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1. Introduction

Humankind, given its own nature, has always tried to understand the Universe
and its place in it. Since the beginning of history, cosmology has been the
science through which women and men have tried to find answers to those
fundamental questions by peering into the sky. Problems such as the motion
of the planets, the nature of the space between stars, or the formation and
evolution of galaxies, have been progressively understood thanks to the efforts
of many generations of scientists.

For millennia, humans have often observed new stars appearing in the night
sky. As early as in 1006, Arabic and Chinese astronomers recorded the observa-
tion of a bright newly-born star that shone in the sky for nearly two years and
disappeared afterwards. Over the years scientists became aware that some of
these events were remarkably more luminous. Moreover, estimated distances
to these objects indicated that they had an extragalactic origin. Especially
important were the observations of the (super)nova S Andromedae in the An-
dromeda galaxy in 1885. It was reckoned, that these bright events were differ-
ent from any other object ever observed before. The origin and nature of those
stars remained a mystery until the beginning of the 20th century. Considered
as beacons in the Universe from which relative distances can be measured,
Type Ia supernova explosions play a key role, not only in cosmology, but in
other fields of astrophysics. Our understanding of these magnificent objects is
fundamental to comprehend the Universe in which we live in.

Gravity and its effect on planetary orbits, has equally attracted a great
deal of interest over history. From the theoretical, almost spiritual, beliefs of
ancient Greek philosophers to the efforts of Galileo Galilei designing experi-
ments with inclined planes, understanding the gravitational interactions which
govern our planet and our Universe has been a priority for scientists. The first
scientist who described gravity in quantitative terms, was Isaac Newton, who
formulated the universal inverse-square law and provided extraordinary simple
and accurate explanations of a wide range of terrestrial and celestial phenom-
ena. Newton’s laws were the accepted paradigm for gravity for the following
two hundred years. In 1916, Albert Einstein presented his General Relativity,
introducing revolutionary concepts that led to a new era in physics and cos-
mology. Einstein described the curvature of space-time to be responsible of the
effects of gravity but believed that the expansion detected by Edwin Hubble
in 1925 would slow down over time, according with the Newtonian ideas.

11



12 1. INTRODUCTION

However, the past fifthteen years have brought mounting evidence that the
expansion of the Universe is nowadays in an accelerated phase. Amongst the
several observational probes that led to such conclusion, and the first to reveal
such a striking finding, are Type Ia supernovae.

The currently adopted paradigm accounts for the acceleration but it re-
quires the presence of an unknown component, dark energy, which is in fact
the major constituent of our Universe. Present understanding of this compo-
nent is uncomfortably close to nothing, which calls for a significant effort both
at an observational and experimental front and on theoretical grounds. Be-
cause of the important implications of the acceleration, ambitious experimental
efforts are being developed to measure the expansion history and growth of
structure in the cosmos with percent-level precision or better.

A relatively large number of non-standard theories have been proposed
to tackle the nature of dark energy. Indeed, cosmic acceleration is the most
profound puzzle in contemporary physics and can lead to new ideas about the
interaction between gravity and the quantum vacuum, the existence of extra
spatial dimensions or the nature of quantum gravity.

A model-independent approach to directly interpret the data is arguably
essential, if one would like to avoid introducing prejudices or biases from theo-
retical frameworks. The work in this thesis consists in implementing a recently
developed methodology to derive the expansion history of the Universe in a
model-independent fashion, using currently available Type Ia supernova data.
Such reconstructions not only allow to recover the expansion history of the
of the Universe, but also provide means to test cosmological models of the
nature of dark energy. A number of tests on the improvement that future
samples should provide or the effect of the different calibration methods are
also presented. These studies shed light on the next necessary steps, from the
observational side, to ensure progress.

This work is but a first step in the direction of providing tighter constraints
on the expansion history of the Universe and some comprehension on the prop-
erties of dark energy. Model-independent methodologies are far from trivial,
and a better understanding of their power and drawbacks is fundamental. The
work presented here extends previous developments in this context. Future
work will see to apply these methods to an increasing body of observational
data, not only quantitatively, by including results from new observational cam-
paigns, but also qualitatively, allowing for the introduction of data such as the
Baryonic Acoustic Oscillations detected in the Cosmic Microwave Background.

This thesis is organised as follows. The Chapter 2 summarizes the main as-
pects of General Relativity and other alternative cosmological models needed
to understand the tests and discussions presented here. The standard cos-
mological scenario, the ΛCDM model, and the main cosmological probes that
led to the detection of the acceleration, are also reviewed here. Chapter 3
discusses our current theoretical understanding and observational evidence of
Type Ia supernova physics, and, based on that, to what extent one can rely
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on these objects to constrain cosmological models. Also, a description of the
calibration process and the different data sets available in literature, with spe-
cial interest on potential systematic errors, is included. In Chapter 4, the
essential mathematical aspects of the model-independent methodology to ob-
tain the reconstruction of the expansion history of the Universe is presented.
The results from applying such methodology to mock data simulated in dif-
ferent calibration frameworks and theoretical backgrounds, are presented and
discussed in Chapter 5. In Chapter 6, the reconstruction of the expansion
rate extracted from real data and compared with the most recent cosmological
results is reported. This chapter also includes tests on the gains from future
surveys and additional checks for systematic uncertainties within current su-
pernova samples. Moreover, a discussion on how well a number of current
theoretical models are able to reproduce the observational results is provided.
Finally, conclusions and future perspectives are presented.
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2. From General Relativity to
Cosmology

General Relativity is the most complete theory for gravity we have currently
at hand. Published by Albert Einstein in 1916 (Einstein, 1916) after almost
ten years of work to incorporate gravity into his new special theory of relativ-
ity, it unifies Special Relativity and Newton’s law of universal gravitation, and
describes gravity as a geometric property of space and time, or space-time.
This theory is based on the so-called Principle of Equivalence which states
that it is not possible to distinguish the effects of a gravity field from those of
an accelerated movement, locally, in a given reference frame. Einstein’s theory
has important physical and astrophysical implications such as gravitational
time dilation, deflection of light and gravitational lensing, gravitational waves,
precession of apsides and orbital decay, gravitational redshift of light, and the
existence of Black Holes (see e.g. Narlikar, 2002). These predictions have been
confirmed, directly or indirectly, in all observations and experiments to date.
Although General Relativity is not the only relativistic theory of gravity, it
is the simplest theory that is consistent with experimental data. However,
unanswered questions remain, the most fundamental being how general rel-
ativity can be reconciled with quantum physics to produce a complete and
self-consistent theory of quantum gravity.

Cosmology focus on the evolution of the Universe at very large scales, where
it is governed solely by gravity. In this context, General Relativity provides a
great theoretical framework to which refer most of the physical processes.

In this Chapter, basic notions of what is known as the standard cosmo-
logical model will be reviewed. Also, alternatives to General Relativity are
presented. For deeper insights into General Relativity and its observational
tests we refer the reader to the text books of Narlikar (2002) and Carroll &
Ostlie (1996).

2.1 The Robertson-Walker Metric

One of the most ingenious ideas in General Relativity is the interpretation
of the ever-present nature of gravitation as an intrinsic feature of the Uni-
verse. Einstein identified this fundamental property as the geometry of the

15



16 2. FROM GENERAL RELATIVITY TO COSMOLOGY

space-time, suggesting that any effects we ascribe to gravitation actually arise
because of distortions in geometry. We recall that the geometry of space can
be extended to the geometry of space and time by Einstein’s Special theory
of relativity. Let us consider two events in space and time labelled by the
coordinates (x, y, z, t) and (x+dx, y+dy, z+dz, t+dt), where (x, y, z) denote
spatial coordinates and t is the time measured by an observer O at rest in an
inertial frame. The square of the distance between them is given by

ds2 = c2dt2 − dx2 − dy2 − dz2. (2.1)

where c is the speed of light. The quantity ds is invariant under general
coordinate transformation, i.e. another observer O′ will measure the same
distance in a different reference frame with (x′, y′, z′, t′). When going from
Special to General Relativity, an expression equivalent to Eq. 2.1 is employed
for the invariant line element in a more general form

ds2 =
3∑

µ,ν=0

gµνdx
µdxν , (2.2)

where the coordinates are now called xµ, with µ = 1, 2, 3 representing the three
spatial directions and µ = 0 the time. The term gµν is the metric tensor of
space-time, which is symmetric (only 10 of its 16 components are independent).

In order to specify the metric an important assumption is usually adopted:
the Cosmological Principle, which states that on large spatial scales, at any
given cosmic time, the Universe is, statistically, isotropic and homogeneous.
This assumption implies that an observer viewing the Universe from any van-
tage point will find it looks the same in all directions. Moreover, he will realize
it presents the same aspect from all vantage points. The Cosmological Princi-
ple is well justified by observations, in particular by the spatial distribution of
galaxies, the spatial distribution of radio sources and the Cosmic Microwave
Background (CMB) radiation.

Isotropy and homogeneity greatly simplify the mathematical specification
of the metric, making non-zero only the time-time and space-space compo-
nents (otherwise a preferred direction could be identified). Moreover, clock
synchronisation arguments imply g00 = c2, which is usually referred to as the
cosmic time. The line element can then be written as

ds2 = c2dt2 +
3∑

i,j=0

gijdx
idxj. (2.3)

Einstein believed the space to be a closed surface and described by spherical
coordinates. On top of it, he assumed space-time to be static. This allowed
him to choose a time coordinate t such that the line element of space-time
could be given by Eq. 2.3. In the Einstein Universe, the space sections are
3-surfaces of hyperspheres having constant positive curvature. The constancy
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Figure 2.1: The three possible geometries of the Universe depending on the
value of K: closed geometry corresponds to K = +1, flat geometry to K = 0
and open geometry to K = −1.

of curvature is essential in order to ensure the properties of homogeneity and
isotropy. However, there are two other alternatives that keep homogeneity and
isotropy: 3-surfaces of constant negative curvature or of zero curvature (see
Fig. 2.1). In this context, we can again rewrite the line element in terms of
polar coordinates (χ, θ, φ), where χ is the radial coordinate and (θ, φ) are the
polar angles:

ds2 = c2dt2 − a2(t)[dχ2 + f 2
K(χ)(dθ2 + sin2 θdφ2)]. (2.4)

The function a(t) is called the scale factor and, due to homogeneity, depends
only on cosmic time. The function fK(χ) gives the curvature of the spatial
hyper-surfaces and has the form

fK(χ) =


sinχ (K = 1, spherical)
χ (K = 0, flat)

sinhχ (K = −1, hyperbolic).
(2.5)

The line element in Eq. 2.4, often called the Robertson-Walker metric (Robert-
son, 1933; Walker, 1933), describes a homogeneous and isotropic Universe and
will be used throughout this work.

2.2 Einstein Gravitational Equations

The dynamics of the metric is governed by Einstein’s field equations which
directly relate the geometry of space-time to the energy-momentum tensor
(mass-energy and linear momentum) of the matter and radiation present in
the Universe. They are a system of non-linear partial differential equations
whose solution is by no means trivial

Gµν ≡ Rµν −
1

2
gµνR =

8πG

c4
Tµν , (2.6)
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where the tensor Gµν contains the geometry of the Universe. The Ricci cur-
vature tensor Rµν is a combination of first and second derivatives of gµν ,
and the Ricci scalar R is the trace of the Ricci tensor, R ≡ gµνRµν . The
energy-momentum tensor Tµν accounts for the matter and energy content
of the Universe. The universal gravitational constant G has the value G =
6.67384 × 10−11 m3 kg−1 s−2. From the above expression, we see that the
geometry of the Universe (left-hand side of Eq. 2.6) is determined by its en-
ergy content (right-hand side of Eq. 2.6). It is worth noting that Einstein’s
equations tend to Newton’s law in the limit of weak fields and c→∞.

The astrophysicist Karl Schwarzschild found the first non-trivial exact so-
lution to the Einstein equations in 1916, the so-called Schwarzschild metric.
This solution allowed to describe the final stages of gravitational collapse and
the objects known today as black holes (Schwarzschild, 1916).

In 1922, a more general solution was derived by Alexander Friedman. Start-
ing from the Robertson-Walker metric, where the dynamics of the metric
reduces to the dynamics of the scale factor a(t), and assuming the energy-
momentum tensor to be that of a perfect fluid (with pressure p and energy
density ρ depending only on time), he arrived at two independent Einstein
equations. From the first one and a combination of both he was able to write(

ȧ

a

)2

=
8πG

3
ρ− Kc2

a2
, (2.7)

ä

a
= −4πG

3

(
ρ+

3p

c2

)
, (2.8)

known as Friedman equations. In this way, a(t) can be determined by solving
both equations, once its value at a certain point is fixed. By convention, the
value of the scale factor today is set equal to 1. Moreover, in the following we
will adopt c2 = 1 for the sake of simplicity.

An important quantity, which is extensively used in cosmology, is the ratio
between pressure and energy density, also referred to as the equation of state

w ≡ p

ρ
, (2.9)

For all cosmological relevant fluids, w = 0 corresponds to collisionless, non-
relativistic matter, and w = 1/3 to radiation (or relativistic matter, e.g. neu-
trinos). The Friedman equations can be solved exactly in a few, simple cases.
In terms of the equation of state w, Eq. 2.8 can be equivalently written as

ä

a
= −4

3
Gρπ(1 + 3w). (2.10)

An interesting property of Universes with −1/3 < w < 1 is the so called Big
Bang singularity, that is, a point in time for which a = 0 and ρ diverges.
In such cases a(t) is a concave function (i.e. ä < 0 in 2.10), and its first
derivative is positive, ȧ > 0, yielding an expanding Universe. The observational
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confirmation of the expansion of the Universe reveals that such singularity
indeed exits. The deceleration is then due to the gravitational attraction acting
against the expansion. Equation 2.10 also shows that universes made from
fluids with w < −1/3, such as a cosmological constant, accelerate the cosmic
expansion instead of decelerating it.
A combination of the Friedman equations provides the conservation of mass-
energy

d

dt
(a3ρ) = −p d

dt
(a3). (2.11)

which, together with Eq. 2.10, allows to determine the evolution of the energy
density as a function of the scale factor

ρ ∝ a−3(1+w). (2.12)

This translates into ρm ∝ a−3 for matter and ρr ∝ a−4 for radiation. The
dependence of density on the scale factor for the several components of the
Universe can be understood if we consider the cosmic evolution as a succession
of various epochs, with a different component dominating each of them (see
Fig. 2.2). Due to its dependence on the scale factor as ρr ∝ a−4, radiation
dominated the early Universe and the evolution of a(t) was given by a ∝
t1/2 (this result is obtained by plugging the scaling relation into Eq. 2.7 and
integrating over time). Later in time, the radiation contribution became less
and less important and matter started dominating. The point of transition,
that is, where radiation and matter density are equal, is referred to as a =
aeq. During the matter-dominated epoch, the scale factor evolves as a ∝ t2/3

(known as Einstein-de Sitter limit). An era dominated by an energy density is
encountered at recent times. In this case, the Universe expands exponentially,
i.e. a ∝ et (called the de Sitter limit).

2.3 The Cosmological Constant

The Friedman equations describe an expanding or contracting Universe, where
a(t) is a scale factor and ȧ(t) acts as an expansion or contraction factor. How-
ever, Einstein believed the Universe to be static and was disturbed by the fact
that his equations led to dynamical solutions. Therefore, he introduced an
extra term in the field equations, the so called cosmological constant Λ, in an
attempt to achieve a static solution. The modified Einstein’s equations read:

Gµν =
8πG

c4
Tµν + Λgµν . (2.13)

The cosmological constant, Λ, is an expansion term, providing a repulsive field
to balance the attractive gravity of matter.

We can use thermodynamic arguments to illustrate the effect of a compo-
nent with constant energy density in an expanding Universe. The first law of
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Figure 2.2: The evolution of the energy density as a function of redshift (in
logarithmic scale) for the different components of the Universe. Earlier than
z ∼ 3000 radiation dominates (red line), thereafter and up to z ∼ 0.5 (dark)
matter dominates (black line). During this period structure forms and grows.
Then dark energy dominates and the expansion accelerates. The matter-
radiation equality, aeq, occurs when matter intersects radiation. The matter-Λ
equivalence is visible in the rightmost part of the plot. Taken from Turner &
Huterer (2007).

thermodynamics implies that when a comoving volume element expands by an
amount of dV , the corresponding change in energy is related to the pressure
via −pdV = dU = udV . However, for a constant energy density dU = ρdV ,
resulting in p = −ρ or w = −1 (for c2 = 1). This means, that a form of
energy that is constant in space and time must necessarily have a repulsive
gravitational effect.

The nature of the cosmological constant has been related to the zero-point
fluctuations of all quantum fields, a property of the space-time itself. According
to quantum field theory, empty space is filled with a sea of virtual particles.
In this context, Λ would be the gravitational signature of this vacuum energy
with energy-momentum tensor

T vacµν =
Λc2

8πG
gµν . (2.14)

During the past fifteen years the cosmological constant has been pointed
out as a plausible explanation for dark energy. However, uncertainties remain
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on its magnitude, as attempts to determine it have led to divergent results.
Since virtual particles come to existence for very short periods of time, the
natural value for the quantum vacuum density is given in units of one Planck
mass per cubic Planck length. However, this density is about 120 orders of
magnitude larger than the value of Λ suggested by the cosmic expansion (see
Sec. 2.8.2).

2.4 The Expanding Universe

In 1929, Sir Edwin Hubble found observational evidence that the Universe is
by no means static, but actually expanding. The discovery of the expansion
of the Universe confirmed the validity of Friedman equations and led Einstein
to claim Λ as his “greatest blunder”. The term

H ≡ ȧ

a
, (2.15)

appearing in Eq. 2.7 is the cosmic expansion rate of the Universe, usually
called the Hubble parameter. The Hubble constant H0 is the value of the
Hubble parameter at present time (i.e., at a = 1), and the most accurate
measurement so far, made by the Planck Satellite collaboration (Planck Col-
laboration et al., 2013), gives H0 = 67.3 ± 1.2 km s−1 Mpc−1. Nonetheless,
this is not an independent measurement and usually implies the combination
of several cosmological probes, as we will discuss in Sec. 2.7. Other teams have
found different values for the Hubble constant. For instance Riess et al. (2011)
found a value of H0 = 73.8± 2.4 km s−1 Mpc−1 by using optical and infrared
observations of over 600 Cepheid variables with the Hubble Space Telescope
(HST). The nine-year Wilkinson Microwave Anisotropy Probe data alone pro-
vided a values of H0 = 70.5± 1.6 km s−1 Mpc−1 (Hinshaw et al., 2012). More
recently, using high-resolution CMB maps from the Atacama Cosmology Tele-
scope together with BAO data, a value of H0 = 71.2 ± 2.1 km s−1 Mpc−1

(Sievers et al., 2013) was obtained. It is clear that a significant discrepancy
between the Planck results and other studies exist. This is currently a matter
of intensive debate among the astrophysical community. In this context, a
model-independent methodology, as the one presented here, could shed some
light on the problem, as we will discuss in Chapter 6.

From the first Friedman equation, Eq. 2.7, a particular value of the energy
density can be found, such that curvature vanishes (K = 0). This is called the
critical density, ρcrit, and can be written as

ρcrit =
3H2

8πG
. (2.16)

Due to the evolution of H in time, the critical density also changes through
different epochs. Its present-day value is ρ0,crit ' 1.9× 10−29 h2 g cm−3, where
h is a dimensionless parameter (H0 = 100h km s−1 Mpc −1) to account for the
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fact that we do not know the true value of the Hubble constant. This value of
the critical density is normally used to scale the density of each component of
the Universe. We define the density parameter

Ωi ≡
ρi
ρcrit

(2.17)

as the abundance of a substance in the Universe in units of ρ0,crit. In this
context, the expansion rate can be expressed by means of the density parameter
by inserting them into Eq. 2.7:

H2 ≡ H2
0E

2(a) = H2
0

[
Ωr0

a4
+

ΩM0

a3
+

Ωk0

a2
+ ΩΛ0F (a)

]
(2.18)

where E(a) is the normalised expansion function [E(a = 1) = 1] and Ωr0,
ΩM0, Ωk0 and ΩΛ0 are the present-day density parameters for radiation, matter,
curvature and cosmological constant, respectively. A possible time-dependence
of the cosmological constant is captured by the function F (a). Usually the
impact of curvature on Eq. 2.18 is expressed as

Ωk ≡ 1− ΩM − Ωr − ΩΛ, (2.19)

which is also referred to as the normalisation condition. The total value of the
density parameter Ω, including all contributions but curvature, is related to
the spatial geometry of the Universe. In terms of Ω, the Friedman Equation
can also be written as

Ω− 1 =
Kc2

a2H2
, (2.20)

from which three alternatives arise summarised in Table 2.1. If Ω < 1 (i.e.
ρ < ρcrit) we obtain an open universe K = −1; Ω = 1 (i.e. ρ = ρcrit) yields
a flat geometry K = 0; and for Ω > 1 (i.e. ρ > ρcrit) the universe is closed
K = +1. This implies, that the evolution of the scale factor is strictly given
by geometry (if one assumes a universe without cosmological constant).

As we see in Fig. 2.3, flat and open models (Ω ≤ 1) expand forever with
a constant deceleration in the flat case and with an asymptotically linear ex-
pansion in the open case. Conversely, for closed models (Ω > 1) the expansion
stops at a = amax. Thereafter the scale factor starts to decrease, and the
Universe recollapses. In the presence of a cosmological constant, the Universe
accelerates after some point in time.

2.5 The Scale Factor and the Redshift

We have already outlined that ȧ(t) acts as an expansion or contraction factor in
Eq. 2.7. We now explain its direct relation to a measurable quantity associated
also with the expansion rate, the redshift.
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Table 2.1: Possible curvature in cosmological models based on the value of the
density, ρ, in terms of critical density, ρc.

ρ < ρcrit Ω < 1→ K = −1 open
ρ = ρcrit Ω = 1→ K = 0 flat
ρ > ρcrit Ω > 1→ K = 1 closed

As the light from an emitting source propagates through an expanding Uni-
verse, the cosmic expansion makes its wavelength, λ, to be redshifted by the
same amount by which the scale of the universe has been augmented while the
light travels to us. The emitted wavelength (at any generic time) λe and the
observed wavelength (today, i.e. a0 = 1) λo are then related by

λo
λe

=
a0

a
=

1

a
. (2.21)

Thus, the relative change in wavelength is defined as the redshift

z ≡ λo − λe
λe

=
1

a
− 1, (2.22)

The redshift z and the scale factor a can be used in a totally equivalent fashion
by means of Eq. 2.22 or similarly

a =
1

1 + z
. (2.23)

where, evidently, z = 0 corresponds to present time. Redshifts can be mea-
sured from spectroscopic or photometric observations. The former compares
the wavelength of the radiation coming from the astronomical sources to their
rest-frame wavelength, which is measurable in the laboratory. The latter com-
bines observations in different wavelengths passbands to infer redshift values.
Spectroscopic redshifts are affected by smaller uncertainties but they are more
difficult to acquire than photometric redshifts (read Section 3.3 for a detailed
description of observations.)

2.6 Distances in the Universe

We have seen, that the most straightforward route to map the evolution of
the Universe is through the H(z) function. There are different ways to di-
rectly measure this quantity, e.g. via Baryonic Acoustic Oscillations (see Sec.
2.7.3). However, in most of the cases only indirect observations can be achieved
through the well-known distance-redshift relationship.

General Relativity allows to formulate the laws of physics using arbitrary
coordinates. The physical distance, also known as the proper distance, evolves
proportionally to the scale factor a(t). The proper distance between an emit-
ting source at redshift z2 and an observer at z1 < z2 is the distance measured
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Figure 2.3: An illustration of the evolution of the scale factor. Eternal ex-
pansion happens for universes with Ω ≤ 1, i.e. flat (green line) or open (blue
and red lines). The red curve corresponds to an accelerating universe. An
eventual recollapse occurs in a closed universe with Ω > 1 (yellow line). From
http://www4.nau.edu/meteorite/Meteorite/Book-GlossaryD.html

by the light-travel time, that is dDprop = −cdt. Plugging in the expansion rate
H = ȧ/a this transforms into

dDprop = −cda
ȧ

= −c da

aH(a)
, (2.24)

and integrating we obtain

Dprop(z1, z2) =
c

H0

∫ a1

a2

da′

a′E(a′)
. (2.25)

There is even a more convenient choice of coordinates which, conversely to the
proper distance, are unaffected by cosmic expansion. These are the comoving
coordinates. They assign constant spatial coordinate values to observers who
perceive the Universe as isotropic. Such observers are called comoving ob-
servers because they move along with the Hubble flow. Thus, isotropy defines
a special local frame of reference, the comoving frame.

The coordinate χ in Eq. 2.4 is usually referred to as comoving distance and
it is defined by dDcom = −cdt/a or
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Dcom(z1, z2) ≡ χ(z1, z2) =
c

H0

∫ 1

a2

da′

(a′)2E(a′)
, (2.26)

where a1 = 1 is the scale factor of the observer at present day. In addition
to the proper and comoving distance, we will mention here another distance
which is generally used in astronomy, the angular-diameter distance DA. It is
defined, analogously with the Euclidean case, as the relation between the solid
angle δw subtended by an object and the area δA, i.e. relating the comoving
size of an object with its angular size. In non-Euclidean geometry, the solid
angle of a sphere of constant radial coordinate χ has to be scaled by a2f 2

K(χ)
leading to

DA(z1, z2) =

(
δA

δw

)1/2

= a2fK [χ(z1, z2)] (2.27)

and thus, the angular-diameter distance is

DA(z1, z2) = a2fK [Dcom(z1, z2)] = a2
c

H0

fK

[∫ 1

a2

da′

(a′)2E(a′)

]
. (2.28)

We now consider an object of known intrinsic luminosity L. It is clear that
from the total light emitted by a distant source, only a small part of it reaches
the observer. The energy flux, F , i.e. the fraction of the luminosity collected
per square meter at a certain distance D from the source, is given by the
inverse square of the distance law

Fbol =
Lbol

4πD2
L

, (2.29)

where the subscript bol refers to the flux and luminosity emitted over all
wavelengths or frequencies and DL is the so called luminosity distance.

The luminosity distance and the angular-diameter distance are related by
the Etherington relation which holds for any space-time and is independent of
cosmology (Etherington, 1933)

DL(z1, z2) =

(
1

a2

)2

DA(z1, z2). (2.30)

Combining this last equation with Eq. 2.28, the luminosity distance can be
written as

DL(z1, z2) =

(
1

a2

)2
c

H0

fK

[∫ 1

a2

da′

(a′)2E(a′)

]
. (2.31)

Another way to determine the luminosity distance, used frequently by as-
tronomers, is from the comparison between apparent magnitude m (propor-
tional to the log of the flux received by the observer) of an astronomical object,
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and its absolute magnitude M (proportional to the log of the intrinsic lumi-
nosity of the object as seen from a distance of 10 parsecs)

m−M = 5log10(DL/10 pc), (2.32)

which gives

DL = 10
µ
5

+1. (2.33)

The term µ = m−M is the distance modulus, which has units of magnitudes.
Astronomical objects of known physical size located at different z allow to
probe the evolution of the angular-diameter distance; such objects are referred
to as standard rulers. Similarly, objects which probe the redshift evolution of
the luminosity distance are generally called standard candles.

It is worthy to note that for small redshifts, z � 1, the four distance
measurements mentioned above coincide:

D =
cz

H0

+O(z2) (2.34)

with the first element representing the linear Hubble expansion (the so-called
Hubble law), and the deviation from a linear relation revealing the deceleration
(or acceleration). The factor c/H0 or Hubble radius, defines the present value
of the horizon’s size (given by rH = c/H(a)), that is, the maximum distance
that photons can have traveled in the time since the Big Bang.

2.6.1 Standard Candles and Standard Rulers

Standard candles are a class of astronomical objects whose intrinsic brightness
is known. By comparing the luminosity of such an object to its observed
(apparent) magnitude, one can infer the distance to the object using the inverse
square law in Eq. 2.29.

Two problems arise for any class of standard candle. The principal one
is calibration, i.e. determining the absolute magnitude of the candle with
sufficient accuracy. This involves finding a class of objects whose physical
properties are well understood and modeled, as well as a robust strategy to
avoid mis-classifications and contamination (especially important at high red-
shifts). Additionally, means to account for interstellar extinction, which makes
objects appear fainter and redder, are needed in the calibration procedure.

Until the 1950s, the preferred standard candles were the so-called Cepheid,
i.e. variable stars with very regular pulsation periods directly correlated with
their luminosity. However, Walter Baade soon discovered that the nearby
Cepheid variables used to calibrate the cosmic distance ladder were of a dif-
ferent type than the ones used to measure distances to more distant galaxies
(Baade, 1956). Most of the nearby Cepheid variables were population I stars
with higher metal content than the distant population II stars. In fact, the pop-
ulation II stars were fainter than believed (∼ 1.5 mag), and the corresponding
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derived distances were greatly underestimated. All astronomical observations
nowadays seem to indicate that Type Ia supernovae, once their light curves
are properly calibrated, are the best standard candles up to 103 Mpc. As we
have seen in previous Sections, the H(z) expansion function can be derived
from the luminosity distance of a standard candle through Eq. 2.31.

Analogously, a standard ruler is an astronomical object whose approximate
size is known. By measuring its apparent angular diameter in the sky, one can
determine its distance from Earth. In general, the angular size of an object
can be defined as

θ =
r

DA

(2.35)

where r is the true size of the object and DA is the angular-diameter distance.
In comoving coordinates, the sizes of an object along the line of sight and

the traverse direction can be written in terms of the expansion rate and the
angular-diameter distance, respectively

r‖ =
c∆z

H(z)
; r⊥ = (1 + z)DA(z)∆θ. (2.36)

where ∆z is the observed size in redshift. This means, that an estimate of H(z)
and DA(z) can be determined if the true scales are know and the observed sizes
∆z and ∆θ can be measured.

