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Abstract 
 

    Interferometric Synthetic Aperture Radar (InSAR) is a satellite remote sensing technique 
that provides information about the topography and deformation of the Earth’s surface. In 
recent years, InSAR’s capabilities have been considerably improved with the launch of high 
resolution SAR satellites such as TerraSAR-X, TanDEM-X and COSMO-SkyMed. Mapping 
of urban areas and even single buildings is now facilitated via multitemporal InSAR 
techniques, for instance, Persistent Scatterer Interferometry (PSI) and SAR Tomography 
(TomoSAR). These methods exploit long-time coherent scatterers, e.g. the so-called 
Persistent Scatterers (PSs), and provide elevation and surface displacement measurements 
with a high precision.  

    However, the density of PSs is low in non-urban areas and it is imperative to increase the 
spatial density of measured points. Here, high-resolution SAR sensors offer new 
opportunities. For this purpose, in addition to the PSs, partially coherent Distributed 
Scatterers (DSs) can be exploited. Various methods such as the Small Baseline Subset 
Algorithm (SBAS) and SqueeSAR have been proposed to extract information from DSs. 
However, SBAS is prone to phase unwrapping errors in rural areas and estimates deformation 
at only low resolution. The alternative technique SqueeSAR can be computationally 
expensive as it processes all possible interferogram combinations.  

    Accordingly, this thesis addresses the development of advanced stacking techniques in high 
resolution SAR interferometry, with a focus on complex areas that are difficult to process 
using conventional techniques. To this end, first, a new method has been developed for 
deformation monitoring of DSs at object resolution in non-urban areas. It applies adaptive 
spatial filtering to improve the differential interferometric phase, followed by deformation 
estimation using an L1-norm based SBAS approach that is more robust to phase unwrapping 
errors. Second, an alternative approach for mean deformation velocity mapping of DSs has 
been proposed for highly decorrelated areas, wherein, wrapped interferograms (with small 
baselines) are directly used and the deformation velocity is mapped at a suitable object 
resolution. It includes identification of homogenous patches, estimation of deformation 
velocity gradients for these patches and then, model-based deformation integration to obtain 
spatially dense deformation velocity estimates. Lastly, a fusion of TerraSAR-X and TanDEM-
X data stacks has been presented for complex urban area monitoring exploiting both PSs and 
DSs. TerraSAR-X allows monostatic acquisitions and in conjunction with the TanDEM-X 
satellite, bistatic acquisitions are now also possible. Thus, stacks of monostatic repeat-pass 
and bistatic single-pass interferograms are available. The bistatic interferograms are of high 
quality and are free from deformation, atmosphere and temporal decorrelation. By properly 
integrating the data stacks, an improved estimation of topography and deformation is possible. 
However, the independent processing and subsequent simple combination of the bistatic and 
monostatic data is not beneficial. Standard TanDEM-X Digital Elevation Models (DEMs) are 
inaccurate in dense metropolitan areas because of phase unwrapping errors. These errors 
occur due to height discontinuities and geometrical limitations such as radar layover. 
Therefore, the joint processing of TerraSAR-X and TanDEM-X data has been investigated.  

    The developed techniques have been demonstrated using TerraSAR-X/TanDEM-X data 
from various test sites and a high performance has been proven. The results show an 
improved utilization of the information hidden in the data and an extension of the 
applicability of existing techniques for mapping displacement and topography in difficult test 
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areas. The proposed methods can benefit from future SAR systems with even higher 
resolution. 

    Index Terms- Earth Observation, Spaceborne Remote Sensing, Interferometric Synthetic 
Aperture Radar (InSAR), InSAR Stacking Techniques, Deformation Monitoring, Digital 
Elevation Model (DEM), Persistent Scatterer (PS), Distributed Scatterer (DS), TanDEM-X, 
TerraSAR-X.   
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Zusammenfassung 
 

    Interferometrisches Synthetisches Apertur Radar (InSAR) ist eine satellitengestützte 
Fernerkundungstechnik zur Bereitstellung von Informationen über die Topographie und 
Deformation der Erdoberfläche. In den letzten Jahren wurden durch den Start von 
hochauflösenden SAR-Sensoren wie TerraSAR-X, TanDEM-X und COSMO-SkyMed die 
InSAR-Anwendungen deutlich weiter entwickelt. Möglich ist nun das Kartieren von urbanen 
Gebieten und sogar von einzelnen Gebäuden durch multitemporale InSAR-Techniken wie 
zum Beispiel Persistent Scatterer Interferometrie (PSI) und SAR Tomographie (TomoSAR). 
Diese Methoden nutzen langzeit-kohärente Streuer, z.B. die sogenannten Persistent Scatterer 
(PSs) und stellen deren Höhe und Verschiebung mit sehr hoher Präzision zur Verfügung. 

    Außerhalb von urbanen Gebieten ist die PS-Dichte jedoch gering und es ist daher 
notwendig, die räumliche Dichte der gemessenen Punkte zu erhöhen. Hier bieten 
hochauflösende SAR-Sensoren neue Möglichkeiten. Dafür müssen zusätzlich zu den 
Persistent Scatterern auch die teilweise kohärenten Distributed Scatterer (DSs) genutzt 
werden. Um die in den DS enthaltenen Information zu nutzen, wurden bereits verschiedene 
Methoden, wie z.B. der Small Baseline Subset Algorithm (SBAS) und SqueeSAR 
vorgeschlagen. SBAS neigt jedoch in ländlichen Gebieten zu Fehlern beim Phase 
Unwrapping und liefert nur gering aufgelöste Deformationswerte. Die alternative Technik 
SqueeSAR ist extrem rechenaufwendig, da es alle möglichen Interferogram-Kombinationen 
berechnet. 

    Folglich ist die Entwicklung von neuartigen stapelbasierten Techniken in der 
hochauflösenden SAR-Interferometrie das Ziel dieser Arbeit. Der Fokus liegt auf schwierigen 
Gebieten, die mit herkömmlichen Methoden nur sehr schwer zu verarbeiten sind. Zu diesem 
Zweck wurde zuerst eine neue Methode zur Deformationsmessung mit variabler Auflösung in 
der Größenordnung der Objekte unter Nutzung von DSs in ländlichen Gebieten entwickelt. 
Diese beinhaltet ein adaptives räumliches Filtern zur Verbesserung der interferometrischen 
Phase, gefolgt von einer Deformationsschätzung mithilfe eines L1-Norm basierten SBAS-
Verfahrens, welches robuster gegenüber Phase-Unwrapping-Fehlern ist. Weiterhin wurde ein 
alternatives Vorgehen zur Schätzung der mittleren Deformationsgeschwindigkeit der DSs in 
stark dekorrelierten Gebieten vorgeschlagen. Bei diesem werden gewrappte Interferogramme 
(mit kleinen Basislinien) direkt verwendet und die Deformationsgeschwindigkeit wird in einer 
passenden Objektauflösung kartiert. Es beinhaltet die Identifikation von homogenen 
Bereichen, die Schätzung des Deformationsgeschwindigkeitsgradienten für diese Bereiche 
und anschließend eine modelbasierte Integration der Werte, um räumlich dichtgelagerte 
Schätzungen für die Deformationsgeschwindigkeit zu erhalten. Abschließend wurde eine 
Fusion von TerraSAR-X und TanDEM-X Datenstapeln für das Monitoring von komplexen 
urbanen Gebieten unter Nutzung von beiden Steuertypen (d.h. PSs und DSs) vorgestellt. 
TerraSAR-X ermöglicht monostatische, und zusammen mit dem Satelliten TanDEM-X nun 
auch bistatische, SAR-Aufnahmen. Somit stehen Stapel von monostatischen repeat-pass und 
bistatischen single-pass Inteferogrammen zur Verfügung. Bistatische Interferogramme sind 
von sehr hoher Datenqualität und frei von Deformationssignalen, atmosphärischen Störungen 
und zeitlicher Dekorrelation. Durch geeignetes Zusammenführen der Datenstapel ist es 
möglich, die Schätzung der Topographie und der Deformation zu verbessern. Die 
unabhängige Verarbeitung und anschließende einfache Kombination der bi - bzw. 
monostatischen Daten ist aber nicht vorteilhaft. In dicht bebauten Stadtgebieten sind die 
digitalen Höhenmodelle der TanDEM-X Daten aufgrund von Fehlern beim Phase-
Unwrapping ungenau. Diese Fehler sind durch Höhendiskontinuitäten und geometrische 
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Beschränkungen, wie z.B. Überlagerungen, verursacht. Deswegen wurde eine gemeinsame 
Verarbeitung von TerraSAR-X und TanDEM-X Daten entwickelt.  

    Die entwickelten Techniken wurden durch Nutzung von aktuellen TerraSAR-X/TanDEM-
X Daten für verschiedene Testgebiete demonstriert und ihre Leistungsfähigkeit wurde 
nachgewiesen. Die Ergebnisse zeigen eine verbesserte Nutzung der in den Daten verborgenen 
Informationen und eine Erweiterung der Anwendbarkeit der existierenden Techniken zur 
Deformations- und Höhenmessung auch im schwierigen Testgebieten. Die vorgeschlagenen 
Auswertemethoden können stark von zukünftigen SAR Missionen mit noch höherer 
Auflösung profitieren. 

    Stichworte- Erdbeobachtung, Satellitenbasierte Fernerkundung, Interferometrisches 
Synthetisches Apertur Radar (InSAR), InSAR Stacking Techniken, Deformationsmessung, 
Digitales Höhenmodell, Persistent Scatterer (PS), Distributed Scatterer (DS), TanDEM-X, 
TerraSAR-X. 
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1 Introduction 
 

    Satellite remote sensing plays a significant role in Earth observation. In particular, 
Synthetic Aperture Radar (SAR) has unique capabilities for studying the Earth’s surface at 
high resolution (Curlander and McDonough, 1991; Soumekh, 1999; Cumming and Wong, 
2005). It emits electromagnetic radiation and then coherently records the amplitude and phase 
of the returned signal to produce complex-valued images of the ground reflectivity. It is an 
active microwave imaging system, and consequently possesses day and night operational and 
cloud-penetrating capabilities (which are highly advantageous as compared to optical or 
infrared sensors). It maps the scattering properties of the Earth’s surface corresponding to the 
wavelength domain. 

    The Interferometric SAR (InSAR) technique produces maps of Earth’s surface elevation 
using two SAR images (Bamler and Hartl, 1998; Massonnet and Feigl, 1998; Rosen et al., 
2000). An extension of this basic technique, called Differential Interferometric SAR 
(DInSAR), allows highly precise measurements of land deformation in the radar’s line-of-
sight (LOS) direction. Multitemporal stacking interferometric techniques which make use of 
stacks of SAR images of the same area, for example, Persistent Scatterer Interferometry (PSI) 
(Ferretti et al., 2000; Ferretti et al., 2001), Small Baseline Subset Algorithm (SBAS) 
(Berardino et al., 2002) and SqueeSAR (Ferretti et al., 2011), are suited for monitoring long 
term dynamic processes such as urban subsidence/uplift, slope stability on landslides and 
seismic/volcanic deformation. The high resolution X-band SAR satellite TerraSAR-X 
(Buckreuss et al., 2009) allows millimeter accuracy in the High Resolution Spotlight mode 
(Adam et al., 2008; Eineder et al., 2009). 

    This thesis involves the development and demonstration of advanced stacking techniques in 
high resolution SAR interferometry. Algorithms have been developed which contribute to and 
extend the research field of InSAR. These algorithms are among the first to exploit meter 
resolution spaceborne SAR data. They have been applied to test cases which are challenging 
for conventional interferometric stacking techniques.  

    This chapter provides the scientific motivation for this thesis, the problem statement and 
objectives, and finally, the thesis outline. 

 

1.1 Scientific Motivation 
 

    Monitoring of surface deformation is crucial for studying, understanding and forecasting 
geodynamical processes. Typical application areas include mines, oil/gas/water reservoirs, 
landslides, volcanoes and earthquakes. The deformation measurements provide invaluable 
information which can be used for further geological and risk analysis. 

    InSAR has been a powerful tool for remote sensing of the Earth’s surface since the 1980s. 
The high quality and vast quantity of exciting results from this technique have demonstrated 
its potential for measuring topography and deformation. It has been used for acquiring 
information about urban subsidence and uplift, slope stability on landslides, seismic and 
volcanic deformation, coastlines and flood plains. However, it has limitations due to low 
temporal sampling rate, atmospheric propagation effects and temporal decorrelation.  
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    In the last decade, InSAR’s capabilities have been considerably improved. By using large 
stacks of SAR images acquired over the same area, long deformation time series can be 
analysed using multitemporal techniques. These coherent (i.e. phase-based) methods that have 
been developed include PSI, SAR Tomography (TomoSAR), SBAS and SqueeSAR, and 
exploit either permanently coherent phase-stable Persistent Scatterers (PSs) or partially 
coherent Distributed Scatterers (DSs). PSI provides a parametric estimate of the 3D location 
and displacement for PSs based on the assumption of one dominant scatterer in the resolution 
cell and utilizes long time span differential interferograms with respect to a single master 
image. In TomoSAR, a real 3D imaging of a scene is achieved by the formation of a synthetic 
aperture in elevation and estimation of the 3D radar reflectivity function (Reigber and 
Moreira, 2000; Lombardini, 2005; Fornaro et al., 2009; Zhu and Bamler, 2010a). In urban 
areas, PSI and TomoSAR allow analysis of even individual structures on the ground. Yet, 
there are drawbacks in rural areas due to temporal decorrelation, low density of PSs, their 
inhomogenous spatial distribution and phase ambiguities. To improve the spatial sampling of 
measured points, there is an increasing focus on utilizing DSs to extract geophysical 
parameters of interest (i.e. elevation and deformation) for surfaces characterized by fields, soil 
and rock surfaces. The distributed scattering mechanism involves a coherent sum of many 
independent small scatterers (no dominant scatterer) within a resolution cell (Goodman, 1976) 
and is modelled by a complex circular Gaussian radar return (Bamler and Hartl, 1998). 
Although, the phase quality of DSs is not on par with the PSs, it is possible to process DSs 
with good precision using algorithms such as SBAS and SqueeSAR. SBAS estimates the non-
linear deformation time series using unwrapped small baseline differential interferograms. 
However, it is susceptible to phase unwrapping errors often encountered in non-urban areas. 
Also, the interferogram multi-looking employed to reduce phase noise (Zebker and 
Villasenor, 1992) results in a loss of resolution and the superposition of topography and 
deformation signals from different objects. SqueeSAR, on the other hand, also provides a 
modelled deformation utilizing all possible interferograms and processes statistically identical 
pixels as a single object, but can be computationally expensive.  

