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Zusammenfassung

Das Ziel dieser Arbeit ist es, ausgewählte Konzepte nichtparametrischer Schätzver-
fahren für Pair-Copula Constructions vorzustellen. Der Vorteil von nichtparametrischen
Schätzern liegt darin, dass sie asymmetrische Abhängigkeiten erfassen können. Der Schwer-
punkt liegt auf der Kerndichteschätzung und Bernstein Copulas. Bei Bernstein Copulas,
wird das grundlegende Konzept um eine Penalisierung der Koeffizienten erweitert um
glatte Schätzfunktionen zu fördern. Die vorgestellten Schätzmethoden werden in einer
empirischen Untersuchung und in einer Simulationsstudie angewendet und die nicht-
parametrisch geschätzten Höhenlinien der Pair-Copula Dichtefunktionen werden den pa-
rametrisch geschätzten gegenübergestellt. Für die Beurteilung der Vorhersagegüte des
geschätzten Modells werden kreuzvalidierte Likelihoods herangezogen.



Abstract

The goal of this thesis is to review selected concepts of nonparametric estimation
of pair-copula constructions. The main advantage of the nonparametric estimation is
its flexibility to capture asymmetric dependence. The focus is on the theory of kernel
density estimation and Bernstein copulas. For the Bernstein copulas, the basic concept is
extended by a penalization on the coefficients to support the smoothness of the function
estimate. The presented concepts are applied in an empirical study and a simulation study
and nonparametric fitted pair-copula density contours are compared to parametric fitted
contours. For comparison of the model prediction quality, cross-validated likelihoods are
consulted.
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Chapter 1

Introduction

Starting with the work of Sklar [1959], statistical dependence models for high-dimensional
data by means of copulas have extensively been analyzed. For a long time, parametric
copula families have been in the focus. Nonparametric methods were not popular due
to, among others, the curse of dimensionality and comparatively high computational ef-
fort. The recently introduced concept of pair-copula constructions of Joe [1996] helps to
overcome the curse of dimensionality, such that nonparametric copula modeling became
more famous. Nonparametric copulas are especially useful in the presence of asymmetric
bivariate dependence, as parametric copulas do not handle asymmetry properly. Further-
more, with parametric copulas there is a model risk if the family is not chosen properly.
However, if a parametric family is chosen correctly, parametric estimation is more efficient
than nonparametric estimation.

In general, it is possible to estimate the pair-copula itself nonparametrically and to
deduce the pair-copula density by derivation. Alternatively, it is possible to estimate the
pair-copula density nonparametrically and to deduce the pair-copula by integration.
Scaillet and Fermanian [2002] investigate kernel estimation of copula functions for time
series. Hobaek Haff and Segers [2012] perform estimation of pair-copula constructions
with the empirical pair-copula in the style of Deheuvels [1979]. Lopez-Paz et al. [2012] use
kernel density estimation to model R-Vines. To avoid boundary bias, the d-dimensional
copula data, which is uniformly distributed on the compact unit hypercube [0, 1]d, is trans-
formed to normally distributed data on Rd by applying the univariate standard normal
quantile function to each margin. On this level, the bivariate density is estimated and then
transformed back to the original scale. A different approach is the usage of Bernstein poly-
nomials to express the pair-copula. This was introduced by Sancetta and Satchell [2004].
The coefficients can be estimated data-driven as probabilities from a contingency table
(see Pfeifer et al. [2009]). Diers et al. [2012] follows this approach in the Bernstein copula
estimation with application to insurance data. Weiß and Scheffer [2012] also conduct this
approach in Vine estimation with application to financial returns data. Schellhase [2012],
however, obtains the coefficients from maximum likelihood estimation. He even penalizes
the likelihood to influence the coefficients in order to receive a smooth density estimate.
Schellhase [2012] shows a further pair-copula density estimation approach using penalized
B-splines, based on arguments from the spline smoothing literature. Shen et al. [2008] use

1



CHAPTER 1. INTRODUCTION 2

linear B-splines in the pair-copula function estimation.

The goal of this thesis is to review selected concepts of nonparametric estimation of
pair-copula constructions. In fact, we focus on the theory of kernel density estimation and
Bernstein copulas. We apply these concepts in an empirical study and a simulation study
in three dimensions and compare the results to parametric pair-copula constructions. The
thesis is outlined as follows. In Chapter 2 we present the theoretical background of ker-
nel density estimation and pair-copula constructions. As a tool for model comparison,
we introduce the method of cross-validated log-likelihoods. Nonparametric estimation of
bivariate copulas is presented in Chapter 3. We start with the empirical copula defined by
indicator functions. We explain the pair-copula estimation by kernel density estimation
based on the data, which is transformed by standard normal quantile function in order
to avoid boundary bias. Next, we introduce Bernstein copulas and the maximum likeli-
hood estimation of the coefficients. In this context, we also go detailed into the concept of
penalization. In Chapter 4 we apply the kernel density estimation approach and the Bern-
stein copula approach to a data sample and figure out typical behavior of the estimates.
We evaluate cross-validated log-likelihoods to get an idea of the out-of-sample prediction
quality. We draw a comparison to a parametric pair-copula construction. In Chapter 5,
we apply selected nonparametric and parametric pair-copula constructions to simulated
data. The simulation study is intended to figure out the flexibility of nonparametric copula
estimation over parametric copula estimation in the presence of asymmetric dependence.



Chapter 2

Theoretical Background

2.1 Kernel Density Estimation

The histogram is a basic statistical tool to obtain information about the underlying prob-
ability mass function or probability density function of a given sample. It is simply created
for univariate data, however, its appearance depends on the bin selection. Since the his-
togram is not continuous, it is an unsatisfying approximation of continuous probability
density functions. Hence, more sophisticated tools are needed. Here, kernel density esti-
mation comes into play.

Kernel density estimation is a basic concept in nonparametric and semi-parametric
statistics. It is a flexible method to estimate probability density functions and cumulative
distribution functions. The univariate kernel density estimation was proposed by Fix and
Hodges [1951]. Cacoullos [1966] and Epanechnikov [1969] extended it to a multivariate
setting. Marron and Ruppert [1993] propose a method to reduce boundary bias of kernel
density estimators by proper transformation of the data, estimating the density using the
transformed data and re-transforming the estimate to the original scale.

In this section, we explain the principle of kernel density estimation for univariate
and multivariate probability density functions. From this, we deduce an estimator of the
respective cumulative distribution function. Throughout this thesis, we restrict ourselves
to the continuous case. As the bandwidth selection is crucial for the smoothness and
volatility of the resulting probability density estimate, we discuss this in detail. We in-
troduce the normal reference rule of thumb method, proposed by Silverman [1986], as
well as the data-driven methods of least squares cross-validation and maximum likelihood
cross-validation.

2.1.1 Univariate Kernel Density Estimation

We introduce univariate kernel density estimation following Silverman [1986] Li and
Racine [2007].

For a fixed n ∈ N, let x1, . . . , xn, be observations of a univariate continuous random

3



CHAPTER 2. THEORETICAL BACKGROUND 4

variable X : Ω → R with distribution function F : R → [0, 1] and probability density
function f : R→ R≥0. We denote the estimates of F and f by F̂ and f̂ , respectively.

The following definition is taken from Zucchini [2003].

Definition 2.1 (General Kernel Function)
Any function k(x) : R→ R that satisfies the following conditions is a kernel function:

∞∫
−∞

k (x) dx = 1

∞∫
−∞

xk (x) dx = 0 (2.1)

∞∫
−∞

x2k (x) dx =: b2 < ∞ (2.2)

In practice, kernel functions are often chosen to be symmetric and nonnegative. Any
symmetric probability density function with finite variance is a kernel function. For a
kernel function that takes negative values, the estimate itself may take negative values
which is not desirable when estimating density functions. Kernel methods with asymmet-
ric kernels can be found in Abadir and Lawford [2004].

Definition 2.1 is very general. We present a further definition taken from Li and Racine
[2007], which is more restrictive. From now on, when we speak of kernel functions, we
assume them to satisfy the following definition.

Definition 2.2 (Kernel Function)
A nonnegative bounded function k(x) : R→ R≥0 that satisfies

∞∫
−∞

k (x) dx = 1 (2.3)

k (x) = k (−x) (2.4)
∞∫

−∞

x2k (x) dx =: b2 > 0 (2.5)

is a kernel function.

Equation (2.3) together with the nonnegativity of k makes k being a probability den-
sity function. Note that if Equation (2.4) holds, then Equation (2.1) holds, too.

In Table 2.1 we define some common kernel functions, namely the second order Gaus-
sian, the second order Epanechnikov and the uniform kernel function. The order of the
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Kernel Definition

Gaussian k (x) = 1
√

2π
e−

1
2 x2
, x ∈ R

Epanechnikov k (x) = 3
4
√

5

(
1 − 1

5 x2
)
, |x| <

√
5

Rectangular or Uniform k (x) = 1
2 , |x| < 1

Table 2.1: Definition of some famous kernel functions.

first kernel moment that is different from zero is called order of the kernel. Formally, m ∈ N
is the order of k, if

∞∫
−∞

xlk (x) dx = 0 for l = 1, . . . ,m − 1 and

∞∫
−∞

xmk (x) dx , 0.

Gaussian and Epanechnikov kernels also exist in orders higher than two. They can be
useful to enhance the goodness of fit, but as Li and Racine [2007] state, the drawback
is that the kernel function necessarily takes negative values. Hence, we do not go deeper
into this.

Definition 2.3 (Univariate Kernel Density Estimator)
For a probability density function f : R→ R≥0, the kernel density estimator is defined as

f̂ (x) =
1

nh

n∑
i=1

k
( x − xi

h

)
,

where x1, . . . , xn denote the observations of the random variable X and k is a kernel function
as in Definition (2.2). The parameter h > 0 is called bandwidth or smoothing parameter.

Sometimes we write f̂h instead of f̂ to emphasize that the estimator depends on the
parameter h.

Silverman [1986] points out that if the kernel k is a probability density function, the
estimate f̂ will be a probability density, too. Furthermore, f̂ possesses the same continuity
and differentiability properties as k.

2.1.2 Univariate Bandwidth Selection

Obviously, the resulting estimator depends on the choice of the kernel function k and the
bandwidth h. They should be chosen in a way such that the distance between the true
probability density function f and the estimated probability density function f̂ is mini-
mized.
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Serfling [1980] showed that in many situations, the second order Epanechnikov kernel
is optimal. Many authors emphasize that the bandwidth affects the estimate much more
than the kernel function, e. g. see Li and Racine [2007]. We illustrate this in Figure 2.1.
We simulate 500 observations from the bimodal probability density function
f (x) = 1

2 ·φ−2;0.5 (x)+ 1
2 ·φ2;0.5 (x). The function φµ,σ2 denotes the probability density function

of the normal distribution with mean µ ∈ R and variance σ2 > 0. We performed several
kernel density estimations on that sample and depict the resulting density estimates in
Figure 2.1. In each column of the figure, we varied the kernel function and in each row of
the figure, we applied different bandwidths. On the one hand, we applied optimal band-
widths from least squares cross-validation, maximum likelihood cross-validation and from
the rule of thumb. On the other hand, we determined the bandwidths explicitly to il-
lustrate the effect of undersmoothing (for h = 0.05) and oversmoothing (for h = 1 and
h = 2.5). We clearly see the significant effect of bandwidth variation. Kernel variation has
only obvious influence in this example, if the bandwidth parameter is far away from its
optimal value. In other words, as long as h is chosen properly, the choice of the kernel
function is of secondary importance.

The bandwidth h can be fixed or varying. Varying bandwidths are obtained by genera-
lized nearest neighbors method or adaptive nearest neighbors method (cf. Li and Racine
[2007]). In this thesis, we concentrate on fixed bandwidths.

Following we define common measures for the distance between a true density f and
its estimate f̂h.

