocity2 [18,19].

The continuity equation can be implemented in SPH by a dis-
crete summation form [19]

di =
1
Vi

=
ρi

mi
=


j

Wij, ṙi = vi, (1)

where di, Vi, mi, ρi, ri and vi are number density, volume, mass,
mass density, position, and velocity of particle i, respectively; each
particle has a constant massm0;Wij = W (rij) is a bell shaped ker-
nel function, which depends on the inter-particle distance rij and
vanishes beyond a cutoff radius rc , that is, Wij = 0 for rij > rc . In
this work we use a quintic spline kernel [20]

f (s) = cD


(3 − s)5 − 6(2 − s)5 + 15(1 − s)5, 0 ≤ s < 1;
(3 − s)5 − 6(2 − s)5, 1 ≤ s < 2;
(3 − s)5, 2 ≤ s < 3;
0, s ≥ 3,

(2)

1 Concentration φ is defined as the ratio between area/volume of the solid
particles and total area/volume of the suspension.
2 Note that a numerical particle in SPH should be distinguished from a suspended

solid particle: the former simply represents a Lagrangian discretization element;
the latter is a physical solid grain whose model is described in Section 2.2.

where s = rij/h = 3rij/rc and h is the smoothing length of
the kernel. The normalization coefficient c2 = 63/(478πrc2) and
c3 = 81/(359πrc3) in two and three dimensions respectively [21].
Provided that the total number of SPH particles remains constant,
total mass is exactly conserved and Eq. (1) provides an operative
way to calculate the density.

For the discretization of the momentum equation in the case
of viscous incompressible flow, we adopt the following formula-
tion [14]

miv̇i = −


j


pi
d2i

+
pj
d2j


∂W
∂rij

eij

+


j

(D + 2)η


1
d2i

+
1
d2j


∂W
∂rij

eij · vij
rij

eij. (3)

The first part on the rhs is the sum of pairwise conservative pres-
sure force FCij . An equation of state relating density ρ to pressure p
may be written as

p = p0


ρ

ρr

7

− 1


, (4)

where p0 (related to sound speed cs) and ρr are parameters chosen
based on a scale analysis [20,22], to have sufficiently small density
variations. The second part on the rhs is the sum of pairwise dissi-
pative viscous force FDij , which reduces relative velocity vij = vi−vj.
Dynamic viscosity η is taken constant for each particle. We take
rc = 4.5dx, dx being the initial distance between neighboring par-
ticles, as this choice allows us to obtain the Stokes drag acting on
a solid particle with 1% accuracy according to its geometrical ra-
dius [23]. To reduce computation cost derived by the large number
of neighboring particles, a smaller rc can be used. In this case, the
solution of SPH is shown to converge towards a Stokes drag char-
acterized by a hydrodynamic radius not equal to the geometrical
one, as usually adopted in DPD [24,25], LB [26] and other methods.
However, for quantitative comparison of a non-spherical solid par-
ticle in suspension, numerical convergence towards the geometri-
cal size would be essential.

Both FCij and FDij are anti-symmetric by interchanging particle in-
dices and therefore conserve linear momentum exactly. Further-
more, both FCij and FDij act along the unit vector eij = rij/rij =

(ri−rj)/
rij pointing from particle j to particle i, therefore angular

momentum is also strictly conserved, which is crucial for recover-
ing the correct rotation of a solid particle under shear flow [14,27].

2.2. Suspended solid particle

Any solid particle suspended in a fluid (or any solid wall) can be
modeled by collecting a group of SPHboundary particleswithin the
solid domain. These boundary particles interactwith fluid particles
by means of suitable SPH forces which enforce the no-slip bound-
ary condition at the liquid–solid interface. Initially, fluid particles
are placed on a square grid and inside each spherical solid particle
a new set of SPH boundary particles is created parallel to the sur-
face as shown in Fig. 1. The distance between neighboring layers is
dx as well as the distance between two neighboring particles in the
same layer. This choice ensures having an approximately constant
number of interpolating points also near the interface.

During the pairwise viscous force calculation FDbf , velocity of any
boundary particle b inside a solid particle α is extrapolated from
its interacting fluid particle f by requiring the no-slip condition
on the solid geometrical surface [14,20]. Afterward, the total force
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Fig. 1. Representation of a spherical solid particle: SPH frozen boundary particles
are placed parallel to the surface with the same neighboring distance dx.

and torque exerted by the surrounding fluid on α are computed by
collecting forces and torques on each b as follows [14,28],

FSPHα =


b


f

(FCbf + FDbf ), (5)

TSPH
α =


b


f

(rb − Rα) × (FCbf + FDbf ), (6)

where rb is position of b and Rα is center position of α. In this way,
the long-range hydrodynamics is captured correctly [14].

2.3. Lubrication force correction

When two solid particles are in near contact, the flow of
the liquid in the gap cannot be captured accurately due to the
limited numerical resolution, therefore the hydrodynamic forces
acting on them are poorly represented. One possible strategy is to
increase the resolution locally within the gap until the flow is fully
resolved [9,10]. However, this choice is computationally impracti-
cal, especially in the case of a concentrated suspensionwheremany
nearly-touching pairs of solid particles can be present at once. To
remedy this problem, the pairwise lubrication force at short dis-
tance between solid particles is generally introduced [15,26,29,30].

In the case of SPH, when simulating two disks/spheres moving
towards each otherwith constant velocity, the hydrodynamic force
acting on them computed from the discretization of the suspend-
ing fluid deviates from the divergent behavior predicted by the the-
ory typically at a gap distance equal to half cutoff rc/2, and remains
approximately constant at smaller distances [14]. For the weaker
divergent shear and rotating motions of the two [31,32], the SPH
solutions fail at a shorter distance of rc/4 [14]. As a consequence,
we use the drag force and torque computed from the SPH solutions
for all three lubrication components and consider correction only
for the squeezing component for those solid particles, whose sur-
faces are located at distances smaller than rc/2. This is justified in
Section 4.1 by simulating two solid particles in close proximity un-
der shear flow.

A 2D squeezing lubrication force for two equal-sized discoidal
particles is given as in Refs. [32,33]

Flubαβ(s) = −
η

2
Vαβ · eαβ


A1


2a
s

3/2

+ A2


2a
s

1/2

eαβ , (7)

where A1 =
3
4π

√
2 = 3.3322, A2 =

231
80 π

√
2 = 12.829; each

solid particle has the same radius a and s is the separation distance
between the surfaces of solid particle α and β; Vαβ · eαβ is the
component of velocity difference along the center-to-center line.
Similar to the case in three dimensions [31,12,34,3], Eq. (7) implies
that if α and β move towards each other along eαβ with a constant
Vαβ , they experience a repulsive viscous force F lub

αβ (s) and its value
monotonically increases to infinity as s → 0, as shown in Fig. 2;
F lub
αβ (s) is completely reversible and becomes attractivewhenα and

β move apart along eαβ .

Fig. 2. Lubrication force F lub
αβ for twodisksmoving towards each otherwith constant

Vαβ along center-to-center line eαβ : theory is according to Eq. (7); SPH results
before and after correction using Eq. (8); N: sc = rc/2 = 0.45a for dx = 0.2a;
H: sc = rc/2 = 0.225a for dx = 0.1a.

As mentioned above, the hydrodynamic force in the eαβ di-
rection obtained by the SPH solution remains almost constant for
s < sc = rc/2. This contribution should not be present when the
analytical solution Eq. (7) is applied at short distances, therefore,
we introduce a shifted force Flub_corαβ to correct the lubrication force
in SPH

Flub_corαβ (s) =


Flubαβ(s) − Flubαβ(sc), s < sc;
0, s ≥ sc .

(8)

For the typical SPH resolutions dx = 0.2a and 0.1a considered
in this work, sc = rc/2 = 0.45a and 0.225a. Corrected with Eq.
(8) SPH simulations reproduce quite well the short-range hydro-
dynamics according to Eq. (7), as shown in Fig. 2. Note again that,
the forces being such that Flub_corαβ = −Flub_corβα and acting along eαβ ,
both linear and angularmomenta are strictly conserved. It has been
proved [35–39,30] that the most divergent lubrication component
along eαβ alone captures the essential physics and produces cor-
rectly the dynamics and rheology of a multiple-solid-particles sus-
pension under shear flow.

2.4. Short-range repulsive force

It is commonly acknowledged that an ideal non-Brownian con-
centrated particulate suspension under shear flow is a singular
problem [35,36,40,41], that is, the distance between neighboring
solid particles is getting indefinitely smaller along the compres-
sion axis and there is no steady state under shear flow. In a real
suspension, Brownian forces, excluded volume effects and sur-
face roughness would prevent unphysical overlap between solid
particles. Therefore, in numerical simulations a very short-range
repulsive force is usually introduced to stabilize an ideal non-
Brownian suspension. The specific form of the repulsive force is
not crucial as long as it is stiff [40]. In this work we adopt a Der-
jaguin–Landau–Verwey–Overbeek type which reads [42,40,41],

Frepαβ(s) = F0
τe−τ s

1 − e−τ s
eαβ , (9)

where τ−1
= 0.01a sets the active range and |F0| sets the mag-

nitude. As Frepαβ = −Frepβα and they act along eαβ , both linear and
angular momenta are always conserved.

3. Splitting integration scheme

To update the positions/velocities of the SPH fluid particles, a
modified explicit velocity Verlet algorithm is used [43]. To main-
tain the numerical stability of the explicit time-integrator, time-
step size ∆t must be restricted by three conditions:
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1. ∆t ≤ 0.125h2/ν: viscous constraint [20];
2. ∆t ≤ 0.25h/cs: Courant–Friedrichs–Lewy condition [44];
3. ∆t ≤ 0.25min

√
(h/fs): maximum fluid particle accelera-

tion [20],

where the kinematic viscosity ν = η/ρ; cs is the fluid speed of
sound; fs is acceleration acting on any fluid particle.