    To counter the limitations of the above-mentioned techniques, advanced techniques in high 
resolution SAR interferometry have been developed and implemented for topographic 
mapping and deformation monitoring as part of this thesis. In fact, since 2007, the new 
generation of high resolution SAR sensors such as TerraSAR-X and COSMO-SkyMed are 
providing imagery with unique characteristics enabling sophisticated interferometric 
applications. Figure 1 (a) shows a medium resolution ERS amplitude image of Lueneburg, 
Germany, whereas Figure 1 (b) shows the corresponding high resolution TerraSAR-X 
amplitude image. With shorter repeat cycles, smaller orbital tubes and higher bandwidth of 
the satellites, advanced monostatic repeat-pass stacking techniques are now supported by a 
practical data basis.  

    Additionally, with the TanDEM-X satellite which was launched in 2010 (Krieger et al., 
2007), high resolution bistatic single-pass interferometry is now possible together with 
TerraSAR-X. The addition of a few TanDEM-X data pairs (that are free from displacement, 
atmosphere and temporal decorrelation) to the existing TerraSAR-X data stack can improve 
the results of stacking techniques such as PSI and SBAS. Essentially, the TerraSAR-
X/TanDEM-X case represents a special sensor availability scenario in space, where, the two 
satellites in the mission were launched one after the other. There was a long monostatic 
acquisition period at the beginning of the mission, followed by a bistatic acquisition period 
which is going on currently and finally, there will be a monostatic acquisition period again. 
However, in dense metropolitan areas, spatial phase unwrapping is a challenge due to 
geometrical limitations such as radar layover and shadow (Schreier, 1993). Consequently, 
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fusion of bistatic and monostatic data has been explored and demonstrated in this dissertation 
for complex urban areas. 

 

 
Figure 1: SAR amplitude images of Lueneburg, Germany. (a) ERS image with a spatial resolution of 25 m in 
slant range direction and 5 m in azimuth direction. (b) TerraSAR-X image with a spatial resolution of 0.6 m in 
slant range direction and 1.1 m in azimuth direction. 
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1.2 Problem Statement and Objectives 
 

    High resolution SAR missions, for example, TerraSAR-X and TanDEM-X, have opened up 
a new and exciting field of advanced interferometry for measuring elevation and 
displacement. Published multitemporal (i.e. monostatic repeat-pass) techniques such as PSI, 
TomoSAR and SBAS are however limited due to the unavailability of coherent scatterers, 
temporal decorrelation phenomenon and phase unwrapping errors in rural regions. In fact, 
phase unwrapping is also a major problem in dense urban areas. In this work, advanced 
stacking techniques and applications in high resolution SAR interferometry have been 
developed, with a focus on complex areas that are difficult to process using conventional 
techniques. This thesis was carried out with the following objectives: 

• Contribute to the research field of DInSAR, i.e. displacement and topography 
estimation. 

• Extend the application of recently developed techniques such as PSI, TomoSAR, 
SBAS and SqueeSAR.  

• Propose new algorithms that improve the applicability of available techniques by:  
- Reducing computational efforts (e.g. exploiting only small baseline differential 

interferograms) and combining bistatic and monostatic data. 
- Improving the spatial resolution of the estimates as compared to the 

conventional algorithms. 
- Improving the precision of the estimates.   
- Increasing the robustness of the estimates with respect to phase unwrapping 

and resolution cell characteristics.  
• Implement, apply and assess the algorithms on real data.  
• Illustrate the measurement results of the developed techniques, demonstrate their 

potential and identify the typical use cases of these techniques. 
• Analyze the properties (i.e. characteristics) of the techniques and the factors that affect 

their performance. 
• Encourage the geo-user community in using these techniques.  

    Aiming at the above-mentioned goals, there are three main contributions of this 
dissertation:    

• First, an advanced SBAS algorithm has been developed for deformation time series 
monitoring in non-urban areas. It involves an adaptive spatial filtering algorithm to 
improve the differential interferometric phase while preserving the object resolution. 
This is followed by deformation estimation using an L1-norm based SBAS approach 
that is more robust to the often-occuring phase unwrapping errors in rural areas. 

• Second, an advanced algorithm for Distributed Scatterer Interferometry (DSI) has 
been proposed which copes with highly decorrelated areas. It provides spatially dense 
mean deformation velocity estimates without any phase unwrapping at a suitable 
object resolution. It identifies statistically homogenous patches and estimates gradients 
of deformation velocity for these patches. Afterwards, model-based deformation 
integration is performed to obtain the absolute deformation velocities. 

• Third, a joint processing of monostatic repeat-pass and bistatic single-pass InSAR data 
exploiting PSs and DSs has been performed for monitoring metropolitan areas, where 
it is difficult to interpret the SAR images and interferometric phase due to phase 
discontinuities and complex scattering situations such as radar layover and shadow.  
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1.3 Thesis Outline 
 

    This is a cumulative dissertation comprising of 5 full paper peer-reviewed scientific 
publications, which are presented at the end (see Appendix A). The thesis is structured as 
follows.  

    Chapter 2 explains SAR and interferometry fundamentals, followed by an overview of 
state-of-the-art coherent PS and DS multitemporal techniques and their inherent limitations.   

    In Chapter 3, the advanced SBAS algorithm for non-linear deformation time series 
mapping of DSs at object resolution is described. Afterwards, practical demonstration is 
provided on two application test cases and a performance assessment of the deformation 
estimation is presented. This algorithm has been published in (Goel and Adam, 2012a): 
A.1 Goel, K., Adam, N., 2012a. An advanced algorithm for deformation estimation in 
non-urban areas. ISPRS Journal of Photogrammetry and Remote Sensing 73, 100-110.  

    Chapter 4 explains the DSI algorithm for mean deformation velocity mapping of DSs at a 
suitable object resolution. Its application on a test case and a comparison with the advanced 
SBAS algorithm is described. Assessment of the quality of the obtained deformation products 
is also presented. This method has been published in (Goel and Adam, 2012b): 
A.2 Goel, K., Adam, N., 2012b. High resolution deformation time series estimation for 
distributed scatterers using TerraSAR-X data. ISPRS Annals of the Photogrammetry, 
Remote Sensing and Spatial Information Sciences, XXII ISPRS Congress, Commission 
VII, Melbourne, Australia, 25 August-01 September 2012, I-7, 29-34, Copernicus 
Publications. 
Besides, a paper describing this technology in detail has been published in (Goel and Adam, 
2013a): 
A.3 Goel, K., Adam, N., 2013a. A distributed scatterer interferometry approach for 
precision monitoring of known surface deformation phenomena. IEEE Transactions on 
Geoscience and Remote Sensing PP (99), 1-15, DOI: 10.1109/TGRS.2013.2289370.  

    The fusion of monostatic repeat-pass and bistatic single-pass InSAR stacks (i.e. TerraSAR-
X and TanDEM-X data) for complex urban area monitoring via DSs is given in Chapter 5. A 
case study is presented and the precision of the elevation and deformation estimates is 
discussed. A paper describing this integration technique has been published in (Goel and 
Adam, 2013b):  
A.4 Goel, K., Adam, N., 2013b. Fusion of monostatic/bistatic InSAR stacks for urban 
area analysis via distributed scatterers. IEEE Geoscience and Remote Sensing Letters 
PP (99), 1-5, DOI: 10.1109/LGRS.2013.2278204. 

    The advanced stacking of TerraSAR-X and TanDEM-X data for PSs is given in Chapter 6. 
The focus is on resolving single or double scattering mechanisms present in the same 
resolution cell in dense metropolitan regions. The technical details, first results and 
performance evaluation are presented using simulated and real data. This fusion technique has 
been published in (Goel and Adam, 2013c): 
A.5 Goel, K., Adam, N., 2013c. Advanced stacking of TerraSAR-X and TanDEM-X data 
in complex urban areas. Proceedings of Joint Urban Remote Sensing Event, JURSE 
2013, Sao Paulo, Brazil, 21-23 April, 115-118. 

    Finally, the thesis is summarized in Chapter 7 with a brief discussion and conclusion, 
followed by an outlook for future work.    
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2 Fundamentals and State-of-the-Art 
 

    It is important to study and get a detailed understanding of Earth’s deformation impact on 
man-made and natural sites. Conventionally, geodetic leveling measurements and Global 
Positioning System (GPS) networks have been used to monitor the surface deformation.  
However, these provide information only about a few points. In comparison, spaceborne SAR 
interferometry provides a large number of measured points over long time periods, and this is 
suitable for analyzing the geodynamical processes. InSAR advantageously provides ground 
deformation rate estimates with millimeter per year accuracy over large contiguous areas (few 
hundred kilometers). 

    In this chapter, first, the relevant SAR and interferometry fundamentals are described 
briefly. Next, the state-of-the-art PS stacking techniques are introduced. These include the PSI 
and TomoSAR. Afterwards, the state-of-the-art DS stacking techniques, namely, the SBAS 
and SqueeSAR are presented. This chapter sets the basis for the new algorithms proposed in 
this thesis. 

 

2.1 SAR Fundamentals 
 

    Spaceborne SAR enables the imaging and monitoring of Earth’s surface at a global level 
with a short revisit time (Curlander and McDonough, 1991; Soumekh, 1999; Cumming and 
Wong, 2005). As a consequence, various areas can be studied regularly at low costs. It 
provides radiometric as well as the distance information about objects on ground. Thus, apart 
from studying scattering properties, it can also be used to study elevation, changes in the 
scene’s radiometry and deformation of objects over time. 

    NASA launched the first civilian spaceborne SAR sensor, the SEASAT satellite, in 1978 
for ocean studies. It was a short term mission (only 105 days), however, it proved the 
functioning of the instruments and paved the way for later systems. Since then, various SAR 
satellites, for instance, ERS-1/2, ENVISAT, RADARSAT-1/2, COSMO-SkyMed, TerraSAR-
X and TanDEM-X have been launched and these have been used for various applications.  

 

2.1.1 SAR Imaging Principle and Geometry 
 

    The Synthetic Aperture Radar (SAR) imaging geometry is shown in Figure 2. It is 
asymmetrical and characterized by a side looking sensor, so as to prevent range ambiguities 
and unwanted high level signals from vertical ground reflections. A cylindrical coordinate 
system is used to specify the 3D position of a scatterer on the ground: 

• The azimuth axis x  defines the position of the scatterer along the sensor path. 
• The slant range axis r  defines the distance of the scatterer from the SAR sensor.  
• The look angle θ  represents the angle between the sensor-to-scatterer line and nadir.  

The range circle representing a constant range distance can be approximated to be a straight 
line due to large range distance and small angular diversities, and this straight line is the axis 
perpendicular to the azimuth - slant range plane and is called the elevation l  (with origin in 
the center of the imaged pixel). The local incidence angle at the Earth’s surface is the angle 
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between the sensor-to-scatterer line and the local normal to the Earth’s tangent plane at that 
surface. In Cartesian coordinates, the 3D position of a scatterer is defined by the azimuth axis 
x , the ground range axis y  and the height axis z . The sensor illuminates an area on the 
ground called the antenna footprint. The scene is mapped to the azimuth - slant range plane. 
In the standard imaging mode, called the Stripmap mode, the look angle and the squint angle 
of the sensor’s LOS are kept stable. 

 
Figure 2: The side-looking acquisition geometry of SAR. In cylindrical coordinate system, the flight direction of 
the sensor is called the azimuth axis, the LOS direction is called the slant range axis, the angle between the LOS 
direction and the nadir is called the look angle θ . The range circle representing a constant range distance can be 
approximated to be a straight line, and this line is the axis perpendicular to the azimuth - slant range plane and is 
called the elevation. The Cartesian coordinate system is defined by the azimuth, the ground range and the height 
axes. The sensor, flying at a certain height, illuminates an area on the ground called the antenna footprint (which 
is limited in ground range by its swath width). The scene is mapped to the azimuth - slant range plane. 

    Radar is an acronym for RAdio Detection And Ranging. It was developed to detect targets 
such as ships or airplanes. Conventional radars were designed to achieve finer range 
resolution by the radiation of a short pulse and finer azimuth resolution by the radiation of a 
narrow beam. Pulse compression techniques (e.g. chirping) are available for achieving a range 
resolution significantly finer than that corresponding to the pulse width, provided a signal of 
sufficient bandwidth is transmitted.  

    SAR was developed to improve the azimuth resolution significantly than that achievable by 
making use of the radiated beam width. It enables imaging with a fine azimuth resolution with 
relatively small physical antenna using sophisticated signal processing techniques. SAR 
utilizes the flight path of the platform to simulate an extremely large aperture electronically. 
As it passes a given scatterer, many pulses are reflected in sequence. By coherently recording 
and combining these individual pulses, a "synthetic aperture" is created providing a high 
azimuth resolution that is independent of the slant range to the scatterer. Thus, SAR is an 
excellent tool for high resolution remote sensing of Earth’s surface from space. 
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    SAR does not provide imaging in elevation direction, i.e. scatterers having the same 
azimuth-range coordinates but at different elevation positions cannot be distinguished as they 
are summed up in the same pixel. 

    A SAR image is a 2D array of pixels in the slant range and azimuth directions, respectively. 
Each pixel corresponds to a small part of the Earth’s surface called the resolution cell. It is 
represented by a complex number that carries amplitude and phase information about the 
microwave field backscattered by all the scatterers (e.g. rocks, vegetation, buildings) within 
the corresponding resolution cell projected on the ground. The amplitude of the SAR image is 
determined primarily by terrain slope, surface roughness and the dielectric constant (relative 
permittivity). In contrast, the phase of the SAR image is determined mainly by the distance 
between the satellite antenna and the ground scatterers and is represented as a fraction of a 
complete wavelength. In the standard monostatic imaging mode, where the antenna 
alternately transmits and receives its own echoes, the complex SAR signal s  for a pixel 
depends on the two-way path distance between the sensor and target and is approximately 
given by the expression: 
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where a  is the amplitude, φ  is the phase, λ  is the signal wavelength, R  is the range distance 
determined by precisely measuring the time from transmission of a pulse to receiving the echo 
from the target and scatφ  is the phase contribution due to the scattering inside the resolution 
cell. The typically used wavelengths for spaceborne SAR sensors are 15-30 cm (L-band), 3.8-
7.5 cm (C-band) and 2.4-3.8 cm (X-band). 