The mean squared error (MS E) is defined as

MS E
(

f̂h (x)
)

:= E
[(

f̂h (x) − f (x)
)2
]

(2.6)

and can be rewritten to

MS E
(

f̂h (x)
)

=
(
E

[
f̂h (x) − f (x)

])2
+ Var

[
f̂h (x)

]
. (2.7)

An optimal bandwidth h shall minimize the MS E. In Equation (2.7), the first term
reflects the squared bias and the second term is the variance of f̂h (x). There is a tradeoff
between squared bias reduction and variance reduction, that is, they cannot be minimized
at the same time. Later we introduce cross-validation methods, which are motivated by
the need to balance the squared bias and variance of the estimate. The following theorem
gives an idea of the explicit form of the MS E, when the number of observations tends to
infinity and the bandwidth tends to zero at the same time.

Theorem 2.4
Let X1, . . . , Xn be independent and identically distributed random variables with probability
density function f (x). Furthermore, let f (x) be three times differentiable and let x be an
interior point in the support of f (x). Then, for the kernel density estimator f̂ (x) from
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Figure 2.1: Illustration of the effect of bandwidth and kernel selection on the density es-
timate. The black function is the true probability density function, the blue function is
the fitted kernel density estimate for the respective bandwidth and kernel function (band-
width specification: kde.ls = least-squares cross-validation, kde.ml = maximum likelihood
cross-validation, kde.rule = normal reference rule of thumb).
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Definition 2.3,

MS E
(

f̂h (x)
)

=
h4

4

(
b2 · f

′′

(x)
)2

+
b · f (x)

nh
+ o

(
h4 +

1
nh

)
(2.8)

as n → ∞, h → 0 and nh → ∞, where f
′′ (x) is the second order derivative of f (x),

b2 :=
∫

v2k (v) dv and b :=
∫

k2 (v) dv.

Proof: We refer to Li and Racine [2007].

The MS E measures the distance between the true density and the estimated density
in a point x. An advanced distance measure is the integrated mean squared error (IMS E).
It does not depend on one point x, because it involves all points x in the domain of f̂h.
The IMS E is defined as

IMS E
(

f̂h

)
:=

∫
MS E

(
f̂h (x)

)
dx =

∫
E

[(
f̂h (x) − f (x)

)2
]

dx. (2.9)

By Theorem 2.4, one can show that

IMS E
(

f̂h

)
=

h4b2
2

4

∫ (
f
′′

(x)
)2

dx +
b

nh
+ o

(
h4 +

1
nh

)
, (2.10)

as n→ ∞, h→ 0 and nh→ ∞, with b and b2 as in Theorem 2.4.
The optimal bandwidth hopt that minimizes the two leading terms of (2.10) is given by

hopt = c0n−
1
5 (2.11)

with the positive constant c0 =

[
b2

2
b

∫ (
f
′′ (x)

)2
dx

]−1/5
. If f

′′ (x) = 0 for almost all x, c0 is

not well-defined.

It can be shown (see Li and Racine [2007]) that f̂ (x) converges to f (x) in probability,
if k satisfies Definition 2.2. In that sense, f̂ (x) is a consistent estimator of f (x). It can
also be shown that f̂ (x) has an asymptotic normal distribution.

Bandwidth Selection by Rule of Thumb

The rule of thumb method calculates the optimal bandwidth by Equation (2.11). There-
fore, we need to calculate the second derivative of the unknown density f . Silverman [1986]
suggests to assume a density from a parametric family of distributions. When working with
the Gaussian density, it is referred to as the normal reference rule of thumb. Then, the
second derivative f

′′ (x) is easy to calculate. If additionally one uses the Gaussian kernel
estimator, the optimal bandwidth from Equation (2.11) turns out to be

hopt =

(
4

3n

)1/5

· σ ≈
1.06
n5 · σ. (2.12)
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This is proper for distributions that are close to the Normal distribution. It is left to
estimate the standard deviation σ. One could consider the sample standard deviation

s =

√
1

n−1

∑n
i=1 (xi − x̄)2, but this is not robust. Hence, Silverman [1986] suggests the esti-

mator

σ̂ = min
(
s,

r
1.349

)
, (2.13)

where r denotes the interquartile range of the data. The constant 1.349 is derived from
the fact, that the interquartile range of a normal distribution with variance σ2 is equal to
1.349 · σ.

Least Squares Cross-Validation

Rudemo [1982] and Bowman [1984] initially proposed the least squares cross-validation
method for bandwidth selection. The resulting h is optimal in the sense that it minimizes
the integrated squared error (IS E). The following is presented according to Li and Racine
[2007].

The integrated squared error is defined as

IS E
(

f̂
)

:=
∫ (

f̂ (x) − f (x)
)2

dx

=

∫
f̂ (x)2 dx − 2

∫
f̂ (x) f (x) dx +

∫
f (x)2 dx. (2.14)

We ignore the last summand of Equation (2.14), as it does not depend on h and obtain
the objective function

ĨS E
(

f̂
)

:=
∫

f̂ (x)2 dx − 2
∫

f̂ (x) f (x) dx. (2.15)

Let X denote the continuous random variable corresponding to f and let
{
X j

}
j=1,...,n

be the

random observations used for the computation of f̂ . We approximate∫
f̂ (x) f (x) dx = EX

[
f̂ (X)

]
≈

1
n

n∑
i=1

f̂−i (Xi) , (2.16)

where EX [·] denotes the expectation with respect to f and

f̂−i (Xi) :=
1

(n − 1) h

n∑
j=1, j,i

k
(

Xi − X j

h

)
. (2.17)

f̂−i (Xi) is called the leave-one-out kernel estimator of f (Xi). Furthermore, we compute∫
f̂ (x)2 dx =

1
(nh)2

n∑
i=1

n∑
j=1

∫
k
(Xi − x

h

)
k
(

X j − x
h

)
dx

=
1

n2h

n∑
i=1

n∑
j=1

k
(

Xi − X j

h

)
(2.18)
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with

k (v) =

∫
k (u) k (v − u) du (2.19)

being the two-fold convolution kernel of k. Plugging (2.16) and (2.18) into (2.15), we
obtain the least squares cross-validation objective function

CV f (h) =
1
n2

n∑
i=1

n∑
j=1

1
h

k
(

Xi − X j

h

)
−

2
n (n − 1)

n∑
i=1

n∑
j=1, j,i

1
h

k
(

Xi − X j

h

)
. (2.20)

The optimal bandwidth hopt is chosen to minimize CV f (h), i. e. the resulting density es-
timate f̂hopt is optimal with respect to IS E. To this end, numerical search algorithms are
applied. In the application part of this thesis, we use the R package np (see Hayfield
and Racine [2008]) to perform kernel density estimation. The bandwidth estimation rou-
tine uses Powell’s unconstrained optimization by quadratic approximation (UOBYQA)
algorithm as proposed by Powell [2000].

Likelihood Cross-Validation

Bandwidth selection by likelihood cross-validation was proposed by Duin [1976]. With this
method, the optimal bandwidth hopt is chosen to maximize the leave-one-out log-likelihood
function L. Let X1, . . . , Xn be independent and identically distributed continuous random
variables with probability density function f (x). Then, the leave-one-out log-likelihood
function is

L (h; X1, . . . , Xn) = ln L (h; X1, . . . , Xn) = ln

 n∏
i=1

f̂−i (Xi)

 =

n∑
i=1

ln f̂−i (Xi) .

with f̂−i (Xi) as defined in Equation (2.17). Schuster and Gregory [1981] showed that using
compactly supported kernels with likelihood cross-validation bandwidths for estimating
infinitely supported probability densities, leads to inconsistent results. Chow et al. [1983]
showed that using compactly supported kernels with this bandwidth method for estimat-
ing compactly supported probability densities, leads to consistent results. However, Hall
[1987] advises not to use compactly supported kernels with likelihood cross-validation
bandwidths.

2.1.3 Multivariate Kernel Density Estimation

In this section, we refer to Li and Racine [2007].

For a fixed n ∈ N, let x1, . . . , xn, be n observations of a d-dimensional continuous ran-
dom variable X : Ω→ Rd, d ∈ N, with distribution function F : Rd → [0, 1] and probability
density function f : Rd → R≥0. That is, each observation xi consists of d univariate entries
xi1, . . . , xid. We denote the estimates of F and f by F̂ and f̂ , respectively.
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Definition 2.5 (Multivariate Kernel Density Estimator)
For a probability density function f : Rd → R≥0, the kernel density estimator is defined as

f̂ (x) =
1

nh1...hd

n∑
i=1

K
(xi − x

h

)
, (2.21)

where

K
(xi − x

h

)
:=

d∏
j=1

k
(

xi j − x j

h j

)
(2.22)

with k being a univariate kernel function as in Definition 2.2 and x1, . . . , xn denote the ob-
servations of the random variable X. The parameters h1, . . . , hd > 0 are called bandwidths.

2.1.4 Multivariate Bandwidth Selection

The optimal bandwidths h1, . . . , hd can be found as a result of the rule of thumb or by
cross-validation arguments.

Bandwidth Selection by Rule of Thumb

The optimal bandwidths by the rule of thumb are given by

h j = c js jn−
1

4+d , j = 1, . . . , d,

where c j is a positive constant and s j denotes the sample standard deviation of
{
xi j

}
i=1,...,n

.

The exponent − 1
4+d results from our assumption that all considered random variables are

continuous and that we use kernel functions of order two. The general form of the exponent
is

−
1

2 · (kernel order) + (number of continuous variables)
.

Often, the constants c j, j = 1, . . . , d are all set to 1.06, which comes from the univariate

normal reference rule of thumb
(
1.06 =

(
4
3

)− 1
4+1

)
. However, this choice is not advisable when

working with other kernels than the Gaussian. Henderson and Parmeter [2011] derive op-
timal constants for several multivariate kernel functions of different orders. An enhanced
approach is to choose c j, j = 1, . . . , d not equally, but rather according to the behavior of
the density of interest in the respective dimension j. For example, if the density is quite
bumpy in dimension 1 and very smooth in dimension 2, then c1 should be relatively small
and c2 relatively large. However, the rule of thumb method does not provide this quality.

Least Squares Cross-Validation

A straightforward generalization of the univariate least squares cross-validation objective
function from Equation (2.20) to d dimensions results in

CV f (h1, . . . , hd) =
1
n2

n∑
i=1

n∑
l=1

Kh (Xi, Xl) −
2

n (n − 1)

n∑
i=1

n∑
l=1,l,i

Kh (Xi, Xl) ,



CHAPTER 2. THEORETICAL BACKGROUND 12

where

Kh (Xi, Xl) =

d∏
j=1

1
h j

k
(

Xi j − Xl j

h j

)
and

Kh (Xi, Xl) =

d∏
j=1

1
h j

k
(

Xi j − Xl j

h j

)
.

Again we assume k to satisfy Definition 2.2 and k to be its two-fold convolution kernel as
defined in Equation (2.19).

Likelihood Cross-Validation

The likelihood cross-validation in one dimension can directly be extended to the multi-
variate setting. The likelihood function has to be maximized over all bandwidths. Again
we face the problem of inconsistent results with the usage of compactly supported kernels
when the underlying distribution is infinitely supported.

2.1.5 Estimating Distribution Functions

So far, we obtained a kernel estimator for the multivariate probability density function
f : Rd → R≥0 as f̂ (x) = 1

nh1...hd

∑n
i=1 K

(
xi−x

h

)
(recall Equation (2.21)). Now we are interested

in estimating the corresponding cumulative distribution function F : Rd → [0, 1]. We do

this by replacing the true density function f by f̂ in the basic equation F (x) =
x∫
−∞

f (v)dv.

This yields

F̂ (x) =

x∫
−∞

f̂ (v)dv (2.23)

(2.21)
=

x∫
−∞

1
nh1...hd

n∑
i=1

K
(xi − v

h

)
dv (2.24)

(2.22)
=

1
nh1...hd

n∑
i=1

d∏
j=1

x j∫
−∞

k
(

xi j − v j

h j

)
dv j. (2.25)

In Equation (2.25) we need to integrate the kernel function k. In Table 2.2 we present
some common integrated kernels.