2.7 Cosmological Probes for Acceleration

The physics of the accelerating Universe can be analysed in the light of several
cosmological probes. In particular, the parameters of the ΛCDM scenario can
be precisely determined if different observational probes are combined. We will
review three of the probes which are the most relevant for the work presented
here. These are Type Ia supernovae (SNe Ia), Baryonic Acoustic Oscillations
(BAO) and the Cosmic Microwave Background (CMB).

2.7.1 Type Ia Supernovae as Cosmological Test

Supernovae Ia are violent stellar explosions which occur when a carbon-oxygen
white dwarf (the final evolutionary stage of low-mass stars, with M < 8 M�)
reaches the Chandrasekhar limit (MCh = 1.4 M�) while accreting mass from
a companion or via a violent merger with another white dwarf, and undergoes
a thermonuclear runaway. The luminosity produced in these events is so large
(L ∼ 1010 L� at peak), that they can outshine an entire galaxy. The existence
of a fixed amount of mass, MCh, responsible to trigger the explosion, suggests
that the amount of energy released during the process is approximately fixed.
A substantial scatter in peak luminosity has been observed in SNe Ia. However,
once their light curves are calibrated through the absolute magnitude-decline
rate empirical relation, SNe Ia become good candidates for standard candles.
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In the late 1990s, SNe Ia gave the most direct evidence for cosmic acceleration
and the existence of dark energy. Chapter 2 will be fully dedicated to explain
the physics behind SN explosions and the application of these magnificent
events as standard candles in cosmological studies. A method to “extract” the
information concerning the expansion history of the Universe imprinted in SN
Ia data will be presented in Chapter 3.

2.7.2 The Cosmic Microwave Background Radiation

The cosmic microwave background is the oldest light we can see in the Uni-
verse, and therefore the most powerful probe of its infant evolution. This light
provides direct information on the physical conditions when the Universe was
only 380,000 years old (z = 1090), that is, when photons, until then tightly
bound to electrons, last scattered off electrons and started traveling freely
through space.

The existence of a background radiation originating from the propagation
of photons in the early Universe (once they decoupled from matter) was theo-
retically predicted by George Gamow and his collaborators Ralph Alpher and
Robert Herman in 1948 (Alpher & Herman, 1948; Alpher et al., 1948). They
argued that if there was a Big Bang – that is, a system evolving from a highly
compressed state with an inflationary phase at very early epochs (Guth, 1981;
Linde, 1982) – the expansion of the Universe would have stretched and cooled
the high-energy radiation of the early Universe into the microwave region and
to a temperature of about 5 K. Twenty years later, this radiation was discov-
ered by the radio astronomers Arno Penzias and Robert Wilson while working
with a new antenna at the Bell T&T Telephone Labs in New Jersey. They
measured a slightly lower temperature for the CMB radiation (∼ 2.7 K) and
were awarded the Nobel Prize in 1978.

The interpretation of the CMB was a controversial matter of debate during
the 1960s with some supporters of the steady state theory arguing that the
microwave background was the result of scattered starlight from distant galax-
ies. However, during the 1970s the consensus was established that the CMB
is a remnant of the Big Bang. Within the Big Bang paradigm, inflationary
cosmology predicts that after about 10−37 seconds the Universe underwent an
exponential growth that smoothed out nearly all inhomogeneities, leading to an
Universe as isotropic and homogeneous as we observe it today (on large scales).
Nevertheless, some authors such as Harrison, Peebles, Yu and Zel’dovich real-
ized that a certain degree of anisotropy (at the level of 10−4 or 10−5) should
remain in the CMB radiation, caused by quantum fluctuations that led to the
inflation event (Harrison, 1970; Peebles & Yu, 1970). These fluctuations were
responsible for over- and underdensities which, via gravitational instability,
formed the seeds of all current cosmic structure (Zeldovich, 1972). A few years
later, Sunyaev calculated the observable imprint that these inhomogeneities
would have on the CMB (Sunyaev, 1978). The NASA COBE mission success-
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Figure 2.4: Sky Map of the CMB radiation temperature from the Planck
Satellite mission (Planck Collaboration et al., 2013). Blue spots represent
cooler temperatures. Red corresponds to higher temperatures. The scale is in
µK.

fully confirmed the primordial anisotropies, which had been long sought for,
using the Differential Microwave Radiometer instrument (Smoot et al., 1992).
The team was awarded the Nobel Prize in Physics in 2006 for this discovery.

The Physics of the CMB

The CMB is known to follow with extraordinary precision the spectrum of a
blackbody

Bν(TCMB) =
2hν3

c2

1

exp(hν/kBTCMB)− 1
(2.37)

corresponding to a temperature of TCMB = 2.725 K (Noterdaeme et al., 2011).
As expected, the distribution of the CMB on the sky has proven to be remark-
ably isotropic to the precision of 10−3. Most of the residual anisotropy, at the
level of a few mK, is due to the motion of our Solar system with respect to the
rest frame of the CMB (what is usually called the dipole anisotropy). After
removing the dipole component, we are left with the primary anisotropy at
the level of 10−5 with ∆TCMB ≈ 30µK.
Mathematically, temperature anisotropies are expressed as

δT

T
(θ, φ) =

+∞∑
l=2

+l∑
−l

almYlm(θ, φ) (2.38)

where Ylm(θ, φ) are spherical harmonics (in this expansion, l = 0 would rep-
resent the monopole or mean temperature and l = 1 the motion of the Solar
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Figure 2.5: Upper panel: Multipole power spectrum of the CMB temperature
fluctuations from the Planck Satellite. The light grey points show the power
spectrum multipole-by-multipole. The blue points are the average in bands
of width ∆l = 31 together with 1-σ errors. The red curve is the theoretical
prediction of the concordance cosmology. Lower panel: The power spectrum
residuals with respect to the theoretical model. The green curves correspond to
1-σ errors on the individual power spectrum estimates (Planck Collaboration
et al., 2013).

System). The variance Cl of alm is usually referred to as the power spectrum
of the CMB

Cl ≡< |a2
lm| >≡

1

2l + 1

l∑
m=−l

|alm|2. (2.39)

If the temperature fluctuations are Gaussian (as appears to be the case) all
information contained in the CMB sky maps, such as the one shown in Fig.
2.4, can be compressed into the power spectrum, essentially describing the
behaviour of Cl as a function of l (Fig. 2.5).

It seems now clear, that the early Universe was composed of a hot and
dense primordial plasma of interacting photons, electrons, and baryons. As the
Universe expanded, adiabatic cooling made the energy density of the plasma
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decrease sufficiently in order for electrons to be captured by protons, forming
neutral hydrogen atoms

p+ e− −→ H + γ. (2.40)

This recombination event happened when the temperature was around 3000
K (or equivalently, when the universe was approximately 380,000 years old).
After this point, photons were able to travel freely through space, resulting in
the decoupling of matter and radiation.

Observed anisotropies in the cosmic microwave background are usually di-
vided into two categories: primary anisotropy, due to effects on the last scat-
tering surface (and before); and the secondary anisotropy, due to interactions
effects of the background radiation with hot gas or gravitational potentials,
occurring between the last scattering surface and the observer. Two main
physical mechanisms are visible in the CMB power spectrum, which conform
the primordial anisotropy: Baryonic Acoustic Oscillations (BAO) and
diffusion damping (also called collisionless damping or Silk damping; Silk,
1968).

BAO will be described in greater detail in next Section 2.7.3. They es-
sentially arise before the epoch of recombination when the overdensities com-
pressed the cosmic fluid due to gravity, whereas the radiation pressure of the
coupled baryon-photon fluid acted against gravity, driving the fluctuations
apart. These two competing effects gave rise to the acoustic oscillations with
the characteristic peak and through pattern. The Silk damping refers to the
suppression of anisotropies on small scales. This is mainly due to the increase
of the photon mean free path during decoupling, which is not an instanta-
neous process. Essentially, photons diffused from the hot, overdense regions of
plasma to the cold, underdense ones dragging along the protons and electrons
and causing temperatures and densities to be averaged. Structures smaller
than the diffusion scale (8 h−1Mpc or 10 arcmin) are inevitably damped.

An important secondary anisotropy observed in the CMB, which relates to
propagation effects of photons, is the so-called Sunyaev-Zel’dovich effect.
It originates from the Thomson scattering of CMB photons off electrons in the
hot gas of galaxy clusters, modifying the spectrum of the CMB observed in the
line of sight of a cluster (Sunyaev & Zeldovich, 1970). Also the Sachs-Wolfe

effect (Sachs & Wolfe, 1967), which causes photons from the Cosmic Mi-
crowave Background to be gravitationally redshifted or blueshifted due to
changing gravitational fields, is considered as a secondary anisotropy.

The CMB is also expected to have a polarization intensity of order 10% of
the total intensity, which carries additional information on the properties of
the early Universe. This polarization arises from Thomson scattering and is
radial/tangential around temperature spots.

Since the first detection of the CMB anisotropies with the COBE satel-
lite, further experiments have been carried out reaching much higher preci-
sion. A series of ground and balloon-based experiments have measured the
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CMB anisotropies on smaller angular scales over the past two decades, for in-
stance DASI (Leitch et al., 2002) or BOOMERanG (de Bernardis et al., 1999).
The primary goal of these experiments was to measure the scale of the first
acoustic peak, which COBE did not have sufficient resolution to resolve. The
subsequent peaks in the power spectrum were tentatively detected by several
experiments before being definitively confirmed by the Wilkinson Microwave
Anisotropy Probe (WMAP) launched in 2001. The analyses based on the 5-
year (Komatsu et al., 2009) and the 7-year data (Komatsu et al., 2011) showed
striking evidence of an almost flat ΛCDM Universe and provided tighther con-
straints on the cosmological parameters.

The most up to date constraints on CMB were released early in 2013 by
the Planck Satellite Mission from ESA. The extended frequency coverage and
angular resolution (of about 5 arcmin) of the Planck mission has allowed to
probe the power spectrum of the CMB to much smaller scales with very high
sensitivity. Moreover, it has set an unprecedent control over the subtraction of
foregrounds, especially delicate in CMB analyses, and has detected thousands
of galaxy clusters through the Sunyaev-Zel’dovich effect (Planck Collaboration
et al., 2013).

Other ground-based experiments to improve measurements of the polar-
ization and resolution on small angular scales, such as the projects based on
the Atacama Cosmology Telescope, the South Pole Telescope and the QUIET
telescope, are currently ongoing.

2.7.3 Baryonic Acoustic Oscillations

Baryonic acoustic oscillations are a feature imprinted in the power spectrum
of the CMB. As we saw in the last Section, prior to z ∼ 1000 the primordial
gas was ionized due to the high temperature and density. The mean free
path of electrons at this time was less than the Hubble time (1/H) resulting
in a close coupling between electrons, nuclei (baryons) and photons. The
radiation pressure of the photons was comparable to the gravitational forces in
the over-densities, with the result that the perturbations in the baryon-photon
fluid oscillated as sound waves. Mathematically, the BAO effect can be seen
as a standing wave in Fourier space where the acoustic scale gives rise to a
harmonic sequence of oscillations in the power spectrum. Fig. 2.5 shows the
acoustic peaks of the power spectrum of the CMB temperature fluctuations.
The angular scale of the first peak determines the curvature of the Universe,
indicating spatial flatness. The ratio of the first to second peak determines
the baryonic density and the third peak gives us a hint about the dark matter
component density. The locations of the peaks also give important information
about the nature of the primordial density perturbations.

The imprint left by these sound waves in the early Universe provides a
characteristic angular scale which can be used as a standard ruler (Blake &
Glazebrook, 2003; Seo & Eisenstein, 2003). Since only fluctuations smaller
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than the comoving sound horizon rs at recombination are affected by acoustic
oscillations, the acoustic scale can be calculated as the comoving distance that
the sound waves could travel from the Big Bang until recombination:

rs =

∫ t∗

0

cs(t)

a(t)
dt =

∫ ∞
z∗

cs(z)

H(z)
dz (2.41)

where t∗ and z∗ refer to the time and redshift of recombination, respectively,
and cs is the sound speed of the waves. From Equation 2.41 it is clear that
the acoustic scale is uniquely determined once the epoch of recombination
and the sound speed of the fluid (which depends on the baryon-to-photon
ratio) are known. These two quantities are very precisely obtained from CMB
measurements yielding a value of rs = 150h−1 Mpc.

Within the BAO theory, separations along the line of sight correspond to
differences in redshift that depend on the Hubble parameter H(z)rs. Analo-
gously, separations traverse to line of sight correspond to differences in angle
that depend on the angular diameter distance DA(z)/rs. This means, that
measuring the acoustic scale over a wide redshift interval allows to access both
H(z) and DA(z), making BAO an exceptional probe of dark energy and cosmic
geometry. It is worth noting that the acoustic features are not only imprinted
in the CMB but also in the spatial distribution of baryonic and, eventually,
non-baryoninc dark matter.

The challenge of measuring BAO is purely statistical. Since it is a weak
signal at large scales, one needs to map enormous volumes of the sky to detect
them. The BAO signature was first discovered by Eisenstein et al. (2005)
using a spectroscopic sample of over 40,000 luminous red galaxies (LRG) from
the the Sloan Digital Sky Survey (SDSS, York et al., 2000). The LRG are
the brightest and reddest galaxies in the Universe and can be easily seen up
to intermediate redshifts (z > 0.2). The detection provided a standard ruler
to measure the distance to a single redshift z = 0.35. Subsequently, Percival
et al. (2007) also measured the BAO signal using a combination of the Two-
degree Field Galaxy Redshift Survey (2dFGRS Colless et al., 2001) and SDSS
main galaxy samples. They used it to measure the distance to z = 0.2. This
measurement together with the one from Eisenstein et al. (2005) was used
to place constraints on the cosmological parameters and probe ΛCDM as the
standard model for cosmology.

Future galaxy surveys (spectroscopic and photometric) are expected to de-
tect the BAO signature in several redshift bins and measure the acoustic scale
both in the radial and transverse directions. An example is the Baryon Oscil-
lation Spectroscopic Survey (BOSS) which is mapping out the BAO signature
with unprecedented accuracy using observational time at the Apache Point
Observatory (APO) 2.5-m telescope as part of Sloan Digital Sky Survey III.
Over the period 2009-2014, the BOSS survey will obtain the redshifts of 1.5
million LRGs out to z ∼ 0.7 over 10,000 square degrees. Simultaneously, it
will map quasars at z ∼ 2.5 allowing to measure the acoustic oscillations in
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the Lyman-α forest.1

2.8 The Concordance Model: ΛCDM

The Λ-Cold Dark Matter (ΛCDM) is the currently adopted cosmological model.
The model assumes the Friedman-Lemâıtre-Robertson-Walker (FLRW) met-
ric, i.e., it obeys isotropy, homogeneity and the R-W metric (Eq. 2.4), the
Einstein (Eq. 2.6) and Friedman (Eq. 2.7) equations and the conservation of
energy (Eq. 2.11). Furthermore, it is based on the Big Bang scenario and the
Standard Model of particle physics.

Till now, it is the best and simplest model that is in general agreement
with observations, ranging from the Big Bang relic radiation (the CMB), and
the abundances of light elements, to the large-scale structures of galaxy clus-
ters and filaments. It involves two key concepts: Cold Dark Matter and Dark
Energy (usually identified with Λ). These are currently the dominant compo-
nents of the Universe, accounting for around 70% and 25% of the total energy
budget as seen in Fig 2.6.

2.8.1 Dark Matter

Dark Matter refers to an unknown matter component originally proposed to
explain discrepancies between calculated masses of galaxies and clusters of
galaxies (obtained through dynamical and general relativistic considerations),
and inferred masses of the visible luminous matter contained in them (stars,
gas and dust). Already in the 1930s, Fritz Zwicky, applying the virial theo-
rem2 to the Coma cluster, estimated a difference of a factor 102 depending on
whether the mass of the cluster was obtained from the motion of galaxies near
its edge or via the visible number of galaxies and total brightness (Zwicky,
1937).

The most convincing proof of the existence of dark matter, given by Vera
Rubin in the late 1970s, came from observations of the rotation curves of
spiral galaxies. Observed rotation curves usually exhibit a characteristic flat
behaviour at large distances from the center, even far beyond the edge of
the visible disks (see Figure 2.7). Rubin discovered that the stars in spiral
galaxies orbit roughly at the same speed, implying that the mass densities of
the galaxies are uniform well beyond the central regions containing most of
the stars (Rubin et al., 1980). From Rubin’s analysis it seemed clear that

1The Lyman-α forest is the sum of the absorption lines arising from the Lyman-α tran-
sition of neutral hydrogen in the spectra of distant galaxies and quasars. For a detailed
description of the Lyman-α forest as a cosmological probe see Weinberg et al. (2003).

2The virial theorem states that, for a stable, self-gravitating, spherical distribution of
equal mass objects (stars, galaxies, etc), the total kinetic energy of the objects must equal the
gravitational energy, within a factor of two. For an introduction on astrophysical applications
of the virial theorem see Collins (1978).
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Figure 2.6: The different components of the current Universe. Ordinary matter
(including neutrinos and baryons) accounts only for around 5% of the total
energy content. The remaining is made up of dark matter (∼ 25%) and dark
energy (∼ 70%).

the considered galaxies contained about six times more mass than could be
accounted for by their visible mass.

Additionally, high resolution neutral hydrogen (HI) observations – de-
tectable via the λ = 21 cm line in low-density regions of the interstellar medium
– confirmed that, for the majority of spiral galaxies, their rotation curves re-
mained flat beyond the optical disks (Roberts & Rots, 1973; Begeman, 1989).
This led to the conclusion that a massive dark halo surrounded the disks of
spiral galaxies. Later on, this result was further corroborated by gravitational
lensing of background objects by galaxy clusters – such as the Bullet Cluster
(Clowe et al., 2006) or Abell 1689 (Taylor et al., 1998) –, and more recently,
the temperature distribution of hot gas in galaxy clusters (Hansen et al., 2011)
and the pattern of anisotropies in the CMB (Komatsu et al., 2009).

Dark matter particles are supposed to be cold, non-relativistic at the epoch
of radiation-matter equality, non-baryonic, dissipationless, adiabatic and colli-
sionless.3 There are several lines of evidence for this set of physical properties.
For instance, it is known that dark matter particles should be non-baryonic,
since the cosmic microwave background and cosmic web of structure would

3Other hypotheses for dark matter consider it to be hot or warm with different physical
properties, though these theories seem less plausible. For a review on the topic see Bertone
et al. (2005).
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Figure 2.7: Rotation curves for several spiral galaxies presenting the typical flat
pattern. This proofs that the density matter does not decrease with distance
to the galactic centre, and that some undetectable dark matter is present in
all galaxies. From Rubin et al. (1980).

look radically different if baryons would build up all the dark matter. Ad-
ditionally, the abundance of light elements – created during Big Bang nucle-
osynthesis – depends strongly on the baryon density (more precisely, on the
baryon-to-photon ratio) of the Universe (see e.g. Cyburt, 2004; Iocco et al.,
2009). Observed abundances of deuterium and 4He give similar constraints on
the baryon density in the Universe as those coming from cosmic microwave
background observations (Steigman et al., 2007). Also, dark matter cannot
consist of light (below the keV regime in mass) particles, because they are
relativistic at early times, and thus stream out of small-scale density pertur-
bations. Current measurements of the Lyman-α forest, at z ∼ 3, constrain the
dark-matter particle mass to be m & 2 keV (Boyarsky et al., 2009). More-
over, there is strong evidence on the electromagnetic neutrality of dark matter
(Sigurdson et al., 2004). If dark matter had a small charge or a small electric
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or magnetic dipole moment, it would couple to the photon-baryon fluid before
recombination, altering the features of the CMB as well as the matter power
spectrum.

The most plausible candidates for dark matter are the so called WIMPs
or Weakly Interacting Massive Particles, which are affected only by gravity
and the weak force. There are currently many ongoing projects to search
for WIMPs, including direct or indirect detection experiments. The former
look for the scattering of dark matter particles off atomic nuclei within the
detector, the latter search for products, gamma rays and standard particle-
antiparticle pairs, of WIMP annihilation. Examples of direct detection experi-
ments are CDMS (Cryogenic Dark Matter Search), EDELWEISS (Experience
pour Detecter Les Wimps En Site Souterrain) or CRESST (Cryogenic Rare
Event Search with Superconducting Thermometers). These experiments usu-
ally consist on gigantic laboratories deep underground in order to reduce the
background from cosmic rays. They make use of two detector technologies:
cryogenic detectors, which operate at temperatures below 100 mK and detect
the heat produced when a particle hits an atom in a crystal (e.g. germanium);
or noble liquid detectors, which detect the scintillation light produced by a par-
ticle colliding in liquid xenon or argon. So far, though a few detection events
have been reported (Ahmed et al., 2009; Angloher et al., 2012), no compelling
proof has still been offered. The Fermi Gamma-ray Space Telescope launched
in 2008 is currently searching for gamma-rays from dark matter decay.

An alternative approach is to try to produce dark-matter particles in the
laboratory, something that is being carried out in the Large Hadron Collider
(LHC). A number of state of art N-body simulations have been implemented
by the international Virgo Consortium led by the Max Planck Institute for As-
trophysics, in an attempt to give theoretical understanding of the dark matter
density field and the formation of structure at large scales in the Universe. A
snaphot of one of the most famous simulations, the Millennium Run (Springel,
2005), can be seen in Fig. 2.8, showing the characteristic dark-matter distri-
bution, i.e. the filamentary structure in which dark matter clusters.
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Figure 2.8: Snapshots at different distance scales of the dark matter Mil-
lennium Simulation performed by researches at the Max Planck Institute for
Astrophysics. The cosmic web of filaments and voids is seen as well as the
growth of structure in the nodes connecting the filaments (Springel, 2005).

2.8.2 Dark Energy

Before the 1990s, it had become evident that matter (including dark and bary-
onic) could only account for ∼ 30% of the Universe’s critical density (Turner,
1999). We know from Sec. 2.4 that spatial flatness (strongly favoured by
cosmological observations) requires the total energy density to be close to one
unity (Ω ≡

∑
i Ωi = 1). This remarkable fine-tuning is usually referred to as

the flatness problem, which was first mentioned by Robert Dicke in 1969, and
indicates a very specific value for the critical density (recall that Ω ≡ ρ/ρcrit).
A solution to this problem could be the before-mentioned cosmic inflation (see
Olive, 1990, for a review). A direct consequence of inflation is that the prim-
itive Universe originated in a tiny causally connected region which later on
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expanded smoothing out spacetime and making it flat, isotropic and homoge-
neous. If, as observations and inflationary considerations suggest, the cosmic
energy budget equals unity, there seems to be a missing portion of about
∼ 70% which should be different than matter. Some authors considered that
this new component could exist in form of vacuum energy (or cosmological
constant) being uniformly distributed in space and not clumping as ordinary
matter (Turner et al., 1984). The (re-)introduction of the cosmological con-
stant solved partially the Ω problem, and presented relatively good agreement
with CMB data as well as the large-scale distribution of galaxies. This led the-
oretical cosmologists to include a Λ into the simpler CDM model, with density
parameters ΩM ∼ 0.3 and ΩΛ ∼ 0.7 (Turner, 1991, 1997, 1999; Ostriker &
Steinhardt, 1995; Liddle et al., 1996). However, a Universe with ΩΛ ∼ 0.7
would accelerate the cosmic expansion instead of decelerating it, having ä > 0
in the second Friedman equation (Eq. 2.8). At that time, as no observational
evidence was available, this idea was rather disturbing and was only kept as
a possibility. Nonetheless, in 1998 the acceleration of the Universe was obser-
vationally confirmed, providing evidence of a smooth, dark energy component
whose nature was a complete mystery.

Since that time, many different dark-energy models have been proposed,
but none of them have given a satisfactory answer to the nature and origin of
the cosmic acceleration. As we already mentioned, within General Relativity,
the simplest explanation is a cosmological constant with equation of state w =
p/ρ = −1. In this case, the dark energy would be an elastic and smooth fluid
exerting a repulsive gravitational force which, if present in sufficient quantity,
could lead to the observed accelerated expansion.

However, all attempts to identify the cosmological constant with the vac-
uum energy density predicted by quantum field theory have failed so far: the
latter is between 55 and 120 orders of magnitude larger than the observation-
ally inferred value ρvac = Λ/8πG ' 10−47GeV4 (Sahni & Starobinsky, 2000;
Sahni, 2002). A Universe with such a large value of Λ as the one implied by
theory would have expanded so rapidly that galaxies and stars (and thereby,
life) would never have formed. The idea of a symmetry which sets the value
of Λ to either zero or a very small value has gained attention in the past few
years. However, no experimental evidence has been found until now.

Other possibilities allow for a non-constant dark energy equation of state,
varying with time. These are the so called Quintessence or Phantom models
(Wetterich, 1995, 1998). Both assume the vacuum energy to be a dynamical,
evolving scalar-field (Freese et al., 1987; Frieman et al., 1995; Turner & White,
1997; Caldwell et al., 1998; Steinhardt, 1999). The general idea is that the
energy of the true vacuum is zero, but not all fields have evolved to their state
of minimum energy. Thus, the fields are classically unstable and are rolling
toward their lowest energy state. In this case, the density and pressure are
given by
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Figure 2.9: Sketch representing a scalar field slowly rolling towards its mini-
mum energy state. From Turner (1999).

p = 1
2
φ̇2 + V (φ)

ρ = 1
2
φ̇2 − V (φ),

(2.42)

where V (φ) is the potential energy of the scalar field and the evolution of the
field φ is governed by

φ̈+ 3Hφ+ V ′(φ) = 0. (2.43)

If the scalar field evolves slowly, that is φ̇2 � V , then p ' −ρ and the scalar
field behaves like a slowly varying vacuum energy (see e.g. Turner, 1983, 1999).
For Quintessence fields V (φ) > 0 and −1 < w < −1

3
. Conversely, in Phantom

fields V (φ) < 0 and w < −1. The limit w = −1 is referred to as the Phantom
divide line (Perivolaropoulos, 2005). Dynamical scalar fields have been intro-
duced in an attempt to ameliorate the fine-tuning problem faced by Λ (Turner
& White, 1997). However, several difficulties remain, the major problem being
that the scalar field must be very light and, in this way, long-range forces can
mediate (Carroll, 1998). The sketch of Fig. 2.9 illustrates the idea of a scalar
field slowly rolling towards its minimum energy state.

In this context, the simplest parameterisation of the equation of state pa-
rameter as a function of scale factor w(a) reads

w(a) = w0 + wa(1− a), (2.44)

where w0 is be the present-day value of the equation of state. It was pro-
posed by Chevallier & Polarski (2001) and Linder (2003). For this specific
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parametrization, the expansion rate can be written as

H2(a) = H2
0

[
Ωr0

a4
+

ΩM0

a3
− Ωk0

a2
+ ΩΛ0 exp

{
−3

∫ 1

a

[1 + w(a′)]
da′

a′

}]
, (2.45)

which for flat curvature reduces to

H2(a) = H2
0

[
ΩM0

a3
+ ΩΛ0 exp

{
−3

∫ 1

a

[1 + w(a′)]
da′

a′

}]
. (2.46)

2.8.3 Cosmological Parameters: the Current Picture

The common strategy when deriving specific values for the cosmological pa-
rameters relies on the combination of several independent probes. In this way,
complementary information is offered for the analyses and a high impact of
systematic errors is avoided. This is particularly important, as we will see for
the case of SNe Ia, since systematics can lead to ambiguous estimations of the
cosmological parameters. As an illustration, the combination of constraints
from the three probes discussed in this section is shown in Fig. 2.10 (see also
Fig. 3.18 for a more modern version of the same plot).

In Table 2.2, constraints of the ΛCDM main parameters model combining
CMB, BAO and Type Ia Supernova measurements are given. It is noteworthy
that CMB, BAO and Supernovae are considered as geometrical probes, mean-
ing that they involve only measurements of distances and volumes to derive
the evolution of the scale factor. There are other interesting constraints which
come from dynamical probes, such as Weak Lensing, which is a very powerful
technique for mapping dark matter and its clumping. This involves the slight
distortion of galaxy shapes due to gravitational bending of light by intervening
large-scale structures.

Table 2.2: Cosmological density parameters and Hubble constant obtained
from the combination of the 5-year WMAP data (Komatsu et al., 2009), the
BAO constraints of Percival et al. (2007) and Type Ia Supernovae (Kowalski
et al., 2008). As a comparison the recent results obtained from the Planck
mission are also reported (Planck Collaboration et al., 2013).

Parameter WMAP+BAO+SN Planck
ΩM 0.274± 0.015 0.315± 0.017
Ωb 0.0456± 0.0015 0.0485± 0.0015
ΩΛ 0.726± 0.015 0.686± 0.020
H0 70.5± 1.3 67.4± 1.4
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Figure 2.10: Parameter space of ΩM and w with 68% and 95% confidence level
contours of three independent cosmological probes: SNe Ia, BAO and CMB.
Each cosmological probe populates a different area of this parameter space.
Combining them reduces a great deal the confidence contours producing tight
constraints on the cosmological parameters. From Turner & Huterer (2007).

The distribution and abundance of Galaxy Clusters at different epochs are
also sensitive probes of dark energy. They measure structure growth on much
smaller scales providing complementary information about the contribution
of matter and dark energy to the total energy density Ω, as can be seen in
Fig. 2.11. In order to determine the age of the Universe and as a further probe
of dark energy it is useful to employ the oldest stars in Globular Clusters as
shown in Fig. 2.12.