    The range resolution rρ  of the SAR image is given by the bandwidth W  of the transmitted 
chirp signal: 
 

W
c

r
2

=ρ  
(2) 

where c  is the speed of light. The azimuth resolution xρ  depends on the physical length L  of 
the SAR antenna: 
 

2
L

x ≈ρ  
(3) 

The SAR sensors operating in Spotlight Mode have a finer azimuth resolution than that given 
by Equation (3), as the length of the synthetic aperture in azimuth is increased by squinting 
the radar beam in the direction of the area to be imaged.  

 

2.1.2 Geometrical Effects Introduced by SAR 
 

    Since SAR is side looking, terrain elevation results in geometric effects in the SAR image 
(Schreier, 1993). These effects are demonstrated in Figure 3 where the SAR imaging along 
the range direction is shown.  

    The first effect is foreshortening and it occurs as long as the slope of the terrain is smaller 
than the local incidence angle. It leads to shortening of the distance between two points due to 
projection onto the slant range direction. As can be seen in Figure 3, the distance of the 
orange slope is much smaller in the SAR image than in reality. 
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    When the terrain slope exceeds the radar local incidence angle, the scatterers are imaged in 
reverse order and superimposed on the contribution coming from other areas. This effect is 
called layover. Extended layover areas in urban areas cause scatterers on the ground and on 
buildings to be mapped into the same resolution cell. In Figure 3, the reflection coming from a 
part of the ground (in blue), the building façade (in red) and a part of the building roof (in 
green) are all superimposed on top of each other in the SAR image. 

    When an object in the scene blocks the radar wave from reaching other portions of the 
scene, shadow occurs in the SAR imagery, as shown in gray in Figure 3. These shadowed 
regions in the scene appear black. 

    Because of these geometrical limitations of SAR, interpretation of SAR data becomes 
difficult, especially for urban areas and buildings. The solutions are PSI and TomoSAR, and 
these would be described in Section 2.3. For PSI, parametric techniques were developed to 
resolve complex scattering mechanisms (Ferretti et al., 2005; Adam et al., 2005). 

  
Figure 3: Geometrical effects in SAR images, namely, foreshortening, layover and shadow in the plane 
orthogonal to the flight (i.e. azimuth) direction. These effects depend on the look angle θ  and the local slope of 
the terrain. 

 

2.1.3 High Resolution SAR 
 

    X-band SAR satellites, namely, TerraSAR-X, TanDEM-X and COSMO-SkyMed are 
providing unique imagery with up to 1 m resolution for the last few years. SAR data with 
such a high resolution are available for the first time for civil applications. New techniques 
and applications in SAR and InSAR are now possible, that were previously difficult using 
medium and low resolution sensors such as the C-band ERS-1/2. Apart from supporting urban 
infrastructure monitoring by providing details of different man-made objects such as 
buildings, these data provide the opportunity to even study rural areas by providing a high 
spatial resolution, higher Signal to Noise Ratio (SNR), smaller orbital tubes and shorter revisit 
times.  
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    TerraSAR-X is a high resolution German radar satellite launched in June, 2007 for 
scientific and commercial applications (Buckreuss et al., 2009). The orbit is 514 km high at an 
inclination of 97.44 degrees. TerraSAR-X has 11 days revisit time (orbit repeat cycle). Due to 
swath overlay, a 2.5 day revisit time can be achieved. The payload is a Synthetic Aperture 
Radar (SAR) with the following specifications: 

• X-band radar frequency of 9.65 GHz. 
• Right looking, but rolling to left looking possible. 
• Incidence angle of 20-55 degrees. 
• Transmit and receive in H or V polarization (single/dual). 

TerraSAR-X has four imaging modes: 
• ScanSAR Mode: Single polarization, scene size 100 km (ground range) by 150 km 

(azimuth), up to 18.5 m resolution. 
• Stripmap Mode: Single or dual polarization, scene size 30 km (ground range) by 50 

km (azimuth), up to 3 m resolution. 
• Spotlight Mode: Single or dual polarization, scene size 10 km (ground range) by 10 

km (azimuth), up to 2 m resolution. 
• High Resolution Spotlight Mode: Single or dual polarization, scene size 5-10 km 

(ground range) by 5 km (azimuth), up to 1 m resolution. With 300 MHz bandwidth, a 
resolution of 0.6 meters in slant range and 1.1 meters in azimuth is achieved. 

TerraSAR-X facilitates monostatic repeat-pass interferometry and allows analysis of 
individual structures on the ground with a high level of detail (Adam et al., 2008; Eineder et 
al., 2009). 

    TanDEM-X, launched in June, 2010, is TerraSAR-X's twin satellite and almost identical to 
it (Krieger et al., 2007). The two satellites fly in a closely controlled formation with typical 
distances between 250 and 500 m. TerraSAR-X and TanDEM-X together allow the 
acquisition of high resolution bistatic single-pass interferograms, which are very good in 
quality due to absence of deformation, atmosphere and temporal decorrelation.  The main 
objective of this mission is the generation of a global Digital Elevation Model (DEM). 
Furthermore, it also provides a configurable SAR platform for demonstrating new 
interferometric techniques and applications. 

    TerraSAR-X and TanDEM-X data have been used to demonstrate the implemented 
algorithms in this dissertation. 

 

2.2 SAR Interferometry Fundamentals 
 

    InSAR exploits the phase difference between two SAR images acquired from different orbit 
positions and/or at different times (Bamler and Hartl, 1998; Massonnet and Feigl, 1998; 
Rosen et al., 2000). This method provides information about geophysical quantitites such as 
topography (Zebker and Goldstein, 1986; Li and Goldstein, 2002) and deformation 
(Massonnet et al., 1993; Zebker et al., 1994). In fact, InSAR allows measurement of even 
millimetric surface displacements from space because it is coherent and utilizes short 
wavelengths. It is hence suited for monitoring long term dynamic processes such as 
volcanoes, crustal dynamics and land subsidence. 
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2.2.1 SAR Interferogram Generation 
 

    A single SAR image cannot uniquely determine a 3D scatterer’s position, as it does not 
allow mapping in the third dimension, i.e. look angle θ  (in the cylindrical coordinate system) 
or the elevation direction. This is illustrated in Figure 4 (a) which shows the SAR imaging 
geometry in the plane orthogonal to the azimuth direction. Here, all the scatterers located 
within the range beam and having the same distance R  to the sensor are mapped into the 
same SAR image pixel. This drawback can be overcome by acquiring a second image of the 
same area from a slightly different position (but from a parallel track), as demonstrated in 
Figure 4 (b). Here, the distance between the two sensor positions is called the baseline B , its 
component perpendicular to some look direction is referred to as the perpendicular baseline 

⊥B  and the angle between the line joining the two sensor positions and the horizontal 
direction is called the tilt angle β . The second acquisition resolves the ambiguity existing on 
the scatterer location completely, since only one point exists which is located at a distance R  
from the first sensor and RR δ+  from the second one. 

 
Figure 4: SAR imaging geometry in the plane orthogonal to the flight (i.e. azimuth) direction. (a) Single 
imaging. (b) Stereo imaging. 

    The information about the look angle θ  comes from the path difference Rδ , since it can be 
observed from Figure 4 (b) that: 
 ( ) ( )βθδ −−+=+ sin2222 RBBRRR  (4) 
From Equation (4) it can be deduced that: 
 ( ) ( )βθβθδ −−≈−−−+= sinsin222 BRRBBRR  (5) 

The knowledge of the look angle θ  gives the height h  of the scatterer with respect to a 
reference plane as follows: 
 θcosRHh −=  (6) 
where H  is the height of the first sensor. Accordingly, it can be said that the measurement of 
the path difference is the key to determining a scatterer’s height via two SAR images in 
stereo-imaging geometry. The height measurement accuracy hσ   depends on the accuracy of 
measuring the path difference Rδσ  and can be obtained from Equation (5) and Equation (6) as 
follows: 
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    One technique to calculate the path difference is SAR radargrammetry (Desai, 1997; 
Soergel et al., 2009; Raggam et al., 2010; Goel and Adam, 2012c). A point is considered in 
the first SAR image, henceforth called the master. The same point is then searched for in the 
second image, which is hereafter called the slave. Then, subtracting the range of the point in 
the master and slave images gives the path difference. However, this method is dependent on 
the range resolution and the path difference should be “large” (as compared to InSAR 
described below) for this technique to be applicable.  

    Another technique to measure a “small” path difference (and thus, height of a scatterer) is 
across-track InSAR, wherein, phase difference of the two SAR images is exploited. This 
technique provides a higher (sub-wavelength) accuracy in evaluating the scatterer’s height. In 
practice, a complex SAR interferogram is generated by multiplying, pixel by pixel, the first 
SAR image with the complex conjugate of the second. For across-track interferometers, the 
standard mode of data collection is the monostatic mode (repeat-pass) where each antenna 
alternately transmits and receives its own echoes. For a monostatic interferometer, 
considering that the complex SAR signal for a pixel in the master and slave image is given by 

1s  and 2s , respectively as follows: 
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where 1A  and 2A  are the amplitude, 1φ  and 2φ  are the phase of the pixel in the master and 
slave image, respectively and 1_scatφ  and 2_scatφ  are the phase contributions due to the 
scattering inside the resolution cell in the master and slave image, respectively, the complex 
interferogram q  for a generic pixel is given by: 
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Here, the phase value of q  is the wrapped interferometric phase, which is ambiguous as it is 
limited to the interval ( ]ππ ,− . Figure 5 (a) illustrates a TerraSAR-X amplitude image 
(Spotlight Mode) of an area close to Las Vegas, US. Figure 5 (b) depicts a corresponding 
interferogram. Phase unwrapping has to be performed to directly infer range differences 
(Goldstein et al., 1988; Ghiglia and Romero, 1994; Fornaro et al., 1996; Costantini, 1998; 
Eineder et al., 1998; Pepe and Lanari, 2006; Fornaro et al., 2011). After phase unwrapping, 
the true unwrapped interferometric phase InSARφ   of a pixel is given by:  
 

RInSAR δ
λ

πφ 4
=   

(10) 

Note that this is assuming that the phase contributions due to the scattering inside the 
resolution cell can be neglected. This is true in case of PSs, whereas phase stability is 
characterized by spatial coherence in case of DSs, as explained in the next subsection. So, it 
can be inferred that the interferogram contains the information about the path difference. The 
path difference measurement precision Rδσ  depends on the interferometric phase accuracy 

InSARφσ  since: 
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Substituting this in Equation (7) gives the height measurement accuracy: 
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The simplified phase-topography relation is given by: 
    

h
R

B
topoInSAR θλ

πφφ
sin

4 ⊥=≈  
(13) 

assuming that the flat Earth phase component has been removed and there are no deformation, 
atmospheric and noise phase components.  

 
Figure 5: Depiction of a region close to Las Vegas, US. (a) TerraSAR-X amplitude image. (b) Corresponding 
TerraSAR-X interferogram with a perpendicular baseline of 309 m and temporal baseline of 11 days. (Adam et 
al., 2007) 

    The above-mentioned theory assumes that the imaged surface is stationary. If the two 
observations are separated in time, the phase difference might be caused not only by 
topography but also by ground movement. If the topography of the terrain is known 
beforehand (e.g. a DEM), this independent topography information can be subtracted from the 
interferogram to get the differential interferogram DInSARφ , indicating surface deformation: 
 

vBtdefoDInSAR λ
πφφ 4

=≈   
(14) 

where tB  is the temporal separation (i.e. temporal baseline) for the interferogram and v  is the 
displacement velocity of the scatterer in the LOS (assuming a constant velocity model). This 
technique to monitor deformation is called Differential Interferometric SAR (DInSAR). In 
reality, the differential interferometric phase for a pixel is composed of phase components due 
to deformation defoφ , residual topography topores _φ , atmosphere atmoφ  and noise noiseφ  as follows: 
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where resh  is the residual height of the pixel due to errors in the DEM etc. The phase noise is 
due to temporal decorrelation, uncompensated spectral decorrelation, orbital errors and 
thermal noise. The interferogram is usually referenced with respect to a single pixel (typically 
a highly coherent point located in a non-deforming zone). The atmospheric phase is 
minimized if the reference pixel is in close spatial proximity, i.e. less than 1 km away 
(Hanssen, 1998; Hanssen, 2001). Similarly, the orbital errors also become negligible if the 
reference pixel is located nearby.  

    An example of a differential interferogram obtained from 2 TerraSAR-X images (Stripmap 
mode) of the area around the Italian town of L’Aquila is shown in Figure 6. The two images 
were acquired on 6th February, 2009 and 13th April, 2009, respectively. The differential 
fringes (i.e. colored rings) represent the ground movement caused by the magnitude 6.3 
earthquake on 6th April, 2009.  
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    For bistatic across-track interferometers (single-pass) where only one antenna transmits 
and both antennae receive the echoes (at the same time), the interferometric phase BiInSAR _φ   
for a pixel is given by:  
 ( ) ( )( ) RRRRRBiInSAR δ

λ
π

λ
πφ 22

_ =′+−+=   
(16) 

where R  is the distance of the target from the first sensor and R′  from the second one. This 
effectively means that the phase-to-height sensitivity of a bistatic interferogram is half as 
compared to a monostatic interferogram: 
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Note that a bistatic interferogram is composed of phase components due to topography and 
noise only. The phase noise here is due to possible uncompensated spectral decorrelation, 
orbital errors and thermal noise, there is no temporal decorrelation. The deformation and 
atmospheric phase components are also negligible since the two SAR acquisitions are taken at 
the same time.  

 
Figure 6: Differential interferogram formed from two TerraSAR-X images of the area around L’Aquila, Italy, 
showing the ground movement caused by the magnitude 6.3 earthquake on 6th April, 2009. The two images were 
acquired on 6th February, 2009 and 13th April, 2009, respectively. (Courtesy of Christian Minet, DLR) 

    Figure 7 shows a comparison between a bistatic interferogram ( 0≈tB ) and a monostatic 
interferogram ( tB  = 693 days) of Las Vegas, US. The bistatic interferogram has been formed 
from two TerraSAR-X and TanDEM-X images (High Resolution Spotlight mode) taken at the 
same time. The monostatic interferogram has been formed from two TerraSAR-X images 
taken at different times. As can be seen, the bistatic interferogram is free from fringes due to 
deformation and atmosphere, as compared to the monostatic interferogram. Also, there is no 
temporal decorrelation in the bistatic interferogram. 
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Figure 7: Comparison of a bistatic interferogram ( 0≈tB ) and a monostatic interferogram ( tB  = 693 days) of 
Las Vegas, US, using TerraSAR-X/TanDEM-X data. 

