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ABSTRACT 

In this paper we show that convolutions of sufficiently sparse signals 
always admit a non-zero lower bound in energy if oversampling of 
its Fourier transform is employed. This bound is independent of the 
signals and the ambient dimension and is determined only be the 
sparsity of both input signals. This result has several implications 
for blind system and signal identification and detection, noncoherent 
communication of sporadic and short-message type user data and 
strategies for its compressive reception. Furthermore, we give some 
first insights into the combinatorial nature of this problem, its scaling 
behavior and present numerical results as well. 

Index Terms- Circular Convolution, Sparsity, Young Inequal­
ity, Discrete Uncertainty Principle 

1. INTRODUCTION 

Starting with the first fundamental results in compressed sensing [ 1 ]  
it i s  known nowadays that the geometry o f  compressible signals can 
be used for an impressive reduction of the sampling rate down to 
the order of its information content. This includes sparse signals 
and signals with certain power law decay in its magnitude-ordered 
components. 

A new objective is the characterization of operations between 
compressible signals and the determination of the complexity of the 
resulting output set [2, 3, 4, 5] .  This situation has been considered 
for bilinear mappings in the paper [2] and an important case here 
is the convolution of two signals both being sparse in the canonical 
basis. The rate of non-adaptive compression of the output set de­
pends strongly on its geometry and this in turn is determined by the 
bilinear mapping itself. A peculiar property that implies a sampling 
complexity being additive in the sparsity of both inputs is that the 
£2-norm of the output can be related to the product of the £2-norms 
of the inputs 1 . For convolutions this refers to a reversed version of 
the Young inequality which is known only for positive signals [6] . 
The goal of this paper is to indicate such an input-output energy 
equivalence for sufficiently sparse inputs. This is a surprising result, 
since this equivalence does not exists for arbitrary input signals. 

Independently of the question of compressive reception, this 
input-output-property has also further important and practical appli­
cations. A typical situation in wireless communication, for example, 
is that one contribution is some possibly random but known probe 
signal [7] or even an unknown sparse signal containing a short mes­
sage and the second contribution might be a time-invariant channel 
with a quite small number of taps. From the discrete uncertainty 

1 In [2] we have called this "restricted norm multiplicativity"(RNMP) 
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principle [8] one could argue heuristically that with decreasing 
support of both signals its Fourier transforms will get more and 
more overlapping supports. Hence, with improved input sparsity 
of the signals its convolution will become increasingly observable 
in additive noise only by energy. For example, in blind system 
identification and signal detection both signals have to be identified 
based on observations of its convolution [9] . This noncoherent com­
munication approach will become more important since in many 
new wireless applications (like for example "internet of things" and 
"machine type communication") only short messages like status 
updates are transmitted through an unknown but sparse channel and 
should be decoded without performing complex channel estimation, 
feedback and channel-aware transmitter strategies [ 1 0] .  

The paper i s  organized a s  follows :  I n  Section 2 we reformulate 
sparse convolutions as certain linear mappings on tensor products. 
We state our main results in Section 3 which includes a reversed 
£2-inequality, combinatorial statements and insights from discrete 
uncertainty principles. Furthermore, we show that the optimal con­
stants are given as the minima of bi-quadratic optimization prob­
lems, which are usually NP-hard. In Section 4 we sketch the proof 
of the inequality and discuss the scaling of the optimal constants in 
terms of sparsity. Finally, we present in Section 5 a numerical algo­
rithm that approximates the constants up to a desired accuracy but 
with exponential complexity. 

2. SPARSE CIRCULAR CONVOLUTION 

l k  
Let F be  the Fourier matrix having elements [F] l k = Jn e- 27rt n 

for I ,  k E N  with N := {O , . . .  , n - I } . The circular convolution 
x ® y E IRn of two (real) vectors x, y E IRn is given [ 1 1 ]  by: 

x ® y := vnF*diag (Fx)Fy =: Xy. ( 1 )  

As well-known, the circulant matrix X can be  diagonalized by  the 
discrete Fourier transform F and is given in terms of the (right) n x n 
shift matrices Si with elements (Sihl = Ok , l(J)i as: 

n- l 
X = L XiSi . 

i=O 
(2) 