2.9 Non-Standard Cosmologies: Modified

Gravity

The ultimate goal of the method proposed in this thesis is to differentiate
between cosmological scenarios in an attempt to break the parameter degen-
eracy of ΛCDM. Since our method directly tests the geometry of the Universe
without reverting to any assumptions made on its energy content, it provides
an independent and consistent way to compare different cosmological models
(or more precisely, the expansion history predicted by those models) based on
rather disparate physical assumptions.
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Figure 2.11: Age of the Universe as a function of the matter energy density,
assuming a flat Universe and four different values of the dark energy equation
of state w. The combination of constraints from globular clusters and from
CMB is shown. Taken from Turner & Huterer (2007).

The standard model (and its theoretical foundation, General Relativity)
described in Sec 2.8, though remarkably successful, breaks down at higher
energies than the Planck scale E & Mp ∼ 1016 TeV. Therefore the ΛCDM
model can only give limited insights into the very early Universe. Moreover,
General Relativity can accommodate accelerated expansion but cannot pro-
vide deeper understanding of the phenomenon or on the nature of the dark
energy. Over the last few years, different approaches claiming that cosmic ac-
celeration is a manifestation of new gravitational physics and not dark energy,
have received increasing attention. Instead of adding an extra term (dark en-
ergy) to the stress-energy momentum on the right side of Einstein’s equations,
one can also modify the left side in order to reproduce the observations. In
general, independent measurements of distance and redshift (as those seen in
Section 2.11) can probe the expansion history H(z) but cannot tell whether
this comes from a true extra fluid in the cosmos budget, or from a change in
the laws of gravity.

Modified gravity offers an alternative to break the observational parameter
degeneracy of dark energy models and shed some light on the fine-tuning and
coincidence (the fact that the dark energy is approximately exactely double
as the total amount of matter) problems.

However, when modifying gravity one has to be extremely careful so as not
to violate high precision tests of gravity in the local Universe, like the Solar
System, and also not to introduce unphysical features in the theory, such
as phantoms, which are fields with negative kinetic energy density (ghosts).
Moreover, the new theory must satisfy some minimal mathematical properties
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Figure 2.12: Parameter space of ΩM and ΩΛ of three independent cosmological
probes: SNe Ia, galaxy cluster inventory and CMB. From Turner & Huterer
(2007).

such as to allow a Lagrangian formulation, being Lorentz invariant or obey
causality. Although many possibilities have been proposed, we will briefly
consider only those that have been directly used in this work. For further
details, the reader is referred to the studies quoted below.

2.9.1 Brane Worlds

Braneworld cosmologies are inspired by string theory and can be regarded as
low energy effective models of a more fundamental theory. They suggest that
the observable Universe could be described as a four-dimensional surface or
brane embedded in higher dimensional spacetime (also called bulk). Branes
are extended objects of higher dimensions than strings where the matter and
radiation fields are localized. All matter particles and fields are trapped on
the brane, i.e. conservation of mass-energy holds. In contrast, gravity is free
to propagate in the brane as well as in the bulk.

The most common examples of braneworlds are the Randall-Sundrum mod-
els (Randall & Sundrum, 1999), where a 4D brane is embedded in a 5D de Sitter
bulk. At low energies, General Relativity is recovered to a good approxima-
tion, whereas at high energies gravity behaves increasingly five-dimensional.
This behaviour implies that a given energy density produces a greater rate
of expansion than in General Relativity. This introduces significant changes
to gravitational dynamics and perturbations, with interesting and potentially
testable implications for high-energy astrophysics, black holes and cosmology.
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Figure 2.13: A representation of the embedding of a self-accelerating and nor-
mal branches of the DGP brane in a Minkowski bulk. From Durrer & Maartens
(2008).

Alternatively, the Dvali-Gabadadze-Porrati (DGP) model (Dvali et al.,
2001) modifies General Relativity at low energies. Here the bulk is assumed to
be a 5D Minkowski space-time of large volume (see Fig 2.13). The Einstein-
Hilbert action (Hilbert, 1924)

S =
−1

16πG

∫
d4xR

√
−g (2.47)

is modified to

S =
−1

16πG

[
1

rc

∫
bulk

d5x
√
−g(5)R(5) +

∫
brane

d4x
√
−gR

]
(2.48)

where rc is the crossover scale, that sets the scale beyond which the laws of 4D
gravity breakdown and become 5-dimensional. g = |gµν | is the determinant
of the metric tensor. At large scales, r � rc, gravity “leaks” off the 4D
brane into the bulk whereas on small scales gravity is bound to the brane and
4D dynamics is recovered. The generalisation of this model to a Friedman-
Robertson-Walker brane produces a self-accelerating solution (Deffayet, 2001)
due to the weakening of gravity at low energies.
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The resulting Friedman equation is a modification of the general-relativistic
case

H2 − H

rc
=

8πGρ

3
, (2.49)

with rc defined as

rc =
1

H0(1− ΩM)
. (2.50)

The additional termH/rc in Eq. 2.49 behaves like dark energy with an equation
of state that evolves from w = −1/2 for z � 1 to w = −1 in the distant future.
The ΛCDM normalisation condition for the different components of the total
energy density Ω is now given by

Ωk +

√Ωrc +

√
Ωrc +

∑
i

Ωi

2

= 1, (2.51)

where

Ωrc ≡
1

4r2
cH

2
0

(2.52)

and the index i refers to the different components of the energy density budget.
The Friedman Equation in terms of the density parameters is

H2(z)

H2
0

=

Ωk(1 + z)2 +

√Ωrc +

√
Ωrc +

∑
i

Ωi(1 + z)3(1+wi)

2 . (2.53)

Equations 2.49 and 2.49 imply that whenever the Hubble radius, H−1
0 , is

small with respect to rc the cosmological evolution follows that of General Rel-
ativity. When rc ∼ H−1

0 a transition to an accelerated expansion occurs. The
cosmological constant is replaced by the cross over scale, with the advantage
that rc is stable under quatum corrections.

The DGP model offers a full description of the expansion history as well as
of the growth of large scale structure. However, recently-performed tests with
current cosmological data allude to some tension and theoretical problems for
this model, such as ghosts and 5D effects (see e.g. Song et al., 2007).

Going beyond DGP as an isolated theory one may consider a phenomeno-
logical model which is motivated by the concept of extra dimensions of infinite
extent and arbitrary number of dimensions. This is the mDGP model, first
introduced by Dvali & Turner (2003). It interpolates between ΛCDM and
the DGP model and allows for the presence of extra dimensions through cor-
rections to the Friedman equation with the addition of a parameter α. The
modified Friedman equation reads
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H2 − Hα

r2−α
c

=
8πGρ

3
, (2.54)

where rc is again the crossover scale defined by

rc = (1− Ωm)
1

α−2H−1
0 . (2.55)

It is easy to see that ΛCDM is recovered when α = 0 and pure DGP when
α = 1. For α = 2 In the case α < 0 an effective equation of state less w < −1
is obtained while for α ≥ 1 the matter era necessary for structure formation
and limits set by big bang nucleosynthesis are violated. The extreme α = 2
corresponds to a “renormalization” of the Friedman equation and α > 2 leads
to early universe braneworld modifications. This model can be useful when
attempting to distinguish between ΛCDM, general dark energy and modified
gravity. Further information about the two models introduced above can be
found in Tang et al. (2006), Thomas et al. (2009) and the review by Durrer &
Maartens (2008).

2.9.2 f(R) Models

A different alternative when modifying gravity are the f(R) models, which do
not assume the existence of extra dimensions. These theories generalize the
Einstein-Hilbert action in Eq. 2.47 by adding a more general function of the
Ricci scalar, e.g. terms proportional to powers of R,

S =
−1

16πG

∫
f(R)

√
−gd4x. (2.56)

The field equations describing the geometry and energy density of the Universe
are then derived from this action. f(R) gravity was first proposed by Buchdahl
(1970) and it has become an active field of research mainly due to Starobinsky’s
work (Starobinsky, 1980).

Different approaches may be followed in order to specify the form of the
function f(R) – see e.g Sotiriou & Liberati (2007). Some functional forms are
inspired by corrections arising from a quantum theory of gravity and explain
the accelerated expansion and structure formation of the Universe without
invoking dark energy.

The simplest parameterisations lie within the Palatini approach which usu-
ally leads to second order differential field equations that produce acceleration
at late times. The Palatini variational approach refers to a particular way in
which the field equations are derived from the action. It assumes that the
affine connection is independent of the metric (Palatini, 1919). Within this
formalism also several parameterisations of f(R) are possible. We consider,
due to its simplicity, the one presented in Carvalho et al. (2008). For details
on other parameterisations see e.g. Amarzguioui et al. (2006) or Hu & Sawicki
(2007).
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Here, the functional f(R) is assumed to have the form

f(R) = R− β

Rn
, (2.57)

where R in the Rici scalar, and n and β, together with ΩM (see below), are
the parameters of the model. The expansion rate can be written as

H2(z) = H2
0

[
3ΩM0(1 + z)3 + f/H2

0

6fRξ2

]
, (2.58)

with

ξ = 1 +
9

2

fRR
fR

H2
0 ΩM0(1 + z)3

RfRR − fR
, (2.59)

and where the notation fR = df/dR, fRR = d2f/dR2 has been adopted.
Recent studies have shown that power-law functional forms of f(R), such

as the above-mentioned, are capable of reproducing the three phases of the cos-
mological evolution: radiation domination, matter domination and late time
acceleration (Amarzguioui et al., 2006; Fay et al., 2007). However, it is still
subject of debate whether f(R) theories satisfy the Solar System tests and
recover the Newton limit (Faraoni et al., 2006; Olmo, 2007; Barausse et al.,
2008).

2.10 The Kinematic Approach

A different method to access the history of the cosmic expansion is by means
of the so-called kinematic models, which avoid a dynamical description of the
Universe and do not depend on the matter-energy content of the observed
Universe. The only assumption is the validity of the cosmological principle
(homogeneity and isotropy) so that the FLRW metric is still valid. We describe
here the models discussed by Elgarøy & Multamäki (2006) and Guimarães
et al. (2009), which are based on different parameterisations of the deceleration
parameter, q, and the jerk parameter, j (second and third order contribution
in the expansion, respectively). The deceleration parameter in terms of z is
defined as

q ≡ − 1

H2

ä

a
=

1

2
(1 + z)

(H(z)2)′

H(z)2
− 1 (2.60)

where ′ ≡ d/dz. Similarly the jerk parameter is given by

j ≡ − 1

H3

1

a

[
d3a

dt3

]
= −

[
1

2
(1 + z)2 (H2)′′

H2
− (1 + z)

(H2)′

H2
+ 1

]
. (2.61)

In what follows we will use five realizations. The first and simplest model,
M0, is given by a constant deceleration parameter, q(z) = q0. The second
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model, M1, is a linear expansion of the deceleration parameter q(z) = q0 + q1z.
Model M2 has two phases of constant deceleration, separated by an abrupt
transition redshift, i.e. q(z) = q0 for z ≤ zt and q(z) = q1 for z > zt. The
fourth model, M3 is a constant jerk parameterisation, j(z) = j0. The last
model, M4, assumes an expansion of the luminosity distance with free q0 and
j0 parameters such as

DL(z) =
c

H0

[
z +

1

2
(1− q0)z2 − 1

6
(1− q0 − 3q2

0 − j0)z3

]
+O(z4). (2.62)

All these models provide an equivalent description of the cosmic expansion and
are very interesting in the sense that no assumption about the matter-energy
content present in the Universe is required. The value of the jerk parameter
today can be used as a measure of a possible deviation from the ΛCDM model.
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3. Supernovae: Candles In The
Universe

Supernova explosions constitute one of the most spectacular events in the
Universe. They are mainly responsible for the creation of heavy elements as
well as the enrichment of the interstellar medium. The amount of energy
they release is so extreme (about ∼ 1053 erg), that they are able to trigger or
suppress star formation in neighboring regions. Their luminosity at maximum
sometimes outshines the entire host galaxy in which they explode. In less
massive galaxies, the effects of supernova explosions may even change their
structural properties.

Given their intense luminosity, supernovae are being used as favourite can-
didates to measure cosmological distances in the Universe (see Sec. 3.4). Fur-
thermore, they have been used to determine dust properties and the star for-
mation history of galaxies. They are also the major source of neutrinos after
the Big Bang and the strong shock waves formed in their remnants produce
and accelerate cosmic rays.

Roughly speaking, a supernova is the violent end of a star in which it ejects
most of its material into the interstellar medium by means of a shock wave.
This shock wave creates an expanding shell of gas and dust, which eventually
forms the supernova remnant. Valuable information on stellar evolution and
stellar composition can be obtained through these magnificent explosions. By
properly modeling supernovae, insights on the physics, hydrodynamics, nu-
cleosynthesis and radiation transport of the explosions can be achieved (see
Leibundgut, 2008, for a review on the subject). Since they can be observed
at large distances, they range amongst the objects we are able to see even at
high look-back times.

3.1 Supernovae Classification

In the 1930s, the astrophysicists Baade and Zwicky made the first differenti-
ation in an attempt to distinguish classical novae from supernovae (Baade &
Zwicky, 1934). Observations showed that the spectra of supernovae looked
very similar at the peak of their luminosity as well as at later phases. This
evidence led Wilson to point them out as distance indicators (Wilson, 1939).

51
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Figure 3.1: Classification scheme for supernovae from Turatto (2003). Type Ia
SNe are associated with the thermonuclear explosion of white dwarfs. Other
SN types are linked with the core collapse of massive stars. Some type Ib/c
and IIn SNe with very high explosion energies are often called hypernovae and
connected to Gamma Ray bursts.

A decade later, in 1940 the event SN 1940C in NGC 4725 was detected.
This particular object showed many differences in the spectrum, the most sig-
nificant being the presence of Balmer hydrogen lines near maximum. Soon
it became obvious that not all supernovae had exactly the same characteris-
tics and a new classification scheme for them was introduced by Minkowski
(Minkowski, 1941).

The modern classification scheme was based entirely on the optical spectra
at maximum light denoting as Type I those objects with no traces of hydrogen
lines near maximum, and as Type II those which did show the Balmer hydro-
gen lines (Minkowski, 1941, 1964). With increasing number of observations
a further separation was necessary within the first class. Those events that
exhibited strong transitions of singly ionised silicon (Si II) near maximum light
were designated as as Type Ia (Wheeler & Harkness, 1990), while supernovae
with no prominent silicon lines were denoted as Type Ib/c (Filippenko et al.,
1986; Filippenko, 1997a). The presence or absence of helium lines was used to
further distinguish between Type Ib and Type Ic (Filippenko, 1997a; Wheeler
& Levreault, 1985).

Figure 3.1 displays the most up-to-date classification diagram from Turatto
(2003). It is worth mentioning that Type II SNe have been likewise divided into
sub-groups attending to their light curve profiles or their relation to Gamma



3.2. EXPLOSION MECHANISMS 53

Figure 3.2: Spectra comparison of the main SN types at maximum, three
weeks, and one year after maximum. The spectra correspond to the supernovae
SN1996X for type Ia, SN1994I (left and center) and SN1997B (right) for type
Ic, of SN1999dn (left and center) and SN1990I (right) for type Ib, and SN1987A
for type II. At late times the contamination from the host galaxy is evident as
an underlying continuum plus unresolved emission lines (Turatto, 2003).

Ray bursts (see Turatto, 2003, for a full review on supernova classification).
In Fig. 3.2 characteristic spectra for the different supernova types are shown.

3.2 Explosion Mechanisms

Physical interpretation of the spectral classification is far from trivial and has
founded a lively field of research aiming to explain the very different processes
involved in supernova explosions.

The events corresponding to the right part of Fig. 3.1 are supposed to come
from core collapse in massive stars (about ∼ 8−10M�). In these stars, hydro-
static equilibrium is maintained by burning to heavier elements at increasing
temperatures and densities. Once the stellar core has burnt its fuel to iron and
no further exothermic reactions are possible, radiation pressure can no longer
support the core and it collapses under its own gravitational pull. The collapse
is only halted when the material reaches nuclear densities where electrons and
protons merge via inverse beta decay to create neutrons and neutrinos. At
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this stage, a compact remnant, or a proto-neutron star, is formed. The gravi-
tational binding energy of the neutron star is released by the neutrinos with a
small fraction of their energy being transferred to the stellar envelope, which
is then ejected in a violent explosion (Hoyle & Fowler, 1960). The mechanism
in which this process occurs is still under investigation. If the star is more
massive than ∼ 40M�, the final product of the explosion might be a black
hole, that is to say, an object of such great density that light is not able to
escape from it.

Type Ia supernovae (SNe Ia hereafter) are observed in all types of galaxies
(Turatto et al., 1994), in contrast with Type II and Ib/c which are predomi-
nantly observed in late-type galaxies. Since they are also present in elliptical
galaxies, usually associated with very old stellar populations, SNe Ia cannot
be the product of the core collapse of a massive star. Instead, SNa Ia are
thought to be powered by the thermonuclear explosion of a degenerate star
(most likely a carbon-oxygen white dwarf). Therefore, no traces of hydrogen
and helium are observed in these explosions, which indicate a highly evolved
progenitor. This also accounts for the lack of compact objects in their rem-
nants. The thermonuclear origin of SNe Ia was first suggested by Hoyle &
Fowler (1960). Since then, a great deal of models have been developed and
tested with more and more refined simulation techniques, trying to identify
the progenitor systems and the explosion conditions.

3.2.1 Thermonuclear Supernovae

It is well known that a Sun-like star consumes its nuclear fuel over 5 to 10
billion years. Afterwards, it reaches the red giant stage ejecting gradually the
outer layers through strong winds. Finally, it shrinks to a carbon-oxygen white
dwarf, with electron degeneracy pressure as the only means to avoid further
collapse. If the star is isolated, it quietly and slowly cools down and fades
away. But if the star happens to be in a binary system, with a main-sequence
or another degenerate star as companion, dynamical interactions between them
may lead to instabilities which can eventually trigger an explosion. The nature
of these systems is still a matter of debate.

The two broad classes of possible progenitors are the single degenerate
scenario, in which a white dwarf accreting from a binary companion is pushed
to a certain mass limit which ignites the explosion; and the double degenerate
scenario in which gravitational radiation causes an orbiting pair of white dwarfs
to violently merged disrupting the system.

For decades, the single degenerate channel was the accepted paradigm to
explain SN Ia explosions. However, in the last few years there is growing evi-
dence for the double degenerate channel being the responsible mechanism for
a considerable part (if not the majority) of the thermonuclear events (Pakmor
et al., 2012).
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The standard picture for the great luminosity observed in SN explosions is
known to arise from the γ-photons produced in the radio-active decay of 56Ni
through 56Co to 56Fe (Truran et al., 1967; Colgate & McKee, 1969; Kuchner
et al., 1994). 56Ni (most tightly bounded α nucleus) is abundantly synthesized
in thermonuclear burning at high densities. By electron-capture processes it
decays to unstable 56Co with a half time of ∼6.1 days and further to stable
56Fe with a half time of ∼77 days. The γ-rays originating from these decays
interact with the ejecta via Compton scattering and photo-electric absorption
and are thermalized to optical light (see Sec. 3.3.1 for details on SN Ia light
curves).

Different flame-propagation modes during the explosion have been pro-
posed in the literature. There are pure deflagration models where a burning
front, or flame, propagates more slowly than the local sound speed (Niemeyer
et al., 1996; Reinecke et al., 1999), and detonations with supersonic flame
propagation (Arnett, 1969). The former scenario, however, does not produce
the correct amount of 56Ni and yields too strong mixing of the intermediate
mass elements, in contradiction with observations. The latter scenario, on
the other hand, produces too much 56Ni for a standard Chandrasekhar-mass
explosion.

A third possibility, are delayed detonations, where the flame transitions
to a detonation after starting as deflagration (e.g. Khokhlov, 1991; Röpke et al.,
2007). The last few years have seen an increasing activity in extending the
simulations to three dimensions to explore the effects of asymmetries (Reinecke
et al., 2002; Gamezo et al., 2003; Röpke & Hillebrandt, 2005; Röpke et al., 2007)
and to account for peculiar supernovae in the different scenarios. We highlight
here only two models, which are regarded as the most plausible explanations
for SN Ia explosions. For an overview on the topic we refer the reader to the
reviews of Hillebrandt & Niemeyer (2000) and Hillebrandt et al. (2013).

Delayed Detonation of a Carbon-Oxygen White Dwarf

The delayed detonation model is the most promising realization of the single-
degenerate scenario and one-dimensional simulations have been very successful
in reproducing normal SNe Ia (Blondin et al., 2013).

In this particular model, a white dwarf in a binary system steadily ac-
cretes material from its non-degenerate companion (still on the main sequence)
through the inner Lagrange point of the system. When the critical mass of
1.4 M� (the Chandrasekhar limit; Chandrasekhar, 1931) is reached, the den-
sity in the center becomes large enough to ignite carbon fusion and eventually
a thermonuclear runaway occurs. This leads to the ignition of a thermonu-
clear flame that propagates through the star and burns its carbon and oxygen
to heavier elements. The energy released is enough to disrupt the star in a
supernova explosion.

As mentioned above, it was noted that a pure deflagration would not burn
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Figure 3.3: Snapshots of a 3-D simulation of a Chandrasekhar-mass delayed
detonation. The white surface and the blue colors represent the deflagration
front and the detonation flames, respectively. From Hillebrandt et al. (2013)

enough material and release sufficient nuclear energy, and that it does not re-
flect the proper amount of mixing observed in SN ejecta. A detonation occur-
ring at some late stage after the deflagration phase could solve this shortcom-
ing. In this case, the combustion starts out in a deflagration mode bringing the
white dwarf out of hydrostatic equilibrium and pre-expanding the fuel. Sub-
sequently, a spontaneous transition of the burning front from the (sub-sonic)
deflagration to the (super-sonic) detonation occurs (Khokhlov, 1991). This
mechanism allows for the necessary amount of 56Ni while also synthesizing a
substantial amount of intermediate mass elements in the outer layers of the ex-
ploding white dwarf, as suggested by observations. An example of this model
is shown in the simulation of Fig. 3.3.

Violent mergers of two White Dwarfs

Alternative explosion models for SN Ia have also been discussed in literature,
within both the single and double degenerate scenarios. Within the latter, it
has been shown that a violent merger of two carbon-oxygen white dwarfs can
lead to a SN Ia explosion (Pakmor et al., 2012).

At an early stage, the two stars within the binary system evolve separately
while exchanging mass through their Roche-lobes in a stable manner. A com-
mon envelope phase may occur in which both stars are brought to a closer
binary orbit. After this, gravitational-wave emission makes the binary sys-
tem to orbit in a slow inspiral and mass transfer becomes unstable. In the
last few orbits before the actual merger, tidal forces heavily deform the less
massive of the white dwarfs. Hot spots, formed on the surface of the primary
white dwarf, are sufficiently dense to ignite a detonation. Subsequently, the
detonation front burns the merged object almost entirely. Figure 3.4 shows
the hydrodynamic evolution and thermonuclear explosion of two white dwarfs
with initial masses 0.9 and 1.1M�.
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Figure 3.4: The merger of a pair of white dwarfs with 1.1 M� and 0.9 M�
simulated with the SPH GADGET and the LEAFS codes. Redder colors
correspond to higher densities. From (Pakmor et al., 2012).

3.3 Observational Characteristics

As stated in Section 3.1, SNe Ia are defined observationally by the absence of
hydrogen and helium and the presence of a strong silicon absorption line (Si II,
λ ∼ 6150Å) in their early-time spectra (Filippenko, 1997a). The last few years
have seen great progress in observing SNe Ia, and identifying some events
that are clearly different. Many nearby supernovae are now observed with
exquisite detail by intensive surveys such as the Nearby Supernovae Factory
(Aldering et al., 2002a) or the Palomar Transient Factory (Law et al., 2009).
Observations have revealed the great homogeneity in luminosity as well as the
identical spectral evolution that SNe Ia exhibit at maximum light (Branch &
Tammann, 1992; Hamuy et al., 1996; Branch, 1998). This uniformity offers
standard spectral and light-curve templates, which are very useful in singling
out other supernovae with peculiar features. The differences can be attributed,
most likely, to variations in the progenitor star, in accretion and rotation rates,
or in different carbon-to-oxygen ratios and flame ignition. All these factors are
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highly dependent on the scenario which is chosen to model SN Ia explosions.

Moreover, it is worth noting that the distant objects appear to follow the
same spectral evolution throughout the explosion, and afterwards, as their
nearby counterparts (Blondin et al., 2006; Garavini et al., 2007).

3.3.1 Light Curves and Spectra

Typically, SN Ia light curves are measured using the standard broad-band
filters from the Bessel system: U , B, V , R, I for the optical spectrum, and J ,
H, K for the near-infrared (NIR) part (Bessell, 1990).

Standard SNe Ia, also called Branch-normal (Branch et al., 1993), reach
their maximum luminosity about 20 days after the explosion, with an absolute
magnitude of approximately M ∼ −19 in both the B and V passbands (Riess
et al., 1999). Then a rapid decline of around 2-3 magnitudes in one month
occurs, followed by an exponential downfall about 50 days post maximum
(Leibundgut, 2000). A second maximum usually arises 20 to 30 days after the
first one in NIR bands (Meikle & et al., 1997). The colors in SN Ia evolve from
blue before peak magnitude to red thereafter. This transition is especially
evident in the B − V color changing from ∼0.1 at 10 days before maximum
to ∼1.1 around 30 days after maximum light. Characteristic light curves of
several SNe Ia in four different passbands are displayed in Fig. 3.5.

As we mentioned before, the most prominent feature of optical SN Ia spec-
tra is the blue-shifted doublet of Si II around 6150Å (see Fig. 3.6). Addition-
ally, several lines of other intermediate-mass elements such as Ca, Mg, S, and
O can be seen at maximum light. Their densities and excitation states are
the same from one supernova to another (Filippenko, 1997b). At early phases,
the ejecta of SNe Ia is optically thick and expanding at velocities of about 20
000 km s−1 (Branch et al., 2005). This is confirmed by the P-Cygni profiles
of the absorption lines, which form the characteristic pattern of resonant line
scattering in an expanding atmosphere. As the gas moves outward, the outer
layers become transparent allowing to look deeper inside the ejecta. Observa-
tions reveal that absorption features of different elements originate at different
depths of the ejecta and that its velocity decreases from outside-in. Studies of
the observed abundance stratification can help to constraint the spectral evo-
lution of SNe Ia (Stehle et al., 2005). Two weeks after maximum iron-group
elements (mostly Fe II and Co II) start to dominate the spectra (Harkness,
1991). At even later phases, around 100 days after maximum, forbidden emis-
sion lines of Fe III and Co III appear, indicating the beginning of the so called
nebular phase. At this stage, the ejecta has become optically thin due to the
expansion and radiative cooling in forbidden lines occur. This, and the fact
that the ratio of [Co III] to [Fe III] corresponds to the characteristic abundance
ratio of cobalt and iron for radioactive decay, supports the idea that the light
curve in SNe Ia is powered by the radioactive decay of 56Ni → 56Co → 56Fe
(Truran et al., 1967; Colgate & McKee, 1969).



3.3. OBSERVATIONAL CHARACTERISTICS 59

Figure 3.5: Light curves of several SNe Ia in the B, V,R and I bands. From
Suntzeff (1996) and Filippenko (1997a).

Despite the genereal absence of hydrogen and helium signatures in SN Ia
spectra, some events, such as 2002ci (Hamuy et al., 2003) or 2007le (Simon
et al., 2009), do present narrow Hα emission lines which have been identified
with circumstellar material surrounding the supernova. These observations
contribute to the understanding of the relation between progenitor systems and
dust properties, essential for cosmological distance determinations (Goobar,
2008; Folatelli et al., 2010).

3.3.2 Diversity and Correlations: The Phillips Relation

Differences in spectra and light curves of SNe Ia are, actually, strongly corre-
lated (Hamuy et al., 1996; Filippenko, 1997a). The most important of these
correlations was established by Mark Phillips at the Cerro Tololo Interameri-
can Observatory in Chile. It relates the width of the light curve to the absolute
magnitude, showing that SN Ia brightnesses deviate from that of a template
light curve in a very predictable way (Phillips, 1993). Supernovae with faster
declining light curves are fainter and redder at their peak. On the other hand,
SN with higher peak luminosities decline more slowly after the peak and show,
in general, bluer colors (Branch 1998 - see Fig. 3.7). This empirical correlation
of peak luminosity with light curve shape, which theoretically seems to arise
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Figure 3.6: Time-series spectra of SN Ia 1994D. Epochs (days) are given rel-
ative to maximum B brightness. The main spectroscopic feature, the Si II
double at 6150Å, is highlighted in red. From Patat et al. (1996) and Filip-
penko (1997a).

from radiative transfer effects (Höflich & Khokhlov, 1996; Kasen & Woosley,
2007), can be used to renormalise the peak magnitudes of a sample of objects
and recalibrate each supernova to infer its intrinsic brightness (Phillips, 1993;
Perlmutter et al., 1997; Riess et al., 1996).