 

2.2.2 SAR Interferogram Statistics 
 

    The ideal case of interferometric return is due to a point scatterer (see Figure 8 (a)). If the 
resolution element contains a single point scatterer, the phase contributions due to the 
scattering inside the resolution cell, scatφ , shows almost no variation with time. In such a case, 
the topography and deformation information can be estimated from the interferogram without 
any error. However, such scatterers rarely exist in reality. 

    Nevertheless, on man-made structures like roofs, building facades, metallic structures etc. 
in urban areas, there do exist PSs. A PS is characterized by one (or a few) dominating 
scatterer inside a resolution cell (see Figure 8 (b)). It exhibits a small variation of scatφ  with 
time and can also be used for topography and deformation mapping of the dominating 
scatterer. The phase stability of a PS is characterized by the Signal to Clutter Ratio (SCR) 
(clutter is the contribution of the echo from all the non-PS scattering elements within the cell). 
Such pixels form the basis of PSI for topography and deformation time series estimation. PSI 
exploits interferograms at the highest possible resolution (single-look data) to identify such 
scatterers. 

    On the other hand, in natural terrains, the scattering is generally the coherent sum of many 
subscatterers within a resolution cell (where no single subscatterer dominates the others) 
(Goodman, 1976). Such a scattering object is a Gaussian (or Rayleigh) scatterer, also called a 
DS (see Figure 8 (c)). It obeys circular Gaussian statistics (Bamler and Hartl, 1998). The 
variation of scatφ  with time is randomly distributed in the interval ( ]ππ ,− . InSAR stacking 
methods based on DSs include the SBAS and SqueeSAR. These methods exploit 
interferograms at a lower resolution (multi-look data). Essentially, the DSs are characterized 
by a low SNR, which has to be improved by a local spatial averaging (i.e. multi-looking). In 
other words, the statistics of interferograms characterized by DSs are governed by the 
complex covariance (Just and Bamler, 1994) and this has to be estimated by sample means as 
discussed below.  
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Figure 8: Modelling of scattering mechanism inside a SAR resolution cell. (a) Point scatterer. (b) PS with one (or 
more) dominating scatterer within a resolution element. (c) DS with multiple subscatterers within a resolution 
element (where no single subscatterer dominates the others). 

    The covariance between two complex SAR images 1s  and 2s  for a pixel is defined as the 
expectation of the product of the first with the complex conjugate of the second (Bamler and 
Hartl, 1998): 
 ( )( )*

21 ssEc ⋅=  (18) 
The complex correlation coefficient (also referred to as the complex coherence) γ  of the two 
SAR images for a pixel is obtained by normalizing the covariance by the standard deviation 
of the two images and is given by: 
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The Maximum Likelihood (ML) estimate γ̂  of the correlation is obtained from L  
independent samples (i.e. looks): 
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Usually, the samples are selected from a local spatial estimation window, for example, a 
rectangular patch around the pixel of interest (although, it is possible to do an ensemble 
average for a pixel by including spatial as well as temporal samples). The magnitude γ̂  of 
the correlation, usually called coherence, is a measure of the phase noise of the pixel under 
consideration. It ranges from 0 to 1, 1 being the coherence for a noise-free interferometric 
pixel. The coherence describes the SNR: 
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The phase { }γ̂arg  of the correlation is the expected interferometric phase of the pixel. The 
phase standard deviation φσ  of a pixel is a function of the coherence and the number of looks. 
It is worth mentioning that the estimator in Equation (20) is biased, it tends to overestimate 
low coherence. It becomes asymptotically unbiased for large number of looks, but this 
decreases the resolution. There are approaches available for unbiased coherence estimation 
(Touzi et al., 1999). The estimator also underestimates the coherence in case of 
interferometric fringes present due to residual digital elevation model (DEM), local slope etc. 
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(Zebker and Chen, 2005). Moreover, a rectangular estimation window can lead to averaging 
of pixels arising from different distributions leading to a wrong estimation of the correlation.  

    The decorrelation in SAR interferograms (i.e. decrease in coherence) occurs due to various 
factors such as geometric and Doppler decorrelation, temporal decorrelation and thermal 
noise.  

    The geometric decorrelation happens because the same ground resolution element is 
imaged from two slightly different look directions. It leads to a shift in the range spectra of 
the two SAR images. There exists a critical perpendicular baseline for every SAR system, 
above which there is a complete loss of coherence. The geometric decorrelation can be 
compensated in the Fourier transform domain via spectral shift filtering. The Doppler 
decorrelation occurs due to different Doppler centroids for the two images as they are taken 
with different squint angles. It can be mitigated in the Fourier transform domain by common 
band filtering.  

    When two SAR acquisitions are taken at different times, the reflectivity of the resolution 
cell might change. Since the backscattering depends on the terrain composition and 
roughness, any change in the terrain properties leads to a change in the reflectivity.  This leads 
to temporal decorrelation. It is dependent on the wavelength used and the land coverage (e.g. 
water decorrelates in fractions of seconds, vegetation decorrelates in a few days, whereas 
buildings remain long-time coherent). Temporal decorrelation is difficult to model as it could 
occur due to changes in weather, anthropogenic activities or even natural hazards.  

    Thermal noise is mostly due to internal circuitry of the SAR instrument.   

    While InSAR is quite efficient in various applications of remote sensing, it has limitations 
due to decorrelation, atmospheric propagation effects and low temporal sampling rate. As a 
consequence, stacking techniques have been developed which overcome some of the 
limitations of conventional InSAR. These multitemporal techniques are either based on PSs or 
DSs and have been described in the next section.  

 

2.3 Coherent Stacking Techniques 
 

    The coherent stacking methods involve the simultaneous processing of a stack of SAR 
images of the same area, which are taken at different times, for monitoring deformation time 
series and residual topography (after compensation of a DEM). 

    In PSI, PSs are exploited and differential interferograms with respect to a single master 
image are formed (Ferretti et al., 2000; Ferretti et al., 2001). The main idea behind PSI is that 
some of these interferograms might have a large perpendicular baseline or a large temporal 
baseline, and are hence affected by strong decorrelation noise. Thus, only points which do not 
change their scattering characteristics in time can preserve the interferometric phase 
information. It is thus implied that only the signal phases of permanently coherent PSs can be 
retrieved for interferometry in PSI. The interferograms are analysed at PSs to maximize the 
SCR. PSI uses a deformation model for the estimation. 

    TomoSAR is another technique which can be used for PSs and/or DSs and is an innovative 
evolution of classical interferometric stacking (Reigber and Moreira, 2000; Lombardini, 2005; 
Fornaro et al., 2009; Zhu and Bamler, 2010a). Instead of exploiting just the phase information 
of the acquired stack, the whole complex information is processed. TomoSAR extends the 
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principle of synthetic aperture onto the elevation direction for a real and unambiguous 3D 
imaging of a scene. It images multiple scatterers (present in the same resolution cell) along 
the elevation direction. Applications include retrieval of different persistent scattering 
mechanisms inside the same resolution cell and their corresponding reflectivity to counter 
radar layover. In fact, InSAR is actually the first step towards 3D imaging, however, it only 
allows mapping of the mean phase center of all scatterers present in a resolution cell. 
TomoSAR, on the other hand, provides a complete 3D representation of the scene. 
Differential TomoSAR (DTomoSAR) is a further extension which retrieves the elevation as 
well as the deformation information of multiple scatterers inside the same resolution cell and 
thus, provides a 4D imaging. PSI is a special case of DTomoSAR where only a single 
scatterer inside a pixel is assumed. 

    DS-based techniques include SBAS and SqueeSAR. The SBAS method exploits only small 
baseline (temporal and spatial) unwrapped differential interferograms, so as to limit the 
effects of uncompensated geometric decorrelation and temporal decorrelation on the DSs 
(Berardino et al., 2002). These interferograms are multi-looked to reduce the phase noise and 
improve the phase estimate. SBAS estimates the non-linear deformation time series via the 
Singular Value Decomposition (SVD) without using any deformation model (Golub and 
Loan, 1996). 

    The SqueeSAR technique uses all possible differential interferograms to get the best 
possible estimates of the phases associated with the deformation of each DS (Ferretti et al., 
2011). It also employs an adaptive multi-looking of the interferograms to decrease the phase 
noise. A deformation model is assumed for the estimation. SqueeSAR increases the spatial 
density of measurement points over areas characterized by DSs, while preserving the high-
quality information obtained using the PS technique over deterministic targets. 

    The methodologies of the above-mentioned techniques are described below. 

 

2.3.1 Persistent Scatterer Interferometry 
 

    The PSI technique was developed by A. Ferretti, C. Prati and F. Rocca in the late 1990s for 
long-term deformation monitoring, especially in urban environments (Ferretti et al., 2000; 
Ferretti et al., 2001). Since then, similar approaches have been proposed by different scientists 
(Adam et al., 2003; Hooper et al., 2004; Kampes, 2006). The PSI processing consists of the 
following main steps: 

• Given a stack of 1+N  coregistered and calibrated SAR scenes, N  differential 
interferograms are formed with respect to a chosen master scene. A reference DEM 
(which can be of moderate spatial resolution) is used to compensate for the 
topographic phase. The master scene is selected so as to maximize the coherence of 
the interferograms by limiting their baseline spread (usually, the master scene lies in 
the middle of the time series). The unwrapped phase for a generic pixel in the k th 
differential interferogram is given by Equation (15). Note that wrapped differential 
interferograms are used in PSI, since as can be seen later, the estimation is performed 
in the complex domain. 

• Pixels are selected which contain a single PS, i.e. which exhibit a low phase dispersion 
with respect to time. There are two ways of doing this: 
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- For high SNR, the normalized amplitude dispersion index aD  is a good 
measure of the phase standard deviation φσ  and is given by (Ferretti et al., 
2001): 

 
φσµ

σ
≈=

a

a
aD  

(22) 

where aσ  and aµ  are the sample standard deviation and the mean, respectively 
of the amplitude time series a . Pixels with a normalized amplitude dispersion 
index below a certain threshold (ca. 0.25) are selected as initial PS candidates.  

- Another method to detect PSs is to evaluate the SCR of the pixels in the 
temporal mean image. The clutter is estimated from the neighboring pixels 
using a certain spatial estimation window, assuming that the clutter 
surrounding the dominating scatterer within a resolution cell is comparable to 
clutter in the nearby pixels (which consist of clutter only). The phase standard 
deviation of the PS is given by (Adam et al., 2004): 

 
SCR⋅

≈
2

1
φσ  (23) 

Pixels with an SCR above a certain threshold (ca. 2) are selected as PSs.  
• A preliminary estimation step is performed on the initial set of PS candidates to 

separate the atmospheric phase components from the interferograms. A reference 
network is established where neighboring PSs are linked by arcs and a reference point 
is assigned for the network. Typically, only points that are closer than a certain 
distance are linked. Phase differences between these points joined by the arcs are 
computed, since the error sources such as atmospheric propagation effects and orbital 
effects are not large enough to cause phase unwrapping problems if the arcs are 
typically limited to 2-3 km (Hanssen, 1998; Hanssen, 2001). The phase difference 

k
modelDInSAR _φ∆  between two generic pixels (connected by an arc in the reference 

network) in the k th differential interferogram can be computed from Equation (15) 
and is modelled as follows (assuming a constant velocity model): 
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where v∆  and resh∆  are the differential displacement velocity in the LOS and the 
differential DEM error between the two points, respectively and Nk ,...,1= . The 
following model coherence function (periodogram) ξ  is maximized for differential 
velocity and differential DEM error estimation: 
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where k
obsDInSAR _φ∆  is the observed phase difference between the two pixels in the k th 

differential interferogram. The periodogram is a 2D function dependent on the 
differential velocity and differential DEM error. Its values are known over an irregular 
grid defined by the available temporal baselines k

tB  and spatial baselines kB⊥ . The 
differential velocity and differential DEM error are estimated from the peak of this 
periodogram, i.e. 
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Note that in the literature, the maximum of the periodogram is misleadingly called the 
“temporal coherence” of the neighboring scatterers, although it has nothing to do with 
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the phenomenon of temporal decorrelation which was discussed in the previous 
section. It actually describes how well the interferometric phase observations fit the 
used interferometric phase model. Nonetheless, this terminology would be adopted 
and used later also in this dissertation as a measure of goodness-of-fit. After estimating 
the differential velocities and differential DEM errors for each arc, an integration is 
performed to estimate the velocities and DEM errors for each PS with respect to the 
reference pixel. A weighted least squares integration is used for this, wherein, arcs 
with a temporal coherence below a certain threshold are discarded and other arcs are 
weighted according to the temporal coherence values. The low-pass deformation and 
the DEM error phase components are then removed from the interferograms for the 
selected PSs. After this, a low-pass filtering is performed in the spatial domain, 
followed by a high-pass filtering in the time domain to estimate the atmospheric phase 
components for the initial PS candidates, since the atmospheric phase components 
exhibit a high spatial correlation but a low temporal correlation. Subsequently, an 
interpolation is performed to get the atmospheric phase components of the whole area 
for each interferogram, called the Atmospheric Phase Screen (APS). The estimated 
APS is then subtracted from the original data. 

• Finally, all the remaining PS candidates are selected and for each of these points, the 
deformation velocity and the residual DEM are estimated relative to the closest PS of 
the reference network. This is comparable to the estimation of single arcs via Equation 
(26). Points exhibiting a temporal coherence below a certain threshold (ca. 0.75) are 
discarded. The PSs location is then geocoded and the deformation information 
provided to the end users. 

 
Figure 9: Linear deformation rates estimated for Las Vegas area in US via PSI exploiting 45 ERS-1/2 images 
from 1992-2000. The local subsidence has been mainly caused by groundwater extraction. (Bamler et al., 2006) 

    The quality of the PS analysis depends on the number of available images and the density 
of PSs. A minimum of about 25 images and a PS density of approximately 5-10 PS/km2 are 
needed (Colesanti et al., 2003). In addition, a deformation model has to be defined prior to 
deformation estimation. Typically, a linear model is assumed, although it is also possible to 
use seasonal or some other non-linear deformation models (Ferretti et al., 2000; Colesanti et 
al., 2003). Besides, if there are multiple dominant scatterers inside the same resolution cell, 
their separation is not possible using conventional PSI. PSI algorithms have been proposed to 
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resolve double scatterers (i.e. two dominant scatterers located at different elevations) inside a 
resolution cell (Ferretti et al., 2005; Adam et al., 2005).  

