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Abstract

We suggest a modeling and simulation framework, which meets two practical require-
ments. First, it respects the uncertainty of imprecise models and related data. Second, it
follows users’ demand for an efficient computation of coarse-grained information like risk
levels instead of a slow evaluation of precise statements. The approach is designed to al-
low for easy integration of measurement data and to be scalable to large systems that arise
in technical applications.

As a mathematical basis we introduce a translation of distinct partial differential equa-
tions into objects which are discrete in time, space and state space. The translation is
achieved by state space discretization as in set oriented numerics and the use of the local-
ity concept from cellular automata theory. Depending on how it is performed in detail,
we can either use the resulting objects in the context of cellular automata theory to extract
information about the partial differential equations’ dynamics, or as a novel method for
density-based uncertainty propagation and Bayesian inference. We also provide a consis-
tency result. The methods are tested and validated in contaminant fate and fluid dynami-
cal problems from water grid applications.

Zusammenfassung

Wir schlagen einen Modellierungs- und Simulationsansatz vor, der zwei Anforderungen
aus der Praxis gerecht wird. Zum einen berücksichtigt er die Ungenauigkeit von Model-
len und die oftmals unsichere Datenlage. Zum anderen nimmt er Nutzerwünsche nach
effizienter Berechnung grobkörniger Informationen im Sinne von Risikoklassen anstelle
von präziser und dafür langsamer Evaluierung ernst. Mit dem Ansatz können Messdaten
leicht integriert werden. Außerdem ist er auf große Systeme skalierbar, wie sie in techni-
schen Anwendungen vorkommen.

Als mathematische Grundlage führen wir eine Übersetzung einer Klasse von partiellen
Differentialgleichungen in zeit-, orts- und zustandsdiskrete Objekte ein. In der Überset-
zung wird der Zustandsraum wie in der mengenorientierten Numerik diskretisiert und
das Lokalitätskonzept von zellulären Automaten ausgenutzt. Je nach Durchführung kön-
nen wir dann entweder im Rahmen der Theorie der zellulären Automaten die Dynamik
der partiellen Differentialgleichungen analysieren, oder die diskreten Objekte als neuar-
tige Methode zur dichtebasierten Propagation von Unsicherheiten und für Bayes’sche In-
ferenz einsetzen. Wir zeigen auch die Konsistenz der Übersetzung. Die Verfahren wer-
den an Wasserverschmutzungs- und Fluiddynamikproblemen in Wassernetzanwendung-
en getestet und validiert.
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1 Introduction

1.1 Background and Problem Statement

Modeling and simulation is essential for many technologies especially in industrial environ-
ments. Traditional applications include the design of technical products, where simulation
is often cheaper, safer and more flexible than real experiments. A digital or virtual twin of
a technical system can also be used for testing new components in a virtual environment
or for training of staff [136, 151]. Recent technological advances in sensor and informa-
tion technology enable the collection of large amounts of data about features of technical
systems. The integration of this additional information and the according adaptation of
modeling and simulation technology leads to further applications like monitoring, deci-
sion support systems and the control of technical systems. For example, the evaluation of
different response scenarios to incidents or virtual fault diagnosis become possible, which
is especially important when systems are not easily accessible. The processing and anal-
ysis of data with respect to models of technical systems is also at the heart of emerging
technologies like the Internet of Things [48, 117, 152] as a control network of sensors and
actuators in physical objects or Big Data [25, 116] with a focus on huge data sets. In the
context of production processes it is the basis for future Smart Factories [24, 154].

In all of these fields it is of vital importance to tailor the modeling and simulation tech-
niques to the specific requirements. We focus on two common requirements: on the one
hand, some model parameters or features of reality are often not known exactly but given
as probability distributions instead. The resulting uncertainty has to be considered for three
reasons. First, in non-linear systems time-evolution and taking the mean do not commute,
i.e., the mean of the output distribution may differ from the deterministic evolution with
the mean of the input distributions by orders of magnitude. So results from a determin-
istic simulation may not have any significance. Second, it is important to determine error
bounds for computational results, and third, it is often an important issue to quantify
failure probabilities of technical systems. However, uncertainty quantification is compu-
tationally very expensive and therefore impractical for large systems.

On the other hand, one is often not interested in the precise value of some system proper-
ties, but rather in more coarse-grained risk levels or threshold values. Users often only need
such qualitative instead of exact quantitative statements. In principle these statements
can be extracted from precise calculations, but then there is a huge numerical overhead. A
faster alternative is to operate directly on discrete states that correspond to risk levels. Also
from a conceptual perspective there are arguments for state-discrete computations. One
can argue that computers are inherently discrete and can only approximate continuous
values anyway. Furthermore, often there are difficulties with existence and uniqueness of
solutions to continuous-valued models, a problem that does not appear in discrete setups.

The thesis aims at combining these minimal user requirements with the uncertainty
present in the models. By calculating directly on a discrete state space with a risk level
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1 Introduction

interpretation we propose an efficient modeling and simulation framework, which is scal-
able to large systems and which also allows for convenient integration of measurement data.
The theoretical foundations as well as the possibilities in practice are considered.

As an exemplary practical problem we are interested in the industrial application of
water grid monitoring, in particular in contamination of drinking or process water grids. A
special interest lies on large systems like municipal grids with accidental or intentional
contamination for example by construction sites or terroristic threats. On the one hand
contaminant source concentrations and locations or reaction schemes might not be known
with certainty [40, 177, 187], and on the other hand consumers are often only interested in
health risk level statements rather than in precise contaminant concentrations. Also here
the interplay with sensor measurements plays a crucial role [39, 167]. The important field
of water quality has been recognized as part of the UN Millenium Development Goals
[169] and as one of the Grand Challenges for Engineering by the US National Academy
of Sciences [171]. Especially the idea of adding computational intelligence to water grid
operation has received a lot of interest lately e.g. from the US Environmental Protection
Agency [149, 150, 170] and from industry [178].

1.2 State of the Art

In the following we review state of the art methods that can be applied to the challenges
outlined above. They can be assigned to three different research fields: uncertainty prop-
agation, state-discrete modeling and inverse problems for the integration of measurement
data.

1.2.1 Uncertainty Propagation

The numerical treatment of differential equation dynamics that is subject to uncertain data
has attracted a lot of interest lately. The goal is to determine stochastic output informa-
tion like probability distributions or moments of random variables. We can characterize
random influences on a system by the time-correlation of the stochastic parameters. A
stochastic process like white noise will influence the system, if there are no or only small
time correlations. If, on the contrary, the time-correlation is very high, the uncertainty
will reflect the lack of knowledge about static system properties like material constants or
reaction parameters.

A number of prominent numerical approaches are based on the Monte Carlo idea [89,
144], such as Latin hypercube sampling [114], the quasi Monte Carlo method [54], impor-
tance sampling [52] and the multilevel Monte Carlo method [8]. In these methods the prob-
ability distribution of interest is calculated from many deterministic simulations which are
conducted for different realizations of the stochastic influences. Other well known ap-
proaches are based on the Itô calculus [100, 140]. It is furthermore possible to use trans-
fer operators [45, 90, 106] or the Fokker-Planck equation [105] to describe the time evolution
of a system’s probability density directly. For stochastic influences with non-zero time-
correlation (generalized) polynomial chaos expansions have been introduced [62, 179]. The
idea is to expand a function of a random variable into a series of orthogonal polynomials
and to determine the coefficients either by stochastic collocation [53,186] or a Galerkin pro-
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1.2 State of the Art

jection [62,93]. One of several improvements is to decompose the random space [176], and
only recently numerical implementations of this improvement have been investigated [3].

The application of different methods for industrial purposes is discussed, for example,
in [1,2,5]. Although the approaches have proven to be successful for many tasks, they often
encounter certain efficiency restrictions in higher dimensions of the random space. Current
research tries to meet this challenge by developing new methods like the alternating least-
squares scheme [41] or by exploiting a structure of weakly interacting subsystems in the
large problem [161].

1.2.2 State-Discrete Modeling

In classical descriptions of the physical world sytem properties are assigned values from
a continuum of states. Many sophisticated models have been developed as systems of
(partial) differential and algebraic equations, where also time and space are continuous.
An example are advection-reaction-equations for contaminant dynamics in water pipes,
which are coupled by hydraulic and chemical algebraic conservation laws at junctions.
However, in most common schemes for numerical analysis time or space are discretized,
e.g. in Runge-Kutta or multistep methods [37] for ordinary differential equations and in
the method of lines [147], the finite difference [164], finite element [74] or finite volume
methods [81, 110] for partial differential equations (PDE).

On the contrary, there also exist many completely discrete models, in which especially
the state space is finite and discrete. Cellular Automata (CA) as dynamical systems with dis-
crete time, space and state space are the discrete equivalent of PDE [32,92,174]. Important
properties are their shift-invariant spatial grid structure and their local interaction [27,79].
Stochastic versions have also been introduced [38, 50], which are similar to particle sys-
tems [44, 113]. As automata CA can be handled, simulated and, up to a certain degree,
analyzed in a simpler way than PDEs [82]. Well-known applications range from Con-
way’s Game of Life [58] over excitable media [66] or biological pattern formation [38] to
fluid dynamics through lattice-gas cellular automata and lattice Boltzmann methods [184].
Also, agent models on the basis of CA are very popular with applications in city [11] or
society [59] modeling and crowd control [183].

If we drop the requirement of shift-invariance for the grid structure, we will get more
general objects that are studied as Boolean networks [94] in the framwork of complex net-
works [137]. In general, there is a huge interest in topological properties of networks, and
in adaptive networks with dynamics of and on the network topology [65, 69]. An applica-
tion is, for example, the analysis of power grids [127, 155]. Dynamics on networks with
discrete states at each node and probabilistic dependencies between them are studied as
dynamic Bayesian networks, a generalization of hidden Markov models [33, 131]. They are in
turn special cases of probabilistic graphical models as a general graph-based framework to
compactly represent probability distributions over high-dimensional spaces [18, 102]. In
case of directed graphs the general models are called Bayesian networks, whereas they are
referred to as Markov networks [10, 107] in the undirected case. The major uses of proba-
bilistic graphical models are information representation, statistical inference from data for
a given model and the learning of models from data. Probabilistic graphical models are,
for example, applied in speech recognition [12] and cellular networks [56].

Because of potential analytical or computational advantages it is of interest to study
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approximations of classical continuous- with discrete-valued models. Time-continuous
dynamical systems on continuous state space can be studied by symbolic dynamics [181]
or approximated by time-discrete Markov chains on finite state space [84]. This technique
of state space discretization has led to the powerful tools of set oriented numerics [34, 35].
It is especially useful to study ergodic theory, asymptotic dynamics, and optimal con-
trol [71, 104]. Recently, contributions to uncertainty quantification have been made [90].
Alternative discretizations use information about special behavior of the continuous-state
system [31] or have been discussed in the context of interval arithmetic [126] and for prob-
abilistic graphical models with continuous states [102]. Approaches for the specific tran-
sition from PDE to CA include ultradiscretization [139, 166] and a probabilistic method [7].
People have even argued in favor of a reformulation of physical laws in a discrete lan-
guage [165, 185].

1.2.3 Integration of Data: Inverse Problems

In a forward problem, observations are predicted from a set of model parameters. At
least in the deterministic case, usually the forward problem is well-posed in the sense of
Hadamard [75]: there exists a solution (existence), there is at most one solution (unique-
ness), and the solution depends continuously on the observations (stability). The corre-
sponding inverse problem consists of inferring parameters from the observations. By such
an integration of measurement data the model can be refined or updated. An example is
the identification of contamination sources in drinking water grids from sensor data. Ob-
servations are often noisy, uncertain or not sufficient with respect to the complexity of the
model, and hence inverse problems often lack the Hadamard properties. We say that they
are ill-posed.

Classically ill-posed problems are solved with regularization methods [98, 172]. Formu-
lating inverse problems in a statistical inference framework allows for deeper insights in
these methods and additional solution strategies [15, 49]. The Bayesian setting [61, 91, 125]
has gained a lot of interest lately, with applications ranging from regular parameter es-
timation to optimal experimental design [85] or machine learning [18]. An advantage of
the Bayesian approach is that uncertain forward models, noisy data and prior information
are integrated quite naturally. Also, instead of a single value for the model parameters,
Bayesian inference leads to the more informative posterior density over their values. Thus,
uncertainties in the inferred results can be assessed quantitatively: all desired statistical in-
formation like median, mean or higher moments etc. can be derived from it.

In order to calculate these statistical properties we require the evaluation of weighted in-
tegrals of the posterior density over the model properties. Deterministic quadrature [47] is
often not possible, but there are several ways to approximate these integrals. The simplest
is to use Bayes’ theorem and Monte Carlo sampling [89, 144] from the prior. Markov chain
Monte Carlo (MCMC) methods sample directly from the posterior distribution [64,78,121].
In these methods a Markov process is constructed, whose stationary distribution is the
posterior. Popular versions are the Metropolis-Hastings algorithm [28] and Gibbs sam-
pling [61]. If the data come sequentially and one wishes for real-time inference, sequential
Monte Carlo methods [42] or Kalman filters [67] can be applied.

The computational bottleneck for all these methods is that the potentially complex for-
ward model in the likelihood has to be evaluated over and over again. Improvements
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use surrogate forward models based on Polynomial Chaos and Karhunen-Loève expan-
sions [118, 119]. In other approaches to Bayesian inference surrogate models are also con-
structed by model reduction based on Gaussian processes [97] and on order reduction
[112, 159]. However, for expensive, e.g. PDE-based forward models, it is still a big chal-
lenge to make Bayesian inference computationally tractable. Current research therefore
focuses on methodological advances of classical methods as well as on the development of
new techniques. An example is the approach based on optimal maps, which directly push
forward the prior to the posterior distribution [46].

For state-discrete probabilistic graphical models there is a collection of Bayesian infer-
ence tools especially adapted to their special structure. It contains many sophisticated
exact and approximate inference algorithms. The approximate algorithms can be divided
into deterministic and stoachstic ones. The central idea for the design of fast inference
algorithms is to use dynamic programming [36]: repeated computations of intermedi-
ate results can be cached for efficient evaluation of conditional probability distributions
in complex networks. Well-known examples are variable elimination or a more advanced
formulation thereof, message passing in clique or junction trees [102]. Continuous-valued
Gaussian counterparts of such ideas have also been used for uncertainty quantification
in flows in random porous media by constructing a probabilistic graphical as a surrogate
model [175]. In principle the basic algorithms are applicable to dynamic Bayesian net-
works when unrolling them. However, special algorithms can be designed because of their
temporal structure. One example of deterministic approximate inference is a version of the
forward-backward algorithm, the BK algorithm named after Boyen and Koller [20–22]. It
approximates the potentially entangled belief state in each time step by a factorized one.
In the inference literature this approach is also known as assumed density filtering [102].
A similar approach is the factored frontier algorithm, which updates the belief state locally
and is based on the frontier algorithm for inference [135].

There exists a large pool of software for inference in state-discrete probabilistic graphical
models. We mention just a few packages and refer to [133, 134] for a more comprehensive
overview. Very popular toolkits are BNT [132] or its successor PMTK3 [43] by Kevin Mur-
phy and co-workers. Another software which is especially designed for dynamic Bayesian
networks is GMTK [16] by Jeff Bilmes. Examples for enterprise packages are PNL from
Intel [88] or Infer.NET from Microsoft [123].

1.3 Research Goals and Outline

The goal of the thesis is to develop a modeling and simulation framework for spatio-temporal
systems, that suites two practical demands. First, it respects the uncertainty of imprecise
models and related data. Second, it takes user requirements serious, according to which ef-
ficient computation of coarse-grained information about discrete risk levels is preferable to
slow evaluation of precise statements. The approach is designed to allow for easy integra-
tion of measurement data and to be scalable to large systems that arise in technical applications.
In addition to theoretical investigations the framework is tested in contaminant fate and
fluid dynamics problems in water grids.

The thesis is divided into four projects which work out the main idea step by step. They
constitute the main chapters 3-6 of the work and can be read independently from each
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1 Introduction

other. An exception is Chap. 5 which is based on the material of Chap. 4.
After an introduction of definitions and basic concepts that are used throughout the

whole thesis in Chap. 2, in the first project in Chap. 3 we introduce cellular non-deterministic
automata (CNDA). They are understood in the spirit of non-deterministic automata theory
and different from well known stochastic cellular automata. Their purpose is to analyze
in a time-, space- and state-discrete setup the dynamics of a deterministic PDE that does
not depend explicitly on the independent variables. A discretization is chosen such that
it emphasizes spatial shift-invariance and locality of the interaction and that the resulting
CNDA covers all possible dynamics of the PDE for given initial values. A detailed study of
CNDA with the tools of CA theory reveals the difficulty of preserving spatial correlations
in such a local construction; an insight that will be central to all following chapters. We
also develop three approaches to efficiently approximate the CNDA with so-called super-
automata at the cost of further losing - in a controlled way - information. As an application
we discuss the Fisher-KPP equation [68] and the reaction random walk [80] which are cen-
tral in the theory of reaction-diffusion processes [157].

Chap. 4 reconsiders the problem of approximating PDE dynamics with a completely dis-
crete object. This time we use an approximation that neglects unlikely trajectories instead
of finding a cover for all possible solutions. The basic idea is to calculate local transition
probabilities between discretized portions of phase space to approximate the evolution of
the system’s probability density in transfer operator theory like in set-oriented numerics.
PDEs can therefore be considered in a probabilistic setting, and the resulting cellular prob-
abilistic automata (CPA) can be used for density-based uncertainty propagation. CPA are
similar in structure to CNDA, and the insights gained with superautomata for CNDA are
used extensively. We develop the method using initial value uncertainties under deter-
ministic dynamics and show that it is consistent.

After the theoretical introduction of the CPA method we discuss applications and exten-
sions thereof in Chap. 5. First, we conduct a complexity analysis and outline approaches for
efficient implementations. Then we apply the method to arsenate transportation and ad-
sorption and to bacterial regrowth as exemplary problems of contaminant fate in drinking
water pipes, and also to the isothermel Euler equation of fluid dynamics. The applications
demonstrate the interpretation of the phase space domains as discrete risk levels. We com-
pare our results to Monte Carlo computations. By integrating algebraic coupling equations
the CPA framework is also scaled to water grids. Furthermore we introduce and test an
extension of CPA that imposes conservation properties of the underlying PDE system.

In Chap. 6 we integrate measurement data in the CPA framework. For this purpose CPA
are interpreted as dynamic Bayesian networks, for which many inference algorithms and
a large amout of software are available. CPA hence allow the inference problem in PDEs
to be solved with inference algorithms from probabilistic graphical models. We discuss
requirements for inference tools in our specific setup and choose the BK algorithm. To
demonstrate our ideas, the scheme is applied to the arsenate adsorption problem in a wa-
ter pipe: from measurements of the concentration of dissolved arsenate at the outflow
boundary condition we infer the strength of the arsenate source at the inflow boundary
condition. Finally we give our conclusions of the thesis in Chap. 7.
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The thesis is mostly formulated in the language of cellular automata and probability the-
ory. We review according basic concepts and settle a notation for the following in this
chapter. In Sec. 2.1 we present elements of cellular automata theory, and in Sec. 2.2 some
applicable concepts from dynamical systems theory. Then we give a brief introduction to
probability theory in Sec. 2.4. It relies on underlying ideas of measure theory which we
present first in Sec. 2.3. Then we focus on the Frobenius-Perron operator in Sec. 2.5 and
stochastic processes in Sec. 2.6 to describe stochastic dynamics.

2.1 Cellular Automata

In the present section we introduce basic concepts and notation from cellular automata
theory and special topological definitions for Chap. 3 on the basis of [92].

Here (G, ·) denotes a finitely generated group with generators {τ1, ..., τn}, and E a finite
set. G can be interpreted as the set of vertices of an associated graph, the Cayley graph,
and is therefore in our context called a grid with grid sites g ∈ G. We write EH for the set
of all functions from H ⊆ G to E and eH for the function which is constantly e ∈ E on H .
When defining a ϕ ∈ EZ explicitly we use the notational convention that the first written
element of E after the dots always is the one at site j = 0. A shift operator is a mapping
σg : EG → EG, σg(ϕ)(h) = ϕ(g · h) for g, h ∈ G.

Definition 2.1.
i) A (deterministic) cellular automaton (CA) is a tuple (G,U,E, f0) with G and E as above

and U = {0, τi | i = 1, ..., n} the neighborhood of the unit element 0 ∈ G. f0 : EU → E
is a local function that induces the global function f : EG → EG, ϕ 7→ f(ϕ) with

f(ϕ)(g) = f0(σg(ϕ)|U )

for g ∈ G. The (deterministic) trajectory starting with ϕ0 ∈ EG is given by the sequence
(ϕn)n∈N, where ϕn = f(ϕn−1) for n ∈ N+.

ii) If there is exactly one marked element 0 ∈ E with f0(0U ) = 0, the CA is said to have
a resting state.

iii) For finite H ⊂ G, h ∈ EH is said to be a Garden of Eden pattern, if there are no states
ϕ,ψ ∈ EG with ϕ|H = h and ϕ = f(ψ) [115].

Understanding the restriction ϕ|g·U as a function with domain U , it holds that σg(ϕ)|U =
ϕ(g · U) = ϕ|g·U and therefore f0(σg(ϕ)|U ) = f0(ϕ|g·U ).

Although many definitions and results may be extended to more general groups, we
restrict ourselves mostly to the group (Z,+) in the following. It will turn out that this
is sufficient to apply our ideas to the simulation of partial differential equations in one
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2 Preliminaries

spatial dimension. We call |U | = m + n + 1 the length of a set U = {−m, ..., n} such as the
neigborhood, where m,n ∈ N. In case of E carrying an order≤, ϕ ∈ EZ is called monotonic
if ϕ(i) ≤ ϕ(j) for all i ≤ j or if ϕ(i) ≥ ϕ(j) for all i ≤ j, where i, j ∈ Z.

Definition 2.2. Let ϕ,ψ ∈ EZ. The Cantor metric dC is given by dC(ϕ,ψ) = 0 if ϕ = ψ
and dC(ϕ,ψ) = 1

1+i otherwise, where i is the least non-negative integer such that either
ϕ(i) 6= ψ(i) or ϕ(−i) 6= ψ(−i). The induced topology is called the Cantor topology.

The intuitive understanding of the Cantor metric is that two configurations are close if
they agree on a large set around the origin. In general open balls with radius ε around
x ∈ X in a metric space (X, d) are written as Bε(x) = {y ∈ X | d(x, y) < ε}, and the closure
of Y ⊆ X is denoted as Y .

It is a well known fact that (EZ, dC) is a complete Cantor space [180] and that the Cantor
metric leads to a strictly topological characterization of CA [79].

Definition 2.3. A Cantor space is a non-empty metric space (C, d) that is
i) compact,

ii) perfect, i.e. it does not contain any isolated points: c ∈ C\{c} for all c ∈ C,
iii) totally disconnected, i.e. for any c ∈ C and any open U ⊆ C with c ∈ U there is a clopen

(closed and open) set V with c ∈ V ⊆ U .

Theorem 2.4. (Curtis, Hedlund, Lyndon)
The global functions f of all CA (Z, U,E, f0) are exactly the continuous functions on

(EZ, dC) that are shift-invariant, i.e. that σif = fσi for all i ∈ Z.

We will work with the Cantor metric in the following, although it is not shift-invariant.
Besicovitch and Weyl topological spaces are alternative approaches that overcome this
problem [14, 128].

Lastly we define the Hausdorff metric on the central subset

K := {S ∈ P(EZ)\{∅} |S is compact}

of the power set P(EZ) of EZ. In the following we write T (j) := {ϕ(j)|ϕ ∈ T}, T |V :=
{ϕ|V |ϕ ∈ T} and K|V := {S|V |S ∈ K} for T ∈ K, j ∈ Z and V ⊆ Z.

Definition 2.5. The distance between an element ϕ ∈ EZ and a set S ∈ K is defined by

d(ϕ, S) = min
ψ∈S
{dC(ϕ,ψ)}.

The Hausdorff distance dH between S, T ∈ K is given by

dH(S, T ) = max

{
max
ϕ∈S
{d(ϕ, T )},max

ψ∈T
{d(ψ, S)}

}
.

Theorem 2.6.
i) (K, dH) is a compact and complete metric space.
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ii) Let (Sn)n∈N be a sequence in K such that there is S ∈ K with limn→∞ Sn = S in the
Hausdorff metric. Then

S = {ϕ ∈ EZ | ∀n ∈ N ∃ϕn ∈ Sn : lim
n→∞

ϕn = ϕ}.

Proof We refer to [95], in which the Hausdorff metric is extended from K to K ∪ {∅} by
the definitions

dH(∅, ∅) = 0 and dH(S, T ) = 1 if exactly one of S, T ∈ K ∪ {∅} is ∅.

Claim i)K∪{∅} is a compact metric space, because EZ is compact [95]. We conclude that
K is compact because it is a closed subset of K ∪ {∅}: KC = (K ∪ {∅})\K = {∅} is open, as
e.g. B 1

2
(∅) = {T ∈ K ∪ {∅}|dH(T, ∅) < 1

2} = {∅}. K is also complete as it is compact.
Claim ii) It is well known in the literature that convergence in the Hausdorff metric im-

plies that the so-called Kuratowski limit inferior or topological lower limit coincides with the
limit point; see e.g. [95].

2.2 Dynamical Systems

Here we present some ideas of dynamical systems theory on the basis of [72] and apply
them to cellular automata. We set N0 = {0, 1, 2, ...} and R+

0 = [0,∞).

Definition 2.7. A time-discrete resp. time-continuous (metric) dynamical system is a tuple
(T,X,Φ) consisting of a time T = N0 resp. T = R+

0 , a metric space X and a flow Φ :
T ×X 7→ X with the following properties:

i) Φ(t, x) is continuous in x ∈ X and, if T = R+
0 , also in t ∈ T

ii) Φ(0, x) = x for all x ∈ X
iii) Φ(t,Φ(s, x)) = Φ(t+ s, x) for all s, t ∈ T and all x ∈ X .

A set Y ⊂ X is said to be positively resp. negatively invariant under the flow, if Φ(t, Y ) ⊆ Y
resp. Φ(t, Y ) ⊇ Y for all t ∈ T . It is invariant if it is positively and negatively invariant.

We also write Φ(t, x) = Φt(x). If Φt : X → X is even a homeomorphism, the time
may be extended to Z resp. R. Systems of ordinary differential equations (ODE) induce
time-continuous dynamical systems. Time-discrete dynamical systems are e.g. given by
iteration of a continuous function f : X → X by Φ(k, x) = fk(x), and hence we also
write (X, f) for these systems. Every time-continuous dynamical system induces such a
time-discrete one with function ΦP for fixed P > 0.

The observation that global functions are continuous allows to interpret CA as a special
instance of time-discrete dynamical systems on compact metric spaces. Hence we focus on
the latter, especially on the concepts of long-term behavior and embeddings.

Definition 2.8. Let (X, f) be a time-discrete dynamical system on compact X .
i) The ω-limit set of x ∈ X is given by ωf (x) = {y ∈ X | ∃ strictly monotonically increas-

ing sequence (tk)k∈N in N : y = limk→∞ f
tk(x)}.

9
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ii) If there is an open U0 ⊆ X such that f(U0) ⊆ U0,A = ∩k≥0f
k(U0) is called an attractor

and U0 a preattractor. B(A) = ∪n≥0f
−n(U0) is the basin of attraction. If B(A) = X , A is

called the global attractor.

By choosing (tk)k∈N in R+
0 with tk →∞ instead of a strictly monotonically increasing se-

quence in N, ω-limit sets are analogously defined for time-continuous dynamical systems.
For all further common dynamical system concepts like stationary states, periodic orbits,
(in)stability etc. we refer to [72].

Definition 2.9. A time-discrete dynamical system (X, f) can be embedded in another dy-
namical system (Y, h), if there is a continuous injective map α : X → Y such that α ◦ f =
h ◦ α on X .

Accordingly a time-discrete dynamical system (X, f) can be embedded in a CA (Z, U,E,
h0) with global function h if it can be embedded in (EZ, h). In the literature such an embed-
ding is sometimes called weak, if additional features are required for a strong version [129].

2.3 Measure Theory

We prepare the introduction to probability theory in the next section with some basic con-
cepts from measure theory in this section. Both sections are based on [57, 99].

Definition 2.10. Let X be a set and P(X) its power set. A σ-algebra is a family A ⊆ P(X)
with the properties

i) X ∈ A
ii) A ∈ A ⇒ X\A ∈ A

iii) Ai ∈ A, 1 ≤ i ≤ n ≤ ∞⇒
⋃n
i=1Ai ∈ A

A trivial σ−algebra for a setX is P(X) itself. One can also show that forA ∈ P(X) there
is a smallest σ−algebra σ(A) withA ⊂ σ(A). If (X, T ) is a topological space, B(X) := σ(T )
is called the Borel σ-algebra. In this work Rn is always considered to be equipped with the
σ-algebra B(Rn) if considered in a measure theoretic context.

The tuple (X,A) is called a measurable space, and A ∈ A are the measurable sets. Two
measurable spaces can be structurally related by the important class of measurable maps.

Definition 2.11. Let (X,A) and (X ′,A′) be measurable spaces. A map V : X → X ′ is
called (A−A′-)measurable, if V −1(A′) ∈ A for any A′ ∈ A′.

Definition 2.12. Let (X,A) be a measurable space. A map µ : A → [0,∞] with µ(∅) = 0 is
i) σ-additive, if for every family of disjoint Ai ∈ Awith 1 ≤ i ≤ n ≤ ∞

µ(
n⋃
i=1

Ai) =
n∑
i=1

µ(Ai),

ii) σ-finite, if there exists a sequence (Ai)i∈N in A such that X =
⋃
i∈NAi and µ(Ai) <∞

for all i ∈ N.
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A σ-additive map µ : A → [0,∞] on measurable space (X,A) with µ(∅) = 0 is called a
measure, and (X,A, µ) a measure space. On any measure space an integral may be defined.
For this construction we refer to [9, 99].

Measurable g, g′ : X → R on a measurable space (X,A) with measure µ are said to be
in the same equivalence class [g], if they agree µ-almost everywhere (µ-a.e.), i.e. if there is
N ⊂ X with µ(N) = 0 such that g(x) = g′(x) for x ∈ X\N . By this equivalence relation
and with p ∈ [0,∞)

Lp(X,A, µ) := {[g] |
∫
|g|pdµ <∞}

becomes a Banach space with norm

‖[g]‖p :=

(∫
|g|pdµ

)1/p

.

Having this in mind we write g for the elements [g] ∈ Lp(X,A, µ) in the following.
For a measurable map g : X → [0,∞) on measure space (X,A, µ)

ν : A → [0,∞], A 7→
∫
gχAdµ (2.1)

is a measure. The following important theorem reverses this statement.

Theorem 2.13. (Radon-Nikodym)
Let µ and ν be σ-finite measures on measurable space (X,A) such that ν(A) = 0 for all

A ∈ Awith µ(A) = 0. Then there exists an integrable function g : X → [0,∞) such that

ν(A) =

∫
A
gdµ for all A ∈ A.

We end this section with 3 important examples of measure spaces with σ-finite measures.
i) For any measurable space (X,A) the Dirac measure in a point x ∈ X is defined by

δx : A → [0,∞], A 7→ χA(x).

ii) Consider a measurable space (E,P(E)), where E 6= ∅ is at most countable. Then

γ : P(E)→ [0,∞], A 7→
∑
e∈E

δe(A) = |A|

is the counting measure. Here |A| denotes the cardinality of A.
iii) The measurable space (Rn,B(Rn)) can be equipped with the Lebesgue-Borel measure

λ. It is the unique measure with the property

λ((a, b]) =
n∏
i=1

bi − ai

for all a, b ∈ Rn with ai < bi, 1 ≤ i ≤ n. We abbreviate Lp(Rn) := Lp(Rn,B(Rn), λ).
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2.4 Probability Theory

The whole probability theory is based on a special case of measure spaces: A probability
space is a measure space (X,A, µ) with µ(X) = 1. Here µ is called a probability measure and
is σ-finite per definition. In a probability space A ∈ A is called an event. Probability spaces
model random experiments, of which usually just certain aspects are observed in the form
of random variables.

Definition 2.14. Let (X,A, µ) be a probability space and (X ′,A′) a measurable space. A
random variable is a measurable mapping V : X → X ′. The image measure

µV : A′ → [0, 1], A′ 7→ µ(V −1(A′))

is called the distribution of V , shortly V ∼ µV . If (X ′,A′) = (Rn,B(Rn)) or (X ′,A′) =
(E,P(E)) for finite E, we speak of real or discrete random variables, respectively.

Note that µV is a probability measure as well. We also write µ(V ∈ A′) = µV (A′) forA′ ∈
A′ and µ(V = v) = µ({x ∈ X|V (x) ∈ {v}}) for v ∈ X ′. Often there is g ∈ L1(X ′,A′, µ′)
such that the distribution µV of a random variable V may be written as

µV (A′) =

∫
A′
gdµ′, for all A′ ∈ A′.

Then g is called the density of µV with respect to µ. We also say that V has density g. This
motivates the study of the set of densities on a general measure space (X,A, µ):

D(X,A, µ) := {g ∈ L1(X,A, µ) | g ≥ 0, ‖g‖1 = 1}.

According to Eq. 2.1 every density defines a probability measure on the measure space
(X,A, µ). We give 2 examples.

i) Consider the measure space (E,P(E), γ), where E 6= ∅ is at most countable. Let
further (pe)e∈E be nonnegative numbers with

∑
e∈E pe = 1. Then the weight function

g : E → [0, 1], g(e) = pe

is in D(E,P(E), γ) and defines the probability measure µ : P(E)→ [0, 1] by

µ(A) =

∫
gχAdγ =

∑
e∈E

(gχA)(e) =
∑
e∈A

g(e) =
∑
e∈A

pe.

for A ∈ P(E). Obviously µ =
∑

e∈E peδe.
ii) Let g ∈ D(Rn) := D(Rn,B(Rn), λ) be given by

g(v) =
1

λ(Ω)
χΩ(v)

for Ω ⊂ Rn, where χΩ is its characteristic function. A real random variable with the
associated distribution is said to have uniform distribution.

To characterize the relationship of several events at a time, we need the concept of con-
ditional probabilities and independent events.
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Definition 2.15. Let (X,A, µ) be a probability space and n ∈ N.
i) For B1, ..., Bn ∈ A with µ(B1 ∩ ... ∩ Bn) > 0, the conditional probability distribution of
A ∈ A is given by

µ(A|B1, ..., Bn) =
µ(A ∩B1 ∩ ... ∩Bn)

µ(B1 ∩ ... ∩Bn)
.

ii) A1, ..., An ∈ A are independent if for all m ∈ N, 0 ≤ m ≤ n, µ(Ai1 ∩ ... ∩ Aim) =
µ(Ai1)...µ(Aim).

It is easy to verify that µ(A|B1, ..., Bn) is a probability distribution over the measurable
space (X,A). Now we transfer the ideas to random variables.

Definition 2.16. Let (X,A, µ) be a probability space and Vi : X → X ′i random variables
with values in the measurable spaces (X ′i,A′i), where i ∈ I = {1, ..., n} for n ∈ N.

i) Consider j ∈ I . The conditional distribution of Vj given Vi ∈ A′i for A′i ∈ A′i, where
i ∈ Ĩ = I \ {j}, is

µVj |Vi,i∈Ĩ : A′j → [0, 1], µVj |Vi,i∈Ĩ(A
′
j |∀i ∈ Ĩ : Vi ∈ A′i) = µ(V −1

j (A′j)|∀i ∈ Ĩ : V −1
i (A′i)).

ii) {Vi}i∈I are independent, if V −1
i (A′i) are independent with respect to µ for allA′i ∈ A′i. If

in addition µVi = µVj for all i, j ∈ I , we say that {Vi}i∈I are independent and identically
distributed (iid).

We also write µ(Vj ∈ A′j |Vi ∈ A′i) = µVj |Vi,i∈Ĩ(A
′
j |∀i ∈ Ĩ : Vi ∈ A′i) and µ(Vj = vj |Vi =

vi) = µVj |Vi,i∈Ĩ({vj}|∀i ∈ Ĩ : Vi ∈ {vi}), where vi ∈ X ′i and vj ∈ X ′j .
In practice one is often interested in statistical quantities of a real-valued random vari-

able such as the expected values or variances.

Definition 2.17. Let (X,A, µ) be a probability space. The m-th moments of a real-valued
random variable V : X → Rn are defined as

E[V m
i ] =

∫
X
V m
i dµ

for i = 1, ..., n. The first moments are called expected values or means, and Var[Vi] = E[V 2
i ]−

(E[Vi])
2 are the variances.

2.5 The Frobenius-Perron Operator

Now we focus on stochastic dynamics. In the present section we briefly introduce the
Frobenius-Perron operator, a special transfer operator that describes how probability den-
sities evolve under phase space dynamics. It has gained much attention e.g. in the inves-
tigation of chaotic systems [106] or in Ulam’s method for the approximation of invariant
measures in ergodicity theory [168].

Consider the measure space (Rmn,B(Rmn), λ), where m,n ∈ N, B(Rmn) is the Borel
σ-algebra and λ the Lebesgue measure. A measurable map S : Rmn → Rmn is called
nonsingular if λ(S−1(A′)) = 0 for all A′ ∈ B(Rmn) with λ(A′) = 0. For any such map a
unique operator can be defined on the basis of the Radon-Nikodym theorem [106].
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Definition 2.18. Given a nonsingular map S : Rmn → Rmn, for g ∈ L1(Rmn) the Frobenius-
Perron operator (FPO) PS : L1(Rmn)→ L1(Rmn) is defined by∫

A′
PSg(x)dx =

∫
S−1(A′)

g(x)dx ∀A′ ∈ B(Rmn).

The FPO preserves positivity and normalization and hence describes how densities are
mapped under phase space evolution with S.

2.6 Stochastic Processes

Another important concept to describe stochastic dynamics are stochastic processes. We
base our presentation on [99]. From now on we focus on random variables with values in
measure space (E,P(E)) with finite E 6= ∅, although the theory can be developed in more
generality.