This calibration is in fact crucial for cosmological surveys that use SNe Ia
as distance indicators (e.g. Perlmutter et al., 1999; Schmidt et al., 1998; Riess
et al., 1998). Phillips (1993) parameterised the light-curve shape with the
parameter ∆m15 which is the decay in B-band magnitude 15 days after the
peak. He first quantified the correlation using a handful of objects including
the archetypes of low and high luminosity SN Ia: SN 1991bg and SN 1991T
highlighted in Fig. 3.8. Supernova 1991bg is a good example of red and sub-
luminous (about ∼2 mag dimmer) event with a fast declining light curve. No
second maximum in the I-band light curve was observed in this supernova, and
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Figure 3.7: SN Ia light curves from the Calán Tololo Observatory. In the
upper plot the scatter in absolute luminosity and the correlated light-curve
width is shown. In the bottom plot the scatter is reduced after stretching the
light curve and rescaling the luminosity accordingly. Taken from Perlmutter
& Schmidt (2003).

the spectra showed very little iron but high abundance of intermediate mass
elements with low expansion velocities (Filippenko et al., 1992; Leibundgut
et al., 1993; Hamuy et al., 1994; Turatto et al., 1996). In contrast with normal
SNe, a strong absorption feature corresponding to a blend of lines of Ti II was
observed in the spectra of this object. Modeling of both spectra and light curve
show that the total amount of 56Ni present in the ejecta was about 0.07 solar
masses, very low compared with Branch-normal supernovae (Mazzali et al.,
1997).

On the contrary, SN 1991T appeared to be more luminous (by ∼0.3 mag)
and energetic with broad light curves and strong lines of Fe III dominating
the early spectrum, instead of the expected Si and Ca features (Jeffery et al.,
1992; Filippenko et al., 1992; Ruiz-Lapuente et al., 1992). Moreover, other
even brighther (about ∼1 mag) events have been detected within the SN zoo
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Figure 3.8: Phillips relation for the CfA3 SN data (Hicken et al., 2009a).
Blue points represent superluminous events. Red points correspond to the
underluminous class of SN 1991bg-like SNe. Courtesy of S. Taubenberger.

(see Fig 3.8). These are thought to arise from super-Chandrashekar mass
explosions (see e.g. Jeffery et al., 2006; Hachinger et al., 2012).

The diversity in SN Ia light curves is even nowdays not fully understood,
though much progress has been achieved. The peculiar supernovae appear to
produce 5% non-Gaussian tails in the SN Ia fraction distribution (Li et al.,
2011) and it is still unclear whether they come from different progenitors or
are products of distinct explosion mechanisms.

After filtering out the peculiar SNe spectroscopically and correcting the
light curves, little dispersion is found in well measured optical band peak
magnitudes of SNe Ia and luminosity-distance estimates with around 6% un-
certainty can be obtained. The development of corrections for the correlation
between SN color and extinction (Riess et al., 1996; Tripp, 1998; Phillips et al.,
1999) and K-corrections for redshift effects (Kim et al., 1996; Nugent et al.,
2002) has proven very important for the accurate determination of cosmologi-
cal distances.

Another interesting correlation is the one relating the type of host galaxy
in which the explosion occurs with the colors and velocities of SNe. It has been
shown (Hamuy et al., 1995, 1996; Sullivan et al., 2010) that fainter supernovae
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with lower ejecta velocities are usually found in red, early-type galaxies; con-
versely, brighter supernovae are more common in blue or late-type galaxies
(usually in inner regions of spiral galaxies).

3.4 The Standardization Process of SNe Ia

To a rough approximation, SNe Ia are standard candles (see Section 2.6.1),
with a dispersion of approximately 0.4 magnitudes in V -band at maximum
brightness (Hamuy et al., 1996; Riess et al., 1996). This scatter can be sharply
reduced by means of the Phillips relation mentioned in the previous Section
and depicted in Fig. 3.8. All current methods to standardize SN light curves
are based upon the empirical correlation between light-curve width and peak
luminosity, with different parameterizations for it.

Generally speaking, SN Ia color depends on the light-curve parameter,
altough variations in color are also present for a fixed light-curve shape. This
variation is believed to arise from different explosion mechanisms, host galaxy
dust and the surrounding environment of the SNe, but its origin and nature is
still not well understood. Independently from the process producing differences
in color, an appropriate correction needs to be applied to improve the distance
measurements from SN Ia. The most common approach is to fit the light
curves with one parameter family of templates and add a color law describing
variations in color.

The color excess, generally expressed as E(B−V ), can be easily determined
from multiband photometry and a specific color law. The color correction is
related to the extinction correction via the parameter

RV =
AV

E(B − V )
. (3.1)

where AV is the extinction in the V -band. This is the well-know parameteri-
sation of Cardelli et al. (1989) where the parameter RV can be estimated by
measuring AV or by comparing the relative extinction in different filters. Stud-
ies of the extinction in the Milky Way yield an averaged value of RV = 3.1
(Sneden et al., 1978). However, other SN analyses have indicated a lower
value for it. For instance, Kessler et al. (2009) investigated color variations
and found RV = 2.8 ± 0.14 with the Sloan Digital Sky Survey II SN data
(Frieman et al., 2008). Also, Nobili & Goobar (2008) found a smaller value of
RV = 1.75± 0.27, though this analysis was qualitatively different.

The two mainstream light-curve fitters to standardize SNe are the Multi-
color Light Curve Shape (MLCS; Riess et al., 1996; Jha et al., 2007) technique
used by the High-z Supernova Search Team (Schmidt et al., 1998) and the
stretch-factor formalism SALT (Spectral Adaptive Light curve Template Guy
et al., 2005), employed by the Supernova Cosmology Project (Perlmutter et al.,
1997).
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MLCS fitters create a set of light-curve templates in multiple passbands us-
ing well-observed nearby SNe Ia to determine the relationships between multi-
band light curve shapes and peak absolute magnitudes. The different param-
eters of the analysis, such as intrinsic color, rate of decline, peak brightness,
V -band extinction in the host galaxy and distance modulus, are determined
by fitting each multiband set of distant supernova light curves to redshifted
versions of these templates (Jha et al., 2007; Wood-Vasey et al., 2007)

In contrast, SALT-style fitters perform a global, simultaneous fit of param-
eters describing cosmology and the relationship between supernova light curves
and absolute magnitude. The main difference between these two methods is
the treatment they perform on supernova colors. While MLCS links the dif-
ferences in color in SNe Ia at maximum light to dust reddening (adopting an
explicit prior for the distribution of the reddening), the SALT approach allows
scatter in intrinsic color and does not attempt to separate intrinsic variations
from dust (Weinberg et al., 2012).

At the level of precision of current data samples, the differences in tech-
niques fitting the light curves are significant. Therefore, a better understanding
is necessary to fully explain the light-curve shape and color corrections and is
currently an area of active research (Weinberg et al., 2012). We will summa-
rize here the characteristics of both MLCS and SALT and highlight the main
differences concerning SN light-curve and cosmological results.

3.4.1 The SALT Fitter

Essentially, in the SALT2 approach (the update of SALT, Guy et al., 2007)
the photometry of each SN is fitted to an empirical model to determine the
correction parameters. The SN rest-frame spectrum – F (SN, p, λ) – is modeled
as a function of both wavelength, λ, and time since B-band maximum, p,
and derived through a pseudo-principal component analysis based on both
photometric and spectroscopic data. Most of these data come from nearby
SN Ia data, but higher redshift data as the Supernova Legacy Survey SNe
(Astier et al., 2006) are also included. The model consists of three components,
namely a term for the time-dependent spectral average, M0(p, λ), a term for
the variation from the average, M1(p, λ), accounting for the correlation of peak
brightness and color with light-curve shape, and a wavelength-dependent color
law CL(λ). The three components are determined from the training process
and combined as

F (SN, p, λ) = x0 × [M0(p, λ) + x1 ×M1(p, λ)]

× exp [c× CL(λ)] . (3.2)

In this context, x0 describes the flux normalization, x1 is the shape-luminosity
parameter accounting for the deviation from the average decline rate, and c
is the color parameter which encodes the difference in measured color and the
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mean color for a given x1. These parameters are determined for each observed
SN by fitting the model to the available data. The fit is carried out in the
observer frame by redshifting the model, correcting for Milky Way extinction
(using the law from Cardelli et al., 1989, with the usual value of RV = 3.1)
and multiplying by the effective filter transmission functions provided by the
different observatories.

The distance modulus is then obtained by combining the three parameters
mmax
B = −2.5 log10[

∫
B
F (SN, 0, λ)..λdλ], x1 and c for each SN through the

equation:

µB = mmax
B + α · x1 − β · c+ δ · P (mtrue

? < mthreshold
? )−MB , (3.3)

where MB is the absolute B-band magnitude, and α, β and δ are the cor-
rection parameters for shape, color and host mass, respectively. The global
parameters α, β, δ and MB describe the SN Ia population and are estimated
simultaneously with the cosmological parameters by carrying out the following
χ2 minimization (Conley et al., 2006):

χ2
stat =

∑
SNe

[µB(α, β, δ,MB)− µ(z; ΩM ,Ωw, w)]2

σ2
ext + σ2

sys + σ2
lc

, (3.4)

where

σ2
lc = VmB + α2Vx1 + β2Vc + 2αVmB ,x1 − 2βVmB ,c − 2αβVx1,c (3.5)

is the propagated error from the covariance matrix, V , of the light-curve fits.
There is evidence that SN Ia luminosity correlates with the mass of the

host galaxy, even after the corrections for color and light-curve width have
been applied (Kelly et al., 2010; Sullivan et al., 2010). Low-redshift SNe Ia
usually come from surveys that observe catalogued galaxies and generally have
brighter absolute magnitudes, due to the fact that host galaxies of SNe Ia in
these surveys are, on average, more massive than the host galaxies of distant
SNe Ia. It has been proven that this correlation biases cosmological results
(Sullivan et al., 2010) and can be relatively easily corrected by fitting a step
in absolute magnitude at mthreshold

? = 1010M�. Within the Union2 compilation
(see Sec 3.6.3), a probabilistic approach to determine the proper host-mass
correction for each SN is adopted, since host-mass data are not available in
the literature for all SN hosts.

Finally, uncertainties due to host galaxy peculiar velocities, Galactic ex-
tinction corrections and gravitational lensing are included in the term σext in
Eq. 3.4. Additionally, a dispersion term, σsys, which contains potential sample-
dependent systematic errors and the observed intrinsic SN Ia dispersion, is also
included. Computing a separate σsys for each sub-sample appears beneficial,
since it prevents samples with poorer-quality data from increasing the errors
of the whole sample. A number of systematic errors are also considered for the
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full cosmology analysis within the SALT2 paradigm. These are taken into ac-
count by constructing a covariance matrix for the entire sample. For a detailed
explanation on systematic errors see Sec. 3.6.4.

3.4.2 The MLCS Fitter

The MLCS method, and its update MLCS2k2 (Riess et al., 1996; Jha et al.,
2007), describes the variation among SN Ia light curves with a single shape
parameter ∆. The color variations relative to the model are assumed to be
the result of extinction by dust in the host galaxy and in the Milky Way. The
MLCS model magnitude is defined as

me,f
model = M e,f ′ + pe,f

′
∆ + qe,f

′
∆2

+Xe,f ′

host +Ke
ff ′ + µ+Xe,f

MW, (3.6)

where e is an epoch index that runs over the observations, f are observer-frame
filter indices, f ′ are the rest-frame filters for which the model is defined, ∆ is
the shape-luminosity parameter that accounts for the correlation between peak
luminosity and the shape/duration of the light curve. Xhost is the host-galaxy
extinction (which is assumed to behave similarly to dust in the Milky Way),
XMW is the Milky Way extinction, Kff ′ is the K-correction between rest-frame
and observer-frame filters, and µ is the distance modulus. The extinction is
described using the parameterization of Cardelli et al. (1989).

The coefficients M e,f ′ , pe,f
′
, and qe,f

′
are model vectors evaluated using

a training set of around 100 well-observed low-redshift SNe. The parameter
M e,f ′ refers to the absolute magnitude for a SN Ia with ∆ = 0 and the p and q
vectors translate the shape-luminosity parameter ∆ into a change in the SN Ia
absolute magnitude. Essentially, intrinsically faint (bright) SNe have positive
(negative) values of ∆.

Via adequate K-corrections, the MLCS rest-frame magnitudes are trans-
formed to the magnitudes of a redshifted SN in a particular observed passband.
K-corrections are usually computed following the prescription of Nugent et al.
(2002), which requires a SN spectrum at each epoch, the spectrum of a refer-
ence star, and the reference star magnitude in each passband.

Performing the light-curve fit determines the likelihood function L of the
observed magnitudes (or fluxes) as a function of four parameters for each SN
Ia. These are the time of peak luminosity in the rest-frame B-band, t0, the
shape-luminosity parameter, ∆, the host-galaxy extinction in the V -band, AV ,
and the distance modulus, µ. The redshift, z, is accurately determined from
the spectroscopic analysis, and therefore it is not used as a parameter in the
fit. However, the uncertainty in redshift is included in the error estimates. For
each SN, the χ2 statistic function is given by

χ2 = −2 lnL(data|t0,∆, AV , µ)− 2 lnPprior(z, AV ,∆),

(3.7)
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where Pprior is a Bayesian prior and the log-likelihood is given by

−2 lnL =

{∑
i

[
F data
i − Fmodel

i (t0,∆, AV , µ)
]2

σ2
i,stat + σ2

i,model

}
. (3.8)

In this last equation, the index i runs over all measured epochs and observer-
frame passbands, and F data

i is the observed flux for each measurement i. The
term σstat is the statistical measurement uncertainty and σmodel is the model
uncertainty estimated from the spread in the training sample of SNe.

Since AV is a physical parameter that is always positive, and since it is not
well constrained when the signal is low compared to the noise, or when the
observations do not cover a large wavelength range, the MLCS fit includes a
Bayesian prior on the extinction. The prior forbids negative values of AV and
encodes information about the distribution of extinction in SN host galaxies
as well as the selection efficiency of the survey. It has been shown (Kessler
et al., 2009) that the prior does not have a significant impact on the inferred
parameters. MLCS provides an estimate of the distance modulus, µ, for each
SN via Eq. 3.7. Subsequently, the cosmological parameters are derived by
minimizing the following χ2 statistic function for the entire SN Ia sample,

χ2
µ =

{∑
i

[µi − µ(zi;w,ΩM,ΩDE, H0)]2

σµ2

}
+χ2

BAO + χ2
CMB, (3.9)

where µ(zi;w,ΩM,ΩDE, H0) is the model distance modulus. The terms χ2
BAO

and χ2
CMB incorporate information from BAO (Eisenstein et al., 2005) and

CMB measurements (Larson et al., 2011), respectively. The minimum of χ2

is marginalized over H0 in the global fit due to the degeneracy between the
Hubble parameter and the peak rest-frame model magnitude. The distance-
modulus error is given by combining in quadrature the statistical uncertainty
from MLCS with an additional (intrinsic) error and the redshift uncertainty.

3.4.3 Comparison of MLCS and SALT2 Methods

It is worth noting, that on a per-object basis, both SALT2 and MLCS light-
curve fits are qualitatively very similar. However, recently published com-
parisons between SALT2 and MLCS concerning cosmological inferences for a
compilation of several data sets resulted in an estimate of the equation-of-
state parameter w that differed by 0.2 (Kessler et al., 2009). This difference
exceeded both statistical and systematic error budgets. Figure 3.9 shows the
mean difference in distance modulus, ∆µ = µSALT2 − µMLCS, as a function of
redshift. The two methods yielded consistent distance estimates for nearby
and intermediate redshift data, with the scatter in ∆µ being comparable to
the intrinsic scatter of each sample. When including higher redshift data in
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Figure 3.9: Difference in the distance modulus, ∆µ, and correlation between
the corrections parameters of SALT2 (x1 and c) and MLCS (∆ and AV ), for
several public data sets. Crosses in the left column show the average and the
uncertainty in redshift bins. The solid straight lines (middle and right panels)
represent the fitted slopes, dc/dAV and dx1/d∆, for the various data samples
(Kessler et al., 2009).

the analysis, such as SNLS or HST samples – see Sec. 3.6– the difference in
distance modulus increased and a clear trend for ∆µ with redshift appeared
(Kessler et al., 2009).

The deviation appears to originate from the difference between the two
fitters in the rest-frame U -band region, and the color prior used in MLCS.
Also, MLCS seems to be less accurate in predicting the rest-frame U -band
using data from filters at longer wavelengths (Weinberg et al., 2012). This
difference in U -band performance is not hard to understand, since observations
carried out in the observer-frame U -band are in general associated with a high
level of uncertainty due to atmospheric variations. We recall that MLCS is
exclusively trained on observations of nearby SNe, while the SALT2 training
set also includes higher-redshift data. This means that the dependence on the
nearby sample is reduced and better constraints on the rest-frame ultraviolet
region of the spectrum can be obtained.
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Effectively, the SALT2 parameters x1 and c are analogous to the MLCS
parameters ∆ and AV . The parameters x1 and ∆ are essentially equivalent in
describing the correlation between SN light-curve shape and brightness. How-
ever, as we already mentioned, the color parameters c and AV have different
physical meanings. MLCS makes the assumption that all intrinsic SN color
variation is captured in the model by the shape-luminosity correlation and
that any additional observed color variation is due to reddening by dust. The
color term c in SALT2 describes the excess color (red or blue) relative to a
SN with fixed stretch parameter x1. The excess color can be from host-galaxy
extinction, from variations in the SN color that are independent of x1, or from
other effects, which SALT2 does not attempt to separate.

The global SALT2 parameter β, which gives the correction for B-band
and, is the analog of the global MLCS dust parameter RV , which gives the
correction for V -band. Both parameters can be compared via the relation
β = RB = RV + 1 and, in fact, one would expect both of them to be equal
if the color variation was purely due to host-galaxy extinction. However, the
SALT2 β parameter is determined from the global fit to the Hubble diagram
for the entire SN Ia sample under analysis, while the MLCS RV parameter is
obtained by modeling the observed colors of a specific subset of the SN data.

Within the MLCS framework, each light-curve fit yields an estimate for the
distance modulus together with its estimated error, independent of cosmolog-
ical assumptions. Differently, in SALT2 the distance modulus for a given SN
is based on a global fit to the whole sample assuming a specific cosmological
model. This might induce biases in a particular redshift range to propagate
over the entire redshift range of the sample, and make them more difficult to
identify.

The fit with MLCS incorporates a Bayesian prior (Pprior in Equations 3.7
and 3.8) in order to reduce the scatter in the Hubble diagram (by including
information about the underlying AV distribution). This prior excludes values
of AV < 0, because of the assumption that excess color variation is due to
extinction by dust. This means that SNe with very blue apparent colors (bluer
than the template) are assigned AV ' 0, and the discrepancy in color between
the model and the data is attributed to fluctuations. In SALT2, apparently
blue SNe have negative colors (c < 0) resulting in larger luminosities and
distance moduli compared to MLCS. Within the SALT2 framework, the scatter
in the Hubble diagram is minimized via the simultaneous fit of the global SN
parameters with the cosmological parameters.

Recent studies (Mandel et al., 2009; Barone-Nugent et al., 2012) suggest
that SNe Ia are truly standard candles in the near-IR, needing no standard-
ization process. The peak luminosities in the rest-frame H-band have only
about 0.1 magnitudes dispersion, independent of light curve shape. This small
dispersion in NIR peak luminosities compared to the optical ones is consistent
with theoretical predictions from radiative transfer models (Kasen, 2006).
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3.5 Cosmology with SNe Ia: Basic Principles

Supernovae Ia are the most straightforward tool for studying cosmic accelera-
tion, providing the first observational evidence of the accelerated expansion of
the Universe already more than a decade ago (Riess et al., 1998; Perlmutter
et al., 1999, both using local calibration samples from the Calán/Tololo sur-
vey, Hamuy et al. 1996). Already in the 1920s, Hubble, while studying the
cosmic expansion of the Universe, had used galaxies as beacons in the cosmos
to measure cosmological distances (out to 1000 Mpc). However, it was soon
discovered that galaxies are not suitable for this purpose, since they present
very different shapes and sizes and are not uniform in luminosity. Over the
second half of the last century, other distance indicators were found to be much
more adequate for cosmological applications.

The idea of using supernovae to determine the present expansion rate of
the Universe dates back to 1939, when Wilson advanced the idea that they
could be considered as standard candles due to their uniformity in luminosity
(Wilson, 1939). Since then, an increasing interest in using SNe to determine
the Hubble constant and the expansion history of the Universe has arisen.

In the late 1970’s, Tammann and Colgate predicted that light curves from
distant supernova would be affected by time dilation (Tammann, 1978; Colgate,
1979). We previously saw that the expansion of the Universe causes light to
be redshifted during its journey from distant objects to an observer. Distances
between galaxy clusters, and the wavelengths of the photons are increased by
the same incremental factor z by which the cosmos has been stretched in the
time interval since the light left its source. Here, the time interval is the speed
of light times the object’s distance from Earth, which can be determined by
comparing its apparent brightness to that of a nearby supernova of the same
intrinsic brightness. Therefore, a collection of measurements of SNe Ia over
a wide range of distances would provide the entire expansion history of the
Universe (Perlmutter & Schmidt, 2003). This was tested on a large sample by
Goldhaber et al. (1997) and Goldhaber et al. (2001). The confirmation was
extremely important for cosmology, because it led to the rejection of alternative
tired light theories.

At that time, matter was believed to be the primary energy component of
the cosmos and therefore, the main goal was to determine the matter density
parameter ΩM in order to check different cosmological models. Furthermore,
through the measurement of the expansion rate, the curvature of space and
the finite/infinite nature of the Universe could be evaluated.

Essentially, to measure cosmic expansion with SNe Ia, one has to compare
the corrected peak apparent magnitudes of distant supernovae to those of local
calibrators (usually within the interval 0.03 < z < 0.1) whose distances are
large enough to be insensitive to peculiar velocities and small enough to be
insensitive to the assumed densities of dark matter and dark energy.
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3.5.1 The Hubble Diagram

The luminosity distance DL(z) is sensitive to the expansion rate through Eq.
2.31. Therefore the cosmological parameters governing the expansion of the
Universe in Friedmann-Robertson-Walker models can be determined with pre-
cise values of luminosity distances (Sandage, 1961, 1988; Peebles, 1993; Pea-
cock, 1999). We recall here briefly the importance of the Hubble law which
relates the redshift, z, of a nearby galaxy to its distance D from us:

V = cz = H0D, (3.10)

where V is the galaxy radial velocity, and H0 is the Hubble constant, or the
present expansion rate of the Universe. This law led to the remarkable result
that the velocities of galaxies are increasing with distance as if they were
moving apart from each other. In other words, Hubble found the first evidence
of the expansion of the Universe. The low-redshift linearity of Hubble’s law
is a consequence of the Cosmological Principle, that is, on large scales the
Universe is isotropic and homogeneous. This means that we must not consider
ourselves in any special position in the Universe and that if we observed the
galaxies from any other position we would notice the same expansion (Hubble,
1936; Narlikar, 2002).

Originally, Hubble plotted in his diagram the recession velocity of galaxies
against their distances (see Fig. 3.10; Hubble, 1936; Sandage, 1961). He
obtained a value for H0 of 530 km s−1 Mpc−1 (Hubble, 1936), much larger
than the present estimations lying in the range 60-80 km s−1 Mpc−1. This
large difference is due to the circumstance that Hubble greatly underestimated
the distances to the galaxies in his observations. He used Cepheids as distance
indicators, but he did not account for the fact that there are two classes of
Cepheids, one belonging to population I-stars and the other to population II-
stars. The former are about four times brighter than the latter. Moreover,
this standard candles are only good estimators for distances up to ∼ 10 Mpc
(Narlikar, 2002).

The Hubble diagram is an extension of the linear Hubble law to higher red-
shifts. Three fundamental quantities can be derived from such a diagram: the
slope of the expansion line, which provides an estimation of the local expansion
field; the scatter around the expansion line, which gives an indication of the
accuracy of the relative distances (in contrast to absolute scales), of deviations
from the smooth cosmological expansion and measurement errors; and finally,
the value of the local Hubble constant, that is calculated from the intercep-
tion of the line at zero redshift (Branch & Tammann, 1992; Leibundgut &
Pinto, 1992; Riess et al., 1996; Branch, 1998). The first attempts of producing
a Hubble diagram using SN Ia data (instead of galaxies) showed that their
brightnesses followed the Hubble relation quite well (Kowal, 1968; Tammann
& Leibundgut, 1990; Leibundgut & Pinto, 1992), although considerable scatter
was still present.
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Figure 3.10: Original Hubble diagram. The recession velocities (in km s−1) are
plotted against distance (in parsecs). The filled disks and solid line represent a
solution using the galaxies individually; the circles and dashed line a solution
combining the galaxies into groups. From Hubble (1936).

Modern Hubble diagrams of SNe Ia usually show redshift instead of ra-
dial velocity, and distance modulus instead of absolute distances. Moreover,
redshifts are usually now referred to the Cosmic Microwave Background rest
frame (Tonry et al., 2003; Knop et al., 2003; Barris et al., 2004; Riess et al.,
2004, 2007; Astier et al., 2006; Wood-Vasey et al., 2007; Jha et al., 2007). In
these modern versions, the scatter of the normalized SNe Ia (through the light
curve recalibration discussed in Section 3.3.1) around the expansion line is
about 0.2 magnitudes or 10% in distance (Jha et al., 1999, 2007; Tonry et al.,
2003). This means that although our knowledge of the explosion mechanisms
and radiative transport in the explosions is still limited, SNe Ia can be used
as good relative distance indicators in the local Universe.

Figure 3.11 displays the most recent homogeneously treated sample of SNe
Ia: the Union2.1 data set (see next Section for a full description of this sample;
Suzuki et al., 2012). In Fig. 3.12 we see the Hubble diagram with data from
Davis et al. (2007) and different models overplotted.

3.5.2 The Expansion History and the Accelerating Uni-
verse

The importance of the Hubble diagram lies in the fact that the cosmic expan-
sion history can be reproduced and studied in detail, providing us the matter
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Figure 3.11: Hubble diagram of the largest SN Ia sample to date, the Union2.1
compilation (Suzuki et al., 2012). Here the distance modulus (µ = m−M in
units of magnitude) is plotted against redshift. The solid line is the best ΛCDM
fit.

and energy contributions during the different epochs of the Universe (Linder,
2003). Only relative distances are required to trace the expansion history in
such a diagram, if a class of cosmological objects with the same intrinsic lu-
minosity is available (that means, one is independent of the distance ladder).
That is the reason why SNe are such a powerful tool: they can be observed up
to redshifts of z ∼ 1.5, providing insights into the distant past of our Universe
(when it was 2/3 of the current age, approximately) and constituting, at least
till now, the best distance indicators we have in hand.

We discussed in Sec. 2.8 that, in the light of the ΛCDM model, some
dark energy component accelerates the expansion of the Universe. Theoretical
cosmologists had already anticipated that the missing energy in the cosmic
budget could be in form of vacuum energy, something that would lead to a
late time acceleration phase (Turner, 1991, 1997; Ostriker & Steinhardt, 1995;
Liddle et al., 1996). However, at that time, there was no observational probe
that could confirm such predictions. In 1998, the most surprising discovery
was made. Two independent groups, the Supernova Cosmology Project (Hook
et al., 2005; Knop et al., 2003; Perlmutter et al., 1995, 1999) and the High-
Z Supernova Search Team (Leibundgut et al., 1996; Riess et al., 1997, 1998,
2000; Garnavich et al., 1998; Coil et al., 2000; Barris et al., 2004; Clocchi-
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Figure 3.12: Hubble diagram using SNe Ia from Davis et al. (2007). The data
for the individual SNe are plotted as shaded points, while the binned data are
shown in black. The red line corresponds to an empty universe with ΩM =
ΩΛ = 0, the blue line to an Einstein-de Sitter model with ΩM = 1,ΩΛ = 0, and
the green line to the standard ΛCDM model with ΩM = 0.3,ΩΛ = 0.7. The
bottom panel shows all distances relative to the empty Universe model. From
Leibundgut (2008).

atti et al., 2006), found strong indications that the distant (z ≥ 0.5) SNe Ia
appeared about 0.25 magnitudes fainter than predicted even for a massless,
empty universe (see Figs. 3.13 and 3.14). However, since we live in a Universe
with matter, there should be a limit on how low the mass can be. This argu-
ment led to the interpretation that the faint (distant) SNe are actually further
away than expected, meaning that distances are increasing more rapidly than
presumed, or equivalently, that the expansion of the Universe is accelerating!

The best fit achieved back in 1998 gave the following values for the cos-
mological parameters: ΩM = 0.3 and ΩΛ = 0.7 (for a flat Universe with no
large-scale curvature), confirming that a non-zero vacuum energy component
or cosmological constant was indeed present in the Universe and was, moreover,
larger than the matter density.

The detection of the accelerated expansion is of extraordinary importance
as it gives a credible explanation of the missing 70% of the critical density,
in form of a dark energy component with negative pressure, p = −ρ. In this
context, an interesting question arises: when did the universe start acceler-
ating? We recall from General Relativity that the components of the energy
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Figure 3.13: History of the cosmic expansion measured with high-z SNe as-
suming a flat geometry. The curves in the blue shaded region represent cosmo-
logical models in which the acceleration due to vacuum energy overcomes the
deceleration caused by matter. In the yellow shaded area, the curves represent
models with permanent deceleration due to high mass density. For the last
two curves, the expansion eventually halts and the Universe recollapses. Taken
from Perlmutter & Schmidt (2003).

density evolve in time following Eq. 2.12. Since the end of the inflation epoch
(where matter and radiation were equal), the matter contribution to the total
energy density has fallen many orders of magnitude. But the vacuum energy
density or ΩΛ, a property of empty space itself, stays constant. This implies
that the dark energy component was less important in the past than it is today
(something also independently required by large scale structure formation and
CMB measurements). Until recently (z ≈ 0.5) the universe was decelerating
due to matter domination, but now (when the dark energy dominates) it is, in
fact, accelerating. Riess et al. (2004) observationally confirmed this transition
from a past deceleration epoch to the current acceleration phase using very
high redshift SNe Ia (Fig. 3.15).