EEl denotes the addition modulo n and Oi ,j = ° for i i= j and 1 else. 
On the other hand, since x ® y is bilinear in both inputs, the 

circular convolution can be described by standard lifting as a linear 
mapping SN : IRn®n -+ IRn from tensor products x (9 y or, equiv­
alently, from rank-one matrices xy* to IRn . In the canonical basis 
{ek (9 ed�,120 '  where [ek l l := Okl ,  the mapping is represented by 
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the n x n2-matrix: 

(3) 

Consider now two subsets I , J c N and the corresponding canon­
ical subspaces X := span{ eihEl and Y := span{ ej }j E J of di­
mensions dim(X ) = I I I =:  s and dim(Y) = PI = :  f. Let be 
I = {io , . . .  , i s- d.  Then the action of C restricted on X 0 Y is 
then determined by the stacked n x sf-matrix: 

s5 = [Sjl S�" . . .  sj- 1 l  E IRn x sf 
(4) 

where Sj is the n x f-submatrix of Si with column indices in J. 

3. MAIN RESULT 

In this section, we will show for s :::; f :::; n, that all (s , f) -sparse 
circular convolutions embedded in IRn with ii = 2n - 1 have an 
universal f2 -norm lower bound. Notation: The sets 

L:s = U span{ ed I 
leN 
I l l =s 

L:f = U span{edJ 
JeN 
I J I =f 

denote all s-sparse resp. f -sparse vectors in IRn . The support of x 
is denoted by supp x. The f2 -norm is given by I l x l l  := J� i x; '  
We set 0 :=  ( 0 ,  . . .  , O)T E IRn-1 and Es :=  (L:s , 0) C IRn .  

Theorem 1.  Lei s J and n be nalUral numbers wilh 1 :::; s :::; f :::; n.  
Then Ihere exisl a constant am > 0 wilh m = min { sf, n} , such Ihal 
for all x E Es and Sr E E f il holds: 

(S) 
Moreover, am is a slriclly decreasing sequence. 

Relaled work: As already noted in the introduction, the lower 
bound in the theorem refers to a variant of a reverse Young inequal­
ity [6] . be a new and fundamental result for sparse convolutions . 
The condition of appending n - 1 zeros to x and y seems to be 
necessary: for s = f = 2, ii = 2n - 2 and every n :::: 4 it fol­
lows that I l x ® Sr l l  = 0 for x, Sr E IRn when the non-zero com­
ponents are Xo = Xn- l  = yo = yl72 and Yn- l  = -yo and 
therefore a = O. Our result establishes a reslricled norm mulliplica­
livity (RNMP) [ 1 2] for all (s , f)-sparse convolutions on the specific 
subset Es x E f .  This condition in turn can be used to establish a 
reslricled isomelry property (RIP) on the output set Es ® E f .  How­
ever, the concrete improvement of the sampling rate for the output 
signals, as suggested in [3] ,  is still an open question. 

3.1. Discrete Uncertainty Principle 

Here, we use results on the discrete uncertainty principle of DONO H 0-
S TARK [ 1 3] and a refined version of TAO [8] and CHEB OTAREV [ 14] 
to motivate our result for groups of prime order without an extra zero 
padding. Donoho and Stark could show in [ 1 3 ]  the following dis­
crete Uncertainty Principle for any x E IRn 

I l x l l o  I I Fx l l o  :::: n 
I l x l l o  + I I Fx l l o  :::: 2vn 

(6) 

(7) 

Since diag (Fx)Fy = Fx 0) Fy, where 0) denotes the pointwise 
product, we can see by definition ( 1 ) ,  that 

I l x ® y l l  = vn I I Fx 0) Fy l l  . (8) 

Hence, we get the following implication 

(x i= 0 i= y, I I Fx l l o  + I I FY l l o  > n) =? (Fx 0) Fy i= 0) 

{o} (O i= x ® y) (9) 

{o} (0 i= I l x ® y l l ) 

By the DONOHO - S TARK inequality (6) and with I l x l l o  :::; s and 

I I Y l l o  :::; f in Theorem 1 we get 

n n s + f !  
I I Fx l l o  + I I Fy l l o  :::: -; + 7 = n--;j > n.  ( 10) 

This is only possible if s + f > sf, which holds if and only if s = 1 
or f = 1 .  But this is trivial. So Donoho-Stark can not provide the 
existence of a > 0 in Theorem 1 for all cases. In fact, if n is prime, 
the TAO inequality [8] 

I l x l l o  + I I Fx l l o  :::: n + 1 {o} I I Fx l l o  :::: n + 1 - s 

yields with the assumption n :::: s + f - 1 

I I Fx l l o + I I FY l l o :::: 2n+ 2 - s - f :::: n+ l > n.  