For each solid particle α, the total force and torque acting on it
are

Fα = FSPHα +


β≠α

Flub_corαβ +


β≠α

Frepαβ ,

Tα = TSPH
α . (10)

To integrate the previous set of ordinary differential equations we
have first followed Ref. [14] and used both the Euler and modified
velocity Verlet explicit integration schemes, which work properly
under conditions of dilute or semi-dilute concentration. However,
as the number of solid particles increases, near-contact encounters
become extremely frequent and the lubrication term


β≠α Flub_corαβ

represents the dominating force contribution. For a stable explicit
integration of the velocities and positions of the solid particles,
either an adaptive time step scheme constrained by the maximum
acceleration of the solid particle, i.e., ∆tsub ≤ 0.25min

√
(h/fα),

or a sub-time-step scheme, i.e., ∆tsub = ∆t/Nsub, has to be
used. In both cases, when simulating solid particle concentrations
exceeding 40%, ∆tsub needs to be generally up to 102–103 times
smaller than the ∆t used for the fluid, making the simulation
practically unfeasible.When simulatingφ = 68.7%, the simulation
becomes unstable and the run blows up rapidly, even at the
smallest time step ∆tsub adopted.

In this section we present a strategy for the stable time-
integration of solid-particles quantities: to update the velocity and
position of each solid particle from time step n to n+1, we split the
force contributions into different parts. In particular, for each solid
particle α, we first update its velocity according to the SPH force
explicitly as

V′

α = Vn
α + FSPHα ∆t/mα, (11)

where mα is the mass of α. This integration of velocities for solid
particles is comparably stable to that used for the fluid particles.

In a second stage we consider the integration of the dominant
short-range lubrication forces. Due to their pairwise nature, it is
possible to apply the general ideas discussed in Ref. [16] for the
integration of DPD equations for highly viscous fluids. In particular,
we consider the lubrication contribution by sweeping over all pairs
of neighboring solid particles over a certain number of iterations
Nsweep. Accordingly, an iterative sub-time step∆tsweep = ∆t/Nsweep
is introduced. For each pair of solid particles α and β , their
velocities are updated simultaneously and implicitly as follows

Ṽα = V′

α + F̃lub_corαβ ∆tsweep/mα,

Ṽβ = V′

β − F̃lub_corαβ ∆tsweep/mβ , (12)

where F̃lub_corαβ is a linear function of Ṽα and Ṽβ . Being this small
system of equations (4 equations in 2D, 6 equations in 3D) linear
in the particle velocities, no numerical inversion of the matrix is
needed and one can solve it analytically using any algebra software
(see the Appendix). Afterward, the resulting expression can be
directly implemented in the code and Eq. (12) is solved for each
pair Nsweep times over each ∆t .

After Nsweep times of sweeping for the lubrication forces, we
consider the contribution from the repulsive force. Being that the
repulsive force is only position-dependent,we use aVerlet scheme.
For each solid particle α,

Vn+1/2
α = Ṽα +

1
2
Frep,nα ∆t/mα, (13)

Table 1
Integration of 2D lubrication force for one sub-step: explicit vs. implicit.

Line Explicit Count Pairwise implicit Count

1 DO α = 1,N − 1 DO α = 1,N − 1
2 DO β = α + 1,N DO β = α + 1,N
3 IF (sαβ < sc ) 6 IF (sαβ < sc ) 6
4 Fαβ = F lub_cor

αβ (sαβ ) 25 Solve Eq. (12)
5 Fα = Fα + Fαβ 1 Implicitly
6 Fβ = Fβ − Fαβ 1 (See Appendix) 82
7 END IF END IF
8 END DO END DO
9 END DO END DO

10
11 DO α = 1,Np
12 Vα+ = Fα∆tsub/mα 3 – 0
13 END DO

where Frep,nα =


β≠α Frep,nαβ is the total repulsive force on α exerted
by the other solid particles with positions at time step n. The new
position at time step n + 1 is updated as

Rn+1
α = Rn

α + Vn+1/2
α ∆t. (14)

Finally, we obtain the velocity at the new time step as

Vn+1
α = Vn+1/2

α +
1
2
Frep,n+1

α ∆t/mα, (15)

where Frep,n+1
α =


β≠α Frep,n+1

αβ is the total repulsive force on α
from other solid particles with positions at time step n + 1.

A remark about the number of implicit sweeps Nsweep for the
lubrication contribution is in order here. We use an adaptive
criterion similar to Ref. [45]. At the time step n, we perform one
default number of sweeps Nsweep = 2m and another one with
N ′

sweep = 2m−1. Then we use a non-dimensionalized L2 norm

em =

N
α=1(V

m
α −Vm−1

α )2N
α=1(V

m
α )2

to measure velocity difference between

the two solutions obtained. On the one hand, if em < ϵ (a pre-
defined tolerance), we half the number of sweeps q times until
em−q

≥ ϵ or 2m−q−1
= 1 and we use the solution obtained with

Nsweep = 2m−q+1 which becomes the default number of sweeps at
the next time step n+ 1; on the other hand, if the residual em > ϵ,
we double the number of sweeps q times until em+q < ϵ or 2m+q

reaches a pre-definedmaximumnumber of sweeps andwe use the
solution obtainedwith 2m+q sweeps, this being the default number
of sweeps at the next time step n + 1.

3.1. Algorithm complexity

Whether we adopt an explicit or implicit integration for the lu-
brication forces, the rest of the numerical operations, such as oper-
ations on SPH fluid, are identical. Therefore, we only focus on the
analysis of complexity on integrating velocities using lubrication
forces. The complexity details of each algorithm are listed in Ta-
ble 1, where we count +, −, ×, ÷ each as one floating-point op-
eration and ()power as three.

To search for neighboring particles,N(N−1)/2 pairs have to be
checked as in lines 1 and 2 for both explicit and pairwise implicit
methods. For calculating gap distance sαβ we need 6 operations.
The calculation of lines 4–6depends on the actual number of neigh-
bors Nneigh in simulations, which, for example, is Nneigh ≈ 3 for φ =

58.9% (see Section 4.2.1). Additional lines 11–13 are performed in
explicit integration for updating velocity in a separate loop. As the
only difference lies in lines 4–6, and 11–13,we compare these parts
literally, using φ = 58.9% as an example, where for the explicit
method the count is (27N × Nneigh + 3N) × Nsub = 84N × Nsub;
and for pairwise implicit the count is (82N × Nneigh) × Nsweep =

246N × Nsweep.
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Fig. 3. Two rotating solid particles under shear flow: shear flow is clock-wise.M is
middle point of the two particles. Lh , Lv are horizontal and vertical distances of the
two toM . s is the surface distance.

Therefore, to compare the computational costs of pairwise
implicit and explicit integration of lubrication forces, it further
relies on the comparison of the number of implicit sweeps Nsweep
and number of explicit sub-time-steps Nsub. It is clear that as long
as 3Nsweep / Nsub the splitting integration would be faster than the
purely explicit integration.

Note that in 3D the number of operations increases 1.5 times for
the explicit scheme and 1.52

= 2.25 times for the pairwise implicit
scheme. The small relative factor 2.25/1.5 = 1.5 would not play
a role and conclusions drawn from the following 2D simulations
shall be retained in 3D.

4. Numerical results

To validate the suspension model with the proposed integra-
tion schemes, we perform simulations of suspensions confined be-
tween two parallel walls under constant shear flow. The first test
case discussed in Section 4.1 is represented by the problem of two
hydrodynamically interacting and rotating solid particles, where
analytical solutions are available. In Section 4.2, a numerical anal-
ysis on the performance and accuracy of the implicit integration
scheme is carried out for a multiple-solid-particles suspension.
Thereafter, effective viscosity and microstructure of the suspen-
sion are presented and compared with that of the explicit scheme
and references.

4.1. Two-solid-particles dynamics under shear flow

In this section we consider the dynamics of two interacting
solid particles immersed in a liquid undergoing a steady shear flow.

The sketch of the problem is provided in Fig. 3. The corresponding
Stokes flow has been solved analytically. In particular, in two
dimensions the analytical expressions for the trajectories of two
neutrally buoyant particles have been given in Ref. [46]. Depending
on the initial separation Lh and Lv , the trajectory of the twoparticles
can be either open or closed [46,47].

To solve theproblemnumerically,we take twoequal-sized solid
particles with radius a = 1 and define a simulation box of size
Lx = Ly = 40, with periodic boundary conditions applied to the
x direction and solid walls placed at y = 0 and Ly. This choice
of box size is sufficient to minimize the effects of the walls and
the periodic images on the dynamics. The upper and bottom walls
move in opposite directionswith velocitymagnitude |v0| = 2.115,
which defines a clock-wise shear rate γ̇ = 2|v0|/Ly = 0.10575.
The fluid viscosityη = 8.46, and densityρ = 1.0, defines a particle
Reynolds number Rep = γ̇ a2ρ/η = 0.0125. The sound speed is
chosen as cs = 50, which restricts density variations to well below
1% during simulations.

The middle point M(xM , yM) of the two solid particles is at the
center of the computational box as shown in Fig. 3. The initial
horizontal and vertical distances of the two to M are Lh and Lv ,
respectively. We perform simulations with 4 initial configurations
[Lh = 1.5, Lv = 1.0], [Lh = 1.5, Lv = 0.6], [Lh = 1.2, Lv = 0.0]
and [Lh = 1.1, Lv = 0.0], and with two resolutions dx = 0.2 and
dx = 0.1.