In the next section we introduce copulas. When fitting a copula model to d-dimensional
data x1, . . . , xn ∈ R

d, the first step is to transform the original data to copula data. Copula
data u1, . . . ,un is expected to be marginally uniformly distributed on the unit interval. This
is achieved by a transformation with the marginal distribution functions F j, j = 1, . . . , d.
Recall that for a random variable X with distribution function F we have
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Kernel Integrated Kernel

Gaussian H (x) = Φ (x) , x ∈ R,
Φ standard normal distribution function

Epanechnikov H (x) =


0, x ≤ −

√
5;

3
4
√

5

(
x − x3

15

)
+ 1

2 , −
√

5 < x <
√

5;

1, x ≥
√

5

Rectangular or Uniform H (x) =


0, x ≤ −1;
1
2 x + 1

2 , −1 < x < 1;
1, x ≥ 1

Table 2.2: Integrated kernel functions.

Y := F (X) ∼ U (0, 1). As in practice we do not know the true marginal distribution
functions, we estimate them as F̂ j, j = 1, . . . , d, and set

ûi j := F̂ j

(
xi j

)
, i = 1, . . . , n for all j.

We illustrate this using data from a univariate variable, i. e. for d = 1 margin. From
the data used later on in the empirical study, we take the n = 655 observations of the
variable Co. We estimate its distribution function F̂1 by kernel density estimation with
Epanechnikov kernel and bandwidth from least squares cross-validation. We estimate the
optimal bandwidth as h = 0.0356 with the function npudensbw from the R package np.
This gives

F̂1 (x)
(2.25)
=

1
nh

n∑
i=1

x∫
−∞

k
( xi1 − v

h

)
dv

(2.4)
=

1
n

n∑
i=1

x∫
−∞

k

v − xi1

h︸ ︷︷ ︸
=:g(v)

 1
h︸︷︷︸

=g′(v)

dv

=
1
n

n∑
i=1

x−xi1
h∫

−∞

k (z) dz

=
1
n

n∑
i=1

H (z)|z=
x−xi1

h
z=−∞ (2.26)

=
1
n

n∑
i=1

(
H

( x − xi1

h

)
− 0

)
=

1
655

655∑
i=1

H
( x − xi1

0.0356

)
,
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Figure 2.2: Comparison of original and transformed copula data. On the left hand side, we
see plots of the original data. On the right hand side, we see the data after it is transformed
by a fitted distribution function.

where xi1, i = 1, . . . , 655 are the observations of the variable Co and H is the integrated
Epanechnikov kernel as in Table 2.2. We obtain the copula data as

ûl1 := F̂1 (xl1) =
1

655

655∑
i=1

H
( xl1 − xi1

0.0356

)
, l = 1, . . . , n.

In Figure 2.2 we see scatter plots and histograms of the original data and the trans-
formed data. In Figure 2.3 the estimated distribution function F̂1 is displayed together
with its probability density f̂1.

2.2 Dependence

Copulas are a powerful method to model dependencies within multi-dimensional data.
Sklar’s Theorem guarantees the existence and uniqueness of copulas for continuous distri-
bution functions. Multivariate copulas can be decomposed to a combination of bivariate
(conditional) copulas. This resulting decomposition is called pair-copula construction,
and was proposed by Joe [1996] and further developed by Bedford and Cooke [2001] and
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Figure 2.3: Nonparametrically estimated distribution function that is used for data trans-
formation and its probability density.

Kurowicka and Cooke [2006].
The possibility of pair-copula constructions is very valuable. Firstly, it allows to model
dependencies separately from the marginal distributions. Secondly, the so-called curse
of dimensionality is avoided, because the multi-dimensional copula is decomposed into a
bunch of bivariate building blocks. In general, one can choose parametric, semi-parametric
or nonparametric pair-copulas as building blocks.
There are several structures of a pair-copula construction available. Bedford and Cooke
[2001] and Bedford and Cooke [2002] introduced a graphical organisation of the pair-
copula construction by means of trees, called Vine.
In Section 2.2.1 we give the definition and basic properties of a copula function as well as
the fundamental Theorem of Sklar [1959]. In Section 2.2.2, we introduce C-Vines. We go
on defining several dependence measures.

2.2.1 Copulas

Following, we refer to Nelsen [2006].

Definition 2.6 (Copula)
A function C : [0, 1]d → [0, 1] is called d-dimensional copula, if the following properties
are satisfied:

(i) For all u = (u1, . . . , ud) ∈ [0, 1]d , C (u) = 0 if at least one coordinate of u equals 0.

(ii) For all j = 1, . . . , d, C
(
1, . . . , 1, u j, 1, . . . , 1

)
= u j.

(iii) C is d-increasing (see Nelsen [2006]).

The concept of copulas was developed by Sklar [1959] and is based on Sklar’s Theo-
rem. Basically it says that for each multivariate distribution function, there exists a copula
function that links the joint distribution function to its univariate marginal distribution
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functions.

Let X = (X1, . . . , Xd) be a vector of univariate random variables X1, . . . , Xd with joint
probability density function f and cumulative distribution function F. Further, let f1, . . . , fd

be the corresponding marginal density functions and let F1, . . . , Fd the corresponding
marginal distribution functions be strictly increasing and continuous.

Theorem 2.7 (Sklar’s Theorem)
Let F be a d-dimensional distribution function with margins F1, . . . , Fd. Then there exists
a d-dimensional copula C such that

F (x1, . . . , xd) = C (F1 (x1) , . . . , Fd (xd)) (2.27)

for all x = (x1, . . . , xd) ∈ (R ∪ {−∞,∞})d.
If all F j, j = 1, . . . , d are continuous, then C is unique. On the other hand, if C is a d-
dimensional copula and F1, . . . , Fd are distribution functions, then F as defined in Equation
(2.27) is a d-dimensional distribution function with margins F1, . . . , Fd.

The copula function can be interpreted as distribution function of d uniformly dis-
tributed univariate variables. Recall that if X j has a distribution function F j, then F j

(
X j

)
∼

U (0, 1).
As F1, . . . , Fd are strictly increasing and continuous, they are invertible and we obtain

the copula by inversion of Equation (2.27) as

C (u1, . . . , ud) = F
(
F−1

1 (u1) , . . . , F−1
d (ud)

)
. (2.28)

The copula density c : [0, 1]d → R≥0 can be obtained by partial derivation.

f (x) =
∂dC (F1 (x1) , . . . , Fd (xd))

∂x1 . . . ∂xd
=
∂dC (F1 (x1) , . . . , Fd (xd))
∂F1 (x1) . . . ∂Fd (xd)

f1 (x1) . . . fd (xd)

⇒ c (F1 (x1) , . . . , Fd (xd)) =
∂dC (F1 (x1) , . . . , Fd (xd))
∂F1 (x1) . . . ∂Fd (xd)

=
f (x)

f1 (x1) . . . fd (xd)

A copula C : [0, 1]d → [0, 1] can be used to express multivariate dependence between
d variables X1, . . . , Xd, d ∈ N. Within pair-copula constructions, the d-dimensional copula
can be expressed by several bivariate copulas. This is why we restrict ourselves to bivariate
copulas without limiting the application to d = 2.

Definition 2.8 (Bivariate Copula)
A function C : [0, 1]2 → [0, 1] is called bivariate copula, if the following properties are
satisfied:

(i) C (u, 0) = 0 for all u ∈ [0, 1] and C (0, v) = 0 for all v ∈ [0, 1]

(ii) C (u, 1) = u for all u ∈ [0, 1] and C (1, v) = v for all v ∈ [0, 1]

(iii) C is 2-increasing, i. e. C (u2, v2) −C (u2, v1) −C (u1, v2) + C (u1, v1) ≥ 0
for all u1, u2, v1, v2 ∈ [0, 1] with u1 ≤ u2 and v1 ≤ v2.
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Copulas are invariant under strictly increasing transformations of the margins, as
shown in Genest and Favre [2007], whereas the linear correlation coefficient is invariant
under strictly increasing linear transformations only. One can work with ranks Ri j of the
observations xi j, i = 1, . . . , n, of the j-th variable X j, j = 1, . . . , d, instead of the sample
itself. The advantage is that ranks are invariant under strictly increasing transformations.
Genest and Favre [2007] illustrate this fact in two dimensions simply with scatter plots of
the ranks of the original sample and the ranks of the transformed sample.

2.2.2 Pair-Copula Constructions

From Sklar’s Theorem, we can deduce the d-dimensional probability density function as

f (x1, . . . , xd) =

 d∏
j=1

f j

(
x j

) c (F1 (x1) , . . . , Fd (xd)) (2.29)

With pair-copula constructions one can express the joint copula density c as a product
of several bivariate pair-copulas. As commonly used, we assume for simplification that the
copula density does not depend on the value of the conditioning variables. Formally, we
write

c jk|D

(
F

(
x j|xD

)
, F (xk|xD) |xD

)
= c jk|D

(
F

(
x j|xD

)
, F (xk|xD)

)
=: c jk;D

(
F

(
x j|xD

)
, F (xk|xD)

)
,

where D ⊂ {1, . . . , d} is a subset of indices, j, k ∈ {1, . . . , d} \ D, j , k and xD := (xl : l ∈ D).
We demonstrate the concept of pair-copula constructions following Aas et al. [2009].

Let X = (X1, . . . , Xd) have the joint distribution function F, marginal distribution
functions F1, . . . , Fd and corresponding density functions f and f1, . . . , fd. By recursive
conditioning,

f (x1, . . . , xd) = f1 (x1) f (x2|x1) f (x3|x2, x1) . . . f (xd|xd−1, . . . , x1) . (2.30)

Then, the conditional densities in Equation (2.30) can be expressed with the help of
pair-copula densities as

f (x2|x1) =
f (x1, x2)

f1 (x1)
=

c12 (F1 (x1) , F2 (x2)) · f1 (x1) · f2 (x2)
f1 (x1)

= c12 (F1 (x1) , F2 (x2)) · f2 (x2)

f (x3|x2, x1) =
f (x2, x3|x1)

f (x2|x1)
=

c23;1 (F (x2|x1) , F (x3|x1)) · f (x2|x1) · f (x3|x1)
f (x2|x1)

= c23;1 (F (x2|x1) , F (x3|x1)) · f (x3|x1)
= c23;1 (F (x2|x1) , F (x3|x1)) · c13 (F1 (x1) , F3 (x3)) · f3 (x3)

and so on,
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where c12 (·, ·) is the pair-copula density for the pair of variables F1 (X1) and F2 (X2) and
c23;1 (·, ·) is the pair-copula density for the pair of variables F (x2|x1) and F (x3|x1).

In general,

f
(
x j|xD

)
= c jv;D−v

(
F

(
x j|xD−v

)
, F

(
xv|xD−v

))
· f

(
x j|xD−v

)
, j = 1, . . . , d,

where xD is a subvector of x with elements from D as indices, D ⊂ {1, . . . , d} \ { j} and
D−v := D \ {v}. For different choices of xv the representation of f

(
x j|xD

)
results in a differ-

ent decomposition.
Finally, the joint density function f is decomposed into a product of its marginal densities
and bivariate pair-copulas.

The input arguments of c jv;D require the calculation of conditional marginal distribu-

tion functions, e. g. F
(
x j|xD

)
. For this, we use the following recursive identity, introduced

by Joe [1996],

F
(
x j|xD

)
=
∂C jv;D

(
F

(
x j|xD−v

)
, F

(
xv|xD−v

))
∂F

(
xv|xD−v

) .

We have seen that the pair-copula construction of a d-dimensional probability density
is not unique. The number of possible decompositions rather increases significantly with
increasing dimension d. For example, Aas et al. [2009] state that there are 240 different
decompositions for a five-dimensional density. Bedford and Cooke [2001] and Bedford and
Cooke [2002] introduced a graphical organisation of the pair-copula construction, called
Vines. There are Regular Vines (R-Vines), Canonical Vines (C-Vines) and Drawable Vines
(D-Vines). For details, we refer to Kurowicka and Cooke [2006] and Kurowicka and Joe
[2011]. Following we concentrate on C-Vines.