Definition 2.19. A (time- and state-discrete) stochastic process is a family of random vari-
ables V = (V t)t∈N0 on a probability space (X,A, µ) with values in the measurable space
(E,P(E)). The elements of E are called states.

Definition 2.20. The stochastic process (V t)t∈N0 is called Markovian, if for all t ∈ N and all
v0, ..., vt ∈ E

µ(V t = vt|V t−1 = vt−1, ..., V 0 = v0) = µ(V t = vt|V t−1 = vt−1),

i.e. if the present state at time t only depends on the immediate predecessor at time t − 1.
If the Markov property does not depend on the index t, the process is called stationary or
homogeneous.

For a stationary Markovian process it is possible to formally define a time-independent
transition model.

Definition 2.21. Let (E1,P(E1)) and (E2,P(E2)) be measurable spaces for finite E1 6=
∅, E2 6= ∅. A map κ : E1×P(E2)→ [0, 1] is called a transition distribution or Markov kernel if

i) the function e1 7→ κ(e1, Ẽ2) is measurable for all Ẽ2 ∈ P(E2) and
ii) the function Ẽ2 7→ κ(e1, Ẽ2) is a probability distribution on (E2,P(E2)) for all e1 ∈

E1.

We can describe the time-evolution of a stationary Markovian stochastic process just
by an initial and a transition distribution. For random variables V t, V t+1 with values in
(E,P(E)) for finite E 6= ∅, the transition distribution is equivalent to a conditional distri-
bution µV t+1|V t , or, even simpler, to a matrix.
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In this chapter we introduce a non-probabilistic approach to study the dynamics of distinct
partial differential equations (PDEs) in a completely discrete setup. The main idea is to
translate them into objects that we call cellular non-deterministic automata (CNDA) and
to analyze the latter. The translation is achieved by state space discretization as in set
oriented numerics and the use of the locality concept from cellular automata (CA) theory.

In particular we consider a PDE which does not depend explicitly on the independent
variables. We dismiss information stepwise; see Fig. 3.1a. First, we use a method of lines
to go from a PDE on R to a countable system of ordinary differential equations (ODE);
we replace R by Z by space discretization. Next, we discretize the coupled ODE in time
and state by a variant of the set oriented method for dynamical systems. The outcome is
interpreted as a CNDA in the spirit of non-deterministic automata theory [82]: the tran-
sition of a state at one site is not deterministically determined by a configuration in the
neighborhood, we only know a set of possible image states. This is a consequence of the
information reduction through state discretization. CNDA work on the power set of the
completely discrete states to follow all possible trajectories at once.

We suggest to analyze CNDA with supersystems (SS), especially by embedding them
in or covering them with deterministic cellular superautomata (SA); see Fig. 3.1b. This
allows to approximate their dynamical behavior with the standard theory of CA at the
cost of losing - in a controlled way - further information.

It depends very much on the system and the details of this procedure whether the SS
reveals the essential features of the initial PDE. The method is chosen in such a way that no
features of the approximating space and time discretized system of ODE are lost. However,
if the information loss is too high, the outcome may be trivial in the sense that it does not
rule out most dynamical patterns but accepts almost all patterns as possible structures.

The chapter is structured as follows: in Sec. 3.1 we abstractly introduce CNDA and
discuss them in the CA context. Sec. 3.2 is concerned with the general analysis of CNDA
with SS and SA. Then we show in detail how a CNDA may be constructed from a PDE as
sketched above in Sec. 3.3. We use the Fisher-KPP equation [68] and the reaction random
walk [80], which are both popular in the context of reaction-diffusion processes [157], as
prototypical examples in order to obtain some practical insight into the developed theory.
Finally we conclude our results in Sec. 3.4.

3.1 Introduction of Cellular Non-Deterministic Automata

In this section we first define cellular non-deterministic automata (CNDA) and compare
them to conventional concepts in the cellular automata (CA) context. Then we investigate
how our construction can be topologically characterized by a Curtis-Hedlund-Lyndon the-
orem.
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(a)

(b)

Figure 3.1: (a) Space, time and state are discretized to describe the dynamics of a PDE by the dynamics of
a CNDA. In many cases it is hard to determine the smallest possible CNDA and one ends up with a bigger
CNDA which already carries less information. (b) A CNDA is covered by its SS of decreasing precision; see
Sec. 3.2 for details.

3.1.1 Definition of Cellular Non-Deterministic Automata

We only work on grid Z, although certain generalizations are immediately possible. It
will turn out that this is enough to account for analysis of PDE dynamics in one spatial
dimension. CNDA are defined on the setK of all compact subsets ofEZ, where we exclude
the empty set for technical reasons. It can be endowed with the Hausdorff metric dH to
form a compact and complete metric space; see Sec. 2.1.

Definition 3.1. A cellular non-deterministic automaton (CNDA) is a tuple (Z, U,E, f0) with
grid Z and neighborhood U = {−m, ..., n} of the origin 0 ∈ Z, where m,n ∈ N. E is a finite
set and f0 : EU → P(E)\{∅} a local function that induces the elementary global function

f1 : EZ → K, ϕ 7→ f1(ϕ) = {ψ ∈ EZ | ∀i ∈ Z : ψ(i) ∈ f0(σi(ϕ)|U )}

and the global function

f : K → K, S 7→ f(S) = ∪ϕ∈Sf1(ϕ).

The trajectory starting with S0 ∈ K is given by the sequence (Sn)n∈N, where Sn = f(Sn−1)
for n = 1, 2, ....

The elements of E are called elementary local, the ones of P(E) local, the ones of EZ

deterministic and the ones of K random states. {e} ∈ P(E) for e ∈ E are also referred to as
elementary local states, and {ϕ} ∈ K for ϕ ∈ EZ also as deterministic states.

By construction it is clear that a CNDA works on P(EZ)\{∅}, but not that it is possible
to restrict the definition to the compact subsets of EZ. In the following we therefore check
that a trajectory stays in K under evolution with respect to a CNDA. To show that a subset
of EZ is compact with respect to the Cantor metric it is always enough to prove that it is
closed, as EZ is compact.

Proposition 3.2. f : P(EZ)\{∅} → P(EZ)\{∅} is a closed map.
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3.1 Introduction of Cellular Non-Deterministic Automata

Proof We prove that f(S) is closed, if S ∈ P(EZ)\{∅} is. Let (ψn)n∈N be a sequence in
f(S) s.t. ψn → ψ ∈ EZ as n → ∞. Since EZ is a metric space it is enough to show that
ψ ∈ f(S).

By using a suited subsequence if necessary we assume that ψ|[−n,..,n] = ψn|[−n,..,n]. For
any n ∈ N there is ϕn ∈ S s.t. ψn ∈ f({ϕn}). As S is compact there is a converging
subsequence of the ϕn,

ϕnk → ϕ ∈ S.

We claim that ψ ∈ f({ϕ}). This is the case, if we have ψ(j) ∈ f0(ϕ|j+U ) for each j ∈ Z.
Let us fix j. As ϕnk → ϕ there is k ∈ N large enough such that |j| < nk and ϕnk |j+U =
ϕ|j+U . Thus, f0(ϕnk |j+U)) = f0(ϕ|j+U ). As ψ(j) = ψnk(j) ∈ f0(ϕnk |j+U ), we find ψ(j) ∈
f0(ϕ|j+U ).

So ψ ∈ f({ϕ}) ⊆ f(S), and f is a closed map.

Note that especially the interesting deterministic states are in K.

Lemma 3.3. Let ϕ1, ..., ϕn ∈ EZ for n ∈ N. Then {ϕ1, ..., ϕn} is closed.

Proof Let ϕ ∈ EZ. It is enough to show that {ϕ}C = EZ\{ϕ} is open, as finite unions of
closed sets are closed.
ψ ∈ {ϕ}C implies that there exists i ∈ Z such that ϕ(i) 6= ψ(i). We choose 0 < ε < 1

1+|i|
and find that

Bε(ψ) = {χ ∈ EZ|dC(ψ, χ) < ε} = {χ ∈ EZ|ψ|Z 1
ε−1

= χ|Z 1
ε−1
}.

Therefore χ(i) = ψ(i) 6= ϕ(i) and χ 6∈ {ϕ} for χ ∈ Bε(ψ). So Bε(ψ) ⊆ {ϕ}C .

CA are a special case of CNDA: if the range of f0 only contains elementary local states,
the range of f1 will just contain deterministic states, and f will coincide with f1 on deter-
ministic states. The trajectories under a general CNDA can be thought of as comprising
many deterministic trajectories, i.e., trajectories of deterministic states.

We use the term ’non-deterministic’ in the sense of automata theory [82]. CNDA should
not be confused with probabilistic or stochastic CA [38, 50], which are sometimes also
called non-deterministic in the CA literature. But unlike in the concept at hand there one
of a set of deterministic local functions is chosen in each time step and at each site by
means of probabilities. The trajectory does not follow all possible deterministic trajectories
at once.

3.1.2 Cellular Non-Deterministic Automata and the CHL Theorem

In the present section we show that the global function of a CNDA acts continuously and
shift-invariant on the compact metric space K. This means that CNDA can be regarded
as time-discrete dynamical systems. However, due to our special construction there are
continuous and shift-invariant functions on K that are not the global function of a CNDA.
We conclude that the Curtis-Hedlund-Lyndon theorem, Thm. 2.4, cannot be extended to
CNDA. We end with a proposition on how to generalize CNDA to automata on K such
that a Curtis-Hedlund-Lyndon theorem holds.

Proposition 3.4. The global function f of a CNDA (Z, U,E, f0) is continuous.
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3 Cellular Non-Deterministic Automata

Proof Let S ∈ K. We show that for each ε > 0 there is a δ > 0 such that dH(f(S), f(T )) < ε
if dH(S, T ) < δ for T ∈ K.

Let ε > 0 and choose k ∈ N such that 1
1+k < ε. Let furthermore m ∈ N such that

U ⊆ [−m, ...,m], and choose δ > 0 such that δ < 1
1+k+m . For T ∈ K with dH(S, T ) < δ we

find that maxϕ∈S{minψ∈T {dC(ϕ,ψ)}} < δ. So for all ϕ ∈ S there exists a ψ ∈ T such that
dC(ϕ,ψ) < δ. Thus

∀i ∈ [−m− k, ...,m+ k] : ϕ(i) = ψ(i)

⇒∀i ∈ [−k, ..., k] : ϕ|i+U = ψ|i+U
⇒∀i ∈ [−k, ..., k] : f0(ϕ|i+U ) = f0(ψ|i+U ).

As furthermore for every χ ∈ f(S) there is ϕ ∈ S with χ ∈ f({ϕ}), for every χ ∈ f(S)
there is ω ∈ f({ψ}) ⊆ f(T ) with χ(i) = ω(i) for all i ∈ Z|k. So minω∈f(T ){dC(χ, ω)} < ε for
all χ ∈ f(S), which means that maxχ∈f(S){minω∈f(T ){dC(χ, ω)}} < ε.

Analogously we find that maxω∈f(T )

{
minχ∈f(S){dC(ω, χ)}

}
< ε and conclude in sum-

mary that dH(f(S), f(T )) < ε.

To talk about shift-invariance of a CNDA we need to lift the shift-operator from EZ to
K. We define σ̃i : K → K, S 7→ σ̃i(S) = {σi(ϕ)|ϕ ∈ S} for i ∈ Z and also write σi for
σ̃i in the following. Since such a shift-operator can be regarded as the global function of
a CNDA, in which the elementary global function is given by the shift-operator on EZ,
Prop. 3.2 justifies that it maps to compact sets.

Proposition 3.5. The global function f of a CNDA (Z, U,E, f0) is shift-invariant, i.e., ∀i ∈
Z : σif = fσi.

Proof Let S ∈ K and i ∈ Z. Then

σif(S) = {σi(ψ) ∈ EZ |ψ ∈ f(S)}
= {σi(ψ) ∈ EZ | ∃ϕ ∈ S ∀j ∈ Z : ψ(j) ∈ f0(σj(ϕ)|U )}
= {σi(ψ) ∈ EZ | ∃ϕ ∈ S ∀j ∈ Z : ψ(i+ j) ∈ f0(σi+j(ϕ)|U )}
= {σi(ψ) ∈ EZ | ∃ϕ ∈ S ∀j ∈ Z : σi(ψ)(j) ∈ f0(σj(σi(ϕ))|U )}
= ∪ϕ∈Sf1(σi(ϕ)) = f({σi(ϕ) |ϕ ∈ S}) = fσi(S).

Next we show that the Curtis-Hedlund-Lyndon theorem does not hold for CNDA. Heu-
ristically the reason is that continuous and shift-invariant functions do not need to preserve
spatial correlations. In general they allow, for example, for deterministic states in the image
that are glued together by elementary local image states from different deterministic states
in the preimage.

Theorem 3.6. If |E| > 1, there are continuous and shift-invariant functions g : K → K that
cannot be interpreted as the global function of a CNDA.

Proof We give an example of a continuous and shift-invariant function on K and show
that there is no local function inducing it as a global function of a CNDA. Consider

g : K → K, S 7→ g(S) = {ϕ ∈ EZ | ∀i ∈ Z∃ψ ∈ S : ϕ(i) = ψ(i)}.
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3.1 Introduction of Cellular Non-Deterministic Automata

Claim i) g is closed and hence well-defined.

As in Prop. 3.2 it is enough to show that the limit point of a converging sequence in g(S)
is in g(S) as well.

Let (ψn)n∈N be a sequence in g(S) with ψn → ψ as n → ∞. By going to a suited sub-
sequence if necessary we may assume that there is ψ|i| ∈ g(S) such that ψ(i) = ψ|i|(i) for
any i ∈ Z. Per construction of g then there is also ϕ|i| ∈ S such that ϕ|i|(i) = ψ|i|(i). Hence
ψ(i) = ϕ|i|(i) and so ψ ∈ g(S).

Claim ii) g is continuous.

We show that for all ε > 0 there is δ > 0 such that dH(S, T ) < δ implies dH(g(S), g(T )) <
ε for all S, T ∈ K.

Let ε > 0, choose δ = ε and let S, T ∈ K such that dH(S, T ) < δ. Then for all ϕ ∈ S there
is ψ ∈ T such that for all i ∈ Z with |i| < 1

δ − 1 we have ϕ(i) = ψ(i). Let now χ ∈ g(S) and
i ∈ Z with |i| < 1

δ − 1. Then there is ϕi ∈ S such that χ(i) = ϕi(i), and hence there is also
ψi ∈ T such that χ(i) = ψi(i).

So we can define ω ∈ EZ by

ω(i) =

{
ψi(i) for i ∈ Z with |i| < 1

δ − 1

ψ̃(i) else

for some arbitrary ψ̃ ∈ T . Per construction ω ∈ g(T ) and χ(i) = ω(i) for all i ∈ Z with
|i| < 1

δ − 1.
By interchanging S and T we analogoulsy find that for all ω ∈ g(T ) there is χ ∈ g(S)

such that ω(i) = χ(i) for all i ∈ Z with |i| < 1
δ − 1 and conclude that in summary

dH(g(S), g(T )) < δ = ε.

Claim iii) g is shift-invariant.

This can be proven similarly to Prop. 3.5. We show that σig(S) = gσi(S) for i ∈ Z and
S ∈ K:

σig(S) = {σi(ϕ) | ∀j ∈ Z∃ψ ∈ S : ϕ(j) = ψ(j)}
= {σi(ϕ) | ∀j ∈ Z∃ψ ∈ S : σi(ϕ)(j) = σi(ψ)(j)}
= {ϕ | ∀j ∈ Z∃ψ ∈ σi(S) : ϕ(j) = ψ(j)}
= gσi(S).

Claim iv) There is no CNDA that has g as its global function.

Let U = {−m, ..., n} for m,n ∈ N, and let f0 : EU → P(E)\{∅} induce f1 : EZ → K by
f1(ϕ) = {ψ ∈ EZ | ∀i ∈ Z : ψ(i) ∈ f0(σi(ϕ)|U )}. We show that there is S ∈ K such that
g(S) 6= ∪ϕ∈Sf1(ϕ).

Case a) f0(u) = E′ ∈ P(E)\{∅} for all u ∈ EU
Then f1(ϕ) = E′Z for all ϕ ∈ EZ. If E′ = E, we choose two distinct elements of E,

call them without restriction 0 and 1 and define S = {0, ...0101...}. Then 1 6∈ g(S), but
1 ∈ EZ = f1(0) ∪ f1(...0101...). Else E′ 6= E, and there is ϕ ∈ EZ\E′Z. Defining S = {ϕ},
then ϕ ∈ {ϕ} = g(S), but ϕ 6∈ E′Z = f1(ϕ).
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3 Cellular Non-Deterministic Automata

Figure 3.2: An illustration for the construction of the states in the proof of claim iv) in Thm. 3.6. With U =
{−1, 0, 1, 2}, u1 ∈ EU the white and u2 the grey ellipse, the figure shows the construction of ϕ1.

Case b) There is u1, u2 ∈ EU and a symbol inE which we denote by 0 such that 0 ∈ f0(u1),
but 0 6∈ f0(u2).

Consider ϕ1, ϕ2 ∈ EZ which are constructed by gluing together u1 and u2 alternately,
where we start with u1 around 0 ∈ Z for ϕ1 and with u2 around 0 ∈ Z for ϕ2; see Fig. 3.2. If
u1(0) 6= 0, we choose S = {ϕ1}. Then there is ψ ∈ f1(ϕ1) such that ψ(0) = 0, but ϕ1(0) 6= 0
and hence g(S) = {ϕ1} 6= f1(ϕ1).

Else u1(0) = 0, and we consider S = {ϕ1, ϕ2} and let ψ ∈ EZ be the state that is con-
structed by gluing together copies of u1 such that ψ(0) = 0. Then ψ ∈ g(S), but ψ 6∈ f1(ϕ1)
and ψ 6∈ f1(ϕ2) because ψ(k|U |) = 0 for k ∈ Z. Hence g(S) 6= ∪ϕ∈Sf1(ϕ).

A different automaton definition would directly lead to the Curtis-Hedlund-Lyndon the-
orem. When applying the automaton all spatial correlation information is lost. We write
K|V := {T |V |T ∈ K} for T ∈ K and V ⊆ Z.

Proposition 3.7. Let U = {−m, ..., n} with m,n ∈ N, E a finite set and f̃0 : K|U →
P(E)\{∅} a local function. This induces a global function via

f̃ : K → K, f̃(S) = {ϕ ∈ EZ|∀i ∈ Z : ϕ(i) ∈ f̃0(S|i+U )}.

Then the continuous and shift-invariant function f̃ : K → K is exactly the global function
of this construction.

Proof Consider f̃0 which induces f̃ as in the proposition.

Claim i) f̃ is closed and hence well-defined.

As in Prop. 3.2 it is enough to show that the limit point of a converging sequence in f̃(S)
is in f̃(S) as well.

Let (ψn)n∈N be a sequence in f̃(S) with ψn → ψ as n → ∞. By going to a suited sub-
sequence if necessary we may assume that there is ψ|i| ∈ f̃(S) such that ψ(i) = ψ|i|(i) for
any i ∈ Z. Per construction of f̃ then ψ(i) = ψ|i|(i) ∈ f̃0(S|i+U ) for all i ∈ Z and hence
ψ ∈ f̃(S).

Claim ii) f̃ is continuous.

This statement can be proven in analogy to Prop. 3.4: We show that for each ε > 0 there
is a δ > 0 such that dH(f̃(S), f̃(T )) < ε if dH(S, T ) < δ for S, T ∈ K.

Let ε > 0 and choose k ∈ N such that 1
1+k < ε. Let furthermore m ∈ N such that

U ⊆ [−m, ...,m], and choose δ > 0 such that δ < 1
1+k+m . For S, T ∈ K with dH(S, T ) < δ
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we find that

∀i ∈ [−m− k, ...,m+ k] : S(i) = T (i)

⇒∀i ∈ [−k, ..., k] : S|i+U = T |i+U
⇒∀i ∈ [−k, ..., k] : f̃0(S|i+U ) = f̃0(T |i+U )

⇒∀i ∈ [−k, ..., k] : f̃(S)(i) = f̃(T )(i),

and therefore dH(f̃(S), f̃(T )) < ε.

Claim iii) f̃ is shift-invariant.

This can be proven similarly to Prop. 3.5. We show that σif̃(S) = f̃σi(S) for i ∈ Z and
S ∈ K:

σif̃(S) = {σi(ϕ) | ∀j ∈ Z : ϕ(j) ∈ f̃0(S|j+U )}
= {σi(ϕ) | ∀j ∈ Z : σi(ϕ)(j) ∈ f̃0(S|i+j+U )}
= {ϕ | ∀j ∈ Z : ϕ(j) ∈ f̃0(σi(S)|j+U )}
= f̃σi(S),

as S|i+j+U = {ϕ|i+j+U |ϕ ∈ S} = {σi(ϕ)|j+U |ϕ ∈ S} = σi(S)|j+U .

Let now in turn f̃ : K → K be a continuous and shift-invariant function. It is enough to
prove the existence of a local function f̃0 : K|U → P(E)\{∅} such that f̃(S)(i) = f̃0(S|i+U )
for all i ∈ Z and all S ∈ K in order to prove the existence of an automaton behind f̃ . This
can be achieved by extending the idea of the classical Curtis-Hedlund-Lyndon theorem,
Thm. 2.4, to power sets.

Claim iv) There is a finite set U ⊂ Z such that f̃(S)(0) is fully determined by S|U for all
S ∈ K.

Choose 0 < ε < 1. Because f̃ is continuous there exists δ > 0 such that dH(S1, S2) < δ
implies dH(f̃(S1), f̃(S2)) < ε for S1, S2 ∈ K. Consider S1, S2 ∈ K such that S1|[−i,...,i] =

S2|[−i,...,i] for i ∈ Z with 1
δ − 2 < |i| ≤ 1

δ − 1, i.e., that they differ just at sites j ∈ Z with
|j| > 1

δ − 1. But then already dH(S1, S2) < δ and therefore dH(f̃(S1), f̃(S2)) < ε, which
means that f̃(S1)(0) = f̃(S2)(0). So we define U = [−i, ..., i].

Claim v) There is a local function f̃0 : K|U → P(E)\{∅} such that f̃(S)(i) = f̃0(S|i+U ) for
all i ∈ Z and all S ∈ K.

Let T̃ ∈ K|U . Then there is T ∈ K such that T |U = T̃ , so that we can define the map
by f̃0(T̃ ) = f̃(T )(0). Note that we can restrict any S ∈ K to U , apply f̃0 and obtain
f̃0(S|U ) = f̃(S)(0) per construction. Due to the shift-invariance of f̃ the requested property
holds: for i ∈ Z and S ∈ K

f̃(S)(i) = σi−1σif̃(S)(i) = σi−1(f̃σi(S))(i) = f̃(σi(S))(0) = f̃0(σiS|U ) = f̃0(S|i+U ).

Note that for a CNDA (Z, U,E, f0) with global function f we can define

f̃0(T̃ ) = ∪u∈T̃ f0(u)
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for T̃ ∈ {T |U |T ∈ K}, which induces a global function f̃ like introduced above. Then
f(S) ⊆ f̃(S) for all S ∈ K. However, in the PDE application we exactly aim at the smaller
f(S) which preserves spatial correlations, as we want to preserve as much information as
possible. This is because a physical system is supposed to be in one of the deterministic
states in a random state, and so a deterministic state in the image can only have one de-
terministic state as predecessor. At the cost of losing the Curtis-Hedlund-Lyndon theorem
we therefore stick to our CNDA definition. Nonetheless analysis of CNDA as in Sec. 3.2.4
will involve similar ideas of information loss. Also, in the construction of CPA in Chap. 4
we will allow for such loss of information to gain efficiency.

3.2 Analysis of Cellular Non-Deterministic Automata

On the one hand, we wish to analyze the long-term behavior of CNDA, but are aware
that in practice this is hard for dynamical systems on power sets. On the other hand, the
theory is very well developed for CA and provides classical results for ω-limit sets etc.
So we suggest the concept of supersystems (SS) and especially of superautomata (SA) in
Sec. 3.2.1 in order to be able to approximate a CNDA’s long-time behavior by relating it to
a CA’s; see Fig. 3.1b.

Then we first show in Sec. 3.2.2 that a CNDA can even be embedded in a CA in principle,
but that it is not possible to find a CA on Γ′ = Z which serves this purpose reasonably. So
second we introduce a set of SA on Z by the idea of de Bruijn states and pattern analysis
in Sec. 3.2.3. This set is totally ordered and has a maximal element. And third we propose
in Sec. 3.2.4 a subsolution SS which often enables convenient and fast analysis of CNDA
and is closely linked to this maximal SA. This SS is often sufficiently exact for practical
purposes.

3.2.1 Supersystems and Superautomata

We introduce SS and show why they are of interest to analyze the long-term-behavior of a
CNDA. We are especially interested in deterministic SA.

Definition 3.8. Let (Z, U,E, f0) be a CNDA with global function f .
i) A time-discrete dynamical system (X ′, f ′) on compact X ′ is called supersystem (SS),

if there are continuous maps

β′ : X ′ → K and γ′ : K → X ′

such that for all S ∈ K and all k ∈ N

fk(S) ⊆ β′f ′kγ′(S).

ii) A SS (X ′, f ′) with β′ : X ′ → K and γ′ : K → X ′ is called smaller than a SS (X ′′, f ′′)
with β′′ : X ′′ → K and γ′′ : K → X ′′, if for all S ∈ K and all k ∈ N

β′f ′kγ′(S) ⊆ β′′f ′′kγ′′(S).

It is called strictly smaller if there is S ∈ K and k ∈ N such that the subset-relation
is strict. The property (strictly) bigger is defined with the subset- replaced by the
superset-relation.
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iii) A SS is called minimal in a set of SS, if there is no strictly smaller SS in this set, and
maximal if there is no SS in it which is strictly bigger.

iv) If f ′ is the global function of a deterministic CA (Γ′, U ′, E′, f ′0) on X ′ = E′Γ
′
, we call

the SS a (deterministic) superautomaton (SA).

We say that a SS covers the CNDA or a smaller SS, or that the trajectory under one of the
latter is contained in the trajectory under the SS. Now we investigate an order relation on
SS.

Definition 3.9. A binary relation ≤ on a set S is a collection of ordered pairs of elements of
S. If the relation fulfills for all r, s, t ∈ S

i) r ≤ r (reflexivity),
ii) if r ≤ s and s ≤ r, then r = s (antisymmetry),

iii) if r ≤ s and s ≤ t, then r ≤ t (transitivity),
then it is called a partial order. If it only fulfills i) and iii), then it is called a preorder.

Lemma 3.10. The smaller-relation on SS is a preorder.

Proof The preorder is induced by the partial order ⊆ on K. The relation on SS is re-
flexive, as ⊆ is reflexive; β′f ′kγ′(S) ⊆ β′f ′kγ′(S) for all S ∈ K and all k ∈ N implies that
(X ′, f ′) is smaller than (X ′, f ′). Similarly, it is transitive because if (X ′, f ′) is smaller than
(X ′′, f ′′) and (X ′′f ′′) is smaller than (X ′′′, f ′′′) it is implied that β′f ′kγ′(S) ⊆ β′′f ′′kγ′′(S)
and β′′f ′′kγ′′(S) ⊆ β′′′f ′′′kγ′′′(S) for all S ∈ K and all k ∈ N. Therefore β′f ′kγ′(S) ⊆
β′′′f ′′′kγ′′′(S) for all S ∈ K and all k ∈ N, and so (X ′, f ′) is smaller than (X ′′′, f ′′′).

Clearly the smaller a SS, the exacter it describes the CNDA’s time-behavior. If even
an embedding α into a SS (X ′, f ′) is possible, it is minimal in the set of all SS because
α−1f ′kα(S) = fk(S) for all S ∈ K and all k ∈ N then.

Proposition 3.11. Let (Z, U,E, f0) be a CNDA with global function f , (X ′, f ′) a SS with
β′ : X ′ → K and γ′ : K → X ′ and (X ′′, f ′′) a SS with β′′ : X ′′ → K and γ′′ : K → X ′′, where
the first SS is smaller than the second. Then the ω-limit sets are ordered in the sense that
for all S ∈ K

i) ∀T ∈ ωf (S)∃T ′ ∈ ωf ′(γ′(S)) : T ⊆ β′(T ′) and
ii) ∀T ′ ∈ ωf ′(γ′(S))∃T ∈ ωf (S) : T ⊆ β′(T ′),

iii) ∀T ′ ∈ ωf ′(γ′(S))∃T ′′ ∈ ωf ′′(γ′′(S)) : β′(T ′) ⊆ β′′(T ′′) and
iv) ∀T ′′ ∈ ωf ′′(γ′′(S))∃T ′ ∈ ωf ′(γ′(S)) : β′(T ′) ⊆ β′′(T ′′).

Proof We only prove the first statement, the others can be shown analogously.
Let T ∈ ωf (S). There is a strictly monotonically increasing sequence (nk)k∈N in N

such that limk→∞ f
nk(S) = T . Then (f ′nk(γ′(S)))k∈N as a sequence on compact X ′ has

a convergent subsequence (f ′nlγ′(S))l∈N, and hence there is T ′ ∈ ωf ′(γ
′(S)) such that

liml→∞ f
′nl(γ′(S)) = T ′. The proof is complete when we show that necessarily T ⊆ β′(T ′).

Let ϕ ∈ T . According to Thm. 2.6 ii) there is a sequence (ϕnl) with ϕnl ∈ fnl(S) such
that limnl→∞ ϕnl = ϕ. But then ϕnl ∈ β′f ′nlγ′(S) for all l ∈ N, and as β′ is continuous thus
ϕ ∈ β′(T ′) again by Thm. 2.6 ii).
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3.2.2 Embedding in Deterministic Cellular Automata

3.2.2.1 General Embedding

To show that a CNDA can be embedded in a deterministic CA we use a result of Müller
and Spandl [129, 130]. It states that any time-discrete dynamical system (C, f) given by a
continuous function f on a Cantor space C can be embedded in a deterministic CA on a
non-Abelian Cayley graph.

Theorem 3.12. (K, dH) is a Cantor space.

Proof It is well known that K is perfect [95], and according to Thm. 2.6 i) it is compact.
Because K is clearly non-empty, it just remains to prove that it is totally disconnected.

Let S ∈ K and U ⊂ K an open set with S ∈ U . We show that there is a clopen set V with
S ∈ V ⊆ U . As U is open, there is k ∈ N such that B 1

k
(S) ⊆ U . Because the distance dH

only takes on the discrete values 0 and 1
k+1 for k = 0, 1, ..., a property inherited from the

underlying Cantor metric,

B 1
k
(S) = {T ∈ K|dH(S, T ) <

1

k
} = {T ∈ K|dH(S, T ) ≤ 1

k + 1
2

}.

So the open ball B 1
k
(S) conincides with the closed ball B 1

k+ 1
2

(S) and is hence a clopen

set V in U which contains S.

Note that the empty set is isolated in K ∪ {∅} and that therefore it is excluded in our
definition of K.

Corollary 3.13. Let (Z, U,E, f0) be a CNDA with global function f . Then (K, f) is a dy-
namical system that can be embedded in a CA.

As can be seen in the construction of the CA it is a shortcoming of this embedding that
there is almost no chance to determine its actual global function in practice. Furthermore,
the grid underlying the CA belongs to an aritificial group that does not resemble the orig-
inal structure, Z, at all. In consequence this embedding seems not to be applicable in
practice. We ask next if there is a reasonable embedding in a CA which at least operates
on grid Z.

3.2.2.2 Embedding in a CA on Z?

There exists a homeomorphism α : K → E′Z for arbitrary finite E′, as both sets are Cantor
spaces [180]. So there is an embedding of the CNDA (Z, U,E, f0) with global function f in
a dynamical system (E′Z, f ′ := αfα−1). However, f ′ is not necessarily the global function
of a CA (Z, V, E′, f ′0). According to Thm. 2.4 f ′ would at least need to be shift-invariant for
this purpose, but from a reasonable embedding α we expect a little bit more:

Definition 3.14. Let E′ be a finite set. A map α : K → E′Z is called shift-invariant if
α ◦ σi = σi ◦ α for all i ∈ Z.
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If the embedding α has this property, the shift-invariance of f ′ follows immediately with
Lm. 3.5: for all i ∈ Z we have

σif
′α = σiαf = ασif = αfσi = f ′ασi = f ′σiα.

The following theorem now answers the question, whether there is an embedding of a
CNDA in a CA which is reasonable in this sense: there is none.

Theorem 3.15. Let |E| > 1. In general there is no continuous, injective and shift-invariant
map from K to any E′Z, where E′ is a finite set.

Proof We show that because of the continuity and the shift-invariance any potential map
acts locally and then rule out injectivity by constructing a counterexample. The proof of
the locality is very similar to the proof of Prop. 3.7.

Let E′ be a finite set and α : K → E′Z continuous and shift-invariant.

Claim i) There is a finite set U ⊂ Z such that α(S)(0) is fully determined by S|U for all
S ∈ K.

Choose 0 < ε < 1. Because α is continuous there exists δ > 0 such that dH(S1, S2) < δ
implies dC(α(S1), α(S2)) < ε for S1, S2 ∈ K. Consider S1, S2 ∈ K such that S1|[−i,...,i] =

S2|[−i,...,i] for i ∈ Z with 1
δ − 2 < |i| ≤ 1

δ − 1, i.e., that they differ just at sites j ∈ Z with
|j| > 1

δ − 1. But then already dH(S1, S2) < δ and therefore dC(α(S1), α(S2)) < ε, which
means that α(S1)(0) = α(S2)(0). So we define U = [−i, ..., i].

Claim ii) There is a map α0 : K|U → E′ such that α(S)(i) = α0(S|i+U ) for all i ∈ Z and all
S ∈ K.

Let T̃ ∈ K|U . Then there is T ∈ K such that T |U = T̃ , so that we can define the map by
α0(T̃ ) = α(T )(0). Note that we can restrict any S ∈ K to U , apply α0 and obtain α0(S|U ) =
α(S)(0) per construction. Due to the shift-invariance of α the requested property holds:
for i ∈ Z and S ∈ K

α(S)(i) = σi−1σiα(S)(i) = σi−1(ασi(S))(i) = α(σi(S))(0) = α0(σiS|U ) = α0(S|i+U ).

Claim iii) α is not injective.
As |E| > 1, we find two different symbols which we call 0, 1 ∈ E without restriction and

define the deterministic states

ϕ1 =(...01 0...0 10...), ϕ2 =(...01 0...0 00...),

ψ1 =(...00 0...0︸︷︷︸
|U0|+1

00...), ψ2 =(...00 0...0︸︷︷︸
|U0|+1

10...).

According to Lm. 3.3 S1 = {ϕ1, ψ1} ∈ K and S2 = {ϕ2, ψ2} ∈ K. Then for all i ∈ Z

α(S1)(i) = α0(S1|i+U ) = α0(S2|i+U ) = α(S2)(i)

and therefore α(S1) = α(S2). As S1 6= S2, α is not injective.
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3.2.3 Pattern Based Analysis

We suggest pattern SA on Z that allow for control of a CNDA’s limit set and for easier
analysis than with the embedding of the last section. Before pattern SA are introduced we
first introduce the underlying de Bruijn state calculus which we developed on the basis
of pattern ideas in CA theory [76, 173], in the theory of de Bruijn graphs [162] and in pair
approximation [96].

3.2.3.1 De Bruijn State Calculus

As usual in this section E denotes a finite set and V = {−m, ..., n} for m,n = 0, 1, ....

Definition 3.16. A de Bruijn state is an element of the de Bruijn space XdB := (P(EV ))Z.

Note that the Cantor metric can be introduced on XdB because P(EV ) is finite.

Definition 3.17. For all Φ,Ψ ∈ XdB

Φ ⊆dB Ψ⇔ ∀i ∈ Z : Φ(i) ⊆ Ψ(i).

Lemma 3.18. ⊆dB is a partial order on XdB .

Proof The partial order onXdB is induced by the partial order⊆ onP(EV ). Let Φ,Ψ,Ω ∈
XdB . Then the relation ⊆dB is reflexive, as ⊆ is reflexive; Φ(i) ⊆ Φ(i) for all i ∈ Z implies
Φ ⊆dB Φ. It is antisymmetric, as per definition Φ ⊆dB Ψ and Ψ ⊆dB Φ implies that
Φ(i) ⊆ Ψ(i) and Ψ(i) ⊆ Φ(i) for all i ∈ Z. Because ⊆ is antisymmetric, it follows that
Φ(i) = Ψ(i) for all i ∈ Z and therefore Φ = Ψ. Similarly, it is transitive because Φ ⊆dB Ψ
and Ψ ⊆dB Ω imply Φ(i) ⊆ Ψ(i) and Ψ(i) ⊆ Ω(i) for all i ∈ Z. Therefore Φ(i) ⊆ Ω(i) for all
i ∈ Z and so Φ ⊆dB Ω.

We also write⊆ for⊆dB in the following, as the meaning is always clear from the context.
Next we define functions relating XdB and K.

Definition 3.19. We set β : XdB → K ∪ {∅}, Φ 7→ β(Φ) with

β(Φ) = {ϕ ∈ EZ | ∀i ∈ Z : ϕ|i+V ∈ Φ(i)}

and γ : K ∪ {∅} → XdB, S 7→ γ(S) with

(γ(S))(i) = {v ∈ EV | ∃ϕ ∈ S : v = ϕ|i+V }.

Fig. 3.3 illustrates how β and γ work. As usual it has to be checked first that β really
maps to compact sets.

Lemma 3.20. Let Φ ∈ Xdb. Then β(Φ) is closed.
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3.2 Analysis of Cellular Non-Deterministic Automata

Figure 3.3: Reconsider S1 of the example of the third claim in the proof of Thm. 3.15 with U0 = {0}. For
V = {0, 1, 2, 3} the de Bruijn state γ(S1) is depicted by the rectangles. (γ(S1))(0) = {(0100), (0000)} is the
smallest rectangle at the very left, (γ(S1))(1) = {(1001), (0000)} the next tallest etc. By gluing them back
together such that they coincide on the overlap we find that βγ(S1) = S1.