Relative positions and distances of the two solid particles are
shown in Fig. 4, where simulations are compared with analyti-
cal solutions. Due to symmetry, two particles always have syn-
chronized rotation and translation. When the two particles are
aligned in the y direction, they have theminimum surface distance
smin [46]. If smin/2 ≤ 0.1, the maximum distance of the two is
bound and they have closed trajectory forming a permanent dou-
blet. Otherwise, the trajectories are open and going to infinity. Due
to limited resolutions, lubrication correction is switched on in SPH
whenever surface distance s < rc/2. Therefore, for dx = 0.2
and 0.1 simulations are with lubrication correction forces when
OM/a < 1.225 and 1.1125 respectively (Fig. 4, right plot). Results
produced by two different resolutions are very similar and agree
well with analytical solutions. Thewhole scenario of two solid par-
ticles under shear flow is captured well by SPH simulations with
lubrication corrections.

The same simulations have been previously performed using
the LB method [33]. However, no comparison with 2D analytical
solutions was done nor closed trajectories were shown, which
is a fundamental step towards simulating multiple-solid-particles
suspension.

Fig. 4. Relative position (left) and distance (right) of two solid particles to the center of mass M under shear flow (rc = 4.5dx with the proposed splitting integration
scheme): O′M = OM =


(x − xM )2 + (y − yM )2 . For dx = 0.2, lubrication correction is switched on when OM/a < 1.225; for dx = 0.1, lubrication correction is switched

on when OM/a < 1.1125. 1.1 is the separation line between closed and open trajectories. Due to the nature of Stokes flow, the paths and distances are symmetrical in x, y
direction.
Source: Analytical solutions are taken from Ref. [46].
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Table 2
Computation box [16, 16], implicit tolerance ϵ = 10−3: comparison of run time (wall time) for the same physical time T = 1330 in simulations (according to 106∆t and ∆t
is SPH fluid time step); simulation code is implemented in Fortran 99 and compiled with ifort 11.1 on Intel Xeon CPU E5410@2.33 GHz.

N φ Implicit N sweep Run time (h) Explicita Nsub Run time (h) N
r=2.45
neigh

8 9.8% 1.00 1
16 19.6% 1.01 1
24 29.5% 1.28 1
32 39.3% 3.01 29.3 32 48.4 1.83
40 49.1% 10.02 34.7 128 87.1 2.59
48 58.9% 27.53 43.3 1024 340.7 3.28
56 68.7% 78.81 54.5 – – 4.05
a Explicit Nsub is initially set to be 1 and doubled until a stable simulation with a convergent shear stress is achieved.

4.2. Multiple-solid-particles suspension under shear flow

When more solid particles are considered, the suspension
becomes semi-dilute or even concentrated and an extremely small
time step is necessary for integrating the dynamics explicitly. To be
computationally practical, an implicit scheme for the integration
of the solid particles dynamics in a concentrated suspension is
preferred.

In the first part of this section the performance of the proposed
splitting scheme is evaluated, which takes into account different
force contributions either explicitly or implicitly. In particular, we
focus on the pairwise implicit part, which due to the requirement
Nsweep > 1dominates the integration costs for the solid particles. In
the second part, the physical results of the multiple-solid-particles
suspension under shear flow are discussed.

4.2.1. Tolerance and number of implicit sweeps for the lubrication
force

Taking the same parameters for the fluid and solid particles as
in Section 4.1,we choose a computational box as [Lx, Ly] = [16, 16]
and suspend a different number of solid particles randomly to span
over different concentrations as given in Table 2. The lubrication
correction force is active whenever the inter-solid-particle gap s is
smaller than rc/2. Repulsive force is active with F0 = 0.894645
and τ−1

= 0.01 to prevent overlap or contact of particles. All
simulations start with Nsweep = 2 at time step n = 0.

For all the SPH simulations, we analyze the features of the
splitting scheme, particularly the pairwise implicit part, to un-
derstand its performance. A typical concentrated suspension with
φ = 58.9% is considered, corresponding to the snapshot shown in
Fig. 5. The conclusions drawn are similarly applicable to other con-
centrations. Note the intentionally adopted under-resolved flow
between solid particles in Fig. 5, where solvent liquid contained in
specific inter-solid-particle gaps is reproduced only by a few SPH
fluid particles and its effect on the solid grains is implicitly taken
into account by the lubrication model (Section 2.3). Note also that
at the resolution considered, lubrication forces capture accurately
the inter-solid-particle dynamics as discussed in detail in Fig. 4
(Section 4.1).

For small values of the tolerance ϵ, an increasingly large
number of sweeps Nsweep (with consequent computational effort)
is necessary: the time history of Nsweep for different tolerances ϵ is
shown in Fig. 6(a), where for φ = 58.9% one order of magnitude
reduction in the tolerance requires approximately ten times larger
number of sweeps. Furthermore, the effect of different tolerances
on the iteration convergence is also studied for simulations at
other concentrations, confirming the increase of computational
cost for smaller tolerances. Therefore, it is very important to
select carefully the value of ϵ, namely sufficiently small to enforce
accuracy, yet not too small to avoid unnecessary computational
cost.

Effective viscosity of the suspension is an important rheological
quantity and a useful guideline to determine the tolerance. The

instantaneous viscosity ηs(t) of the suspension is defined as the
ratio of the instantaneous shear stress on the wall and the shear
rate. The constant effective suspension viscosity ηs is therefore
obtained by averaging ηs(t) over 3 million steps after steady state,
to reduce the statistical error. We measure ηs and compare it for
different tolerances, as shown in Fig. 6(b). It is clear that a certain
number of sweeps corresponding to a tolerance ϵ = 10−3 is
sufficient for converged results. Accordingly, we use ϵ = 10−3 as
standard tolerance for all simulations performed. For a qualitative
rather than quantitative study, ϵ = 10−2 would be still sufficient,
which requires only a couple of sweeps in the algorithm to run
stably. Note that errors in this case (with respect to the converged
viscosity values) are below 5% at the largest concentration and
even smaller otherwise.

Time averaged numbers of implicit sweeps with ϵ = 10−3

are compared with the number of explicit sub-time-steps Nsub
for all concentrations in Table 2: Nsub is significantly larger than
N sweep for non-dilute concentrations. For example, in the case φ =

58.9% only N sweep = 27.5 are necessary which gives an estimate
3N sweep = 82.5 ≪ Nsub = 1024 (see Section 3.1), with a potential
speed-up factor bigger than 10. Taking into account the cost of SPH
calculations, the total run time of the simulation for φ = 58.9% us-
ing the splitting scheme is ∼8 times faster than the one using the
purely explicit scheme, as shown in Table 2. In addition, for a qual-
itative result we may use ϵ = 10−2, leading to N sweep = 1.6, as
shown in Fig. 6(a), which is much superior to the purely explicit
scheme for a stable simulation. More importantly, the simulation
at φ = 68.7% ran stably using the splitting scheme with a prac-
tical computational cost, whereas it is unfeasible by using explicit
schemes even by choosing Nsub = 1024.

Being that the pairwise repulsive force F rep
αβ (s) is stiff and rapidly

decaying towards the value 0.01|F0|τ for s → 5τ−1, it is switched-
on only when s ≤ 0.05. From the history of the number of
neighbors per solid particle shown in Fig. 6(c), it can be evinced that
active repulsion is indeed a rare event compared to lubrication:
because N

r=2.45
neigh ≈ 3 > 1, updating positions/velocities of a pair

interacting via lubrication force involves other pairs, which leads
to the explicit integration being rather unstable. Nevertheless,
this issue is solved iteratively by the pairwise implicit scheme. In
contrast: N

r=2.05
neigh ≈ 1 means that a repulsive pair is isolated from

others, and therefore can be handled by the explicit Verlet scheme.
Neither does the number of neighbors Nneigh per solid particle
change for different tolerances (ϵ = 10−4, 10−2) studied, nor for
larger systems (i.e. N = 192, φ = 58.9% in the box [32, 32]), but it
depends only on the concentration φ, which determines the final
number of numerical operations. The time averaged Nneigh at the
steady state is shown for comparison in Tables 2 and 3 for different
system sizes.

Another important issue concerns the dependence of the itera-
tion convergence on the system size. Indeed, the implicit scheme
being based on a pairwise velocities update performed over all the
solid particles in the system, it is a priori not clear how the num-
ber of sweeps changes with different system size. Therefore, we
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Fig. 5. Snapshot of a particulate suspension confined by parallel walls: size of computational box is [16, 16], a = 1, dx = 0.2, N = 48, and φ = 58.9%; two walls move with
|v0| = 0.846 in opposite directions, γ̇ = 0.10575 and Rep = 0.0125; solid particles are represented by circles; fluid particles are marked with color indicating magnitude
of the velocity field normalized by |v0|, being generally higher near the wall and lower in the center.

Table 3
Computation box [32, 32], implicit tolerance ϵ = 10−3 .

N φ Implicit N sweep N
r=2.45
neigh

32 9.8% 1.00
64 19.6% 1.00
96 29.5% 1.00

128 39.3% 1.05 1.72
160 49.1% 3.40 2.53
192 58.9% 10.71 3.33
224 68.7% 31.60 4.10

perform the simulations again with ϵ = 10−3 in a bigger compu-
tational box [Lx, Ly] = [32, 32] for each concentration, correspond-
ing to a number of simulated solid particles in the range N ∈ [32
− 224]. A positive outcome is that N sweep for a fixed φ does not in-
crease from system [16, 16] to [32, 32], as shown in Tables 2 and 3.

To summarize the results of this section: the pairwise implicit
scheme performs better than the explicit scheme, specifically for
large concentrations φ. The number of implicit sweeps Nsweep
does not increase with system size, which makes the algorithm
straightforwardly applicable to big systems of solid particles.