    PSI allows millimeter precision in deformation mapping. Figure 9 shows the estimated 
linear deformation rates for Las Vegas area in US after applying PSI on 45 ERS-1/2 
acquisitions from 1992-2000 (Bamler et al., 2006). DLR’s operational PSI module of the 
GENEric System for Interferometric SAR (PSI-GENESIS) has been employed for this (Adam 
et al., 2003; Adam et al., 2004; Kampes, 2006). It includes DInSAR processing. The 
coregistration module of the processor uses a geometry based algorithm which utilizes precise 
orbits and a DEM from SRTM. The PSI-GENESIS processing system is free from systematic 
errors and thus, has been chosen as the reference for the product validation of various PSI 
operational service providers (Adam et al., 2009).       

 

2.3.2 SAR Tomography 
 

    The first concept for 3D imaging of continuous volumetric scatterers using TomoSAR was 
presented by A. Reigber and A. Moreira in 2000 (Reigber and Moreira, 2000). This can be 
used, for instance, in volumetric imaging of forests. In this chapter, instead of retrieving the 
reflectivity function along the elevation direction for a continuous volume scatterer, the case 
of several PSs inside one resolution cell is more of interest. This can be applied for resolving 
layover in urban areas (Lombardini, 2005; Fornaro et al., 2009; Zhu and Bamler, 2010a).  

    For large range distances and small angular diversities (which is true for spaceborne SAR), 
TomoSAR is a spectral estimation problem. Different parametric and non-parametric methods 
can be used for the spectral estimation using a stack of 1+N  complex SAR acquisitions 
taken from slightly different viewing angles (distributed spatially and temporally). These 
methods exploit either single-look (for PSs) or multi-look data (for DSs). Parametric methods 
model the data and estimate the model parameters, whereas non-parametric methods make no 
assumptions about the statistical properties of the received signals. Generally, parametric 
methods may provide a better estimation if the data closely agrees with the assumed model, 
otherwise, non-parametric methods may be better. Parametric methods for single-look data 
include the Non-linear Least Squares (NLS) (Zhu and Bamler, 2010a). Non-parametric 
methods for single-look data include Beamforming (BF) (Fornaro et al., 2009) and SVD 
(Fornaro et al., 2009; Zhu and Bamler, 2010a). These non-parametric methods have 
limitations due to short length of the synthetic aperture in elevation, low number of samples 
and their irregular distribution. Compressive Sensing (CS), a sparse reconstruction technique, 
is a modern method which provides a good compromise between classical parametric and 
non-parametric spectral analysis methods. It is more robust to phase noise, requires lower 
computational efforts without any model selection and has super-resolution properties 
(Budillon et al., 2009; Zhu and Bamler, 2010b). 

    TomoSAR has been applied on Hotel Wynn in Las Vegas, US, exploiting 25 TerraSAR-X 
acquisitions (High Resolution Spotlight mode) from 2008-2009 (Zhu and Bamler, 2010a). 
The preprocessing, including the APS correction, has been performed using DLR’s PSI-
GENESIS system (Adam et al., 2003; Adam et al., 2004; Kampes, 2006). Figure 10 (a) 
visualizes the hotel in Google Earth and also shows the LOS of the SAR sensor. The top of 
the building (marked in red) and the ground (marked in red) are mapped onto the same 
resolution cell. Figure 10 (b) shows a corresponding TerraSAR-X amplitude image. Two 
points, P1 (single scatterer) and P2 (double scatterer), have been chosen for TomoSAR 
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analysis. Normalized reflectivity has been estimated along the elevation direction using the 
SVD method for these two points, as shown in Figure 11 (a) and Figure 11 (b), respectively. 
As expected, point P1 has a single peak and is proven to be a single scatterer on the ground, 
while point P2 has two peaks and is proven to be a double scatterer. 

 
Figure 10: Hotel Wynn, Las Vegas, US. (a) Google Earth optical image with viewing direction of SAR (LOS). 
(b) TerraSAR-X amplitude image with analysis points P1 and P2. (Zhu and Bamler, 2010a) 

 
Figure 11: Normalized reflectivity estimates along the elevation direction for two points (marked in Figure 10) 
using TomoSAR exploiting 25 TerraSAR-X acquisitions from 2008-2009. (a) Analysis point P1 is a single 
scatterer. (b) Analysis point P2 is a double scatterer. (Zhu and Bamler, 2010a) 

         

2.3.3 Small Baseline Subset Algorithm 
 

    The SBAS technique was developed by P. Berardino, G. Fornaro, R. Lanari and E. Sansosti 
in 2002 for generating deformation time series, with a focus on non-urban areas (Berardino 
et al., 2002). An extension of standard SBAS has been proposed too (Lanari et al., 2004). 
Additionally, similar techniques based on small baseline differential interferograms have been 
developed, for example, the Coherent Pixels Technique (Mora et al., 2003; Blanco-Sanchez et 
al., 2008). The basic processing steps in SBAS are as follows: 

• Given a stack of 1+N  coregistered and calibrated SAR scenes acquired at times nt  
where Nn ,...,0= ; M  multi-look small baseline (temporal and spatial) differential 
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interferograms are generated. A reference DEM (which can be of moderate spatial 
resolution) is used to compensate for the topographic phase. The use of small 
baselines limits temporal decorrelation and uncompensated spatial decorrelation, thus, 
providing spatially dense deformation maps.  However, it could result in separation of 
the interferograms into different subsets in the baseline-time domain. SBAS can link 
the independent subsets using SVD provided that the subsets overlap in time, as 
described later in this subsection. This increases the temporal sampling rate. 

• Next, pixels (i.e. DSs) are identified that exhibit an average spatial coherence greater 
than a certain threshold (ca. 0.3) and SBAS is applied only to those pixels.  

• The differential interferograms are then spatially unwrapped. The unwrapped phase 
for a generic pixel in the k th differential interferogram is given by Equation (15). All 
coherent pixels are then referenced to one non-deforming pixel with high coherence. 

• After the phase unwrapping step, the low-pass component of the deformation signal 
and topographic error are estimated for each coherent pixel via the Least Squares (LS) 
solution of the following system of equations: 

 [ ] DInSARcpcBM φ=,  (27) 
where B  is the matrix defining the small baseline combinations used, M  is the matrix 
corresponding to a displacement model, c  is the vector corresponding to the DEM 
error, DInSARφ  is the vector of unwrapped differential interferometric phase values and 

cp  is the vector of unknown parameters, namely, the low-pass component of the 
deformation signal and topographic error. It is important to note that the displacement 
model is only used in this step and does not restrict the estimation of unmodelled 
deformation later on. After this, the estimated residual topography and low-pass 
deformation are subtracted modulo- π2  from each interferogram, resulting in a fringe 
rate reduction. Accordingly, a new unwrapping step is then applied to the residual 
wrapped phase, the phase unwrapping being considerably simplified. By adding back 
the subtracted low-pass deformation, refined unwrapped differential interferograms 
are obtained.  

• These resulting small baseline interferograms form the following linear model for 
every coherent pixel: 

 
DInSARBv φ′=  (28) 

where DInSARφ′  is the vector of unwrapped differential interferometric phase values after 
the removal of topographic error and v  is the vector of unknown mean phase 
velocities between time-adjacent acquisitions, i.e.: 
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where [ ]NT φφφ ,...,1=  is the vector of the N  unknown phase values associated with 
the deformation of the considered pixel. Because of the separation of interferograms 
into different subsets, the rank of B  is 1+− LN , where 1+N  is the number of 
images and L  is the number of subsets and thus, Equation (28) would have infinite 
solutions. A minimum-norm LS solution (L2-norm minimization) of Equation (28) is 
obtained by using the SVD method (Golub and Loan, 1996). The matrix B  is 
decomposed into matrices U , S  and V  as follows: 

 TUSVB =  (30) 
where S  is composed of the singular values and is given by 

( )0,...,0,,..., 11 +−= LNdiagS σσ . The estimate v̂  is then given by: 
 

DInSAR
TUVSv φ′= +ˆ  (31) 
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where ( )0,...,0,/1,...,/1 11 +−+ = LNdiagS σσ . An additional integration step gives the 
solution φ . 

• Later, for estimating the atmospheric propagation effects, a low-pass filtering is 
performed in the spatial domain (after removing the estimated low-pass deformation). 
This is followed by a high-pass filtering in the time domain because the atmospheric 
phase components exhibit a high spatial correlation but a low temporal correlation. 
This is similar to the PS approach for removing the APS (Ferretti et al., 2000; Ferretti 
et al., 2001).  

 
Figure 12: Baseline-time plot for Gardanne coal mine, France. Each dot corresponds to a SAR image and each 
line corresponds to an interferogram. 72 ERS images from 1993-2004 were used to generate 165 small baseline 
differential interferograms. (Goel et al., 2011) 

 
Figure 13: Cumulative deformation estimated for Gardanne coal mine, France, via SBAS exploiting 72 ERS 
images from 1993-2004. Two subsidence bowls are visible (one having a larger deformation than the other and 
also covering a larger area). The cumulative deformation is largest in the center of the bowls and gradually 
decreases going away from the center. A maximum of 273.5 mm of cumulative deformation has been measured, 
as shown in the deformation time series for the most deforming pixel. (Goel et al., 2011) 
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    Advantageously, SBAS provides complete non-linear deformation time series of the 
scatterers using the SVD method which does not require any modelling. SBAS has been 
applied on Gardanne coal mine, which is located in Southern France between Aix-en-
Provence and Marseille, close to the town of Gardanne (Goel et al., 2011). 72 ERS images 
from 1993-2004 have been used to generate 165 differential interferograms based on spatial 
baseline threshold of 150 m and temporal baseline threshold of 700 days. A rectangular multi-
looking with 4 looks in the range direction and 20 looks in the azimuth direction has been 
performed, so as to reduce phase noise and obtain square pixels of about 80 meters in both 
directions. DLR’s PSI-GENESIS processor has been used for DInSAR processing (Adam et 
al., 2003; Adam et al., 2004; Kampes, 2006). The phase unwrapping is based on the 
Minimum Cost Flow (MCF) algorithm (Costantini, 1998; Eineder et al., 1998). Figure 12 
shows the baseline-time plot for Gardanne, where, each dot corresponds to a SAR image and 
each line corresponds to an interferogram. The interferograms are separated into 3 subsets. 
The deformation estimates are shown in Figure 13. 

 

2.3.4 SqueeSAR 
 

    SqueeSAR, recently developed by A. Ferretti, A. Fumagalli, F. Novali, C. Prati, F.  Rocca 
and A. Rucci in 2011, is a technique that extracts information from DSs making use of all 
possible interferograms (Ferretti et al., 2011). Following the basic concept of SqueeSAR, 
another similar approach has been proposed (Wang et al., 2012). The basic steps in 
SqueeSAR are as follows: 

• Given a stack of 1+N  coregistered and calibrated SAR acquisitions, SqueeSAR, first, 
employs the Kolmogorov-Smirnov statistical test (Papoulis and Pillai, 2002) on each 
pixel to identify its statistically homogenous “brother” pixels, exploiting the amplitude 
data stack.  

• Next, DSs are identified based on a minimum number of “brother” pixels (ca. 20) and 
a minimum average spatial coherence (ca. 0.3).  

• For each DS, the sample covariance matrix is estimated utilizing its “brother” pixels 
(Zan, 2008). The covariance matrix corresponds to the complex covariance between 
all image pairs for a DS. The covariance values can be arranged in a square matrix 
having the number of rows and columns equal to the number of images in the dataset. 
Instead of using covariance matrix, complex coherence (i.e. correlation) matrix can 
instead be used too. As mentioned before in Subsection 2.2.2, for an image pair, the 
amplitude of the complex coherence is the coherence of the pixel, whereas the phase 
of the complex coherence is the filtered (adaptive multi-looked) interferometric phase 
of the pixel. Since SqueeSAR is based on the analysis of the covariance or complex 
coherence matrix, all possible interferograms are generated and the associated 
coherence values are computed, regardless of the temporal or geometrical baseline. In 
(Wang et al., 2012), a phase defringing (i.e. flattening) is performed prior to the 
coherence estimation in order to correct for estimation biases in the presence of 
interferometric fringes due to topography, motion etc. It involves an adaptive multi-
resolution fringe frequency estimation by searching for the maximum coefficient in 
the Fourier transform of local patches (Zebker and Chen, 2005; Davidson and Bamler, 
1999). 

• Afterwards, a phase triangulation algorithm is applied to the covariance matrix of each 
DS to retrieve the N  optimized phase values associated with the deformation of each 
DS. In other words, a ML estimation is performed to yield the best possible estimates 
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of the phase values fitting all interferograms (i.e. the covariance matrix elements) for 
each DS. The name SqueeSAR indeed comes from the fact that the information needs 
to be “squeezed” out from the covariance matrix of each DS. 

• The DSs are then processed jointly with the PSs for deformation monitoring, using the 
traditional PS interferometric chain. Note that a deformation model has to be defined 
prior to deformation estimation. 

    SqueeSAR provides motion parameter estimates for DSs with significantly enhanced SNR. 
A demonstration of the estimation of deformation histories of DSs in urban areas via 
SqueeSAR is provided in Figure 14 (Wang et al., 2012). It shows the estimated seasonal 
deformation amplitudes for the area around Paris Las Vegas Hotel in Las Vegas, US. 50 
TerraSAR-X acquisitions from 2008-2010 have been utilized. The pre-processing, including 
amplitude calibration and APS correction, has been performed using the PSI-GENESIS 
system from DLR (Adam et al., 2003; Adam et al., 2004; Kampes, 2006). The PSs have been 
processed using the standard PSI technique, while DSs have been processed using SqueeSAR. 
As can be seen, the PSs provide a good coverage over most parts of the building façades, 
except for the upper half of the tower due to its complex motion. The DSs give extra 
information over the rest of the image. Therefore, it can be concluded that SqueeSAR 
increases the density of measurement points for which deformation and residual DEM can be 
estimated. 