Proof We show that the limit of any convergent sequence in β(Φ) is also in β(Φ).
Let (ϕn)n∈N be a sequence in β(Φ) with ϕn → ϕ ∈ K for n → ∞. Let i ∈ Z. There exists

N ∈ N such that ϕN |[−i−|V |,...,i+|V |] = ϕ|[−i−|V |,...,i+|V |]. Therefore ϕ|i+V = ϕN |i+V ∈ Φ(i)

and ϕ ∈ β(Φ) = {ψ ∈ EZ|∀i ∈ Z : ψ|i+V ∈ Φ(i)}.
A state Φ ∈ Xdb with card(β(Φ)) = 1 is called a deterministic de Bruijn state. For any

deterministic state ϕ ∈ EZ there is a deterministic de Bruijn state Φ ∈ XdB given by Φ(i) =
{ϕ|i+V } for all i ∈ Z. It holds that β(Φ) = {ϕ}, γ({ϕ}) = Φ, γβ(Φ) = Φ and βγ({ϕ}) = {ϕ}
then, such that β and γ are each other’s inverse on these states.

There are many de Bruijn states that are mapped to the empty set by β: let, e.g., E =
{0, 1} and Φ ∈ XdB given by Φ(i) = {0V } and Φ(i + 1) = {1V } for even i ∈ Z. Then
β(Φ) = ∅, as an incompatibility at any neighboring sites in the grid forces the image of the
de Bruijn state under β to be the empty set.

As a consequence, β is not continuous on XdB . We approximate e.g. Φ ∈ Xdb with
β(Φ) 6= ∅ arbitrarily close by a sequence (Φn)n∈N in Xdb with β(Φn) = ∅ for all n ∈ N by
inserting in Φ an incompatibility at neighboring sites n, n+ 1 ∈ N. Then dC(Φ,Φn) = 1

1+n ,
but dH(β(Φ), β(Φn)) = dH(β(Φ), ∅) = 1.

We characterize a subset ofXdB on which β has nicer properties. In particular this subset
is not mapped to the empty set by β.

Definition 3.21. Let V 0 := {0}, V 1 := V and recursively for p ∈ N, 1 < p

V p := {l ∈ Z | ∃k ∈ V : l ∈ k + V p−1}.
Consider Φ ∈ XdB with Φ(i) 6= ∅ for all i ∈ Z, j ∈ Z, and p = 1, 2, .... Then v ∈ EV p with

∀k ∈ V p−1 : v|k+V ∈ Φ(j + k).

is called a pattern or template of Φ at location j of extension p. If for all patterns v of Φ there
is ϕ ∈ β(Φ) s.t. ϕ|j+V p = v, we say that Φ has the extension property. The subset of elements
in XdB that have the extension property is denoted by XdBe.

So for Φ ∈ XdBe and given j ∈ N we find for all i ∈ [−j, j] and all vi ∈ Φ(i) a ϕ ∈ EZ

such that (γ({ϕ)})(i) = vi. By gluing together such finite patterns we can extend the
construction to infinity. Fig. 3.4a gives an example of how patterns can be understood in
terms of the underlying sites.
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(a) (b)

Figure 3.4: (a) Exemplary pattern sketches for m = 1, n = 2. The inner/outer ellipse depicts the sites i ∈ Z
belonging to patterns at location j = 0 of extension p = 1/p = 2. (b) Example of how a pattern can be extended
to the right; see the proof of Lm. 3.22. The left dark ellipse depicts v, the right dark ellipse is the part of ψ that
is used for extension and the white ellipse is the interval on which they coincide, (0 + (2− 1)2) + {−1, 0, 1, 2}.

Lemma 3.22. γ(S) ∈ XdBe for S ∈ K.

Proof We show that γ(S) possesses the extension property for S ∈ K. Let v ∈ EV p be
a pattern of γ(S) at location j ∈ Z of extension p. This is, the length of v is p(n + m) + 1.
The right hand side of v ends at site j + pn; the last neighborhood of length n + m + 1
in the interval in Z that is covered by j + V p is centered around j + (p − 1)n. There is
w ∈ γ(S)(j + (p− 1)n) such that w(k) = v((p− 1)n+ k) for k ∈ V . Then there is ψ ∈ S s.t.
ψ also coincides with v on (j + (p − 1)n) + V ; see also Fig. 3.4b. We may thus extend the
pattern v to the right using ψ,

ϕ(k) =

{
v(l − j) for l ∈ j + V p

ψ(k) for k > j + pn
.

Similarly, we can extend the pattern to the left. In the end ϕ|j+V p = v for ϕ ∈ βγ(S), as
ϕ can be thought of as glued together by the patterns in the extending states and v.

Thus from now on we use β and γ only as maps between the restricted sets XdBe and K.

Lemma 3.23. Consider β : XdBe → K and γ : K → XdBe. Then
i) β is continuous and shift-invariant.

ii) γ is continuous and shift-invariant.

Proof Claim i) Let ε > 0. Choose δ = ε and assume dC(Φ1,Φ2) < δ for Φ1,Φ2 ∈ XdBe.
For i ∈ Z with |i| < 1

δ − 1 then Φ(i) = Ψ(i), so that for all ϕ ∈ β(Φ1) there is ψ ∈ β(Φ2)
with ϕ(i) = ψ(i) and vice versa. Note that for such a ψ to exist it is necessary that Φ2 is
extendable. Therefore dH(β(Φ1), β(Φ2)) < ε and hence β is continuous.

Furthermore β is shift-invariant since for i ∈ Z and Φ ∈ XdBe

σiβ(Φ) = {σi(ϕ) ∈ EZ | ∀j ∈ Z : ϕ|j+V ∈ Φ(j)}
= {ϕ ∈ EZ | ∀j ∈ Z : ϕ|j+V ∈ Φ(i+ j)} = βσi(Φ).

Claim ii) Let ε > 0. Choose δ = 1
1
ε
+|V | and assume dH(S1, S2) < δ for S1, S2 ∈ K.

Consider v ∈ γ(S1)(i) for |i| < 1
ε − 1. By definition there exists ϕ ∈ S1 such that v = ϕ|i+V ,

and because of dH(S1, S2) < δ there is ψ ∈ S2 such that ϕ(j) = ψ(j) for j ∈ Z with
|j| < 1

δ − 1 = 1
ε − 1 + |V |. So v ∈ γ(S2)(i) and γ(S1)(i) ⊆ γ(S2)(i), and analogous

considerations also yield γ(S2)(i) ⊆ γ(S1)(i). Therefore dC(γ(S1), γ(S2)) < ε and hence γ
is continuous.
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Furthermore γ is shift-invariant since for i, j ∈ Z and S ∈ K

(σiγ(S))(j) = γ(S)(i+ j) = {v ∈ EV | ∃ϕ ∈ S : v = ϕ|i+j+V }
= {v ∈ EV | ∃ϕ ∈ σi(S) : v = ϕ|j+V } = (γσi(S))(j).

According to Thm. 3.15 γ cannot be injective, but is surjective on XdBe per construction.
β on contrast is injective by construction, but not surjective: consider again the example
in the third claim of the proof of Thm. 3.15 and identify V = U0. Then e.g. S1 does not
have any preimage in XdBe, because β(Φ) = S1 ∪ S2 if the patterns of S1 are collected in
Φ ∈ Xdbe.

Although β and γ served as each other’s inverse on deterministic states, the considera-
tions so far indicate that this cannot be true in general. However, we find the following:

Lemma 3.24. Φ = γβ(Φ) for Φ ∈ XdBe.

Proof We show both inclusions for Φ ∈ XdBe. Consider first i ∈ Z and v ∈ Φ(i). Since
Φ has the extension property and v is a pattern of extension 1, there is ϕ ∈ β(Φ) such that
ϕ|i+V = v. By definition of γ then also v ∈ (γβ(Φ))(i).

Consider now i ∈ Z and v ∈ (γβ(Φ))(i). By definition of γ then there is ϕ ∈ β(Φ) such
that v = ϕ|i+V . By definition of β then already v ∈ Φ(i).

Lemma 3.25. S ⊆ βγ(S) for S ∈ K.

Proof The claim is a direct consequence of the definition of the maps γ and β. Application
of γ extracts the patterns of extension 1 from the given states, and application of β glues
them back together. There may be more states in the end, but at least the original states are
reconstructed.

In general the other inclusion βγ(S) ⊆ S is not true for S ∈ K: reconsider again the
example of the third claim in the proof of Thm. 3.15 with V = U0 = {0}. Then

γ(S1)(i) =

{
{(0), (1)} for i = 1, i = 4
{(0)} else

,

for i ∈ Z and e.g. ϕ2 = (...010000...) ∈ βγ(S1), but ϕ2 6∈ S1.

Proposition 3.26. γ(S) is the smallest state in XdBe of which the image under β covers a
given S ∈ K.

Proof Let S ∈ K. According to Lm. 3.22 and 3.25 γ(S) ∈ XdBe, and βγ(S) covers S.
So it remains to show that γ(S) is the smallest state with that property, i.e., that for all
Φ ∈ XdBe with S ⊆ β(Φ) we find γ(S) ⊆ Φ. But as for every i ∈ Z every element in γ(S)(i)
corresponds to a state ϕ ∈ S, the image under β of any state in XdBe that is strictly smaller
than γ(S) cannot cover the complete set S.

29



3 Cellular Non-Deterministic Automata

We close our basic considerations by comparing properties of patterns of different length.
Let V1, V2 ⊆ Z, 0 ∈ V1, V2 define two de Bruijn spaces XdBi and according maps βi :
XdBei → K, γi : K → XdBei for i = 1, 2.

Lemma 3.27. V1 ⊆ V2 implies that β2γ2(S) ⊆ β1γ1(S) for all S ∈ K.

Proof Let S ∈ K, i ∈ Z and consider ϕ ∈ β2γ2(S). By definition ϕ|i+V2 ∈ γ2(S)(i), and
therefore there exists ψ ∈ S such that ϕ|i+V2 = ψ|i+V2 . As V1 ⊆ V2 then also ϕ|i+V1 = ψ|i+V1

and ϕ|i+V1 ∈ γ1(S)(i). As this is true for all i ∈ Z it can be concluded that ϕ ∈ β1γ1(S).

3.2.3.2 Pattern Superautomata

In this section we introduce SA on XdBe. We suggest a system, show first that it is a CA
and then that it is really a SS. Afterwards we investigate an order of these SA for different
pattern lengths.
U ⊆ Z always denotes the neighborhood of a CNDA and V ⊆ Z a set to define the de

Bruijn states XdB = (P(EV ))Z. We need the definition XdBe|U := {Ψ|U |Ψ ∈ XdBe} = {v ∈
(P(EV ))U | ∃Ψ ∈ XdBe : v = Ψ|U} in the following.

Theorem 3.28. Let (Z, U,E, f0) be a CNDA with global function f and V = {−m, ..., n} for
m,n ∈ N. There is a local function g̃0 : XdBe|U → P(EV ) such that for i ∈ Z the map

g : XdBe → XdBe, Φ 7→ g(Φ) = γfβ(Φ)

acts as
g(Φ)(i) = g̃0(Φ|i+V ).

Proof Let Φ ∈ XdBe, i ∈ Z and denote S = f(β(Φ)). γ(S)(i) can be computed if we know
S only locally, this is, if we only know {ϕ|i+V |ϕ ∈ S}. In order to determine {ϕ|i+V |ϕ ∈
S} it is sufficient to know {ϕ|i+j+U | j ∈ V, ϕ ∈ β(Φ)}. However, as Φ has the extension
property any local pattern can be extended to a global state. Therefore we only need to
know Φ(k) for k ∈ i+ U , and hence there is a map g̃0 with the required properties.

Corollary 3.29. Let (Z, U,E, f0) denote a CNDA with global function f and V = {−m, ..., n}
for m,n ∈ N. Then there is a CA (Z, U,P(EV ), g0) with global function g : XdB → XdB

such that g(Φ) = γfβ(Φ) for Φ ∈ XdBe.

Proof We just extend the local function g̃0 of Thm. 3.28 from XdBe|U to (P(EV ))U , as a
CA is defined on the whole space. This can be achieved via

g0 : (P(EV ))U → P(EV ), v 7→
{
g̃0(v) if v ∈ XdBe|U
∅ else

.

Then per construction the according global function g agrees with γfβ on XdBe.

Fig. 3.5 shows how the CA works. The reason for the introduction ofXdBe is the require-
ment of locality for β.

It remains to show that for arbitrary V such a CA is truly a SA, and that the set of these
SA can be totally ordered.
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Figure 3.5: The global function g of the CA works onXdBe like the global function f of the CNDA after having
translated the underlying spaces.

Lemma 3.30. fk(S) ⊆ βgkγ(S) for all k = 0, 1, ... and all S ∈ K.

Proof The claim follows by induction, and the initial step for k = 0 is given by Lm. 3.25.
Let k ∈ N and S ∈ K. Assuming that the claim holds for k − 1, we can calculate

fk(S) = ffk−1(S) ⊆ fβgk−1γ(S) ⊆ βγfβgk−1γ(S) = βgkγ(S).

Lemma 3.31. Let V1, V2 ⊆ Z define two de Bruijn spaces XdBi and according maps βi :
XdBei → K, γi : K → XdBei and gi = βifγi for i = 1, 2. Then V1 ⊆ V2 implies that
β2g

k
2γ2(S) ⊆ β1g

k
1γ1(S) for all k = 0, 1, ... and all S ∈ K.

Proof The claim follows by induction, and the initial step for k = 0 is given by Lm. 3.27.
Let V1 ⊆ V2 and S ∈ K. Assuming that the claim holds for k − 1, we can calculate

β2g
k
2γ2(S) = β2γ2fβ2g

k−1
2 γ2(S) ⊆ β2γ2fβ1g

k−1
1 γ1(S) ⊆ β1γ1fβ1g

k−1
1 γ1(S).

As there is S ∈ Kwith βγ(S) 6⊆ S, we cannot expect equality in Lm. 3.30 for a whole tra-
jectory in general. Indeed there are CNDA such that no pattern SA is capable of covering it
precisely, even if one restricts oneself to trajectories starting with deterministic states. This
is a consequence of correlations beyond the patterns’ locality.

Proposition 3.32. There is a CNDA (Z, U,E, f0) and ϕ ∈ EZ such that for all V there exists
k ∈ Z with βgkγ({ϕ}) 6⊆ fk({ϕ}).

Proof Consider U = {−1, 0}, E = {0, 1, 2, 3, 4, 5, 6} and f0 given by

ϕ(−1) ϕ(0) f0((ϕ(−1), ϕ(0)))

0 0 {0}
0 1 {0, 2}
0 2 {2}
0 3 {0}
0 5 {0}
0 6 {0}
1 0 {3}

ϕ(−1) ϕ(0) f0((ϕ(−1), ϕ(0)))

2 0 {0}
2 3 {4}
2 4 {0}
3 0 {5}
4 5 {6}
5 0 {0}
6 0 {6},
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where the lacking combinations may be defined at will. We choose {ϕ} = {(...001000...)}
and calculate for all V with |V | = l ∈ N

f({ϕ}) = fβγ({ϕ}) = β γfβ︸︷︷︸
g

γ({ϕ}) = {(...000300...), (...002300...)},

f2({ϕ}) = fβgγ({ϕ}) = {(...000050...), (...002450...)}.

Applying again βγ, for l = 1, i.e., V = {0}, we are done as η1 = (...000450...) ∈
βg2γ({ϕ}), but η1 6∈ f2({ϕ}). For l > 1 this does not change anything. Furthermore

f3({ϕ}) = fβg2γ({ϕ}) = {0, (..002060...)},

and by induction it is clear that in general application of f l−1 to f2({ϕ}) leads to l − 1
zeros between 2 and 6 in the second state, and that

f l−1+2({ϕ}) = fβglγ({ϕ}) = {0, (...002 0...0︸︷︷︸
l−1

60...)}.

So we find that e.g. η2 = (...0020...) ∈ β(gl+1γ({ϕ}))), but η2 /∈ f l+1({ϕ}).

This example also shows that there is no minimal pattern SA in general, as there are
cases where for all pattern SA a bigger choice of V leads to a strictly smaller SA. In turn
the SA for V = {0} is maximal.

We note that similar considerations will become important again in the analysis of cel-
lular probabilistic automata in Sec. 4.3.2.

3.2.4 Subsolution Supersystems

In this section we suggest the SS of minimal and maximal subsolutions to analyze a CNDA
(Z, U,E, f0) and relate it to the pattern SA. It is assumed in the whole section that E is a
totally ordered set with order ≤, which is necessary for the method. Note that this order
induces a partial order on EU : u ≤ u′ if u(j) ≤ u′(j) for all j ∈ U , where u, u′ ∈ EU .

3.2.4.1 Minimal and Maximal Subsolutions

Definition 3.33. For a CNDA (Z, U,E, f0) with global function f , let

f0 : EU → E, u 7→ min f0(u),

f0 : EU → E, u 7→ max f0(u).

We call the deterministic CA (Z, U,E, f0) minimal and (Z, U,E, f0) maximal CA and denote
their global functions by f and f , respectively. We set further F : K → K by

S → F (S) = {ϕ ∈ EZ | ∀i ∈ Z∃ψ1, ψ2 ∈ S : f(ψ1)(i) ≤ ϕ(i) ≤ f(ψ2)(i)}.

As usual we first check the definition and then show how F can be used to analyze the
CNDA’s long-term-behavior.
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Lemma 3.34. F is closed and continuous.

Proof
Claim i) F is closed.

We show that F (S) is closed, if S ∈ K is closed. Let S ∈ K and (ϕn)n∈N be a sequence
in F (S) s.t. ϕn → ϕ ∈ EZ as n → ∞. As EZ is a metric space it is enough to show that
ϕ ∈ F (S).

For all i ∈ Z there is N ∈ N such that ϕ(i) = ϕN (i). Per definition there are ψ1, ψ2 ∈ EZ

such that f(ψ1)(i) ≤ ϕN (i) ≤ f(ψ2)(i). So for all i ∈ Z there are ψ1, ψ2 ∈ S such that
f(ψ1)(i) ≤ ϕ(i) ≤ f(ψ2)(i) and therefore ϕ ∈ F (S).

Claim ii) F is continuous.

We show that for each ε > 0 there is a δ > 0 such that dH(F (S), F (T )) < ε if dH(S, T ) < δ
for S, T ∈ K.

Let ε > 0 and choose δ = ε and k ∈ N such that 1
1+k < δ. For S, T ∈ K with dH(S, T ) < δ

we find that S(i) = T (i) and hence F (S)(i) = F (T )(i) for i ∈ [−k, ..., k], and therefore
dH(F (S), F (T )) < ε.

Proposition 3.35. (K, F ) is a SS of the CNDA (Z, U,E, f0) with global function f .

Proof As both dynamical systems are defined on K, it is enough to show that for all
S ∈ K it holds that f(S) ⊆ F (S).

Let ϕ ∈ f(S). Then there exists ψ ∈ S sucht that ϕ(i) ∈ f0(ψ|i+U ) for all i ∈ Z. Therefore
for all i ∈ Z we can choose ψ1 = ψ2 = ψ ∈ S such that f0(ψ|i+U ) ≤ ϕ(i) ≤ f0(ψ|i+u), and
so ϕ ∈ F (S).

We refer to (K, F ) as the subsolution SS. Recall that we gain knowledge about ωf (S)
with Prop. 3.11 if we know how to determine ωF (S) for S ∈ K. It turns out that the latter
is easy in the case of monotonic CNDA.

Definition 3.36. A deterministic CA (Z, U,E, f0) with global function f is monotonic, if
i) ϕ(i) ≤ f(ϕ)(i) for all ϕ ∈ EZ and all i ∈ Z,

ii) ϕ|U ≤ ψ|U ⇒ f0(ϕ|U ) ≤ f0(ψ|U ) for all ϕ,ψ ∈ EZ.
A CNDA is called monotonic if the according minimal and maximal CA are monotonic.

For a CA (Z, U,E, f0) the two monotonicity conditions are independent, as the following
two examples show.

Example for i) ∧¬ ii): consider U = {0}, E = {1, 2, 3, 4} and f0 given by

ϕ(0) f0(ϕ(0))

1 4
2 3
3 3
4 4

Then i) is true. Take e.g. ϕ,ψ ∈ EZ defined by ϕ(i) = 1, ψ(i) = 2 for all i ∈ Z. Then
f(ϕ)(i) = 4 > 3 = f(ψ)(i), and therefore ii) is not fulfilled.

Example for ii) ∧¬ i): consider U = {0}, E = {0, 1, 2} and f0 given by
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ϕ(0) f0(ϕ(0))

0 0
1 0
2 1.

Then ii) is fulfilled, but take ϕ ∈ EZ with ϕ(i) = 1 for all i ∈ Z. Then f(ϕ)(i) = 0 < ϕ(i)
for all i ∈ Z.

Lemma 3.37. The ω-limit set of η ∈ EZ under a monotonic deterministic CA (Z, U,E, f0)
with global function f contains only one element, i.e., limn→∞ f

n(η) exists.

Proof Let ϕ,ψ ∈ ωf (η). Then there exist strictly monotonically increasing sequences
(ni)i∈N and (mj)j∈N in N such that

lim
i→∞

fni(η) = ϕ, lim
j→∞

fmj (η) = ψ

in the Cantor topology. Choose subsequences (ñk)k∈N and (m̃k)k∈N such that ñk ≤ m̃k

for all k ∈ N. Then we have because of monotonicity property i) for all l ∈ Z

f ñk(η)(l) ≤ f m̃k(η)(l).

Since this holds for all k ∈ N, the relation is also true in the limit k → ∞: ϕ(l) ≤ ψ(l).
Interchanging the roles of ϕ and ψ additionally yields ϕ(l) ≥ ψ(l) and therefore ϕ = ψ.

The property transfers to monotonic CNDA, such that ωF -limit sets of deterministic
states contain only one element and can be determined by the corresponding ωf - and ωf -
limit sets.

Lemma 3.38. Let the CNDA (Z, U,E, f0) be monotonic and {ϕ} ∈ K. Then for all k ∈ N

F k({ϕ}) = {ψ ∈ EZ | ∀i ∈ Z : fk(ϕ)(i) ≤ ψ(i) ≤ fk(ϕ)(i)}.

Proof We prove the claim by induction. Per definition it is clear that

F ({ϕ}) = {ψ ∈ EZ | ∀i ∈ Z : f(ϕ)(i) ≤ ψ(i) ≤ f(ϕ)(i)}.

Let k ∈ N. We assume that

F k−1({ϕ}) = {ψ ∈ EZ | ∀i ∈ Z : fk−1(ϕ)(i) ≤ ψ(i) ≤ fk−1
(ϕ)(i)},

let ψ ∈ F k−1({ϕ}) and fix i ∈ Z. Because fk−1(ϕ)(j) ≤ ψ(j) for all j ∈ i + U , from
monotonicity property ii) it follows that fk(ϕ)(i) ≤ f(ψ)(i). Similar reasoning holds for the
upper bound, and so

F k({ϕ}) = {ψ ∈ EZ | ∀i ∈ Z∃ψ1, ψ2 ∈ F k−1({ϕ}) : f(ψ1)(i) ≤ ψ(i) ≤ f(ψ2)(i)}

= {ψ ∈ EZ | ∀i ∈ Z : fk(ϕ)(i) ≤ ψ(i) ≤ fk(ϕ)(i)}.
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Proposition 3.39. Let the CNDA (Z, U,E, f0) be monotonic and {ϕ} ∈ K. Then

ωF ({ϕ}) = {ψ ∈ EZ | ∀i ∈ Z : ϕ(i) ≤ ψ(i) ≤ ϕ(i)},

where ωf (ϕ) = {ϕ} and ωf (ϕ) = {ϕ}.

Proof For a monotonic CNDA by definition the according mininimal and maximal CA
are monotonic, and hence Lm. 3.37 guarantees that the ω-limit sets are well-defined. We
denote T := {ψ ∈ EZ | ∀i ∈ Z : ϕ(i) ≤ ψ(i) ≤ ϕ(i)} and show that Fmj ({ϕ}) converges to
T in the Hausdorff topology for all sequences (mj). As K is complete, necessarily T ∈ K.

As E is finite, for all i ∈ Z there exists ni ∈ N such that fn(ϕ)(i) = ϕ(i) and f
n
(ϕ)(i) =

ϕ(i) for all n ≥ ni.
Let (mj)j∈N be a strictly monotonically increasing sequence in N and ε > 0. Choose

k ∈ N such that 0 < 1
1+k < ε and choose N0 = maxi∈{−k,...,k}{ni}. With Lm. 3.38 for all

j ≥ N0, for all χ ∈ Fmj ({ϕ}) there is ψ ∈ T with χ(i) = ψ(i) for i ∈ {−k, ..., k} and vice
versa, and therefore dH(Fmj ({ϕ}), T ) < 1

1+k < ε.

This proposition can be extended to random states. If f and f are monotonic, ωF -limit-
sets only contain one element and can be determined by the ωf - and ωf -limit sets of ap-
propriate states.

Lemma 3.40. Let the CNDA (Z, U,E, f0) be monotonic, S ∈ K, ϕ1(i) = minϕ∈S{f(ϕ)(i)}
and ϕ2(i) = maxϕ∈S{f(ϕ)(i)}. Then

ωF (S) = {ψ ∈ EZ | ∀i ∈ Z : ϕ(i) ≤ ψ(i) ≤ ϕ(i)},

where ωf (ϕ1) = {ϕ} and ωf (ϕ2) = {ϕ}.

Proof Let S ∈ K. Recalling that F is a function that acts on states only single-site-wise it
becomes clear that F (S) does not possess any correlations. This guides us to the definition
of ϕ1, ϕ2 ∈ EZ and encourages us to use the same proof idea as in the former proposition.
Here one uses that in analogy to Lm. 3.38 for all k ∈ N

F k(S) = {ψ ∈ EZ|∀i ∈ Z : fk−1(ϕ1)(i) ≤ ψ(i) ≤ fk−1
(ϕ2)(i)}

and that here for all i ∈ Z there exists 1 ≤ ni ∈ N such that fn−1(ϕ1)(i) = ϕ(i) and

f
n−1

(ϕ2)(i) = ϕ(i) for all n ≥ ni.
By the same argument as above we see that Fmj (S) converges to the suggested set for

all strictly monotonically increasing sequences {mj}j∈N in the Hausdorff topology.

3.2.4.2 The Subsolution Supersystem and Pattern Superautomata

It will be shown that for trajectories starting with deterministic states the subsolution SS
of a CNDA (Z, U,E, f0) with global function f can also be interpreted as originating from
a SA, which often coincides with the maximal pattern SA.

In this section we choose V = {0} and according de Bruijn states XdB(e) and maps β and
γ. Here g is the global function of the corresponding maximal pattern SA, and F is defined
as in Def. 3.33.
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Lemma 3.41. Let G : XdBe → XdBe be given by Φ → G(Φ) = γFβ(Φ). For all S ∈ K and
all Φ ∈ XdBe it holds that

i) βγF (S) = F (S),
ii) βG(Φ) = Fβ(Φ), i.e., the dynamical system (XdBe, G) can be embedded in (K, F ).

Proof Claim i) According to Lm. 3.25 βγ(S) ⊇ S for all S ∈ K, so we just have to prove
βγF (S) ⊆ F (S).

Let ϕ ∈ βγF (S). Then we know that ϕ(i) ∈ γF (S)(i) for all i ∈ Z. According to the
defintion of γ this implies that there is ψ ∈ F (S) such that ϕ(i) = ψ(i). As ψ ∈ F (S),
we know that there are ψ1, ψ2 ∈ S such that f(ψ1)(i) ≤ ψ(i) = ϕ(i) ≤ f(ψ2)(i), and thus
ϕ ∈ F (S).

Claim ii) follows from i): βG = βγFβ = Fβ.

Proposition 3.42. Using β and γ, G can be extended to a SA on XdB of the CNDA (Z, U,E,
f0) which is bigger than all pattern SA, and β(ωG(γ({ϕ}))) = ωF ({ϕ}) for all ϕ ∈ EZ.

Proof First, we show that G can be extended to a CA. Let Φ ∈ XdBe and i ∈ Z. We know
that

G(Φ)(i) = {ϕ|i+V |ϕ ∈ Fβ(Φ)}
= {v ∈ EV | ∀j ∈ V ∃ψ1, ψ2 ∈ β(Φ) : f(ψ1)(i+ j) ≤ u(j) ≤ f(ψ2)(i+ j)}

As Φ ∈ Xdbe, we only need to know Φ|i+U in order to determine this set. The extension to
a CA on XdB can be achieved in analogy to the argumentation for Cor. 3.29.

It is clear that this CA is a SA bigger than all pattern SA, if we show that it covers the
maximal pattern SA. With Prop. 3.35 it holds that g(Φ) = γfβ(Φ) ⊆ γFβ(Φ) = G(Φ) for
all Φ ∈ (P(E))Z. Therefore βgkγ(S) = β ⊆ βGkγ(S) for all k ∈ N and all S ∈ K.

It remains to show that ωF ({ϕ}) ⊆ β(ωG(γ({ϕ})) for all ϕ ∈ EZ, the other inclusion
follows analogously.

Like in Prop. 3.11 we see that for T ∈ ωF ({ϕ}) there is a sequence (nl)l∈N in N and Φ ∈
ωG(γ({ϕ})) such that T = liml→∞ F

nl({ϕ}) and Φ = liml→∞G
nlγ({ϕ}). Since βγ({ϕ}) =

{ϕ} and with Lm. 3.41 i) for all l ∈ N

Fnl({ϕ}) = (βγF )nl({ϕ}) = β(γFβ)nlγ({ϕ}) = βGnlγ({ϕ}),

and liml→∞ βG
nlγ({ϕ}) = β(Φ) because β is continuous. As the limit point is unique

therefore T = β(Φ) ∈ β(ωG(γ({ϕ})).

In practice the local function often maps intervals to intervals in some sense. This prop-
erty already ensures that the subsolution SA coincides with the maximal pattern SA for
monotonic CNDA on trajectories starting with a deterministic state.

Definition 3.43. LetW = {−m, ..., n} form,n ∈ Z. Then I ⊆ EW is an interval on EW if for
all i1, i2 ∈ I with i1 < i2 there is no w ∈ EW \I such that i1 < w < i2. A CNDA (Z, E, U, f0)
maps intervals to intervals, if ∪i∈If0(i) is an interval on E{0} = E for all intervals I on EU .

Lemma 3.44. If the CNDA is monotonic and maps intervals to intervals, it holds that for
all ϕ ∈ EZ and all k ∈ N

i) F k({ϕ}) = (βγf)k({ϕ}),
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ii) βgkγ({ϕ}) = βGkγ({ϕ}).

Proof Claim i) Let ϕ ∈ EZ. Using Lm. 3.38 it is enough to show that for all k ∈ N

(βγf)k({ϕ}) = {ψ ∈ EZ | ∀i ∈ Z : fk(ϕ)(i) ≤ ψ(i) ≤ fk(ϕ)(i)}.

We use induction and start with k = 1: since γf({ϕ})(i) = f0(ϕ|i+U ) for all i ∈ Z and since
f0(ϕ|i+U ) is an interval

βγf({ϕ}) = {ψ ∈ EZ | ∀i ∈ Z : ψ(i) ∈ f0(ϕ|i+U )}
= {ψ ∈ EZ | ∀i ∈ Z : f(ϕ)(i) ≤ ψ(i) ≤ f(ϕ)(i)}.

Let k ∈ N, k > 1. Then

βγf(βγf)k−1({ϕ}) = {ψ ∈ EZ | ∀i ∈ Z∃τ ∈ f(βγf)k−1({ϕ}) : ψ(i) = τ(i)}
= {ψ ∈ EZ | ∀i ∈ Z∃η ∈ (βγf)k−1({ϕ}) : ψ(i) ∈ f0(η|i+U )}.

Fix i ∈ Z and η ∈ (βγf)k−1({ϕ}). Assuming that the claim is true for k − 1, for all j ∈
i + U then fk−1(ϕ)(j) ≤ η(j), and because of monotonicity hence fk(ϕ)(i) ≤ f0(η|i+U ).
An analogous statement holds for the upper bound. As {η|i+U | η ∈ (βγf)k−1({ϕ})} is an
interval on EU and as the CNDA maps intervals to intervals, all together

βγf(βγf)k−1({ϕ}) = {ψ ∈ EZ | ∀i ∈ Z : fk(ϕ) ≤ ψ(i) ≤ fk(ϕ)}.

Claim ii) is a consequence of i) and of Lm. 3.41: for k ∈ N and ϕ ∈ EZ

βgkγ({ϕ}) = β(γfβ)kγ({ϕ}) = (βγf)kβγ({ϕ}) = (βγf)k({ϕ}) = F k({ϕ})
= (βγF )kβγ({ϕ}) = βGkγ({ϕ}).

3.3 From PDEs to Cellular Non-Deterministic Automata

We suggest a generic procedure to construct a CNDA that describes the dynamics of a
given PDE; see Fig. 3.1a. This procedure is applied in two examples, the Fisher-KPP equa-
tion [68] and the reaction random walk [80]. Both are central in the theory of reaction-
diffusion equations [157].

3.3.1 Generic Procedure

Two steps are necessary in order to describe the dynamics of a PDE by a CNDA. First,
time, space and state space have to be discretized, and second, all transitions between the
discrete states with respect to a suitable time discretization have to be collected. Here we
use a method of lines to discretize space, and then the dynamics to flexibly discretize time
and state space at the same time. We note that in CPA in Chap. 4 we will only be interested
in simpler state space discretizations and therefore discretize space together with time in
one step with a finite difference scheme. Afterwards there the state space is discretized
independently of the dynamics.
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3.3.1.1 Discretization

We start by defining a partition of Ω ⊆ V ⊆ Rn for a time-continuous dynamical system
(R, V,Φt) as in symbolic dynamics [181].

Definition 3.45. A partition or coding E of Ω is a finite collection of disjoint sets {Ωe}e∈E
whose union is Ω. We call e ∈ E the symbol of coding domain Ωe, and the coding map is the
function T : Ω 7→ E, where T (v) = e if v ∈ Ωe.

Let now Ω ⊆ V be compact and positively invariant with respect to Φt. For many ODE
∂tv = h(v) there is the possibility to construct a partition of Ω that is compatible with the
flow in the sense that T (v1) = T (v2) implies T (Φp(v1)) = T (Φp(v2)) for a given p ∈ R.
Then there is a deterministic function f̃ : E → E, e 7→ f̃(e) = TΦPT

−1(e) for P = kp,
k ∈ N, which can be iterated to resemble the dynamics of the continuous system. Such a
partition may often be constructed by integrating the dynamics of a hypersurface or the
boundary ∂Ω of Ω:

Ωe0 = {Φt(∂Ω) | t ∈ [0, p)},
Ωek+1

= {Φt(Φkp∂Ω) | t ∈ [0, p)}, k = 1, ...,K − 1,

ΩeK = Ω \ ∪K−1
k=0 Ωek .

Ωek may also be split into a finite number of subsets along the trajectories of a finite number
of points in ∂Ω to get a better resolution.

If one chooses a partition without that special property, a coding domain is mapped to
several coding domains under h. The result is a non-deterministic f̃ on the symbolic level;
see Sec. 3.3.3.2 for a pronounced example.

Now we move from considerations about a single ODE to a translationally invariant
system of ODE

∂tvi = h(vi−1, vi, vi+1), i ∈ Z,
on dynamically positively invariant state space V̂ = ΩZ. Our central example is the appli-
cation of the method of lines on PDEs of the form

∂tv = h̃(v, ∂xv, ∂xxv).

Note that according to Tychonoff’s theorem [180] V̂ is compact if Ω is. We assume in the
following that the solution operator Φ̂ : R+ × V̂ → V̂ of this dynamical system is well-
defined.

Any coding map T : Ω→ E of Ω induces a map

T̂ : V̂ → EZ, v 7→ T̂ (v) with (T̂ (v))i = T (vi) for i ∈ Z

that we can use for state space discretization of our system of ODE. We observe that a
partition of Ω which is compatible with h at i ∈ Z for given vi−1 and vi+1 is not compatible
any more if the latter are changed. Therefore it is in general impossible to construct a
partition which is compatible with h. If the contribution of vi−1 and vi+1 to h is separable
from and smaller than the one of vi, the best we can do is to choose a partition with respect
to the dominant process and consider the other ones as perturbations.

However, in general we get non-deterministic symbolic dynamics and different tran-
sitions f̃ for each configuration of states in neighboring sites. To account for this phe-
nomenon we pass from f̃ to the local function f0 of a CNDA.
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3.3.1.2 Determination of Possible Transitions

We do not want our symbolic description to miss any trajectory of the system of coupled
ODEs and hence have to collect all possible image symbols for any initial neighborhood
configuration.

Definition 3.46. Let T : Ω → E be a coding map, select P > 0 and define U := {−1, 0, 1}.
A CNDA (Z, U,E, f0) is given as follows: ẽ0 ∈ f0((e−1, e0, e1)) if there is a state v ∈ V̂ such
that T (vj) = ej for j ∈ U and T ((Φ̂P (v))0) = ẽ0.

The CNDA (Z, U,E, f0) with global function f covers the dynamic behavior of the time-
discretized ODE system everywhere except for on a set of measure 0.

Proposition 3.47. Let v ∈ V̂ . If ωΦP (v) ∩ ∂Ωe = ∅ for all e ∈ E, then for all w ∈ ωΦP (v)
there is S ∈ ωf ({T̂ (v)}) such that T̂ (w) ∈ S.

Proof The lemma follows in analogy to Prop. 3.11. Let v ∈ V̂ and w ∈ ωΦP (u). Then
there is a strictly monotonously increasing sequence (nk) in N such that limk→∞ Φ̂nk

P (v) =

w. As K is compact, there is a converging subsequence fnl T̂ (v) of fnk T̂ (v), and we set
S = liml→∞ f

nl T̂ (u). By construction it holds that T̂Φnl
P (v) ∈ fnl T̂ (v) for all l ∈ N, and

as ωΦP (v) ∩ ∂Ωe = ∅ for all e ∈ E, there is N ∈ N such that T̂Φnl
P (v) = T̂ (w) for l > N .