For a pair-copula construction in d dimensions, the vine consists of d − 1 trees. With
tree, we mean an acyclic connected graph with nodes and edges. The nodes in the
first tree represent the variables X1, . . . , Xd, in the second tree the transformed variables
F

(
Xl|Xr1

)
, l = 1, . . . , d, l , r1 , in the third tree the transformed variables F

(
Xl|Xr2 , Xr1

)
, l =

1, . . . , d, l , r1, r2, and so on. An edge between two nodes represents the bivariate pair-
copula, that enters the model. C-Vines are characterized by the fact, that in each tree
there exists one root node which is connected to all other nodes. That is, if Xr1 is the
root node in the first tree, this implies that, among others, the pair-copula densities
c1r1 , c2r1 , . . . , c(r1−1)r1 , c(r1+1)r1 , . . . , cdr1 enter the model. Then, conditional distribution func-
tions conditioned on the root node F

(
Xl|Xr1

)
, l = 1, . . . , d, l , r1 are calculated. These

serve as variables, i. e. nodes, in the next tree and a new root node r2 is determined. This
implies, that the pair-copula densities c1r2;r1 , , c2r2;r1 , . . . , c(r2−1)r2;r1 , c(r2+1)r2;r1 , . . . , cdr2;r1 enter
the model. Repeating these steps, the conditioning is on all previous root nodes. This
results in a star structure of the C-Vine, see Figure 2.4 for an example. Assuming the root
nodes 1 . . . , d − 2, the C-Vine density is given by

f (x) =

d∏
r=1

fr (xr)
d−1∏
i=1

d∏
j=i+1

ci j;1,...,i−1

(
F (xi|x1, . . . , xi−1) , F

(
x j|x1, . . . , xi−1

))
. (2.31)
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Figure 2.4: Example of five-dimensional C-Vine.
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For a method of selecting the root nodes, we follow the idea of Dissmann et al. [2013],
who present a sequential selection of R-Vine trees as maximum spanning trees. We only
deal with C-Vines which is much more simple. We choose that variable as root, such that
the sum of absolute values of empirical Kendall’s τ of all resulting pairs are maximized for
that tree. The higher |τn| is for a bivariate sample, the stronger the dependence is assumed
between the underlying random variables. The idea is that the first tree shall contain the
pair-copulas with the strongest dependence.

2.2.3 Dependence Measures

A basic measure of dependence is the Pearson correlation coefficient, which measures the
linear dependence between two random variables X1 and X2. In the case var

(
X j

)
, 0 and

var
(
X j

)
< ∞, j = 1, 2,

corr (X1, X2) =
cov (X1, X2)

√
var (X1)

√
var (X2)

.

We say that X1 and X2 are perfectly correlated, if |corr (X1, X2)| = 1. Then X2 is a linear
function of X1 or vice versa. Uncorrelatedness corr (X1, X2) , 0 has two meanings: either,
X1, X2 are independent or X1, X2 are dependent, but not linearly. This shows the limited
power of the linear correlation coefficient. By means of copulas, one can express much
more sophisticated dependence structures. We refer to Nelsen [2006].

There are two famous dependence measures based on ranks: Spearman’s ρ and Kendall’s
τ. They inherit the favorable property of invariance under monotone transformations, since
they are based on ranks.

Definition 2.9 (Spearman’s ρ - sample version)
Let (xi1, xi2) , i = 1, . . . , n be a bivariate sample from the random variable (X1, X2) and let
Ri1,Ri2, i = 1, . . . , n, be the ranks of xi1, xi2. Then, the empirical Spearman’s ρ is defined as

ρn =

∑n
i=1

(
Ri1 − R1

) (
Ri2 − R2

)
√∑n

i=1

(
Ri1 − R1

)2 ∑n
i=1

(
Ri2 − R2

)2
,

where R j = 1
n

∑n
i=1 Ri j = n+1

2 , j = 1, 2.

Empirical Spearman’s ρ can be interpreted as the empirical Pearson correlation of the
ranks, i. e. ρn = corrn (R1,R2) for R1,R2 rank variables of X1, X2.

Definition 2.10 (Kendall’s τ - sample version)
Let (xi1, xi2) , i = 1, . . . , n be a bivariate sample from the random variable (X1, X2). Let
Pn denote the number of concordant pairs and Qn the number of discordant pairs. Then
Kendall’s τ is defined as

τn =
Pn − Qn(

n
2

) .
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Proposition 2.11 (Spearman’s ρ)
Let X1, X2 be random variables with distribution functions F1, F2, joint distribution func-
tion F and copula C, such that F = C (F1, F2). Then, Spearman’s ρ can be expressed
as

ρ (X1, X2) = 12
∫ 1

0

∫ 1

0
u1u2 dC (u1, u2) − 3.

Proposition 2.12 (Kendall’s τ)
Let X1, X2 be random variables with distribution functions F1, F2, joint distribution func-
tion F and copula C, such that F = C (F1, F2). Then, Kendall’s τ can be expressed as

τ (X1, X2) = 4
∫ 1

0

∫ 1

0
C (u1, u2) dC (u1, u2) − 1.

The above expressions make clear that ρ and τ only depend on the copula C. The
higher |ρ (X1, X2)| and |τ (X1, X2)| are, the more dependent X1, X2 are.

2.3 Model Comparison using Cross-Validation

We present the method of log-likelihood cross-validation with repeated random subsam-
pling, as we use it in the empirical study to compare the fitted models. We refer to Smyth
[2000].

Let X be a d-dimensional random vector with probability density function f . Let
N := {xi, i = 1, . . . , n} be a set of n independent observations of X. We divide that available
data into two complementary data sets N test  N and N train := N \ N test. N train contains
ntrain data points and N test contains ntest data points.
We estimate f̂ using the training data N train. From this, we obtain the fitted model pa-

rameters, let us call them Θ̂
train

. Then, we evaluate the log-likelihood of the model on the

test data N test, also called validation set, using the fitted model parameters Θ̂
train

. The test
log-likelihood Ltest is also referred to as log predictive score. It gives us information about
the out-of-sample prediction quality of the model.

Ltest := L
(
Θ̂

train
; N test

)
:=

∑
x∈Ntest

ln f̂
(
x; Θ̂

train
)
. (2.32)

For each model of interest we estimate Ltest as described above with the same train-
ing data and test data. The model with the highest test log-likelihood is interpreted as
the model with the highest prediction quality. This can be motivated by connecting it
to the Kullback-Leibler distance. The Kullback-Leibler distance between two continuous
probability densities f and g is defined as

KL ( f , g) :=

∞∫
−∞

f (x) ln
f (x)
g (x)

dx = E
[
ln

f (X)
g (X)

]
,
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where E [·] denotes the expectation with respect to f . It measures the discrepancy be-
tween the two probability densities. It is zero if the two probability densities are equal
and nonzero if they are different.
Smyth [2000] shows that the expected value of the negative test log-likelihood per sample
is equal to the Kullback-Leibler distance between the fitted and the true density plus some
constant, which is independent of the model.

One single test log-likelihood per model may be not significant for model comparison,
as it depends on several factors. For example, it depends concretely on the data N train,N test

and the robustness of the parameter estimation. Hence, we are interested in the cross-
validated estimate Lcv of Ltest. We repeat the data partitioning, model fitting and likelihood
evaluation T times for a fixed T ∈ N, and receive T test log-likelihoods as in Equation
(2.32) as

Ltest,t := L
(
Θ̂

train,t
,N test,t

)
, t = 1, . . . ,T.

The parameters Θ̂
train,t

are obtained from the t-th parameter fitting using the training data
N train,t from the t-th data partitioning. Then, the cross-validated estimate is defined as the
arithmetic mean

Lcv :=
1
T

T∑
t=1

Ltest,t.

The model with the highest cross-validated log-likelihood is interpreted as the model
with the highest prediction quality.

Smyth [2000] states that T between 20 and 50 is appropriate in most problems. There
is no general rule how to choose ntest, but Smyth [2000] showed that the choice ntest = 0.5 ·n
is reasonable in many applications. Cross-validation is computationally expensive, because
T parameter fittings and evaluations for each model of interest have to be performed.



Chapter 3

Nonparametric Pair-Copula
Constructions

So far we learned the basic theoretical concept of pair-copula constructions. Now we
present an assortment of nonparametric estimation methods for pair-copulas and pair-
copula densities. The drawback of parametric copula families is that they provide a certain
degree of symmetry or are restricted to certain correlation structures, which may not be
desirable. Nonparametric copula approaches are not bound to these limitations and thus
can provide a more adequate estimate of the underlying dependence structure. Following
we present pair-copula constructions with the empirical copula, kernel density estimation
and with Bernstein polynomials, both unpenalized and penalized.
There are further nonparametric estimation methods of copulas and pair-copula construc-
tions, for example by means of Wavelets (Genest et al. [2009]) and B-splines (Shen et al.
[2008], Schellhase [2012]), just to name some. However, we do not treat these, as they go
beyond the scope of this thesis.

Recall Equation (2.29), where we express the d-dimensional probability density f as
a product of the d marginals f j, j = 1, . . . , d and the d-dimensional copula density c. Our
goal is to estimate the copula density c. Hence we assume the marginals f j, j = 1, . . . , d
to be known or being estimated separately. This is a conventional approach to separate
univariate marginal density estimation from copula density estimation. We estimate the
copula density as pair-copula construction. Hence, we restrict our considerations to the
bivariate case.

3.1 Estimation by Empirical Copulas

The simplest nonparametric copula is the empirical copula, which was initially defined by
Deheuvels [1979]. We give the definition in two dimensions.

Let (xi1, xi2) , i = 1, . . . , n, be n observations of a bivariate random vector (X1, X2) with
joint distribution function F : R2 → [0, 1] , (x1, x2) → F (x1, x2) and strictly increasing
and continuous marginal distribution functions F1 (x1) and F (x2). Sklar’s Theorem in

23
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Equation (2.28) implies that

C (u1, u2) = F
(
F−1

1 (u1) , F−1
2 (u2)

)
for u1, u2 ∈ [0, 1] .

We define the empirical estimators of F, F1 and F2 by means of indicator functions as

F̂ (x1, x2) :=
1
n

n∑
i=1

1x(i)1≤x11x(i)2≤x2 =
1
n

n∑
i=1

1x(i)1≤x1,x(i)2≤x2

F̂1 (x1) :=
1
n

n∑
i=1

1x(i)1≤x1

F̂2 (x2) :=
1
n

n∑
i=1

1x(i)2≤x2

for x1, x2 ∈ R and x(i)1, x(i)2 the i-th order statistics of the samples xi1, xi2, i = 1, . . . , n. The
inverted marginal distribution functions F−1

1 and F−1
2 are estimated by the pseudo-inverse

functions

F̂←1 (u1) := inf
{
t ∈ R : F̂1 (t) ≥ u1

}
, u1 ∈ [0, 1]

F̂←2 (u2) := inf
{
t ∈ R : F̂2 (t) ≥ u2

}
, u2 ∈ [0, 1] .

Following Deheuvels [1979], the empirical copula function is defined as

Cn (u1, u2) = F̂
(
F̂←1 (u1) , F̂←2 (u2)

)
for u1, u2 ∈ [0, 1] .

We tend to the approach given in Hobaek Haff and Segers [2012], hence we modify the
factor in the definition of the empirical marginal distribution functions to 1

n+1 in order to

obtain F̂ j

(
x j

)
∈ [0, 1) for all x j ∈ R for j = 1, 2. Hence, we work with the estimators

F̂1 (x1) :=
1

n + 1

n∑
i=1

1x(i)1≤x1

F̂2 (x2) :=
1

n + 1

n∑
i=1

1x(i)2≤x2 .

Setting
ûi1 := F̂1 (xi1) and ûi2 := F̂2 (xi2) for i = 1, . . . , n,

and denoting the i-th order statistics of ûi1, ûi2 by û(i)1 and û(i)2, i = 1, . . . , n, we estimate
the bivariate copula function as

Ĉ (u1, u2) :=
1
n

n∑
i=1

1u(i)1≤u1,u(i)2≤u2 ,

We bring this into the context of d-dimensional pair-copula constructions.
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Let xi = (xi1, . . . , xid) , i = 1, . . . , n, be a random sample from a distribution with dis-
tribution function F : Rd → [0, 1] and probability density f : Rd → R≥0 that admits a
pair-copula construction as in Equation (2.31) with root nodes 1, . . . , d−2. We estimate the
corresponding pair-copulas following the presentation in Hobaek Haff and Segers [2012].

First, we compute the normalized ranks

ûi j =
1

n + 1

n∑
t=1

1x(t) j≤x(i) j , i = 1, . . . , n, j = 1, . . . , d.