4.2.2. Viscosity and microstructure
Having demonstrated the superior computational performance

of the splitting schemeover the explicit one in the previous section,

we proceed here by comparing the physical results extracted in
the two cases. Effective viscosities for different concentrations
are calculated for both purely explicit integration scheme and
splitting integration scheme. The purely explicit scheme is able to
simulate up to φ = 58.9%, but it fails to run φ = 68.7% stably
with a practical cost. Results of SPH simulations using different
integration schemes are compared in Fig. 7, where the empirical
Krieger–Dougherty formula [48]

ηs

η
=


1 −

φ

φmax

−[η]φmax

(16)

for the suspension viscosity is also shown. A maximum packing
fraction of disks on a square lattice φmax = π/4 = 78.5% and
the intrinsic viscosity parameter [η] = 2 in two dimensions are
assumed. The SPH results fit Eq. (16) nicely up to φ = 58.9% for
both the explicit and the splitting schemes in computational box
[16, 16], proving the consistency of the results from the two inte-
gration schemes. Note that due to effects of limited box size, the
viscosity of φ = 58.9% and 68.7% converges in the two bigger
simulation boxes. At φ = 68.7%, one may still notice a small dis-
crepancy between SPH results and Eq. (16). However, the disagree-
ment at very high concentration is generally present fromdifferent
Refs. [42,49,50,6], as the suspension in this case is close to jamming
transition and its viscosity is very sensitive to details, such as sur-
face roughness of solid particles, wall slip, and non-hydrodynamic
forces in short range.
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(a) Time history of sweeps for N = 48, φ = 58.9% with different
tolerances ϵ.

(b) Measured viscosity for different concentrations and
tolerances.

(c) Time history of neighbors Nneigh for N = 48, φ = 58.9%,
ϵ = 103: r = 2.45 indicates switched-on of the lubrication
correction for dx = 0.2; r = 2.05 indicates switched-on of the
repulsive force (F rep

αβ (s) decays below 0.01|F0|τ beyond
5τ−1

= 0.05).

Fig. 6. Numerical performance of the splitting scheme for a computational box [16, 16].

Fig. 7. Viscosity versus solid particles concentration: �: explicit integration with
sub-time-step in box [16, 16]; ⊙: splitting integration in box [16, 16]; N: splitting
integration in box [32, 32];H: splitting integration in box [64, 64].� leads toO(103)

sub-time-steps for φ = 58.9% and are unstable for φ = 68.7%; N and N sweep for ⊙

and N are shown in Tables 2 and 3; In box [64, 64], N = 768 and 896,N sweep = 3.94
and 10.56 for φ = 58.9% and 68.7% respectively. If error bars on SPH results are
smaller than the size of the symbols, they are not shown.

A similar computational work has recently been performed in
3D using the force-coupling method (FCM) [51], where possible
wall effects are studied. Taking into account the y position of each
portion inside each solid particle, we calculate the ensemble aver-
age ⟨φ(y)⟩ of solid concentration along y during the steady state
of each simulation. In qualitative agreement with Refs. [51,52],

Fig. 8. Concentration profiles of solid particles in box [16, 16]: half of the channel
is shown due to symmetry; for higher concentration, layering is more pronounced
and the first peak is closer to the wall.

we observe solid particle layering near the wall region, due to
strong hydrodynamic interactions between solid particles and
wall, as shown in Fig. 8. The layering phenomenon becomes re-
laxed and relatively flat compared to the averaged concentration
whenmoving away from thewall, except in the case of φ = 68.7%,
where wall effects persist to long distance [51].

Moreover, we investigate qualitatively the microstructure of
the suspension and discuss it in relation to results from the liter-
ature. For each pair of solid particles located one diameter away
from walls (to avoid the first peak of layering in Fig. 8), we
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(a) RDF vs. short distance. (b) RDF vs. long distance.

Fig. 9. Pairwise radial distribution function (RDF) g(r) in box [16, 16] provides information about the suspension microstructure.

calculate the radial distribution function (RDF) averaged over all
orientations ⟨g(r)⟩θ , which represents the time-averaged proba-
bility of finding a neighboring solid particle normalized by the
number density of the solid particles [42]. Due to short-ranged re-
pulsive force no particles overlap or contact occurs, which is indi-
cated by the decay of the RDF to zero at r = 2 as shown in Fig. 9(a).
Higher concentrations lead to a shift in the RDF with the first peak
occurring at closer distances. Moving away from the first peak dis-
tance, the RDF drops significantly for concentrated suspension of
φ = 49.1%, 58.9%, and 68.7%, before increasing again towards a
secondmaximum at two-diameters distance, as shown in Fig. 9(b).
The second peak is an increasing function of concentration [41] and
its presence indicates positions of solid particles are still correlated
around a distance of two diameters. Nevertheless, ⟨g(r)⟩θ goes to
unity for all concentrations in sufficiently long distance, indicating
uncorrelated solid particles.

Although it is difficult to compare microstructure in details, the
SPH results presented here reproduce qualitatively those obtained
from simulations of SD [42,41] and FCM [51], proving the validity
of the present approach. A detailed analysis on the rheological and
microstructural behavior of a concentrated suspension is beyond
the scope of this work and will be presented in the future.

5. Conclusion

Within the modeling framework for a confined particulate
suspension using smoothed particle hydrodynamics (SPH) [14], we
have proposed a splitting integration scheme for describing the
interactions between non-Brownian solid particles. In particular,
the lubrication force between each pair of solid particles is taken
into account implicitly and velocities of solid particles are updated
by using a pairwise iterative sweeping. The remaining forces acting
on the solid particles are integrated explicitly with a time step ∆t
given by the common stability criteria in SPH. The splitting scheme
is computationally superior to purely explicit schemes, especially
in the concentrated regime, where it allows us to run stable
simulations with much larger sub-time-steps on a reasonable
computing time up to φ = 68.7% in two dimensions.

The concept and operations of the splitting scheme offer some
advantages over standard approaches. On the one hand, it avoids
the performance of a full matrix inversion over all the solid par-
ticles as used in ‘‘conventional’’ implicit schemes [4] and, on the
other hand it bypasses the definition of solid-particles-clusters
adopted in ‘‘local’’ implicit schemes [15]. In contrast to the pre-
vious approaches, the novel scheme generates a series of small
systems of equations, which are solved analytically rather than
numerically. Given a pre-defined solid particle concentration, a
suitable tolerance can be adopted leading to convergence in
the rheological results. Its specific choice represents a trade-off

between desired accuracy and computational costs. Moreover, the
fact that the average number of neighboring solid particles and
number of sweeps on pairs for a fixed tolerance do not increase
with the system size indicates preserved linear scaling of the algo-
rithm with the number of simulated solid particles N .

Accuracy and consistency of the proposed splitting method
have been validated against standard SPH results based on explicit
integrators and theoretical results. As a final remark we should
note that, although the simulations performed here were based on
the deterministic SPH method, the proposed splitting integration
scheme can be easily generalized to mesoscopic methods, such
as dissipative particle dynamics [28] and smoothed dissipative
particle dynamics [19,53,54]. The modeling of highly concentrated
Brownian colloidal suspensions based on the sweeping ideas can
be simply generalized by incorporating an extra stochastic force in
the lubricationmodel which is connected to the force (Eq. (7)) via a
fluctuation–dissipation theorem. Moreover, the proposed scheme
is not limited to particle-based methods describing the fluid, but
can be easily applied to other simulation techniques employed
for suspensions using short-ranged lubrication forces between
pairwise solid particles.
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Appendix. Solution to Eq. (12)

With the definition of Aαβ as

Aαβ = −
η∆tsweep

2mα


A1


2a
s

3/2

−


2a
sc

3/2


+ A2


2a
s

1/2

−


2a
sc

1/2


, (A.1)

and using the free algebra software Maxima (http://maxima.
sourceforge.net), we get

Ṽα(1) =


eαβ(1)eαβ(2)


V ′

β(2) − V ′

α(2)

+ 2eαβ(2)eαβ(2)

× V ′

α(1) + eαβ(1)eαβ(1)

V ′

β(1) + V ′

α(1)


Aαβ

− V ′

α(1)


/


2eαβ(1)eαβ(1) + 2eαβ(2)eαβ(2)

Aαβ − 1


. (A.2)

http://maxima.sourceforge.net
http://maxima.sourceforge.net
http://maxima.sourceforge.net
http://maxima.sourceforge.net
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Table A.4
The summary of operations count.