Therefore with Thm. 2.6 ii)

{T̂ (w)} = {T̂ ( lim
l→∞

Φnl
P (v))} = { lim

l→∞
T̂Φnl

P (v)} ⊆ lim
l→∞

fnl T̂ (v) = S.

In conclusion two steps are required in our CNDA construction. First, time, space and
state space have to be discretized, and then all possible transitions between the discretized
portions of phase space have to be determined. We point out that in practice one has to
rely on approximating algorithms for the second task. They cannot guarantee that all tran-
sitions are found. On the other hand, depending on the algorithm one may often find
spurious transitions which leads to a CNDA that is a SS to the minimal CNDA introduced
in Def. 3.46; see Fig. 3.1a.

3.3.2 Application I: Fisher-KPP Equation

Consider the Fisher-KPP equation [68]

∂tv − ∂xxv = v(1− v)

for v ∈ Ω = [0, 1] and apply the method of lines to it. This leads to a system of ODE on
V̂ = ΩZ,

∂tvi = vi(1− vi) + ε(vi−1 − 2vi + vi+1) =: h(vi−1, vi, vi+1),

where ε = (∆x)−2. We note that Ω is compact and show that V̂ is positively invariant.
Let vi,R = 1, vi,L = 0, vi−1 = r, vi+1 = s for r, s ∈ Ω and n the normal vector of Ω. So
n(vi,R) = 1 and n(vi,L) = −1, and hence:
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(a) (b)

Figure 3.6: (a) f̃ as a transition graph: node i is mapped to node j if there is a directed edge from i to j. (b)
The underlying partition of Ω = [0, 1] for four symbols. The arrows indicate f̃ .

〈h(vi−1, vi,R, vi+1), n(vi,R)〉 = ε(r + s− 2) ≤ 0,

〈h(vi−1, vi,L, vi+1), n(vi,L)〉 = −ε(r + s) ≤ 0.

Therefore Ω is, independently of vi−1 and vi+1, positively invariant under h, and so is V̂
under the system of ODE.

3.3.2.1 State Space Discretization

We choose ε small by considering a low spatial resolution and thus construct the partition
of Ω according to the dominant process ∂tw = w(1 − w). There are two stationary points
in this system, the unstable wu = 0 and the stable ws = 1. We take w0 = 1/2 and iterate
forward and backward in time steps of p,

wk+1 =
wke

p

1 + wk(ep − 1)
, k ∈ Z

We aim at a finite number of symbols and use 0, wk (k = −N, ..,N ) and 1 as boundaries of
coding domains. This is, we define 2N + 2 intervals

I0 = [0, w−N ), Ik = [w−N+k−1, w−N+k) for k = 1, .., 2N, I2N+1 = [wN , 1],

name them by their index and obtain E = {0, ..., 2N + 1}. The resulting f̃ is depicted in
Fig. 3.6a for P = 2p. It is already non-deterministic at the unstable wu. We use P = 2p,
because then small perturbations from the diffusion term are not able to break the system’s
strict monotonicity. The partition with this dynamics is kind of robust.

In order to demonstrate this construction, we choose from now on the parameters

p = 1.0, P = 2.0, N = 1, ε = 0.085,

and find the partition E = {0, ..., 3} with w−1 = 2.6894, w0 = 1/2 and w1 = 0.73106; see
Fig. 3.6b.

3.3.2.2 Determination of Possible Transitions

We utilize the monotonicity of the system in order to construct a CNDA. We do not have
any restrictions for the state at sites i = −2 and i = 2, although these sites will also in-
fluence the dynamics of the state at site i = 0. This lack of information forces us to work
with sub- and supersolutions. So we cannot exclude that our CNDA contains spurious
trajectories.
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Proposition 3.48. Consider ∂tvi = h(vi−1, vi, vi+1), v ∈ V̂ and ej ∈ E such that T (vj) = ej
for j ∈ U . Let Ωe−1 = [w−L , w

+
L ), Ωe0 = [w−M , w

+
M ), and Ωe1 = [w−R , w

+
R) and

∂tu−1 = h(1, u−1, u0), ∂tu0 = h(u−1, u0, u1), ∂tu1 = h(u0, u1, 1),

with u−1(0) = w+
L , u0(0) = w+

M , and u1(0) = w+
R . Then, (Φ̂t(v))0 ≤ u0(t).

Similarly, we define

∂tu−1 = h(0, u−1, u0), ∂tu0 = h(u−1, u0, u1), ∂tu1 = h(u0;u1, 0),

with u−1(0) = w−L , u0(0) = w−M , and u1(0) = w−R . Then, (Φ̂t(v))0 ≥ u0(t).

Proof The claim is an immediate consequence of the monotonicity of h in vi−1 and in
vi+1 for all i ∈ Z.

Using this proposition and numerical integration we are able to find a maximal interval
[u0(P ), u0(P )] that contains (Φ̂P (v))0 for any initial conditions fulfilling T (vj) = ej for
j ∈ U . Picking all coding intervals with a non-trivial intersection with [u0(P ), u0(P )], we
can determine the local function of a CNDA:

e−1 e0 e1 f0((e−1, e0, e1))

0 0 0 {0, 1, 2, 3}
0 0 1 {0, 1, 2, 3}
0 0 2 {0, 1, 2, 3}
0 0 3 {1, 2, 3}
1 0 0 {0, 1, 2, 3}
1 0 1 {1, 2, 3}
1 0 2 {1, 2, 3}
1 0 3 {1, 2, 3}
2 0 0 {0, 1, 2, 3}
2 0 1 {1, 2, 3}
2 0 2 {1, 2, 3}
2 0 3 {1, 2, 3}
3 0 0 {1, 2, 3}
3 0 1 {1, 2, 3}
3 0 2 {1, 2, 3}
3 0 3 {1, 2, 3}

e−1 e0 e1 f0((e−1, e0, e1))

0 1 0 {2, 3}
0 1 1 {2, 3}
0 1 2 {2, 3}
0 1 3 {2, 3}
1 1 0 {2, 3}
1 1 1 {2, 3}
1 1 2 {3}
1 1 3 {3}
2 1 0 {2, 3}
2 1 1 {3}
2 1 2 {3}
2 1 3 {3}
3 1 0 {2, 3}
3 1 1 {3}
3 1 2 {3}
3 1 3 {3}

and
f0((∗, 2, ∗)) = {3}, f0((∗, 3, ∗)) = {3},

where ∗ can be replaced by any symbol.
Note that although the assumption in Prop. 3.47 is violated by wu and ws, we still ex-

pect the CNDA to resemble the dynamics of the system of ODE. A look at the proposition’s
proof reveals that our stationary points on ∂Ω cannot lead to the difficulties that may ap-
pear for general non-empty intersections between ω-limit sets and boundaries of coding
domains.
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3.3.2.3 Subsolution Analysis of the CNDA

We note that the CNDA is monotonic and maps intervals to intervals; see Def. 3.36 and
Def. 3.43. We use the subsolution method for analysis, which, according to Prop. 3.42 and
Lm. 3.44, coincides with the maximal pattern SA when starting in a deterministic state.

We start with the minimal (deterministic) CA (Z, U,E, f0) given by

e−1 e0 e1 f0((e−1, e0, e1))

0 0 0,1,2 0
0,1,2 0 0 0

0 0 3 1
3 0 0 1

1,2,3 0 1,2,3 1
0 1 * 2
* 1 0 2

e−1 e0 e1 f0((e−1, e0, e1))

1 1 1 2
1 1 2,3 3

2,3 1 1 3
2,3 1 2,3 3
* 2 * 3
* 3 * 3

and state some of its dynamic properties.
i) The minimal CA has resting state 0.

ii) 0 and 3 are stationary states.
iii) 010, 011, 110, 111, 012, 210, 112, 211 and 212 are Garden of Eden patterns. This is, be-

cause a 3 is needed at a neighboring site to create a 1, and as 3 is mapped to itself
a 1 can just appear next to a 3. As they do not have predecessors, states containing
Garden of Eden patterns cannot appear in the global attractor.

iv) The global attractor of the CA just contains monotonic states. This is, because ϕ =
...e0e1...ek+2ek+3..., where k ∈ N, 0 ≤ e0 < e1 ≤ 3 and 3 ≥ ek+2 > ek+3 ≥ 0 cannot
arise under the CA’s dynamics:
As e0, ek+3 ∈ {0, 1, 2}, and as sites in elementary local state 1 and 2 have been in
strictly smaller elementary states in the time step before, ϕ stems from a state ψ with
ψ(0) = ψ(k + 3) = 0. ψ in turn eventually goes back to a χ ∈ EZ with χ(j) ∈ {0, 1}
for j ∈ {0, ..., k+ 3}, for which there exists at least one i ∈ {1, ..., k+ 2}with χ(i) = 1.
But states of this type contain a Garden of Eden pattern.

v) Non-constant states in the global attractor are the travelling wave states, i.e., states
in

R := {ϕ ∈ EZ | ∃j ∈ Z∀i < j < k : either ϕ(i) = 0, ϕ(k) = 3 or ϕ(i) = 3, ϕ(k) = 0};

see Fig. 3.7b.
Any potential non-constant state in the global attractor is monotonic and hence ar-
rives in R ∪ {0, 3} after at most 2 iterations. As R ∪ {0, 3} is positively invariant,
monotonic states in EZ\(R ∪ {0, 3}) cannot be reached again and hence cannot be
contained in the global attractor. In turn R must be part of the global attractor as it is
also negatively invariant.

Corollary 3.49. The global attractor of the minimal CA is A = R ∪ {0, 3}. Furthermore
ωf(0) = {0}, and ωf(ϕ) = {3} for any ϕ ∈ EZ, ϕ 6= 0.

We turn now to the trivial maximal CA (Z, U,E, f0) given by
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Figure 3.7: (a) Running front solution of the Fisher-KPP equation for speed c = 5√
6

at time t = 0 and t = 3.
(b) Running front solution of the minimal CA with speed cmin = 0.57. As usual i is the space and k the time
variable.

e−1 e0 e1 f0((e−1, e0, e1))

* * * 3.

Lemma 3.50. The global attractor of the maximal CA isA = {3}. Furthermore ωf (ϕ) = {3}
for any ϕ ∈ EZ.

According to Prop. 3.11, 3.35 and 3.39 then

ωf ({0}) ⊆ ωF ({0}) = {ψ ∈ EZ | ∀i ∈ Z : 0(i) ≤ ψ(i) ≤ 3(i)} = EZ

and
ωf ({ϕ}) ⊆ ωF ({ϕ}) = {ψ ∈ EZ | ∀i ∈ Z : 3(i) ≤ ψ(i) ≤ 3(i)} = {3}

for ϕ ∈ EZ, ϕ 6= 0. As ω-limit sets on compact K are non-empty we even have equality in
the last line.

So the simulation of the Fisher-KPP equation with a CNDA produces the expected re-
sults in the long term. It is also possible to extract information about attractors relatively
easy with our means. This is remarkable as such an analysis is usually very difficult and
technically involved [124]. It is interesting to note that the minimal deterministic CA even
shows some of the transient behavior of the PDE, the travelling waves; see Fig. 3.7. For
our parameters their speed can be calculated to be

cmin =
∆x

∆t
=
ε−0.5

3P
≈ 0.57.

The travelling wave speed of the maximal CA is infinitely large, and we can give a bound
on the Fisher-KPP equation’s travelling wave speed: 0.57 ≤ c. It is well known [68] that
there are only PDE travelling wave solutions for 2 ≤ c, which shows that we are only
approximating the true transient PDE behavior.
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3 Cellular Non-Deterministic Automata

3.3.3 Application II: Reaction Random Walk

In this example we suggest two state space discretizations and resulting CNDA for a PDE
on a 2-dimensional phase space. We only pave the way towards CNDA construction but
do not go into the analysis, as we just want to point out the different constructions.

Consider the reaction random walk equation [80]

∂t

(
v+

v−

)
+ c∂x

(
v+

−v−
)

=

(
−µ µ
µ −µ

)(
v+

v−

)
+ b

(
1
1

)
(v+ + v−)− γ

(
v+

v−

)
(v+ + v−)

on Ω = [0, 2b
γ ]2 ⊆ R2 for µ, b, γ ≥ 0. With the notation vi =

(
v+
i

v−i

)
, application of the

method of lines leads to a system of ODE on V̂ = ΩZ

∂tvi = h(v+
i−1, vi, v

−
i+1) = h1(vi) + h2(v+

i−1, vi, v
−
i+1), i ∈ Z, (3.1)

where

h1(vi) =

(
(b− µ)v+

i + (b+ µ)v−i − γv
+
i (v+

i + v−i )
(b+ µ)v+

i + (b− µ)v−i − γv
−
i (v+

i + v−i )

)
, h2(v+

i−1, vi, v
−
i+1) = ε

(
−(v+

i − v
+
i−1)

(v−i+1 − v
−
i )

)
.

Figure 3.8: The black square Ω in single-ODE phase space together with the grey normal vectors at the bound-
aries R, T, L,B.

Note that we use the backward difference quotient for v+, the particles that move in
the positive direction, and the forward one for v−, the particles that move in the negative
direction. Ω is compact and V̂ invariant, as is seen in the following calculation. Let

vi,R =

( 2b
γ

tR

)
, vi,T =

(
tT
2b
γ

)
, vi,L =

(
0
tL

)
, vi,B =

(
tB
0

)
denote the right, top, left and bottom boundary of Ω, and v+

i−1 = r, v−i+1 = s, where
r, s, tR, tT , tL, tB ∈ [0, 2b

γ ]. n : R2 → R2 is the normal vector field of Ω, hence

n (vi,R) =

(
1
0

)
, n (vi,T ) =

(
0
1

)
, n (vi,L) =

(
−1
0

)
, n (vi,B) =

(
0
−1

)
;
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see Fig. 3.8. With
{
∗
∗

}
as short-hand notation for two similar calculations therefore

〈h(v+
i−1, vi,

{
R
T

}, v−i+1), n(v
i,
{
R
T

})〉 = µ

(
t{R
T

} − 2b

γ

)
− 2b2

γ
− bt{R

T

} − ε
(

2b

γ
−
{
r
s

})
< 0,

〈h(v+
i−1, vi,

{
L
B

}, v−i+1), n(v
i,
{
L
B

})〉 = −(µ+ b)t{L
B

} − ε
{
r
s

}
≤ 0.

3.3.3.1 State Space Discretization I and CNDA I

Parallelizing the ideas of Example I we start with a partition according to the dynamics of
∂tw = h1(w). There are 2 stationary points wk, at which the Jacobian matrix has eigenval-
ues λk,l and corresponding eigenvectors wk,l, where k ∈ {u, s}, l ∈ {1, 2} and

wu =

(
0
0

)
, λu,1 = 2b, wu,1 =

(
1
1

)
, λu,2 = −2µ, wu,2 =

(
1
−1

)
,

ws =
b

γ

(
1
1

)
, λs,1 = −2b, ws,1 =

(
1
1

)
, λs,2 = −2(b+ µ), ws,2 =

(
1
−1

)
.

According to the criterion of Bendixson-Dulac [72] there are neither periodic orbits nor
homoclinic orbits nor heteroclinic cycles in (R+)2,

div(
1

w+w−
h1(w)) = −(b+ µ)

(
1

(w+)2
+

1

(w−)2

)
− γ

(
1

w+
+

1

w−

)
< 0,

and the criterion of Poincaré-Bendixson [72] tells that the stationary points are hence the
only limiting objects.

Following the dynamics of the circle with radius b
γ around w2 in multiples of p yields a

partition T1 : Ω → E = {0, 1, ..., N}, where E is ordered. An example is given in Fig. 3.9a
for the parameters

b = 0.75, γ = 1, µ = 0.25, p =
1

3
, N = 3.

If perturbations are small enough, the resulting CNDA for P = kp, k ∈ N, 1 < k is mono-
tonic and maps intervals to intervals. It can be analyzed with the subsolution method.

3.3.3.2 State Space Discretization II and CNDA II

Instead of one preserving h1(wi) we now consider a partition T2 which is invariant with
respect to the transportation equation ∂twi = h2(w+

i−1, wi, w
−
i+1). If time and space dis-

cretization p and ∆x are chosen such that cp
∆x = 1, we will end up with an equation(

w+
i ((k + 1)p)

w−i ((k + 1)p)

)
=

(
w+
i−1(kp)

w−i+1(kp)

)
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(a) (b)

Figure 3.9: (a) Partition I, where the domains between two consecutive images of the circle are labeled from
E = {0, 1, 2, 3} (b) Partition II with 25 squared boxes that are labeled as indicated. The partition is not in-
variant under h1-dynamics, as can be seen from the image of the domain boundaries (parameters see the
text).

for k ∈ N. The suitable domains will be boxes. We take 25 squares as an example for

b = 0.75, γ = 1, µ = 0.25, ε = 1, P = 3/4

and label them with E = {(i, j) | i, j ∈ {0, ..., 4}} as in Fig. 3.9b. Then we find e.g.

f̃((0, 0), ∗, (2, 4)) = (0, 4).

The partition is not invariant with respect to h1-dynamics. The behavior of Eq. 3.1 can be
numerically approximated to find a CNDA (Z, {−1, 0, 1}, E, f0) with e.g.

f0(((2, 2), (0, 0), (0, 0))) = {(1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)},
f0(((2, 2), (4, 4), (4, 4))) = {(2, 2), (2, 3)}.

Because we do not have a preserved order on E any more, we have to use pattern SA to
analyze the CNDA.

Discretization II is computationally much easier to handle than discretization I. If we
map test points in order to investigate the dynamics, standard algorithms can be used to
identify the domains that they are mapped to. This is more difficult for domains with
other shapes. However, the error in comparison to the PDE dynamics is bigger in the
CNDA from discretization II. There the number of image domains for a given preimage is
usually higher than with discretization I. Note that in the application at hand our choice of
parameters ensures that at least not too much information is lost: interaction with a neigh-
bor at site i− 1 in the stable (2, 2) moves the local state at site i away from (0, 0). In general
the idea of discretization I may also be interesting for usage in uncertainty propagation
with cellular probabilistic automata; see Chap. 5.
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3.4 Conclusion and Outlook

In this chapter we have introduced cellular non-deterministic automata (CNDA) as time-
discrete dynamical systems on the power set of deterministic cellular automata’s (CA)
state space. We have studied the construction in a CA context and have especially inves-
tigated a topological characterization. It has been shown that CNDA can be embedded in
deterministic CA on a different grid, but that one needs other structures to approximate
their long-term behavior in practice. We have developed pattern superautomata and the
subsolution supersystem for this purpose. It has turned out that a special challenge in all
approaches is the conservation of spatial correlations.

By choosing a suitable discretization of space, time and state space the dynamics of a
PDE can be reproduced with a CNDA to some extent. This works well for the illustrative
example of the Fisher-KPP equation, but with growing number of symbols one runs into
the problem of exponential state space inflation. However, we point out that a potential
simulation in the CNDA setup will still exhibit the computational advantages of CA like
spatial parallelization.

Although it is possible to approximate certain PDE dynamics with the proposed meth-
ods, often the loss of information is too high such that the simplified model loses informa-
tion content. An improvement that we follow in the next chapter is to weight the different
transitions by occurrence probabilities and thus reveal more of the underlying PDE dy-
namics. This leads to cellular probabilistic automata (CPA) that are capable of working
probabilistically on the power set of a deterministic CA’s state space. Hence the new ob-
jects can be used for density based uncertainty propagation in PDE models. However,
the conservation of spatial correlations will persist to be a central problem in the CPA ap-
proach, and we will use the insights of this chapter to resolve some problems. Especially
the pattern idea will be used extensively.

Apart from that it might be an interesting goal for future work to extend the CNDA ap-
proach for PDE to infinitely but countably many symbols. This may help to better resolve
the PDE’s state space near unstable stationary states. Uniform structures might provide
theoretical access to this idea [26].
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4 Cellular Probabilistic Automata

In this chapter we suggest a novel numerical scheme for uncertainty propagation in dis-
tinct spatio-temporal processes. The main idea is to translate them into objects that we call
cellular probabilistic automata (CPA) and to evolve the latter. The translation is achieved
by state space discretization as in set oriented numerics and the use of the locality concept
from cellular automata (CA) theory. We develop the method for the example of the propa-
gation of initial value uncertainties under deterministic partial differential equation (PDE)
dynamics. In the next chapter we will then pave the way towards an extension to more
general stochastic influences on the system and test the method in several applications.

In particular we introduce a discretization of a PDE which does not depend explicitly
on the independent variables. It is similar to the construction of cellular non-deterministic
automata (CNDA) in Chap. 3. This time we first apply a finite difference scheme to a
PDE; the spatial and temporal continuum is replaced by discrete sites and discrete time
steps. Second, the state space of the resulting system is discretized. The discretized state
space allows for an interpretation of risk levels or threshold values. As this procedure em-
phasizes the interaction between neighboring sites, a property that strongly resembles the
locality and shift-invariance in cellular automata, the resulting completely discrete system
is termed a cellular probabilistic automaton (CPA). Such an automaton is much simpler
than the PDE and becomes accessible to very efficient simulation techniques.

While with CNDA we simply collected all possible transitions between discretized por-
tions of phase space in a site’s neighborhood, CPA basically consist of information about
transition probabilities between them. The transition probabilities are interpreted as ap-
proximating the evolution of the system’s probability density in transfer operator the-
ory [106]. Hence CPA can be used for uncertainty propagation [122]. The translation from
PDEs into CPA may be rather time-consuming, but the evolution of uncertainties with
CPA is fast. The accuracy of the approximation depends on two parameters: one measures
the state space resolution at every site, and the other the degree of locality, i.e., the extent
to which correlations between neighboring sites are preserved. To formalize the degree
of locality we develop the non-deterministic de Bruijn calculus from Sec. 3.2.3 further to a
probabilistic de Bruijn calculus.

The chapter can be read independently of the latter chapter and is structured as follows.
In Sec. 4.1 we formulate the problem of initial value uncertainty propagation under deter-
ministic dynamics and deterministic boundary conditions. Here we also present the idea
of density based uncertainty propagation through phase space discretization. By exploit-
ing locality and shift-invariance of our problem this leads to the definition and discussion
of CPA in Sec. 4.2. Here we introduce the probabilistic de Bruijn calculus. In Sec. 4.3
we present a consistency result for our construction. Finally, we give our conclusions in
Sec. 4.4.
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4.1 Density Based Uncertainty Propagation

In this section we first formulate the problem and then describe what we mean by density
based uncertainty propagation. Finally, the CPA idea is derived in this context.

4.1.1 Problem Formulation

We are interested in the time evolution of uncertain initial data in a specific deterministic
dynamical system. First, we specify the deterministic dynamical system that we will work
with, and second we formulate the problem.

Consider the measure space (Rmn,B(Rmn), λ), where m,n ∈ N, B(Rmn) is the Borel σ-
algebra and λ the Lebesgue measure. Let PS : L1(Rmn)→ L1(Rmn) denote the Frobenius-
Perron operator (FPO) that describes how densities are mapped under phase space evolu-
tion with a nonsingular map S : Rmn → Rmn; see Sec. 2.5. We focus on a particular type of
phase space evolution.

Definition 4.1. Consider a deterministic dynamical system (T,Rmn,Φ) specified as fol-
lows:

i) (T,+) is an additive semigroup of time,
ii) Rmn = ×IRn is the state space, where I = {1, ...,m} and 1 ≤ m,

iii) the flow Φ : T × Rmn → Rmn is nonsingular for all t ∈ T ,
iv) there is a neighborhood U = {−1, 0}, such that Φ has the locality property, i.e., that

there is h : T × (Rn)2 → Rn with

Φ(t, v)i = h(t, vi−1, vi)

for all t ∈ T, v = (v1, ..., vm) ∈ ×IRn and i ∈ {2, ...,m}, and
v) that the system acts as the identity at the left, i.e., Φ(t, v)1 = v1 for all t ∈ T and all

v ∈ ×IRn.

We will write Φt(v) := Φ(t, v) in the following. Assume that there is a compact Ω ( Rn
such that Ωm is positively invariant under the flow, and fix τ ∈ T, τ 6= 0.

Our main application is the analysis of a PDE

∂tv = h̃(∂xxv, ∂xv, v), v(x, t) ∈ Ω

on a one-dimensional compact spatial domain x ∈ [a, b] for a, b ∈ R. Note that unlike for
CNDA we are now only interested in a bounded space domain to avoid technical difficul-
ties. Under certain assumptions a dynamical system like the above is obtained by applying
a finite difference method with space discretization ∆x = b−a

m−1 , where m ∈ N,m ≥ 2, and
time step τ . Then U is naturally induced by the choice of the finite difference stencil. For
notational simplicity we restrict to U = {−1, 0} in this chapter. It is suitable to account
for left first order difference quotients in advection reaction equations. In applications in
Chap. 5 we also consider more complex PDEs and neighborhoods and comment on the
generalizations when needed. In contrast to CNDA we use a finite difference scheme in-
stead of a method of lines here to discretize space and time in one step. The reason is that
we will not use dynamics to partition the phase space, but rather a very simple geomet-
rical discretization. Because of the PDE context we call I the set of sites. By considering
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only trajectories with v0(1) = k ∈ Rn, the system can be interpreted as to obey boundary
conditions.

The time evolution of uncertain initial data in the deterministic dynamical system is
described by real random variables V 0, V 1, ... : X → Ωm on probability space (X,A, µ),
where V n+1 = ΦτV n. We focus on deterministic boundary conditions: V 0(x)1 = k ∈ Rn
for all x ∈ X . If V n has density gn ∈ D(Rmn), the density of V n+1 is given by application of
the associated FPO: gn+1 = PΦτ (gn). The goal is to develop an algorithm that approximates
the density evolution. It will be achieved by translating the system into a CPA in two steps.
First, the FPO is discretized via a state discretization procedure, and then locality and shift-
invariance are used to further transform it into a CPA.

4.1.2 State Space Discretization

In this section, first, we introduce the concept of state space discretization similar to Sec.
3.3.1.1 for CNDA. Second, we investigate according densities, and third, we construct a
discretized version of the FPO. In principle these ideas are well known in the literature
[34, 35]. Here they are adapted to the special structure of the dynamical system.

Definition 4.2. A partition or coding E of Ω is a finite collection of disjoint sets {Ωe}e∈E
whose union is Ω. We call e ∈ E the symbol of coding domain Ωe, and the coding map is the
function T : Ω 7→ E, where T (v) = e if v ∈ Ωe. A partition is called uniform if there is a
resolution ∆Ω ∈ R such that Ωe is an n-dimensional hypercube with side length ∆Ω for all
e ∈ E.

To avoid technical complications in the following proofs we consider only uniform par-
titions while developing the theory. They are also the ones that are relevant in practical
algorithms.

A partition E of Ω with coding map T and |E| = N naturally induces a partition EI of
Ωm with coding map

T̂ : Ωm → EI , v 7→ T̂ (v) with (T̂ (v))i = T (vi) for i ∈ I.

Note that |EI | = Nm. For ϕ ∈ EJ , where J ⊆ I , we write

Ωϕ = {v ∈ Ωm | ∀j ∈ J : T̂ (v)(j) = ϕ(j)}.

Now we study densities that are compatible with state space discretization. For this
purpose we introduce the measure space (EI ,P(EI), γ), where P(EI) is the power set of
EI and γ is the counting measure. The densities D(EI) consist of the weight functions

g : EI → [0,∞], g(ϕ) = pϕ,

where (pϕ)ϕ∈EI are nonnegative numbers with
∑

ϕ∈EI pϕ = 1.

Definition 4.3.
i) L1

T̂
(Rmn) = span(B) is the finite-dimensional L1(Rmn)-subspace of piecewise con-

stant functions with basis B = {χΩϕ/λ(Ωϕ)}ϕ∈EI . The set of piecewise constant
densities is given by DT̂ (Rmn) := L1

T̂
(Rmn) ∩D(Rmn).
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ii) The coordinate representation κB : L1
T̂

(Rmn)→ REI , g 7→ κB(g) with respect to the
basis B is given by κB(g)(ϕ) = cϕ for ϕ ∈ EI and g =

∑
ψ∈EI

cψ
λ(Ωψ)χΩψ . Obviously

κB(DT̂ (Rmn)) = D(EI).
iii) Let ρ ∈ E such that ρ = T (k). The densities that are compatible with the boundary

conditions are given by

DBC(EI) := {g ∈ D(EI) | g(ϕ) = 0 if ϕ(1) 6= ρ}.

By averaging in the coding domains, every function in L1(Rmn) can be mapped to a
piecewise constant function.

Definition 4.4. A restriction operator to the subspace of piecewise constant functions is
given by

R : L1(Rmn)→ L1
T̂

(Rmn), R(g) =
∑
ϕ∈EI

cϕ
λ(Ωϕ)

χΩϕ ,

where
cϕ =

∫
Ωϕ

g(w)dw.

R is idempotent, i.e., R ◦ R = R, and furthermore R(DT̂ (Rmn)) ⊆ DT̂ (Rmn). In the fol-
lowing we will use the restriction operator to construct a discretized version of the FPO on
the density level: RPΦτ . This procedure is well known in ergodicity theory when invariant
measures are approximated. There it is called Ulam’s method [168].

The matrix representation of the linear RPΦτ |L1
T̂

(Rmn) is given by PB = κBRPΦτκ
−1
B ∈

REI×EI with entries

PB,ϕ,ψ =

∫
Ωψ

PΦτ
χΩϕ

λ(Ωϕ)
dλ =

∫
Φ−τ (Ωψ)

χΩϕ

λ(Ωϕ)
dλ =

λ(Ωϕ ∩ Φ−τ (Ωψ))

λ(Ωϕ)
.

PB,ϕ,ψ is the probability of finding a realization of a random variable with uniform density
in Ωϕ in Ωψ, when Φτ is applied. Hence we may interpret PB,ϕ,ψ as the transition rate
from Ωϕ to Ωψ of a finite state Markov chain on {Ωϕ}ϕ∈EI . This chain approximates the
behavior of the dynamical system for uncertain initial values.

In the following we regard PB : DBC(EI)→ DBC(EI) as a function which maps densi-
ties that are compatible with the boundary conditions by matrix multiplication.

4.1.3 Using Locality - Towards Cellular Probabilistic Automata

EI grows exponentially in m. For a growing number of sites it becomes numerically ex-
pensive to obtain global transition rates and to handle global states and densities.

However, our dynamical system has a special structure: We use the locality property to
approximate the set of global transition probabilities by several identical sets of local ones.
This is possible for two reasons. The first is because we find identical dynamics at all sites
away from the boundaries, and the second is because the transition probabilities at one
particular site mainly depend on the state of its neighborhood rather than on the whole
global configuration.
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4.2 Introduction of Cellular Probabilistic Automata

For the formal definition of these local transition probabilities we need to introduce the
shift by l ∈ Z on finite grid J ⊂ Z. It is given by

σl : F J → F−l+J , ϕ 7→ σl(ϕ), σl(ϕ)(−l + j) = ϕ(j),

where F is an arbitrary set, e.g. F = E or F = D(EV ). Moreover, for arbitrary V =
{−p, ..., q},W = {−t, ..., u} with p, q ∈ N0, t, u ∈ Z,−t ≤ u, and l ∈ Z we use the conven-
tions l + V = {−p+ l, ..., q + l} and V +W = {−p− t, ..., q + u}.

Definition 4.5. Let V = {−p, ..., q} with p, q ∈ N0 and 1 + p + q ≤ m. A local function
f0 : EU+V → D(EV ) is then given by

f0(ϕ)(ψ) =
λ(Ωσ−i(ϕ) ∩ Φ−τ (Ωσ−i(ψ)))

λ(Ωσ−i(ϕ))
,

where i = 2 + p, ϕ ∈ EU+V and ψ ∈ EV

Note that because of the locality property the definition is independent of the chosen
site i ∈ {2 + p, ...,m− q}. The set V controls the degree of locality, i.e., the number of sites
that give rise to a local transition. It will turn out that by enlarging it we can diminish the
error of the locality approximation.

In the following section we develop a method of how to combine several such local
transitions to approximate a global one. This will finish the construction of a CPA from the
FPO.

4.2 Introduction of Cellular Probabilistic Automata

CPA are defined by extending the definition of deterministic CA according to [38, 50]: In
CPA the local transition function specifies a time- and space-independent probability dis-
tribution of next states for each possible neighborhood configuration. As we do not want
to follow one realization but rather the whole ensemble, unlike in the literature we define
CPA to work on densities. This enables their utilization for uncertainty propagation. The
difference to CNDA is that there the transitions are just collected, but not weighted by
probabilities like in CPA.

In the last section we showed how the discretized FPO PB on state space DBC(EI) can
be used to approximate the FPO PΦτ on D(Rmn). CPA further approximate the discretized
FPO on a product space of local densities; see Fig. 4.1 for a sketch. This is again the de
Bruijn pattern idea that we also used to analyze CNDA in Sec. 3.2.3, but now in a proba-
bilistic setting. Uncertainty propagation with CPA therefore requires two definitions. The
first one is about how to translate between global densities and the product space of local
densities, and the second one is about how to evolve local densities in time with the help
of the local function.

Since the definitions can be best understood for V = {0}, in Sec. 4.2.1 we first introduce
CPA in this special case to demonstrate the basic construction. Afterwards we develop the
de Bruijn calculus as a connection between local and global objects for more general V on
finite grids in Sec. 4.2.2. This connection leads to the generalization of CPA to general V in
Sec. 4.2.3.
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4 Cellular Probabilistic Automata

Figure 4.1: The relations between the FPO PΦτ and its approximations. By state discretization we obtain the
discretized FPO PB which still works globally, and by exploiting locality we approximate PB further by the
CPA with global function f . The state space on which the CPA operates is a collection of local densities; see
the text.

4.2.1 Cellular Probabilistic Automata: a Special Case

A crucial step is to translate between global densities D(EV+W ) and a (subset of a) collec-
tion of local densities (D(EV ))W , where V = {−p, ..., q} and W = {−t, ..., u} for p, q, t, u ∈
N0. We introduce a projection operator βW : D(EV+W ) → (D(EV ))W and an embedding
αW : (D(EV ))W → D(EV+W ). They correspond to γ and β in the de Bruijn calculus on
power sets in Def. 3.19, respectively. βW localizes the information to densities on states of
length |V | and thus erases far-reaching correlations. αW in turn constructs global densities
out of information about local densities. As we will see in the next section, this process is
by no means unique and requires some technical refinement of the space of local densities.
However, for V = {0} there are canonical definitions for αW and βW : multiplication of
local probabilities for independent events and calculation of marginal distributions.

Definition 4.6. Let W = {−t, ..., u} for t, u ∈ N0.
i) We set αW : (D(E))W → D(EW ), g 7→ αW (g) with

αW (g)(ψ) =
∏
i∈W

g(i)(ψ(i))

ii) and βW : D(EW )→ (D(E))W , g 7→ β̂W (g) with

βW (g)(i)(e) =
∑

χ∈EW s.t. χ(i)=e

g(χ).

We want to keep the construction simple at this point and close the grid I to a torus Zm.
This way we avoid boundary conditions in this special section.

Definition 4.7. A cellular probabilistic automaton (CPA) is a tuple (I, U,E, f0), where for
m ∈ N, 2 ≤ m,

i) I = Zm is a toroidal grid,
ii) U = {−1, 0} is the neighborhood,

iii) E is a finite set of local states, and
iv) f0 : EU → D(E) is the local function.
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4.2 Introduction of Cellular Probabilistic Automata

The global function f : (D(E))I → (D(E))I , g 7→ f(g) is given by

f(g)(i)(ψ) =
∑
ϕ∈EU

αU (σi(g)|U )(ϕ)f0(ϕ)(ψ).

The trajectory starting with g0 ∈ (D(E))I is given by the sequence (gn)n∈N, where gn =
f(gn−1) for n = 1, 2, ....

A CPA can be used to evolve an input distribution βI(g) for g ∈ D(EI) via the global
function. After n time steps the approximated global density is then given by αIfnβI(g);
see also Fig. 4.1 with DĨ

dB = DĨ
dBe = (D(E))I , α̂ = αI , and β̂ = βI . The role model for the

global function is the matrix operation with the discretized FPO PB : The product of the
transition probability with the probability of being in a preimage state is summed up over
all possible preimage states. A probability is assigned to a preimage state ϕ ∈ EU by αU .

Note that pattern superautomata of CNDA with V = {0} on finite grids are equivalent to
certain CPA of this form: assume that for all ϕ ∈ EU there is c ∈ [0, 1] such that f0(ϕ)(e) = c
or f0(ϕ)(e) = 0 for all e ∈ E, and that the input is also a collection of states with equal non-
zero or zero probability. We will see that an analogous argument also holds for larger
patterns. Furthermore deterministic CA are special cases of CPA: assume that for all ϕ ∈
EU there is e ∈ E such that f0(ϕ)(e) = 1 and that the input is deterministic.

4.2.2 De Bruijn Calculus

To generalize the construction to arbitrary V we first study the relation between local and
global objects in more depth. We introduce de Bruijn density calculus by further develop-
ing the de Bruijn calculus on power sets from Sec. 3.2.3. As before it is based on pattern
ideas in CA theory [76,173], in the theory of de Bruijn graphs [162], and in pair approxima-
tion [96]. Ideas similar to our probabilistic extension are also at the heart of probabilistic
graphical models [102].

Like in the special case we introduce a projection operator βW that localizes the global
information to densities on states of length |V |, this time |V | ≥ 1. The precise definition of
βW is still rather straightforward: marginal distributions dismiss all information but that
over a certain range V . We will find below that the reconstruction of global densities out
of local information by αW is more involved. However, let us first define βW .