( 1 1 )  

( 1 2) 

Hence, whenever 1 :::; s + f - 1 :::; n and n is prime, we have for 
all x E L:s , y  E L:f that x ® y i= 0 {o} x i= 0 i= y. Due to the 
upper bound in (S), which was shown in [ 1 2] ,  the map I l x ® y l l  is 
continuous and hence the infimum a is attained and larger than zero. 
Nevertheless, we will see in the next section, that solving a is an 
NP-hard problem. 

3.2. Bi-quadratic Optimization and NP-hardness 

The optimal lower bound aop, in (S) can be formalized as a non­
convex optimization problem. For any x, y E IRn the objective 
function can be calculated as: 

b(x, y) : = I I� XiSiyr � (�� [Si lmiXiYj) 
2 

� (�� [S ' [�jX;Yj %% [S" [�j ' X" yj ') 
= L L Diffjj , i ' ffjj ' XiYjXi ' Yj ' 

i , i ' j ,j '  

where we define the tensor B = (Diffjj , i ' ffjj ' ) of  fourth order by 

Diffjj , i ' ffjj '  : = L[Si lmj [Si' l mj '  = L Dm,iffjj . Dm , i ' ffjj ' ( 1 3) 
m m 

Since B is not partially symmetric, we symmetrize by 

1 
bij i, j' : = "2 (Diffjj , i ' ffjj' + Di' ffjj , iffjj' ) ( 14) 

using the property Di ,j = Dj , i ' Hence B satisfy 

i , i j ,j ' i , i j ,j ' 

with the partially symmetries 

0 :::; i , j , i' , j ' :::; n - 1 . ( IS)  
For l e N  we define the embedding of x E IRs 

in IRn by Xc> :=  
[PIxl j  :=  ��-:,� Dja ,j Xc> for j E N. We denote for fixed I, J by 
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aJ , ]  the solution of the bi-quadratic optimization problem over the 
bi-sphere given by 

(P) min b(P7x, P}y) , 
(x ,y) E ss - 1  x sJ - 1  

( 16) 

then the optimal lower bound is given by aopt : =  minJ , ]  aJ , ] .  For 
fixed B, I, J, this problem was well studied in [ 1 5 ,  ( L l )] and is 
by Theorem 2.2. NP-hard. Furthermore the authors in [ 1 5] could 
show that (P) can be written as a bilinear SDP relaxation problem, 
which obtains the same optimal solution by Theorem 2.4. Hence, 
this relaxation is also NP-hard. An alternative approach is to fix y 
and calculate the n x n matrix By,  by 

bi , i ' (y) : = L bij i, j ' Yj Yj ' = L Oi(f!j, i ' (f!j ' Yj Yj ' ( 17) 
j ,j ' j ,j ' 

= L YjYj(f! (i8i' ) = bi- i, (y) ,  

which defines a symmetric Toeplitz matrix [ 1 6] , [ 1 1 ] .  Moreover 

min b(x , y) = min (x, Byx) = A (By ) 
I l x l l = 1 I l x l l = 1 

( 1 8) 

( 19) 

is the smallest eigenvalue of By [ 1 5 ,  ( 1 .3)] , which is non-negative 
and efficiently solvable, see Section 5 .  

4 .  SKETCH OF PROOF 

Embedding IRn in lRii with ii = 2n - 1 by adding n - 1 zeros to 
each vector, we can replace the addition modulus ii with the usual 
addition, since for all index sums in ( 1 8) it holds j + k ::; 2n - 2 
for j, k E N. Moreover, using the support property x = (x, O) 
equation ( 19) defines the smallest eigenvalue of the n x n principal 
submatrix in By given by [By b' = bi- i , = bk for i, i' E N. The 
first row is then given for k E N  as 

ii-I n - l  n-l-k 
bk (Y) = L Yj'Yj(f!k  = L YjYf+k = L YjYf+k = bk (Y) (20) 