It seems indeed stunning that the Universe is accelerating exactly today,
and that the dark energy density is about twice of the matter density, showing
that we live during a very special epoch. This is the so-called cosmic coinci-
dence problem, which suggests that something might be wrong with current
observations or with the cosmological models proposed so far.
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Figure 3.14: Hubble diagram using distant SNe Ia from the SCP and the High-
Z Supernova Search and nearby SNe from (Hamuy et al., 1993). At redshifts
beyond z = 0.1 the cosmological predictions begin to diverge, depending on
the assumed cosmic densities. The red curves are models with zero vacuum
energy and mass densities ranging from the critical density ρc to zero. The
best fit (blue line) is an accelerating Universe with a vacuum energy about
twice the mass density. Taken from Perlmutter & Schmidt (2003).

An alternative explanation of the SN data without an accelerated expan-
sion could be that faint supernovae are dimmed by the intervening dust of
the host galaxy. However, color measurements sensitive to a color-dependent
dimming indicate that this does not play a major role (Riess et al., 1998; Perl-
mutter et al., 1999). This leads to the question whether supernovae might have
been intrinsically fainter in the past, but no evidence for evolution in spectral
properties has been found when comparing nearby and distant supernovae
(Perlmutter et al., 1997, 1999).

However, as we will explain in the following sections, systematic uncer-
tainties are still quite big in current data. Therefore, it is very important to
understand their effect in the data. Searching for a larger number of distant
supernovae from the epoch when ΩM was dominating and cosmic expansion
was still slowing down, would be a very good test of systematics. In the ΛCDM
model, supernovae from that time are not as dimmed as they should be if dust
or intrinsic evolutionary changes were causing their faintness.
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Figure 3.15: Hubble diagram with binned SNe data from Riess et al. (2007).
It shows evidence for a transition from acceleration today corresponding to the
current dark energy domination epoch, to deceleration in the past due to the
matter-domination era. From Turner & Huterer (2007).

3.6 Current SN Ia Samples

An average galaxy hosts just a couple of explosions per millennium, making
the occurrence of SNe highly random and impossible to predict their location
and time. When a supernova explosion is detected, it has to be immediately
followed to cover the phase of maximum brightness (essential for their calibra-
tion) and the subsequent weeks. This becomes a hard task since the observing
time at the largest telescopes is usually pre-scheduled more than half a year
before. Thus, when a explosion is discovered, it is already too late to submit
any observing proposal. This is, in fact, one of the reasons why SN Ia samples
have increased slowly.

3.6.1 Observational Strategy

In the early 1990s, Saul Perlmutter and collaborators at the University of
California and the Lawrence National Laboratory, in Berkeley, conceived a new
observing strategy for supernova cosmology campaigns that has proven very
successful. This strategy consists of four main steps: discovery, monitoring,
spectroscopic confirmation, and calibration against low redshift samples.
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Figure 3.16: Upper panel: observed spectrum of SN 2003du compared with the
rest-frame spectrum of SN 2003fr at z = 0.543. Both spectra are approximately
six days prior to the B-band maximum. The absorption and emission features
are remarkably similar. Currently available data do not demonstrate any clear
difference between the spectra of distant Type Ia supernovae and those of their
local counterparts. Bottom panel: optical bands for the Bessel UBV R system
(Bessell, 1990), as well as the SDSS ugri filter set (Fukugita et al., 1996). From
Goobar & Leibundgut (2011).

In large surveys, discovery and monitoring are usually done together, through
repeated imaging of a large field of view in multiple bands. If a set of images
of adjacent sections of sky with thousands of galaxies in it is taken just after
new moon and again after one month, the images will provide at least a dozen
of bright spots that were not there in the first images. These fresh supernovae
are certainly near peak brightness.

Usually, a minimum rest-frame cadence of one observation per 5 days is
needed to get adequate measurements of the light curve shape, such that sta-
tistical errors are dominated by the intrinsic dispersion of SN luminosities and
not by observational errors. At least two bands are needed to measure SN
colors and infer dust extinction, though more are better to distinguish differ-
ent forms of extinction (interstellar, circumstellar, and intergalactic) from each
other and from intrinsic color differences.

A survey with periodic and uniform exposures observing supernovae at a
given redshift should aim at a signal-to-noise ratio (S/N) of around 15 at peak,
so that one can still measure the SN before or after peak when it is around
1.5 magnitudes fainter. After discovering SNe, one must determine their type
and redshift through accurate photometry and spectroscopy, using state-of-
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the-art observational facilities and telescopes (e.g. the 10m-class telescopes in
Hawaii or Chile). The most reliable approach for classification is to obtain
SN spectra to match their spectral features with known templates. However,
spectroscopic follow-up is typically expensive in a supernova campaign. For
the same telescope aperture, an epoch of spectroscopy requires an order of
magnitude more time than an epoch of photometry (Weinberg et al., 2012). In
principle, photometric redshifts can be used instead of spectroscopic redshifts,
though this would probably mean a degradation in statistical accuracy. Due
to the degeneracies between redshift, SN color, and dust extinction, it is not
clear that cosmological SN surveys can obtain the required accuracy using only
photometric monitoring (Weinberg et al., 2012).

An intermediate approach would be to obtain eventual spectroscopic ob-
servations of host galaxies but not attempt real-time spectroscopy of all candi-
dates. This scheme would yield precise redshifts and provide host galaxy data
that can be used to measure correlations between supernova and host galaxy
properties. Using this method, Bernstein et al. (2012) forecast a degree of
purity of around 98% in a survey such as the Dark Energy Survey (DES, The
Dark Energy Survey Collaboration, 2005) for photometric observations.

For type identification, one can also check for a second peak in the rest
frame infrared light curve, a morphological feature that is unique to SNe Ia,
though rest-frame IR measurements are hard to access at high redshifts.

A difficulty that arises in supernova campaigns is that, with increasing
redshifts, the brightness of very distant supernovae measured in a given filter
can not be easily compared with the brightness of closer supernovae in the
same filter. By doing so, one would be probing different parts of the spectrum
for each supernova, due to the redshift effect. This is called the K-correction
problem, which can be solved with the above-mentioned methodology, by mea-
suring each supernova in an adequate redshifted filter and combining them in
a later step.

3.6.2 State-of-the-Art SN Ia surveys

Supernova surveys have been a major area of activity in observational cosmol-
ogy over the last decade. The largest high-redshift (z ∼ 0.4 − 1.0) data sets
are currently those from the ESSENCE survey (Wood-Vasey et al., 2007) with
around 200 spectroscopically confirmed SNe and the CFHT Supernova Legacy
Survey (SNLS, Astier et al., 2006; Conley et al., 2011; Sullivan et al., 2011)
with 500 spectroscopically confirmed SNe in the three-year data set SNLS3.
At very high redshifts (z > 1), the Hubble Space Telescope (Riess et al., 2004,
2007; Suzuki et al., 2012, HST, ) has yielded around 25 objects which confirm
that the Universe is decelerating at high redshift and limit possible systematic
effects from evolution of the supernova population or intergalactic dust extinc-
tion. At intermediate redshifts (0.1 < z < 0.4), the SDSS-II supernova survey
(Frieman et al., 2008; Sako et al., 2008) has discovered and monitored around
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500 spectroscopically confirmed SNe Ia. So far, only the first-year data set
(103 SNe) has been analysed (Kessler et al., 2009), but Campbell et al. (2013)
present cosmological results from a sample of 752 photometrically classified
SDSS-II SNe with spectroscopic host galaxy redshifts.

Important efforts have been made to expand the sample of local calibra-
tors and improve their measurements, including rest-frame IR and rest-frame
UV photometry. Besides the well-known collection of nearby supernovae from
Cerro Tololo (Hamuy et al., 1996), other contributions have been added to the
nearby family such as the large sample from the CfA team (Jha et al., 2006;
Hicken et al., 2006). Also worth noting are the forthcoming low redshift sam-
ples from the Katzman Automatic Imaging Telescope (KAIT; Li et al. 2000;
Filippenko et al. 2001), the Carnegie SN Program (Hamuy et al., 2006) and
the Nearby Supernova Factory (Wood-Vasey et al., 2004; Copin et al., 2006).

The most efficient strategy for SN cosmological analyses is to use numerous
samples that span a wide range in redshift. To limit systematic errors intro-
duced by combining disparate SN surveys, it is often advisable to recompile
the data from these surveys as homogeneously as possible. Early attempts of
constructing such SN Ia compilations were made by Riess et al. (2004, 2007)
with the so-called Gold samples. However, these selections mainly consisted
of intermediate or high-redshift samples from single studies, together with a
low-redshift dataset from a different source. In the next Section, we describe
the compilation performed by the Union team, which involves applying con-
sistent criteria for inclusion in the sample, light curve fitting with a single
algorithm, propagation of errors via covariance matrices and consistent use of
K-corrections.

3.6.3 The Union Compilation

The Union2.1 dataset (the most recent update of the original Union sample by
Kowalski et al., 2008) is a compilation of 580 type Ia supernovae combining the
recently extended datasets of distant supernovae observed with HST, SNLS,
ESSENCE and SDSS with new low-redshift SNe in the smooth Hubble-flow
(z ∼ 0.02) from Hicken et al. (2009a), the Supernova Cosmology Project (SCP)
Spring 1999 Nearby Supernova Campaign (Aldering et al., 2000) and nearby
data from Contreras et al. (2010). Also, older samples from the literature are
included in this compilation.

A robust analysis based on outlier rejection and resistant against contami-
nation is applied. Outlier rejection can reduce the bias as well as the intrinsic
dispersion by a factor of three, leading to stronger cosmological constraints.
By putting less weight on the SN samples with significant statistical and sys-
tematic uncertainties, poor quality data do not affect the precision of the
high-quality samples (e.g. SNLS or ESSENCE). Moreover, the same light-
curve fitter SALT2 is applied to all datasets within the compilation, so that
the calibration procedure is the same for all supernovae.
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Objective criteria to separate the good SNe Ia from the questionable and
outlier events are also adopted. First of all, accepted supernovae must have
data in at least two bands lying between the rest-frame U and R-bands, and
should have at least five data points available. Second, at least one observation
before B-band maximum is required for the candidates. For the nearby SNe,
a lower limit of z > 0.015 is set in order to avoid the effect of the host galaxy
peculiar velocity. Finally, any object spectroscopically classified as SN 1991bg-
like is removed from the sample, as these SNe Ia are a distinct subclass that
is not properly modeled by SALT2.

Figure 3.11 shows the sub-samples which compose the Union2.1 dataset.
Seventeen supernovae from Hamuy et al. (1996), 11 from Riess et al. (1999),
16 from Jha et al. (2006), 6 from Krisciunas et al. (2001) and Krisciunas
et al. (2004), 8 new SCP supernovae and the 102 low-redshift SNe Ia from the
CfA3 survey (Hicken et al., 2009a) constitute the low redshift sample. The
distant sample is formed by 72 SNe from SNLS (Astier et al., 2006), 75 from
ESSENCE (Wood-Vasey et al., 2007), 11 from Knop et al. (2003), 30 from
Perlmutter et al. (1999), 12 from the High-Z Search Team (HZT – Riess et al.
1998; Garnavich et al. 1998; Schmidt et al. 1998), 22 from Barris et al. (2004)
and 8 from Tonry et al. (2003). The 29 SNe from Riess et al. (2004, 2007) and
the 6 new high-redshift SNe Ia from Suzuki et al. (2012) constitute the highest
redshift events in the compilation. The intermediate-redshift interval has been
recently populated by Sloan Digital Sky Survey (SDSS) SN data (Holtzman
et al., 2008), and 5 additional intermediate-redshift SNe Ia discovered from La
Palma (Amanullah et al., 2008).

A diagnostic plot, used to study possible inconsistencies between the vari-
ous SN samples, is displayed in Figure 3.17. The median of the dispersion can
be used as a measure of the intrinsic dispersion, which reveals how well the
empirical models correct for the observed dispersion in SN luminosities. The
median for this sample is 0.15 mag indicated by the leftmost dashed vertical
line in the left panel.

For the cosmological fit, a blind analysis is carried out following the ap-
proach of Conley et al. (2006), where the best fitting cosmological parameters
are hidden until the analysis is finished and systematic errors in the estimation
of the parameters are avoided. Each sample is fitted to a flat ΛCDM cosmol-
ogy independently of the other samples (with the correction parameters α, β,
δ and MB having their global values). This means that each sample is fitted
independently with its own Hubble line minimizing the effects of outliers. This
technique offers an optimal framework to include future samples from differ-
ent instruments and surveys. The best fit for the dark energy density obtained
with this data set is (as reported in Suzuki et al., 2012)

ΩΛ = 0.729± 0.014 (ΛCDM : SN + CMB + BAO + H0 ). (3.11)

The current SN data alone do not provide definitive constraints on the equa-
tion of state parameter w because the measurements are degenerate with ΩM.
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Figure 3.17: Diagnostics plot for the individual data sets. Left panel: sample
dispersion (filled circles) and variance-weighted root-mean-square about the
best-fit model (open circles). The leftmost dashed vertical line indicated the
median of the dispersion for the entire sample. Middle panels: the average
sample residual from the best-fit model (µmeasured − µmodel) with and with-
out systematic errors. Right panel: best-fit slope of the Hubble residuals (in
magnitudes) vs. redshift. From Suzuki et al. (2012).

However, combining the SN data with constraints from BAO (Eisenstein et al.,
2005) and the CMB (Dunkley et al., 2009) which also involve ΩM, the results
are greatly improved and the degeneracy is broken. The value of w for this
sample is

w = −1.013+0.068
−0.073. (3.12)

The joint constraints for a flat Universe from SN data, BAO and CMB are
shown in Fig. 3.18. Relaxing the assumption of flatness, the combined con-
straints are still consistent with a flat ΛCDM Universe, as seen also in Fig.
3.19. With the combination of the three cosmological measurements, the sta-
tistical error is greatly reduced, although a significant systematic error still
remains. It is noteworthy that CMB and SN Ia constraints are almost or-
thogonal, making this combination of cosmological probes very powerful for
investigating the nature of dark energy. We conclude this Section by noting,
that, at low redshifts, SNe can achieve a precision unmatched by other meth-
ods. However, at higher redshifts they cannot compete with the dark energy
sensitivity of the large BAO surveys unless the statistical, and especially the
systematic, errors are greatly reduced.
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Figure 3.18: Left panel: 68.3%, 95.4%, and 99.7% confidence regions in the
(ΩM, ΩΛ) plane from SNe Ia, BAO, and CMB with statistical uncertainties
only. Right panel: idem including both statistical and systematic uncertainties.
From Suzuki et al. (2012).

3.6.4 Systematic Uncertainties

The accuracy with which we can infer the cosmological parameters from SN
data is limited by several systematic effects. Some are directly related to super-
nova physics, but most of them account for the fact that we live in a non-empty
Universe with dark and baryonic matter that distorts the light we receive from
distant objects. The effects on data quality – which include flux calibration
errors, uncertainties associated with SN colors and dust extinction, possible
evolution of the supernova population with redshift or gravitational lensing,
amongst others – are necessary to comprehend if we want to understand the
cosmological implications imprinted in the SN data.

Future surveys hope to discover and monitor thousands of supernovae, suf-
ficient to reduce statistical errors to only 0.01 mag (see Section 3.8), meaning
that systematic uncertainties will have the greatest impact on supernova stud-
ies. We will highlight in this Section the most relevant problems and mention
some possible solutions to overcome them. For a detailed review on systematics
we refere the reader to Kessler et al. (2009) and Amanullah et al. (2010).

One of the main systematic effects afflicting SN data is the extinction due
to dust occurring on the host galaxy and/or the Milky Way. Different assump-
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Figure 3.19: Left panel: 68.3%, 95.4%, and 99.7% confidence regions in the
(ΩM, w) plane from SNe Ia, BAO, and CMB with statistical uncertainties
only. Right panel: idem including both statistical and systematic uncertainties.
From Suzuki et al. (2012).

tions about dust extinction may change the inferred value of the cosmological
parameters. For the extinction in our own Galaxy, the correction of Cardelli
et al. (1989) for the diffuse interstellar medium is usually applied. Neverthe-
less, as mentioned in Sec. 3.4, it is not clear whether this local reddening law
can be applied to distant galaxies. Moreover, the difference in the value of RV

could be a reflection of different kinds of dust along the line of sight to the
supernova (e.g. circumstellar dust), but it could also arise from intrinsic color
differences among SNe Ia with similar light curve shapes (Hicken et al., 2009b;
Kessler et al., 2009; Sullivan et al., 2011). In this context, some authors have
analysed the variation of SN reddening/colors, finding little dependence of the
color on host galaxy properties (Kessler et al., 2009; Sullivan et al., 2010). The
recent study of Chotard et al. (2011), using spectroscopic indicators of lumi-
nosity in nearby SNe, infers an extinction law with RV = 2.8± 0.3, consistent
with the Galactic value. Techniques which eliminate the most highly reddened
SNe can reduce extinction systematics if they can be applied in a way that
does not introduce selection biases. An extreme approach would be to employ
only SNe in early-type galaxies (which contain small amounts of interstellar
dust) within distant galaxies clusters (Sullivan et al., 2003). However, this
has the difficulty that no good comparison with a nearby sample is available.
Probably, the best strategy for reducing extinction systematics is to focus on
obtaining data in the IR region, where extinction is low compared to optical
wavelengths and SNe Ia show very small scatter in the peak luminosity.

It has been suggested that the dimming observed in distant SNe could be
due to intergalactic grey dust (i.e. weak extinction variation over the optical



3.6. CURRENT SN IA SAMPLES 85

wavelengths) instead of a dark energy component (Aguirre et al. 2009). Note
that, although so far there is no evidence for such an extinction and simple
dust scenarios without cosmological constant have been ruled out by Riess
et al. (2004), it is not correct to exclude this possibility completely.

The differences between telescopes and filter pass bands, which vary from
one observatory to another, constitute other important sources of systematic
errors, making it difficult to combine observations from different telescopes,
and to obtain the required accuracy in photometry (Stubbs & Tonry, 2006).
For instance, for nearby supernovae, a correction (the so-called S-correction,
Stritzinger et al., 2002) has to be introduced when combining data from mul-
tiple telescopes. A way to avoid this, is to carry out the photometric measure-
ments on single instruments as the SNLS and ESSENCE surveys have done,
though this only helps if the photometry is also calibrated on the natural
telescope/instrument system.

Light-curve fitting methods are equally relevant for calibration and, as we
saw in Sec. 3.4, they may cause discrepancies in the cosmological parameters
for the same data sets. Usually, the Phillips relation – parameterized by, e.g.,
the decline rate – is employed to fit the light curves. However, there are
other methods based on different normalisation of the peak luminosities which
could add additional information. These approaches have been investigated
by the Supernova Cosmology Project (see Perlmutter et al., 1997, 1999; Knop
et al., 2003). Also, self-calibration is an alternative to flux-calibration, which
can reduce the systematic error (Kim & Miquel, 2006), but at the price of
increasing the statistical error.

The uncertainties in intrinsic colors and photometric calibration can be
reduced with detailed, well calibrated, multiwavelength observations of large
numbers of low redshift SNe. In this way, it is possible to characterize sepa-
rately the dependence of SN color on luminosity, light curve shape and time
since explosion, and provide constraints on dust extinction laws that are inde-
pendent from cosmological inferences. Moreover, locally observed SNe map a
wide range in age, metallicity, and current star formation rate (SFR) of their
host stellar populations. This provides ideal conditions for investigation of the
possible evolution of SNe Ia with redshift and host galaxy properties (Kelly
et al., 2010; Sullivan et al., 2010; Hicken et al., 2009b; Hayden et al., 2012). In
relation to this, it is worth mentioning the efforts of the ongoing Nearby Super-
nova Factory project (Aldering et al., 2002a), which aims to provide a network
of standard stars for calibration and plans to address some of the relevant sys-
tematic errors, such as the host-mass correction (the range of host masses will
become comparable to that of high redshift SNe for the first time in a local
sample) and the modeling of the light curves (through a better understanding
of SN Ia spectral time series).

The possible evolution of SNe with redshift could be another source of
systematic errors. The question of whether distant SNe have the same spectral
evolution as their nearby counterparts has been widely studied in the literature
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(Coil et al., 2000; Lidman et al., 2005; Howell et al., 2005; Blondin et al.,
2006) and it remains a matter of discussion. This could mean that different
populations of SNe Ia exist, depending maybe on host-galaxy morphology or
color (Sullivan et al., 2006; Gallagher et al., 2008), on progenitor metallicity or
explosion mechanism (single versus double degenerate scenario; Sarkar et al.,
2008). So far, no significant differences have been found among the local
and distant SN Ia samples (Hook et al., 2005; Lidman et al., 2005; Matheson
et al., 2005; Blondin et al., 2006; Astier et al., 2006; Riess et al., 2007; Wood-
Vasey et al., 2007), and also the progenitor metallicity appears to be a minor
contribution to the systematics (Röpke et al., 2006).

A strategy for limiting evolution systematics is to break the SN sample into
subsets defined by spectral features, light curve shape, or host properties and
check for consistency of the cosmological results, because evolution is unlikely
to affect all populations in the same way. A complementary method is to
observe supernovae at z > 2, where SN fluxes should be insensitive to the dark
energy parameters (Riess & Livio, 2006). Discrepancies would then indicate
evolutionary effects.Once more, it is worthy to note that any evolutionary
corrections may be weaker in the NIR, both because of the narrower range of
luminosities and because of the weaker sensitivity to metal lines and reddening
laws.

The difficulty in determining the SN rest frame from observed photometry
also affects SN measurements (Jha et al., 2007). Most ground-based surveys
work at rest-frame B or V (between 0.4−0.6 µm) wavelengths, which transform
to observed-frame I-band (0.7 − 0.9 µm) at z = 0.5 − 0.8. The Carnegie
Supernova Project (Freeman et al., 2009) has produced a SN Hubble diagram
to z > 0.7 in the rest-frame I-band, where systematic errors due to uncertainty
in the reddening laws are roughly half of those in the V -band. Moreover,
Mandel et al. (2009) find that the intrinsic dispersion of peak luminosities is
only 0.11 mag in the rest-frame H-band (1.5−1.7 µm), where systematics due
to extinction are of the order of 1/6 of those in V . However, obtaining rest-
frame NIR photometry for high redshift supernovae requires space observations
due to the high background from the ground.

A different systematic effect is the gravitational lensing caused by inter-
vening large scale structure, which introduces scatter in observed SN fluxes, at
a level of 0.05 magnitudes for sources at z = 1 (Frieman, 1996; Wang, 1999).
On average, the flux of the SN population does not change, but it is beneficial
to check for selection effects which could bias the results, especially as the
magnification distribution is highly non-Gaussian (Sarkar et al., 2008). Since
lensing effects are small and calculable, they are unlikely to become a limiting
systematic even for future surveys. Analyses that average fluxes of SNe in
redshift bins or model the flux distribution can minimize lensing systematics
and may reduce some other systematic effects as well (Amendola et al., 2010;
Wang et al., 2012).
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Equally important is the fact that the local expansion field is not smooth
and some deviations from the local Hubble flow – attributed to density inho-
mogeneities – exist, which makes it hard to set the zero-point of the expansion
rate, i.e. H0 (Riess et al., 1995, 1997; Zehavi et al., 1998; Jha et al., 2007).
This limitation translates into a systematic uncertainty that seriously affects
our constraints on cosmological parameters (Hui & Greene, 2006; Cooray &
Caldwell, 2006; Jha et al., 2007; Wood-Vasey et al., 2007). Therefore, larger
samples of nearby supernovae are required in order to overcome these obstacles
and obtain a better understanding of the local density distribution and the lo-
cal velocity field (Riess et al., 1995; Haugbølle et al., 2007). Studies about the
possibility of a Hubble bubble (local underdensity where the expansion rate is
lower than the global one) could also be carried out with a higher number of
nearby supernova (see a discussion on the subject in Hicken et al., 2009a).

In the Union2 paradigm, systematic errors that directly affect SN dis-
tance measurements (calibration or Galactic and host-galaxy extinction, for
instance) are treated as nuisance parameters to be fitted simultaneously with
the cosmology. Minimizing these nuisance parameters gives additional terms
to add to the covariance matrix of the distance modulus

Uij =
∑
ε

dµi(α, β, δ)

dε

dµj(α, β, δ)

dε
σ2
ε , (3.13)

where the sum is over each of the systematic errors considered in the analysis
and α, β and δ are the light-curve correction parameters.

Systematic errors that affect sample composition or the color and shape
correction coefficients cannot be parameterized supernova by supernova. These
are incorporated by assigning to each data set its own constant covariance.
Amanullah et al. (2010) showed that adding each covariance in the covariance
matrix rather than summing the derived cosmological impacts in quadrature,
yielded smaller systematic errors for the Union2 analysis (see Table 3.1). This
is due to the difference redshift dependence of each systematic error.

In the last versions of the Union compilation, two new systematic errors
are studied. A systematic error on the host-mass-correction coefficient and
uncertainties in the effective wavelengths and zero points of the filters. A table
summarizing the main systematic errors considered in the Union2.1 sample can
be found in Table 3.1.

3.7 Space Versus Ground

The Earth’s atmosphere is another important cause of systematic uncertain-
ties, which appreciably affect the data (Davis et al., 2006). The very strong
and variable absorption due to water molecules in the atmosphere makes the
sky opaque to significant parts of IR radiation. Problems derived from atmo-
spheric absorption can be completely avoided if a telescope is placed in space,
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Table 3.1: Main systematic errors analysed for the Union2.1 sample. Adapted
from Suzuki et al. (2012).

Source Error on w
Vega 0.033

All instrument calibration 0.030
Color correction 0.020
Mass correction 0.016
Contamination 0.016

Intergalactic extinction 0.013
Galactic extinction 0.010
Light curve shape 0.006
Quadrature sum 0.061

Summed in covariance matrix 0.048

obtaining greater accuracy and precision in flux calibration. Other systematic
errors affecting cosmological studies can also be overcome with higher-quality
photometry (magnitude measurements with errors less than 0.02) and spec-
troscopy (essential for classification) obtained from space.

The technical advantages of space-based telescopes for supernova cosmol-
ogy were already emphasized early on by Aldering et al. (2002b). They describe
the improvement in stability of the point-spread function (PSF) achievable
from space, increasing the sensitivity to faint, variable point sources and the
higher precision and accuracy of photometry (especially in the presence of a
host galaxy environment). In contrast, the use of adaptive optics (Beckers,
1993) from the ground can yield a sharp PSF, but it is not likely to produce
photometry with 1% precision and an image stable enough to allow host sub-
traction at random positions in the sky away from bright guide stars.

Concerning the low sky background in the NIR in space, Weinberg et al.
(2012) regard it as a critical point, since no improvements in ground-based
technology or observing strategy will ever remove the IR sky noise. For in-
stance, photometry in the rest-frame J-band (1.2 µm) of SNe at z = 0.8, with
high signal-to-noise at peak magnitude, can be obtained using a 1.3-m space
telescope (such as the one proposed for WFIRST, see next Section) in about 20
minutes. However, a ground-based 4-m telescope with 0.8 arcsec seeing1 and
a typical IR sky background would require multiple nights, and still the accu-
racy of the photometry would be affected by the variable sky (Weinberg et al.,
2012). These considerations make space missions important and necessary.

1The astronomical seeing is a relative measure of the optical quality of the Earth’s at-
mosphere and refers to the steadiness and absence of distortion in a telescopic image across
an interval of observation. For a review on seeing solutions and adaptive optics see Beckers
(1993).
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3.8 Future Samples and Surveys

Different observational strategies are presently being implemented. One of
the approaches is to extend the current supernova samples towards higher
redshifts. The sample of SNe Ia beyond z > 1 is rather small at present (Riess
et al., 2007), and several teams, such as the High-Z Search Team, using the
HST, are focusing on observing SNe at redshifts z > 1.5 to provide additional
constraints on the Hubble diagram and SN evolution.

Another ongoing NASA enterprise is the future successor of the HST, the
James Webb Space Telescope (JWST) to be launched in 2014. This space
observatory will make it possible to find many distant SNe (up to z ∼ 2) in the
NIR, leading to a more precise Hubble diagram. Moreover, it will improve the
distance measurements and reduce light curve shape and reddening corrections,
which limit the accuracy of current data. This will present a critical test of
the current results and a significant improvement with respect to systematics.

Other teams focus on the study of nearby supernovae, which can be ob-
served with higher precision and are fundamental for our understanding of
the present expansion rate. Large campaigns to discover and monitor local
supernovae (e.g., PTF or the SN Factory) should yield better understanding
of potential systematics, as well as a better local calibration.

Improving ground-based surveys with new instrumentation, in particular
wide-field cameras, and dedicated telescopes is also important for increasing
the quantity and quality of the data. The next year or two should see the
publication of the final results from the SDSS-II SN survey, the five-year SNLS
sample, and ESSENCE. The measurements from these large surveys should
substantially reduce the statistical errors in the Hubble diagram. Systematic
errors are also expected to be reduced due to the high sampling cadence, wide
wavelength range and careful photometric calibration of these surveys. One
of the largest projects on the near horizon is the ongoing Dark Energy Survey
(DES, The Dark Energy Survey Collaboration, 2005) that started operations
in late 2012 and is using the CTIO Blanco 4-m telescope. This survey will
observe ∼ 2000 SNe Ia in the redshift interval 0.3 < z < 0.8. The DES strategy
and forecast discovery rate can be found in detail in Bernstein et al. (2012), but
essentially they hope to find up to 4000 Type Ia SNe out to redshift z = 1.2.
DES aims to observe 10 − 20% of their high-z supernovae spectroscopically
but to obtain nearly complete spectroscopic host galaxy redshifts for their
cosmological sample.