Definition 4.8. Let V = {−p, ..., q} and W = {−t, ..., u} for p, q ∈ N and t, u ∈ Z,−t ≤ u.
βW : D(EV+W )→ (D(EV ))W is given by

βW (g)(i)(ψ) =
∑

χ∈EV+W s.t.
χ|i+V =σ−i(ψ)

g(χ).

Example 4.1. Let E = V = W = {0, 1}, c ∈ (0, 1), and g, g̃ ∈ D(EV+W ) be given by

g(ψ) =


c if ψ = (001)
1− c if ψ = (100)
0 else

, g̃(ψ) =


c(1− c) if ψ = (000), ψ = (101)
c2 if ψ = (001)
(1− c)2 if ψ = (100)
0 else

.
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4 Cellular Probabilistic Automata

We find that βW (g) = βW (g̃) with

βW (g)(0)(ψ) =


c if ψ = (00)
1− c if ψ = (10)
0 else

, βW (g)(1)(ψ) =


1− c if ψ = (00)
c if ψ = (01)
0 else

.

Ex. 4.1 shows that information is lost under βW , i.e., different global densities are mapped
to the same collection of local densities. Now we are interested in the embedding αW :
(D(EV ))W → D(EV+W ). Although the properties of βW allow us to define αW as the
solution of a linear nonnegative least squares problem [108], this algebraic approach is not
appropriate. We rather suggest a probabilistic approach that fulfills two natural require-
ments: first, our αW degenerates to simple multiplication of local densities for V = {0},
and second, αW and βW are inverse of each other on important sets.

We first introduce several definitions that are central to our approach; see also Fig. 4.2a,
Def. 3.16 and Def. 3.21.

Definition 4.9.
i) XW

dB = (P(EV ))W is the set of de Bruijn states, where P(EV ) is the power set of EV .
The elements of EV are called patterns of length |V |.

ii) The subset of extendable de Bruijn states is given by

XW
dBe = {Φ ∈ XdB | ∀i ∈W ∀ϕ ∈ Φ(i) ∃ψ ∈ EV+W ∀j ∈W :

σj(ψ)|V ∈ Φ(j), σi(ψ)|V = ϕ}.

iii) DW
dB = (D(EV ))W is called the set of de Bruijn densities.

iv) The subset of extendable de Bruijn densities is given by

DW
dBe = {g ∈ DW

dB | ×i∈W supp g(i) ∈ XW
dBe}.

The idea behind extendable de Bruijn states is that every pattern can be extended to
a global state by gluing suitable patterns on it. An example of an extendable de Bruijn
density is βW (g) in Ex. 4.1: for example, pattern (10) at site 0 can be extended by (01) at
site 1 to the global state (101), because the patterns coincide in the overlapping state 0. We
find that this observation can be generalized.

Lemma 4.10. im (βW ) ⊆ DW
dBe.

Proof Let g ∈ im (βW ), j ∈ W , and ϕ ∈ EV with g(j)(ϕ) > 0. Then there are g̃ ∈
D(EV+W ) and ψ ∈ EV+W such that g̃(ψ) > 0 and σj(ψ)|V = ϕ. But, furthermore, already
g(i)(σi(ψ)|V ) > 0 for all i ∈W , and therefore ×i∈W supp g(i) ∈ XW

dBe.

Since only the extendable de Bruijn densities are addressed by βW , we need only define
αW on DW

dBe. In our choice of αW the probability of a global state is calculated by using
conditional probabilities while concatenating according patterns. Starting with a pattern
at a site i ∈ W we extend it to the left and right with suitable patterns by one more site
and condition on the overlap; see also Fig. 4.2b. By repeating this procedure site by site
to the left and right we cover the whole grid with the desired global state. More formally,
our choice is motivated by the following calculation, for which we first introduce some
notation.

56



4.2 Introduction of Cellular Probabilistic Automata

(a) (b)

Figure 4.2: (a) The relation between global densities and de Bruijn densities. (b) An example of how a global
density is approximated by local densities via an approximation of Markov type for W = {−1, 0, 1}, V =
{0, 1} and i = 0. The thin and dark grey box that covers sites 0 and 1 is the factor at site 0. The medium box
that covers sites −1 to 2 is the factor at site 1: the local state at site 2 depends on the local states from −1 to
1 (medium grey part). In the approximation (dashed line) the local state at 2 depends only on that at 1. The
thick box covering sites −1 to 1 is the factor at site −1. The local state at site −1 depends on the local states on
sites 0 and 1 (light grey part). In the approximation the dependence stops again at the dashed line.

For finite J ⊆ Z and A ⊆ EJ , µ[A] =
∑

ϕ∈A g(ϕ) denotes the distribution associated
with g ∈ D(EJ). Furthermore,{

ψ|J
J̃

}
=
{
ϕ ∈ EJ |ϕ|J̃ = ψ|J̃

}
for finite Ĵ ⊆ Z, J̃ ⊆ J ∩ Ĵ and ψ ∈ EĴ , and we also write

{
ψ|J̃
}

=
{
ψ|J
J̃

}
if J is clear from

the context. We calculate for i ∈W and ψ ∈ EV+W that

µ[{ψ}] =µ[{ψ|{−t,...,i}+V }]
u∏

l=i+1

µ[{ψ|{−t,...,l}+V }]
µ[{ψ|{−t,...,l}+V−}]

=
i−1∏
k=−t

µ[{ψ|{k−p}} | {ψ|{k,...,i}+V+
}]µ[{ψ|i+V }]

u∏
l=i+1

µ[{ψ|{l+q}} | {ψ|{−t,...,l}+V−}],

where V+ = {−p+1, ..., q} and V− = {−p, ..., q−1}. If there are no far-reaching correlations,
we expect the following approximations to be suitable:

µ[{ψ|{k−p}} | {ψ|{k,...,i}+V+
}] ≈ µ[{ψ|{k−p}} | {ψ|k+V+}],

µ[{ψ|{l+q}} | {ψ|{−t,...,l}+V−}] ≈ µ[{ψ|{l+q}} | {ψ|l+V−}]

for k ∈ {−t, ..., i − 1} and l ∈ {i + 1, ..., u}. They resemble a Markov property of order
|V | − 1 in space; see also Fig. 4.2b: a site’s state is independent from the states at sites that
are more than |V | − 1 sites apart.

Lemma 4.11. Let µj be the distribution associated with βW (g)(j) ∈ D(EV ) for j ∈ W .
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4 Cellular Probabilistic Automata

Then

µ[{ψ|{k−p}} | {ψ|k+V+}] = µk[{σk(ψ)|{−p}} | {σk(ψ)|V+}],
µ[{ψ|i+V }] = µi[{σi(ψ)|V }],

µ[{ψ|{l−p}} | {ψ|l+V−}] = µl[{σl(ψ)|{−p}} | {σl(ψ)|V−}]

for i ∈W , k ∈ {−t, ..., i− 1} and l ∈ {i+ 1, ..., u}.

Proof Without loss of generality we prove the statement only for k ∈ {−t, ..., i− 1}:

µ[{ψ|{k−p}} | {ψ|k+V+}] =

∑
χ∈{ψ|k+V } g(χ)∑
χ∈{ψ|k+V+

} g(χ)
=

βW (g)(k)(σk(ψ)|V )∑
ϕ∈

{
σk(ψ)|VV+

}∑
χ∈{σ−k(ϕ)|V+W

k+V } g(χ)

=
βW (g)(k)(σk(ψ)|V )∑

ϕ∈
{
σk(ψ)|VV+

} βW (g)(k)(ϕ)
= µk[{σk(ψ)|{−p}} | {σk(ψ)|V+}].

Using the above approximations of Markov type and the lemma we find that

µ[{ψ}] ≈
i−1∏
k=−t

µ[{ψ|{k−p}} | {ψ|k+V+}]µ[{ψ|i+V }]
u∏

l=i+1

µ[{ψ|{l+q}} | {ψ|l+V−}]

=

i−1∏
k=−t

µk[{σk(ψ)|{−p}} | {σk(ψ)|V+}]µi[{σi(ψ)|V }]
u∏

l=i+1

µl[{σl(ψ)|{q}} | {σl(ψ)|V−}].

This way we are led to the following definition, which in general depends on the site i.

Definition 4.12. Let i ∈W . Then αW,i : DW
dBe → D(EV+W ) is given by

αW,i(g)(ψ) =

i−1∏
k=−t

µk[{σk(ψ)|{−p}} | {σk(ψ)|V+}] g(i)(σi(ψ)|V )

u∏
l=i+1

µl[{σl(ψ)|{q}} | {σl(ψ)|V−}],

where µj denotes the conditional distribution associated with g(j) ∈ D(EV ) for j ∈ W ,
and ψ ∈ EV+W .

For W = {u}, u ∈ Z, the definition simplifies to α{u},u(g)(ψ) = g(u)(σu(ψ)). For
V = {0} the conditions vanish, and we get back simple multiplication, αW,i(g)(ψ) =∏
k∈W g(k)(ψ(k)). We formally justify that our construction is well defined.

Lemma 4.13. Let g ∈ DW
dBe and i ∈W . Then αW,i(g) ∈ D(EV+W ).
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Proof Let g ∈ DW
dBe and i ∈ W . αW,i(g) 6≡ 0, because there is at least one extendable

pattern with nonzero probability. We prove that it is also normalized in the following.
Without loss of generality we assume that i = u. Then∑

ϕ∈EV+W

αW,u(g)(ϕ) =
∑

ϕ∈EV+W

u−1∏
k=−t

µk[{σk(ϕ)|{−p}} | {σk(ϕ)|V+}]µu[{σu(ϕ)|V }]

=
∑

ϕ̃∈EV+W\{−t}

∑
ϕ∈

{
ϕ̃|V+W
V+W\{−t}

}µ−t[{σ−t(ϕ)|{−p}} | {σ−t(ϕ̃)|V+}]

u−1∏
k=−t+1

µk[{σk(ϕ̃)|{−p}} | {σk(ϕ̃)|V+}]µu[{σu(ϕ̃)|V }]

=
∑

ϕ̃∈EV+W\{−t}

u−1∏
k=−t+1

µk[{σk(ϕ̃)|{−p}} | {σk(ϕ̃)|V+}]µu[{σu(ϕ̃)|V }]

=... =
∑

ϕ∈Eu+V

µu[{σu(ϕ)|V }] =
∑
ϕ∈EV

g(ϕ) = 1.

The steps indicated by ... follow by induction in |W |.
Now we focus on the important set im (βW ) and investigate αW,i on this subset of DW

dBe.
It turns out that enough information of the preimage state inD(EV+W ) is preserved under
βW to ensure that in this case αW,i is independent of the starting site i.

Lemma 4.14. Let i ∈W and g ∈ im (βW ). Then αW,i(g) = αW,j(g) for all i, j ∈W .

Proof We show that αW,i(g) = αW,i+1(g) for all i ∈W\{−t}. An index shift to the left can
be proven analogously.

Note that µi[{σi(ψ)|V }] = g(i)(σi(ψ)|V ) and that for k ∈ {−t, ..., i − 1} and l ∈ {i +
1, ..., u},

µk[{σk(ψ)|{−p}} | {σk(ψ)|V+}] =
g(k)(σk(ψ)|V )∑

χ∈
{
σk(ψ)|VV+

} g(k)(χ)
,

µl[{σl(ψ)|{q}} | {σl(ψ)|V−}] =
g(l)(σl(ψ)|V )∑

χ∈
{
σl(ψ)|VV−

} g(l)(χ)
.

Therefore αW,i(g)(ψ) and αW,i+1(g)(ψ) have the same numerator and differ only in the
denominator. It is enough to show that a factor in the denominator may be shifted one
step to the right: Let i ∈W\{u}, and let g = βW (g̃) for g̃ ∈ D(EV+W ). Then∑

χ∈
{
σi(ψ)|VV+

}βW (g̃)(i)(χ) =
∑

χ∈
{
σi(ψ)|VV+

}
∑

ϕ∈{σ−i(χ)|V+W
i+V }

g̃(ϕ)

=
∑

ϕ∈
{
ψ|V+W
i+V+

} g̃(ϕ) =
∑

ϕ∈
{
ψ|V+W
i+1+V−

} g̃(ϕ)

=
∑

χ∈
{
σi+1(ψ)|VV−

}
∑

ϕ∈{σ−(i+1)(χ)|V+W
i+1+V }

g̃(ϕ) =
∑

χ∈
{
σi+1(ψ)|VV−

}βW (g̃)(i+ 1)(χ)
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Moreover, αW,i and βW are even inverse on this set.

Theorem 4.15. Let g ∈ im(βW ). Then βWαW,i(g) = g for all i ∈W .

Proof Let i ∈ W and g ∈ im(βW ). We prove βWαW,i(g)(j) = g(j) without loss of
generality only for j = u.

With Lm. 4.14 and because a conditional distribution is a distribution as well, for ψ ∈
EV ,

βWαW,i(g)(u)(ψ) =βWαW,u(g)(u)(ψ) =
∑

ϕ∈{σ−u(ψ)|V+W
u+V }

αW,u(g)(ϕ)

=
∑

ϕ̃∈
{
σ−u(ψ)|V+W\{−t}

u+V

}
∑

ϕ∈
{
ϕ̃|V+W
V+W\{−t}

}µ−t[{σ−t(ϕ)|{−p}} | {σ−t(ϕ̃)|V+}]

u−1∏
k=−t+1

µk[{σk(ϕ̃)|{−p}} | {σk(ϕ̃)|V+}]µu[{σu(ϕ̃)|V }]

=
∑

ϕ̃∈
{
σ−u(ψ)|V+W\{−t}

u+V

}
u−1∏

k=−t+1

µk[{σk(ϕ̃)|{−p}} | {σk(ϕ̃)|V+}]µu[{σu(ϕ̃)|V }]

=... = g(u)(ψ).

The last steps follow by induction in |W |.

Next we consider the opposite way and focus on global densities that are preserved
under αW,iβW for all i ∈W . We will see that they enable an algebraic interpretation of βW .

Definition 4.16. g ∈ D(EV+W ) is called V -factorizable if g = αW,iβW (g) for all i ∈W .

An example of a {0, 1}-factorizable density is g̃ in Ex. 4.1. g in the same example, how-
ever, has correlations over more than 2 sites: a state has positive probability only if the local
states at sites 0 and 2 differ. This long-range correlation cannot be preserved under map-
pings with pattern length |{0, 1}| = 2, and therefore g is not {0, 1}-factorizable. Obviously
the set of V -factorizable states is the natural counterpart of im (βW ).

Lemma 4.17. Let i ∈W and g ∈ im (βW ). Then αW,i(g) is V-factorizable.

Proof Let g ∈ im (βW ) and i, j ∈W . Then by Lm. 4.14 and Thm. 4.15

αW,i(g) = αW,j(g) = αW,jβWαW,i(g),

and hence αW,i(g) is V-factorizable.

The important role of V -factorizable states for the algebraic interpretation of βW is high-
lighted by the next result.

Theorem 4.18. For all g ∈ D(EV+W ) there is a unique V -factorizable g̃ ∈ D(EV+W ) such
that βW (g̃) = βW (g).
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Proof Let g ∈ D(EV+W ), and choose g̃ = αW,uβW (g). Then g̃ is V -factorizable by
Lm. 4.17, and the definition does not depend on the site u. Furthermore,

βW (g̃) = βWαW,uβW (g) = βW (g)

by Thm. 4.15. We also know that there is at most one such density, because βW is injective
on the V -factorizable densities by definition. Hence g̃ is unique.

βW induces equivalence classes on D(EV+W ) by collecting all global densities with the
same image in one class. According to Thm. 4.18 each equivalence class contains at least
one V -factorizable density. Moreover, we know that there is exactly one such density,
because βW is injective on these densities by definition. It is given as the image under
αW,iβW of any density in the class for any i ∈ W . Therefore it is possible to choose the
V -factorizable densities as the representatives of the equivalence classes. These represen-
tatives are preserved under αW,iβW for any i ∈ W . Ex. 4.1 provides an example: g and g̃
are in the same equivalence class, and g̃ = αW,0βW (g) is the unique V -factorizable repre-
sentative of the class.

However, in general αW,i(g) is not V -factorizable if g ∈ DW
dBe\im (βW ). There is a degree

of freedom in how to map a density collection to a global density on this set. We choose
the arithmetic mean over all αW,i, where i ∈ W . Note that for g ∈ im (βW ) the definition
then coincides with any αW,i.

Definition 4.19. αW : DW
dBe → D(EV+W ) is given by αW (g) = 1

|W |
∑

i∈W αW,i(g).

It is clear that αW (g) is a density by reasoning similar to that for αW,i(g).

4.2.3 General Cellular Probabilistic Automata

With the de Bruijn calculus at hand we can now generalize the definition of CPA to general
V . To cope with boundary conditions it is necessary that the global function operates only
on Ĩ instead of I , where Ĩ contains the sites away from the boundary. We also have to
adapt αW and βW to boundary conditions when they operate on the whole grid.

Definition 4.20. As before let I = {1, ...,m}, U = {−1, 0}, V = {−p, ..., q} for p, q,m ∈ N0

with 2 + p+ q ≤ m. We now set il = 2 + p, ir = m− q, and Ĩ = {il, ..., ir}.
i) We set α̂ : DĨ

dBe → DBC(EI), g 7→ α̂(g) with

α̂(g)(ψ) =

{
αĨ(g)(ψ|{2,...,m}) if ψ(1) = ρ

0 else

ii) and β̂ : DBC(EI)→ DĨ
dBe, g 7→ β̂(g) with

β̂(g)(i)(ψ) =
∑

χ∈EI s.t.
χ|i+V =σ−i(ψ)

g(χ).

Definition 4.21. A cellular probabilistic automaton (CPA) is a tuple (I, U, V,E, f0), where for
m, p, q ∈ N0 with 2 + p+ q ≤ m

i) I = {1, ...,m} is a finite grid,
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4 Cellular Probabilistic Automata

Figure 4.3: An example of a CPA with I = {1, ..., 7} and V = {−2, ..., 2}. The global function considers
patterns located at Ĩ = {4, 5} and sketched in the image (lower part) by rectangles of small and large heights,
respectively. The corresponding preimage patterns (upper part) are larger due to the neighborhood, and their
probability of occurrence is influenced by the boundary condition (dashed part). From an implementational
point of view, V may be constructed from Ṽ = {−2, ..., 1} and W = {0, 1}; see Sec. 5.1.1: Focus on a pattern
at site 4. The transition probability from a preimage pattern is calculated from the information about two
subtransitions between light and dark grey subpatterns.

ii) U = {−1, 0} is the neighborhood,
iii) V = {−p, ..., q} gives rise to de Bruijn patterns,
iv) E is a finite set of local states, and
v) f0 : EU+V → D(EV ) is the local function.
With the boundary condition ρ ∈ E the global function is given by

f : DĨ
dBe → DĨ

dBe, g 7→ f(g),

f(g)(i)(ψ) =


∑

ϕ∈EU+V s.t.
ϕ(p−1)=ρ

g(i)(ϕ|V ) · f0(ϕ)(ψ) if i = il∑
ϕ∈EU+V αU (σi(g)|U )(ϕ|V+U ) · f0(ϕ)(ψ) if i > il

.

The trajectory starting with g0 ∈ (D(EV ))Ĩ is given by the sequence (gn)n∈N, where gn =
f(gn−1) for n = 1, 2, ....

See Fig. 4.3 for a sketch of how the CPA works on general patterns. In contrast to the
pattern superautomata in CNDA from Sec. 3.2.3 here we use pattern directly in the local
function and not to approximate a global object after it has been constructed with minimal
pattern length. Note that f0 is not arbitrary but connected to a dynamical system with
the locality property. By exploiting this relation we can assure that the global function is
well-defined.

Lemma 4.22. f(DĨ
dBe) ⊆ DĨ

dBe.

Proof SinceDĨ
dBe = (D(EV ))Ĩ for |V | = 1, the statement is trivial in this case. So we focus

on |V | > 1. We show that without loss of generality any pattern in the support of any site
in the image can be extended to the right by a pattern in the support of the neighboring
site.

Let g ∈ DĨ
dBe, i ∈ {il, ..., ir − 1}, and ψ ∈ supp f(g)(i). By the construction of f and

αU we know that there is ϕ ∈ EU+V such that σj(ϕ)|V ∈ supp(g)(i + j) for all j ∈ U and
f0(ϕ)(ψ) > 0. Because of the extension property of the preimage g we can find ϕ̃ ∈ EU+V

such that σ−1(ϕ̃)|V = ϕ|V ∈ supp (g)(i) and ϕ̃|V ∈ supp (g)(i+ 1).
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4.2 Introduction of Cellular Probabilistic Automata

This enables us to find ψ̃ ∈ supp f(g)(i+ 1) such that ψ̃|V− = σ1(ψ|V+), as we will show
in the following. Hence the pattern ψ may be extended to the right by ψ̃, and the proof is
complete.

As f0(ϕ)(ψ) > 0 and the partition is uniform, there is an ε-ball Bε with respect to the
2-norm in Rmn, ε > 0, such that

Bε ⊆ Ωσ−i(ϕ) ∩ Φ−τ (Ωσ−i(ψ)).

Since the set is just restricted on sites i + U + V due to the locality property, we may
independently restrict at site i+ 1 + q and can still find ε′ > 0 with

Bε′ ⊆ Ωσ−i(ϕ) ∩ Ωσ−(i+1)(ϕ̃(q+s)) ∩ Φ−τ (Ωσ−i(ψ))

⊆ Ωσ−i(ϕ|V++U ) ∩ Ωσ−(i+1)(ϕ̃|q+s) ∩ Φ−τ (Ωσ−i(ψ|V+
))

= Ωσ−(i+1)(ϕ̃) ∩ Φ−τ (Ωσ−i(ψ|V+
)).

In the second line we have again used the locality property, and the equality sign holds
due to σ−i(ϕ|V++U ) = σ−(i+1)(ϕ̃|V−+U ). We now define ψ̃ ∈ EV by ψ̃|V− = σ1(ψ|V+) and
choose ψ̃(q) such that there is ε′′ > 0 with

Bε′′ ⊆ Bε′ ∩ Φ−τ (Ωσ−(i+1)(ψ(q))).

Therefore
Bε′′ ⊆ Ωσ−(i+1)(ϕ̃) ∩ Φ−τ (Ωσ−(i+1)(ψ̃)),

f0(ϕ̃)(ψ̃) > 0, and ψ̃ ∈ supp f(g)(i+ 1).

We denote the case of il = ir with Vmax and find that α̂ and β̂ are inverse in this case.

Lemma 4.23. If il = ir,
i) α̂β̂(g) = g for all g ∈ DBC(EI) and

ii) β̂α̂(g) = g for all g ∈ (D(EV ))Ĩ .

Proof Claim i) Let g ∈ DBC(EI) and ψ ∈ EI and note that σ−il(σil(ψ)|V ) = ψ|il+V .
Therefore

α{il}(β̂(g))(ψ|{2,...,m}) = β̂(g)(il)(σil(ψ)|V ) =
∑

χ∈EI s.t.
χ|il+V =ψ|il+V

g(χ) = g(ψ).

If ψ(1) = ρ, we find that

α̂β̂(g)(ψ) = α{il}(β̂(g))(ψ|{2,...,m}) = g(ψ),

and otherwise also
α̂β̂(g)(ψ) = 0 = g(ψ).

Claim ii) Let now g ∈ D(EV )Ĩ and ψ ∈ EV . Then

β̂α̂(g)(il)(ψ) =
∑

χ∈EI s.t.
χ|i+V =σ−i(ψ)

α̂(g)(χ) =
∑

χ∈EĨ s.t.
χ|i+V =σ−i(ψ)

α{il}(g)(χ)

=
∑

χ∈EĨ s.t.
χ|i+V =σ−i(ψ)

g(il)(σil(χ)|V ) = g(il)(ψ).
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4 Cellular Probabilistic Automata

For Vmax the evolution of the global density is calculated directly, and locality is com-
pletely omitted. It can be shown that then the CPA exactly corresponds to the discretized
FPO.

Proposition 4.24. For V = Vmax we find that α̂f β̂ = PB .

Proof We prove that α̂f β̂(g)(ψ) = PB(g)(ψ) =
∑

ϕ∈EI g(ϕ)PB,ϕ,ψ for all g ∈ DBC(EI)

and all ψ ∈ EI .
If ψ(1) 6= ρ, the claim follows immediately. The reason is that in this case by definition

α̂f β̂(g)(ψ) = 0 and also PB,ϕ,ψ =
λ(Ωϕ∩Φ−τ (Ωψ))

λ(Ωϕ) = 0 for all ϕ ∈ EI because of Φ−τ (Ωψ) = ∅.
So consider ψ(1) = ρ. For ϕ ∈ EI we calculate that β̂(g)(il)(σil(ϕ)|V ) = g(ϕ) and

fβ̂(g)(il)(σil(ψ)|V ) =
∑

ϕ∈EIs.t. ϕ(1)=ρ

β̂(g)(il)(σil(ϕ)|V )f0(σil(ϕ))(σil(ψ)|V )

=
∑
ϕ∈EI

g(ϕ)f0(σil(ϕ))(σil(ψ)|V ).

To simplify the index of the sum in the first line it was observed that E{il}+U+V = EI in
the case at hand. Since for {il}we do not have to normalize, furthermore

α̂f β̂(g)(ψ) = α{il}(fβ̂(g))(ψ|{1+r,...,m−s}) = fβ̂(g)(il)(σil(ψ|{1+r,...,m−s})|V )

= fβ̂(g)(il)(σil(ψ)|V ) =
∑
ϕ∈EI

g(ϕ)f0(σil(ϕ))(σil(ψ)|V )

=
∑
ϕ∈EI

g(ϕ)
λ(Ωϕ ∩ Φ−τ (Ωψ|{1+r,...,m−s}))

λ(Ωϕ)
.

If we show that Ωϕ ∩ Φ−τ (Ωψ|{2,...,m}) = Ωϕ ∩ Φ−τ (Ωψ), the proof is complete. So let v ∈
Ωϕ ∩ Φ−τ (Ωψ|{2,...,m}). Then T̂ (Φτ (v))|{2,...,m} = ψ|{2,...,m} and T̂ (v)(1) = ρ = ψ(1). But

therefore already T̂ (Φτ (v)) = ψ, and also v ∈ Ωϕ ∩ Φ−τ (Ωψ). The other subset relation
follows immediately, because Ωψ ⊆ Ωψ|{2,...,m} .

4.3 Consistency and Locality Errors

Up to technical postprocessing, time evolution of a density with an FPO is approximated
by evolution with the according CPA. The accuracy of the approximation is determined by
two parameters: state space resolution and de Bruijn pattern length. In this section we first
show that for maximal pattern length the approximation can be made arbitrarily close. A
subsequent investigation of potential locality errors in the case of smaller pattern length
complements this consistency result.

4.3.1 Consistency

There are many ways to study distances between probability measures [63]. In our density
based formulation we use the L1-norm for probability densities, which leads to the notion
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of strong convergence in the literature [106]. A result by Li ensures that in this norm
the discretized FPO converges pointwise to the original FPO for increasing state space
resolution [111]. For sake of completeness we give a proof for the given case.

Theorem 4.25. Let g ∈ D(Rmn) with supp(g) ⊆ Ωm, and let T : Ω → E be a uniform
partition with resolution ∆Ω. Then R converges pointwise to the identity with respect to
the L1-norm,

lim
∆Ω→0

‖R(g)− g‖1 = 0.

Note that the 1-dimensional proof by Li can immediately be extended to general dimen-
sion mn of the phase space. We present an alternative proof here, which needs some tools:

A subset M ⊆ X of a metric space (X, d) is called totally bounded, if for every ε > 0
there exist n ∈ N and x1, ..., xn ∈M such that

M ⊆
n⋃
i=1

{x ∈ X | d(x, xi) < ε}.

Totally bounded subsets of Lp(Rn) can be alternatively characterized in a functional ana-
lytical sense by the theorem of Kolmogorov-Riesz [77,182]. In the following |.| denotes the
2-norm in Rn.

Theorem 4.26. (Kolmogorov-Riesz)
A set M ⊂ Lp(Rn), 1 ≤ p <∞ is totally bounded if and only if the following criteria are

fulfilled:
i) M is bounded in Lp(Rn), i.e., supg∈M ‖g‖p <∞.

ii) For every ε > 0 there is some R so that for every g ∈M∫
|v|>R

|g(v)|pdv < εp.

iii) For every ε > 0 there is δ > 0 so that for every g ∈M and w ∈ Rn with |w| < δ∫
Rn
|g(v + w)− g(v)|pdv < εp.

Proof of Thm. 4.25:

‖R(g)− g‖1 =

∫
v∈Ωm

∣∣∣∣∣∣
∑
ϕ∈EI

χΩϕ(v)
1

∆Ωmn

∫
w∈Ωϕ

g(w)dw − g(v)

∣∣∣∣∣∣ dv
=

∫
v∈Ωm

∣∣∣∣∣∣
∑
ϕ∈EI

χΩϕ(v)
1

∆Ωmn

∫
w∈Ωϕ

g(w)dw −
∑
ϕ∈EI

χΩϕ(v)g(v)

∣∣∣∣∣∣ dv
≤
∫
v∈Ωm

∑
ϕ∈EI

χΩϕ(v)

∣∣∣∣∣ 1

∆Ωmn

∫
w∈Ωϕ

g(w)dw − g(v)

∣∣∣∣∣ dv
=
∑
ϕ∈EI

∫
v∈Ωϕ

∣∣∣∣∣ 1

∆Ωmn

∫
w∈Ωϕ

g(w)dw − g(v)

∣∣∣∣∣ dv
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≤
∑
ϕ∈EI

1

∆Ωmn

∫
v∈Ωϕ

∫
w∈Ωϕ

|g(w)− g(v)| dwdv

=
∑
ϕ∈EI

1

∆Ωmn

∫
v∈Ωϕ

∫
u∈Ωϕ−v

|g(v + u)− g(v)| dudv

The last step involves a change of variables fromw to u := w−v, and Ωϕ−v := {u−v |u ∈
Ωϕ}. As

Ωϕ − v ⊆ [−∆Ω,∆Ω]mn

for v ∈ Ωϕ with ϕ ∈ EI , we calculate with Fubini’s theorem

‖R(g)− g‖1 ≤
∑
ϕ∈EI

1

∆Ωmn

∫
v∈Ωϕ

∫
u∈[−∆Ω,∆Ω]mn

|g(v + u)− g(v)| dudv

=
1

∆Ωmn

∫
v∈Ωm

∫
u∈[−∆Ω,∆Ω]mn

|g(v + u)− g(v)| dudv

≤ 1

∆Ωmn

∫
u∈[−∆Ω,∆Ω]mn

∫
v∈Rmn

|g(v + u)− g(v)| dvdu.

Let ε > 0. Since the set {g} ⊂ L1(Rn) is totally bounded, the theorem of Kolmogorov-Riesz,
Thm. 4.26, guarantees that there is δ > 0 such that∫

v∈Rmn
|g(v + u)− g(v)| dv < ε

2mn

for |u| < δ. If we choose ∆Ω such that ∆Ω < δ√
mn

we ensure that

|u| =

√√√√mn∑
i=1

|ui|2 ≤

√√√√mn∑
i=1

∆Ω2 =
√
mn∆Ω < δ

for all u ∈ [−∆Ω,∆Ω]mn and hence

‖R(g)− g‖1 <
1

∆Ωmn

∫
u∈[−∆Ω,∆Ω]mn

ε

2mn
du = ε.

Therefore ‖R(g)− g‖1 → 0 for ∆Ω→ 0.

With Prop. 4.24 we thus find that for maximal pattern length |Vmax| and a uniform par-
tition with resolution ∆Ω our algorithm is consistent: For g ∈ κ−1

B (DBC(EI)),

lim
∆Ω→0

‖κ−1
B α̂f β̂κB(g)− PΦτ (g)‖1

= lim
∆Ω→0

‖κ−1
B PBκB(g)− PΦτ (g)‖1

= lim
∆Ω→0

‖RPΦτ (g)− PΦτ (g)‖1

= 0.

66
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4.3.2 Locality Errors

Now we investigate in more depth the role of locality in approximating the discretized
FPO PB by a CPA. It turns out that the CPA covers the dynamics of the underlying PB if
only the support is considered. This is expected in light of Lm. 3.30, as CPA are constructed
in analogy to pattern superautomata of CNDA.

Lemma 4.27. For all n ∈ N, all g ∈ DBC(EI), and all i ∈ Ĩ it holds that

supp (β̂PnB(g)(i)) ⊆ supp (fnβ̂(g)(i)).

Proof Let n ∈ N, g ∈ DBC(EI), i ∈ Ĩ , and χ ∈ supp (β̂PnB(g)(i)) ∈ EV . Then there is
ψ ∈ EI such that PnB(g)(ψ) > 0 and σi(ψ)|V = χ. Let ϕn = ψ. Per induction it can be

shown that we can find ϕ0, ..., ϕn−1 ∈ EI such that PB,ϕk−1,ϕk =
λ(Ωϕk−1

∩Φ−τ (Ωϕn ))

λ(Ωϕn−1 ) > 0

and P k−1
B (g)(ϕk−1) > 0 for k ∈ {1, ..., n}. Since for all j ∈ Ĩ

Ωϕk−1
∩ Φ−τ (Ωϕk) ⊆ Ωϕk−1|j+U+V

∩ Φ−τ (Ωϕn |k+U+V ),

Ωϕk−1
⊆ Ωϕk−1

|j+U+V ,

we conclude that f0(σj(ϕk−1)|U+V )(σj(ϕk)|V ) > 0 for all j ∈ Ĩ .
Furthermore, β̂(g)(j)(σj(ϕ0)) > 0 for all j ∈ Ĩ , and therefore fβ̂(g)(j)(σj(ϕ1)|V ) > 0

for all j ∈ Ĩ . This induces f2β̂(g)(j)(σj(ϕ2)|V ) > 0 for all j ∈ Ĩ and so on, and therefore
fnβ̂(g)(j)(σj(ϕn)|V ) > 0 for all j ∈ Ĩ . Recalling that σi(ϕn)|V = χ, we conclude that
χ ∈ supp (fnβ̂(g)(i)).

However, we cannot recover the precise global behavior of the discretized FPO from a
CPA in general. The errors that can occur are twofold, and we will provide examples for
both types here. On the one hand, it may happen that correlations over |V | sites are not
preserved, because we work on patterns of length |V |. This is independent of the actual
dynamics and a direct consequence of our approximation space; see Sec. 4.2.2. On the
other hand, we will see that even for U ⊆ V in general there are locally allowed transitions
of a global state that are not allowed in a global consideration with PB . This is remarkable,
since such behavior was ruled out for the underlying dynamical system by the locality
property. This may also lead to errors. While the first error type is a true locality effect,
the second arises from the interplay of locality and state space discretization. We note that
the first type has in principle also been studied in the context of pattern superautomata for
CNDA in Sec. 3.2.3, but the second type is due to the construction of the objects from an
underlying dynamical system and new at this point.

Example 4.2. This example shows that in general correlations over |V | sites are not pre-
served. We compare one CPA time step to one time step with the discretized FPO. Consider
I = {1, 2, 3, 4} and the dynamical system that is given by the identity on Ωm = [0, 1]4 with
U = {−1, 0}. We choose the partition Ω0 = [0, 0.5) and Ω1 = [0.5, 1], i.e., E = {0, 1}, and
look at the CPA with V = {0, 1} and Ĩ = {2, 3}. We find that f0(ϕ)(ψ) = δϕ|V ,ψ for all
ϕ ∈ EU+V and ψ ∈ EV .

Consider ρ = 0 and a density ĝ ∈ DBC(EI) as the extension of g ∈ D(EV+W ) in Ex. 4.1
by the boundary condition, i.e., such that β̂(ĝ) = βĨ(g). Then also fβ̂(ĝ) = βĨ(g), and so
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Figure 4.4: Illustration of a transition from χ = (2, 2, 4, 4) to ψ = (2, 0, 2, 2) in Ex. 4.3. The left side shows the
preimage, the right the image state. The horizontal numbers correspond to the respective sites, while the ver-
tical numbers display E = {0, ..., 4}. The states χ and ψ are marked by black rectangles at the corresponding
sites.

α̂f β̂(g) is the extension of g̃ from Ex. 4.1 by the boundary condition. However, PB(ĝ) = ĝ,
and so α̂f β̂(ĝ) 6= PB(ĝ).

Example 4.3. This example shows that transitions at different sites are not independent
in general. By comparing one CPA time step to one time step with the discretized FPO
we see that a specific local transition at one site cannot take place if another specific local
transition happens at a neighboring site, although both transitions are allowed separately.
Consider I = {1, ..., 4} and the system on dynamically invariant state space Ωm = [0, 1]4

given for all n ∈ N by vn+1
i = h(vni−1, v

n
i ) =

vni−1+vni
3.75 for i ∈ {2, ...,m}. We define 5 intervals

Ωj = [wj , wj+1), for j ∈ {0, ..., 3}, Ω4 = [w4, w5]

with
w0 = 0, w1 = 0.183, w2 = 0.31, w3 = 0.4, w4 = 0.7, w5 = 1,

name them by their index, and obtain a partition of Ω with E = {0, ..., 4}; see Fig. 4.4. The
induced flow is denoted by Φ1 for one time step. We consider the CPA with V = U =
{−1, 0} for deterministic input g ∈ DBC(EI) given by g(ϕ) = δχ,ϕ, where χ = (2, 2, 4, 4) ∈
EI . We focus on the image state ψ = (2, 0, 2, 2) ∈ EI and determine

l1 = 0.3625, l2 = 0.8, r1 = 0.32375, r2 = 0.83875

as the solution of the equations

h(l2, w4) = w3, h(l1, l2) = w2, h(w2, r1) = w1, h(r1, r2) = w2.