j=O j=O j=O 

and By = By. The aperiodic autocorrelation vector bey) in (20) , 
can be written as b = Yy , where Y is an n x n skew-symmetric 
Toeplitz matrix with elements [YL k = YHk . which has due to the 
removed periodicity a triangular structure. The shift k moves the 
support out of J, Hence the number of non-zero coefficients per rows 
decreases. If we restrict the support x, y to I resp J, then we cut 
out a symmetric s x s Toeplitz matrix B� with coefficients k E 
I e io = 1 - io = {ko , . . .  , ks- d  Assume we can represent (20) 
for each I, J and y by a s samples ki of the autocorrelation of a 
vector y = y(y) E IRm , i.e. for all i E {O ,  . . .  , s - I }  we set 

m 
b{ (y) := bki (y) = L f}jYHki = :  bki (y) , (2 1 )  

j=O 
which generates the m x m Toeplitz matrix 

(22) 

with symbol 

m-l  
b ey ,  w ) = 1 + L bl (y) cos ( lw ) w E [0 , 27r) .  (23) 

1=0 

Then the s coefficients in (2 1 ) ,  define the principal submatrix B� 
of Br and by CAUCHYS Interleacing Theorem, the eigenvalues are 
bounded from below by the smallest eigenvalue of Br , i.e. 

min A (B�n y ) 2: min (x , Brx) = min A (Br ) ,  (24) 
y E S J - l  J x ,y E S = - l  Y 

where the right hand side is independent of I and J. Hence, bey,  w ) 
with bl given in (21 )  is by the SZEGO Theorem a nonnegative cosine 
polynomial of order m - 1 [ 17 ,  Thm.4] , i.e. we have to consider the 
minimum over all Szego type polynomial of order m - 1 .  For each 
normalized y E IRm we get ° ::; minw b(y, w ) and by Bottcher in 
[ 1 8 , ( 1 0.2)] we have A (Br ) > 0 .  Then Br is invertible and the 
determinant 1 det (Br ) 1 > 0. Using 

A(�r) 
= I I Br l 1 2 (25) 

[ 1 8 , p.59] , we can estimate the smallest eigenvalue (singular value) 
by [ 1 8 ,  Thm. 4.2] to the determinant as 

A(B�)  2: 1 det (B�) 1 
Vm(�l I bl (�) 1 2 ) (m- 1 ) /2 ' (26) 

where the £2 -norm of the sequence bk can be upper bounded by 

m - l  m- l  
L I bl (y) 1 2 ::; 1 + 2 L 1 L Yj YHl 1 2 ::; 1 + 2m - 2 ::; 3m, (27) 

1= 1 j=O 

which is independent of y E sm- 1 ! Since the determinant is a con­
tinuous function in y over a compact set, the minimum is attained 
and is denoted by Cm := miny 1 det (Br ) l . Note, that Cm is a de­
creasing sequence, since we extend the minimum to a larger set by 
increasing m. Hence we get 

mJn ( I det (B�) 1 
Vm(3m� (m- l ) /2 ) = (3�/2 Cm (28) 

This is a valid lower bound by (26) for the smallest eigenvalue of all 
possible Br.  Hence we have shown 

aopt 2: mip min b(x , y) 2: V3(3m) - T cm = :  a(m) . (29) 
yE I; J xE I;s 
l I y l l = l l l x l l = 1 

The upper-bound in (5) was shown by the authors in [2, (32)] . 

4.1. Combinatoric via Construction of an Algorithm 

Let us set S := {O ,  . . .  , s - I } and F := {O ,  . . .  , f  - I } and assume 
that sf ::; n. We will now show that then the dimension m of the 
Toeplitz matrices can chosen to be at most m = sf . To this end we 
define the vector y E IRm by Yj = �aEF 0J", ,{ Ya and we denote its 
support by the set J = { )" 1 a E F} . According to (21 )  we have 
to show that there exist f resp. s indices Ga }aEF and {kd iE S  such 
that for all i E S it holds: [n- 1- L  n- 1 - k · 1 

L L OJ ,J,,, OHkd{3 - L OJ ,j,,, OHki ,j{3 Ya:Y/3 a: ,/3 j=O ) =0 

=: (y, C (i ) y) = ° for all y E IR! 