Another ground-based survey telescope that is expected to find thousands
(or even tens of thousands) of SNe is the Panoramic Survey Telescope & Rapid
Response System2 (Kaiser & Pan-STARRS Team, 2002), which in its first
phase (with the 1.8-m PS1 telescope on Haleakala in Hawaii) has already de-
tected hundreds of SNe. Both Pan-STARRS and DES are being carried out
by international, multi-institutional collaborations and will cover a large area

2http://pan-starrs.ifa.hawaii.edu/public
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with multiband imaging surveys, going a factor of ten deeper in flux than the
SDSS imaging survey (Abazajian et al., 2009). Looking ahead, the Large Syn-
optic Survey Telescope3 (LSST Science Collaboration et al., 2009) will use a
wide-field 8.4-m optical telescope equipped with a 3.2-Gigapixel camera, that
would enable deep weak lensing and optical cluster surveys over a large area
of the sky and would detect and measure tens of thousands of supernovae.

However, it is still not clear to which extent this outstanding number of SNe
will be used for dark energy studies. It will be practically impossible to obtain
spectroscopy for the classification of all these objects, and the errors will be
mostly dominated by systematics, though for LSST, with its high photometric
precision in the optical, they should be below those of PS1 and DES.

Finally, if the space mission Wide Field InfraRed Survey Telescope (WFIRST)
is completed and launched following the Astro2010 recommendations (As-
tro2010 Decadal Survey report, New Horizons in Astronomy and Astrophysics)
the access to the rest-frame NIR should be of great advantage for SN cosmol-
ogy.

The European Space Agency (ESA) recently selected the Euclid satellite
as a medium-class mission for its Cosmic Vision 2015-2025 program, with
launch planned for 2020. Though primarily intended for weak lensing and
BAO measurements, Euclid will also provide optical and NIR imaging and
spectroscopy of a few thousand Type Ia supernovae to intermediate z, covering
a sky area of roughly 14,000 deg2.

3http://www.lsst.org
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Figure 3.20: Artistic impression of the future ESA satellite Euclid. Taken from
http://www.euclid-ec.org/.
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4. The Model-Independent
Method to Reconstruct the
Expansion Rate

In this Chapter, we review the reconstruction technique that has been used
for the work presented in this thesis. The details of the method and the
assumptions it relies on, together with the improvements added concerning
Principal Component Analysis, are described.

4.1 Motivation: Why Model Independent?

Since the discovery of the accelerating expansion a decade ago, both theoreti-
cal and observational studies have attempted to search for further evidence of
dark energy. A matter-dominated universe at the present epoch seems to be
inconsistent when various cosmological probes, such as SNe, BAO or CMB, are
combined, implying that a dark component of unknown nature is present in
the Universe. As we saw in Chapter 2, there is a large variety of cosmological
models that account for acceleration, and this degeneracy is still difficult to
break with current data. Usually, these models are based on a specific pa-
rameterisation of the equation of state which is introduced into the Friedmann
equations to obtain the cosmic expansion rate. Then, each model is confronted
with observations to estimate the best cosmological parameters. In contrast
with the common approach, the method employed in this work makes no as-
sumption on the energy/matter content of the Universe and looks only for the
geometry, therefore it is a model-independent method.

The idea of a model-independent reconstruction extracted straight from
the data was already addressed in Starobinsky (1998). Other authors such
as Huterer & Turner (1999, 2000); Tegmark (2002); Wang & Tegmark (2005)
have worked since then to find the best methodology and procedure to properly
smooth the data in redshift bins. Recently, reconstructions of this kind have
been carried out by Shafieloo et al. (2006, 2007) using SNe data; Fay & Tavakol
(2006) adding BAO constraints to the SNe; and Daly & Djorgovski (2003,
2004) combining SNe Ia luminosity distances with angular-diameter distances
from radio galaxies. Seikel & Schwarz (2009) have also tested the significance

93
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of cosmic expansion directly from SN Ia data in a model-independent way.
Other non-parametric approaches to reconstruct the expansion history and
equation of state of dark energy use Gaussian Processes for smoothing the
data (see e.g. Seikel et al., 2012).

Other suggestions of model-independent analyses involve kinematic con-
siderations, trying to avoid references to the matter/energy content of the
Universe. However, they do assume special parameterisations of the decelera-
tion parameter q(z) (e.g. Turner & Riess, 2002; Riess et al., 2004; Elgarøy &
Multamäki, 2006), the scale factor a(t) (Wang & Tegmark, 2005) or the Hubble
rate H(z) (e.g. John, 2005) at some point. Also expansions of the decelera-
tion parameter, q, into principal components (Shapiro & Turner, 2006) or the
jerk parameter, j, into a series of orthonormal functions have been proposed
(Rapetti et al., 2007) .

The method described here was first developed by Mignone & Bartelmann
(2008). It provides a purely geometrical test to derive the expansion history of
the Universe as a function of redshift z, or equivalently, the scale factor a. No
reference to any specific Friedmann model is made in this approach; that is,
no presumption of a special parameterisation for the matter and energy of the
Universe is made. The minimal assumptions involved are that the Universe is
topologically simply connected, homogeneous and isotropic, described by the
Robertson-Walker metric as expressed in Eq. 2.4, and that the expansion rate
is a smooth function.

In this context, SNe Ia are very suitable observables, for they allow us to
directly map the accelerated cosmic expansion (once they have been calibrated,
as discussed in Sect. 3.4). Luminosity-distance measurements over a wide
range of the scale factor, DL(a), obtained from SNe Ia, can be directly related
to the Hubble function by specifying only the metric. Contrary to other ways
of analyzing cosmological data, where usually a specific Friedman cosmology
is a priori defined, this method does not make any assumptions on the energy
content of the Universe nor its dynamics.

4.2 Mathematical Formalism

4.2.1 Background

We recall from Chapter 2 that Friedman equations can be written as a func-
tion of the present-day density parameters for radiation (Ωr0), matter (ΩM0),
curvature (Ωk0) and dark energy (ΩΛ0):

E(a) =

[
Ωr0

a4
+

ΩM0

a3
− Ωk0

a2
+ ΩΛ0F (a)

]1/2

, (4.1)

where E(a) is the expansion function normalised to unity today, a = 1, so that
H2(a) = H2

0E
2(a). The function F (a) depends on the time-varying equation

of state of the dark energy as
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F (a) = exp

[
−3

∫ a

1

1 + w(x)
dx

x

]
. (4.2)

In the usual approach, one would assume this expression (or variations of it)
for the expansion rate as true and would try to constrain the density param-
eters by confronting the model with some cosmological probes, such as SNe,
BAO or CMB. However, instead of assuming a specific Friedmann model and
constraining the parameters contained in E(a), the method applied here ad-
vocates a parameter-free recovery of the expansion rate as a function of the
scale factor a.

From the Robertson-Walker metric it is possible to define the angular-
diameter distance by

DA(a) = afK [χ(a)], (4.3)

with the comoving angular-diameter distance

fK(χ) =


sinχ (K = 1, spherical)
χ (K = 0, flat)

sinhχ (K = −1, hyperbolic).
(4.4)

and the comoving distance

χ(a) =
c

H0

∫ 1

a

dx

x2E(x)
. (4.5)

From the equations above we can write the luminosity distance as an integral
of the inverse of the expansion rate

DL(a) =
c

H0

1

a

∫ 1

a

dx

x2E(x)
≡ c

H0

1

a

∫ 1

a

dx

x2
e(x), (4.6)

with e(a) ≡ E−1(a) and K = 0 set in Eq. 4.4 for simplicity of notation (note
that this first-order approximation could be abandoned when necessary with-
out any change of principle). H0 is the Hubble constant and c/H0 is the Hubble
length which shall be removed in further discussion also for simplicity (i.e. the
luminosity distance is scaled to the Hubble length).

4.2.2 Model-Independent Determination of the Expan-
sion Rate Function

Starting with Eq. 4.6, we then differentiate it with respect to a to obtain

D′L(a) = − 1

a2

∫ 1

a

dx

x2
e(x)− e(a)

a3
. (4.7)

This expression can be transformed into a Volterra integral equation of the
second kind for the unknown function e(a)
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e(a) = −a3D′L(a) + λ

∫ a

1

dx

x2
e(x), (4.8)

with the inhomogeneity f(a) ≡ −a3D′L(a) and the simple kernelK(a, x) = x−2.
The general parameter λ will later be fixed to λ = a. For now it is introduced
to make the connection to a class of equations for which solutions are known
to exist and to be uniquely described in terms of a Neumann series (see Arfken
& Weber, 1995):

e(a) =
∞∑
i=0

λiei(a). (4.9)

A possible choice for the function ei would be

e0(a) = f(a) (4.10)

en(a) =

∫ a

1

K(a, t)en−1(t)dt, (4.11)

where, for the guess of e0, the approximation of either the integral or λ to be
small has been made in Eq. 4.8. This approximation is valid in all important
cosmological cases and it is subsequently improved until convergence is reached.
It essentially means that starting, for instance, from the ΛCDM cosmology
observations, deviations must be small, if they exist at all.

Equation 4.8 involves the derivative of the luminosity distance with respect
to the scale factor a. Observations of SNe Ia provide measurements of the
distance modulus, µi, and redshifts, zi (or scale factors ai = (1 + zi)

−1), and
we know from Sec. 2.6 how to calculate the luminosity distances DL(ai) from
these observables.

Thus, one could think of taking the derivative of the luminosity distance
directly from the data. However, this is the most inconvenient procedure since
the result would be extremely noisy and the determination of D′L(a) would
be unreliable. This is due to the measurement errors and scatter of the data
about the fiducial model, which makes the differentiation of the luminosity
distance directly from the data difficult. Therefore, it is necessary to suitably
smooth the data in the first place by fitting an adequate function DL(a) to the
measurements DL(ai) and approximating the derivative in Eq. 4.8 through the
derivative of DL(a). In this way, the derivative of the fitted data is taken as a
representation of the derivative of the real data. The method employed here
achieves this goal via the expansion of the luminosity distance DL(a) into a
series of arbitrarily chosen orthonormal functions pj(a):

DL(a) =
J∑
j=1

cjpj(a). (4.12)
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Suitable orthonormal function sets can be constructed by Gram-Schmidt
orthonormalisation from any linearly independent function set. The J coeffi-
cients cj are those which minimise the χ2 statistic function when fitting to the
data.

χ2 = (Dobs − D̄(a))TC−1(Dobs − D̄(a)), (4.13)

where the covariance matrix C−1 is assumed to be symmetric, Dobs is a vector
of the measured luminosity distances, a is a vector of the measured scale
factors, and D̄(ai) is the vector of model luminosity distances, defined by

D̄(ai) ≡
J∑
j=1

cjpj(ai) ≡ (Pc)i. (4.14)

We define P as a N × J matrix with elements Pij ≡ pj(ai) and c is the J-
dimensional vector of the expansion coefficients. Thus, the set of coefficients
that minimise χ2 is

c = (P TC−1P )−1(P TC−1)Dobs. (4.15)

With this representation of the data, the derivative of the luminosity distance
function is simply given by

D′L(a) =
J∑
j=1

cjp
′
j(a). (4.16)

Due to the linearity of Eq. 4.8, it is possible to solve it for each mode j of the
orthonormal function set. Introducing the derivative of a single basis function
p′j(a) instead of D′L(a) into Eq. 4.8, we find that its contribution to the (inverse)
expansion rate in terms of Neumann series is

e(j)(a) =
∞∑
k=0

ake
(j)
k (a), (4.17)

with

e
(j)
0 (a) ≡ −a3p′j(a), (4.18)

e(j)
n (a) =

∫ a

1

e
(j)
n−1(x)x−2dx. (4.19)

These modes of the inverse expansion function can be computed iteratively for
any given orthonormal function set pj(a). The final solution is then

e(a) =
J∑
j=1

cje
(j)(a), (4.20)
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that is, the measured coefficients of the series expansion directly give the solu-
tion for the expansion function. The only condition here is that the number of
coefficients required to fit the data should be minimal. Moreover, the trunca-
tion of the series in Eq. 4.12 is based entirely on the quality of the data. This
sets a limit on how many of the required coefficients we are able to get for an
accurate reconstruction. We will discuss this aspect further in the following
sections.

4.2.3 Illustration of the Method: Reconstructing ΛCDM

As an illustration of the technique, a synthetic sample is simulated in a flat
ΛCDM cosmology with ΩM = 0.3,ΩΛ = 0.7 and a Hubble constant of H0 = 70
km s−1 Mpc−1. From Friedman Eq. 4.1 we determine that the expansion
function for such a cosmology is

E(a) = (ΩMa
−3 + ΩΛ)1/2. (4.21)

The corresponding luminosity distance DL(a) for this model can be determined
via Eq. 4.6. A suitable choice for the orthonormal function set could be the
linearly independent set

uj(x) = xj/2−1, (4.22)

which can be orthonormalised by the Gram-Schmidt method. The orthonor-
malisation interval will be [amin, 1] where

amin = (1 + zmax)−1 (4.23)

is the scale factor of the maximum redshift zmax in the synthetic supernova sam-
ple. In this way, an arbitrary set of orthonormal functions pj(a) is obtained.
When projecting the luminosity distance DL(a) onto these basis functions, we
can solve for the expansion coefficients. For a ΛCDM universe with the values
of the parameters specified above, the minimal number of coefficients signifi-
cantly different from zero is five. In Fig. 4.1 the model luminosity distance is
compared to its reconstruction using the basis functions proposed above and
calculating the coefficients of its expansion. If only three or four coefficients
are used for the reconstruction, it clearly deviates from the model.

The problem arises here when one considers the SNe Ia data presently at
hand. Unfortunately, a reconstruction with only the first three coefficients
can be obtained from the real DL(ai) data, since the errors on the fourth
and fifth coefficients are too large and they loose significance. This is due
to the errors in the data, which limit our ability to accurately determine the
expansion function. Figure 4.2 shows the reconstructed expansion function
with three coefficients for a simulated sample with the same observational
characteristics as the first-year SNLS data (Astier et al., 2006) compared to
the expansion rate of the underlying ΛCDM model. We see there is apparent
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Figure 4.1: The expansion rate in a ΛCDM model with ΩM = 0.3 and ΩΛ = 0.7
(solid line) and its reconstruction using three, four, and five coefficients (red
curves). The bottom panels show the residuals between the reconstruction
and the model. H(a) is given in units of km s−1 Mpc−1. From Mignone &
Bartelmann (2008).

good agreement between the model and the reconstruction, though we know
from the theoretical calculation that the reconstruction is incomplete.

The strong dependence of the number of terms in the expansion on data
quality represents an important drawback of the method. Moreover, the choice
of the orthonormal basis also influences the number of coefficients to be in-
cluded in the reconstruction. In fact, although the basis would, in principle,
be arbitrary with ideal data, it is not in practice. It surely is possible to choose
a convenient function set which would minimize the number of coefficients we
need for the reconstruction. We address this issue in the next Section by intro-
ducing an optimal basis system based on Principal Component decomposition.

4.3 Principal Component Analysis

In this Section, we revise the mathematical algorithm to derive the Principal
Components from a generic data set (for a careful review on this topic see
Jollife, 2002).

Principal Component Analysis (PCA) is a well known statistical tool which
aims at reducing the dimensionality of an initially very large parameter space.
The PC procedure looks for directions of maximum variance1 within the data
and constructs an orthonormal basis representing directions (the PCs) of max-
imum clustering, or along which most of the information is contained. After
the PCs are determined, the original data can be re-written as a linear combi-
nation of some PCs, usually a number much smaller than the dimensionality
of the original parameter space. This new set of variables are uncorrelated and
have the property that the first few already retain most of the information in
the data.

Imagine a data set X with p variables and n objects. Calculating the PCs
from such as data set involves the definition of a covariance matrix Σ

1Variance is a measure of the spread of the data usually defined as V ar =
∑n

i=1(xi−x̄)2

n−1 .
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Figure 4.2: The reconstructed expansion rate with 1σ errors for a simulated
sample of SNe in a ΛCDM universe (blue line) with observational characteris-
tics resembling those of the 1st year SNLS data. The bottom panel shows the
residuals between the reconstruction and the model. H(a) is given in units of
km s−1 Mpc−1. From (Mignone & Bartelmann, 2008).

Σ =


σ11 σ12 · · · σ1p

σ21 σ22 · · · σ2p
...

...
...

σp1 σp2 · · · σpp

 . (4.24)

where the covariance between the two variables i and j is given by

σij = σji =
1

n− 1

n∑
k=1

(xki − x̄i)(xkj − x̄j). (4.25)

The covariance matrix is then diagonalized by solving

|Σ− λI|v = 0, (4.26)

where λ1 > · · · > λp are the eigenvalues and v1(λ1), · · · ,vp(λp) the cor-
responding eigenvectors. The first principal component is the eigenvector
with the largest eigenvalue, which accounts for the maximal amount of total
variance. The second component is the eigenvector with the second largest
eigenvalue, accounting for the amount of variance that was not accounted for
by the first component and so on. Moreover, the derived PCs are uncorrelated
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Figure 4.3: A 2-D normalised data (mean subtracted) plotted together with
the Principal Components. The first PC points to the direction of maximum
clustering with analogous meaning as a line of best fit. The second eigenvector
gives the spread around that direction.

(orthogonal) to the preceding components. It is obvious that the number of
components extracted equals the number of observed variables being analyzed,
that is p. However, in most analyses, only the first few components account
for meaningful amounts of variance, so only these first few components are
retained, allowing for a significant reduction in dimensionality.

Figure 4.3 illustrates the PCs (red axis) found for a 2-D data set. In this
simple example, the linear transformation associated with the principal com-
ponents can be seen as a rotation of axis in the direcction of higher variance.
Note that in any PC prescription, the original data have to be normalised be-
fore computing the covariance matrix, by subtracting the mean from each of
the data dimensions.

4.3.1 Building the Basis with Principal Component Anal-
ysis.

PCA is a beneficial technique to be used together with a model-independent
approach as the one proposed in this thesis. In this Section, we shall substitute
the arbitrary orthonormal basis mentioned in Section 4.2.3 by a new basis
system derived from PCA.
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Different approaches using PCA have been proposed to reconstruct the dark
energy equation of state w (e.g. Huterer & Starkman, 2003; Simpson & Bridle,
2006; Huterer & Peiris, 2007), the Hubble parameter (Ishida & de Souza, 2011)
and the cosmic star formation history (Ishida et al., 2011). Here we follow the
method described in Maturi & Mignone (2009) to obtain an optimal basis
system for a given cosmological data set, in this case a luminosity-distance
SNe Ia catalogue.

We start by defining a 1D vector d ∈ <n which collects the redshift or
scale factor values for which there is a luminosity distance measurement in our
catalogue

d = [DL(a1), DL(a2), ..., DL(an)]. (4.27)

The next step is to choose a group of models we believe spans the set of viable
cosmologies. Suppose we chose initially M different cosmologies: for each one
of them we calculate the luminosity distance for the value of scale factor given
in d, producing for each model a vector ti. This ensemble of models, referred
to as the training set, initializes the method and is defined as follows:

T = (t1, t2, ..., tM), (4.28)

where each training vector ti {ti ∈ <n | i = 1, ...,M} corresponds to a par-
ticular behaviour of the observable as a function of scale factor. The matrix
Tn×M represents a convolution of all our expectations towards the underlying
cosmology and will act as a synthetic data set in order to determine an ideal
orthonormal basis.

Once the training set of models is defined, we build the so called scatter
matrix (analogous to a covariance matrix)

S = ∆∆T ∈ <n×n (4.29)

with

∆ = (t1 − t̄, t2 − t̄, ..., tM − t̄) (4.30)

containing the differences between each training vector and a given reference
vector that defines the origin of the parameter space. This reference model
may be any combination of models within T, and is usually set to be the mean
of the training set t̄ ≡ 〈t〉. A different choice for the reference model can be
used instead, depending on the specific problem at hand. An interesting choice
could be the best fit to a given cosmological model, so that all other models
would be described as its perturbed states (see Chapter. 5 for a discussion of
this issue).
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The principal components are found by solving the usual eigenvalue problem

wi = λiSwi, (4.31)

where λi and wi are the eigenvalues and the eigenvectors, respectively. The
linear transformation W leading to these PCs is defined in such a way that it
concentrates, in only a few features, all the information (or variance) regarding
the deviations of the models in the training set from the reference vector.
The eigenvector with the largest eigenvalue corresponds to the direction of
maximum variance (first PC). The second PC corresponds to the direction
defined by the eigenvector with the second largest eigenvalue and so on. Figure
4.4 shows how cosmologies are represented in the new parameter space. The
first two principal components of an ensemble of non-flat ΛCDM models are
plotted together with the projection of the real data.

As was mentioned in previous Section, an important issue when working
with PCA is the determination of how many PCs one should take into account
(Jollife, 2002, chapter 6). The number of terms to be included in our recon-
struction is based on the cumulative percentage of total variance represented
by a set of L PCs,

tL =

( ∑L
i=1 λi∑NPC

j=1 λj
× 100

)
, (4.32)

where NPC is the total number of PCs and L the number to be included in the
reconstruction. In this way, the question of how many Principal Components
to use (i.e. number of coefficients in our reconstruction) translates into what
percentage of variance we are willing to consider.

After constructing the orthonormal basis and deciding how many PCs to
include in the final analysis (L), we express the corrections for the luminosity
distance to the reference model (DL|ref , from now on) as linear combinations
of the first L PCs,

DL(a) ≡ DL|ref +
L∑
j=1

cjwj(a). (4.33)

Following what was done in the previous section, the final values for the co-
efficients cj are determined by confronting this expression for the luminosity
distance with the data through a χ2 minimisation. Subsequently, we approxi-
mate the derivative in Eq. 4.8 as

D′L(a) =
L∑
j=1

cjw
′
j(a). (4.34)

As an illustration, the first four PCs computed for the Union2.1 sample (see
Sec.3.6.3) are plotted in Fig. 4.5. Additionally, Fig. 4.6 shows the power of
the corresponding eigenvalues in a Scree plot test (Cattell, 1966). This plot is
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Figure 4.4: The first two principal components of a training set consisting of
non-flat ΛCDM models. Each point in this plot represents a ΛCDM cosmology
with cosmological parameters lying in the range 0.1 < ΩM < 0.5 and 0.5 <
ΩΛ < 0.9. The redshift coverage used to generate this training set is taken
from the 1st year SNLS data. The red point without error bars marks the
space origin (reference model) and the red point with error bars shows the
projected data set (Maturi & Mignone, 2009).

traditionally used as a tool to discriminate how many PCs to include in PCA
studies. In the following Chapters, we will use basis built in the way described
in this Section to reconstruct the expansion rate of the Universe.

4.4 Error Analysis

The errors in our method arise mainly from the uncertainty in the determina-
tion of the expansion coefficients, cj, and the Hubble constant, H0 (which is
left as a free parameter in the analysis), due to the minimisation.

The errors in the coefficients cj are calculated through error propagation
of the SN distance measurements. The Fisher information matrix of the χ2

statistic function is generally given by (Pratt, 1976)

Fij ≡
〈
δ2χ2

δciδcj

〉
(4.35)
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Figure 4.5: The four first components calculated with the formalism proposed
in this Section, using the redshift distribution of the Union2.1 sample.

which for this particular case can be written as

Fij ≡
NSNe∑
k=1

pi(ak)pj(ak)

σ2
k

, (4.36)

where k runs over all SN measurements and σ2
k are the individual errors on the

luminosity distances. By definition, the errors in the coefficients, ∆ci, satisfy
the Cramér-Rao inequality

(∆ci)
2 > (F−1)ii (4.37)

and propagate into the estimate of e(a) as follows

[∆e(a)]2 =
J∑
j=1

[
δe(a)

δcj

]2

(∆cj)
2 =

J∑
j=1

[
e(j)(a)

]2
(∆cj)

2. (4.38)

The final errors on the expansion rate E(a) = 1/e(a) are then

[∆E(a)]2 =
[∆e(a)]2

e4(a)
(4.39)

The error contribution due to the minimisation of H0 is added to the pre-
vious one in quadrature. Moreover, the uncertainty in our ability to determine
the Principal Components is given by (Ishida & de Souza, 2011; Jollife, 2002)
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Figure 4.6: Scree plot test showing the cumulative percentage of total variance
for the first PCs calculated for the Union2.1 sample.

σPCi ∼
1√
λi
. (4.40)

In this way, the total error budget is expressed as

σ2
T = σ2

coeff + σ2
H0

+ σ2
PCi

. (4.41)

4.5 Convergence of the Neumann Series

A different, though related matter, is to consider where the Neumann series
should be truncated, i.e. up to what power k of the scale factor a the expan-
sion in Equation 4.17 should proceed. Convergence of the series is achieved
at different powers k for different redshift intervals. In order to achieve con-
vergence on the interval 0.5 ≤ a ≤ 1, the series can be truncated after k = 4.
However, as it was proven by Mignone & Bartelmann (2008), the inclusion of
the four-order term produces a difference to the preceding three orders which
is already within the error bars, and can therefore be neglected. This is also
true for the Union2.1 sample. Moreover, the Neumann series converge to zero
at a = 1 to be consistent with the Principal Component basis.
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4.6 Combining Different Data Sets and Fami-

lies of Models

It is important to emphasise that, although we only present results of apply-
ing the method to SNe Ia data in this thesis, it could be also used to analyse
any other observable which delivers standard candle or standard ruler mea-
surements (e.g. CMB or BAO). A general parameterization, with independent
parameters regardless the underlying physical assumptions, could be achieved
by considering the Principal Components as eigen-cosmologies. In this con-
text, observations would “excite” (i.e. make visible) a given number of modes
according to their accuracy.

For example, if one wants to combine the luminosity distances of SNe Ia,
angular-diameter distances and the CMB angular power spectrum, the data
vector d should be organised as follows

d =
[
DL(z1)...DL(zNSNe

), DA(z1)...DA(zNBAO
), Cl1 ...ClNCMB

]
(4.42)

whose dimension N is given by the sum of all data set sizes

N = NSNe +NBAO +NCMB. (4.43)

In this case, it is probably useful to work with non-dimensional quantities which
reflect the signal-to-noise ratios. This means that the different observables
should be re-normalised with respect to their variance. Figure 4.7 shows an
example of the PC approach applied to CMB data. Here the PC parameter
space for an identical training set as the one used in Fig. 4.4 is plotted using
the five-year WMAP data (Komatsu et al., 2009) instead of luminosity distance
measurements.

It is also possible to make the training set less specialized by including
different cosmological models than ΛCDM. For instance, one could include
other dark energy scenarios that allow its equation of state to vary in time
or alternative cosmologies based on several physical frameworks, such as the
f(R) or DGP theories discussed in Sec. 2.9.

4.7 Improving the Reconstruction

There are several advantages of using the PC orthonormal basis defined pre-
viously to construct a parameter space characterising observable behaviour
instead of underlying physical quantities. First of all, the projections (Prin-
cipal Components) of the training set into the new parameter space via the
linear transformation W , are independent by definition and avoid any degen-
eracy in the observable description (which might not be the case in physical
parameterizations). Moreover, the first few of them already contain all the
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Figure 4.7: The first two principal components of a training set consisting on
non-flat ΛCDM models for the five-year WMAP data (Komatsu et al., 2009).
The red point mark the space origin (reference model) and the red point with
error bars shows the projection of the data. Taken from (Maturi & Mignone,
2009).

available information since they are derived by Principal Components decom-
position. Additionally, they provide the best discriminatory power for the
family of cosmologies comprised in the training set, though this property does
not preclude the method to recover cosmologies not included in the initial
matrix of behaviours (see Sec. 5.1.2).

Figure 4.8 compares the reconstructed expansion history from the Union2.1
data using the old version of the method (green area) – that is, the arbitrary
basis given by Eq. 4.22 and orthonormalised via the Gram-Schmidt process –
against the new implementation using the PC basis (orange region).

The improvement in the reconstruction is obvious fore several reasons. In
first place, we are now able to recover the expansion history from the data
with one parameter only, instead of the three needed with the arbitrary basis.
With the PC approach proposed in Sec. 4.3.1, we have a strong criterion for the
number of coefficients to include in the reconstruction of the expansion rate.
Moreover, we are also certain that the number of these is minimal and ordered
according to their information content. By using the optimal basis system
derived from a Principal Component analysis we are able to recover the true



4.7. IMPROVING THE RECONSTRUCTION 109

0.4 0.6 0.8 1.0
a

80

100

120

140

160
H

(a
)

1.5 1.0 0.7 0.4 0.2 0.1 -0.0
z

Comparison with Old and New versions of the Method

Reconstruction with new code: 1 PC, 3-σ errors

Reconstruction with old code: 3 Coefficients, 3-σ errors

Figure 4.8: Comparison between the reconstructed expansion rate using the
old version of method with arbitrary basis (green area, 3 coefficients) and the
one obtained using the new basis system derived from PCA (orange region, 1
coefficient) for the Union2.1 data sample.

behaviour of the expansion rate removing any possible bias introduced by the
choice of the basis. This is evident from the observed systematic trend on the
slope of the H(a) function, specially evident at high redshifts, when calculated
with the old basis indicated. This clearly indicated that the estimation of the
derivatives was not accurately determined with the old prescription, Finally,
the reduction of the error bars at low redshift is quite significant, the scatter
in H0 being reduced by 50%.

It is worth stressing that (in contrast with other approaches in the lit-
erature) the complete methodology described here avoids both the binning
in redshift while smoothing the SN data and any cosmological assumption
on the matter/energy of the Universe. Since it relies only on the expansion
of the luminosity distance into an orthonormal basis, it provides a model-
independent determination of the expansion rate. The fact that the PC basis
is computed by using an ensemble of behaviours (models) does not affect the
model-independent nature of this method as we will see in following Chapters.
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5. Testing the Method with
Simulated Data

Here we describe the multiple tests performed to assess the robustness of the
method presented in Chapter 4. Simulations of SN data were generated in
several cosmological scenarios and standardized with the two light curve fitters
discussed in Sec. 3.4. Also mock data covering different redshift ranges was
simulated. In all cases, the underlying expansion rate of the simulated data
was successfully recovered, indicating that the method performs well and can
be reliably applied to real data.