Equation Count

(A.1) 27
(A.2) 22
(A.3) 11
(A.4) 11
(A.5) 11
Total 82

Due to symmetry of the two dimensions, by interchanging in-
dex (1) with (2) in Eq. (A.2), Ṽα(2) is obtained as

Ṽα(2) =


eαβ(1)eαβ(2)

V ′

β(1) − V ′

α(1)

+ 2eαβ(1)eαβ(1)V ′

α(2)

+ eαβ(2)eαβ(2)

V ′

β(2) + V ′

α(2)


× Aαβ − V ′

α(2)

/


2eαβ(1)eαβ(1)

+ 2eαβ(2)eαβ(2)

Aαβ − 1


. (A.3)

Due to symmetry of the two particles, by interchanging sub-
scriptα withβ in Eqs. (A.2) and (A.3), Ṽβ(1) and Ṽβ(2) are obtained
as

Ṽβ(1) =


eαβ(1)eαβ(2)

V ′

α(2) − V ′

β(2)

+ 2eαβ(2)eαβ(2)

× V ′

β(1) + eαβ(1)eαβ(1)

V ′

α(1) + V ′

β(1)


× Aαβ − V ′

β(1)

/


2eαβ(1)eαβ(1) + 2eαβ(2)
× eαβ(2)


Aαβ − 1


. (A.4)

Ṽβ(2) =


eαβ(1)eαβ(2)

V ′

α(1) − V ′

β(1)

+ 2eαβ(1)eαβ(1)

× V ′

β(2) + eαβ(2)eαβ(2)

V ′

α(2) + V ′

β(2)


× Aαβ − V ′

β(2)

/


2eαβ(1)eαβ(1)
+ 2eαβ(2)eαβ(2)


Aαβ − 1


. (A.5)

When the number of numerical operations is counted, duplicate
expressions are stored and calculated only once, such as the ones
underlined in Eq. (A.2). Therefore, the count of actual operations
for each equation is listed in Table A.4.
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a b s t r a c t

We study the rheology of dense suspensions of non-Brownian repulsive particles. The suspensions
consist of two-dimensional discoidal particles confined by walls orthogonal to the shear gradient direc-
tion and are simulated by the method of smoothed particle hydrodynamics. The strength of hydrody-
namic shear thickening is primarily determined by the distribution of hydrodynamic clusters formed
during shear flow while confinement plays a geometrical role and indirectly affects viscosity. Under
strong confinement a percolating network of clusters develops into a jamming structure at high shear
rate and as a result, the viscosity increases substantially. Extrapolating the viscosity to the limit of very
weak confinement shows that confinement is essential to observe hydrodynamic shear thickening in
these non-Brownian suspensions.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Suspensions of particles are ubiquitous, with blood, pharmaceu-
ticals, and slurry as some common examples [1,2]. Understanding
their transport phenomena and rheology is of industrial interest,
medical relevance and scientific importance [3,4]. In particular,
the property of shear thickening, where viscosity increases with
elevated shear rate, is on the one hand, a challenge to pumping,
coating and spraying operations [5], and on the other hand, an
opportunity to develop field responsive materials for a range of
applications, such as, energy absorber [6].

Although the particles constituting such suspensions have a
wide spectrum of sizes, shear thickening seems to be universal, if
measured in the appropriate shear rate range [7]. Brady and
coworkers developed the method Stokesian dynamics and
predicted that it is the presence of hydrodynamic clusters or
hydroclusters responsible for shear thickening of Brownian suspen-
sions [8]: upon increasing shear rate, compressive hydrodynamic
force dominates Brownian force, particles are forced into close
proximity and form transient clusters, termed hydroclusters to
distinguish them from aggregates due to conservative forces [1].

Within a cluster the particle density is higher and the fluid is under
greater stress due to the diverging short-range lubrication force
[9], which leads to a higher viscosity for the suspension [10]. Hyd-
roclusters are fluctuations in particle density that only exist under
flow and as such are transient. The existence of hydroclusters is
confirmed by flow-small angle neutron scattering [11–13] and
optical methods including flow dichroism [14,12] and fast confocal
microscopy [15] for colloidal suspensions. Simulations generally
show mild continuous shear thickening (CST) under periodic shear
flow using Lees–Edwards boundary condition [16–19].

In contrast to colloidal dispersions, ideal, non-Brownian hard-
sphere suspensions are not expected to exhibit shear thickening
and should have a viscosity that is independent of shear rate. How-
ever, the presence of surface roughness, friction, and finite particle
inertia can all lead to a shear-rate dependent microstructure and
rheological properties [20,1,21]. In a recent experiment, a confining
geometry is shown to have a strong influence on the discontinuous
shear thickening (DST) via increased normal stresses [22,23],
where the particles phase attempts to dilate and is confined by
the walls of the apparatus and the surface tension of the suspend-
ing fluid. The DST is associated with additional surface frictional
forces rather than purely hydrodynamic interactions (HIs) acting
between particles [23,24,21]. Nevertheless, the strength of HIs also
depends on the confinement, which leads to an increase of the
suspension viscosity at a fixed shear rate due to additional HIs with
the walls and enhancements in the HIs between particles [25].
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Confinement effects on shear thickening have not been studied
in depth and the interplay between confinement and hydrocluster
formation is still poorly understood. In this work, we study the
effects of confinement on continuous shear thickening by simulat-
ing a mono-disperse suspension of discoidal particles confined
between two walls. To resolve the HIs in a confined suspension,
we use a meshfree method called smoothed particle hydrodynam-
ics (SPH) [26], which allows for straightforward modeling of mov-
ing boundaries. In addition, model parameters of SPH can be
chosen carefully to avoid unnecessary inertial and compressible
effects [27,28]. Long- and intermediate-range HIs are computed
explicitly by the SPH method and pairwise lubrication forces [29]
are introduced between particles to reproduce correctly the short
range lubrication interactions, which are below SPH resolution.
In this work we consider shear thickening in a non-colloidal sus-
pension where Brownian forces are negligible. To prevent particle
overlap a short range repulsive force is added between suspension
particles [30,31,18].

This manuscript is organized as follows. In Section 2 the
SPH-based model of solid particle suspension is briefly reviewed.
Numerical results along with discussions are shown in Section 3.
In this work we focus on an area fraction of 0:589, which is well
above that reported to be necessary to observe significant
hydrocluster formation in 2D suspensions [32]. Characteristic con-
finement dimensions range from a low of 8 to a maximum of 256
particle radii, which spans the typical box sizes in previous simu-
lations and extends the simulation work to strong confinement
as observed in experiments [15]. The flow kinematics, microstruc-
ture and rheological response are reported for steady state flow
and analyzed as functions of shear rate and confinement with
the goal of understanding confinement effects on shear thickening
of non-Brownian suspensions. We summarize our results and dis-
cussions in Section 4.

2. The SPH-based suspension model

In this section we review a SPH-based suspension model, which
is Galilean-invariant and conserves both linear and angular
momenta. Both solid walls and solid particles are modeled by
SPH boundary particles.

2.1. SPH discretization of Navier–Stokes equations

We employ a SPH formulation to discretize the Navier–Stokes
equations on the fluid domain. SPH is a Lagrangian meshless
method in which the hydrodynamic equations are solved on a
set of numerical particles1 advected with the local flow velocity
[26]. For a comprehensive description of SPH, we refer the reader
to some monographs [33–35] and recent review articles [26,36,37].

The continuity equation can be implemented in SPH by a dis-
crete summation form [38]

di ¼
1
V i
¼ qi

mi
¼
X

j

Wij; _ri ¼ vi; ð1Þ

where di;V i;mi;qi; ri and vi are number density, volume, mass, mass
density, position, and velocity of SPH particle i, respectively; each
SPH particle has a constant mass m0; Wij ¼WðrijÞ is a bell shaped
kernel function, which depends on the inter-particle distance rij

and vanishes beyond a cutoff radius rc , that is, Wij ¼ 0 for rij P rc .

In this work we use a quintic spline kernel [39,40], which is piece-
wise and consists of three polynomial functions. This sets the cutoff
radius to be rc ¼ 3h, where h is the smoothing length corresponding
to the case if a Gaussian kernel were used [37]. Provided that the
total number of SPH particles remains constant, total mass is
exactly conserved and Eq. (1) provides an operative way to calculate
the density.

For the discretization of the momentum equation in the case of
viscous incompressible flow, we adopt the following formulation
[40]

mi _vi ¼ �
X

j

pi

d2
i

þ
pj

d2
j

 !
@W
@rij

eij þ
X

j

4g
1

d2
i

þ 1

d2
j

 !
@W
@rij

� eij � vij

rij
eij: ð2Þ

The first part on the rhs is the sum of pairwise conservative
pressure force FC

ij . An equation of state relating density q to pres-
sure p may be written as

p ¼ p0
q
qr

� �7

� 1

" #
; ð3Þ

where p0 (related to sound speed cs) and qr are parameters chosen
based on a scale analysis [41,39], to have sufficiently small density
variations. The second part on the rhs of Eq. (2) is the sum of pair-
wise dissipative viscous force FD

ij , which resists the relative velocity
vij ¼ vi � vj. Dynamic viscosity g is taken to be constant for each
SPH particle. We set h ¼ 1:5dx, where dx is the initial distance
between neighboring SPH particles, as this choice allows for obtain-
ing the Stokes drag acting on a solid particle within 1% accuracy
according to its geometrical radius [42].

By interchanging particle indices, FC
ij ¼ �FC

ji and FD
ij ¼ �FD

ji , New-
ton’s third law is satisfied and linear momentum is conserved
exactly. Furthermore, both FC

ij and FD
ij act along the unit vector

eij ¼ rij=rij ¼ ðri � rjÞ= rij

�� �� pointing from particle j to particle i,
therefore angular momentum is also conserved strictly, which is
crucial for recovering the correct rotation of a solid particle under
shear flow [40].

The density and force calculations are based on pairwise inter-
actions between neighboring SPH particles, therefore the algorithm
can be readily implemented by a slight modification on any exist-
ing software of particle methods (e.g., [43,44]).

2.2. Suspended solid particle and bounding wall

Any solid particle suspended in a fluid or any solid wall can be
modeled by collecting a group of SPH particles as boundary par-
ticles within the solid domain. The SPH particles at boundary
interact with SPH fluid particles by means of suitable forces
which enforce no-slip boundary condition at the fluid–solid inter-
face [40]. Initially, all SPH fluid particles are placed on a square
grid inside the fluid domain and a new set of SPH boundary par-
ticles is created parallel to the surface inside each solid object, as
shown in Fig. 1. The distance between neighboring layers is dx as
well as the distance between two neighboring SPH particles in
the same layer. This choice ensures to have an approximately
constant number of interpolating points near the fluid–solid
interface.