It is possible to show that

{Ωχ|4+U+V
∩ Φ−1(Ωψ|4+V

)} ⊆ {v ∈ Ω | l1 ≤ v2 ≤ w3, w4 ≤ v3 ≤ l2},
{Ωσ−1(χ|3+U+V ) ∩ Φ−1(Ωσ−1(ψ|3+V ))} ⊆ {v ∈ Ω |w2 ≤ v2 ≤ r1, r2 ≤ v3 ≤ 1},

f0(σ4(χ|4+U+V ))(σ4(ψ|4+V ))) > 0, and f0(σ3(χ|3+U+V ))(σ3(ψ|3+V )) > 0.
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Hence α̂f β̂(g)(ψ) > 0, but

PB(g)(ψ) =
∑
ϕ∈EI

g(ϕ)PB,ϕ,ψ =
λ(Ωχ ∩ Φ−1(Ωψ))

λ(Ωχ)

≤
λ((Ωχ|4+U+V

∩ Φ−1(Ωψ|4+V
)) ∩ (Ωχ|3+U+V

∩ Φ−1(Ωψ|3+V
)))

λ(Ωχ)

=
λ(∅)
λ(Ωχ)

= 0,

and so α̂f β̂(g) 6= PB(g).

Both examples are scalable in the sense that we can find analogous partitions of [0, c], c ∈
(0, 1),with the above properties by dividing all phase space coordinates by c and complete
the partition in [c, 1] arbitrarily. So for decreasing size of the coding domains we can still
find a partition of [0, 1] with the above effects: locality errors are independent from resolu-
tion errors.

4.4 Conclusion and Outlook

We have introduced a numerical scheme for density based uncertainty propagation in dis-
tinct PDEs. The PDE is translated into a cellular probabilistic automaton (CPA), which then
approximately evolves a probability density for given boundary conditions. The transla-
tion is based on state space discretization like in set oriented numerics and on the de Bruijn
state idea from cellular automata theory. There are two parameters that allow to control the
approximation of the exact density evolution: state space resolution and de Bruijn pattern
length. We have presented the method for uncertain initial conditions under deterministic
dynamics and shown consistency.

In the next chapter we extend the method to white noise boundary conditions as an
example of more involved stochastic influence. We also consider implementational issues
and validate the algorithm in several water grid applications. In Chap. 6 then we adapt
the CPA framework to include measurement data in the knowledge about a system’s state
by establishing a connection to dynamic Bayesian networks.

From a theoretical perspective two main questions remain for future research. First,
we are interested in really quantifying and improving the approximation error for given
de Bruijn pattern length beyond our consistency result. This appears to be a demanding
problem, because spatial correlations have to be quantified somehow. Second we suggest
to focus on random parameters beyond initial value uncertainties and the white noise
boundary conditions introduced in the next chapter. It seems difficult to preserve temporal
correlations in such parameters with our algorithm, but our ideas can be used for white
noise parameters. We are confident that white noise parameters only extend the translation
of PDEs to CPA, whereas the simulation itself is not changed. In this sense CPA promise
to overcome the curse of dimension in parameter space.
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5 Applications and Extensions of Cellular
Probabilistic Automata

In the previous chapter cellular probabilistic automata (CPA) have been theoretically intro-
duced as a method for uncertainty propagation. This chapter complements the introduc-
tion with a practical perspective. It contains implementational considerations, applications
and adaptations or extensions of the method. Especially the interpretation of the discrete
state space in terms of risk levels is highlighted in the applications. Notation and results
of the theory chapter are used here.

The chapter is divided into 5 sections. We start in Sec. 5.1 with considerations about
the implementation of CPA. In particular we suggest a computational method to calculate
the local function of a CPA, conduct a complexity analysis and deduce some practical tips
for the design of an efficient algorithm. Furthermore we extend the CPA concept slightly
so that CPA can cope with stochastic boundary conditions. We want to provide evidence
this way that with CPA the treatment of more general stochastic spatio-temporal processes
seems feasible. They are used in Sec. 5.2, where CPA are applied to advection-reaction
equations for modeling contamination in water pipes. In particular we study two exam-
ples, arsenate adsorption to the pipe wall and bacterial regrowth with chlorine inhibition.
The results are interpreted and validated with a Monte Carlo simulation. However, in
further computer experiments for longer pipes we observe difficulties with conservation
laws for CPA simulations. We propose an adaptation of the method in Sec. 5.3 to encounter
these problems. In Sec. 5.4 we then extend the method to the simulation of contamination
in whole water grids. The main contribution of this section is a way to deal with coupled
partial differential equations (PDEs) in a discrete setup. Finally, in Sec. 5.5 we address more
complex hyperbolic PDEs, in particular the isothermal Euler equation of fluid dynamics.

5.1 Implementation of Cellular Probabilistic Automata

From an implementational point of view two steps of uncertainty propagation with CPA
have to be distinguished. Step one is the translation of the completely continuous system
into a CPA. This is independent of initial or boundary conditions and can be achieved
in a preprocessing procedure. Step two consists of the CPA evolution with given initial
and boundary values. In Sec. 5.1.1 we suggest a method to conduct step one in practice.
Afterwards a complexity analysis of both steps is given in Sec. 5.1.2. In Sec. 5.1.3 practi-
cal implications for the implementation are discussed; in particular we suggest a sparse
implementation that can improve the performance significantly. Although the CPA the-
ory has been developed for uncertainties in initial conditions, in Sec. 5.1.4 we extend the
concept slightly such that CPA can cope with certain stochastic boundary conditions.
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5.1.1 Calculating Local Transition Probabilities

The preprocessing basically consists of the approximation of local transition probabilities.
We propose a local version of the standard Monte Carlo quadrature approach in set ori-
ented numerics for this purpose [87]. We note that also advanced adaptive methods have
been suggested; see e.g. [73].

i) For ϕ ∈ EU+V choose Wϕ test vectors wi = (wi,−r−p, ..., wi,s+q) ∈ (Rn)U+V , where
{wi,j}i≤Wϕ is randomly distributed over coding domain Ωϕ(j) ⊆ Ω, respectively.

ii) Compute for all i ≤Wϕ the image points

w̃i = (h(τ, wi,−r−p, ..., wi,s−p), h(τ, wi,−r−p+1, ..., wi,s−p+1), ..., h(τ, wi,−r+q, ..., wi,s+q)).

iii) Determine ψ1, ..., ψL ∈ EV such that there is l ≤ L and w̃i with T ((w̃i)j) = (ψl)j for
all j ∈ V . Let the number of image points in the specific coding domain be denoted
by Wψl , i.e.,

∑L
l=1Wψl = Wϕ. The local transition function is then approximated by

f0(ϕ)(ψ) =

{
Wψ/Wϕ for all ψ ∈ {ψ1, ..., ψL}
0 else

.

We will see in Sec. 5.1.2 that the number of numerical map evaluations grows expo-
nentially in the patterns length, which is a problem for large V . We suggest to use de
Bruijn calculus to determine transition probabilities for large V by concatenating transi-
tion probabilities for smaller Ṽ ; see Fig. 4.3. For given f̃0 : EU+Ṽ → D(EṼ ) and W given
by V = Ṽ +W ,

f0 : EV+U → D(EV ), ϕ 7→ f0(ϕ),

where
f0(ϕ)(ψ) = αW (ĝ)(ψ),

ĝ ∈ (D(EṼ ))W , ĝ(i) = f̃0(ϕ|i+Ṽ+U ).

It can be shown with an example similar to Ex. 4.3 that this is again just an approximation
of the directly calculated f0.

5.1.2 Complexity Analysis

In this section we analyze the complexity of the CPA algorithm in three steps. First, we
consider the concatenation of patterns, second the preprocessing as introduced in Sec. 5.1.1
and third the simulation. For simplicity we assume an identical number of symbols in each
dimension of the phase space, but the ideas are easily extendable to the general case. We
use the following notation in this section:

i ... # test points per domain m = |I| ... # sites,
j = |V | ... length of pattern, n ... dimension of phase space
k = |W | ... length of pattern extension, p ... # domains per dimension,
l = |U | ... length of neighborhood, t ... # time steps
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5.1.2.1 Concatenating Patterns

Many repetitive tasks have to be performed when designing an algorithm for the determi-
nation of αW (g), where αW : (D(EV ))W → D(EV+W ) and g ∈ (D(EV ))W . The idea of
dynamic programming is to perform each repetitive computation just once, store the result
and look it up every time it is needed [36]. It hence optimizes calculation time at the cost
of memory. Depending on how much one uses this concept, one can control the tradeoff
between efficiency in time and memory.
αW is defined as the mean over all αW,a for a ∈ W . For ψ ∈ EV+W each αW,a(g)(ψ) is

given as a fraction; see also the proof of Lm. 4.14. The numerator is a product of k factors
that is independent of a, and the denominator is a factor of probabilities from left and right
marginal densities of the local densities (D(EV ))W :

αW,a(g)(ψ) =

∏
b∈W g(b)(σb(ψ)|V )∏a−1

b=−t̂ gl(b)(σb(ψ)|V+)
∏û
b=a+1 gr(b)(σb(ψ)|V−)

,

where we use the notation of Sec. 4.2.2 with W = {−t̂, ..., û}. The left and right marginal
densities gl/r ∈ D(EV+/−) are given by

gl/r(b)(ϕ) =
∑

χ∈EV s.t.χ|V+/−=ϕ

g(b)(χ).

For global states EV+W that have some subpatterns in common, the same marginal
probabilities are needed. In the sense of dynamic programming we therefore determine all
k− 1 left and right marginal densities at all sites in W in advance. The complete algorithm
then consists of 4 steps.

First, we compute all marginal densities in a straightforward way: The probability for
each of the pn(j−1) states in a marginal distribution at one site can be calculated by pn

additions and (j − 1)pnj comparisons of states at single sites. This leads to algorithmic
complexity O(kjp2nj−n)) of the first step, because the latter term dominates the former
asymptotically. In a second step we determine the numerators for all global states with
(k − 1)pn(j+k−1) multiplications. The algorithmic complexity for the secon step is hence
O(kpn(j+k−1)). The third step then calculates the mean of the denominators over all a ∈
W for all global states. For each global state this calculation requires averaging over k
terms, of which each is calculated by multiplication of k− 1 marginal probabilities. So this
step leads to complexity O(k2pn(j+k−1)). In the last step we determine the fraction of the
numerators with the respective denominators in O(pn(j+k−1)) divisions.

One might improve the efficiency in all steps further by lower-level dynamic program-
ming. We use the second step for V = {0}, i.e., j = 1, as an example: subpatterns can be
grown iteratively from single site states to global states, and new single state probabilities
are multiplied to probabilities of the subpatterns. This requires all together p2n + ... + pkn

multiplications, which asymptotically leads to O(pkn) instead of O(kpkn) multiplications.
Furthermore we note that in practical applications it might be enough to only calculate

with αW,i for a specific i ∈ W instead of the average over all of them. The results for the
different sites are in many cases not too different from each other, and thus a lot of the
numerical effort can be avoided.
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5.1.2.2 Preprocessing: Local Function

Calculating f0 : D(EU+V ) → D(EV ) requires to map ij+l−1 local point combinations and
determine their respective image domain for pn(j+l−1) preimage patterns. This amounts
to pn(j+l−1)ij+l−1 calls of the numerical solver to map the local point combinations and
jnpn(j+l−1)ij+l−1 modulo calculations in the case of a uniform partition to determine the
image domains. So our standard preprocessing algorithm has complexity O(jnpn(j+l−1)

ij+l−1).
The algorithm faces the well known curse of dimension of set-oriented methods: it scales

exponentially bad in phase space dimension, pattern and neighborhood length. However,
the calculations for all preimage patterns can be done in parallel, potentially on a cluster.
Furthermore we can use the more advanced technique of Sec. 5.1.1 for large patterns and
determine transition probabilities between them by merging transition probabilities for
smaller Ṽ . If the partition is not uniform, more complex algorithms have to be applied
instead of the modulo evaluations.

5.1.2.3 Simulation: Global Function

In the simulation we have to apply the global function f : D(EV )Ĩ → D(EV )Ĩ in ev-
ery time step. Boundary effects are neglected here for simplicity. First, at every site in
Ĩ the preimages have to be concatenated in a neighborhood with αU , and second, the
local function has to be applied to it. The first step can be conducted in tm times the
whole complexity of αU , and for the second step for all image and all preimage pat-
terns multiplications and additions of probabilities are necessary. This can be achieved
in O(mtpn(j+l−1)pnj) = O(mtpn(2j+l−1)). Like in the preprocessing we find the curse of
dimension of set-oriented numerics, i.e., the exponentially bad scaling in phase space di-
mension, pattern and neighborhood length. However, the simulation scales linearly in
space and time - like a conventional CA it is even parallelizable in space. In practice it
turns out that the preprocessing is numerically more expensive than the simulation. So
for industrial applications the CPA method points towards real-time uncertainty quantifi-
cation, because the slow preprocessing only has to be performed once before the actual
simulation. The method is especially interesting when many simulations with different
initial and boundary conditions have to be performed.

5.1.3 Practical Considerations

The performance of the CPA algorithm depends very much on implementational details.
It turns out that some considerations for the efficient implementation of algorithms for
probabilistic graphical models are also relevant for the implementation of CPA. A basic
decision is, for example, whether the multi-dimensional arrays, e.g. the local function
or the collections of local densities, are flattened for storage or not [102]. Also for multi-
dimensional phase spaces it has to be decided whether to use one- or multi-dimensional
symbols.

In this section we focus on sparsity to encounter the exponentially bad scaling in phase
space dimension, pattern and neighborhood length. Similar ideas have been used in the
context of filtering in dynamic Bayesian networks [17]. We only store and process states
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with probability larger than a specified threshold whenever possible. Otherwise already
for reasonably high discretization and pattern length the calculations are not feasible. In-
stead of an array of probabilities, where indices correspond to states, we store an array of
non-zero probabilities together with the according states. Then the indices do not have a
meaning any more, but the information is compressed by orders of magnitude. We apply
this idea in the preprocessing, the concatenation and the simulation.

In the preprocessing we can make up for the loss of index information by saving in an
additional list how many image states are allowed for each preimage pattern. The number
of allowed image states is typically much smaller than EV . Transition probabilities for a
given preimage state can then be easily accessed by using the strides as artificial indices.
However, in concatenation and simulation in the worst case the sparse computation may
require more operations than with the non-sparse algorithm investigated above. The rea-
son is that in many steps of the algorithm (subpatterns of) states have to be compared e.g.
for concatenation, because we do not know the content of the arrays in advance. Obeying
a predetermined order for states in the arrays can relieve this problem, a requirement that
deserves special caution during parallelization. In any case, usually the set of states with
positive probability is much smaller than EV , although it typically first grows and then
shrinks again in the transient phase of dynamics. Therefore normally sparsity leads to im-
plementations that are orders of magnitude faster than conventional implementations. We
note that our de Bruijn choice of αW enables such sparse calculations, whereas the whole
space is needed to solve, for example, a linear nonnegative least squares problem.

5.1.4 Stochastic Boundary Conditions

The CPA theory has only been developed for uncertainties in initial conditions. Here we
extend the concept slightly to stochastic boundary conditions. This is, for example, im-
portant in contaminant transport modeling [177], and we will directly apply the ideas in
Sec. 5.2. With this first generalization we want to provide evidence that with CPA the
treatment of more general stochastic spatio-temporal processes seems feasible.

We use the notation of Chap. 4 and again only consider U = {−1, 0}. Stationary tempo-
ral white noise boundary conditions gl ∈ D(E) now replace the deterministic ρ ∈ E. With
stationary we mean that the densities do not change in time, and the term temporal white
noise indicates that there are no correlations in the boundary random variable’s realiza-
tions at different times. We can say that the set of boundary condition random variables at
each time step is iid.

For this purpose the global function in Def. 4.21 is extendend to f : DĨ
dBe → DĨ

dBe, g 7→
f(g),

f(g)(i)(ψ) =

{ ∑
ϕ∈EU+V gl(i)(ϕ(−p− 1)) · g(i)(ϕ|V ) · f0(ϕ)(ψ) if i = il∑
ϕ∈EU+V αU (σi(g)|U )(ϕ|V+U ) · f0(ϕ)(ψ) if i > il

.

The relations between global and de Bruijn densities have to be generalized in the stochas-
tic case to α̂ : D(E)×DĨ

dBe → D(EI), (gl × g) 7→ α̂((gl × g)) with

α̂((gl × g))(ψ) = gl(ψ(1))αĨ(g)(ψ|{2,...,m})
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and β̂ : D(EI)→ D(E)×DĨ
dBe, g 7→ β̂(g) = (gl, gĨ) with

gl(e) =
∑

χ∈EI s.t. χ(1)=e

g(χ), gĨ(i)(ψ) =
∑

χ∈EI s.t.
χ|i+V =σ−i(ψ)

g(χ).

CPA with stochastic boundary conditions may be used to approximate spatio-temporal
processes with deterministic dynamics, in which the initial and boundary conditions are
stochastic. We note that it is straightforward to use time-dependent stochastic boundary
conditions instead of stationary ones.

5.2 Application I: Advection-Reaction Equations

Our first application of uncertainty propagation with CPA is the class of advection-reaction
equations. The theory in Chap. 4 has been formulated exactly for initial value uncertainties
in this class. However, to show that CPA can be used to deal with more general stochastic
influence we apply the extension to stochastic boundary conditions of Sec. 5.1.4 right away
for contaminant sources [177].

We choose two standard problems of contamination in drinking water pipes, that have
attracted a lot of attention in the water supply community lately [150]. The first is the
rather simple but already non-linear arsenate adsorption, for which we investigate the
different CPA parameters in depth. Here we also perform a Monte Carlo calculation to
compare our results with. The second problem is the more complex bacterial regrowth
with chlorine inhibition, for which we investigate a special case.

5.2.1 Adsorption of Arsenate

Consider the advection and adsorption of arsenate in drinking water pipes, a standard
problem in the water safety community [101, 150]. This application will serve as the stan-
dard test problem also in later sections. In this section we describe a water tank on a hill
and a pipe to a consumer in a valley. Report locations to observe the arsenate concen-
trations are installed in a distance of ∆x; see Fig. 5.1a. The physics is described by the
Langmuir adsorption model [103]

∂tD + v∂xD = − 1

rh
f(D,A),

∂tA = f(D,A)

(5.1)

with

f(D,A) =
1

1
k1

+ 1
kf

(Smax −A)
(D(Smax −A)−KeqA),
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where D is the concentration of dissolved arsenate and A the concentration of arsenate
adsorbed at the pipe wall. We adopt realistic parameter values from [101, 142]

v = 10
m

min
, rh = 50

l

m2
,

k1 = 0.2
l

mg min
, Smax = 100

mg
m2

,

Keq = 0.0537
mg
l
, kf = 2.4

l

m2 min
,

(5.2)

and consider the system on the approximately positively invariant Ω given byD ∈ [0, 1]
mg
l

and A ∈ [0, 100]
mg
m2 . To discretize time and space we decouple the advection and the

reaction step with the Trotter formula [163]. For the advection the method of charac-
teristics [109] is used with U = {−1, 0} as the backward difference, ∆x = 100m and
∆t = ∆x/v = 10min:

Dn+1
i = Dn

i−1 −∆t
1

rh
f(Dn

i−1, A
n
i )

An+1
i = Ani + ∆tf(Dn

i−1, A
n
i )

(5.3)

To obtain the local function of a CPA we map test points by using intermediate steps
with a less coarse discretization ∆x′ = 1m and ∆t′ = 0.1min. For this purpose we assume
continuity and linearly interpolate the states at the sites between the ends from the states
at the ends. We use 75 randomly distributed test points for the coding domain at site 0
and 37 at site −1 to approximate the local function, and a probability threshold of 0.00005.
We use V = Ṽ = {0} and partition the phase space equidistantly with 5 symbols in each
of the n = 2 directions. If we label the coding domains from 0 to 4 in each direction, the
corresponding CPA results from transition probabilities like

f0(((1, 4), (2, 4)))(ψ) =


0.806 if ψ = (1, 4)
0.194 if ψ = (2, 4)
0 else

;

see Fig. 5.1b. White noise boundary conditions are applied to describe a random arsenate
source in the tank, and deterministic initial values represent a pipe which is completely
empty in the beginning. Note that we can choose the A-direction of the boundary condi-
tion at will, since it has no influence on the system. The observed dynamics is shown in
Fig. 5.1c-5.1e: Dissolved arsenate is transported along the pipe, and over time the walls are
covered more and more with adsorbed arsenate. After 24 hours a steady state is reached,
and we compare it to a Monte Carlo calculation; see Fig. 5.2a-5.2b. The latter has been
obtained on the basis of the same time and space discretization with ∆t′ = 0.1min and
∆x′ = 1m for 20000 evaluations. The boundary condition has been drawn from the sta-
tionary boundary distribution every 10min and held constant in the meantime. Our ex-
ample features an interesting probabilistic effect due to the nonlinearity of the reaction
equations. Although the boundary values are distributed in the D-domains 1− 3, the con-
sumer mostly observes dissolved arsenate at a concentration of domain 2 in the steady
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(a)

(b) (c)

(d) (e)

Figure 5.1: (a) A reservoir on a hill is connected to a consumer in a valley through a pipe with 6 report locations.
(b) The phase space at every report location is divided into 5 × 5 coding domains, and the steady states are
drawn in green. For example, f0(((1, 4), (2, 4))) can be approximated by the transition of blue test points in
domain (1, 4) and black ones in domain (2, 4) to the set of red points. (c) shows the initial conditions for an
exemplary simulation with the according CPA, and the results after 1 and 5 hours are shown in (d) and (e),
respectively. See also Fig. 5.2b.

state. A possible explanation is that the adsorbed arsenate at the pipe wall balances fast
changes in the concentration of the dissolved arsenate.

Furthermore, we plot the steady state results from CPA, for which the approximation pa-
rameters are altered. In Fig. 5.2c the result is plotted for Ṽ = V = {0} with an equidistant
phase space partition of 5 domains in the D- and 15 domains in the A-direction, whereas
in Fig. 5.2d the patterns are extended by W = {−1, 0} to V = {−1, 0}. It is observed that
in this example increasing the pattern length does not improve the result if compared to
the Monte Carlo case, but increasing the state space resolution has a notable effect.

78



5.2 Application I: Advection-Reaction Equations

(a) (b)

(c) (d)

Figure 5.2: Steady states after 24 hours. (a) shows the result of a Monte Carlo computation. In (b) one finds
the result for a CPA with a state space resolution of 5× 5 and patterns with Ṽ = V = {0}, in (c) the results for
5× 15 and Ṽ = V = {0}, and in (d) those for 5× 5 and Ṽ = {0}, V = {−1, 0}.

We note that there is often no interest in global results and accordingly no need to trans-
form between local and fully global states with α̂. Local information like that indicated
in the graphs can be directly extracted from the CPA result. Similarly, in practice the in-
formation about initial values is often given locally, such that there is no need to use the
full β̂. Besides, the discrete state space information is often completely sufficient in prac-
tice. In the example a consumer is interested rather in risk level or threshold information
about water contamination than in information in the form of exact concentrations. In
some biological systems even the Boolean case, |E| = 2, is enough [31].

5.2.2 Bacterial Regrowth with Chlorine Inhibition

In this section we apply the CPA approach to a more complex advection-reaction problem,
a model of bacterial regrowth with chlorine inhibition in a drinking water pipe.1 First, we
briefly review the model and then apply a CPA.

5.2.2.1 Bacterial Regrowth Model

The model is taken from [188] and has been considered as a standard example in the water
safety community [149,150]. In the literature also an analysis of parameter uncertainty has
been conducted [40].

1I thank Alexander Reiss for performing computations in his Bachelor’s thesis. Details of this section can be
found in [143].
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It consists of the interaction of 4 species, that is chlorine Cl2, the biodegradable frac-
tion of dissolved organic carbon (BDOC) or substrate S, free bulk bacteria Xb and bacteria
attached to the pipe wall Xa. The variables describe according concentrations. The dis-
solved species are advected with velocity v, and dispersion could be added also in the
CPA method but is left out for simplicity here.

∂tCl2 + v∂xCl2 =− kbCl2 −
kw
rh

∂tS + v∂xS =− 1

Ygβ
(
µa
rh
Xa + µbXb)

∂tXb + v∂xXb =(µb − kd)Xb − kdepXb +
kdetv

rh
Xa

∂tXa =(µa − kd)Xa − kdetvXa + kdeprhXb

The parameter rh is the hydraulic radius and needed for conversion of bulk to wall
concentrations like in the arsenate model. All other parameters can be assigned to one of
the three processes that take place in this model.

i) Chlorine decays in the bulk water at rate kb and is consumed at the pipe wall at rate
kw.

ii) The net growth of bacteria is given by a specific growth rate µi and a mortality rate
kd, where i = a, b. The growth rate depends on the substrate and the chlorine con-
centration

µi =

{
µmax,i

S
S+KS

exp
(
−Cl2−Cl2,t,i

Cl2,c

)
if Cl2 > Cl2,t,i

µmax,i
S

S+KS
if Cl2 ≤ Cl2,t,i

.

Here KS is a saturation constant, Cl2,t,i a threshold for chlorine impact on bacte-
ria and Cl2,c a characteristic chlorine concentration. To be more realistic, µi can be
assumed to depend on the temperature. We neglect this dependence. The growth
yield coefficient of bacteria Yg and the conversion factor β are needed to describe the
influence of bacterial growth on the substrate.

iii) kdep and kdet are the rate constants for deposition of bulk bacteria at the pipe wall
and detachment of attached bacteria, respectively. The detachment process depends
on the bulk velocity v.

By studying only the reaction dynamics it is possible to get a better understanding of
the phase space dynamics. For this purpose a chemostat with constant in- and outflow of
the bulk species can be considered. We find that there are three stationary points, one of
which is in the unphysical part of phase space. The second point is trivial, it is the state
without any bacteria, and the third point is non-trivial. Depending on the parameters the
points undergo bifurcations and can hence be stable or unstable.
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We choose the parameters

kdet = 0.18h−1, kdep = 0.25
s

mh
,

µmax,a = 0.2h−1, µmax,b = 0.2h−1,

Cl2,t,a = 0.1
mg
l
, Cl2,t,b = 0.03

mg
l
,

Cl2,c = 0.2
mg
l
, KS = 0.4

mg
l
,

Yg = 0.15, β = 109 cells
mg

,

kd = 0.06h−1, v = 0.05
m
s
.

The reaction parameters are adopted for the most part from [188], only the literature value
of kdet is actually 0.03h−1.

5.2.2.2 Application of Cellular Probabilistic Automata

A critical parameter for CPA efficiency is the dimension of the phase space. In this ap-
plication the dimension is with 4 species rather high. So we suggest to drop in this case
study the chlorine equation and only consider the remaining 3-dimensional phase space
at a constant chlorine concentration of 0.6

mg
l . With this assumption we can also drop the

case-by-case analysis for µi and only calculate with the upper case.
For time and space discretization we proceed like in Sec. 5.2.1 with the Trotter formula

and the backward difference (U = {−1, 0}) in the method of characteristics. The CPA time
and space steps are ∆t = 15min and ∆x = v∆t = 45m, and the test point mapping in the
preprocessing is conducted with the less coarse discretization ∆t′ = ∆t

25 and ∆x′ = ∆x
25 .

We consider the approximately invariant phase space Ω given by S ∈ [0, 0.5]
mg
l , Xb ∈

[0, 105] cells
ml and Xb ∈ [0, 105] cells

cm2 and partition it uniformly with 5 symbols in S- and 7
symbols in each bacteria direction. The domains are labeled by (i, j, k), where i = 0, ..., 4
is the index in S-, j = 0, ..., 6 the one in Xb- and k = 0, ..., 4 the one in Xa-direction. The
pattern length is chosen to be minimal, V = Ṽ = {0}, and in the preprocessing we use 100
test points in each domain.

As an example we conduct a simulation with a tubular pipe of length l = 1500m and
radius r = 0.15m, i.e., I = {1, ..., 33} and hydraulic radius rh = 50 l

m2 . As initial conditions
we choose symobl (0, 0, 0) at all sites with probability 1, i.e., a completely empty pipe. At
site 1 we assume a white noise boundary condition, in particular that with probability 1

2
the bulk and the attached bacteria are in domains 2 and 3 each, and that the substrate is
with probability 1

2 in domain 2 and with probability 1
4 in domain 1 and 3 each. The results

after 24h are shown in Fig. 5.3.
The concentration of free bacteria gets lower with increasing distance from the bound-

ary. Also, the concentration of attached bacteria remains in the lowest symbol with proba-
bility 1. We can trace back this behavior to the preprocessing, where e.g.

f0((3, 3, 3), (0, 0, 0))((3, 2, 0)) = 0.2256, f0((3, 3, 3), (0, 0, 0))((3, 3, 0)) = 0.7744.
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(a)

(b)

(c)

Figure 5.3: Results for a CPA simulation of the bacterial regrowth model after 24 hours. (a) contains the sub-
strate concentration, (b) the concentration of attached bacteria and (c) the one of dissolved bacteria. Chlorine
is set to a cconstant during the simulation.
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Here no transition to a higher domain in the attached direction takes place, and the con-
centration of the free bacteria is diminished. This can be explained by the chlorine concen-
tration which is held constant and relatively high throughout the whole pipe. As a result
the bacteria death is higher than the growth rate. Also, the detachment rate for attached
bacteria is relatively high in this simulation, so that it is even harder for the population
of attached bacteria to grow. The substrate, in contrast, has almost the same distribution
at all sites. The reason is that the concentration of bacteria is with maximally 105 cells

cm2 in
the attached and 105 cells

ml in the free case relatively low. Not much substrate is consumed
throughout the pipe, even more as the free bacteria are diminished over the pipe.

We conclude that in principle it is possible to apply the CPA approach also to a more
complex advection-reaction problem. In our simple exemplary simulation we obtain re-
sults that meet our intuition. However, we made some model simplifications in this case
study, most importantly we dismissed chlorine dynamics due to complexity issues. Fur-
ther work is required to adapt the CPA method better to the bacteria regrowth model.
For example the partition has to be adapted better to the different orders of magnitude
in the various concentrations to really resolve the dynamics. Also additional simulations
for more complex initial and boundary values or a comparison to other uncertainty prop-
agation methods are desirable. Finally, it would be very interesting to include the chlo-
rine dynamics. To overcome complexity issues a parallelization of the preprocessing and
a dimensionality reduction of the relevant model dynamics to a lower-dimensional sub-
space [145] may be conducted.

5.3 Conservation Laws in Cellular Probabilistic Automata

Now we consider CPA with respect to conservation laws. The study is motivated by the
arsenate application, for which we expect conservation of the total arsenate concentration.
In the first section we show an example in which the CPA method violates the conservation
law. We suggest an extension to the regular CPA method to impose conservation in the
second section. Finally, in the third section the extension is applied to solve the problem in
the arsenate example.

5.3.1 Violation of Conservation in Cellular Probabilistic Automata

Reconsider the transport and advection of arsenate of Sec. 5.2.1, that means the system of
Eq. 5.1 with the parameters of Eq. 5.2. We apply the Trotter formula and the method of
characteristics to the differential equations, Eq. 5.3, and choose the same space and time
steps. The state space is discretized in 5 domains in D-, and in 15 domains in A-direction,
and we only consider the minimal pattern length, V = Ṽ = {0}. The only difference
to Sec. 5.2.1 is that we simulate a longer pipe with 60 sites now, and that we impose the
stochastic boundary condition

gl(e) =


0.5 if e = (0, 9)
0.5 if e = (1, 13)
0 else

,
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(a)

(b)

Figure 5.4: Simulation of arsenate transportation and adsorption in a long pipe with a regular local function. a)
shows the dissolved arsenate and b) the adsorbed arsenate in the steady state. The total arsenate concentration
is not conserved due to numerical errors; see the text.

where the first symbol is the D-, and the second the A-domain. The steady state result
after 4 days has been calculated with probability threshold 0.0001 and is shown in Fig. 5.4.

In both the adsorbed and the dissolved arsenate direction the probabilitiy accumulates
in two neighboring domains throughout the whole pipe. We observe that for the respective
domain with lower concentration the probability at the entrance of the pipe is higher than
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the corresponding probability at the end of the pipe. In contrast, for the respective domain
with higher concentration the probability at the inflow is smaller than that at the outflow.
This means that in the steady state in average the total arsenate inflow is higher than
the outflow. But the PDE model respects the conservation of total arsenate concentration.
We find the hyperbolic conservation law ∂t(D + 1

rh
A) + v∂xD = 0, where the conserved

quantity is the total concentration D + 1
rh
A, and where the flow only consists of dissolved

arsenate. So the conservation law is violated in the pipe. We will investigate that more
formally in the next section.

We recap that uncertainty propagation with CPA consists of two steps, the preprocess-
ing and the simulation. It is in the preprocessing, where the transition probabilities are
determined to translate the PDE into a CPA, whereas the simulation step is completely
independent of the PDE. We conclude that the violation of conservation is a matter of the
preprocessing, and the errors from the preprocessing then accumulate in the simulation.
Our approach is therefore to adapt the preprocessing to conservation laws.

5.3.2 Imposing Conservation in the Preprocessing

In this section we suggest a method to adapt the CPA transition probabilities to conser-
vation laws, i.e., a postprocessing of the preprocessing before the simulation. We only
consider the minimal pattern length, V = Ṽ = {0}. There are various possible defini-
tions of conservation in a probabilistic setting. We show that the expectation value of a
conserved quantity is preserved during time evolution of a probability density, if it is pre-
served by the trajectories of all realizations. Therefore we require our extension of the CPA
preprocessing to assure that the expected values of the conserved quantities are preserved.
We expect that the method can be extended to higher moments.

Formally we consider the time- and space-discrete dynamical system with the locality
property of Def. 4.1. We assume that the dynamical system is derived from a PDE by time
and space discretization, and that a conservation law holds locally. In the following lemma
V n
i+U denotes the random variable that is the natural restriction of the random variable
V n : X → Ωm to the (i + U)-coordinates of the image, where i ∈ Ĩ . E[V ] is the expected
value of a real-valued random variable V ; see Sec. 2.4.

Lemma 5.1. Let n ∈ N0, i ∈ Ĩ , measurable k : ΩU → R and k′ : Ω→ R such that

k′(vn+1
i ) = k(vni+U )

is fulfilled for every vn, vn+1 = Φτ (vn) ∈ Ωm. Consider random variables V n, V n+1 =
Φτ (V n) : X → Ωm with densities gn, gn+1 = PΦτ (gn) ∈ D(Rmn), respectively. Assume that
Φτ is injective and continuously differentiable. Then

E
[
k′(V n+1

i )
]

= E
[
k(V n

i+U )
]
.

Proof It is well known [106] that under the given assumptions gn+1(v) = PΦτ (gn)(v) =
gn(Φ−τ (v))|det D(Φ−τ )|, where det D(Φ−τ ) is the determinant of the Jacobian matrix of
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Φ−τ . Therefore

E
[
k′(V n+1

i )
]

=

∫
k′(vi)g

n+1(v)dv

=

∫
k′(vi)(g

n(Φ−τ (v))| det D(Φ−τ )|dv

=

∫
k′(Φτ (w)i)g

n(w)dw

=

∫
k(wi+U )gn(w)dw

= E
[
k(V n

i+U )
]

by substitution w = Φ−τ (v) and locality of Φτ .

Note that gn and gn+1 may be replaced by suitable marginal distributions when calcu-
lating the expected values of the local variables.

Since a conservation law holds locally, the locality approximation in the CPA construc-
tion cannot be the cause of its violation. There remain just two steps in the translation from
PDEs to CPA, where things can go wrong: the numerical approximation of the Frobenius-
Perron operator (FPO) by test point mapping, and the subsequent restriction of image
densities to the subspace of piecewise constant densities; see Def. 4.4.

We suggest an algorithm that corrects the errors originating from both steps with respect
to the expected values of the conserved quantities. The idea is to constrain the set of local
functions to those which give rise to the exact expected values in the image distribution.
Note that we know the exact expected value according to the above lemma. The transition
probabilities are then chosen by an optimization such that they are as close as possible to
the approximate image point distribution from the regular preprocessing.

We state the algorithm for notational simplicity only for one conserved quantity. It is
straightforward to extend it to several of them by adding more constraints. For a given
partition E of Ω and for all ϕ ∈ EU we conduct the following steps:

i) determine vector m = (me)e∈E by me = E[k′(V )], where V : X → Ω has uniform
distribution over Ωe,

ii) determine vector of non-zero preliminary transition probabilities p′ from ϕ to e ∈ E
by mapping of test points with standard preprocessing of Sec. 5.1.1,

iii) determine for all image domains Ωe with non-zero probability the mean M̃e of the
conserved quantity k′ with respect to the image points that it contains,

iv) determine exact expected value M = E [k(V )] of the conserved quantity, where V :
X → ΩU has uniform distribution over Ωϕ,

v) determine a diagonal weight matrix W with diagonal elements ( 1
de

), where de =

|me − M̃e|,
vi) solve quadratic program for new non-zero transition probabilities p

(p− p′)TW (p− p′)→ min

M = mT p, ‖p‖1 = 1, p ≥ 0,

where m just contains only the indices e ∈ E of the vector that appear in p′.
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Figure 5.5: We show one site with an exemplary 2-dimensional phase space partitioned in 16 boxes to illus-
trate the postprocessing; see the text. The preimage state at this site is the left green box, and the standard
preprocessing assigns in this example probabilities p′1, p′2 and p′3 to three image domains (boxes with green
boundaries). All domains that have an intersection with the images of the test points (green shape) are con-
sidered as image domains. The exact conserved expected value M is calculated from the preimage state. In
one of the image boxes we exemplary sketch M̃e by a filled green circle and me by a green circle with white
interior. The quadratic program redistributes the probabilities according to the differences in M̃e and me such
that the expected value is conserved exactly.