 
Figure 14: Seasonal deformation amplitudes estimated for area around Paris Las Vegas Hotel in Las Vegas, US, 
via PSI (for PSs) and SqueeSAR (for DSs) exploiting 50 TerraSAR-X acquisitions from 2008-2010. (a) Only 
PSs. (b) Both PSs and DSs. (Wang et al., 2012) 
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2.4 Discussion and Conclusion 
 

    The potential advantages of the coherent stacking techniques, discussed previously in this 
chapter, are evident. The SAR satellites such as TerraSAR-X, TanDEM-X and COSMO-
SkyMed are providing data with higher resolution, shorter revisit times and better orbit 
control, thus, facilitating cutting-edge interferometric applications. For the first time, the 
availability of these high resolution data has given the opportunity to map deformation for a 
large number of scatterers with good precision and also relate the scatterers to real world 
objects. However, there are still limitations in this field that need to be overcome as discussed 
below.  

    PSI and TomoSAR are most powerful in urban areas because there are a lot of man-made 
structures, and consequently a large number of PSs. The high resolution SAR sensors have 
made it possible to retrieve millimetric ground displacements and structural stress of 
individual buildings from space. Nevertheless, the density of PSs is low in non-urban areas 
which are characterized by vegetated or low reflectivity homogenous regions. Another key 
drawback is the difficulty to apply these methods in case of strong non-linear motion and fast 
deformation. Furthermore, geometrical limitations such as radar layover lead to wrong 
estimation using PSI. TomoSAR provides a solution for the layover problem, but it is an 
advanced technique and the computational efficiency is restricted by the dimension of the 
spectral estimation (3D, 4D or higher dimensions in case of multi-component motion), search 
range in each dimension and the applied spectral estimation algorithm (e.g. compressive 
sensing is computationally very expensive). 

    SBAS and SqueeSAR exploit DSs, which have a higher density in rural areas. In 
conventional SBAS, the interferograms are spatially filtered before the stacking to enhance 
the SNR. However, the straightforward rectangular estimation window (i.e. boxcar multi-
looking) results not only in a reduction of resolution and a superposition of different objects 
on ground but also in a loss of deformation information contained in isolated pixels. 
Additionally, abrupt changes in deformation are smoothed out. A technique has been 
presented to extend standard SBAS (Lanari et al., 2004). It uses both single-look and multi-
look data and provides deformation at two spatial scales, regional and local. Yet, there is still 
a need for fully exploiting the high resolution SAR data available from sensors such as 
TerraSAR-X and extracting deformation at a high resolution. Additionally, phase unwrapping 
is an important step in SBAS and local phase unwrapping errors often occur and are difficult 
to detect in data with a lot of fringe discontinuities, which is especially the case in natural 
terrains. Several decorrelated areas such as forests, water etc. might separate the coherent 
areas and the relative values in the different coherent patches can have unknown integer 
multiples of π2  phase offsets, thus making phase unwrapping time consuming and error 
prone. Although some endeavours have been made to limit the impact of severe phase 
unwrapping errors on the estimated deformation time series, for example, techniques have 
been proposed to exploit both the temporal and the spatial structure of the data by a 3D phase 
unwrapping and further extend the MCF algorithm (Pepe and Lanari, 2006; Fornaro et al., 
2011), nonetheless, phase unwrapping still remains a major source of error in spotted coherent 
areas and is time consuming too. SqueeSAR, on the other hand, can be computationally 
expensive as it utilizes all possible interferograms. Also, it usually assumes a model for the 
deformation and is not suitable for phenomena characterized by highly non-linear 
deformation. 
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    With respect to the above mentioned techniques, new/alternative multitemporal approaches 
for high resolution deformation estimation have been developed as part of this dissertation. 
The next chapters are dedicated to presenting these novel techniques and application test cases 
using TerraSAR-X/TanDEM-X data. In fact, the developed estimation principles are among 
the first ones which utilize this new class of meter resolution SAR data and improve the 
robustness and precision of the estimates.  It has been successfully demonstrated that these 
techniques provide spatially dense deformation maps for areas characterized either by high 
temporal decorrelation or by layover problems, and counteract some of the limitations of 
conventional coherent SAR techniques.      
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3 Advanced Small Baseline Subset Algorithm 
 

    An advanced differential SAR interferometry stacking algorithm is presented in this 
chapter for high resolution deformation monitoring in non-urban areas exploiting DSs. The 
following paper is summarized (Goel and Adam, 2012a):  
A.1 Goel, K., Adam, N., 2012a. An advanced algorithm for deformation estimation in 
non-urban areas. ISPRS Journal of Photogrammetry and Remote Sensing 73, 100-110.  
Two case studies of a gas storage reservoir and the town of Lueneburg in Germany, using 
high resolution TerraSAR-X data, are presented to demonstrate this new technique. 

 

3.1 Introduction 
 

    A major limitation in SAR’s ability to map deformation in non-urban areas is the 
decorrelation of signals with time over large areas, leading to a high phase noise. As reviewed 
in the previous chapter, SBAS and SqueeSAR are two options which are suitable for 
deformation mapping in such regions, but they have some limitations. Conventional SBAS 
estimates deformation at a low spatial resolution and is prone to phase unwrapping errors. 
SqueeSAR makes use of all possible interferograms leading to a high computational burden 
and assumes a temporal model (e.g. a constant velocity model) for the deformation.   

    An advanced SBAS approach has been developed for high resolution deformation 
monitoring with a focus on natural terrains characterized by typical temporal decorrelation 
and phase ambiguities. It is based on an object-adaptive parameter estimation, exploiting only 
the small baseline differential interferograms so as to reduce the effects of topography on the 
DSs. The practical implementation starts with an accurate phase and coherence estimation and 
residual topography removal for the small baseline interferograms using an adaptive spatial 
phase filtering algorithm (Ferretti et al., 2011; Parizzi and Brcic, 2011; Goel and Adam, 
2011). It reduces the phase noise while maintaining the high geometric resolution provided by 
new satellites such as TerraSAR-X (meter resolution). Subsequently, the phase estimates are 
used to retrieve the non-linear deformation time series using an L1-norm based SBAS 
technique (Lauknes et al., 2011). This results in a more robust solution with respect to the 
often-occurring and difficult-to-detect phase unwrapping errors found in non-urban areas.  
 

3.2 Methodology 
 

    Assuming that N  SAR images and M  single-look small baseline differential 
interferograms are available, the implemented methodology for deformation estimation in 
rural regions consists of the following two steps: 

 

3.2.1 Adaptive Spatial Phase Filtering 
 
    The first step involves an improved estimation of the differential interferometric phase and 
coherence even in the presence of high phase noise and error sources (e.g. temporal 
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decorrelation, topographic errors and atmospheric propagation effects). The accurate phase 
estimation supports deformation monitoring techniques such as SBAS and improves the phase 
unwrapping. The accurate coherence estimation helps in selection of pixels for deformation 
monitoring as it provides information about temporal decorrelation and also for guiding phase 
unwrapping algorithms. As mentioned in the previous chapter, this can be achieved by a local 
spatial multi-looking. Considering the sample amplitude values of images as 1 (i.e. the pixels 
are not weighted according to their brightness, no assumption is made about a pixel’s quality 
from its brightness) and compensating the deterministic phase components due to topography 
(for a better estimation of the complex correlation), Equation (20) can be reduced to: 
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where i
1φ  and i

2φ  are the phase values of the SAR image pair for the i th pixel of the L  
neighboring pixels in the estimation window, L  being the effective number of looks.  

    The high resolution of satellites such as TerraSAR-X leads to many resolution cells 
covering a homogenous object in non-urban areas, i.e. a DS object usually spans several 
image pixels where the backscattered energy is lower, but statistically homogeneous within 
the area. The implemented method for an improved high resolution interferometric stacking is 
based on the assumption that a single “deformation time series” can describe or characterize 
this object. The object area (i.e. pixels) thus needs to be identified and interferometric phase 
can be improved by an adaptive spatial filter, which involves a robust local slope estimation 
for adaptive phase flattening to remove topographic errors and then averaging of the 
homogenous pixels to reduce phase noise (while preserving object resolution) (Goel and 
Adam, 2011). The sub-steps involved are shown in Figure 15 and described below:  

 
Figure 15: Adaptive spatial phase filtering algorithm for high resolution differential interferometric stacking. 



41 
 

• Identification of Homogenous Pixels: The amplitudes of the complex returns are a 
good indicator for distinguishing between different backscatterer characteristics. 
Statistically similar pixels can thus be selected for multi-looking based on their 
amplitude distributions using various statistical tests. Usually, it is assumed that 
homogenous pixels can be found in a local neighborhood such as a rectangular 
window. However, they can be far apart depending upon reflectivity and boundaries of 
objects (fields, trees, roads etc.). The idea is thus to average a given pixel only with 
neighbors that present similar scattering properties instead of a conventional 
rectangular (i.e. boxcar) averaging (which results in a loss of resolution and usually 
biases the estimates).  

    Using the stack of N  coregistered (up to sub-pixel accuracy) and calibrated SAR 
amplitude images, the statistically homogenous pixels surrounding each pixel are 
identified via a statistical test. Different statistical tests have been proposed in recent 
years, including the Kullback-Leibler Divergence test (Bishop, 2006), the 
Kolmogorov-Smirnov test (Papoulis and Pillai, 2002; Ferretti et al., 2011) (used in the 
SqueeSAR approach) and the Anderson-Darling test (Pettitt, 1976). The Anderson-
Darling test has been proven to be the most effective test to identify if two pixels arise 
from the same distribution (Parizzi and Brcic, 2011). It gives the best detection rate at 
a constant false alarm rate. This test performs reasonably well even for a stack of 
acquisitions containing as few as 10 images. It is a non-parametric test, i.e. it does not 
assume that the samples belong to a defined probability distribution. Instead, using the 
amplitudes of the stack of SAR images, the empirical cumulative distribution 
functions of amplitudes are obtained for the two pixels (i.e. points) under 
consideration. The distance between the distributions, with more weighting given to 
tails, tells if the two points statistically arise from the same distribution. For a set of 
points a  and b , the Anderson-Darling statistic 2A  is:  
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where N  is the number of SAR amplitude images, )(xFa  and )(xFb  are empirical 
cumulative distribution functions of amplitudes for points a  and b , )(, xF ba  is the 
empirical distribution function of the pooled distribution [ ]ba, . If the Anderson-
Darling statistic is less than a threshold value, the two pixels are assumed 
homogenous.  

 
Figure 16: Identification of homogenous pixels (in red) for the blue pixel by Anderson-Darling test. (a) is a 
Google Earth optical image. (b) is the TerraSAR-X image of the region enclosed in the green rectangle in (a). (c) 
is a zoom-in of the green rectangle in (b). 
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    Figure 16 shows an example of the Anderson-Darling test. 55 TerraSAR-X images 
(January, 2008 to May, 2010) of a gas storage reservoir located in Germany were used 
for the processing. The Anderson-Darling test was performed for the blue pixel (which 
lies on a road) with each of its neighbors. The homogenous pixels were identified and 
marked in red. It can be seen that the homogenous pixels identified lie on the same 
road.  

• Adaptive Phase Flattening: The homogenous pixels identified are then used for 
adaptive phase flattening of M  single-look small baseline differential interferograms 
to compensate for topographic residuals (due to errors in the DEM). The phase 
flattening is important because the topographic errors affect subsequent estimation of 
an improved phase and coherence (Zebker and Chen, 2005).  

 
Figure 17: Pictorial representation of adaptive phase flattening for a pixel. 

For a robust estimation of the local gradients (i.e. slopes) 
xhm  and 

yhm  of the 
residual DEM in range x  and azimuth y  directions, respectively for each pixel, a 
search algorithm in the solution space is applied. M  periodograms are generated 
corresponding to each interferogram using the L  homogenous pixels identified in the 
previous step. A periodogram Mkk ,...,1, =ξ , is a function of the local gradients of the 
residual DEM in range and azimuth directions for the adaptive neighborhood: 
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where ki
DInSAR
,φ  is the single-look differential interferometric phase for homogenous 

pixel i  and interferogram k , k
refDInSAR _φ  is the single-look differential interferometric 

phase for the reference pixel (the pixel for which the correlation and the local 
gradients of the residual topography are being estimated) and interferogram k  and 
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finally, i
xp  and i

yp  are pixel indices (relative to the reference pixel) in range and 
azimuth directions resp. for homogenous pixel i . Further on, the slope estimation is 
made robust by averaging all the periodograms for a pixel to reduce sidelobes, since 
each periodogram’s values are known over an irregular grid defined by the 
corresponding interferogram’s spatial baseline ( kB⊥ ). An averaged periodogram ξ  is 
obtained as follows: 
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The local gradients of the residual topography 
xhm̂  and 

yhm̂  for each pixel are 
estimated from the peak of the averaged periodogram (which is the ML estimate), i.e.:  
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The estimated gradients of the residual DEM for each pixel are then removed from 
each interferogram to get the flattened interferograms Mkk

flat ,...,1, =φ . Adaptive 
phase flattening is depicted pictorially in Figure 17.  

    It is worth mentioning that the computational complexity can be reduced by 
generating fewer periodograms using some highly coherent interferograms with a 
suitable variation of baselines. The variation in baselines is needed for reducing the 
sidelobes. In other words, some interferograms with relatively large baselines are also 
needed for a better precision. Practically, this simplified computation using fewer 
interferograms can also reasonably estimate the local gradients of the residual DEM. 
Of course, a rough estimate of the coherence is required, which is possible by a normal 
rectangular multi-looking of the interferograms. 

• Adaptive Complex Multi-looking: Finally, estimation of the M  filtered small baseline 
differential interferograms and their coherence is performed. This is done pixelwise 
for each interferogram, wherein, an adaptive complex multi-looking of the flattened 
interferometric phase of the adaptive neighborhood is performed for an accurate phase 
and coherence estimation, i.e.: 
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where ki
flat
,φ  is the flattened differential interferometric phase for homogenous pixel i  

and interferogram k  and ki,γ̂  is the correlation. Phase value of ki,γ̂  is the filtered 
differential interferometric phase estimate and absolute value of ki,γ̂  is the coherence 
estimate, respectively for homogenous pixel i  and interferogram k .  