During the pairwise viscous force calculation FD
bf , velocity vb of

any SPH boundary particle b inside a solid object a is extrapolated
from its interacting SPH fluid particle f by requiring no-slip condi-
tion on the solid geometrical surface. Afterward, the total force and
torque exerted by the surrounding fluid on a are computed by col-
lecting forces and torques on each b as follows,

1 Note that a numerical particle in SPH should be distinguished from a suspended
solid particle: the former simply represents a Lagrangian discretization element; the
latter is a physical solid grain whose model is described in Section 2.2. When we say a
particle, it always means a solid particle. We always use ‘‘SPH particle’’ to denote the
numerical particle.
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FSPH
a ¼

X
b

X
f

ðFC
bf þ FD

bf Þ; ð4Þ

TSPH
a ¼

X
b

X
f

ðrb � RaÞ � ðFC
bf þ FD

bf Þ; ð5Þ

where rb is position of b and Ra is center position of a. In this way,
the long- and intermediate-range hydrodynamics are captured cor-
rectly. Note that vb is employed to satisfy the no-slip boundary con-
dition and the actual motion of b is due to the rigid motion of a.

2.3. Lubrication force correction and short-range repulsive force

When two solid particles are in near contact, the flow of the
fluid in the gap cannot be captured accurately due to the finite dis-
cretization of the fluid, therefore the lubrication forces acting on
them are poorly represented. One possible strategy is to increase
the resolution locally within the gap until the flow is fully resolved
[45]. However, this choice is computationally impractical, espe-
cially in the case of a concentrated suspension where many
nearly-touching pairs of solid particles can be present at once. To
remedy this problem, an analytical form for the pairwise lubrica-
tion force at short distance between solid particles was applied
[29,46]. A 2D squeezing lubrication force for two equal-sized dis-
coidal particles is given as in Ref. [46]

Flub
ab ðsÞ ¼ �

g
2

Vab � eab A1
2a
s

� �3=2

þ A2
2a
s

� �1=2
" #

eab; ð6Þ

where A1 ¼ 3
4 p

ffiffiffi
2
p
¼ 3:3322; A2 ¼ 231

80 p
ffiffiffi
2
p
¼ 12:829; each solid par-

ticle has the same radius a and s is the separation distance between
the surfaces of solid particle a and b; Vab � eab is the component of
velocity difference along center-to-center line. In the case of SPH,
we have introduced a pairwise correction for lubrication force,

Flub cor
ab ðsÞ, between solid particles.

Flub cor
ab ðsÞ ¼ Flub

ab ðsÞ � Flub
ab ðscÞ; s < sc;

0; s P sc;

(
ð7Þ

where sc ¼ 1:5h. Below this resolution length, the lubrication force
generated by SPH method is nearly constant such that this value can
be subtracted off from that calculated analytically in Eq. (6), to yield
an accurate lubrication force between the particles [47]. For the typ-
ical SPH resolution h ¼ 0:3a considered in this work, sc ¼ 0:45a.
With this correction, the open and close trajectories of two spheri-
cal particles under shear flow are reproduced accurately by compar-
ing with analytical results [47].

It has been pointed out that an ideal non-Brownian concen-
trated particulate suspension under shear flow is a singular prob-
lem [30,48,31,49]: that is, the distance between neighboring solid
particles becomes indefinitely smaller along the compression axis

for some instantaneous configurations and there is no steady state
under shear flow. Therefore, in numerical simulations a very short-
range repulsive force is usually introduced to stabilize an ideal
non-Brownian suspension and prevent particle overlap for a finite
time step. The specific form of the repulsive force is not crucial as
long as it is stiff [31]. In this work we adopt a commonly used
repulsive force law which reads [16,31,18],

Frep
ab ðsÞ ¼ F0

se�ss

1� e�ss
eab; ð8Þ

where s�1 ¼ 0:01a sets the active range and jF0j sets the magnitude.
The repulsive force decays below 1%jF0j beyond 0:05a.

We note that Flub cor
ab ¼ �Flub cor

ba and Frep
ab ¼ �Frep

ba , and they both
act along eab, therefore both linear and angular momenta are
always conserved. The same repulsion is also applied between
the solid particles and the upper and lower bounding walls.

2.4. Time integration

To update positions and velocities of SPH fluid particles, a mod-
ified explicit velocity Verlet algorithm is utilized [50]. To maintain
the numerical stability of the explicit time-integrator, the time-
step size Dt must be restricted by three conditions [39]:

1. Dt 6 0:125h2
=m: viscous constraint;

2. Dt 6 0:25h=cs: Courant–Friedrichs–Lewy condition;
3. Dt 6 0:25 min

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh=f sÞ

p
: maximum SPH particle acceleration,

where the kinematic viscosity m ¼ g=q; cs is the speed of sound in
fluid; f s is acceleration acting on any SPH particle.

For each solid particle a, the total force and torque acting on it
are summarized as follows

Fa ¼ FSPH
a þ

X
b–a

Flub cor
ab þ

X
b–a

Frep
ab ;

Ta ¼ TSPH
a : ð9Þ

To integrate the previous set of ordinary differential equations
explicit schemes (e.g., Euler or velocity Verlet) are limited by extre-
mely small time steps, especially in the case of dense suspension at
high shear stress, where particles form clusters and move collec-
tively (see Section 3.2). We have recently proposed a splitting inte-
gration scheme to stabilize and accelerate simulations in such
scenarios [47]. The key idea is summarized as follows. The inter-
mediate- and long-range multi-body hydrodynamic forces on par-
ticles, which are computed by the SPH method, are taken into
account using the explicit velocity Verlet integration; the short-
range lubrication correction force in Eq. (7), which is introduced
to resolve the flow of very thin film between nearby particles, is
active in parallel to the SPH forces. These lubrication forces depend
on both relative position and velocity of two particles, and are gen-
erally very stiff. Furthermore, relative motion of one pair causes
relative motions of all nearby pairs and the overall particles’
behavior is rather collective than purely pairwise (see definition
of hydrocluster in Section 3.2). Both the stiffness of lubrication
force and the collective behavior of particles lead any explicit inte-
gration to be extremely unstable. The particular behavior of con-
centrated suspension motivates us to integrate the lubrication
forces implicitly by sweeping over all the neighboring pairs itera-
tively, until convergence in the solution of velocities is obtained;
the repulsive force between solid particles is also integrated using
the explicit velocity Verlet scheme.

The concept and operations of the splitting scheme offer some
advantages over standard approaches. On the one hand, it avoids
the performance of a full matrix inversion over all the solid parti-
cles as used in ‘‘conventional’’ implicit schemes [51]; on the other

Fig. 1. Representation of a spherical solid particle (similar for a plane wall): SPH
boundary particles are placed parallel to the surface with the same neighboring
distance dx. During the motion of the solid object, SPH boundary particles do not
have relative movement to each other and the rigid motion of the solid object is
guaranteed.
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hand it bypasses the ‘‘local’’ implicit schemes performed on clus-
ters [52], which depends on the dynamics. In contrast to the previ-
ous approaches, the novel scheme generates a series of small
systems of equations for the lubrication contribution, which are
solved analytically rather than numerically. For further details on
accuracy and efficiency, we refer to Ref. [47].

3. Results and discussions

A randomly dispersed suspension is created within a simulation
box, as depicted in Fig. 2. All simulation parameters are non-
dimensional and the relevant physics are determined by the
Reynolds number, non-dimensional shear rate and non-dimen-
sional shear stress, which will be defined later. Solvent dynamic
viscosity g ¼ 8:46 and density q ¼ 1:0 are input parameters of
SPH method. Particles are neutrally buoyant with radius a ¼ 1.
Channel gap Ly is varied within 8, 16, 32, 64, 128, and 256. Particle
Reynolds number is defined as Re ¼ qa2 _cin=g, where input shear
rate _cin ¼ 2jvwj=Ly ¼ 0:10575 with vw being the wall velocity. To
rule out effects of finite particle inertia [53], Re ¼ 0:0125 is kept
constant in all simulations and jvwj has a value within 0.423,
0.846, 1.692, 3.384, 6.768, and 13.536 for each Ly respectively. Lx

is always selected sufficiently large to minimize effects of periodic
images. Artificial sound speed cs ¼ 30 is universally adopted to
have a weakly compressible fluid. The ratio between the areas of
particles and the simulation box defines a 2D solid concentration
/. Previous literature relates this areal fraction of the 2D suspen-
sion to be equivalent to 2=3 of the volume fraction of a 3D suspen-
sion [54]. To study the effects of confinement Ly, different total
numbers of particles Np are used in different domain sizes, e.g.,
Np ¼ 48� 1536 for / ¼ 0:589.

3.1. Viscosity

3.1.1. Newtonian regime
As layers of particles [55,46,47] form in the near wall regions,

suspensions show wall slip under shear flow, as shown in Fig. 3.
We note that velocity slip is present between suspension and wall
while a no slip interface is always preserved between fluid and
solid [40]. We further note that increasing Ly, decreasing /, or
reducing _cin alleviates suspension slip near the wall. An effective
shear rate _c is obtained by linearly fitting the time averaged veloc-
ity profile excluding the regions near the two walls. Note that

particle Reynolds number would be even smaller if it is based on
_c instead of _cin, assuring an inertia-less regime.