Then, the empirical pair-copula for all pairs connected to the first root 1 are estimated as

Ĉ1 j

(
u1, u j

)
=

1
n

n∑
t=1

1û(t)1≤u1,û(t) j≤u j , j ∈ {2, . . . , d}

The fitted conditional distribution function is obtained by finite differencing. With the
definition Ĉ1 j (A) := 1

n

∑n
t=1 1(û(t)1,û(t) j)∈A for A ⊂ R2 and for h > 0,

Ĉ(2)
1 j

(
u1, u j

)
: =

Ĉ1 j

(
[0, u1] ×

[
u j − h, u j + h

])
Ĉ1 j

(
[0, 1] ×

[
u j − h, u j + h

]) (3.1)

=

∑n
t=1 1û(t)1≤u1,|û(t) j−u j|≤h∑n

t=1 1|û(t) j−u j|≤h

F̂ j|1

(
x j|x1

)
= Ĉ(2)

(
û j, û1

)
, j ∈ {2, . . . , d}

Then, we compute the normalized ranks of the estimated conditional probabilities as

ûi, j|1,...,k =
1

n + 1

n∑
t=1

1F̂ j|1,...,k(xt j |xt1,...,xtk)≤F̂ j|1,...,k(xi j |xi1,...,xik),

where k ∈ 1, . . . , d, j ∈ {k + 1, . . . , d} , i ∈ 1, . . . , n.

The choice of the bandwidth parameter h > 0 in Equation (3.2) is very crucial. Hobaek
Haff and Segers [2012] suggest to choose h = c ·n−1/p for some constant c > 0 and a reason-
able p ∈ N. In a simulation study, they sample from a Gaussian D-Vine and investigate
the empirical pair-copula estimation with the bandwidths h = n−1/5 (this is proportional
to the normal reference rule of thumb, see Equation (2.12)), h = n−1/4 and h = 0.5 · n−1/3.
They point out that the optimal bandwidth depends on the dependence structure of the
pair-copula construction and not on the margins. The simulation study shows that for a
low dependence, in fact Spearman’s ρ = 0.2, all three bandwidths perform well, but for
stronger dependencies, ρ = 0.5 and ρ = 0.8, the bandwidth h = 0.5·n−1/3 is the only suitable
choice. They suppose that undersmoothing, i. e. a rather too small h should be preferred.
Undersmoothing (see Figure 2.1) results in a reduced bias and a larger variance. They
state that this leads to estimated conditional distribution values far from the true condi-
tional distribution values, but the differences will be averaged out in the copula estimator.



CHAPTER 3. NONPARAMETRIC PAIR-COPULA CONSTRUCTIONS 26

However, an empirical copula is nonsmooth due to its step function characterization.
We overcome this problem by using smooth approximation functions. Kolbjørnsen and
Stien [2008] estimate the density empirically using Gaussian kernel functions rather than
indicator functions. This coincides with the kernel density estimation approach we explain
in the following section.

3.2 Estimation by Kernel Density Functions

In this section, we follow Lopez-Paz et al. [2012]. They use R-Vines to decompose the
multivariate copula density into a bunch of bivariate pair-copula densities. They estimate
each pair-copula density function c jk;D indirectly, i. e. after a proper transformation is ap-
plied to the data, a bivariate probability density g is estimated and then re-transformed to
the pair-copula density c. An example for a proper transformation is the standard normal
quantile function. It transforms the bounded support [0, 1]2 of c jk;D to the infinite support
R2, i. e. g is infinitely supported. We follow this approach to avoid the problem of boun-
dary bias in the estimation of g. However, Silverman [1986] points out that in general the
estimate on the original scale, i. e. the function c, will be less smooth near the boundaries.
Furthermore, we observe that it is not guaranteed that the estimated pair-copula density
margins will coincide with the theoretical margins.

We consider kernel density estimation of pair-copulas using Epanechnikov kernel func-
tions kE or Gaussian kernel functions kG as defined in Table 2.1, i. e.

kE (x) =
3

4
√

5

(
1 −

1
5

x2
)
, |x| <

√
5 (3.2)

kG (x) =
1
√

2π
e−

1
2 x2
, x ∈ R (3.3)

We focus on a three-dimensional C-Vine, assuming the variable X1 as root, i. e.

f (x1, x2, x3) = f1 (x1) · f2 (x2) · f3 (x3)
· c12 (F1 (x1) , F2 (x2)) · c13 (F1 (x1) , F3 (x3))
· c23;1

(
F2|1 (x2|x1) , F3|1 (x3|x1)

)
.

(3.4)

Let xi = (xi1, xi2, xi3) , i = 1, . . . , n, be observations from a three-dimensional continuous
random variable X = (X1, X2, X3). We estimate the marginal univariate cumulative dis-
tribution functions F̂ j, as integral of the univariate kernel density estimate f̂ j, j = 1, 2, 3
as described in Equation (2.25). Now we can transform the observations xi to so called
pseudo-observations or copula data

ûi = (ûi1, ûi2, ûi3) :=
(
F̂1 (xi1) , F̂2 (xi2) , F̂3 (xi3)

)
, i = 1, . . . , n.

The random variables U j := F j

(
X j

)
, j = 1, 2, 3, are uniformly distributed on [0, 1]. The

copula C jk

(
u j, uk

)
is the cumulative distribution function of the bivariate random variable
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(
U j,Uk

)
, j , k, its corresponding copula density is

c jk

(
u j, uk

)
=
∂2C jk

(
u j, uk

)
∂u j∂uk

.

Let us assume j = 1, k = 2. We want to transform the support of the copula density
c12 (u1, u2), which is [0, 1]2, to R2. To this end, we take the quantile function of a univariate
continuous distribution on R with strictly positive probability density function. We decide
to work with the standard normal distribution N (0, 1) and denote the probability density
function with φ, the cumulative distribution function with Φ and the quantile function
with Φ−1. Of course, φ > 0. We transform the random variables U1 and U2 to

Z1 := Φ−1 (U1) and Z2 := Φ−1 (U2) .

Then, Z1,Z2 ∼ N (0, 1) and its bivariate density g12 satisfies

g12 (z1, z2) = φ (z1) φ (z2) c12 (Φ (z1) ,Φ (z2)) , z1, z2 ∈ R. (3.5)

This follows from the density transformation theorem. The copula density c12 is identical
to the original one, but the support is now R2.

We perform a bivariate kernel density estimation for g12, based on the data ẑi = (ẑi1, ẑi2) ,
i = 1, . . . , n, where ẑi j := Φ−1

(
ûi j

)
for j = 1, 2 and i = 1, . . . , n. We set

ĝ12 (z1, z2) =
1

nĥ1ĥ2

n∑
i=1

k
(
ẑi1 − z1

ĥ1

)
k
(
ẑi2 − z2

ĥ2

)
, (3.6)

where k denotes the kernel function as in Definition 2.2 and ĥ1, ĥ2 the optimal bandwidths.
Plugging Equation (3.6) into Equation (3.5) and reordering gives

ĉ12 (u1, u2) =
ĝ
(
Φ−1 (u1) ,Φ−1 (u2)

)
φ
(
Φ−1 (u1)

)
φ
(
Φ−1 (u2)

)

=

∑n
i=1 k

(
Φ−1(ûi1)−Φ−1(u1)

ĥ1

)
k
(

Φ−1(ûi2)−Φ−1(u2)
ĥ2

)
nĥ1ĥ2 φ

(
Φ−1 (u1)

)
φ
(
Φ−1 (u2)

)
(3.7)

The copula C12 : [0, 1]2 → [0, 1] can be estimated by

Ĉ12 (u1, u2) :=

u1∫
0

u2∫
0

ĉ12 (s, t) dt ds.

and the estimator of the conditional copula C2|1 is given by

Ĉ2|1 (u2|u1) :=

u2∫
0

ĉ2|1 (t|u1) dt =

u2∫
0

ĉ12 (u1, t) dt.
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This comes from the fact that

c2|1 (u2|u1) =
c12 (u1, u2)

c1 (u1)︸︷︷︸
≡1, since U(0,1) density

= c12 (u1, u2) .

Hence,

Ĉ2|1 (u2|u1) :=

u2∫
0

ĉ12 (u1, t) dt

(3.7)
=

1

nĥ1φ
(
Φ−1 (u1)

) n∑
i=1

k
(
Φ−1 (ûi1) − Φ−1 (u1)

ĥ1

)

·

u2∫
0

1

ĥ2φ
(
Φ−1 (t)

)k
(
Φ−1 (ûi2) − Φ−1 (t)

ĥ2

)
dt

(2.26)
=

1

nĥ1φ
(
Φ−1 (u1)

) n∑
i=1

k
(
Φ−1 (ûi1) − Φ−1 (u1)

ĥ1

)
· H

(
Φ−1 (t) − Φ−1 (ûi2)

ĥ2

)∣∣∣∣∣∣t=u2

t=0

where H (x) =
x∫
−∞

k (t) dt is the integrated kernel function. For details of the calculation we

refer to Section 2.1.

Example 1 (Integrated kernels)
For the Epanechnikov kernel function kE,

HE (x) =


0, x ≤ −

√
5;

3
4
√

5

(
x − x3

15

)
+ 1

2 , −
√

5 < x <
√

5;

1, x ≥
√

5

For the Gaussian kernel function kG, HG (x) coincides with the standard normal cumulative
distribution function Φ.

We see that we can calculate the conditional distribution functions explicitly. Set

ûi,2|1 := F̂2|1 (ûi2|ûi1) = Ĉ2|1 (ûi2|ûi1) ,
ûi,3|1 := F̂3|1 (ûi3|ûi1) = Ĉ3|1 (ûi3|ûi1) and

ẑi,2|1 := Φ−1 (
ûi,2|1

)
, ẑi,3|1 := Φ−1 (

ûi,3|1
)
.

With this at hand, we can proceed to estimate the copula density c23;1.
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From the theory, the marginal densities g1, g2, g3, g2;1, g3;1 are standard normal prob-
ability densities. In Figure 3.2, we display the estimated marginal probability density
functions which we obtained by integration of the bivariate density estimate, for example,

ĝ1 (z1) =

∞∫
−∞

ĝ12 (z1, t) dt.

We see that it is not assured that the estimated margins reveal the theoretical shape. In
contrast, for the following Bernstein copulas it is guaranteed that the marginal pair-copula
densities behave as expected from the theory.

3.3 Estimation by Bernstein Polynomials

Bernstein copulas were introduced by Sancetta and Satchell [2004]. Compared to other
approximating polynomials, they state that Bernstein polynomials are advantageous in
the copula framework for several reasons: they are closed under differentiation, they lead
to proper copula functions under simple restrictions on the coefficients and the resulting
estimator has a lower variance than the empirical copula estimator. Sancetta and Satchell
[2004] use Bernstein polynomials to estimate the copula function C directly. The copula
density c is then obtained as the derivative of C. Schellhase [2012] shows a different
approach following the idea of Marx and Eilers [2005]. He estimates the copula density c
by a combination of tensor products of univariate B-splines. We perform this estimation
method, but with standardized Bernstein polynomials instead of B-splines. The copula C
is then deduced by integration.
Weiß and Scheffer [2012] use bivariate Bernstein copulas in the construction of smooth
nonparametric vine models. They perform a simulation study and a financial data analysis
and show that their model approach is superior to parametric vine models with respect
to AIC.
In this section, we refer to Schellhase [2012].

Definition 3.1 (Bernstein Polynomial)
The function P̃v,m : [0, 1]→ R≥0,

P̃v,m (u) =

(
m
v

)
uv (1 − u)m−v , u ∈ [0, 1] ,

with m ∈ N, v ∈ {0, 1, . . . ,m}, is called Bernstein Polynomial of degree m.

It is advantageous to standardize the Bernstein polynomials in a way, such that they
become probability densities. They already fulfill the property of being nonnegative, so
we need them to integrate to one over the unit interval. This is done in the following
definition.

Definition 3.2 (Standardized Bernstein Polynomial)
The function Pv,m : [0, 1]→ R≥0,

Pv,m (u) = (m + 1)
(
m
v

)
uv (1 − u)m−v , u ∈ [0, 1] ,
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Figure 3.1: Illustration of standardized Bernstein polynomials of degrees four and ten.

with m ∈ N, v ∈ {0, 1, . . . ,m}, is called standardized Bernstein Polynomial of degree m.