    Figure 18 illustrates the adaptive spatial filtering algorithm in comparison with the 
conventional rectangular multi-looking, as applied on the TerraSAR-X data of the gas storage 
site. Figure 18 (a) is a Google Earth image of a part of the test site and its single-look 
interferogram. Figure 18 (b) shows the coherence and interferogram estimate after boxcar 
(rectangular) multi-looking. Figure 18 (c) shows the coherence and interferogram estimate 
after adaptive spatial phase filtering. Features such as fields and roads can be clearly 
distinguished after applying adaptive spatial phase filtering as compared to the typical boxcar 
(rectangular) multi-looking. It can be seen that the object resolution is preserved. Note that 
this figure is also in (Goel and Adam, 2012a) and the color bar has been corrected here. 



44 
 

 
Figure 18: (a) is a Google Earth image and its single-look interferogram. (b) is coherence and interferogram 
estimate after boxcar multi-looking. (c) is coherence and interferogram estimate after adaptive spatial filtering. 

 

3.2.2 Deformation Retrieval 
 

When a traveler reaches a fork in the road, 
the L1-norm tells him to take either one way or the other, 
but the L2-norm instructs him to head off into the bushes. 
 
John F. Claerbout and Francis Muir, 1973. 

    In this second step, the improved small baseline differential interferograms are used to 
estimate the LOS deformation and residual topography using an L1-norm based SBAS 
technique. SBAS has been described in the previous chapter (Berardino et al., 2002). 
Importantly, the interferograms are spatially unwrapped and all coherent pixels, i.e. DSs are 
calibrated with respect to a reference pixel. Note that in the new algorithm, in addition to the 
spatial coherence, DSs selection is also done based on a minimum number of looks (i.e. 
homogenous pixels) in order to exclude PSs. Next, the residual DEM and mean deformation 
velocity are estimated for the DSs via the LS solution of the computed sequence of DInSAR 
interferograms (see Equation (27)). After this operation, the estimated residual topography 
and mean deformation velocity are subtracted modulo- π2  from each interferogram, resulting 
in a fringe rate reduction. Accordingly, a new unwrapping step is then applied to the residual 
wrapped phase, the phase unwrapping being considerably simplified. By adding back the 
subtracted mean deformation velocity, refined unwrapped differential interferograms are 
obtained (see Equation (28)). The interferogram subsets are afterwards linked using the SVD 
method and a minimum-norm LS solution (i.e. L2-norm minimization) is obtained. 
Advantageously, SBAS provides complete non-linear deformation time series of the scatterers 
without using any model. Finally, the atmospheric propagation effects are estimated and 
removed via a spatial low pass and a temporal high pass filtering.  

    However, in rural areas, there might be several decorrelated areas (e.g. trees, soil, water 
etc.) separating the coherent patches. This often introduces phase unwrapping errors and the 
relative values in the different coherent patches can have unknown integer multiples of π2  
phase jumps and no method can retrieve them, as discussed in the previous chapter. These 
phase jumps in the unwrapped data are outliers (spike noise) and inversion using L2-norm 
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minimization often performs poorly. Instead, a more robust phase inversion solution, with 
respect to the phase unwrapping errors found in non-urban areas, can be obtained by using an 
L1-norm minimization (Lauknes et al., 2011).  

    A generic pL -norm solution is given by: 
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The L2-norm minimizes the sum of squared residuals, whereas the L1-norm minimizes the 
sum of the absolute values of the residuals. The L2-norm inversion is optimal when Gaussian 
noise is present in the data. But if L2-norm minimization is used in the presence of a spike, 
the estimated fit tends to deviate towards the outlier thereby resulting in a wrong estimation. 
In (Rodriguez-Gonzalez et al., 2011), L1-norm network inversion was demonstrated for 
robust outlier rejection in PSI. The L1-norm cost function has been applied to solve Equation 
(28) in this thesis. The algorithm proposed by Barrodale and Roberts (Barrodale and Roberts, 
1973) is used for L1-norm minimization. It is a modification of the simplex method of linear 
programming and is computationally efficient.  

 
Figure 19: Residuals obtained after L2 and L1-norm inversion for a pixel during SBAS processing. The phase 
unwrapping errors (i.e. outliers) are shown by black dotted lines. 

    The performance of L2 and L1-norm inversion has been compared for the SBAS technique. 
Figure 19 shows the L2 and L1-norm residuals for a pixel belonging to the TerraSAR-X 
dataset of the gas storage site. It can be seen that in case of phase unwrapping errors, i.e. 
outliers (shown by black dotted lines), the residuals are high for L2-norm, but even higher for 
L1-norm. Thus, L1-norm minimization can be used for outlier detection and correction (by 
providing a phase unwrapping error map). Misdetections are avoided because of the higher 
residual peaks. Figure 20 shows the baseline-time plot for the TerraSAR-X dataset. Each dot 
corresponds to a SAR image and each line corresponds to an interferogram. The lines are 
color coded according to the L2-norm and L1-norm residuals for the pixel in the two plots, 
respectively. It can be seen that in the presence of outliers (encircled in black), L2-norm 
spreads the phase unwrapping errors to the neighboring interferograms. On the other hand, 
L1-norm provides a robust solution, a small disturbance in the data leads to only a small 
disturbance in the signal reconstruction. 
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Figure 20: Baseline-time plot of the TerraSAR-X dataset of the gas storage site located in Germany. Each dot 
represents a SAR image and each line represents an interferogram. The lines (i.e. interferograms) are color coded 
according to the L2-norm and L1-norm residuals for a pixel in the two plots, respectively. The phase unwrapping 
errors (i.e. outliers) are encircled in black. While L2-norm spreads the phase unwrapping errors to the 
neighboring interferograms in the presence of outliers, L1-norm provides a robust solution. 
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3.3 Application Test Cases and Results 
 

    Practical demonstration for this newly developed technique for deformation estimation in 
non-urban areas is provided via two case studies using high resolution TerraSAR-X data. A 
performance assessment has been done as well.  

 

3.3.1 Case Study 1 
 

    The first test site is a natural gas storage reservoir in Germany. The test site is visualized 
in Google Earth in Figure 21 (a), the approximate area of the gas storage is enclosed in red. 
As can be seen, this is a rural region covered mostly by vegetation and agricultural fields, thus 
making it ideal for testing this algorithm. Underground gas storage causes subsidence and 
uplift of terrain depending on the reservoir pressure. The annual storage cycle generally 
comprises of gas injection in summer and extraction in winter, leading to a cyclic deformation 
pattern. Mapping this surface movement is important for reservoir monitoring and hazard 
analysis.  

    For measuring the ground displacement, 55 Stripmap mode TerraSAR-X scenes of the 
reservoir from January, 2008 to May, 2010 with a look angle of 41.05 degrees and HH 
polarization have been used. Figure 21 (b) shows the mean SAR amplitude image of the test 
site. An area of approximately 7 km (ground range) by 14 km (azimuth) has been processed. 
The pixel dimensions in range and azimuth directions are 1.27 meters and 1.35 meters, 
respectively. This non-urban site covered by vegetation and fields has a low density of PSs in 
comparison to the DSs, as shown in Figure 22. Improving the spatial density and the quality 
of deformation estimates in non-urban areas is the main objective of this technique.  

    The dataset has been processed using the new technique. Based on a maximum spatial 
baseline of 150 meters and a maximum temporal baseline of 100 days, 123 single-look small 
baseline differential interferograms have been generated. For DInSAR processing, DLR’s 
operational PSI-GENESIS processor has been employed (Adam et al., 2003, Adam et al., 
2004; Kampes, 2006). Figure 20 shows the SBAS configuration for the test site, i.e. the 
baseline-time plot for the scenes and the interferograms. The coherence matrix of the dataset 
is illustrated in Figure 23. It shows the combinations of acquisitions used (i.e. the 
interferograms), each of which is color coded according to its average coherence. It can be 
seen that only small baseline combinations have been used for the processing. Moreover, the 
average coherence of this rural region can be observed as low, typical for areas affected by 
temporal decorrelation. 

    Then, the adaptive spatial filtering algorithm is applied on the single-look interferograms, 
as demonstrated in the two examples in Figure 24. Figure 24 (a) shows the single-look small 
baseline differential interferogram of the test site, Figure 24 (b) shows the interferogram 
estimate after adaptive spatial filtering and Figure 24 (c) shows the coherence estimate after 
adaptive spatial filtering. A big improvement is clearly seen in the quality of the 
interferometric phase. Also, it can be visualized that the area is mostly noisy and few points 
retain their coherence in the two examples (possibly due to vegetation growth, agriculture or 
snow cover), thus, making this test site especially difficult.  
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Figure 21: (a) is the Google Earth optical image of the test site in Germany. (b) is the TerraSAR-X mean 
amplitude image of the test site. The underground gas storage reservoir is located inside the red rectangle. 

 
Figure 22: TerraSAR-X image of the gas storage site in Germany. (a) shows the PSs in green (54,258 points), 
whereas (b) shows the PSs and DSs in green (284,081 points). The density of PSs is very low compared to the 
DSs in this non-urban area. 
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Figure 23: Coherence matrix of the TerraSAR-X dataset of the gas storage reservoir situated in Germany. It 
depicts the average coherence of the small baseline differential interferograms used in the processing (black 
color depicts the interferograms not used). 
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Figure 24: Two demonstrations of the adaptive spatial phase filtering algorithm. (a) is the single-look 
interferogram of the gas storage site located in Germany. (b) is the interferogram estimate after adaptive spatial 
filtering. (c) is the coherence estimate after adaptive spatial filtering. 

    Later on, the MCF algorithm is used for phase unwrapping (Costantini, 1998; Eineder et 
al., 1998). The unwrapped interferograms are subsequently used for deformation monitoring 
using the SBAS approach via the L1-norm minimization. Pixels that have an average 
coherence of at least 0.4 are used and a minimum of 20 looks are used, as shown in Figure 22 
(b). The deformation estimation results are presented in Figure 25 and are compared with the 
results obtained from the typical L2-norm based SBAS approach. The Root-Mean-Square 
(RMS) deformation has been used for visualizing the results as it is visually effective and 
provides an integral information about the displacement with respect to time. It can be 
observed that the coherent points of the test case are not well connected, leading to phase 
unwrapping errors. The L2-norm inversion propagates these errors spatially, as can be seen in 
Figure 25, as compared to the L1-norm based solution.   

    Deformation time series are visualized in Figure 26 for some of the pixels marked in Figure 
25. The L2-norm inversion fails to estimate the cyclic non-linear deformation occurring in the 
area of the gas storage (points A and B), although it performs reasonably well for point C 
which is located far away from the reservoir. L1-norm solution, on the other hand, 
corresponds well to the cyclic nature of operation of the gas storage reservoir (i.e. injection 
during summer, production during winter) and the related reservoir pressure. Minima during 
winter and maxima during summer can be observed. Also to be noticed is the fact that small 
displacement in the order of a few millimeters can be observed using the X-band TerraSAR-X 
sensor. The standard deviation of the deformation estimates using the L1-norm inversion is 
shown in Figure 27.  
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Figure 25: RMS deformation [mm] for the gas storage site in Germany using L2-norm and L1-norm based 
SBAS. Processed points are overplotted on the mean amplitude image and color coded according to RMS 
deformation values. Deformation time series of points A, B and C are shown in Figure 26. 

    The results demonstrate the potential of this new technique for providing accurate 
deformation in natural terrains. The increased quality and density of the deformation 
estimates of DSs in non-urban areas can also be seen in Figure 28, where a comparison with 
the normal SBAS approach has been provided. Here, a small area surrounding point A (of 
Figure 25) is shown. Figure 28 (a) shows the TerraSAR-X image of this area. Figure 28 (b) 
shows the RMS deformation using conventional SBAS, wherein, a small number of points 
have been estimated due to conventional rectangular multi-looking which reduces the 
resolution. Also, the L2-norm used in conventional SBAS has propagated the phase 
unwrapping errors (see points in red). Figure 28 (c) shows the RMS deformation using the 
new method and the improvement in resolution and quality is clearly visible.  

    Besides, one of the main advantages of the technique with respect to other coherent 
methods, for instance, PSI and SqueeSAR, is the capability to estimate non-linear 
deformation without any modelling and prior knowledge, as has been demonstrated for the 
application test case. It is thus well suited for monitoring strong non-linear deformations and 
similar applications in rural areas where PS density is low and temporal decorrelation is 
faster. 
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Figure 26: Deformation time series using L2-norm and L1-norm based SBAS for points A, B and C (marked in 
Figure 25). 
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Figure 27: Standard deviation [mm] of deformation estimates of the gas storage site in Germany using L1-norm 
based SBAS. 

 
Figure 28: Comparison of quality and density of deformation estimates in rural areas via standard SBAS and the 
new technique. (a) is the TerraSAR-X image of the area surrounding point A (marked in Figure 25). (b) shows 
the RMS deformation [mm] via standard SBAS. (c) shows the RMS deformation [mm] via the new approach. 

 

3.3.2. Case Study 2 
 

    The second test site is the town of Lueneburg in Germany. For deformation mapping using 
the proposed technique, 17 TerraSAR-X High Resolution Spotlight mode images of the test 
site from 2010-2011 have been used. Lueneburg is a town situated in the German state of 
Lower Saxony. Due to constant salt mining dating back to the 19th century and continuing till 
1980, various areas of the town experienced a gradual or high subsidence, became unstable 
and had to be demolished. The sinking still continues even today. Many ground stations have 
been established since 1946 to monitor the deformation, but due to the changing subsidence 
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patterns and locations, spaceborne differential SAR interferometric technique has been 
applied for deformation mapping of Lueneburg. Since October 2010, TerraSAR-X data have 
been ordered to monitor the subsidence at high resolution.  

    The dataset has been processed using the proposed technique (Goel and Adam, 2012d). For 
the non-linear deformation monitoring, 89 small baseline differential interferograms have 
been generated based on a maximum spatial baseline of 150 m and a maximum temporal 
baseline of 150 days. DLR’s PSI-GENESIS processor has been employed for DInSAR 
processing (Adam et al., 2003, Adam et al., 2004; Kampes, 2006). The baseline-time plot is 
shown in Figure 29, where, each dot corresponds to a SAR image and each line corresponds 
to an interferogram. The coherence matrix of the dataset is illustrated in Figure 30. It shows 
the combinations of acquisitions used (i.e. the interferograms), each of which is color coded 
according to its average coherence.  

    Then, the object-adaptive spatial phase filtering is applied. Figure 31 shows an example of 
the identification of the homogenous pixels for a pixel which lies on a building. It can be 
observed that the homogenous pixels identified lie on the building as well. Figure 32 
compares boxcar multi-looking with object-adaptive spatial filtering for the test site. It can be 
seen that the adaptive spatial filtering greatly improves the interferometric phase estimate. 
Building features are clearly distinguishable and noise is better reduced. 