Shear stress rxy of a suspension is directly obtained from the
shear force Fx acting on SPH walls as Fx=Lx. Thus, this stress
includes the hydrodynamic stress as well as any stress arising
due to the short-range repulsion acting between particles. With
the effective shear rate _c, viscosity of the suspension is calculated
as

gsus ¼ rxy

_c
¼ Fx

Lx _c
: ð10Þ

For dilute particle suspensions, the relative viscosity has been
shown analytically as

gsus=g ¼ 1þ ½g�/; ð11Þ

where ½g� is the intrinsic viscosity. ½g� ¼ 2:5 for three dimensional
spheres recovering the Einstein’s result and ½g� ¼ 2 for two dimen-
sional discs [56]. For dense suspensions, various phenomenological
models have been proposed [57]. In particular, the Krieger & Dough-
erty model based on semi-analytical solution reads as

gsus=g ¼ 1� /=/maxð Þ�½g�/max ; ð12Þ

where /max is the maximum possible concentration and ½g� ¼ 2 [58].
Furthermore, the Quemada model based on optimized dissipation
energy reads as

gsus=g ¼ 1� /=/maxð Þ�2
; ð13Þ

which is a particular case of Eq. (12) with exponent ½g�/max ¼ 2 [59]
previously used for both two and three dimensions. For an infinite
box in two dimensional Euclidean space, it was shown by Joseph
Louis Lagrange in 1773 that the maximum packing density of discs
takes place when discs are placed in a hexagonal lattice and in
contact with six neighbors. In such arrangement, /max ¼
p=2

ffiffiffi
3
p
� 0:907. Another useful limit is that of random close pack-

ing, which has been determined to be 0:82 in 2D by Berryman
[60]. We run simulations of / up to 0:589 in the Newtonian regime
and compare the viscosities with Eqs. (11)–(13) in Fig. 4. Results of
simulations agree well with the analytical solution at dilute concen-
trations and start to deviate when / > 0:19. We note that at each /,
increasing confinement leads to a larger suspension viscosity and
this effect increases with increasing particle concentration. This
can be explained in part if one takes a perspective of geometrical

Fig. 2. Schematic of a 2D suspension under Couette flow: multiple solid particles
with radius a are suspended in a Newtonian solvent; periodic boundaries are
applied in x direction; two parallel walls modeled by SPH boundary particles are
placed in y direction and move with velocity jvwj in opposite directions, creating a
clockwise shear flow with shear rate _cin.
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Fig. 3. Time averaged velocity profiles for / ¼ 0:589; _cin ¼ 0:10575, and
Frep

0 ¼ 89:4645 at Newtonian regime: the linear profile is generated by SPH
simulation of pure fluid, which agrees well with input shear rate _cin . Beyond the
slip regions near walls, the profiles are always linear in the middle. Increasing the
height of the channel Ly reduces slip significantly.
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packing of particles [61]: for a more confined system the maximum
possible concentration /max is smaller and an effective packing ratio,
that is, /eff ¼ /=/max, is consequently larger, leading to a higher vis-
cosity. With an increasing /, /eff also increases faster for the more
confined system, so does the suspension viscosity. Moreover, the

presence of the confining walls fundamentally changes the HIs
between particles, as recently demonstrated by Swan and Brady
[25], where more confined system has stronger HIs.

The saturated viscosity at each /, corresponding to the weakest
confinement, follows the Quemada model with /max ¼ 0:907 and
Krieger & Dougherty model with /max ¼ 0:82 (more relevant for
this disordered system). The other confined viscosities are
bounded from above by the Quemada model with /max ¼ 0:77, at
which viscosity diverges, corresponding to the most confined sys-
tem with Ly ¼ 8.

3.1.2. Non-Newtonian regime
According to previous work on non-Brownian suspensions

[16,31,18], a non-dimensional shear rate _c� ¼ 4ga _c=Frep
0 is defined,

which represents the ratio of hydrodynamic and repulsive forces
between particles. The value of _c� determines the degree to which
the shear flow competes with the short-range repulsive forces and
therefore is important in determining the suspension microstruc-
ture under flow, just as the Péclet number does for a Brownian
suspension [8,62]. Dratler and Schowalter [31] studied the conse-
quences and necessity of including this short-range repulsive force
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at Newtonian regime: gsus is always calculated based on the effective shear rate _c;
should it be based on _cin , gsus would have a smaller value as shown in Ref. [47].

Table 1
Detailed results for two representative confinements Ly ¼ 16 and 64: input shear rate
_cin � 0:10575 is universally used and repulsive force magnitude Frep

0 ¼ 8:94645� f rep
0 ;

effective shear rate _c is always measured to obtain suspension viscosity; non-
dimensional shear stress r� is defined in Eq. (14); case A–I represent individual
magnitudes of repulsive force, therefore different r� . We note that within each case _c
is generally not the same for each confinement, although _cin and Frep

0 are the same.
Statistical error of viscosity: 6 2% for Newtonian regime; 6 4% for shear-thickening
regime; 6 7% for jamming regime (G, H, and I at Ly ¼ 16.)

Case Ly ¼ 16 Ly ¼ 64

f rep
0 100 _c r� gsus=g 100 _c r� gsus=g

A 103 7.33 8.36E�4 12.07 9.91 8.60E�4 9.17
B 102 7.13 8.38E�3 12.26 9.89 8.63E�3 9.24
C 10 7.20 8.35E�2 12.27 9.92 8.68E�2 9.25
D 1 6.83 8.42E�1 13.03 9.93 8.75E�1 9.31
E 10�1 6.53 8.84 14.32 9.89 9.45 10.09
F 10�2 5.64 9.92E 18.60 9.86 1.01E2 10.87
G 10�3 3.95 1.05E3 28.16 9.77 1.06E3 11.48
H 10�4 2.51 1.11E4 46.94 9.67 1.12E4 12.20
I 10�5 1.33 1.25E5 99.57 9.27 1.14E5 13.01
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Fig. 6. Radial distribution function (RDF) for / ¼ 0:589 in system ½64;64� at shear
stress C according to Table 1: time-averaged quantity at steady state (shear rate is
clockwise). Color indicates the normalized probability. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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on the rheology of 2D suspensions using Stokesian dynamics.
Inclusion of such a force is necessary to prevent particle overlaps
and divergence of the hydrodynamic lubrication forces when par-
ticles approach each other. We vary Frep

0 to have different _c�.2 By
examining different concentration / ¼ 0:393;0:491, and 0:589, our
model of non-aggregating particles always shows reversible shear
thickening [12], that is, by slowly ramping up and down shear rate
no obvious hysteresis is observed. The following results are shown
for / ¼ 0:589 and other concentrations have qualitatively similar
behaviors.

Shear thickening takes place for each confinement Ly studied as
shown in Fig. 5(a). At low shear rates, a Newtonian plateau in the
effective viscosity is present; upon increasing _c�, the viscosity
becomes non-Newtonian and starts to increase at a critical shear
rate _c�c , which depends on confinement, namely, a more confined
system tends to have a smaller value of _c�c [63,22]. A better estima-
tion of the onset of shear thickening can be obtained by introduc-
ing a non-dimensional shear stress r� defined as

r� ¼ rxy

Frep
0 =a

¼ gsusa _c=Frep
0 ; ð14Þ

where the unit of stress in 2D is force per unit length. If viscosity
curves are plotted according to r� in Fig. 5(b), shear thickening
emerges at the same critical shear stress r�c for each confinement,
which is reminiscent of the results reported for different concentra-
tions [12]. For future reference, details of two representative con-
finements (Ly ¼ 16 and 64) are presented in Table 1. At each shear
stress r� (case E–I) in shear thickened regime, stronger confinement
also leads to higher viscosity, partially due to similar reasons as in
the Newtonian case. Shear thickened regime, however, has its
own distinct microstructure from that of Newtonian regime, which
has significance on viscosity and will be explained in the next.

3.2. Microstructure

We examine further the microscopic arrangement of the parti-
cles and identify microstructure changes corresponding to the vis-
cosity variation for each level of confinement. Similarly to previous
works [64,18] we observe an anisotropic particle radial distribu-
tion function (RDF), indicating uneven probability for particle
arrangements. As an example, for shear stress of Ly ¼ 64 at C (in
Newtonian regime) corresponding to Fig. 5 and Table 1, we present
the RDF averaged over steady state in Fig. 6. The high probability of
two particles’ relative position is along top-left to bottom-right
(compression axis) and this preference extends even to the sec-
ond-neighbor distance. The broken symmetry is a direct conse-
quence of short-range repulsive force, which slows down
approaching and accelerates departing of any two nearby particles.
This fore-and-aft asymmetry resembles Parsi & Gadala-Maria’s
experimental measurements on a concentrated suspension of solid
spheres [64]. The RDFs for other shear stresses have the same
anisotropy, but more compact structure is observed for higher
shear stress. This is also indicated by the angle-averaged RDF val-
ues at short distance as shown in Fig. 7 (left), where the first peak
shifts to closer distance at higher shear stress, indicating a thinner
lubrication layer. At low shear stresses A and B, two particles can-
not overcome the repulsive barrier at distance 0:05a. Moving away

from the first peak distance, the RDF drops significantly, before
increasing again towards a second maximum at two-diameter dis-
tance, as shown in Fig. 7 (right). The second peak indicates posi-
tions of particles are still correlated around a distance of two
diameters. Nevertheless, hgðrÞih goes to unity in a sufficiently long
distance, indicating uncorrelated particle positions.

The calculation of RDF is based on a pairwise fashion and its
peak location is completely determined by the balance of shearing
and repulsive forces. At high shear stress, however, the balance of
the two forces does not present in an isolated pairwise fashion but
is coupled to many other pairs, that is, besides the pairwise struc-
ture mentioned above, we observe also collective behavior of par-
ticles in a scale larger than the size of two particles. In particular,
we find increasing shear stress changes a well dispersed suspen-
sion to one with clustering particles, as directly visualized in Fig. 8.