(30) 

Thus, all s matrices C(i) E IR! X ! must identically zero. In other 
words, the dimension m must be large enough, such that the f2 . s 
equations : 

(3 1 )  
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can be fulfilled for some {)" }"EF , {kdiES  C {O ,  . . .  , m - I } . 
In the Algorithm 1 below we show an inductive strategy to construct 
such index sets . The algorithm starts with dimension m = f and 

Algorithm 1 "Inserting Zeros" 

Set J" = a for all a E F =? m = f 
Set ki = i for all i E S 
for i = 1 to s - 1 do 

for a = 0 to f - 1 do 

o -¢= {jet + k; } n {ji3a-+<> , . . .  , j I-d, note that 1 0 1 � 1 
if 1 0 1 = 1 then 

{ji3a+ l } := 0 
ki' -¢= ki' + fJ,,+ 1 - 1  for i � i' < s 

else 

J,,' -¢= Jo:' + 1 for a < a' < f 
end if 

[verification, see (*) ] 
end for 

end for 

successively increases the dimension m =? m + 1 .  It contains two 
nested loops i = 1 . . .  s - 1 and a = 0 . . .  f - 1 such that the total 
number of added dimensions is (s - 1) f. Hence, the algorithms 
finishes with at most m = f + (s - l )f  = sf. Furthermore, it 
holds ks- 1  � s - 1 + (s - 1 ) (1 - 2) � sf - 1 .  
Let u s  emphasize some special sparse models: 
If I, J are arithmetic progressions with same distance, then the algo­
rithm only enters the case 1 0 1 = 1 and generates ki = i and hence 
we have m = f, which is the smallest possible embedding. More­
over, the inequality (24) becomes an equality such that the smallest 
eigenvalue of all symmetric positive Toeplitz matrices corresponds 
to the optimal lower bound of the convolution. 
If I, J are maximal separated, i.e. for each k E K we have 
J + k n J = 0, then all Toeplitz matrices equals the Identity. Hence 
a = A = 1. Moreover, we have even equality in (5), see [ 1 2] .  

(*) Finally, we verify now that after step ( i ,  a) the corresponding 
requirement (3 1 )  already achieved in steps i' < i are still satisfied 
for all a' and fJ' .  However, in this step only J,,' for a < a' � f - 1 
are redefined. Not changing the value of 6ja , +k.i , ,jf3 ' means that the 

following cases for each fixed i' and a' : 

should be remain unchanged. If the algorithm reassigns J 0: ' =? J ,,' + 
1 we have to satisfy: 

since fJ' > oo. This is sufficient due to fJ' � a < a' , J is ordered 
and ki, 2: O. On the other hand: 

fJ' > a 
(35) 

fJ' � a 

If fJ' > a then from J,,' + ki, =J. Ji3 ' it follows also J,,' + 1 + ki, =J. 
Ji3' + 1 .  If fJ' � oo then J" , + I+ki , > Ji3' since ki , 2: O. Hence, also 
here the step ( i , oo) possibly changing Jo:' =? Jo:' + 1 is consistent 
with previous steps .  
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5. ALGORITHMIC IMPLEMENTATION 

The Problem in ( 19) can be approximated by discretization of y in 
D = {O ,  Vlfd, . . .  , VJ7d} with d E IN .  Hence Dm is a m­
dimensional uniform grid of the cube. For each fixed Y d E Dm 
with I I Yd l 1 = 1 we get BYd and obtain the approximate solution 

(36) 

which is an (1 - 1/ d) -approximation solution to a ,  [ 1 5] ,i.e. 

> low, d ._ d m 
am _ am . - am - d '  (37) 

The price, is the size of the cube grid: the number of possible grid 
points Yd are of the order I D l s  = (d + l ) m < mm and hence 
sub-exponential. We could establish in Fig. 1 with MATLAB global 
lower bounds, drawn as doted green lines, for am . For m > 6 the 
computational time was to large to establish a global lower bound. 

, ," I'""'==----�---�---�---�-=== 

I --- - :�d l 

, , 
, , 

m 

, , 

Fig. 1 :  Approximation results of the lower bound am . 

6. CONCLUSIONS 

We could show a non-zero g2 -norm lower bound for highly sparse 
circular convolutions and establish a sub-exponential scaling de­
pending only on the input sparsity. This is a new and surprising 
results, which offers new insight in digital signal processing. 
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