Fig. 5.5 gives some intuition on what the algorithm does. We add five comments on
the algorithm. First, we note that step i) is independent of ϕ, so it has to be computed
only once. Second, the effect of the weight matrix W constructed in steps iv) and v) is to
better maintain the approximate p′ when restricting the image density to be piecewise con-
stant. The better the expected value of the conserved quantity with respect to the image
points in one domain already matches the domain’s expected value, the more expensive
it is to change the probability in the optimization step vi). A simple variant of the algo-
rithm is of course to omit steps iv) and v) and choose W as the identity matrix in step vi).
Then the quadratic program turns into a least-squares problem. Third, we note that by
only redistributing the probabilities for the domains with non-zero probability we prevent
the optimization from allocating non-zero probabilities to domains that are actually not
in the support of the image density. However, for some ϕ ∈ EU there might be no feasi-
ble solution to the quadratic program, because then the constraints for normalization and
expected value are too strict. This happens especially for boundary domains. A practical
workaround is to also include the neighboring domains in the optimization procedure. If
we then still do not find any feasible solution, we keep the probabilities from the regular
preprocessing. Fourth, we mention that there are other options to define the optimization
problem, e.g. by including the constraint for the expected value with a big constant in the
minimization procedure. This also would help to find feasible solutions more frequently.
And fifth, we note that the additional computational effort of the postprocessing is neg-
ligible in practice. We only have to execute one optimization for every preimage pattern,
which is much less expensive than the test point mapping.
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5.3.3 Application: Adsorption of Arsenate

In the arsenate application the conserved quantity is the total arsenate concentration. With
the time and space discretization of Eq. 5.3 we find that

Dn+1
i +

1

rh
An+1
i = Dn

i−1 +
1

rh
Ani .

So we can identify

k(vni+U ) = Dn
i−1 +

1

rh
Ani , k′(vn+1

i ) = Dn+1
i +

1

rh
An+1
i .

When we conduct an extended preprocessing with the parameters of Sec. 5.3.1, we include
also the next neighbors in the optimization. As a result we find a feasible solution for
all preimage states, and the new transition probabilities differ slightly from the regular
preprocessing. A remarkable difference is that now f0(0, 0)(0) = 1, whereas without the
postprocessing we had f0(0, 0)(0) = 0.9446 and f0(0, 0)(1) = 0.0554. With the extended
preprocessing it is not any longer possible by numerical mistakes that arsenate is created
in an empty pipe.

With the new local function we repeat the same simulation as in Sec. 5.3.1. The results
for the steady state after 4 days are shown in Fig. 5.6. Even in a long pipe we can now
guarantee conservation of the expected value of the total arsenate concentration. The un-
physical numerical phenomenon described in Sec. 5.3.1 no longer appears. Furthermore,
simulations in the setup of Sec. 5.2.1 with the new local function show very similar results
to the old local function. Especially the accumulation of dissolved arsenate in risk level 3
can still be observed; see Fig. 5.8 for an example with similar parameters. We note that in
practice it is critical to choose the threshold probability in the simulation for considering a
probability to be non-zero quite low, so that small errors cannot accumulate. Here we used
0.0001.

5.4 Application II: Contamination in Water Grids

In this section we aim at simulating contaminant fate in large water grids. First, we intro-
duce our general modeling approach and discuss how grid simulation can be addressed
with CPA. Second, we derive a method to handle junctions as the characteristic elements of
a grid in a CPA setup, and third we apply our ideas to arsenate adsorption in an exemplary
municipal drinking water grid.

5.4.1 Modeling Approach

The simlation of contaminant fate in water grids is a multiphysics problem, where hy-
draulics and chemical kinetics have to be combined [83, 150]. We decouple both phenom-
ena and focus only on the chemical kinetics on the basis of a simplified water model. The
simplified model is the result of a sophisticated hydraulic simulation with SIWA, a com-
mercial software package from Siemens [153]. We use SIWA to model, illustrate and simu-
late the hydraulics of a water grid defined by reservoirs, pumps, junctions, valves, pipes,
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(a)

(b)

Figure 5.6: Simulation of arsenate transportation and adsorption in a long pipe with an improved local func-
tion. a) shows the dissolved arsenate and b) the adsorbed arsenate in the steady state. In contrast to Fig. 5.4
now the expected value of the total arsenate concentration is conserved; see the text.

consumers and a given topology. We assume tubular pipes throughout the whole network.
Only the water velocity in each pipe is extracted, which together with length, radius and
topology of the pipes constitutes the simplified model. The chemical kinetics can then be
described by advection-reaction equations for pipe dynamics and algebraic couplings for
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(a) (b)

Figure 5.7: Two types of junctions have to be distinguished for CPA simulation of an advection-reaction prob-
lem. In type (a) the hydraulics is such that we have only one inflow pipe that splits up, and in type (b) we
have several mixing inflows.

conservation at junctions. In practice this simplification might be enough, when we only
consider risk levels anyway.

Concentrations of dissolved species are usually given in units of mass per water volume,
while species at the pipe walls are described in units of mass per wall area. The interaction
of both types can be described with the help of the quotient of the cross sectional pipe area
and the wetted perimeter of the cross-section, the hydraulic radius rh. For tubular pipes
the hydraulic radius is just half of the usual radius r, rh = r

2 . The chemical kinetics thus
differs with the radius of the pipe in which it takes place. When describing the chemical
kinetics with CPA, in principle the preprocessing has to be conducted for every pipe radius
in the grid. However, as pipes are usually standardized, only a few preprocessing runs are
necessary in practice.

Besides the radius there is one more parameter which may vary from pipe to pipe in the
simplified advection-reaction model: water velocity. But different water velocities do not
require several CPA preprocessings. We use a global time step for all pipes and calculate
an individual space step according to a pipe’s velocity. By adjusting the number of sites
per pipe to the length and space step of the pipe we can therefore approximately use the
same CPA for all different velocities.

Our ideas immediately work for hydraulic steady states on which we focus in this
work. However, it is straightforward to extend this idea to simple dynamic hydraulics,
i.e., changing velocities. We only have to vary the number of sites per pipe to account for
changing velocities. When the number of sites per pipe is high, this is certainly a good
approximation. Also, the space-discrete contaminant variables have to be adapted pro-
portionately. Furthermore, the mixing rule at junctions has to be adapted dynamically, as
it depends on velocity; see the next section. However, for very short pipes or small veloc-
ities, perhaps even changing flow directions, we encounter problems with this approach.
We note that for models with dispersion we may also run into difficulties with these ideas
because the second spatial derivative leads to additional terms that scale differently from
the advection terms.
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5.4.2 State-Discrete Modeling of Junctions

To simulate whole water grids we need to extend the CPA algorithm to junctions. In
this section we derive an according algorithm for advection-reaction problems involving 3
pipes. For notational simplicity we derive our idea just for a single dissolved species and
minimal pattern length, but generalizations are straightforward. Applications are given as
part of the grid simulation in the next section.

First, we note that when we use a time and space discretization like in Eq. 5.3, mixing is a
local phenomenon. We only have to define a new local update rule for the first site of each
output pipe. In principle we have to distinguish between two dynamically different types
of junctions; see also Fig. 5.7. If the flow direction is such that there is just one input pipe,
Fig. 5.7a, concentrations can be handled easily. We do not have to think of any mixing for
concentrations, since both water volume and species’ mass are split. So we can just apply
the regular CPA rule on the neighborhoods consisting of the last site of the input pipe and
the first site of each output pipe, respectively.

We focus on the second case, Fig. 5.7b, where there are two input pipes a and b and one
output pipe c.

Vi... volume of water Mi... mass of dissolved species
ui... water velocity Di... concentration of dissolved species
Ai... cross sectional area

denote the respective variables at the last site in pipe i ∈ {a, b} and at the first site of
pipe i = c. The conservation of the species’ mass and the conservation of volume of the
incompressible water read

Mc = Ma +Mb,

Vc = Va + Vb

and can be used to derive an equation for the concentration of the dissolved species in
pipe c. We consider only the 1-dimensional phase space Ω̃ of the dissolved species with
partition {Ω̃e}e∈Ẽ . Although Ω̃ and Ẽ are the same at every site we will attach indices
a, b, c to them to clarify to which site we refer. Then m : Ω̃a × Ω̃b → Ω̃c is given by

Dc = m(Da, Db) =
Mc

Vc
=
Ma +Mb

Va + Vb
=
VaDa + VbDb

Va + Vb

=
Aaua

Aaua +Abub︸ ︷︷ ︸
α

Da +
Abub

Aaua +Abub︸ ︷︷ ︸
β

Db

and has to be translated into discrete phase space. All we can get is again a probability
distribution m0 : Ẽa × Ẽb → D(Ẽc) given by

m0(ea, eb)(ec) =
λ(Ωea × Ωeb ∩m−1(Ωec))

λ(Ωea × Ωeb)
,
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Lemma 5.2. If the partition {Ω̃e}e∈E is uniform with resolution ∆Ω̃, then m(Ω̃ea , Ω̃eb) is
also an interval of length ∆Ω̃ for all ea, eb ∈ E.

Proof Let Ω̃ei = [vi, wi] for i ∈ {a, b}, and denote m([va, wa], [vb, wb]) = [vc, wc]. Note that
by definition α, β ≥ 0 and α + β = 1. Therefore vc = αva + βvb and wc = αwa + βwb, and
so

wc − vc = α(wa − va) + β(wb − vb) = (α+ β)∆Ω̃ = ∆Ω̃.

In case of a uniform partition with resolution ∆Ω̃ therefore there are ec, e′c ∈ E with

m0(ea, eb)(e) =


p if e = ec
1− p if e = e′c
0 else

for p = wc−∆Ω̃bwc/∆Ω̃c
∆Ω̃

, where b∗c is the floor function and wc = m(wa, wb) for Ω̃ei = [vi, wi],
i ∈ {a, b}. ec is given by the coding domain Ω̃ec that contains wc, and e′c encodes the
neighboring coding domain.

Similarly to Sec. 5.3 m0 might also be extended to include conservation considerations.
Furthermore m0 has to be embedded in the n-dimensional phase space Ω of dissolved and
adsorbed species to get the whole mixing rule.

5.4.3 An Exemplary Municipal Grid

We apply our ideas to a part of a municipal drinking water grid given in Fig. 5.8. It con-
sists of many elements, of which we extract for CPA simulation nine long pipes, three
consumers and two sources, the reservoirs. The rest of the elements is just needed for the
hydraulic simulation: Reservoir 2 is attached to pipes 1 and 2 by very short connection
pipes a,b and c. However, they are so short that their influence on chemical kinetics can be
neglected. Pumps and elevation parameters for all objects establish a pressure profile that
leads to water flow to the consumers. Some valves can be used to control the hydraulics.

For simplicity all setup parameters like demand and pump profiles are assumed to be
constant in time such that the system is in a hydraulic steady state. A SIWA simulation in
a realistic exemplary setting leads to the following parameters for a simplified advection-
reaction model:

pipe 1 2 3 4 5 6 7 8 9
radius [m] 0.1500 0.300 0.300 0.1625 0.300 0.1500 0.300 0.300 0.300
length [m] 1500 1345 2305 500 1730 500 2690 4000 100

velocity [m
s ] 2.150 0.690 0.690 0.300 0.605 0.120 0.575 0.575 0.575

# sites 5 13 22 12 19 29 31 46 2
CPA 1 2 2 3 2 1 2 2 2

pipe a b c
radius [m] 0.1500 0.300 0.150
length [m] 10 10 5

velocity [m
s ] 2.150 0.690 0.620
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We describe advection and adsorption of arsenate in the grid like in Sec. 5.2.1 with the
model of Eq. 5.1. The chemical parameters are given in Eq. 5.2, but the hydraulic and
the pipe parameters are of course different. We consider the system on the approximately
positively invariant state space domain given by D ∈ [0, 1]

mg
l and A ∈ [0, 100]

mg
m2 . The

translation to CPA with the postprocessing of Sec. 5.3 is conducted 3 times according to the
3 different pipe radii; see the above table and the discussion in Sec. 5.4.1. To discretize time
and space we decouple again the advection and the reaction step with the Trotter formula.
For the advection the method of characteristics is used with U = {−1, 0} as the backward
difference and the global time step ∆t = 2.5min. We map 75 × 37 randomly distributed
test points by using intermediate steps with the less coarse discretization ∆t′ = 0.1min.
The pattern length is minimal, V = Ṽ = {0}, and the phase space partition equidistant
with 5 domains in the D- and 15 in the A-direction.

In the CPA simulation we choose the threshold probability 0.005. To describe the mixing
in the formalism of Sec. 5.4.2 we model reservoir 2 as a pipe with one site, the boundary
condition, with the characteristics of pipe c. The number of sites in each pipe is calculated
by dividing the length by the global time step and the velocity. The inflow boundary con-
ditions of pipes 3, 8 and 9 are just the last sites of the previous pipes 2, 7 and 8, respectively.
At the inflow of pipe 4, 5, 6 and 7 the trivial mixing rule is applied, and at the inflow of pipe
2 the non-trivial. The reservoirs are modeled as external stochastic boundary conditions
for pipes 1 and c, respectively.

We want to simulate the spread of arsenate in reservoir 2 through the network over time,
while the rest of the grid and in particular reservoir 1 is not contaminated in the beginning.
As initial conditions we thus choose the lowest state with probability 1 for dissolved and
adsorbed arsenate throughout the whole network except for reservoir 2. In reservoir 1
the boundary condition for the dissolved arsenate is the lowest state with probability 1,
and in reservoir 2 a distribution over higher states; see Fig. 5.8a. Because of the Trotter
discretization we do not have to specify a boundary condition for the adsorbed arsenate.

The time evolution is simulated over 4 days, and it can be displayed at every site. We
only show as an exemplary result in Fig. 5.8 the final steady state for dissolved arsenate
in the pipes involved in mixing. In the steady state the adsorbed arsenate is everywhere
in the grid approximately in state 13 with probability 1. An exception is of course pipe 1
which behaves like in Fig. 5.6. The simulation time is with about 6 hours on a common
laptop much shorter than the simulated time. The preprocessing time was approximately
3 times 1,25 hours.

We are able to simulate under uncertainties a large grid faster than real-time by cal-
culating directly on a simplified state space. The state space allows for a direct practical
interpretation in terms of contamination risk levels. Our example comprises the features
introduced in the former sections: the unexpected accumulation of probability in state 3
for the dissolved arsenate due to the non-linearity of the interaction, the mass conservation
and the mixing behavior. Already in this simple setup we gather interesting information
for the consumer which would not be available in a deterministic simulation. In chemi-
cally and topologically more involved examples we expect the consumer to really benefit
from results that cannot be simulated easily by other means.
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(a)

(b)

Figure 5.8: The topology of a part of an exemplary municipal grid. The grid mainly consists of 9 long and
three short pipes, 2 reservoirs and 3 consumers. For the hydraulic simulation with SIWA also the pumps and
valves are necessary, which can in principle be controlled online with the red boxes. The steady state after 4
days is shown for the dissolved arsenate and both junction types, in a) for reservoir 2 and pipes 1 and 3, and
in b) for pipes 3, 4 and 5. In each diagram the vertical axis depicts the probability of being in the domain 0 to
4 at the respective site.
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5.5 Application III: Euler Equation of Fluid Dynamics

The applications so far have involved advection-reaction equations, where the difficulty
lies in mastering the reaction dynamics. We are also interested in how the CPA method
performs for more complex hyperbolic PDEs, where the spatial dynamics is the challenge.
Here we pick the isothermal Euler equation of fluid dynamics for a case study.

In the first section we state the equations and motivate our work with water and gas grid
modeling. Secondly, we describe how an according CPA can be constructed and highlight
sensible points in this process. In the end we give several numerical examples and com-
ment on the opportunities and limits of the approach.

5.5.1 The Isothermal Euler Equations

The isothermal Euler equations are basic hyperbolic equations of fluid dynamics [109,110].
They describe the conservation of mass and momentum of a fluid:

∂tρ+ ∂xq = 0,

∂tq + ∂x(
q2

ρ
+ a2ρ) = 0,

where t and x are time and one-dimensional space coordinate, respectively, a is the speed
of sound, ρ(x, t) the fluid density and q(x, t) = ρ(x, t)v(x, t) the flow given by the prod-
uct of density and velocity v(x, t). Acutally p = a2ρ is the pressure in the ideal gas law.
According Riemann problems can be solved even analytically and lead to shocks or rar-
efaction waves. The characteristic speeds are the eigenvalues λ1,2 = q

ρ±a. In the following
we will use the short-hand notation

∂tv + ∂xf(v) = 0

for the isothermal Euler eqution, where v = (ρ, q)T and f(v) = (q, q
2

ρ + a2ρ)T .
We motivate the study of the isothermal Euler equations with two common applications.

One is hydraulic simulation of drinking or waste water grids, and the other is gas grid
simulation. In general municipal drinking water grids there are both pressurized and
free surface water flow. In one pipe pressurized flow is described by the general Euler
equation [110], and free surface flow by the Saint-Venant or shallow water equations [160].
In realistic applications a unified model for both types can be used [19, 158]:

∂t(ρA) + ∂x(ρQ) = 0,

∂t(ρQ) + ∂x
(ρQ)2

ρA
+ g(ρA)∂xz +A∂xp = −g(ρA)Sf ,

where ρ(x, t) is again the density, A(x, t) the wetted cross-section, Q(x, t) the volume
flow along the pipe, g the gravitational acceleration and z(x, t) = z(x,A(x, t)) the water
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surface elevation above a reference level. For the friction Sf either the Manning-Strickler or
Darcy-Weisbach ansatz can be used, and the pressure p is given by the Boussinesq closure

p = ρgh+
1

β

ρ− ρ0

ρ0
,

where the first term is the hydrostatic pressure at water depth h = h(z(x, t)), β the
isothermal compressibility and ρ0 the water density under free flowing conditions. Like
in the isothermal Euler equation this closure is linear in ρ. Actually the isothermal Euler
equations are the special case of a pressure-driven flow with constant cross-section, no
elevation and no friction, where q := ρQA and a := (βρ0)−

1
2 . Application of CPA to them

can hence be viewed as a case study for more complex water problems. Here we face
severe uncertainties in the boundary conditions as lack of knowledge about consumer
behavior, and also in weather forecasts in case of waste water simulation. Especially in the
waste water application there is also a natural interpretation of the discretized phase space
in terms of threshold values for amounts of water, e.g. for the filling of overflow chambers.

Also in gas grid simulation there has been a lot of interest in dynamic simulations re-
cently. Dynamic extend steady-state models and are able to grasp more aspects of real-
ity [4]. Many models have been introduced; see e.g. [23, 141] and other publications of
the Pipeline Simulation Interest Group (PSIG) [70], and different numerical solution tech-
niques have been discussed; see e.g. [6]. The isothermal Euler equations are a widely used
model for gas pipelines, and many other existing models are extensions thereof.

5.5.2 A Cellular Probabilistic Automata Approach

From now on we work with the parameters for methane pipelines. In this section we de-
scribe in five steps how a CPA can be constructed for the isothermal Euler equations. First,
we choose a finite volume method to discretize time and space. This decides on the neigh-
borhood and pattern structure. Second, we fix and partition an invariant part of phase
space. Third, we pick the time and space step size in accordance with the CFL-condition
for the fixed phase space doamin. Fourth, we explain how to deal with stochastic bound-
ary conditions. In this step we need to conceptually extend the CPA method, because the
boundary conditions are more difficult than in the transport equations considered so far.
In the last step we describe how the ideas of Sec. 5.3 can be applied to ensure conservation
properties of the expected value.

5.5.2.1 Choosing a Finite Volume Method

A CPA first requires discretization of time and space with step sizes ∆t and ∆x, respec-
tively. Since the isothermal Euler equation is hyperbolic, we suggest to use a finite volume
method for this purpose. An introduction and further information regarding the accord-
ing concepts can be found in [110]. Note that the interpretation of the variables differs a
little from the finite difference schemes used so far: variables at each discretized site and
time are now spatial averages over intervals around the sites and not any more the values
at the sites itself. With this said we will yet use the same variable names as before.

In Sec. 5.1.2 we have seen that CPA scale exponentially bad in the stencil or neigborhood
length |U |. Therefore we choose the Lax-Friedrichs method, which with U = {−1, 1} only

96



5.5 Application III: Euler Equation of Fluid Dynamics

contains two sites,

vn+1
i =

1

2
(vni−1 + vni+1)− ∆t

2∆x
[f(vni+1) + f(vni−1)]. (5.4)

It updates the even sites separately from the uneven sites. Hence patterns for de Bruijn
densities are now only meaningful when they just consist of states at sites with even in-
dices.

5.5.2.2 Choosing a Phase Space Domain

Formally for CPA an invariant bounded part of phase space has to be identified. This
is not possible for the isothermal Euler equation, as shocks and rarefaction waves leave
no bounded domain invariant. However, the phase space is clearly bounded in practice.
Typical methane pipes are operated at room temperature with pressure p ≈ 1 − 100bar
and with velocities below a certain erosional velocity of about ve = 15m

s [120]. With the
ideal gas law we can calculate from this information that in practice ρ ∈ [0.7, 70]

kg
m3 and q ∈

[−1000, 1000]
kg

m2s . In the following we will investigate a subspace Ω thereof for numerical
simplicity: ρ ∈ [0.7, 10.7] kg

m3 and q ∈ [−1000, 1000] kg
m2s

. When determining the local CPA
rule for a given partition there are some preimage domain combinations that are (partially)
mapped outside by the dynamics. Typically this happens at boundary domains. We have
to decide what to do with according test points. We can discard them or count them in the
nearest boundary domain when determining the transition probabilities. In both cases,
errors are introduced - but only for transitions that are unlikely to happen in practice.

5.5.2.3 The CFL-Condition

The CPA method is explicit, and hence time and space discretization of a hyperbolic PDE
have to fulfill the CFL-condition for stability. For two phase space dimensions and one
space dimension it reads

c := max
v∈Ω

(max(|λ1(v)|, |λ2(v)|)) ≤ ∆x

∆t
.

It is based on considerations about the sites of variables that can influence variables at
other sites in the future. This is completely independent of whether the phase space is
continuous or discrete, and hence the consideratins can be transferred to CPA. For the
Lax-Friedrichs scheme the CFL-condition will be necessary and sufficient for stability, if
the system is linear. For non-linear systems like the isothermal Euler equation stability
statements are much more difficult, but the CFL-condition is still our heuristic to determine
orders of magnitude for our CPA discretization. For methane we calculate a ≈ 396m

s [109],
and with the maximal erosional velocity c = ve + a = 411m

s . We choose ∆x = 0.25m and
∆t = 6 ∗ 10−4s in accordance with the CFL-condition.

There are two ways to relieve the time step restriction. By enlarging the neighborhood
length we can alter the CFL-condition. But this will lead to complexity issues as discussed
in Sec. 5.1.2. Alternatively, we can increase ∆x and ∆t at the same time while leaving their
fraction constant. However, this may lead to a direct loss of accuracy, even if we use a finer
mesh in the preprocessing.
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5.5.2.4 Boundary Conditions

So far we have only considered boundary conditions for the advection-reaction dynamics
with U = {−1, 0}, where it was enough to just consider the inflow site. For the isothermal
Euler equation with U = {−1, 1} the definition of proper boundary conditions is more
complicated [81]. We follow a common approach used e.g. in [55]. First, we describe the
approach for regular finite volume methods and then adapt it to the stochastic case in CPA.

Consider a grid I = {1, ...,m}. The number of conditions that can be set at a boundary
depends on the properties of the system’s characteristics. We are in the subsonic regime
(v < a), where the characteristic speeds have opposite signs. Hence we need to impose
one physical boundary condition at the inlet site 1, and one at the outlet site m. Instead of
the characteristic variables we can also use other sets of variables as long as they provide
enough information about the characteristics. We choose to fix the conserved variables,
in particular the denisty ρ and thereby the pressure at the inlet, and the flow q at the out-
let. This choice describes a pipe, where the pressure is imposed by a pump at the inflow,
whereas a consumer at the outflow decides on the flow by his consumption. However,
when we want to calculate the variables at sites 2 and m − 1 with our numerical scheme
of Eq. 5.4, we need to provide additional information in form of numerical boundary con-
ditions, i.e., for q at the inlet and ρ at the oulet. For this purpose we extrapolate the values
at sites 2 and m − 1 to the sites 1 and m with order 0, i.e., qn1 = qn2 and ρnm = ρnm−1 for all
n ∈ N+. In the literature these sites are also known as ghost cells. They can potentially be
used to couple other elements to the pipe. We note that we use the conservative variables
for the physical boundary conditions and the extrapolation for simplicity, but there are
many non-equivalent other methods; see [81] and references therein. Often the boundary
conditions are also formulated by imposing the values directly at the cell boundaries be-
tween sites 1 and 2, and m− 1 and m, respectively; see e.g. [158]. This is conceptually not
different from our scheme, because our extrapolation is of order 0 and constant throughout
cells 1 and 2 anyway.

Now we describe how this approach can be transferred to stochastic boundary con-
ditions in CPA. The concept is the same as in Sec. 5.1.4 for the advection equation. We
consider only the inlet site 1, the outlet site m can be handled analogously. Assume that
we are given a probability distribution gl ∈ D(E) over the density symbols as the physical
boundary condition, and focus on minimal pattern length first. Our goal is to construct
a distribution over the 2-dimensional discrete states at site 1. According to the above 0-
order scheme we extract a probability distribution over the flow symbols from site 2 and
copy it as the numerical boundary condition to site 1. This distribution can be calculated
by marginalization. The product of the physical and the numerical boundary distribution
then serves as the distribution over the 2-dimensional state space at site 1. Whenever we
update site 2, we can now simply determine the product of the distributions at sites 1 and
3 as the preimage distribution and apply the regular local function to it.

We describe the idea also for larger de Bruijn densities with V = {−2, 0}. The concept
can be extended to larger pattern lengths in a straightforward way. We define the distribu-
tion over patterns on V at site 3 as the product of a distribution over patterns with minimal
length at site 1 and site 3. The distribution at site 3 is determined by marginalization of
the distribution over patterns on V at site 5. The distribution at site 1 is determined as de-
scribed above from the physical distribution at site 1 and the numerical distribution copied
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from site 2. The numerical distribution of site 2 in turn can be determined by marginaliza-
tion of the distribution over the pattern on V at site 4. The distribution at site 4 can then
be updated with the local function, when the distributions at sites 3 and 5 are merged by
αU to a preimage distribution.

5.5.2.5 Imposing Conservation Properties

We also apply the postprocessing of Sec. 5.3 for the transition probabilities of the local
function. Now we have 2 conserved quantities, ρ and q, and the conservation laws can be
expressed with the discretization of Eq. 5.4 as

k1(vni+U ) =
1

2
(ρni−1 + ρni+1)− ∆t

2∆x
[f1(vni+1) + f1(vni−1)], k′1(vn+1

i ) = ρn+1
i ,

k2(vni+U ) =
1

2
(qni−1 + qni+1)− ∆t

2∆x
[f2(vni+1) + f2(vni−1)], k′2(vn+1

i ) = qn+1
i .

The algorithm is adapted slightly to our specific problem. Steps i), iii) and iv) have to be
conducted for both k′1 and k′2, and k1 and k2, respectively. For step iv) we furthermore
assume a uniform partition E of Ω and calculate

Mρ = E[k1(ρni+U )] =
1

2
(E[ρni−1] + E[ρni+1])− ∆t

2∆x
(E[qni+1]− E[qni−1]),

Mq = E[k2(qni+U )] =
1

2
(E[qni−1] + E[qni+1])−

− ∆t

2∆x
(E[(qni+1)2]E[

1

ρni+1

] + a2E[ρni+1]− E[(qni−1)2]E[
1

ρni−1

] + a2E[ρni−1]),

where all expected values E[...] are taken with respect to the uniform distribution over Ωϕ

for ϕ ∈ EU . In the last line we used that ρi and qi are independent for all i ∈ I due to the
joint uniform distribution. Note that in this notation we do not distinguish between the
deterministic vectors ρi and qi and the according random variables. The computation can
be completed with the formulas

E[V 2] =
1

3(c− b)
(c3 − b3), E[

1

V
] =

log(|c|)− log(|b|)
c− b

for an arbitrary random variable V : X → R with uniform distribution in [b, c], where
b, c ∈ R. In step v) we choose de as the average of the formulas for the single conserved
quantities, and in step vi) we impose two constraints for the exptected values, Mρ = mT

ρ p

and Mq = mT
q p.

5.5.3 Numerical Results

In this section we give some numerial results of the CPA method for the isothermal Euler
equation. The analysis in this part is divided into three steps. First, we investigate at a
short pipe the phase space resolution, the pattern length and how to proceed with test
points that are mapped outside of Ω. Second, we compare the scheme with and without
postprocessing of the local function to a Monte Carlo computation of a long pipe. All these
simulations are conducted at the example of a simple steady state. In the third step we then
apply the CPA method to a wave.
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Figure 5.9: The invariant phase space Ω is partitioned with 10 symbols in ρ and 5 symobls in q-direction. The
blue points are the uniformly distributed test points in each domain. The red points are the image points of
the preprocessing after one time step for the exemplary initial configuration ϕ = ((4, 2), (4, 2)).

5.5.3.1 Short Pipes

Throughout the whole section we always choose a uniform parition and distribute 100 test
points equidistantly in each coding domain in the preprocessing. Unless stated otherwise,
furthermore we use threshold probability 0.0005 in the simulation and the discretization
step sizes ∆t = 6 ∗ 10−4s and ∆x = 0.25m. Note that unlike in previous examples we
calculate with the same step sizes for the preprocessing and the CPA, because we want to
avoid that we miss potential shocks which can accumulate also on a small scale.

In the first step we consider a short pipe with I = {1, ..., 8} and do not apply the post-
processing yet. Our goal is to compare two types of phase space resolution and pattern
lengths, and to investigate how to best proceed with image points that are mapped out
of Ω in the preprocessing. We start with minimal patterns, V = Ṽ = {0}, and a parti-
tion consisting of 10 symbols in ρ- and 5 in q-direction; see Fig. 5.9. We label the domains
with (i, j), where i encodes the q- and j the ρ-direction, and call the resolution a 10 × 5-
resolution. Fig. 5.10a- 5.10b show the simulation results of the steady state after t ≈ 0.25s
with the first resolution. In both cases we choose as physical boundary conditions the 4.
symbol with probability 1 in the q-direction at the inlet, site 1, and the 2. symbol with
probability 1 in the ρ-direction at the outlet, site 8. The initial condition is symbol (4, 2) at
all interior sites. The difference between both simulations is the underlying local function.
In Fig. 5.10a the test points that are mapped out of Ω are discarded, and in Fig. 5.10b they
are counted in the nearest coding domain. No difference can be observed for both variants,
the distinction is not relevant in this part of phase space. We only expect different behavior
in the boundary domains.

Now we change the setup to the higher 10×10-resolution, but keep the minimal pattern
length. Test points that are mapped out of Ω are not discarded, but that is not important
here. We choose the 4. and 5. symbol, each with probability 0.5, as the physical boundary
condition in ρ-direction. Fig. 5.10c shows the simulation result. It leads to a similar result
as with the lower resolution, but the distribution in ρ-direction is sharper. It will turn out
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(a)

(b)

(c)

(d)

Figure 5.10: Steady state results from different CPA simulations for short pipes; see the text. The left diagram
always depicts the density, the right the flow distribution. (a) 10 × 5-resolution, test points are discarded, (b)
10×5-resolution, test points counted in nearest coding domain, if mapped oustide of Ω, (c) 10×10-resolution,
(d) 10× 5-resolution, patterns on V = {−2, 0}
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in the next step that this is closer to the Monte Carlo result for longer pipes.
We also analyze the influence of the pattern length for the lower phase space resolution.

In particular, we conduct a CPA simulation with V = {−2, 0} and Ṽ = {0}, which is
the next bigger pattern length in the Lax-Friedrichs-scheme. The results are shown in
Fig. 5.10d. They agree qualitatively with the results for the minimal pattern length, but the
distributions are again a little sharper.

In conclusion of the first step the precise handling of test points does not have significant
impact on the simulation result. But increasing state space resolution and pattern length
improves the results. In all following simulations in this section we discard the test points
and simulate with the minimal pattern length.

5.5.3.2 Long Pipes

In the second step we simulate longer pipes with I = {1, ..., 32} and t ≈ 0.25s to study
conservation properties in the steady state. For this purpose we compare CPA simula-
tions with and without postprocessing to a Monte Carlo computation. The Monte Carlo
computation also allows for a validatio of the results of the first step.

In particular we simulate with a 10× 5-phase space resolution and a probability thresh-
old of 0.0005. First, we do not apply the postprocessing for conservation of the mean. As
physical boundary conditions we choose with probability 1 the 4. symbol in the ρ- and the
2. symbol in the q-direction. Initially the configuration at all sites is (4, 2), where we use
the same notation as above. The steady state result after t = 0.25s is shown in Fig. 5.11a.
We observe that we encounter problems with conservation in ρ at sites far away from the
physical boundary condition in ρ at site 1. An analogous observation can be made for q.
We repeat the simulation, this time with a local function that was corrected by the post-
processing and a probability threshold of 10−7 in the simulation. We note that for many
preimages that consist of boundary domains no feasible solution is found in the optimiza-
tion; in these cases we keep the probabilities from the regular preprocessing. The result is
shown in Fig. 5.11b: it is almost identical with the result of a simulation without postpro-
cessing.

We also conduct a simulation with the higher 20×10-resolution and a probability thresh-
old of 10−7. To make it comparable with the former simulations, this time we apply
stochastic boundary conditions: symbols 8 and 9 of the ρ-component at site 1 have prob-
ability 1

2 each, and symobls 4 and 5 of the q-component at site m have probability 1
2 each.

Initially we set the state at all interior sites to (8, 4), (8, 5), (9, 4) and (9, 5) with probability
1
4 . The result of a simulation for t = 0.25s is shown in Fig. 5.11c. We represent the results in
the lower 10×5-resolution by merging neighboring domains. The problem with conserva-
tion of the expected value vanishes in the ρ-, but stays in the q-direction. We provide two
potential explanations for this effect. The first explanation is based on the observation that
the boundary domains are occupied with much lower probabilities in the simulation with
higher resolution. It could be that the errors from boundary domains accumulate and lead
to the conservation problems. Second it is possible that our straightforward treatment of
boundary conditions gives rise to the effect, and that more sophisticated schemes have to
be applied. This would especially explain, why the errors appear at the boundaries.

As the last element of the second step we conduct a Monte Carlo computation with the
identical finite volume scheme and time and space discretization as for CPA. The initial
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(a)

(b)

(c)

(d)

Figure 5.11: Steady state results from different CPA simulations for short pipes; see the text. In (a) the original
CPA method is used, in (b) the postprocessing of the transition probabilities is applied. (c) is calculated with
a higher resolution, but represented in the same as the other graphs. (d) is a Monte Carlo computation.
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and boundary values are the same as in the experiments in the second step. One deter-
ministic run takes as an input a realization from the uniform distribution in the initial
domain at each interior site, and also one from the boundary domains at each time step.
The result for 106 samples can be found in Fig. 5.11d. We observe that the expected value
is conserved in both directions, and that the variance is much smaller than in the results of
the CPA method. This is very different from the advection-reaction applications discussed
previously and can be explained by the very different phase space structure. In the isother-
mal Euler equation every point in phase space is a steady state, and hence the phase space
is not contracting. Even more, little differences in the states at neighboring sites can lead to
shocks. This is observed in Fig. 5.9 for a small time step and also in the Monte Carlo com-
putation as a blow-up for longer simulation times. In fact, some of the deterministic runs
do not converge, i.e., the values for ρ and q go to infinity. This behavior, however, does not
appear in practice; i.e., CPA impose in this application more numerical uncertainty that
exists in practice. Nevertheless, with increasing phase space resolution and pattern length
the variance decreases as expected from the convergence result in Sec. 4.3.

5.5.3.3 Waves

Although there are some problems of the CPA approach for the isothermal Euler equations,
CPA are capable of recovering shocks or rarefaction waves as their specific dynamical fea-
tures. This is shown now in the third step. We choose a 20×10-discretization and simulate
with a probability threshold of 0.002. The initial and boundary conditions are depicted
in Fig. 5.12a. They are identical at the sites 1 to 15, and also at sites 16 to 32, but there
is a discontinuity in the density between site 15 and 16. In the simulation the wave with
positive speed starts to travel to the right, and after 13 time steps it has almost reached the
boundary site 32; see Fig. 5.12b. There it is reflected and travels back in the other direction.
A snapshot after 35 time steps is depicted in Fig. 5.12c. In contrast, the wave with negative
speed almost vanishes. Furthermore, in Fig. 5.13 we show a snapshot at t = 13∆t of the
solution of the deterministic problem given by the mean of the initial values of the CPA
problem,

ρ(x, 0) =

{
5.2

kg
m3 if 0m ≤ x ≤ 4m

6.2
kg
m3 if 4m < x <≤ 8m

, q(x, 0) =

{
0

kg
m3 if 0m ≤ x ≤ 4m

400
kg

m2s if 4m < x ≤ 8m

and according boundary values. It is computed with a local Lax-Friedrich scheme with
CWENO-reconstruction [158] and the same time and space steps as in the CPA computa-
tions. The result confirms at least the qualitative structure of the CPA solution.

5.6 Conclusion and Outlook

This section contains practical aspects of uncertainty propagation with CPA. We have ap-
plied the method successfully to advection-reaction systems with two examples, arsenate
adsorption and bacterial regrowth in drinking water pipes. Interesting non-linear behav-
ior has been observed, and the results have been confirmed by Monte Carlo simulations.
Then we have suggested a way to couple pipes and have extended the method to water
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(a)

(b)

(c)

Figure 5.12: A wave is considered with a CPA. (a) shows the initial state, (b) the state after 13 time steps and
(c) the state after 35 time steps.
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Figure 5.13: The figure shows the deterministic solution of a wave after 13 time steps. The configuration
corresponds to the mean of the CPA setup; see the text.

grids. Also, we have addressed a more complex hyperbolic equation with the method, the
isothermal Euler equation of fluid dynamics.

The applications highlight three main strenghts of the CPA approach. First, the CPA
method can be divided into a preprocessing step, in which the underlying PDE system is
translated into a cellular probabilistic automaton, and a simulation step, in which initial
and boundary conditions are evolved. The simulation is fast in relation to the preprocess-
ing. In the reaction-advection applications the whole method is faster than real-time, but
slower for the isothermal Euler equation. A Monte Carlo evaluation needs approximately
the same time as the preprocessing, but has to be conducted from the scratch for each new
configuration of initial or boundary values. Second, CPA operate on discrete states in-
stead of on the continuous phase space. Since the discrete states can be interpreted as risk
levels, fast uncertainty propagation directly on this simplified state space suits industrial
demands. And third, we have paved the way towards the handling of spatio-temporal
processes with more involved stochastic influence. More precisely, it has been shown how
to deal with white noise boundary conditions, an important topic, for example, in contam-
inant transport modeling.