Throughout this Chapter we will be referring a great deal to Union2.1-like
data simulated in different contexts. For an illustration, the real Union2.1
(Suzuki et al., 2012) is plotted in Fig. 5.1, where DL(a) is given in units of
parsecs. The mock data discussed in this Chapter will cover the same redshift
range and follow equal error distribution as the Union2.1, unless otherwise
specified. In what follows we will give the values for the Hubble constant H0

and the reconstructed expansion H(a) in units of km s−1 Mpc−1.

5.1 Different Cosmological Scenarios

5.1.1 ΛCDM Simulations

In first place, we calculated the luminosity distances consistent with equation
Eq. 4.6 for a flat ΛCDM universe with cosmological parameters ΩM = 0.3,
ΩΛ = 0.7 and H0 = 63 km s−1 Mpc−1. Moreover, we generated random errors
with uncertainties according to Suzuki et al. (2012). The random number was
drawn from a normal distribution with mean zero and a standard deviation
of one. A mock data set derived this way and consisting of about 600 SNe is
plotted in Fig. 5.2 together with our estimation of DL.

To build the Principal Component basis, a training set consisting on non-
flat ΛCDM models was produced by sampling the parameter space in the
interval 0.1 ≤ ΩM ≤ 0.5 and 0.5 ≤ ΩΛ ≤ 0.9. The reference model of the
new parameter space was chosen to be the mean of the training set, i. e.
ΩM = 0.3, ΩΛ = 0.7. The reconstruction of the Hubble expansion with one PC
and 3− σ errors is shown in Fig. 5.3. From the calculation of the cumulative
percentage of total variance tL (defined by Eq. 4.32) for each eigenvalue,
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contained in Union2.1. Our fit for DL(a) using 1 Principal Component and
with 3-σ errors is shown in orange. The black dotted line represents a ΛCDM
model shown here only for comparison. DL(a) is giving in units of parsecs.

we determined that one PC is sufficient to fully reconstruct the expansion
rate for this simple case. We found that the first eigenvalue (and hence, its
corresponding eigenvector) already accounts for 99.90% of the total variance
contained in the data. To asses how close our reconstruction is to the simulated
data, we performed a simple χ2-test, yielding a value of χ2 = 1.025 for the
reduced χ2 statistical function. In our approach, the Hubble constant is left
as a free parameter to be minimised together with the expansion coefficients.
We obtain a value of H0 = 63.03 ± 0.12, very close to the true value of the
simulated data.

Subsequently, a more unrealistic model (still within the ΛCDM paradigm)
was assumed to simulate the data. In this case, the underlying cosmological
parameters were set to ΩM = 0.2, ΩΛ = 0.8 and H0 = 70. For the reconstruc-
tion of both DL and H, the same basis as in the previous example was used.
The result is plotted in Fig. 5.4. A value of H0 = 70.015 ± 0.15, consistent
with the true value of the simulated data, was found in the minimisation with
χ2 = 1.01. In this case we found that one PC was also enough to produce an
accurate reconstruction, containing most of the percentage of total variance.
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Figure 5.2: Mock data simulated in a ΛCDM scenario with ΩM = 0.3, ΩΛ = 0.7
and H0 = 63. Our reconstruction of DL(a) with 1 Principal Component and
3-σ errors is shown in orange. The PC basis was produced by sampling the
parameter space in the range 0.1 ≤ ΩM ≤ 0.5 and 0.5 ≤ ΩΛ ≤ 0.9. In blue,
the underlying model of the simulated data is plotted.

But we will see that for mock data generated in more exotic and complex
cosmological scenarios, higher number of components will be needed.

Additionally, the exercise was repeated with a basis produced by sampling
the parameter space in the more restrictive range of 0.3 ≤ ΩM ≤ 0.5 and
0.5 ≤ ΩΛ ≤ 0.7. This means that the true cosmology was not included in the
training set. The reference vector was the same as in previous cases.

The underlying cosmology was recovered almost entirely, as seen in Fig.
5.5, although the reconstruction failed at very high-redshifts (z > 1), giving
an indication that the true underlying model is not comprised in the original
matrix of models (as we already knew) and that one should maybe consider a
higher number of coefficients. This behaviour is enhanced when more complex
models are adopted to simulate the data, as will be discussed in the next
Section.

Nevertheless, it is worth noting, that the basis used for this example is
highly restrictive and one would tend to do the opposite, that is, to increase the
flexibility of the training set. This can be achieved by spanning the parameter
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Figure 5.3: Recovered Hubble expansion function of the simulated data plotted
in Fig. 5.2. Our reconstruction of H(a) using 1 Principal Component and with
3-σ errors is shown in orange. The PC basis was produced by sampling the
parameter space in the range 0.1 ≤ ΩM ≤ 0.5 and 0.5 ≤ ΩΛ ≤ 0.9. In blue,
the underlying cosmology of the simulated data is plotted.

space of a particular family of models as much as possible or, in general, by
maximizing the number of different cosmologies included in the training set.

5.1.2 Non-ΛCDM Simulations

To further validate the method, we simulated SN data in several non-ΛCDM
cosmologies. We present here two of these simulations, the first being a DGP
brane world as described in Sec. 2.9. The second is a more exotic model
proposed as a challenging test by Shafieloo, who has extendly worked on similar
reconstruction techniques as the one described in this thesis over the past years
(see e.g. Shafieloo et al., 2006, 2007, 2012).

The Dvali-Gabadadze-Porrati Brane-World Cosmology

We generated the mock data following Eq. 2.54 and having the same redshift
and error distribution as the Union2.1 data set. The results shown in this
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Figure 5.4: Recovered expansion rate of a mock data sample generated in a
ΛCDM scenario with ΩM = 0.2, ΩΛ = 0.8 and H0 = 70. The reconstruction of
H(a) using 1 Principal Component and with 3-σ errors is shown in orange. In
blue, the underlying cosmology of the simulated data is plotted.

Section correspond to a model with parameters set to α = 1 and ΩM = 0.3, but
other realizations were studied yielding similar outcomes. The basis employed
is the same as the one used in the previous Section, that is composed on solely
ΛCDM models (with complete sampling of the ΩM and ΩΛ parameters).

As seems evident from Fig. 5.6, more than one PC is needed to recover the
underlying cosmology. In particular, we found that it was necessary to consider
up to the third coefficient to fully reconstruct H(a), as Fig. 5.7 illustrates.
Indeed, when calculating the cumulative percentage we found that at least
three eigenvalues contribute significantly to the total amount of variance.

Since the PC basis was constructed in a way that it highlights deviations
from the models being comprised in the training set, having to compute higher
orders indicates that the underlying background cosmology of the data cannot
be the standard ΛCDM model. We encounter this result far from trivial and
difficult to reproduce in traditional analyses where a specific parameterization
of the Friedman Equation is assumed, and no freedom to detect deviations from
this assumption is allowed. In fact, performing a χ2-analysis this simulated
sample is compatible with a ΛCDM model, which is of course a misleading



116 5. TESTING THE METHOD WITH SIMULATED DATA

0.4 0.6 0.8 1.0
a

60

80

100

120

140

160
H

(a
)

1.5 1.0 0.7 0.4 0.2 0.1 -0.0
z

Reconstruction for Union2-like data

Reconstruction with 1 PC, 3-σ errors

ΛCDM model

Figure 5.5: Recovered expansion rate of a mock data sample generated in a
ΛCDM scenario with ΩM = 0.2, ΩΛ = 0.8 and H0 = 70. The reconstruction of
H(a) using 1 Principal Component and with 3-σ errors is shown in orange. The
parameter sampling to build the PC basis was restricted to 0.3 ≤ ΩM ≤ 0.5
and 0.5 ≤ ΩΛ ≤ 0.7. In blue, the underlying cosmology of the simulated data,
not included in the training set, is plotted.

result since the underlying cosmology has a very different nature. This is a
strong argument in favour of model-independent methods as the one proposed
in this work.

Since more PCs (i.e. more variance) have to be included to recover H(a),
the error bars increase, specially at high redshift where there is less data avail-
able. We recall that the mock data have the same characteristics than Union2.1
and that the real sample only contains a handful of objects above z > 1 (see
Fig. 5.1).

The Kink Quintessence Model

The Kink model is a particular kind within the evolving-dark-energy family of
models described in Sec. 2.8.2. It was first proposed by Corasaniti et al. (2003)
and has been used as a control check for other non-parametric approaches (see
e.g. Holsclaw et al., 2010; Shafieloo et al., 2012). The model has a rapidly
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Figure 5.6: Recovered expansion rate of a mock data sample generated in a
DGP cosmology with α = 1, ΩM = 0.3 and H0 = 70. The reconstruction of
H(a) using 1 Principal Component and with 3-σ errors is shown in orange.
In blue, the true underlying cosmology of the simulated data is plotted. The
dashed black line is a ΛCDM model with ΩM = 0.3 shown here for comparison.
From this plot is it clear that higher number of components are necessary to
achieve an accurate reconstruction.

varying equation of state given by the following Equation

w(z) = w0 + (wm − w0)
1 + exp(∆−1

t (1 + zt)
−1)

1− exp(∆−1
t )

(5.1)

×
[
1− exp(∆−1

t ) + exp(∆−1
t (1 + zt)

−1)

exp(∆−1
t (1 + z)−1)− exp(∆−1

t (1 + zt)−1)

]

with the constants having the values w0 = −1, wm = −0.5, zt = 0.5 and ∆t =
0.05. This model has w ≥ −1 everywhere and, therefore, can be considered as
a quintessence field, though the transition is steeper than for most quintessence
models.

Luminosity-distance data were simulated using Eq. 5.1 and with similar
observational properties as the future WFIRST survey (see Sec. 3.8). For
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Figure 5.7: Recovered expansion rate of a mock data sample generated in a
DGP cosmology with α = 1, ΩM = 0.3 and H0 = 70. The reconstruction of
H(a) using 3 Principal Components and with 3-σ errors is shown in orange.
In blue, the true underlying cosmology of the simulated data is plotted. The
dashed black line is a ΛCDM model with ΩM = 0.3 shown here for comparison.

the simulations, ΩM = 0.27 and (small) uncertainties drawn from a gaussian
distribution were assumed. The basis to perform the reconstruction is the same
as the one used throughout this Chapter. In Fig. 5.8 we see the simulated data
together with the true underlying cosmology and our reconstruction of DL.
Analogously, Fig. 5.9 shows the reconstruction for H(a) and the underlying
model. In this case, we need to compute up to the fourth principal component
to recover the true expansion history. And even so, the slope does not perfectly
match that of the original model, indicating the basis is not optimal for these
data. The error bars are smaller than those in the DGP example because the
Kink data were generated with small (unrealistic) errors, in contrast to the
DGP case, where errors follow the distribution of the real data.

Despite having to use higher number of PCs, we find our result reassuring,
since we are able to recover a quite extreme cosmology using a simple basis
composed of ΛCDM models only. We stress here again that, if the underlying
model would be the standard ΛCDM, higher moment components would be
zero because the basis was built specifically to highlight deviations from this
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Figure 5.8: Luminosity distance versus scale factor of the Kink data. Our fit
for the DL(a) using 4 Principal Components and with 3-σ errors is shown in
orange.

model. Since we need to compute four coefficients to fully reconstruct H(a),
this already tells us that the underlying model is not ΛCDM (though we cannot
say what it is).

Including other cosmological models in the training set could help to dis-
criminate the underlying cosmology of the simulated (and eventually the real)
data, allowing to make assessments about the nature and physical properties
of the background cosmology. This practice is beyond the scope of this thesis,
but it will surely be developed in future work.

For comparison, the result from Shafieloo using a completely different non-
parametric technique, Gaussian Processes (Shafieloo et al., 2012), to recon-
struct the expansion history given the same simulated data, it is shown in
Fig. 5.10 (red points). Our reconstruction, once properly scaled to match
Shafieloo’s units, looks exactely the same, only with slightly bigger errors.
This result confirms again the robustness of our method with the advantage
that it is conceptually and computationally much simpler than the Gaussian
Process technique.
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Figure 5.9: Recovered expansion rate of the Kink simulated data shown in
Fig. 5.8. The reconstruction of H(a) using 4 Principal Components and with
3-σ errors is shown in orange. In blue, the true underlying cosmology of the
simulated data is plotted. The black dashed line is a ΛCDM model shown here
for comparison.

5.2 SNANA: A Tool To Simulate High Quality

SN Data.

SNANA (A Public Software Package for Supernova Analysis) is a software
package for supernova analysis that allows to simulate light curves in a given
framework, i.e. having the same observational implementation as several public
surveys – such as SNLS or SDSS – and technical features corresponding to
different telescopes and filter systems. Moreover, it contains various light-
curve fitters within the same software architecture, granting K-corrections (to
transform rest-frame model magnitudes into observer-frame magnitudes) and
other technicalities to be consistently computed and used among multiple SN
models, making it easier to compare them. Additionally, cosmology fitters to
determine cosmological parameters are also available.

Essentially, each light-curve model is defined in a separate function that
is used in both the light-curve fitter and in the simulation, making the fitter
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Figure 5.10: Left: Our reconstructed expansion history for the simulated Kink
data with 4 Principal Components and with 3-σ errors (in orange). The re-
construction has been scaled accordingly to Shafieloo’ units. Right: The result
from Shafieloo et al. (2012), using Gaussian Processes.

and simulation to be synchronized with the same underlying model. A K-
correction utility is used when the underlying model describes SNe Ia in the
rest frame (as for example MLCS), and depends on the choice of the spectral
template and filter bandpasses. If the underlying SN model describes SNe Ia
in the observer frame (e.g. SALT2), the K-correction utility is ignored. The
simulation of a given survey is done by means of an observing-conditions library
that describes the cadence, seeing, atmospheric transparency, and readout
noise for a particular survey. The simulation uses the measured observing
conditions to generate realistic light curves that can be analyzed in the same
way as real data. K-corrections, are computed following Nugent et al. (2002)
and with the default spectral templates of Hsiao et al. (2007), though other
templates are possible. An illustration of the quality and flexibility of the
simulations is shown in Fig. 5.11, where the measured flux – with errors – of
the simulated data for four different surveys is compared.

The light curve fitting program in SNANA reads SN light-curve files and
applies specific criteria to select a subset of SNe and epochs. SNANA light
curve fitters treat real data and simulated samples in exactly the same way.

SNANA includes a basic cosmology fitter that reads a table of redshifts
and distance moduli generated by the light curve fitter, and determines cosmo-
logical parameters for a Friedmann-Robertson-Walker cosmology. To obtain
tighter constraints on the cosmological parameters, it is possible to include
priors from measurements of Baryon Acoustic Oscillations and the Cosmic
Microwave Background.

For a complete overview of the SNANA capabilities we refer to the reader
to Kessler et al. (2009) and the manuals at http://www.sdss.org/supernova/
SNANA.html.
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Figure 5.11: Comparison of flux distribution for real data (dots) and simula-
tions (histograms) for the SDSS, ESSENCE, SNLS, and HST surveys. The
observer-frame filters are also indicated on each plot. From Kessler et al. (2009)

5.2.1 Simulated Data in MLCS and SALT2.

One of the potential applications of the method presented in this thesis, is
to identify possible discrepancies within the SN data which could have been
overlooked by traditional analyses. One of the most plausible sources of bias
is the choice of a particular light curve fitter to infer cosmic distances. As
we mentioned in Sec. 3.4.3, there is significant difference in the cosmological
results obtained from the two main-stream light curve fitters when applied to
the same data. This effect might be easier to identify by means of a geometrical
approach as the one presented here, by analising the expansion history of data
simulated in the context of different SN models. Hence, SNANA provides a
consistent framework in which to both simulate and fit data according to the
preferred light-curve fitters.

To explore this idea, we created perfect simulations using the MLCS and
SALT2 formalisms inside SNANA consistent with a ΛCDM universe having
ΩM = 0.3 and H0 = 72 and about 1000 SNe each. The samples were gen-
erated with the same proportions of low, high and intermediate redshift, and
equal percentage of SNe per survey (SNLS, ESSENCE, SDSS...) as in the real
Union2.1 sample. The values of the correction parameters are RV = 2.18 for
MLCS, and α = 0.11 and β = 3.2 for SALT2 were adopted.

The term perfect refers to light curves simulated with very good observ-
ing conditions, with no galactic extinction (Milky Way and host galaxy), and
no intrinsic magnitude-smearing (i.e. no scatter in the Hubble diagram resid-
uals, an additional feature included in SNANA). The determination of the
shape and color parameters is done with very high precision when using per-
fect simulations, and any type of cosmological analysis should deliver the true
underlying model with high degree of accuracy, making it an additional test
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Figure 5.12: Recovered expansion rate for a MLCS perfect simulation. The
reconstruction of H(a) using 1 Principal Component and with 3-σ errors is
shown in orange. In blue, the underlying ΛCDM cosmology is plotted. Note
that the data was both simulated and fitted with MLCS.

for the method.

The PC basis consisted on an ensemble of ΛCDM models following the
same redshift distribution as the simulated data and with the same parameter
sampling as in Sec. 5.1.1. The reconstruction of the expansion rate for two of
the simulations is plotted in Figures 5.12 and 5.13. As expected, the expan-
sion history is recovered with very high precision in both examples, yielding
χ2|MLCS = 0.0183315 and χ2|SALT2 = 0.00276868. We find no difference in the
expansion history procured by both light curve fitters for the same ideal data.

We note that for the SALT2 simulation, an intermediate step was neces-
sary, since SALT2 does not directly provide distance moduli. To obtain those
from the output of the light curve fitter, another program called SALT2mu
(Marriner et al., 2011), implemented also within SNANA, was employed. The
SALT2mu formalism reads the output files from the SALT2 light curve fitter
and gives an independent fit to the parameters α and β decoupling them from
cosmology and yielding a table of distance moduli. Moreover, a more detailed
description of the intrinsic scatter of the fitted parameters is included in the
algorithm.
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Figure 5.13: Recovered expansion rate for a SALT2 perfect simulation. The
reconstruction of H(a) using 1 Principal Component and with 3-σ errors is
shown in orange. In blue, the underlying ΛCDM cosmology is plotted. Note
that the data was both simulated and fitted with SALT2.

Next, we tried simulations with realistic cadence, measurements errors and
selection effects, though still with high signal to noise (on average, higher than
current data). The same proportions concerning reshift ranges and survey
population as in Union2.1 were maintained.

To avoid the theoretical prejudice introduced by each fitter when simu-
lating, we created a single data sample with a mixture of SNe, half of them
simulated in MLCS, the other half in SALT2. Subsequently, the generated light
curves were fitted with both models, independently. The results are shown in
Fig. 5.14.

We see that the error bars are bigger than those of the perfect data. This is
due to the fact the these simulations include uncertainties coming from extinc-
tion and non-photometric observing conditions. Nonetheless, the recovered
expansion history is the same independently of the light-curve fitter used to
calibrate the data. This means that both methods are consistent with each
other and that, for ideal (or sufficiently high quality) data, they yield the
same cosmological results. The observed deviations between both SN models,
reported in other SN studies might come from limited understanding on sys-
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Figure 5.14: Recovered expansion rate for mixed simulations (half simulated
in MLCS, the other half in SALT2) fitted with both SALT2 and MLCS. The
reconstruction of H(a) using 1 Principal Component and with 3-σ errors is
shown in orange. In blue, the underlying ΛCDM cosmology is plotted.

tematics related to our technical capabilities or non-well understood physical
properties of the SN Ia explosions, e.g. intrinsic scatter due to SN evolution
with redshift. We will address the issue of systematic errors and possible ways
to detect them within SN samples in the next Chapter.
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6. Extracting the Expansion
Rate from Real Data:
Cosmological Implications

The main goal of this work was to apply the model-independent method to real
SN Ia samples to derive constraints on the expansion rate of the Universe. Ad-
ditionally, and due to the non-parametric nature of the method, we attempted
to discriminate between dark energy and non-standard cosmological models,
and draw some conclusions on the cosmological parameters occurring in those
models.

In the following we present results some of which have been, or are about
to be, published in Benitez-Herrera et al. (2012), Benitez-Herrera et al. (2013)
and Benitez et al. (2014, in preparation). As done in the previous Chapter,
the reconstructed H(a) will be given in units of km s−1 Mpc−1.

6.1 The Union2.1 Sample Revisited

We applied the method described in Chapter 4 to the largest homogeneously
reduced SN Ia sample publicly available, the Union2.1 (Suzuki et al., 2012, –
see Fig. 5.1). This sample contains 580 SNe and includes data from SNLS
(Astier et al., 2006), ESSENCE (Miknaitis et al., 2007) and SDSS (Holtzman
et al., 2008) surveys, low redshift samples (Hamuy et al., 1996; Hicken et al.,
2009a) as well as Hubble Space Telescope data (Riess et al., 2007).

The PC basis for this data set was already shown in Fig. 4.5, consisting in
a training set of flat ΛCDM models with the usual sampling 0.1 ≤ ΩM ≤ 0.5
and 0.1 ≤ ΩΛ ≤ 0.5. The reference model was assumed to be the best fit
cosmology for these data obtained by Suzuki et al. (2012), i.e. ΩM = 0.277,
ΩΛ = 0.723. As we know, the PC basis was constructed in a way that it
highlights deviations from the reference model, meaning that, if we were to
find deviations from this model in our reconstruction, it would imply that this
“best fit” is probably misleading. We stress the importance of this statement
because what it may appear as the best fit obtained with a χ2-test or any other
traditional (parametric) method, may not be the real underlying cosmology of
the data and could lead to misleading results.

127
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Figure 6.1: The reconstructed expansion history, with 3-σ error, extracted
from the Union2.1 sample using the optimal basis system with one PC. The
green line represents our best-fit to ΛCDM paradigm. The blue line is the
best-fit obtained by the Union team (Suzuki et al., 2012) for this sample and
the grey line corresponds to results from Planck (Planck Collaboration et al.,
2013).

The first Principal Component for this sample already accounts for approx-
imate 99.9% of the total variance and its determination carries an uncertainty
of σPC1 ≈ 2.5 × 10−5. This means it already contains the main properties
of the expansion of the Universe and accounts alone for a great part of the
total variance sampled in the scatter matrix. Therefore, we restrict ourselves
to only one principal component when performing the reconstruction. The re-
construction for H(a) using the PC basis and with 3-σ errors is plotted in Fig.
6.1. For the sake of comparison, the figure also shows the best-fit cosmology
found by the original Union2.1 analysis, ΩM = 0.277 ± 0.022 (Suzuki et al.,
2012) – used as reference model – and the latest result reported by the Planck
satellite team, ΩM = 0.314 ± 0.020 (Planck Collaboration et al., 2013). Both
results are in marginal agreement with the behaviour we found for H(a).

We recall that the Hubble constant, H0, was left as a free parameter to
fit together with the expansion coefficients. We stress once more that the SN
data have to be standardized before extracting their absolute magnitudes, and
subsequently distances. The standardization process of the Union2.1 sample
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was a prior and separate step independent of the work presented in this Sec-
tion. These data were calibrated by the Union team (Kowalski et al., 2008;
Suzuki et al., 2012) within the SALT2 (Guy et al., 2007) paradigm. Fitting
the luminosity distance data to the expression in Eq. 4.33 with one PC returns
H0 = 70.43± 0.33 and c1 = 122.74± 796.68, for the first expansion coefficient.
As expected from a geometrical approach, our method does not provide di-
rect constraints on specific cosmological parameters. However, it returns an
estimation on the form of the expansion rate as a function of redshift with cor-
responding uncertainties. Having such a function, we could compare our results
with ΛCDM cosmologies and point to the most likely cosmological parameters
able to reproduce the resulting Hubble parameter behaviour. Translating our
results for a flat ΛCDM scenario lead to a cosmological constant model where
matter energy density is in close agreement with the recently released Planck-
satellite results for the cosmic microwave background (Planck Collaboration
et al., 2013). Given the general agreement that the true underlying cosmo-
logical model should not differ much from a cosmological-constant model (at
least as long as the cosmic dynamics is concerned), we believe our results show
that going beyond the parametrized analysis is fundamental to tackle small
deviations present in the data.

Indeed, putting our reconstruction in the context of ΛCDM models we
calculated a range of ΩM values allowed by the behaviour we found for H(a).
Keeping fixed the value of H0 extracted from the data, we obtained ΩM =
0.297 ± 0.020 (grey curve in Fig. 6.1). It is important to emphasise that the
magnitude of the error of ΩM does not carry the same meaning as in any
standard parametric analysis. The determination of a range of values for ΩM

is merely a strategy to better compare our results. Unlike other analyses we
are tracking only deviations from the reference vector and this causes the error
bars to be small. The results we found are significantly higher than the best-fit
value obtained by the Union2.1 team (ΩM = 0.277 without systematics; blue
dashed curve in Fig. 6.1), and are in close agreement with the value reported
by the Planck Collaboration. As seems clear from Fig. 6.1, we do observe a
deviation from the reference model (the Union2.1 fit) assumed to perform the
reconstruction, suggesting that the underlying true cosmological model might
deviate from the reported best fit to the data. We notice that we have also
tested other reference models obtaining in all cases the same best fit value for
our reconstruction ΩM = 0.297 and minimised value for H0.

Another way to express our results, allowing a more clear comparison with
others from the SNe Ia literature (all using SALT2 light curve fitter; Guy et al.,
2007) is shown in Fig. 6.2. We believe that the shift in our results towards the
Planck values is a clear indication that SNe Ia cosmology should move beyond
the parametrized approaches if it aims at dealing with small deviations from
the standard values of the cosmological parameters present in the data.
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Figure 6.2: Comparison between our results when translated to a flat ΛCDM
scenario, ΩM = 0.297 ± 0.020 (black line and gray region), and others from
the literature. The green (dot-dashed) line correspond to results reported by
the first year of SDSS data, ΩM = 0.279 ± 0.019 (Kessler et al., 2009). Cyan
(dashed) line stands for results reported by Union2.1 team, ΩM = 0.277 ±
0.022 (Suzuki et al., 2012), the pink (dotted) line represents outcomes from
SNLS3, ΩM = 0.276 ± 0.016 (Sullivan et al., 2011) and the red (dot-dot-
dashed) line represents recent results from Planck, ΩM = 0.314±0.020 (Planck
Collaboration et al., 2013). Only statistical errors and supernova fitted with
SALT2 are considered in this plot.

6.2 Constraining Cosmological Scenarios

We have demonstrated that we are not biased by any theoretical opinion to-
wards a cosmological model, since we do not assume any specific form for the
expansion of the Universe. Our model-independent approach stands as an
useful tool to analyse different cosmological scenarios in a consistent way, by
looking at (geometrical) predictions on the Hubble function for various models.
The goal of this Section is to illustrate how families of models, with completely
different parameters, can be confronted with the data in order to assess their
validity.
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6.2.1 Dark Energy Models

We tried some dark energy models with different parameterisations of the dark
energy equation of state w, going from flat and non-flat models to several a
priori assumed transition redshifts, zt (point of the Hubble diagram where the
expansion makes a transition between acceleration and deceleration) for the
model.

Relaxing the premise of constant equation of state, we analyzed a dark
energy model proposed by Rapetti, Allen & Weller (2005). It is an extension
of the parametrization in Eq. 2.44 proposed by Chevallier & Polarski (2001)
and Linder (2003), which assumes a fixed transition redshift (zt = 1) between
the current value of the equation of state and the value at early times, wet =
w0 + w1. In contrast, the model discussed by Rapetti et al. (2005) introduces
zt as an extra free parameter so that the equation of state w can be written as

w(a) =
wetz + w0zt

z + zt

=
wet(1− a)at + w0(1− at)a

a(1− 2at) + at

, (6.1)

where at is the transition scale factor. From the Friedmann equation, the
expansion function in terms of redshift is then given by

H(z) = H0

√
ΩM(1 + z)3 + Ωdef(z) + Ωk(1 + z)2, (6.2)

with

f(z) = (1 + z)3(1+wet)e−3(wet−w0)g(z;zt); (6.3)

Here, the function g(z; zt) is defined as

g(z; zt) =
zt

zt − 1
ln

(
zt

zt + z

)
. (6.4)

Rapetti et al. (2005) constrained the best-fit cosmological parameters for dif-
ferent possibilities within this model, varying the number of free parameters.
They made use of SN Ia (the Gold sample by Riess et al., 2004), X-ray galaxy
clusters and CMB data for this analysis. In Fig. 6.3, we compare those pos-
sibilities to the model-independent reconstruction of the expansion function
extracted from the Union2.1 sample. This is meant to illustrate that standard
cosmologies within the wCDM paradigm with different choices of parameters
do not fit the data in all cases. This is not easy to see in other analyses which
are model-dependent. Our reconstruction of H(z) can be a useful tool since
it allows us to rule out cosmological models based entirely on the data. For
example, the two most extreme models shown in Fig. 6.3 – one with a fixed
zt = 0.35 (green solid line) which splits the SN and the cluster data sets into
similarly low and high redshift subsamples, and the one with arbitrary zt (blue
dashed line) – are clearly inconsistent with our reconstruction. The other mod-
els (marginally) agree with the SN measurements within errors, though they
have slightly different slopes.
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Figure 6.3: Recovered expansion rate extracted from the Union2.1 data with 1
PC and 3-σ errors (orange area) confronted with several dark energy models.
The best fit parameter for the models were taken from previous studies in
literature.