In fact, the standardized Bernstein polynomial Pv,m coincides with the probability den-
sity of a Beta distribution Beta (α, β) with shape parameter α, β > 0, if the parameter are
set to α = v+1 and β = m−v+1. In Figure 3.1, we see standardized Bernstein polynomials
of degree m = 4 in the left panel and of degree m = 10 in the right panel. We notice that
Pv,m (u) has high values for v = 0 or v = m, when u is near 0 or 1, respectively. We guess
this to have an impact on the tail-behavior of the pair-copula density estimate.

Let Pm (u) =
(
P0,m (u) , . . . , Pm,m (u)

)
be a set of standardized Bernstein polynomials.

We call Pm (u) a univariate Bernstein basis with basis functions P0,m (u) , . . . , Pm,m (u). We
define a bivariate tensor product of the Bernstein bases Pm (u1) ,Pm (u2) as

Pm (u1, u2) := Pm (u1) ⊗ Pm (u2)
=

{
P0,m (u1) P0,m (u2) , P1,m (u1) P0,m (u2) , . . . , Pm,m (u1) P0,m (u2) ,

P0,m (u1) P1,m (u2) , . . . , Pm,m (u1) Pm,m (u2)
}
.

Let xi = (xi1, . . . , xid) be a sample of independent and identically distributed random
variables Xi = (Xi1, . . . , Xid) , i = 1, . . . , n. Let D ⊂ {1, . . . , d} be a subset of indices, j, k ∈
{1, . . . , d} \ D, j , k and xD := (xl : l ∈ D). With the notation

c jk;D := c jk;D

(
F

(
x j|xD

)
, F (xk|xD)

)
,

u j|D := F
(
x j|xD

)
,



CHAPTER 3. NONPARAMETRIC PAIR-COPULA CONSTRUCTIONS 31

the copula density estimator is defined by means of the tensor product as

ĉ jk;D

(
u j|D, uk|D;α( jk|D)

)
:=

[
Pm

(
u j|D

)
⊗ Pm

(
uk|D

)]
α( jk|D)

=

m∑
v1=0

m∑
v2=0

Pv1,m

(
u j|D

)
Pv2,m

(
uk|D

)
α( jk|D)

v1,v2
.

(3.8)

The coefficient vector α( jk|D) :=
(
α

( jk|D)
0,0 , . . . , α

( jk|D)
0,m , . . . , α

( jk|D)
m,m

)
∈ R(m+1)2

is required to
satisfy the constraints

α( jk|D)
v1,v2

≥ 0 for all v1, v2 = 0, 1, . . . ,m and
m∑

v1=0

m∑
v2=0

α( jk|D)
v1,v2

= 1
(3.9)

in order to ensure that the resulting estimate is indeed a density. Furthermore, we need
the resulting copula density estimate to have uniform margins. We reach this by further
restrictions on the coefficient vector, which we derive subsequently.

The bivariate copula density estimator ĉ jk;D has uniform marginal densities

ĉ j;D

(
u j|D

)
=

∫
ĉ jk;D

(
u j|D, uk|D

)
duk|D and ĉk;D

(
uk|D

)
=

∫
ĉ jk;D

(
u j|D, uk|D

)
du j|D if ĉ j;D ≡ 1 and

ĉk;D ≡ 1.

ĉ j;D

(
u j|D

)
=

1∫
0

ĉ jk;D

(
u j|D, uk|D

)
duk|D

=

1∫
0

m∑
v1=0

m∑
v2=0

Pv1,m

(
u j|D

)
Pv2,m

(
uk|D

)
α( jk|D)

v1,v2
duk|D

=

m∑
v1=0

m∑
v2=0

Pv1,m

(
u j|D

)
α( jk|D)

v1,v2

1∫
0

Pv2,m
(
uk|D

)
duk|D︸                      ︷︷                      ︸

=1, since density

=

m∑
v1=0

(m + 1) P̃v1,m

(
u j|D

) m∑
v2=0

α( jk|D)
v1,v2

.

Assume that
∑m

v2=0 α
( jk|D)
v1,v2 = 1

m+1 holds for all v1 = 0, 1, . . . ,m and use the property, that
the sum of Bernstein polynomials is a partition of one, i. e.

∑m
v=0 P̃v,m (u) = 1 (this follows

directly from the binomial theorem). Then,

ĉ j;D

(
u j|D

)
=

m∑
v1=0

(m + 1) P̃v1,m

(
u j|D

) m∑
v2=0

α( jk|D)
v1,v2︸     ︷︷     ︸

≡ 1
m+1 by ass.

=

m∑
v1=0

P̃v1,m

(
u j|D

)
= 1.
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Hence, we impose the following constraint on the coefficients:

α( jk|D)
v1,·

:=
m∑

v2=0

α( jk|D)
v1,v2

=
1

m + 1
for all v1 = 0, 1, . . . ,m. (3.10)

The conditional distribution function estimator is obtained by integration of the esti-
mated copula density as

F̂ j|D

(
x j|xD

)
=

∂Ĉ jr|D−r

(
F̂

(
x j|xD−r

)
, F̂

(
xr|xD−r

))
∂F̂

(
xr|xD−r

)
=

u j|D−r∫
0

ĉ jr;D−r

(
t, ur|D−r

)
dt

=

m∑
v1=0

m∑
v2=0

Pv1,m

(
u j|D−r

)
Pv2,m

(
ur|D−r

)
α( jr|D−r)

v1,v2

=: û j|D.

The function Pv1,m denotes the integrated standardized Bernstein polynomial, which co-
incides with the cumulative distribution function of the Beta distribution.

The coefficient vector α( jk|D) is obtained by maximum likelihood estimation with side
constraints. Assume that ûi j|D = F̂

(
xi j|xD

)
, ûik|D = F̂ (xik|xD) , i = 1, . . . , n are already esti-

mated. The log-likelihood contribution of the fitted pair-copula density ĉ jk;D is

l jk;D

(
α( jk|D)

)
=

n∑
i=1

ln
{[

Pm

(
ûi j|D

)
⊗ Pm

(
ûik|D

)]
α( jk|D)

}
. (3.11)

Maximization of expression (3.11) with respect to α( jk|D) under the side constraints
(3.9) and (3.10) yields a proper estimate for α( jk|D). Schellhase [2012] states that this is
a quadratic programming problem with linear side constraints and hence, he implements
the maximization routine in his R package penDvine using the R package quadprog. The
R package penDvine is designed for penalized pair-copula estimation, which we discuss in
the next section. However, for suitable parameter settings one can also perform unpenal-
ized estimation. We explain this subsequently in more detail.

It is worth to emphasize that, in contrast to the kernel density estimation approach, in
the estimation with Bernstein polynomials, the coefficients are required to fulfill certain
constraints in order to guarantee uniform margins. For kernel density estimation approach
it is not guaranteed that the margins indeed coincide with their theoretical distribution.
In our case in Section 3.2 it is the normal distribution since we perform the estimation
on the normal quantiles of uniform. We illustrate this in Figure 3.2 by means of fitted
pair-copula densities from a three dimension C-Vine with pairs 12, 13, 23;1. We fitted the
densities to the uranium data from the empirical study.
In the empirical study we see that the kernel density approach is more flexible than the
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Bernstein polynomial approach. We claim that, among others, this is also up to the coef-
ficient constraints.

In the following section, we introduce a penalization to enhance the smoothness of the
resulting copula density estimate.

3.4 Estimation by penalized Bernstein Polynomials

The estimation approach by Bernstein polynomials, as described in Section 3.3, leads to a
density estimator with (m + 1)2 coefficients, where m ∈ N is the prespecified order of Bern-
stein polynomials to be used. The result may be wiggly or not smooth enough. We extend
that approach to overcome this undesired fact, following the presentation in Schellhase
[2012].

A penalization is performed in order to support a smooth fit of copula density estimate.
The penalty term is added to the log-likelihood equation in (3.11), such that the log-
likelihood is of the form

l jk;D

(
α( jk|D), λ( jk|D)

)
= l jk;D

(
α( jk|D)

)
−

1
2
λ( jk|D)

(
α( jk|D)

)t
Qα( jk|D), (3.12)

where λ( jk|D) ≥ 0 is called penalty parameter and Q is a penalty matrix. Assuming Q to

be positive definite implies that −1
2λ

( jk|D)
(
α( jk|D)

)t
Qα( jk|D) ≤ 0, i. e. it is in fact a penalty

on the likelihood. The penalty parameter controls the amount of smoothing, the penalty
matrix is chosen according to the penalty method. There are two versions of the penalty
matrix for Bernstein polynomials. Either penalization on coefficients or penalization on
the curvature of the pair-copula density.

The idea behind the penalization on the curvature is that a smooth pair-copula density
shall have small integrated squared second order derivatives. Recall Equation (3.8), where
we defined the Bernstein pair-copula density estimator (now with unconditional notation
for convenience) as

ĉ jk

(
u j, uk;α( jk)

)
:=

[
Pm

(
u j

)
⊗ Pm (uk)

]
α( jk)

=

m∑
v1=0

m∑
v2=0

Pv1,m

(
u j

)
Pv2,m (uk)α( jk)

v1,v2
.

The second order derivative of the standardized Bernstein polynomial is, see Doha et al.
[2011],

∂2Pv,m (u)
∂u2 =

(m + 1)!
(m − 2)!

min(v,2)∑
l=max(0,v+2−m)

(−1)l+2
(
2
l

)
Pv−l,m−2 (u) , v = 0, 1, . . . ,m. (3.13)



CHAPTER 3. NONPARAMETRIC PAIR-COPULA CONSTRUCTIONS 34

Figure 3.2: Estimated pair-copula density margins from a C-Vine with pairs 12, 13, 23;1
fitted to the uranium data. The green function is the theoretical probability density func-
tion, the black dotted function is the fitted marginal density function. On the left hand
side, the estimation is done by kernel density estimation, on the right hand side, the
estimation is done by Bernstein polynomials.
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Example 2 (Second Order Derivatives of standardized Bernstein polynomials)

We illustrate Equation (3.13) for m = 4 and v = 0, 1, 2, 3, 4.

∂2P0,4 (u)
∂u2 =

5!
2!

0∑
l=0

(−1)l+2
(
2
l

)
P0−l,2 (u) =

5!
2!

(
P0,2 (u)

)
∂2P1,4 (u)
∂u2 =

5!
2!

1∑
l=0

(−1)l+2
(
2
l

)
P1−l,2 (u) =

5!
2!

(
P1,2 (u) − 2P0,2 (u)

)
∂2P2,4 (u)
∂u2 =

5!
2!

2∑
l=0

(−1)l+2
(
2
l

)
P2−l,2 (u) =

5!
2!

(
P2,2 (u) − 2P1,2 (u) + P0,2 (u)

)
∂2P3,4 (u)
∂u2 =

5!
2!

2∑
l=1

(−1)l+2
(
2
l

)
P3−l,2 (u) =

5!
2!

(
−2P2,2 (u) + P1,2 (u)

)
∂2P4,4 (u)
∂u2 =

5!
2!

2∑
l=2

(−1)l+2
(
2
l

)
P4−l,2 (u) =

5!
2!

(
P2,2 (u)

)
In matrix vector notation, we get

∂2

∂u2 P4 (u) =

(
∂2P0,4 (u)
∂u2 ,

∂2P1,4 (u)
∂u2 ,

∂2P2,4 (u)
∂u2 ,

∂2P3,4 (u)
∂u2 ,

∂2P4,4 (u)
∂u2

)

=
5!
2!

(
P0,2 (u) , P1,2 (u) , P2,2 (u)

)  1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1

 .
In general, let

w :=
(m + 1)!
(m − 2)!

and B =


1 −2 1 0 · · · 0

0 1 −2 1 . . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · 0 1 −2 1

 ∈ R(m−2)×(m+1).

Then, the vector of second order derivatives in Equation (3.13) can be expressed as

∂2

∂u2 Pm (u) = w (Pm−2 (u) · B) . (3.14)

Now we can construct the penalty matrix. The integrated squared second order deriva-
tives of the pair-copula density estimator from Equation (3.8) is∫ ∫ ∂2ĉ jk

(
u j, uk

)
∂u2

j


2

+

∂2ĉ jk

(
u j, uk

)
∂u2

k


2

du j duk.