However, in the applications we have alo encountered some practical difficulties of the
approach. They are fourfold. First, it has turned out that simulations of long pipes with the
CPA method violate conservation laws. With an appropriate adaptation we have managed
to overcome this problem. Second, the method suffers from complexity problems for high
phase space dimensions as well as for neighborhood and pattern lengths. The problem can
be mitigated by using a sparse implementation or by formulating a low-dimensional sur-
rogate model before translating a system into a CPA [145]. Moreover, sophisticated ideas
from set oriented numerics can be adapted to the preprocessing [73]. Third, at the hand of
the isothermal equation we found that a rich phase space structure can have limitations on
the accuracy of the method. To increase precision we suggest to pursue the idea of non-
rectangular state-space domains like it was introduced for CNDA in 3.3.3. And fourth
the last application has also underlined that we face strong time step restrictions with our
explicit scheme.

From a practical point of view it will be interesting to further work out the simulation
of contamination in water grids in future work. An application can be a monitoring de-
vice. If we find a way to improve the simulation of the isothermal Euler equation, it will
be interesting to combine it with the extension to grids. A decision support system for
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load relieving of overflow chambers in waste water grids can be developed. Also, these
ideas can lead to a leak detection system for gas, drinking or process water grids, where
traditional approaches face difficulties with severe demand uncertainties [60, 148].
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6 Bayesian Inference with Cellular
Probabilistic Automata

This chapter shows how measurement data can be integrated in the completely discrete
and probabilistic framework developed in the preceding chapters. More precisely, we
introduce a novel numerical approach to inverse problems in spatio-temporal partial dif-
ferential equations (PDEs). The problem is considered in a Bayesian inference context,
and the main idea is to translate the PDE into a state-discrete dynamic Bayesian network
(DBN). For this translation we suggest to use the method of cellular probabilistic automata
(CPA) that was proposed in Chap. 4. First, the PDE is discretized in time and space by a
finite difference method, and then tools of set oriented numerics and cellular automata
theory are used to also discretize the state space while exploiting the locality of the inter-
action. The result is a completely discrete system which consists of graph-based time slices
with local transition probabilities between them. It approximates the time evolution of the
PDE and can be interpreted as a state-discrete DBN.

In an inverse problem one aims at deriving knowledge about model parameters or the
system’s state from measurement results. We are interested in parameter estimation, which
we recast as a filtering problem. Filtering is a special case of inference, where data are in-
tegrated online into a belief state about a state variable. This can be achieved conveniently
in a DBN model, because there a vast pool of sophisticated Bayesian inference algorithms
exists. We identify certain requirements for a filtering algorithm in our special DBN to op-
timize its performance. As it is closely related to the locality idea of the CPA construction
we then choose the BK algorithm. It approximates the exact belief state in each time step
by a factorized one.

However, it can be read independently of the previous chapters and is structured as fol-
lows. In Sec. 6.1 we review DBNs, CPA and the Bayesian setting for inference in a unified
notation. A particular focus is on the BK algorithm. Sec. 6.2 is the main part, in which
we bring together these concepts to solve an exemplary parameter estimation problem for
PDEs. To demonstrate our ideas we apply the scheme to the problem of arsenate advec-
tion and adsorption in a water pipe with a contamination source at the entrance in Sec. 6.3.
From measurements of the downstream boundary condition we infer the strength of the
upstream arsenate source. For this purpose we generate measurement data with a CPA
forward simulation and use the BNT implementation [132] of the BK algorithm for infer-
ence. In Sec. 6.4 we finally give our conclusions.

6.1 Methods

In this section we first introduce DBNs. Then we review cellular probabilistic automata
(CPA) as introduced in Chap. 4 and compare them to DBNs. It will turn out that the struc-
ture of CPA is very similar to the structure of DBNs. Third we give a short introduction
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to Bayesian inference and then focus on a special inference algorithm in DBNs, the BK
algorithm, in the fourth part.

We adopt the notational conventions of the probabilistic graphical models community in
this chapter: We write µ(V ) = µV and µ(V |V ′) = µV |V ′ for the (conditional) distributions
of random variables V, V ′ on a probability space (X,A, µ). Similarly, µ(V |V ′ = v′) means
the conditional distribution of V given V ′ = v′. Products of distributions are understood
as products of real numbers when the distributions are evaluated for according events.
Technical details can be worked out along the lines of Sec. 2.4.

6.1.1 Dynamic Bayesian Networks

We introduce DBNs along the lines of [102]. Let (X,A, µ) be a probability space and
(Ei,P(Ei)) measurable spaces for finite Ei, where P(E) is the power set of E and i ∈
{1, ...,m}. Consider the stationary Markovian stochastic process (V t)t∈N0 , where V t =
(V t

1 , ..., V
t
m) and each V t

i is a discrete random variable over (X,A, µ) with values in (Ei,
P(Ei)); see Def. 2.14. The time-independent transition distribution is given by a condi-
tional distribution µ(V |V ′). We focus first on the structure of one time slice.

Definition 6.1. Let V = (V1, ..., Vm) be a set of random variables and G a directed acyclic
graph, in which the nodes correspond to the variables. If a probability distribution µ(V )
can be expressed as a product of conditional distributions

µ(V ) =

m∏
i=1

µ(Vi|Pa(Vi)),

the pair (G,µG) is called a Bayesian network. Here Pa(Vi) is short-hand for the variables at
the parent nodes of node i, and µG denotes the set of conditional distributions associated
with G’s nodes.

It is enough to specify an initial distribution and a transition model to describe infinite
time evolutions.

Definition 6.2. A dynamic Bayesian network (DBN) is a pair (B0, µ(V |V ′)). B0 is a Bayesian
network over random variables V 0 = (V 0

1 , ..., V
0
m) and specifies an initial distribution.

µ(V |V ′) is a time-independent and factorized transition distribution between also m-di-
mensional random variables V, V ′, each associated with m nodes,

µ(V |V ′) =

m∏
i=1

µ(Vi|Pa(Vi)).

Pa(Vi) is given via a set of inter-time-slice edges between the nodes of V ′ and V , and via
intra-time-slice edges between nodes of V . A trajectory starting with the distribution over V 0

consists of a series of distributions over V 0, V 1, V 2, .... The distributions are calculated by
recursive application of the transition rule,

µ(V t+1 = v) =
∑
v′

µ(V = v|V ′ = v′)µ(V t = v′)

for t ∈ N0.
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By repeated application of the transition model we can therefore evolve the initial dis-
tribution over V 0 with a potentially stochastic forward model. For T ∈ N0 we call the
static Bayesian network of the whole time-evolution the unrolled DBN. It consists of the
graph over random variables (V 0, ..., V T ), where all nodes are equipped with the accord-
ing intra- and inter-time-slice edges of the transition model and the initial distribution.
The conditional distributions of the static network are given by the conditional distribu-
tions associated with all intra- and inter-time-slice edges.

Note that in DBNs the probability distribution after some time steps does not have to be
in the same product structure as the initial distribution. Correlations between variables in
one time slice beyond the product structure can be induced by the transition model, and
this effect is called entanglement.

6.1.2 Cellular Probabilistic Automata

Cellular probabilistic automata (CPA) are time-, space- and state-discrete systems for den-
sity based uncertainty propagation under distinct PDE dynamics. These automata have a
similar structure as DBNs and approximate the PDE. We review the construction of Chap. 4
in the language of probabilistic graphical models to settle a unified notation for the follow-
ing.

Consider the PDE
∂tv = h̃(∂xxv, ∂xv, v), v(x, t) ∈ Ω ⊆ Rn

defined on a one-dimensional space-domain x ∈ [a, b] for a, b ∈ R, where Ω is bounded
and positively invariant. CPA are derived in three steps: time and space discretization,
state discretization and use of locality.

First, we apply a finite difference method with space discretization ∆x = b−a
m−1 , where

m ∈ N, m ≥ 2, and time step τ to the PDE. Under some assumptions the PDE can be
translated into a flow Φτ with only local interaction this way; see Def. 4.1. The dynamics is
described by a graph consisting of several time slices, where each has nodes I = {1, ...,m}.
There are no edges in each time slice, but directed ones between subsequent time slices: for
each node in a time slice the finite difference stencil defines a set of parent nodes in the pre-
vious time slice, and edges are drawn to the appropriate children; see Fig. 6.1. Exceptions
are of course the initial time slice and the boundary nodes. To account for uncertainties in
the initial and boundary values we describe the system’s state in each time slice by a prob-
ability distribution over random variables V = (V1, ..., Vm) that are associated with the
nodes. The time evolution of this distribution is given by the Frobenius-Perron operator
(FPO) [106].

Second we partition the state space Ω with a coding map T : Ω → E, where E is finite.
Because of the spatial shift-invariance this naturally induces a partition EI of Ωm with
coding map T̂ :

T̂ : Ωm → EI , v 7→ T̂ (v) with (T̂ (v))i = T (vi) for i ∈ I.

The distribution over {V1, ..., Vm} on Ωm can be approximated by a piecewise constant dis-
tribution by averaging in every coding domain. The latter in turn naturally corresponds
to a distribution on EI . Formally this leads to new random variables with discrete values
in E, which we also denote V1, ..., Vm to keep the notation simple. Like in set oriented

111



6 Bayesian Inference with Cellular Probabilistic Automata

Figure 6.1: An example of a graph that is constructed from a PDE to describe its time evolution; see the text.
Here I = {1, ..., 6}, and the finite difference stencil contains the left neighbor and the node itself in the previous
time slice. This gives rise to a local transition rule µ0.

numerics we approximate the FPO by a time-discrete Markov chain working with the ap-
proximate distributions over EI . The Markov chain is specified by transition probabilities
between different states of EI , i.e., between different coding domains.

Third we take into account that the interaction is local and identical at every node in I
away from the boundaries. We can hence approximate the global transition probabilities
by a product of the same local transition probabilities at every node. Such a locality con-
cept is at the core of cellular automata theory. The local transition probabilities from the
variables at a node’s parents to the variable at node i itself can be specified as a conditional
probability distribution. It is called the local transition rule and describes how much of a
local preimage coding domain is mapped to a local image coding domain in one time step
τ ,

µ0(Vi = vi|Pa(Vi) = v′) =
λ(Ωv′ ∩ Φ−τ (Ωvi))

λ(Ωv′)
.

Here λ is the Lebesgue measure, and Ωv ⊆ Ωm is the subset of all continuous states which
are encoded by v ∈ EJ on J ⊆ I . The definition is independent of i because of the shift-
invariance of the transitions as long as i is a site away from the boundaries. Note that at the
boundaries other suitable local transition rules have to be defined; see Chap. 4 for details.
In practice the transition probabilities can be calculated by mapping test points from each
local preimage domain with the stencil rule and determining the percentage of points that
are mapped into the several local image domains.

We also respect the locality in the representation of the distributions over V as factor-
ized distributions. A factorized distribution over V = (V1, ..., Vm) is given as a product of
marginals over subsets Wk ⊆ {V1, ..., Vm} for k = 1, ...,K with ∪Kk=1Wk = {V1, ..., Vm},

µ(V1, ..., Vm) ∝
K∏
k=1

µ(Wk).

The subsets need not be disjoint, and the proportionality constant is given by normaliza-
tion from conditioning on the overlap; see Def. 4.12. The distribution over all variables
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or any subset thereof is then specified uniquely by the µ(Wk). We call a distribution fully
factorized if it is factorized with W1 = {V1}, ...,Wm = {Vm}.

Definition 6.3. A Cellular Probabilistic Automaton (CPA) is a pair (B0, µ0). B0 is a state-
discrete Bayesian network over the graph I with random variables V 0 = (V 0

1 , ..., V
0
m) asso-

ciated with the nodes and no edges. It represents the fully factorized initial distribution.
µ0 is a local transition rule. A trajectory starting with the fully factorized distribution over
V 0 consists of a series of fully factorized distributions over V 1, V 2, .... The marginals are
calculated by recursive application of the local transition rule at every node,

µ(V t+1
i ) =

∑
v′

µ0(V t+1
i |Pa(V t+1

i ) = v′)µ(Pa(V t+1
i ) = v′).

The structure is similar to DBNs, but there is one major difference. With CPA one main-
tains a factorized distribution as an approximation of the global distribution during time
evolution, whereas nodes can get entangled in DBNs. In the language of Chap. 4 a DBN is
a discretized FPO. Furthermore in CPA the transition rule is identical at every node.

If we choose a more coarse-grained factorization, i.e., if we map whole patterns of local
states at once in the local transition rule and factorize our distribution accordingly, we can
preserve more correlations. Note that such patterns would involve the definition of suit-
able intra-time-slice edges. In the limit of large patterns and a high state space resolution
we get back the exact time evolution with the FPO. The technical details for these consid-
erations can be found in Chap. 4. In practice it is often sufficient to work with very small
pattern lengths to already capture the most important correlations in a time evolution.

6.1.3 Bayesian Inference

In this section we review the Bayesian setting to infer model parameters from measure-
ment data in an inverse problem on the basis of [61]. Bayesian inference is based on the
Bayesian interpretation of a probability distribution as a degree of belief about the according
model parameter [13, 156]. This interpretation opposes the frequentist viewpoint, in which
it is the limit distribution of outcomes of a large number of identical experiments. In the
Bayesian setting model parameters and measurement data are hence described by ran-
dom variables, and the distribution associated with the parameters expresses the state of
knowledge about possible values. Bayes’ fundamental theorem describes how this degree
of belief is updated by measurements. We only need the version for state-discrete random
variables in the following, although the statement holds in more generality.

Theorem 6.4. (Bayes) Let (X,A, µ) be a probability space. Consider state-discrete random
variables M and D for the model parameters and the model data with probability distri-
butions µ(M) and µ(D), respectively. Then for data d with µ(D = d) 6= 0

µ(M = m|D = d) =
µ(D = d|M = m)µ(M = m)

µ(D = d)
.

In Bayesian inference µ(M = m) is called the prior density. It summarizes all information
about the system before the measurement process. µ(M = m|D = d) is the posterior den-
sity and represents the state of knowledge after having taken into account measurement
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information. The forward model, the model discrepancy and a noise model for the mea-
surements consitute the likelihood µ(D = d|M = m). µ(D = d), finally, is called the evidence
or marginal likelihood.

The various methods described in Sec. 1.2.3 can be applied to evaluate the posterior dis-
tribution or suitable statistical properties as a solution to the inference problem. However,
for expensive, e.g. PDE-based forward models it is still a big challenge to make Bayesian
inference computationally tractable this way.

6.1.4 The Boyen-Koller Algorithm

In a dynamic problem we have to deal with a series of measurements and include it into
our belief about the model parameters. In principle this can be done by multiple use of
Bayes’ theorem, Thm. 6.4. We review the inference problem in state-discrete DBNs and in
particular the BK algorithm in the following on the basis of [21, 102].

Assume that our system is described by a state-discrete DBN (B0, µ) over random vari-
ables V = (V1, ..., Vm, D), where D describes the measurement data. Our goal is to keep
track of the so-called belief state σt(V t) = µ(V t|D1 = d1, ..., Dt′ = dt

′
) over time t ∈ N,

where {d1, ..., dt
′} are measurement data and t′ ∈ N. We write D1:t′ = d1:t′ as an abbrevi-

ation for D1 = d1, ..., Dt′ = dt
′

in the following. There are three variants of the inference
problem in such a dynamical system: For t < t′, we speak of smoothing, for t = t′ of filtering
or tracking, and for t > t′ of prediction. Here the focus is on the filtering problem.

We start with σ0(V 0) = µ(V 0). Assuming that σt(V t) is known, we want to determine
σt+1(V t+1). First, the state is propagated according to the transition model to the so-called
prior belief state σ•t+1(V t+1),

σ•t+1(V t+1) = µ(V t+1|D1:t = d1:t)

=
∑
v

µ(V t+1|V t = v,D1:t = d1:t)µ(V t = v|D1:t = d1:t)

=
∑
v

µ(V t+1|V t = v)σt(V t = v),

and then the current observation is taken into account by Bayes’ theorem, Thm. 6.4, to
calculate the belief state

σt+1(V t+1) = µ(V t+1|D1:t+1 = d1:t+1)

=
µ(Dt+1 = dt+1|V t+1, D1:t = d1:t)µ(V t+1|D1:t = d1:t)

µ(Dt+1 = dt+1|D1:t = d1:t)

=
µ(Dt+1 = dt+1|V t+1)σ•t+1(V t+1)

µ(Dt+1 = dt+1|D1:t = d1:t)
.

Note that the denominator is just a normalization constant that is given by µ(Dt+1 =
dt+1|D1:t = d1:t) =

∑
v µ(Dt+1 = dt+1|V t+1 = v,D1:t = d1:t)σ•t+1(V t+1 = v). Both the

transition and the conditioning step can be interpreted and executed by a standard junc-
tion tree algorithm for inference in static Bayesian networks [102]. This leads to a conve-
nient filtering method without approximations. However, handling the belief state over m
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variables can be very expensive in practice. The idea of the BK algorithm is similar as in
CPA to only maintain an approximate factorized belief state σ̃t instead of the exact one.

A factorized belief state σ̃t is a belief state which is represented as a product of marginals
over so-called clusters Wk ⊆ {V1, ..., Vm} for k = 1, ...,K with ∪Kk=1Wk = {V1, ..., Vm},

σ̃t(V t) ∝
K∏
k=1

µ(W t
k|D1:t = d1:t).

Like in CPA the subsets need not be disjoint, and the proportionality constant is given by
normalization from conditioning on the overlap. The BK algorithm adds a postprocessing
to each time step in the exact filtering scheme: after a factorized belief state σ̃t has been
updated with the above exact transition and conditioning rule, the resulting state σ̂t+1

is tranformed into a factorized state σ̃t+1. This new approximate belief state is defined
via σ̃t+1(Wk) = σ̂t+1(Wk) for all k = 1, ...,K, and the whole distribution is again the
(normalized) product over these factors. Like in the exact case, both steps can be executed
by a standard junction tree algorithm, when some clique of the tree containsW t

k, and some
contains W t+1

k for all k = 1, ...,K.
Filtering only requires this forward or upward pass. However, we note that a backward or

downward pass can be defined similarly and extend the scheme to the smoothing task.

6.2 Cellular Probabilistic Automata as Dynamic Bayesian
Networks

We are interested in the exemplary problem of inferring the upstream boundary condition
in a dynamical PDE problem with measurements of the downstream boundary values. In
particular, we consider a stochastic upstream boundary condition in the sense of Sec. 5.1.4,
i.e., a sequence of i.i.d. random variables, where each describes the boundary condition
during one time step. The according distribution is assumed to be known up to the mean,
and the goal is to infer the mean of the distribution from downstream measurement results.

We propose an inference method that uses the CPA concept for this purpose. The sim-
plest CPA approach would be to replace the stochastic forward model by a CPA surrogate
model similar to [118, 119] and sample the likelihood. Instead, we suggest to recast the
parameter estimation as a filtering problem, where the parameter is a variable that does
not change in time. The problem can then be solved by composing the methods described
in the previous sections: First, we translate the PDE into a CPA which is time-, space-
and state-discrete. Then we interpret the CPA as a state-discrete DBN and apply the BK
algorithm for filtering to it. This approach is presented in more detail in the following.

Consider the PDE

∂tv = h̃(∂xxv, ∂xv, v), v(x, t) ∈ Ω ⊆ Rn,

defined on a one-dimensional spatial domain x ∈ [a, b] for a, b ∈ R and on the bounded
and positively invariant phase space Ω. As described in Sec. 6.1.2, by applying a finite
difference scheme to it for time- and space-discretization we obtain a graph with a set
of nodes I in every time step. The random variables V t = (V t

1 , ..., V
t
m) associated with
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Figure 6.2: An example of a DBN that is constructed from a PDE to solve the filtering problem. It is the goal
to infer the mean m from the measurement data d. In this example we take I = {1, ..., 6} and assume that the
finite difference stencil contains the left neighbor and the node itself in the previous time slice. Each row is a
natural time slice, whereas the grey band highlights a characteristic line from the perspective of an advected
species; see the text.

the nodes describe the time evolution of the system. Furthermore we discretize the state
space and use the locality property of the interaction to construct a local transition rule
for CPA. We choose the fully factorized version and introduce inter-time-slice edges be-
tween subsequent time slices according to the stencil; see Fig. 6.2. A global transition
model is constructed by application of the local transition model at each node. Thus the
resulting CPA can formally be interpreted as a state-discrete DBN. We note that the idea of
state-discretization has already been applied to handle probabilistic graphical models with
continuous states [102]. However, in the present work this idea is used for the translation
of an inverse PDE problem, where in particular the discretization has to be performed only
locally and just once.

To account for the mean of the stochastic boundary condition and the measurement data
we extend I to the left and right by the nodes m and d, respectively. The mean is supposed
to be constant over time with probability 1, i.e., the according node is persistent.

The mean is the time-independent model parameter that we want to infer, in contrast to
the time-dependent model variables V1, ..., Vm. Thus we introduce an inter-time-slice edge
between the nodes m of subsequent time slices. An intra-time-slice edge is introduced
between the node m of the mean and the node 1 of the stochastic boundary condition.
The according conditional probability distribution of the boundary variable is fully deter-
mined by the mean and the given form. In addition, an intra-time-slice edge is introduced
between the last node of I and the node d of the measurement data. We can potentially in-
troduce a measurement model, e.g. incorporate measurement noise, this way. The whole
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construction is shown in Fig. 6.2. We note that the structure of the graph is simplified a lot
if we want to infer the mean from a steady state. The reason is that in this case nodes from
different time slices can be identified and the time axis vanishes.

The BK algorithm has originally been introduced to approximate a system of weakly
interacting subsystems. Our particular DBN shows such a substructure: there are no intra-
time-slice edges, and the different nodes only influence each other indirectly via entan-
glement. If the variables at neighboring sites get strongly entangled over time, we will
expect the approximation to get better with increasing overlap of the clusters. However,
direct interaction between variables at neighboring sites via intra-time-slice edges imposes
a stronger correlation than entanglement. If the PDE is an advection-reaction equation and
if we can apply a one-sided stencil, we can even use such direct correlations naturally by
considering the DBN along characteristic lines instead of along the standard time slices.
We take the perspective of the advected species and define their moving system as a time
slice; see Fig. 6.2. This way we naturally reinterpret some of the inter- as intra-time-slice
edges. The measurement data then directly influence the belief about the mean. A similar
approach would be to introduce bigger patterns in the CPA construction that also intro-
duce intra-time-slice edges in the original time slices. Yet another alternative could be to
use smoothing over enough time-slices instead of filtering such that direct influence can
be established via inter-time-slice-edges.

It turns out in practice that with the straightforward time slices measurement results at
site d almost only influence the neighboring variable. This happens for the fully factorized
version of the BK algorithm as well as for larger clusters. The coupling via entanglement
seems to be too weak to really transmit information in our setup. Smoothing and CPA
with larger patterns are computationally quite expensive, and so we choose the approach
with characteristic lines together with the fully-factorized BK algorithm. We note that with
the standard BK algorithm usually one does not allow for a factorization, where not each
intra-time-slice-edge is contained in some cluster. However, the full factorization does not
prohibit the transmission of information here, as we condition on the measurement results
before the projection on the factorized densities, when the sites are still coupled.

Our approach faces practical difficulties due to the size of the problem. They can be
encountered by three requirements for an ideal filtering algorithm:

i) locality The size of every time slice grows linearly in the space dimension, which leads
to an exponential scaling for the global probability distribution. Using locality ideas
for factorization helps to overcome this problem. This requirement is perfectly met
by our choice of the BK algorithm which involves factorization like in CPA. In fact,
the fully factorized probability distribution scales linearly in the space dimension.

ii) working online The DBN that we are dealing with will also grow linearly in time, if we
unroll it. Asking for the inference algorithm to work online means an implementa-
tion that only stores and processes information about the present and the most recent
time slice instead of all information from the unrolled network.

iii) sparsity The number of discrete states at every node grows exponentially in the di-
mension of the state space Ω. The number is very high compared to usual ap-
plications of probabilistic graphical models for example in cellular networks [56].
However, most (local) transitions between domains of state space are not possible
and hence happen with probability 0. So we have the possibility to only operate
on the much smaller subset of actually occupied states, although the number of
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states at each node scales exponentially bad. Numerical experiments in the con-
text of uncertainty propagation with CPA indicate that this idea yields efficient al-
gorithms; see Sec. 5.1.3. Also in the DBN community such approaches have been
recognized [17, 102].

6.3 Application: Inference of Arsenate Source

We test our method at the arsenate adsorption problem in one pipe of Sec. 5.2.1; see
Fig. 5.1a. The basis is the advection-reaction problem Eq. 5.1 with the parameters from Eq.
5.2 on the approximately positively invariant Ω given by D ∈ [0, 1]

mg
l and A ∈ [0, 100]

mg
m2 .

We use a finite difference method with ∆x = 100m and ∆t = 10min and partition the
phase space equidistantly in 5 × 15 symbols, 5 in D- and 15 in A-direction. The domains
are labeled by two indices (i, j) as in Fig. 5.1b, where i ∈ {0, ..., 4} describes the domain in
dissolved and j ∈ {0, ..., 14} the domain in adsorbed direction. The local transition rule is
constructed with the backward difference quotient with stencilU = {−1, 0} in the fully fac-
torized version, i.e., patterns on V = Ṽ = {0}. We use the Trotter formula and the method
of characteristics to map test points via intermediate steps with the smaller ∆x′ = 1m and
∆t′ = 0.1min. The resulting transition probabilities undergo the postprocessing proposed
in Sec. 5.3.

We consider a pipe consisting of 6 report locations, where node 1 is the stochastic bound-
ary condition and node 6 the consumer’s site; see Fig. 6.2. In the following we examine two
test cases, which differ in the prior information and measurement data. In the first case
we do not know anyting about the pipe’s state and assume a uniform distribution over
all possible states at all sites. The measurement data then come from a steady state, when
the adsorbed arsenate is in equilibrium with the advecting arsenate. In the second case we
take an empty pipe as a prior and assume that the contaminant is only in the boundary
node. The measurement data comes from an according transient state when the arsenate
starts advecting through the pipe. In both cases the goal is to infer the mean, about which
we do not assume to know anything.

Let us first describe the (conditional) probability distributions that are assigned to all
nodes of the DBN. We only have to specify them for the first characteristic line and for
the transition model between subsequent characteristic lines. Together they define the
whole DBN. This specification includes the priors, and we begin with the first test case.
Note that in the first characteristic line only the mean node can be given a free initial
distribution. All other nodes in this line have parents in the same characteristic line, and
so their distributions are conditional distributions.

i) The mean node is only considered to describe the mean of the dissolved species in
this application. As a prior we choose a uniform distribution over all 5 discrete states
in the first time slice.

ii) The distribution of the stochastic boundary condition at node 1 is conditioned on the
mean: If the mean is in state 0, we assume that there is no arsenate at all and hence
the boundary condition is in state (0, 0) with probability 1. If the mean is in state
e ∈ {1, 2, 3}, then the dissolved part of the boundary condition is with probability
1
4 in the state e − 1 and e + 1, and with probability 1

2 in the dissovled state e. For
dissolved state 4 of the mean, i.e., the boundary domain of phase space, the dissolved
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part of the boundary condition is with probability 1
4 in state 3 and with probability 3

4
in state 4. The adsorbed state of the boundary condition is always with probability 1

3
in state 12, 13 or 14, and the complete state in the 2-dimensional phase space is then
given by all combinations of dissolved and adsorbed states. For example, if the mean
is in state 2, the boundary condition will be in state (2, 14) with probability 1

6 .
iii) For nodes 2, ..., 6 we choose the non-informative uniform distribution over all states

in the first characteristic line, i.e., for given left neighbor each state at the node under
consideration has the same probability.

iv) We assume that just the state-discrete dissovled state is measured at node d. The
conditional distribution is given by simply extracting the domain of the dissolved
arsenate from node 6. So we use the simplest measurement model without adding
any additional measurement noise.

v) The conditional distributions over m of following time slices are defined by copying
the state from one time step to the next.

vi) The local transition rule defines the conditional probability distribution associated
with the nodes 2, ..., 6 in all time slices except for the first one. Note that we have
to reinterpret the local transition rule as to connect two nodes in the image with
one in the preimage characteristic line rather than one in the image with two in the
preimage standard time slice.

In the dynamic case the transition model is the same, but we have to change the prior
information for nodes 2, ..., 6 in iii). Node 2 is the first site of an empty pipe in the first
characteristic line, regardless of the state of the boundary node. So it needs to be decoupled
from the boundary in the beginning. The according random variable is in state 0 with
probability 1 for all states of the boundary node. Nodes 3, ..., 6 are only connected to their
respective left neighbors by an edge in the same characteristic line. They are assigned
trivial rules to model the empty pipe: we copy simply the left neighbor’s state. Because
the state at node 2 is 0, then the whole pipe is empty.

Let us now specify the measurement data. In both cases we calculate the distribution
of the measurements at node d with a forward simulation using the according CPA and
pick a state with a random number generator at each time step. We set the mean to state
2 in the forward simulation in both cases and want to infer it again from the generated
data. Note that the measurement distribution is time-independent in the steady state, but
time-dependent in the transient state. The distributions can be found in Fig. 6.3 a,b), and
the chosen states in Fig. 6.3 c,d). In the steady state we can start with the filtering pro-
cess already from the beginning. The steady state is time-invariant, and all characteristic
lines degenerate to one time slice. In the transient state, however, the first contamination
information arrives at the measurement node at the 6. time step. Hence we include the ev-
idence in the resulting belief state not before this time step, although they are in the same
characteristic line.

Of the many existing toolboxes for inference in DBNs we choose the BNT software [132],
because it offers immediate access to an implementation of the BK algorithm. Although
it only fulfills the locality property from our list of requirements for an ideal inference
algorithm, it already performs quite well. With a version of the BK algorithm that satisfies
the online and sparsity requirement in addition, there will be hope for a very efficient
algorithm.

Fig. 6.3 e,f) shows the resulting belief states about the mean for both cases. One can
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Figure 6.3: Filtering for the application of arsenate advection and adsorption in a pipe. a), c) and e) are for
filtering in the steady, b), d) and f) in the transient state. a) and b) show the distribution of measurements at
node d from a forward simulation with CPA, from which the data in c) and d) is drawn, respectively. e) and f)
show the belief state for the mean at node m.

clearly see that already after a few measurements the mean is with very high probability
in state 2 in both the steady and the dynamic case. This result matches the information
that we put in the forward model when we generated the measurement data. Moreover,
we can even observe, for example from Fig. 6.3 e), how the algorithm first assumes that
the mean is most probably in state 3, because by chance the measurements in the first three
time steps are in state 3. However, when additional measurement information is included,
state 2 from time steps 4 and 5, and even more state 1 from step 6, the algorithm states that
the mean is more probably in state 2. Another observation that we want to stress can be
made in Fig. 6.3 f): although the measurements are all in state 0, 1 or 2, the filtering result
tells us that the mean is most probably in state 2. The reason is that in this dynamic case a
lot of the inflowing arsenate is adsorbed at the empty pipe wall first, and that hence only
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a lower concentration of dissolved arsenate arrives at the consumer. Also it can be seen
in this figure how the algorithm reacts to the unlikely effect that two almost consecutive
measurements are in state 0: The probability of the mean being in lower states rises for a
while.

6.4 Conclusion and Outlook

In this chapter we have introduced a novel numerical approach to inverse problems in
PDEs. We suggest to use the discretization of cellular probabilistic automata (CPA) to
translate PDEs into dynamic Bayesian networks (DBNs), and then apply a graph-based
inference algorithm. In the past the field of state-discrete probabilistic graphical models
has been quite independent from the field of inverse problems in PDEs. With this work
we aim to provide a connection between the two fields. In the context of the thesis this
chapter shows how measurement data can be integrated in our completely discrete and
probabilistic framework for modeling and simulation.

In particular, in the CPA discretization process first a finite difference scheme transfers
the PDE into a time- and space-discrete dynamical system. Then the state space is dis-
cretized with tools of set oriented numerics, and the neighborhood concept of cellular
automata theory is used to exploit the locality and shift-invariance of the interaction. A
pattern parameter can be used to control the degree of locality in the CPA, but we only
apply minimal patterns in this work. The resulting object is interpreted as a DBN.

Inference in DBNs or, more generally, in probabilistic graphical models has been ex-
tensively studied in the literature. We want to solve an inverse problem of parameter
estimation and recast it as a filtering problem, for which a vast array of sophisticated al-
gorithms exists. In principle many of them can be applied to our DBN that is constructed
from a PDE. We have identified criteria with which algorithms and implementations can
be evaluated with respect to our setup; our choice is the BK algorithm.

Our approach has been demonstrated at the example of arsenate transportation and
adsorption in a drinking water pipe with a contamination source at the entrance. The
mean of the arsenate concentration in the upstream boundary condition has been inferred
by measuring the downstream boundary conditions.

It is desirable to extend the application of drinking water contamination to larger grids
in order to handle real world problems. Then one is interested not only in the strength
of a contamination source, but also in its location [39, 167]. For this purpose we want to
combine the inference tools presented here with the ideas of Sec. 5.4 on how to connect
pipes to a whole grid. From a theoretical point of view it will also be interesting to inves-
tigate further how larger patterns in CPA can be used to generalize our approach to more
complex PDEs. An application could be leak detection in water or gas pipes [60, 148]. The
experience with the Euler equation from Sec. 5.5 can help to tackle such fluid dynamical
problems.

121



6 Bayesian Inference with Cellular Probabilistic Automata

122



7 Conclusion and Outlook

We have introduced a modeling and simulation framework for technical spatio-temporal
systems. It can be applied to existing models consisting of partial differential and algebraic
coupling equations in a preprocessing and a simulation step. In the preprocessing a system
model is translated into a cellular probabilistic automaton (CPA), and in the second step
this object is used to propagate a probabilistic belief state about the system’s state. If there
are no measurement data, we simply evolve a probability distribution over an initial state
with a potentially stochastic model. If data are available at some points in time, they can
be integrated by Bayesian updates with one of the tools from the large pool of inference
algorithms in dynamic Bayesian networks.

In particular, the framework has been developed in four steps in this thesis. First, we
have introduced the precursor of CPA, cellular non-deterministic automata, in the context
of cellular automata theory to analyze partial differential equations (PDEs) in a completely
discrete setup. The insights have been used in the second step, the theoretical introduction
of CPA for uncertainty propagation in PDEs. In the third step we have extended the CPA
method to systems of coupled PDEs and have applied it to the simulation of contaminant
fate in water grids. Furthermore, we have suggested a more sophisticated version to better
deal with conservation laws and have tested it at the contaminant fate and the isothermal
Euler equation of gas dynamics. In the last step, we have shown how measurement data
can be integrated in CPA in a Bayesian setup.

The framework is designed to meet two common practical demands. As a probabilistic
method, it allows to take into account uncertainties about model features or parameters.
This leads to results that truly reflect the knowledge we have about reality. Furthermore,
CPA compute on discrete states instead of on the continuous phase space of PDEs, and the
discrete simulation step is fast compared to the preprocessing. The preprocessing takes
approximately as long as a Monte Carlo computation, but has to be conducted only once.
Since the discrete states can be interpreted as risk levels, fast calculations directly on this
simplified state space suit industrial needs by avoiding an expensive numerical overhead.

The approach connects different research fields that have been only in loose contact
before. For cellular automata theory the approach is interesting, because it provides a
novel link to traditional PDE models and explores the potential of calculations with several
trajectories at the same time. Similarly, for the field of probabilistic graphical models the
method provides access to PDEs and cellular automata theory. Moreover, with the CPA
approach, set-oriented numerics can broaden its range of applications to PDEs, while it has
been focused mainly on systems of ordinary differential equations before. In the context
of uncertainty quantification the approach might be interesting as a novel numerical tool
for uncertainty propagation which is in principle capable of handling white noise. It also
promises to overcome the curse of dimension in the random parameters in a sense that
they only affect the preprocessing, but not the simulation. As it is scalable to large grids, it
might be of specific interest in industrial numerical analysis. Finally, the method provides
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access to a new and vast pool of algorithms and software for people who are interested in
inverse problems and Bayesian inference for PDEs.

Although we have achieved promising results in our exemplary application, there are
still some difficulties and open questions. We suggest two main directions for future re-
search to meet these challenges. First, we are interested in really quantifying and improv-
ing the approximation error beyond our consistency result for CPA. This seems to be very
demanding, since spatial correlations have to be quantified somehow. To increase preci-
sion we suggest to pursue the idea of non-rectangular state-space domains like introduced
for CNDA in Sec. 3.3. Second, it would be interesting to think about ways for speeding up
the CPA algorithm. One way is to adapt sophisticated ideas in the preprocessing that have
been used in set-oriented numerics [73]. Although CPA have nice scaling properties in
time, space and the dimension of the random space, they encounter complexity difficulties
in the dimension of the phase space. Another way is therefore to formulate a surrogate
model to work on a low-dimensional space [145].

We think that a major goal for modeling and simulation technolgoy in the future will
be smoother integration in other disciplines and better access to non-experts. Our idea to
directly work on a state space with practical interpretation is just one approach. Other ap-
proaches well-suited for product simulation are, for example, isogeometric analysis [30,86]
which promises a seamless transition between computer-aided design (CAD) and simu-
lation, or, more general, product lifecycle management software [146]. The latter aims at
integrating simulation into a software for the whole product lifecycle from design over
production to disposal. In the long run, however, the biggest challenge for modeling and
simulation might be the completion of today’s electronic hardware by conceptually very
different but probably much more powerful devices. Quantum information [138] or, more
specifically, quantum simulation [29,51] which provides a means to simulate complex pro-
cesses naturally by other complex processes could have the potential to significantly in-
crease the potential of simulation in practice.
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