6.2.2 Beyond the wCDM Cosmology

In this Section, we have evaluated the alternative models explained in Sec-
tion 2.9 by confronting them to our reconstruction of H(a) from the Union2.1
data.

DGP Models

Firstly, we looked at the brane world DGP and mDGP models described in
Section 2.9.1. In Fig. 6.4, the comparison of our model-independent recon-
struction with some DGP and mDGP models is presented. The values of the
model parameters are taken from previously reported fits to actual cosmolog-
ical data. We evaluated two pure DGP models (α = 1) adopting the best-fit
values for ΩM reported in Guo et al. (2006) – magenta dotted-dashed line –
and Liang & Zhu (2011) – black dotted line. In the first case, the constraints
were obtained from the Gold and SNLS samples in combination with BAO. In
the second, the best fit values are found by combining cosmology-independent
Gamma Ray Burst and SNe Ia data, with BAO, CMB and H(z) measure-
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Figure 6.4: Recovered expansion rate extracted from the Union2.1 data with
1 PC and 3-σ errors (orange area) confronted with several DGP and mDGP
models. We find the data to be consistent with 0 . α . 0.50.

ments. The latter constitutes so far the strongest constraint obtained for the
DGP model.

For the mDGP model we considered the values inferred by Thomas et al.
(2009) adding weak-lensing data to BAO and SNe (green solid line). In that
particular study, the authors found an upper limit for the α parameter (α <
0.58 at 68 per cent confidence level), but were not able to give constraints on
the ΩM parameter. Therefore, and to better understand the effect of changing
ΩM for a given α, we made use of the best-fit values reported in Liang & Zhu
(2011) for the DGP model and in Amanullah et al. (2010) – for the standard
ΛCDM model. This corresponds to α = 0 and is also plotted in Fig. 6.4 f or
the sake of comparison (blue dashed line). Additionally a model with negative
α (magenta long-dashed line), resembling a highly non-physical model, is also
included..

As was found in prior studies (see, for example, Maartens & Majerotto,
2006; Fairbairn & Goobar, 2006), a pure DGP cosmology is disfavored by the
SNe data even at low redshifts. Models with negative values of α also disagree
with our reconstruction. However, it is still too early to break the degeneracy
betweeten ΛCDM and mDGP models with 0 . α . 0.58.
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Figure 6.5: Recovered expansion rate extracted from the Union2.1 data with
1 PC and 3-σ errors (orange area) confronted with several f(R) models. The
best fit parameter for the models were taken from previous studies in literature.

f(R) Theory

We now consider f(R) cosmologies which, as we recall from Section 2.9.2,
include a general function of the Ricci scalar in the Einstein equations. There
are different parameterizations for f(R), but here we assume the most simple
one given by Eq. 2.57. By evaluating this equation at z = 0 it is possible to
obtain a relationship between n, β, and ΩM. Thus, if specifying the values of
two of them the other is immediately fixed. In the analysis n and ΩM were
treated as free parameters. The adopted values for the model parameters are
taken from previously reported fits in the literature. Carvalho et al. (2008)
obtained constraints on the (n, ΩM) parameter space from the combination of
BAO and CMB data with independent determinations of the Hubble parameter
at different redshifts. Their best fit for the parameters was n = 0.03, β = 4.7
and ΩM = 0.26 (black dashed-dotted line in Fig. 6.5), substantially different
from our reconstruction.

In similar studies, other authors have combined SNe data with BAO and
CMB. We consider here the numbers obtained by Fay et al. (2007) – red solid
line – and Amarzguioui et al. (2006) – blue dashed line– using the SNLS and
Gold samples, respectively. We find the latter model is in agreement with our
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reconstruction although, from Fig. 6.5 it is evident that a strong degeneracy
between n and ΩM is present.

This degeneracy will be studied in future work. We conclude that f(R)
cosmologies (at least the parameterisation considered here) should be kept as
a possible theory of gravity.

Kinematic Models

Next, we consider kinematic models as described in Section 2.10. These are
based only on a specific parameterisation of the deceleration parameter, q,
or the jerk parameter, j. This means that no quantities coming from the
dynamic description, such as the matter-energy content, are specified. We
consider the five realizations specified in Sec. 2.10 and summarised in Table 6.1.
For the different parameters we adopt the constraints obtained by Guimarães
et al. (2009) with the previous Union compilation (Kowalski et al., 2008), and
through a Bayesian marginal likelihood analysis. The comparison between the
expansion history obtained from Union2.1 data and the theoretical expansion
function calculated for each model is shown in Fig. 6.6. All these models make
specific predictions for the cosmic expansion (see Guimarães et al., 2009, for
the corresponding expressions of H) and they are of particular interest because
no assumption on the matter-energy content present in the Universe is made.

We note that modelM2 can be rejected based on current SN Ia data because
its shape differs greatly from the reconstructed expansion history. Also M0 has
a different slope which does not even fit the data at low redshifts. Models M1,
M3 and M4 agree with the SN data within the errors up to values of the scale
factor a ∼ 0.6 (z ∼ 0.66). This is consistent with the transition redshifts
zt given in Guimarães et al. (2009). The good agreement may reflect the fact
that the models were constructed in a way that mimics ΛCDM at low redshifts.
At high redshifts z > zt, however, none of the models is consistent with our
reconstructed expansion history.

Table 6.1: Summary of kinematic models.

Model Name Parameterization
M0 q(z) = q0

M1 q(z) = q0 + q1z

M2 q(z) = q0 for z ≤ zt ; q(z) = q1 for z > zt

M3 j(z) = j0

M4 DL(z) = c
H0

[
z + 1

2
(1− q0)z2 − 1

6
(1− q0 − 3q2

0 − j0)z3
]

+O(z4)



136 6. EXTRACTING THE EXPANSION RATE FROM REAL DATA

0.4 0.6 0.8 1.0
a

80

100

120

140

160

H
(a

)

1.5 0.7 0.2 0.0
z

Union2 Sample Vs. Kinematic Models

Reconstruction 1PC, 3σ

M0: q0=-0.34

M1: q0=-0.71, q1=1.449

M2: q0=-0.49, q1=1.065

M3: q0=-0.74, j0=-1.9

M4: q0=-0.66, j0=-1.4

Figure 6.6: Recovered expansion rate extracted from the Union2.1 data with
1 PC and 3-σ errors (orange area) confronted with several kinematic models.
The best fit parameter for the models were taken from previous studies in
literature.

6.3 Alternative Cosmological Probes

After the analysis carried out in the previous Section, we conclude that it
is still too early to accurately discriminate exotic alternatives from ΛCDM,
although some of the scenarios can be ruled out from the current paradigm.
However, taking only SNe into account may limit our ability to perform the
reconstruction of the expansion rate. A comparison with other cosmological
probes, such as BAO or CMB, could give tighter constraints for cosmological
models.

As we saw in Sec. 2.6, the angular-distance diameter DA can be translated
into luminosity distances via the Etherington relation (Etherington, 1933).
The use of BAO data, coming from surveys like the Baryon Oscillation Spec-
troscopic Survey (BOSS), will improve the performance of the method pre-
sented in this thesis and will provide higher accuracy in the calculation of
H(z). Indeed, some tentative work in this direction using simulated BOSS-
like distance data has been carried out by Mignone (2009). As an illustration,
Fig. 6.7 shows the expansion rate reconstructed from DA data in the interval
0.6 < a < 1 where most of the BOSS data concentrates. The accuracy in
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Figure 6.7: Recovered expansion rate extracted from BOSS-like distances (blue
area) and estimated data points from the same survey (red points). From
Mignone (2009).

the determination of H(a) does not match the one reached with SNe due to
the small number of BAO points available. The future BigBOSS will provide
enough BAO data to be comparably used together with SNe Ia. Geometrical
approaches as the one proposed here will greatly benefit from the combination
of both probes.

Another idea would be to add directly measured H(a) data to the recon-
structed expansion derived from SN Ia. For example, Stern et al. (2010) present
determinations of the cosmic expansion history from red-envelope galaxies.
These are galaxies that formed their stellar population at high redshift z > 2
and whose stellar populations have been passively evolving since then, without
further episodes of star formation. These galaxies are the oldest objects in the
Universe at every redshift and their differential ages – i.e. the change in age
of the Universe as a function of redshift dt/dz – should be good indicators for
the expansion rate. The two data points obtained by the authors at z ∼ 0.5
and z ∼ 0.9, together with older determinations from the literature are plotted
in Fig. 6.8 and compared with our reconstruction. Clearly, the errors in the
H(a) data are much bigger since they are affected by observational uncertain-
ties and systematics in the determination of the stellar population. However,
in general they agree with our result for the overall Hubble function.
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Figure 6.8: Recovered expansion rate extracted from the Union2.1 data com-
pared with H(a) data from passively evolving galaxies (Stern et al., 2010).

6.4 Other Interesting Applications

Our model-independent method to constrain the expansion history has other
interesting applications. For instance, it offers a complementary way of de-
tecting possible systematic effects such as possible uncertainties introduced by
the light curve calibration, host galaxy extinction or intrinsic variations cor-
responding to different SN Ia populations, which could affect the data and
would be overlooked within a traditional analysis based on physical parame-
terizations. The method is also a valuable tool that can be used to plan future
Type Ia supernova cosmology campaigns, by testing redshift ranges in which
it would be more relevant to collect data.

6.4.1 Checking for Systematics in the Supernova
Samples

Given, for instance, some samples from different surveys, a question to ask
is whether the respective cosmological parameters derived from both of them
predict an expansion history that is consistent with the direct data analysis.

We tested this idea on the example of the Union2.1 data set which is a col-
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Figure 6.9: Recovered expansion rate extracted from the ESSENCE data with
1 PC and 3-σ errors (orange area). The blue solid line is the best fit encoun-
tered for this sample by Wood-Vasey et al. (2007). The dashed lines correspond
to uncertainties on the best fit.

lection of data from various SN Ia surveys. Some tension amongst the several
sub-samples in Union2.1 might exist, due to the different survey characteristics
and handling of systematic errors, for example. In the most extreme case, one
sub-sample alone could be responsible for introducing a bias in the entire data
set. This can be identified by means of our reconstruction technique, which
should detect discrepancies in the recovered expansion history of the individual
sub-samples.

The three main components of the Union2.1 data set are the ESSENCE,
the SNLS and the SDSS samples, as they cover a wide range in redshifts with
a relatively large number of objects (see Fig. 5.1). The expansion histories of
these three samples are compared with ΛCDM models based on the individual
best-fit parameters found for them in Figures 6.9, 6.10 and 6.11. The errors
are determined by the quality of each data set, being smaller for SNLS and
SDSS.

It is worth noting that, in order to perform the reconstruction and avoid
computational artifacts in the calculations, the three samples have been com-
bined with low redshift data consisting on 57 SNe taken from Hicken et al.
(2009a). All data sets show consistency of the reconstructed expansion with a
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Figure 6.10: Recovered expansion rate extracted from the SNLS data with 1
PC and 3-σ errors (orange area). The blue solid line is the best fit encoun-
tered for this sample by Astier et al. (2006). The dashed lines corresponds to
uncertainties on the best fit.

ΛCDM model, though the SDSS sample agrees marginally only with its best
fit model obtained by Kessler et al. (2009). This could be due to the lack
of high redshift SNe in this data sample, which counteracts the low-z sam-
ple giving the correct weight in the reconstruction. However, given the tests
that have been performed on the method, even if such effect would exist, the
deviation would not be that significant. This might indicate that the SDSS
data are affected by some kind of unknown bias or that the ΛCDM best-fit
model reported by Kessler et al. (2009), obtained with a traditional analysis,
fails to represent some features of the underlying cosmology. Nonetheless, the
data tested here correspond to the SDSS SNe contained in Union2.1 and not
the original SDSS SNe, for which the best-fit was derived. This could also
give a hint on how different frameworks to analyse the same data affect the
cosmological results.

Plotting the extracted H(a) from the three data sets together, we see in
Fig. 6.12 that they are consisten with each other. However, the SDSS sam-
ples appears to have a different slope compared to the SNLS and ESSENCE
reconstruction.
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Figure 6.11: Recovered expansion rate extracted from the SDSS data with 1
PC and 3-σ errors (orange area). The blue solid line is the best fit encoun-
tered for this sample by Kessler et al. (2009). The dashed lines correspond to
uncertainties on the best fit.

6.4.2 Testing Redshift Ranges for Supernova Campaign
Planning

More data at various redshifts will be obtained in future SN Ia surveys. In order
to test the effects new data may have on current data and on our reconstruction
approach, we created high and low redshift mock data with very high signal to
noise (S/N ∼ 2) using SNANA. The distant SNe resemble those obtained with
the HST regarding measurements errors, selection effects and filter system. We
then combined each of these simulations with the Union2.1 sample individually
and run the procedure to obtain H(a). The approximate number of simulated
data was 300, to roughly equal the number of nearby and distant SNe contained
in Union2.1. Figure. 6.13 shows the results for the low-z sample combined with
Union2.1 set. The recovered H(a) for the high-z data plus Union2.1 is shown
in Fig. 6.14.

The improvement of the reconstruction is apparent from the significant
decrease in the error bars. This is not surprising, since the data were simulated
with very high quality. In Figure 6.14 the errors for z & 0.8 are specially small,
which is consistent with the fact that the simulations abundantly populate that
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Figure 6.12: Comparison of the recovered expansion function from the
ESSENCE (orange area), SNLS (blue area) and SDSS (green area) data sam-
ples with 1 PC and 3-σ errors.

area. It is also very interesting that, as observed in Fig. 6.13, high-redshift
errors are greatly reduced when a large number of (quality) low-z SNe are
included in current data sets. Good nearby data are easier to obtain and less
subjected to systematic errors – such as survey selection effects – than their
high-redshift counterparts. The advanced technology of future surveys will
notably improve the observation and calibration procedures yielding very high
signal-to-noise photometry and spectroscopy. We argue that SN campaigns –
both ground and space-based – that focus on the low-z Universe might be more
beneficial for SN cosmology than projects attempting to obtain thousands of
SNe at high redshifts, where less control on the quality of the data and the
systematic errors is achievable.

Moreover, spectroscopic classification becomes a hard and expensive task
for high redshift SNe. Equally, accurate redshift determination of the host
galaxies requires good spectroscopic data which is easier to obtain for nearby
events. We discussed in Sec. 3.6.1 the possibility of accessing photometric
redshifts from those high-redshift surveys, but this would probably carry a
degradation in statistical accuracy, which is in contradiction with the needed
quality, essential to improve present cosmological results. These reasons give
an indication that more SN data in the nearby regime can help to signifi-
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Figure 6.13: The reconstructed expansion rate with 3-σ errors extracted from
the Union2.1 set plus around 300 simulated nearby SNe with high signal to
noise. Our reconstruction (orange area) is compared with the underlying
ΛCDM model (blue line).

cantly improve the constraints on cosmological models. We believe that such
considerations may help with the design of future surveys.

6.5 Ongoing Work

An important aspect to take into account when dealing with SNe Ia is that they
are not standard candles but have to be calibrated as distance indicators apply-
ing the empirical calibration discussed in Sec. 3.3.2. This calibration procedure
introduces a dependence between the calibrated measurements that gives rise
to finite non-diagonal entries in the covariance matrix for the distance mod-
ulus. Moreover, the parameters of the calibration and the derived distances
may depend on the light-curve fitter employed for that purpose (Kessler et al.,
2009). Though we demonstrated in Sec. 5.2.1 that with ideal (or good qual-
ity) data, the choice of light-curve fitter was irrelevant, actual data may still
be affected by this limitation. Another complication, as was also mentioned
in Sec. 3.4.1, is that the SALT2 fitter determines the calibration parameters
simultaneously with the cosmological parameters assuming a ΛCDM model.
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Figure 6.14: The reconstructed expansion rate with 3-σ errors extracted from
the Union2.1 set plus around 300 simulated high-z SNe with high signal to
noise. Our reconstruction (orange area) is compared with the underlying
ΛCDM model (blue line).

As the Union2.1 sample was calibrated with SALT2, this applies also to the
data and any cosmological result derived from them. This appears as a major
contradiction to the intended model-independence of the method proposed in
this thesis and has raised some constructive criticism.

Therefore, we saw the necessity of fitting the raw Union2 data using the
MLCS fitter, which does provide model-independent luminosity-distance data,
and compare the corresponding H(a) reconstruction with our present results.1

This may offer a interesting test for the SNe comunity since it will provide an
independent assessment on the performance of the two most used light curve
fitters on current data.

However, fitting the raw light curves is not a trivial task, since each of
the sub-samples included in Union2 use a different set of filters, sometimes
peculiar, for which correspondence with Bessell filters are not straightforward,
or the same SN is observed by two telescopes, information that has to be

1Note that we refer here to the Union2 sample instead of the recent upgrade Union2.1,
which was used throughout this thesis. The reason for this is that we only had access to the
raw Union2 data. However, for our purposes, the difference should not be noticeable, since
Union2.1 only containts around 20 SNe more than Union2.



6.5. ONGOING WORK 145

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
z

34

36

38

40

42

44

46

48

m
u
(z

)
Hubble Diagram for Union2 data fitted with MLCS

UNION2 REALUNION2 REALUNION2 REAL

Best fit Union2: ΩM = 0.274

(Amanullah et al. 2010)

hicken 

amanullah

barris

ESSENCE

hamuy

SDSS

jha

knop

krisciunas

perlmutter

riess

schmidt

SNLS

tonry

hicken 

amanullah

barris

ESSENCE

hamuy

SDSS

jha

knop

krisciunas

perlmutter

riess

schmidt

SNLS

tonry

Figure 6.15: Our MLCS fit of the Union2 data (with errors) compared with the
original SALT2 fit (without errors, green points). Here the modulus distance
µ is plotted against redshift z. As a comparison the best fit cosmology for
Union2 is also plotted (black dashed line).

included in the K-corrections. Doing this once and for all, and developing the
necessary tools for new data that may be added to the compilation appears as
a smart strategy.

A tentative, though not definitive, result for the MLCS fit is presented
in Fig. 6.15 together with the SALT2 original fits. The plot shows distance
modulus against redshift, following what is commonly displayed in the SN
community (in contrast with DL or H versus scale factor a, as was done in
this thesis). In our fit, the (relative) distances obtained with MLCS are sys-
tematically higher than those derived with SALT2 (∼ 0.5 mag. on average),
which could point to errors in our fit. However, a comparison with the last re-
ported MLCS fit to public data sets with 288 SNe from the SNLS, ESSENCE,
SDSS and HST samples, shows good agreement with the fit we obtain (see
Fig. 6.16). Moreover, the fit for ΩM is closer to what we obtain with our
model-independent reconstruction than other supernova studies. We expect
the reconstructed H(a) to vary slightly donwards at high and intermediate
redshifts from our result of Fig. 6.1, since our distances differ from the SALT2
estimates. But we do not foresee a significant change on the cosmological pa-
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Figure 6.16: Our MLCS fit of the Union2 data compared with the fit of Kessler
et al. (2009) with 288 SNe. Here the modulus distance µ is plotted against
redshift z. The best cosmology obtained by Kessler et al. (2009) is also plotted
in black.

rameters. More investigation is, however, needed in order to asses the validity
of the fit and draw conclusions from the outcome.

Looking ahead into the future, when the number (and precision) of data
from the upcoming surveys – as for example, the already started Dark Energy
Survey or the future missions Euclid and LSST – allows it, we will explore
the potential of the method for the analysis of possible local inhomogeneities
through comparison of the expansion history in different directions.



7. Conclusions and Perspectives

The question of why the Universe is accelerating today is still not convincingly
addressed within the current standard cosmological model. An uniformly dis-
tributed dark energy component, with equation of state w = −1 and exerting
a negative pressure appears to be the most plausible explanation for the ob-
served acceleration. A feasible candidate for dark energy is the cosmological
constant Λ, understood as the zero point of all quantum fields or the vacuum
energy. However, theoretical predictions result in an estimation of Λ that is
between 120 to 55 orders of magnitude larger than suggested by astrophys-
ical data. Other proposals for dark energy involve a dynamical scalar field
rolling very slowly toward its lowest energy of state. Nowadays, even with
the advent of very accurate cosmological data, the nature of dark energy and
the reason for its relevance now remains unclear. Although general relativity
can accommodate the detected acceleration of the Universe, it cannot give
a deeper understanding about its cause, nor can it give robust solutions for
the fine-tuning and the coincidence problem. In order to overcome these diffi-
culties, non-standard cosmological models have been presented as alternative
explanations for acceleration without dark energy. Modified gravity describes
the late-time acceleration as a manifestation of new physics beyond General
Relativity. Modified gravity theories advocate to introduce extra terms in
Einstein’s equations to allow for extra dimensions (braneworld models), or
higher powers of the Ricci scalar (f(R) models) in the Einstein-Hilbert action.
Equally, pure kinematic approaches have been suggested based on parameter-
isations of the second and third derivatives of the scale factor, in an attempt
to constraint the acceleration of the Universe. Such diverse scenarios are likely
to diverge in their predictions for H(z) from the standard ΛCDM model and
therefore they can be constrained from the reconstructed expansion history of
the Universe.

Since the detection of the acceleration of the Universe a decade ago, SN
Ia cosmology has received an increasing attention. Due to their uniform lu-
minosity, this class of supernovae can be used as very suitable (relative) dis-
tance indicators. They allow for the construction of modern versions of the
Hubble diagram, using distance modulus instead of apparent brightness, and
redshift instead of radial velocity. Different groups like the Supernova Cos-
mology Project, the Higher-Z or the CfA teams are putting great efforts in
looking for more SNe Ia to extend both the nearby and the distant samples.
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Currently, the largest, homogeneously reduced sample at hand is the Union2.1
data set, which includes many of the larger surveys, such as ESSENCE and
SNLS and previous compilations from literature. Constraints from such compi-
lations combined with other cosmological probes have yielded accurate values
of the cosmological parameters which describe the Universe we live in. How-
ever, the uncertainties are still large. Statistical errors can be controlled if
more supernovae are observed and included in the samples, but systematic
uncertainties are not so easy to overcome. The main systematic errors come
from the galaxy extinction, the calibration of the light curves to derive the
distance estimations and a possible evolution in redshift of the supernova pop-
ulation. Data of better quality is mandatory in order to reliably improve the
cosmological constraints inferred from SNe Ia.

In this thesis, we presented a method to recover the expansion history of the
Universe in a model-independent fashion. The only assumption made is the
validity of the FLRW metric and the Cosmological Principle. The luminosity
distance measurements obtained from SNe Ia depend only on space-time ge-
ometry, and can be directly related to the Hubble function without assuming a
dynamical model. This can be achieved by deriving the theoretical expression
of the luminosity distance, as given by the FLRW metric, and transforming it
into a Volterra integral equation of the second kind. A unique solution for this
integral can be found in terms of Neumann series, providing the expansion rate
within the accuracy allowed by the data. The drawback of the transformation
to a Volterra integral is that the derivative of the luminosity distance is needed.
However, taking the derivative directly from the data leads to unreliable re-
sults. The method employed here solves this problem through the expansion
of the luminosity distance into an series of arbitrary orthonormal functions. In
this way, fitting the expansion coefficients to the data and using the derivative
of the series expansion instead of the derivative of the data we were able to
recover the expansion history of the Universe. The only condition imposed
here is that the minimum number of coefficients used on the reconstruction
should be minimal.

Several basis were tested to reconstruct the Hubble parameter yielding ac-
ceptable results for the H(a) function. Nevertheless, in an attempt to control
the number of coefficients to be included in the reconstruction in a rigorous
way, and avoid biases coming from the choice of the basis, we derived it from
Principal Component Analysis. PCA is a well-known statistical tool tradition-
ally used to reduce the dimensionality of large data sets and describe them in
terms of a few features, which map the main characteristics contained in the
data. Different approaches using PCA have been proposed to reconstruct the
dark energy equation of state w or the expansion function H(a).

The PC formalism employed here, defines a training set consisting of an
ensemble of ΛCDM models with a particular reference vector as the origin
of the new parameter space. The choice of this reference model is arbitrary
and does not affect the nature of the basis or the reconstruction of DL. It
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is generally identified with the mean of the training matrix. The principal
components are found by solving the usual eigenvalue problem. The linear
transformation leading to the PCs concentrates in only a few features all the
information regarding deviations from the reference vector.

In contrast to others approaches in literature, we do not aim to model un-
derlying physical quantities within a specific cosmological model, such as w.
Instead, we aim at the Principal Components directly describing cosmologi-
cal observables, e.g. luminosity distances. Moreover, the method also avoids
redshift binning while smoothing the SN data. Although only results using
SNe Ia data are presented in this thesis, it is possible to use the algorithm
to analyse any type of observable which delivers standard candle or standard
ruler measurements (e.g. CMB or BAO). A general parameterization (with
independent parameters regardless of the underlying physical assumptions)
could be achieved by considering the principal components as cosmological
eigen-cosmologies.

We demonstrated that we are able to recover the main features underlying
the cosmological expansion of the Universe, with only a few, mathematical,
assumptions. The error budget in our reconstruction comes from the uncer-
tainty in the determination of the coefficients and the Hubble constant H0 due
to the minimisation.

The strength of the method employed here to derive the expansion history
of the Universe is that it provides a purely geometrical test. Contrary to other
ways of analyzing cosmological data it does not revert to assumptions on the
energy contents of the Universe nor its dynamics. We argue that, as long as the
nature of dark energy remains unknown, model-independent analyses of the
kind described here have more significance in deriving cosmological parameters
than traditional parametric studies. This is due to the fact that no specific
form of the equation of state w or the Hubble function is fixed in our approach.

Our analysis showed that SNe data point to a higher value of ΩM , in
contradiction with what was found with standard methods. Furthermore, this
is in agreement with the last results driven by the Planck Satellite mission.
In our approach, H0, is considered a free parameter to be minimised with
expansion coefficients. We obtained a value which is in agreement, within
error bars, with the recent constraints obtained by other supernova studies.

The ultimate goal of this work was to discriminate among different cos-
mological models, such as dark energy or f(R) and DGP cosmologies, based
on very different physical assumptions, and, in this way, break the current de-
generacy in the cosmological parameters. Testing the validity of the different
scenarios is an important and challenging task. The reconstructed expansion
rate can be used to consistently study those alternatives and provide con-
straints on their different cosmological parameters. By means of simulated
data, we proved that our method is able to recover exotic cosmologies, even if
they are not included in the original training matrix. In this cases, we often
needed a larger number of components in order to recover the true expansion
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history underlying the simulated data.

The issue of the number of PCs to include in the analysis is not trivial and
is still a matter of current debate. Here we base our decision on the percentage
of total variance carried by each eigenvalue and its corresponding eigenvector.
This criteria proved to perform well in most cases, loosing only accuracy for
very extreme cosmologies. Once we were sure of the robustness of out method,
we investigated theoretical predictions from several cosmological scenarios by
confronting them to the reconstructed expansion history obtained from the
SN data. In this way, we were able to asses their validity by comparing the
different predictions to our results for H(a). We found that only a small set of
cases remain consistent with the data within the f(R) and DGP paradigms.
In the context of kinematic models, which rely on different parameterizations
of the jerk and the deceleration parameter, we found none of them fit the data
well. Concerning dark energy models, it is not possible to discriminate between
constant or evolving-in-time equation of state with current data, though this
may change with new data released by future surveys.

Moreover, the model-independent method offers a complementary way of
detecting possible systematic effects which could affect the data and be over-
looked within a traditional analysis based on physically motivated parameter-
izations. Actual compilations of SNe Ia comprise data from different surveys
and observed with disparate telescopes systems. It maybe the case, one sam-
ple could introduce a bias in the whole sample producing misleading results
of the cosmological parameters. Discrepancies in the expansion history ex-
tracted from several samples within a compilation might help to identify these
effects. We found general agreement in the reconstructed H(a) obtained from
the ESSENCE, SNLS and SDSS surveys, though we detected some deviation
of the SDSS data from its best cosmological fit.

The application of the method to check for possible systematics within
SN samples is specially relevant in the context of the different light curve
fitters developed to calibrate the data. Though simulations with ideal and
high quality data revealed no difference in the performance of the two main-
stream light-curve fitters (MLCS and SALT2), a dependence of the derived
distance moduli on the light curve model can still happen with current data.
Therefore, it is important to test the performance of the available light-curve
fitters on the base of model-independent approaches. It is important to keep in
mind that the possible impact of the light curve fitter in the calculation of SN
distances, and in our reconstruction technique, can be overcome by using near
infrared data, a region where SN Ia are nearly standard candles. It would be
interesting to apply the method to NIR data and investigate the effect on the
constraints on the expansion history of the Universe and cosmological models.

An increasing body of high quality data will help to reduce systematic
uncertainties affecting cosmological results obtained from SN data and will
provide a better constraints on the expansion rate. We studied the effect that
more nearby and distant SNe Ia will have on the reconstruction of H(a). We
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generated mock data resembling the HST and some low-z surveys with the
SNANA software and added them to the Union2.1 sample. We found that,
though distant SN are usefull for cosmological analysis, especially if one wants
to map the time variation of the dark energy equation of state, a larger number
of well-observed nearby data seems to be more essential. High redshift SN
will always be affected by specific systematics, such as survey selection effects
or inaccurate spectroscopic measurements, which can be easily overcome by
concentrating on nearby data. We believe that our method stands as a valuable
tool to plan future Type Ia supernova cosmology campaigns, by testing in
which redshift ranges it is more important to collect new data.

In future work, we will consider not only SN Ia data but also other cos-
mological probes, such as the angular distances from BAO, in order to obtain
tighter constrains on the expansion history of the Universe.

Finally, is it worthwhile noting the potential of the method for the analysis
of possible local inhomogeneities through comparison of the expansion history
in different directions.
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