Schellhase [2012] states that this can be expressed as∫ ∫ ∂2ĉ jk

(
u j, uk

)
∂u2

j


2

+

∂2ĉ jk

(
u j, uk

)
∂u2

k


2

du j duk =
(
α( jk)

)t (
Qu j + Quk

)
α( jk)
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for some matrices Qu j ,Quk . For details we refer to Schellhase [2012]. Set

Q := Qu j + Quk

as the penalty matrix for penalization on the curvature of ĉ jk. This can be used in the
penalized likelihood equation (3.12).

Alternatively, one can penalize the r-th order differences of the coefficients. This is
commonly used in spline smoothing, see Eilers and Marx [1996]. The penalty matrix is of
the form

Q := (1m+1 ⊗ L)t (L ⊗ 1m+1) ,

where

L =


1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

. . .
...

0 0 0 1 −1

 ∈ R(m−1)×(m) for first order differences, or

L =


1 −2 1 0 · · · 0

0 1 −2 1 . . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · 0 1 −2 1

 ∈ R(m−2)×(m) for second order differences.

Regarding the penalty parameter λ( jk|D), Schellhase [2012] applies spline smoothing
arguments and Bayesian arguments to view the coefficient vector α( jk|D) as related to the
penalization as follows

α( jk|D)
∼ N

(
0,

1
λ( jk|D) Q←

)
, (3.15)

where Q← is the generalized inverse of the penalty matrix. From this point of view, the
coefficient vector is a priori normally distributed and the penalty parameter is involved
in the distribution parameter. Schellhase [2012] states that the prior in (3.15) is degener-
ated, so he works with a singular value decomposition to deduce a log-likelihood expression
l jk;D

(
λ( jk|D), α̂( jk|D)

)
. Here, α̂( jk|D) denotes the maximum likelihood estimate from the penal-

ized likelihood in Equation (3.12) with a prespecified λ( jk|D). The likelihood is maximized
iteratively. The maximization assumes a starting value λ( jk|D)

0 and calculates α̂( jk|D). This

coefficient vector is plugged into l jk;D

(
λ( jk|D), α̂( jk|D)

)
, such that λ( jk|D) can be estimated.

With this λ( jk|D), we can calculate the next maximum likelihood estimate of the coefficient
vector, and so on. The estimation stops when certain tolerance criteria are satisfied or
when the maximum number of iterations is reached. For details, see source code of R

package penDvine, Version xy, especially functions my.loop and new.lambda.

In our empirical study, we applied both, penalized and unpenalized Bernstein esti-
mation, for pair-copula estimation. We implemented these analyses by means of the R
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package penDvine. As already mentioned, the package is designed for the penalized ap-
proach. We performed the unpenalized estimation by fixing the penalty parameter λ at
zero. However, this does not work with Bernstein functions of arbitrary degree. We had
to keep the degree of the Bernstein polynomials under five, otherwise numerical problems
occured.



Chapter 4

Empirical Study

In this section, we aim at studying the behavior of nonparametric C-Vines on the basis
of a three-dimensional data set. We focus on the example in three dimensions as we want
to concentrate on the nonparametric estimation methods and not on tree selection. For
model comparison we use cross-validated likelihoods as described in Section 2.3.

4.1 Exploratory Data Analysis

The Uranium Exploration Data of Cook and Johnson [1986] is available in the R pack-
age copula (Hofert et al. [2012]). It consists of log concentration measurements of seven
chemicals in 655 water samples collected near Grand Junction, Colorado. The chemicals
are Uranium (U), Lithium (Li), Cobalt (Co), Potassium (K), Cesium (Cs), Scandium (Sc)
and Titanium (Ti). For simplicity, we focus on C-Vines with the variables Co, Ti and Sc,
and relabel them with numbers 1, 2 and 3. Acar et al. [2012] already performed parametric
investigations on the same data subset.

By definition, copulas have uniformly distributed margins on [0, 1]. In order to fit Vine
copula models to the uranium data, the first step is to transform the data, such that each
margin is uniformly distributed on [0, 1]. Traditionally, the marginal data is transformed
by an estimated cumulative distribution function. We decide to estimate the univariate
cumulative distribution function by means of kernel density estimation. Alternatively,
transformation to relative ranks is possible, too.

For n ∈ N observations x1 j, . . . , xn j of the continuous univariate random variable X j,
we estimate the corresponding cumulative distribution function F̂ j (x) by kernel density
estimation with Epanechnikov kernels and bandwidth from least squares cross-validation.
Then, we calculate the copula data as ui j = F̂ j

(
xi j

)
for i = 1, . . . , n. We apply this proce-

dure to all random variables X j, j = 1, 2, 3. For the estimation of F̂ j (x) , j = 1, 2, 3 we use
the R function npudist from the np package. We call the resulting data copula data or u
data.

We apply these marginal transformations to the uranium data. In Figure 4.1, we depict

38
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Figure 4.1: Scatter plots, histograms and empirical contours of original uranium data and
copula data.

(Co, Ti) (Ti, Sc) (Co, Sc)
τn (·, ·) 0.365 0.436 0.535
ρn (·, ·) 0.517 0.600 0.718

Table 4.1: Empirical Kendall’s tau and Spearman’s rho for three-dimensional uranium
copula data.

the original uranium data as well as the copula data, which is approximately uniformly
distributed on [0, 1], as desired. Empirical Kendall’s τ and Spearman’s ρ in Table 4.1
indicate that the variable pair (Co, Sc) has the highest dependence, followed by (Ti, Sc).
The tree selection algorithm by Dissmann et al. [2013] applied to this C-Vine with three
variables would suggest to choose Sc as root.

4.2 Nonparametric C-Vine Estimation

Notation First Tree Pair-Copula Densities
PCC 1 2-1-3 c12, c13, c23;1

PCC 2 1-2-3 c12, c23, c13;2

PCC 3 1-3-2 c13, c23, c12;3

Table 4.2: Overview of considered pair-copula constructions. (1=Co, 2=Ti, 3=Sc).
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We model the dependency present in the uranium data by C-Vines with kernel density
estimation performed on standard normal quantiles of the copula data (cf. Section 3.2).
We involve three different bandwidth selection methods. Furthermore, we fit C-Vines with
Bernstein polynomials, both with and without penalization (cf. Sections 3.3 and 3.4), and
compare the contours to the contours of the kernel estimation approaches. In Table 4.2
we define the possible C-Vine decompositions and label them for conventient notation.
In three dimensions, there is a total of three possible variable orderings. In Table 4.3 we
specify the pair-copula density estimators used in the model fittings.

The fitted pair-copula density contours are displayed in Figures 4.2, 4.3 and 4.4. Each
model, i. e. for each decomposition from Table 4.2 and each estimator from Table 4.3, is
fitted twice. The first contour estimate is evaluated on a 60 by 60 grid, the second con-
tour estimate is evaluated on a 100 by 100 grid. We can say that there is no remarkable
influence of the grid size on the contours’ appearances. All methods lead to similar re-
sults for the two runs of contour fitting. In Table 4.4 we report the estimated bandwidths
and in Table 4.5 the optimized penalty parameters. In foregoing investigations we fitted
maximum likelihood bandwidths in combination with Epanechnikov kernels. This indeed
leads to inconsistent results as already remarked in Section 2.1.2. Rerunning the model
estimation with the same settings led, sometimes, to substantially different bandwidths
and therefore to substantially different contours. We then changed the kernel to the in-
finitely supported Gaussian kernel and obtained more robust estimates.
It is striking that kde.ls always returns the most wiggled pair-copula density contours.
kde.rule and kde.ml perform quite similar. The appearance of the Bernstein estimates on
the first (unconditioned) level reminds of a Frank copula. We guess this is a consequence
of the coefficient constraints. Recalling the shape of standardized Bernstein polynomials
from Figure 3.1, we see that Pv,m (u) has high values for v = 0 or v = m, when u is near 0
or 1. Consequently, if the relevant coefficient estimates are not small enough, these high
values have impact on the density estimate ĉ (u1, u2), especially near (0, 0) and (1, 1). Re-
lated to the graph, this is the region in the lower left corner and the upper right corner.
With Bernstein copulas we have three setups. bern.unpen is with polynomials of degree
four and no penalization, bern.pen f ix is with polynomials of degree ten and a small fixed
penalization, bern.pen is with polynomials of degree ten and a optimal estimated penaliza-
tion. In foregoing investigations, we compared bern.pen and bern.unpen for the same degree
of Bernstein polynomials, namely m = 4. The result was, as expected, that bern.unpen
fits slightly more flexible, bern.pen slightly smoother. But this was only remarkable for
the contours of unconditioned pair-copula densities c jk and not for the contours of the
pair-copula density based on conditional values c jk;D.
We changed the setting as defined in Table 4.3 and work with bern.unpen with m = 4
and bern.pen f ix m = 10. On the one hand, bern.unpen can be interpreted as more flexible
than bern.pen f ix and bern.pen due the absence of penalization. On the other hand, the
advantage of bern.pen f ix and bern.pen over bern.unpen is the richnes of the Bernstein
basis Pm (u) =

{
P0,m (u) , . . . , Pm,m (u)

}
. Note that for a larger m, we automatically work with

more Bernstein polynomials of higher degrees. As a result, in our setting, bern.pen fits
more flexible than bern.unpen.
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4.3 Comparison to C-Vine with Parametric Pair-Copulas

We focus on the C-Vine PCC 2, i. e. with pairs 12, 23, 13;2 and compare the kernel esti-
mated vine with least-squares bandwidths and the Bernstein vine with fixed penalization
to parametric vines.

Ĉ12 Ĉ23 Ĉ13;2

copula family t Frank t
parameter 0.64 3.87 0.63

degrees of freedom 5.89 5.98

Table 4.6: Model specification of the fitted parametric C-Vine model PCC 2.

kde.ls bern.pen.fix par kde.rule
log-likelihood 435.74 362.47 428.75 386.53

Table 4.7: Log-likelihoods of the nonparametric and parametric C-Vine models PCC 2.

We fit a parametric C-Vine using the R function CDVineCopSelect from package
CDVine. We allow the following copula families: Gaussian, Student t, Clayton and its
rotations, Gumbel and its rotations, Frank, Joe and its rotations. The optimal copula
family is selected to be optimal with respect to AIC. The fitted parametric C-Vine speci-
fication is reported in Table 4.6. The fitted contours are given in Figure 4.5. We see that
there is some slight asymmetry in the nonparametric contours which cannot be captured
with parametric copula density contours. However, the parametric model log-likelihood is
competetive to the nonparametric approaches, see Table 4.7.

4.4 Cross-Validation

We compare the fitted models by means of cross-validated log-likelihoods, see Section 2.3.
To this end, we randomly choose a subset of the uranium copula data as test data, the
rest of the data serves as training data. We fix the cardinality of the test data at 20 %.
Then we fit our models to the training data and evaluate the log-likelihood of the fitted
models on the test data. This gives us information about the out-of-sample predictive
performance of the models. We do this T = 50 times for each model and compare the
respective means and medians (because of outliers) of the obtained test log-likelihoods
for each model. We interprete the model with the highest cross-validated log-likelihood as
the model with highest prediction quality.

The total number of observations of uranium copula data is n = 655. Let N be the full
data, i. e. n observations of dimension d = 3. We assume a test data size of 20 %, that is
ntest = 0.2 · n = 131 and ntrain = 0.8 · n = 524. In 50 runs t = 1, . . . , 50, we randomly choose
the test data N test,t ⊂ N and build the training data N train,t = N \N test,t. On N train,t we fit 21



CHAPTER 4. EMPIRICAL STUDY 47

Figure 4.5: Contours of estimated pair-copula densities in a C-Vine with pairs 12, 23, 13;2
(1=Co, 2=Ti, 3=Sc). We compare nonparametric and parametric estimation techniques.