To further quantify the rheological change, we take distance
0:05a as a threshold (repulsive force range), below which two par-
ticles are considered within the same cluster. Probability distribu-
tion of cluster size pðNÞ are shown for a typical system of
½Lx; Ly� ¼ ½64;64� in Fig. 9(a). At low shear stress (A–D correspond-
ing to Fig. 5 and Table 1), pðNÞ collapses on a single master curve
and accordingly the viscosity is constant. At shear stress r� > r�c
(point E), the tail of pðNÞ starts to increase, leading to a significant
probability for larger clusters, which corresponds to an increase in
viscosity [15]. The same correspondence between pðNÞ and viscos-
ity is confirmed by points F–I in the figure. These clusters are tran-
sient and change location and size dynamically.
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Fig. 9. Probability distribution of particles for / ¼ 0:589: (a) ½Lx; Ly� ¼
½64;64�; Np � 740 and (b) ½Lx; Ly� ¼ ½64;16�; Np � 160, inset shows more rapid
decay of pðNÞ for small sized clusters at G;H, and I. A–I are corresponding to
different r� in Fig. 5 and Table 1.

2 Varying repulsive force with a fixed shear rate is essentially equivalent to varying
shear rate with a fixed repulsive force. It is the ratio of the two (non-dimensional
shear rate) that determines the dynamics. We have explicitly checked this equiva-
lence for the non-dimensional shear rates spanning four orders of magnitudes using
the two different methodologies. However, the methodology of varying shear rate
while keeping low-Reynolds number becomes extremely expensive for the nine
orders of magnitudes of non-dimensional shear rates considered in this work.
Therefore, varying repulsive force is preferred.
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In a system with stronger confinement, e.g., ½Lx; Ly� ¼ ½64;16�,
upon increasing r� hydroclusters emerge similarly as in system
½64;64�, as shown in Fig. 9(b). At larger r�, however, a clear distinc-
tion is visible at points G;H, and I. Here pðNÞ shows a more rapid
decay at small sized clusters (inset of Fig. 9(b)). Moreover, pðNÞ
does not have a monotonic decrease but saturates with N and
appears to flatten out such that sample-spanning clusters exist
under flow (see the points H and I). Configurations of hydroclusters
at different shear stresses are shown in Fig. 10, where strong clus-
tering of particles takes place at the high shear stresses. Direct
visualizations of simulations show that for system in G;H, and I
configurations particles do not hop on and off different clusters
dynamically but are trapped within the same cluster for more than
10 strain units. In practice only few hydroclusters are observed and
particles within each of them move coherently. Under these condi-
tions where the hydroclusters percolate the distance between
walls, we consider the suspension in the jamming state and the
corresponding value of gsus becomes significantly larger (see Fig. 5).

3.3. Normal stress

Similarly to previous work in three dimension [20,18,65], we
observe negative first normal stress difference in our two dimen-
sional system of non-Brownian particles. In particular, in contrast
to the DST of frictional particles under confinement [22,23], we
do not observe an increase of normal stress or dilatancy accompa-
nying CST. For the nearly incompressible fluid considered here, it is
the gradient of the fluid pressure p, but not p itself, that affects fluid
motion. Therefore, the normal stress ryy for the suspension is
determined only up to an additive fluid pressure [2]. We show
ryy normalized by the value at shear stress A of Newtonian regime

in Fig. 11(a), where normal stress decreases at the onset of CST. The
decreasing normal stress on the wall can be explained by the lay-
ering effects of particles near the wall: due to the spatial restriction
of the wall in the normal direction and strong HIs between parti-
cles and wall, particles form layers near the wall [55,66]. With
increasing shear stress, the formation of particle clusters reduces
the concentration peak at the first layer, as shown in Fig. 11(b).
This softens the HIs in the normal direction between the suspen-
sion and the wall. As a consequence, the normal stress measured
on the wall becomes smaller.

3.4. Strength of shear thickening and its relation with hydrocluster and
confinement

To quantify the strength of shear thickening we define a non-
dimensional relative excess viscosity as

gsus
exc ¼ ðgsus � gsus

A Þ=gsus
A ; ð15Þ

where gsus
A is the Newtonian plateau viscosity at shear stress A.

Results of gsus
exc are shown in Fig. 12(a), where a more confined sys-

tem shows stronger shear thickening. Values of gsus
exc corresponding

to jamming structures (marked with �) are much larger than those
where small dynamic hydroclusters are present. Note that due to
statistical errors gsus

exc can be very small negative values at Newto-
nian regime. We fix such small values to be 1%, which allows for
logarithmic–logarithmic scale plot.

Furthermore, we analyze the connection between cluster distri-
bution and strength of shear thickening. We examine pðNÞ for the
same value of gsus

exc at different Ly. In the Newtonian regime
(gsus

exc 	 1%), for example, we compare pðNÞ at shear stress A under
confinement Ly ¼ 16;64, and 128. pðNÞ agrees with each other up
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46 X. Bian et al. / Journal of Non-Newtonian Fluid Mechanics 213 (2014) 39–49



to N � 20 among these confinements, as shown in Fig. 12(b). Obvi-
ous deviation takes place only when pðNÞ < 10�3; in the shear
thickened regime, for example, we consider a case of relative
excess viscosity gsus

exc ¼ 0:2. pðNÞ is found to be independent of Ly

up to N � 30, as shown in Fig. 12(b). Clear discrepancies show up
only when pðNÞ < 5� 10�3.

All other available equal values of gsus
exc confirm the similarity of

pðNÞ at both Newtonian and shear thickened regimes. This obser-
vation suggests the unique connection between cluster distribu-
tion and strength of shear thickening: regardless of the amount
of confinement (Ly), whenever a certain relative excess viscosity
gsus

exc is achieved, the microstructure is the same. Note that
confinement with less free space [61] provides an enhancing
mechanism for cluster formation at the same pðNÞ, namely,
r�ðLy ¼ 16Þ < r�ðLy ¼ 64Þ < r�ðLy ¼ 128Þ.

To examine the relation of shear thickening with different con-
finements, we take data samples of gsus

exc at different r�. As _c is
obtained via linear fitting of velocity profile, r� is not perfectly
aligned for different Ly at each shear stress A–I in Fig. 12(a). There-
fore, for a particular value of r�;gsus

exc is taken as a linear interpola-
tion of the two nearest available data and these sampled data are
always on the point-line curves in Fig. 12(a). We plot each sample
of gsus

exc versus a=Ly in Fig. 13. The value of a=Ly defines the strength
of geometrical confinement in the shear gradient direction. It is
clearly shown that gsus

exc monotonically increases with a=Ly and
has a stronger dependence on a=Ly at stronger confinement, but
is not so sensitive to a=Ly at weaker confinement. This is illustrated
by the fact that sampled data spans wider to the right side on the
figure. By extrapolating values of gsus

exc towards an infinite channel

height (Ly !1), the intercept with y axis in linear–linear scale
(Inset of Fig. 13) would define the bulk behavior. Extrapolating
our data, however, suggests in this limit that shear thickening is
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significantly reduced below the threshold accuracy of the method
(< 3%). This can also explain why CST obtained via previous simu-
lations using Lees–Edwards boundary condition is mild.

4. Conclusion

We present a suspension model based on smoothed particle
hydrodynamics (SPH) method. With the Lagrangian meshfree fea-
ture of SPH, moving boundaries of rigid particles and walls are
readily simulated. We apply the model to study the non-Newto-
nian rheology of non-Brownian repulsive particles in suspension.
In particular, the suspension is confined between two parallel
walls and undergoes simple shear flow. The flow is generated by
constant velocities of two walls in opposite directions, which
defines an input shear rate _cin. As concentrated suspensions always
show velocity slip near wall regions, we measure the effective
shear rates _c to obtain the suspension viscosity. Newtonian plateau
and thickened viscosities are universally observed at all confine-
ments studied.

Without an extra repulsive force between particles, the pairwise
microstructure (RDF) of particles would remain symmetric under
shear flow. It is the repulsion that breaks the symmetry of low-Rey-
nolds number regime, as shown in Section 3.2. Thereafter, the
detailed balance of shearing and repulsive forces determines the
degree of anisotropy in the microstructure and the strength of
the resulted shear thickening behavior. At higher shear stress,
however, the configuration of particles shows structure beyond
the pairwise fashion. In fact, as shown in Figs. 8 and 10, particles
form networks termed as hydroclusters. Within one hydrocluster,
relative motion of one pair is coupled to other pairs and as a result,
the particles show collective behavior for a certain time window. It
is worth emphasizing that gaps between particles within one
cluster are so small that viscous force due to lubrication layers
are large. This directly explains the increased viscosity at high shear
stress. The correlation of hydroclusters and the onset of shear
thickening is witnessed at all confinements studied. To quantify the
correlations, especially at each confinement, we further examine
the probability distribution of particles in the clusters against the
strength of shear thickening. Our simulations show that (i) higher
probability of large clusters leads to higher viscosity; (ii) strength
of shear thickening (defined as the excess viscosity rather than
the viscosity itself) is enhanced due to confinement, but is uniquely
determined by the hydroclusters distribution (see Fig. 12); (iii)
hydroclusters percolate and develop into a jamming structure under
strong confinement, resulting in a significant shear thickening.

We identify that wall confinement plays a geometrical role with
two consequences: (1) increasing effective packing fraction, reduc-
ing free space and facilitating cluster formation, and (2) enhancing
HIs [25]. As a result of both (1) and (2), at the same shear stress
stronger shear thickening takes place in a more confined system.
We further observe: (iv) extrapolating viscosity data in the limit
of weak confinement suggests a negligible shear thickening at bulk
for the shear stress range considered here.

We note that the strong, but continuous shear thickening under
confinement does not require the addition of surface friction [21],
yet can arise from HIs when particles have a finite surface rough-
ness represented by short-range repulsive forces. These results in
2D suspensions provide a possible explanation of non-Newtonian
effects often observed in experimental suspension rheology such
as microstructure without fore-aft symmetry and shear thickening.
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