CHAPTER 4. EMPIRICAL STUDY 48

C-Vine models: for each of the three C-Vine decompositions PCC 1, PCC 2, PCC 3 (see
Table 4.2) we apply six nonparametric and one parametric estimation method (see Table
4.3). On N test,t we evaluate the log-likelihood of the copula density for each PCC and each
estimation method separately, that is

Ltest,t
M,PCCi =

∑
û∈Ntest,t

ln cM
PCCi

(
û; Θ̂

train
)
,

where M ∈ {kde.ls, kde.ml, kde.rule, bern.unpen, bern.pen f ix, bern.pen} and i = 1, 2, 3. Fur-
thermore,

Θ̂
train

:=
(
ĥ1, ĥ2, û ∈ N train,t

)
for M ∈ {kde.ls, kde.ml, kde.rule} and

Θ̂
train

:= α̂ ∈ [0, 1](m+1)2
for M ∈ {bern.unpen, bern.pen f ix, bern.pen} .

In Figure 4.6, we see in each of the three rows for PCC 1, 2 and 3 the distribution of
the test log-likelihoods per estimation method. We see for kde.ls some extreme outliers.
However, even when excluding those test runs t with Ltest,t

kde.ls,PCCi > 1000, kde.ls still gives
the highest mean and median, but also the highest variation of the test log-likelihoods.
The Bernstein approaches behave comparably among themselves. In PCC 1 and PCC
3, kde.ml and kde.rule are quite similar, but for PCC 2, kde.ml performs better. In the
Figures 4.7 and 4.8, we display the empirical densities of the test log-likelihoods. In Figure
4.7 we compare the densities per PCC, whereas in Figure 4.8 we compare the densities
per estimation method. Figure 4.7 yields a similar interpretation as above for Figure 4.6.
From Figure 4.8 we further get the information that for kde.ls, kde.ml and kde.rule, PCC
2 is preferred, whereas bern.unpen, bern.pen f ix and bern.pen prefer PCC 3.
In Table 4.8 we summarize test log-likelihoods for each of the 21 models. The cross-
validated log-likelihood is usually defined as the mean of Ltest,t

M , t = 1, . . . , 50 for a model
M. We further show the respective median, because it is more robust than the mean and
we experience some extreme outliers with kde.ls. In Table 4.8, the standard deviation
is also effected by the outliers with kde.ls, so we also show the robust estimate of the
standard deviation as proposed by Silverman [1986] as σ̂ = min

(
s, r

1.349

)
(see Equation

(2.13)), where s denotes the sample standard deviation and r denotes the interquartile
range.
The parametric model performs at least as good as the Bernstein approaches, in PCC 1
and 2 even better. But compared to the kernel density approaches, the parametric model
shows significantly smaller test log-likelihoods.

All in all we can say that for all C-Vine decompositions, the kernel estimation meth-
ods are preferred over the Bernstein copula methods with respect to cross-validated log-
likelihoods. On the other hand, the Bernstein copula methods have the advantage to
return smooth denisities and the estimation procedure is computationally less expensive
than the kernel estimation methods. But the Bernstein copula methods perform even
suboptimal compared the parametric approach when considering the cross-validated log-
likelihoods. We suggest the advantage of estimation with Bernstein polynomials compared
to parametric estimation is that asymmetric dependencies are captured better, but the
disadvantage is the behavior in the tails.
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Figure 4.6: Boxplots of cross-validated log-likelihoods for nonparametric fitted C-Vines.
For each PCC and each estimation method we fitted parameters for 50 randomly drawn
subsamples and calculated the log-likelihoods on the remaining test data. On the left hand
side, we see some extreme outliers for the kernel estimation with least-squares bandwidths.
The middle column plots are a cut of the left column plots, where we display values of
maximal 300. For the right hand column boxplots we excluded those test runs, where
the least-squares methods resulted in test log-likelihoods higher than 1000. The red lines
show the respective means of the 50 log-likelihoods. (ls=kde.ls, ml=kde.ml, rule=kde.rule,
unpen=bern.unpen, pfix=bern.penfix, pen=bern.pen).
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Figure 4.7: Density plots of cross-validated log-likelihoods. For each C-Vine order and
each estimation method we fitted parameters for 50 randomly drawn subsamples and
calculated the log-likelihoods on the remaining test data. We excluded those test runs,
where the least-squares methods resulted in test log-likelihoods higher than 1000. The
dotted lines show the respective medians of the 50 log-likelihoods.

Figure 4.8: Density plots of cross-validated log-likelihoods per estimation method. For
kde.ls, we excluded those test runs, where the resulting test log-likelihoods are higher
than 1000. The dotted lines show the respective medians of the 50 log-likelihoods.
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Minimum Mean Median Maximum Std. Dev. Robust Dev.

kde.ls 114.19 1034.69 145.15 11777.49 2814.75 22.39
kde.ml 90.55 117.05 115.88 151.29 14.88 14.88

kde.rule 94.97 118.49 117.84 149.24 14.35 14.35
PCC 1 bern.unpen 36.65 69.53 70.62 93.93 13.87 13.87

bern.penfix 40.18 74.23 74.84 104.05 15.48 15.40
bern.pen 40.17 72.40 73.65 99.10 13.96 13.00

par 46.72 80.05 79.25 111.55 14.21 12.22

kde.ls 128.05 1519.26 175.52 9705.92 2650.75 75.96
kde.ml 100.79 131.35 129.54 157.90 12.98 11.56

kde.rule 91.57 116.40 116.13 141.14 11.58 9.41
PCC 2 bern.unpen 42.17 73.84 73.64 98.50 13.07 12.72

bern.penfix 37.82 71.87 70.22 102.98 14.94 14.94
bern.pen 36.40 70.91 71.24 97.70 13.68 13.68

par 53.69 81.11 81.05 105.21 12.80 12.47

kde.ls 111.41 757.56 150.60 9766.05 2153.85 20.59
kde.ml 92.62 120.18 119.02 164.86 14.06 13.64

kde.rule 93.40 118.84 117.18 153.15 13.00 12.19
PCC 3 bern.unpen 48.77 75.74 76.23 99.39 11.20 9.65

bern.penfix 44.17 74.77 75.85 103.59 13.12 9.73
bern.pen 47.03 74.63 75.06 99.29 11.74 8.47

par 42.48 76.03 75.66 104.72 14.52 14.52

Table 4.8: Summary of cross-validated log-likelihoods of the nonparametric and parametric
C-Vine models.



Chapter 5

Simulation Study

We define three scenarios of a three-dimensional C-Vine copula and simulate for each sce-
nario 1000 observations. The settings for scenario 1 and 2 are taken from Mai and Scherer
[2012] with some modified parameter. The third scenario is simulated from Tawn copulas.
The scenarios are displayed in Table 5.2. We adopt the notation from Tables 4.2 and 4.3.

The C-Vine structure, from which we simulate, is PCC 2, i. e. it has the pairs 12, 23,
13;2. Then we will fit C-Vines with structure PCC 1, i. e. with pairs 12, 13, 23;1. The
intention is to compare the fitted pair-copula density contours ĉkde.ls, ĉbern.pen f ix, ĉpar and
ĉkde.rule to the simulated pair-copula density ĉsim.

The Tawn copula (see Tawn [1988]) listed in Table 5.2 is an asymmetric extreme value
copula. The Gumbel copula can be obtained from the Tawn copula with special param-
eter selection. The Tawn copula is used in the simulation with the following dependence
function.

A (t) = 1 − ψ2 + (ψ2 − ψ1) t +
[
ψθ1tθ + ψθ2 (1 − t)θ

]1/θ

with parameter vector (θ, ψ1, ψ2) where ψ1 ≥ 0, ψ2 ≤ 1 and θ ≥ 1.

We simulate PCC 2 for three scenarios according to Table 5.2 and fit PCC 1 with non-
parametric and parametric estimation techniques. We allow the following copula families:
Gaussian, Student t, Clayton and its rotations, Gumbel and its rotations, Frank, Joe and
its rotations. The optimal copula family is selected to be optimal with respect to AIC. We
look at the pair-copula densities c12 and c13, see Figure 5.1. We are especially interested in
c13 as it shows asymmetric contours and we are interested in seeing how the known copula
density c12 (see Table 5.2) is estimated by the nonparametric methods. For scenario 1,
2 and 3 we compare the the true pair-copula density contours to the nonparametrically
and parametrically estimated contours in Figure 5.2, 5.3 and 5.4. Since the true c13 is
unknown, as it is not explicitly given in the simulation of PCC 2, we have to estimate

PCC First Tree Pair-Copula Densities Copula Specification
simulated PCC 2 1-2-3 c12, c23, c13;2 cf. Table 5.2
fitted PCC 1 2-1-3 c12, c13, c23;1 kde.ls, bern.penfix, par, kde.rule

Table 5.1: Overview of simulated and fitted pair-copula constructions.

52
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C12 par τ C23 par τ C13;2 par τ

1 G 5.00 0.80 C 0.70 0.26 C 0.70 0.26
2 t (0.80, 2.10) 0.59 G 1.75 0.43 t (-0.95, 2.50) -0.80
3 T (2.00, 1.00, 0.50) 0.31 T (2.00, 1.00, 0.50) 0.31 T (2.00, 1.00, 0.50) 0.31

Table 5.2: Simulation scenario settings. t: Student-t C: Clayton G: Gumbel, T: Tawn.

Figure 5.1: True contours of the pair-copula density c12 and estimated contours of the
pair-copula density c13. The estimation is performed by kernel density estimation with
Gaussian kernel functions and bandwidths by rule of thumb.
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the true contour. We decide to apply kernel density estimation with Gaussian kernels and
rule of thumb bandwidths.

For scenario 1, the true contours are captured best by kde.ls and worst by bern.pen f ix.
bern.pen f ix does not describe the tails correctly throughout all scenarios. However, it
captures the asymmetry. The contrary is true for the parametric estimation. It captures
the tail behavior, but no asymmetric behavior. kde.ls is, as usual, quite wiggly, especially
in the Tawn copula scenario 3.



CHAPTER 5. SIMULATION STUDY 55

Figure 5.2: Contours of estimated pair-copula densities in PCC 1. In the second to fourth
row of the Figure, different estimation methods are applied. We can compare them to the
true densities in the first row.
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Figure 5.3: Contours of estimated pair-copula densities in PCC 1 for Scenario 2. In the
second to fourth row of the Figure, different estimation methods are applied. We can
compare them to the true densities in the first row.
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Figure 5.4: Contours of estimated pair-copula densities in PCC 1 for Scenario 3. In the
second to fourth row of the Figure, different estimation methods are applied. We can
compare them to the true densities in the first row.



Chapter 6

Conclusion

In this thesis, we intended to review nonparametric estimation methods of pair-copula
constructions. We focused on the method of kernel density estimation with fixed band-
widths and Bernstein estimation with and without penalization.

For the bandwidth selection in the kernel density estimation, we presented least-
squares cross-validated bandwidths, maximum likelihood cross-validated bandwidths and
normal reference rule of thumb bandwidths. In an empirical study, we fitted three-dimensional
C-Vine copulas to the uranium water samples data, restricted to three chemicals. We ex-
perienced that the kernel estimation with least-squares cross-validated bandwidths tends
to undersmooth the density. In general, the kernel estimated densities are less smooth
compared to the Bernstein estimated densities. With Bernstein estimation, there is a lack
of flexibility in the tails. However, the nonparametric methods express a present asym-
metric dependence in the data better than parametric models. This overall picture was
validated in a simulation study with three scenarios.
We compared the fitted models by means of likelihood cross-validation. From this point
of view, the kernel estimation performed far better than the parametric estimation, and
this was still slightly better than the Bernstein estimation.

Based on the results of this thesis, investigations could be extended regarding the
smoothness of the kernel density estimation approach with least-squares cross-validated
bandwidths, maybe by imposing constraints or introducing a kind of penalization. The
usage of Bernstein estimation could be improved by an R implementation for vine copula
estimation with Bernstein polynomials of arbitrary degree without penalization. If the
Bernstein estimation becomes competitive, one could consider vine estimation with differ-
ently estimated building blocks, for example one pair-copula is estimated by kernel density
estimation, the next pair-copula is estimated by Bernstein polynomials and a further pair-
copula is estimated parametrically. General statistical concepts could be adopted to the
nonparametric copula estimation context, for example hypothesis testing and confidence
intervals. One could explore the model performances with respect to other criteria such
as AIC. Here, the number of model parameters plays a role next to the likelihood of the
model. Furthermore, data simulation from nonparametric vines could be of interest.
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