    Subsequently, the MCF algorithm is used for phase unwrapping (Costantini, 1998; Eineder 
et al., 1998) and the deformation is measured using the L1-norm based SBAS technique. 
Pixels that have an average coherence of at least 0.3 are used. Total displacement measured in 
mm is shown in Figure 33. Also, an example of the deformation time series for point A 
(marked in Figure 33) which has deformed highly in the considered time period is shown in 
Figure 34. As can be seen, the method is able to retrieve the deformation at high resolution. 
The standard deviation of the deformation estimates is between 0 and 3.7 mm. 

 
Figure 29: Baseline-time plot of the TerraSAR-X dataset of Lueneburg, Germany. Each dot represents a SAR 
image and each line represents an interferogram. 
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Figure 30: Coherence matrix of the TerraSAR-X dataset of Lueneburg, Germany. It depicts the average 
coherence of the small baseline differential interferograms used in the processing (black color depicts the 
interferograms not used). 

 
Figure 31: (a) is a Google Earth optical image of an area in Lueneburg, Germany. (b) is the TerraSAR-X image 
of the region enclosed in blue in (a). (c) shows the statistically homogenous pixels (in green) identified for the 
red pixel by Anderson-Darling test. 

 
Figure 32: (a) is the SAR mean amplitude image of Lueneburg, Germany. (b) is the interferogram estimate after 
boxcar multi-looking. (c) is the interferogram estimate after adaptive spatial filtering. Coherence threshold of 0.2 
has been applied for the visualization of both the interferogram estimates. 
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Figure 33: Total deformation estimated for Lueneburg, Germany, for a period of 0.87 years from 2010-2011. 
Deformation time series is visualized for point A (which has deformed highly in this time period) in Figure 34. 
The area enclosed in red is used as a test site in the next chapter. 

 
Figure 34: Deformation time series for point A (marked in Figure 33). 
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    It is to be noted that the area enclosed in red in Figure 33 consists of points which are 
highly deforming. However, there are still many points which are decorrelated and have not 
been estimated and these might be undergoing deformation as well. In fact, this area enclosed 
in red is used as a test site in the next chapter and analysed further. The ground truth for 
Lueneburg is also presented there. 

 

3.4 Discussion and Conclusion    
 

    An innovative technique has been developed to improve the robustness and precision of the 
parameter estimation in areas characterized by DSs. Demonstration and performance 
assessment have been provided using TerraSAR-X data of a gas storage reservoir located in 
Germany and the town of Lueneburg in Germany. The results show the potential of this 
advanced SBAS algorithm in providing high resolution non-linear deformation times series in 
natural terrains. The adaptive multi-looking preserves the object resolution. In fact, this 
technique is more suitable for high resolution sensors. For conventional sensors, e.g. ERS, the 
homogenous objects need a large dimension and thus the applicability of the technique is test 
site dependent. It is to be noted that a minimum number of scenes are required for the 
detection of homogenous objects and the estimation of complex correlation. The deformation 
retrieval via the L1-norm based SBAS approach is more robust with respect to the phase 
unwrapping errors which often occur in rural areas. 

    In terms of the computational complexity, the amount of data to be processed is increased 
and more processing time is needed. However, this technique is straightforward to implement 
with only little changes with respect to the existing algorithms. 

    This approach is applicable for monitoring such phenomena as gas storage induced surface 
deformation and similar non-linear geophysical effects. In practice, the subsidence maps can 
be used for further geological analysis and risk mitigation.  

    However, as shown in the second case study, highly decorrelated regions still pose a 
challenge in displacement monitoring. New algorithms are required for measuring such 
difficult areas characterized by high temporal decorrelation and for providing spatially dense 
deformation maps. This is the basis for the new model-based technique developed and 
presented in the next chapter of this thesis.   
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4 Advanced Distributed Scatterer Interferometry 
Algorithm 
 

    This chapter presents a new DSI technique for mapping mean deformation velocity in 
highly decorrelated areas with known deformation patterns, exploiting high resolution SAR 
data. These two papers have been recapped here: 
A.2 Goel, K., Adam, N., 2012b. High resolution deformation time series estimation for 
distributed scatterers using TerraSAR-X data. ISPRS Annals of the Photogrammetry, 
Remote Sensing and Spatial Information Sciences, XXII ISPRS Congress, Commission 
VII, Melbourne, Australia, 25 August-01 September 2012, I-7, 29-34, Copernicus 
Publications. 
A.3 Goel, K., Adam, N., 2013a. A distributed scatterer interferometry approach for 
precision monitoring of known surface deformation phenomena. IEEE Transactions on 
Geoscience and Remote Sensing PP (99), 1-15, DOI: 10.1109/TGRS.2013.2289370.  
High resolution TerraSAR-X dataset of Lueneburg in Germany is used as a processing 
example of this technique.  

 

4.1 Introduction 
 

    As summarized in the previous chapters, state-of-the-art interferometric stacking 
techniques, for instance, PSI, SBAS and SqueeSAR, have limitations in natural terrains due to 
temporal decorrelation and the unavailability of coherent scatterers. As a consequence, phase 
unwrapping is difficult and only a few points can be measured in highly decorrelated areas.  

    With respect to the above-mentioned techniques, an alternative DSI method has been 
developed and implemented for deformation velocity monitoring in difficult decorrelated 
regions whose deformation velocity can be described by a suitable model, exploiting high 
resolution SAR data. Typical application examples include sub-surface mining areas, sub-
surface construction sites and oil/gas/water reservoirs. The proposed method utilizes DSs and 
consists of three main steps. First, an identification of DSs, i.e. homogenous object patches of 
pixels, is done by a similarity test algorithm using a stack of SAR amplitude images as 
described in the previous chapter (Parizzi and Brcic, 2011; Goel and Adam, 2012a). Then, a 
robust object-adaptive parameter estimation is performed to estimate the local gradients of 
deformation velocity and the local gradients of residual DEM in range and azimuth directions 
for these patches, utilizing small baseline differential interferograms. Finally, since the 
independent estimated neighboring patches are close and deformation is assumed to be 
smooth, a 2D model-based deformation integration is performed to get the LOS deformation 
velocity. To implement this inversion, a Bayesian estimation framework (Papoulis and Pillai, 
2002; Sivia and Skilling, 2006) is applied which makes use of directed graphs (Bishop, 2006) 
and particle filters (Isard and Blake, 1998; Arulampalam et al., 2002). The new concept with 
respect to the existing DS algorithms is that: 

• There is no need for conventional spatial phase unwrapping (based on estimation of 
phase gradients, followed by their integration) and the mean deformation velocity is 
estimated at a suitable resolution in the order of the dimension of objects.  

• The computational complexity is reduced, as compared to SqueeSAR, by making use 
of only small baseline differential interferograms.  
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• Even in the presence of high phase noise, the algorithm compensates DEM errors and 
atmospheric artifacts.  

• Due to model-based deformation integration, a spatially dense deformation velocity 
map is estimated, instead of just a few measured points.  

 

4.2 Methodology 
 

    Assuming that N  SAR images and M  single-look small baseline differential 
interferograms are available, the implemented methodology for deformation estimation of 
DSs involves the following steps: 

 

4.2.1   Identification of Homogenous Patches 
 

    In this step, independent homogenous patches, i.e. DS objects are identified using the stack 
of coregistered and calibrated SAR amplitude images. A DS object covers several pixels in 
high resolution SAR images and these pixels exhibit similar scattering properties and belong 
to the same distribution. These statistically homogenous patches are dependent on the 
reflectivity, have typically a constant local slope and clear boundaries (e.g. fields, roads etc.). 
The Anderson-Darling statistical test is used to identify homogenous pixels based on the SAR 
amplitude images (Parizzi and Brcic, 2011; Goel and Adam, 2012a). 

 
Figure 35: Identification of homogenous patches. (a) Google Earth image of a small part of Lueneburg in 
Germany, the region of interest is enclosed in red. (b) Mean amplitude TerraSAR-X image of the region of 
interest. (c) The division of the region into blocks by the blue lines, wherein, the points in green represent the 
homogenous pixels and the points in red represent the reference pixels. 

    Basically, the area is divided into non-overlapping rectangular blocks. Then, within each 
rectangular block, a homogenous patch of pixels is identified. The patch should have a 
minimum size, since the estimation takes advantage of large homogenous areas. Also, the 
average spatial coherence of the patch should be larger than a certain threshold to counter 
phase noise. For each detected patch, a reference pixel is selected. Any pixel in the 
homogenous patch can be assigned as the reference pixel (since ideally, all the pixels in the 
homogenous patch have the same coherence). The block size is chosen in such a way that the 
atmosphere is mitigated if the phase of the reference pixel is subtracted from the phases of the 
other pixels in the block, and also considering that the patch size should be large enough to 
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provide with a reliable estimation. Figure 35 shows an example of the identification of 
homogenous patches for a small region in the town of Lueneburg in Germany. 17 TerraSAR-
X High Resolution Spotlight mode images of the test site from 2010-2011 were used. The 
region is divided into blocks of 40 pixels by 40 pixels, i.e. 24 m by 24 m approximately. A 
minimum patch size of 20 pixels and a coherence threshold of 0.3 have been applied. Note 
that the small patch size is only used here for a demonstration of the Anderson-Darling 
statistical test. For the final processing as mentioned later in this chapter, a bigger patch size 
of 400 pixels is used in order to make the estimation more precise. 

 

4.2.2   Gradient Estimation for Deformation Velocity and Residual DEM 
 

    The single-look differential interferograms are now exploited for the parameter estimation 
of DS objects. Only interferograms with small spatial and temporal baselines are used in order 
to decrease the effects of residual topography and temporal decorrelation on the DS objects. 
Additionally, the computational complexity is reduced. The single-look differential 
interferometric phase ki

DInSAR
,φ  of a pixel i  for interferogram k , with respect to a reference 

pixel, is given by Equation (15). Accordingly, a homogenous patch can be described by the 
model parameters: LOS deformation velocity and residual DEM. However, the same 
deformation velocity or residual DEM value is not assigned to all the homogenous pixels in a 
patch. In fact, the deformation velocities and residual DEMs of the homogenous pixels in a 
patch can be, to the first order, well approximated by a linear spatial behaviour in range and 
azimuth directions, respectively with respect to the reference pixel. Given the differential 
phase data, the local gradients (i.e. tilts) of deformation velocity 

xvm , 
yvm  (in mm/year/pixel) 

and the local gradients (i.e. slopes) of residual DEM 
xhm , 

yhm  (in m/pixel) in range x  and 
azimuth y  directions, respectively are estimated for the homogenous patches at sub-object 
resolution. Then, the local gradients of deformation velocity are integrated to obtain the 
deformation velocity for each DS pixel, as explained in the next subsection.      

    First, the phase values of each patch for every differential interferogram are corrected with 
respect to the patch’s reference pixel so that the atmospheric effects and orbital errors are 
mitigated. Second, these are then used for parameter estimation by adjusting to the data a 
phase model ki

elDInSAR_mod
,φ , which is composed of deformation and residual topography phase 

components as follows: 
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where Li ,...,1=  ( L  being the number of homogenous pixels in the patch), Mk ,...,1=  and 
i
xp  and i

yp  are pixel indices (related to the reference pixel indices) in range and azimuth 
directions respectively for homogenous pixel i . Since a DS pixel’s phase quality is not on par 
with a PS, the phase model is not adjusted to the data pixelwise. Instead, all the homogenous 
pixels inside the DS object patch are simultaneously used for the model fitting by maximizing 
the following model coherence function (periodogram) ξ :  
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where ki,
obsDInSAR _φ  is the observed single-look interferometric phase for homogenous pixel i  

and interferogram k  calibrated with respect to the respective reference pixel. Obviously, the 
gradients of deformation velocity and the residual topography for each patch are estimated 
from the peak of this periodogram, i.e.: 
 ( )ξ

yhxhyvxv
yxyx

mmmm
hhvv mmmm

,,,
maxarg)ˆ,ˆ,ˆ,ˆ( =  (41) 

The maximum of ξ  is the temporal coherence of the DS object. Usually it is not as good as 
the temporal coherence of a PS, due to temporal decorrelation. The range of the gradients of 
linear deformation and residual DEM, over which the maximum is searched, is based on prior 
knowledge of the displacement and topographic fields. Usually, [ ]1,1−=vm  (mm/yr/pixel) 
and [ ]1,1−=hm  (m/pixel) is a suitable search range in case no prior knowledge is available. 
The precision of the estimation depends upon the number of homogenous pixels and spatial 
extension of the patch, in addition to the average spatial coherence of the patch. Further on, 
the more the number of interferograms, the better is the estimation as the sidelobes (i.e. 
ambiguous solutions) are reduced and a clear peak is obtained. An illustration of the 
periodogram is provided in Figure 36 using Lueneburg dataset for a highly deforming patch. 
89 small baseline differential interferograms were utilized for the processing. A minimum 
patch size of 400 and an average spatial coherence threshold of 0.3 was set. A distinct peak is 
clearly noticeable. At this point, the algorithm has compensated residual DEM as well as the 
atmospheric phase screen. The gradients of deformation velocity have been estimated at sub-
object resolution using only small baseline differential interferograms. 

 
Figure 36: Periodogram demonstration using Lueneburg dataset for a highly deforming patch. (a) Periodogram 
ξ  for [ ]1,1−=

xvm  (mm/yr/pixel), [ ]1,1−=
yvm  (mm/yr/pixel), 0=

xhm  (m/pixel) and 0=
yhm  (m/pixel). (b) 

Periodogram ξ  for 0=
xvm  (mm/yr/pixel), 0=

yvm  (mm/yr/pixel), [ ]1,1−=
xhm  (m/pixel) and [ ]1,1−=

yhm  
(m/pixel). 

 

4.2.3   Deformation Velocity Integration 
 

    Finally, a 2D deformation velocity integration can be performed to get the deformation 
velocity. A simple 1D case is shown in Figure 37. For a 2D deformation integration, it is 
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assumed that the independent estimated neighboring patches are close and the deformation 
velocity field varies smoothly in space. Note that there are certain deformation fields which 
are non-smooth and this method is not valid for such cases. For the 2D deformation 
integration, a model-based approach has been implemented. Depending on the source of the 
subsidence, e.g. mining, oil/gas extraction, volcano, earthquake etc., a suitable model can be 
adopted and its parameters estimated. The advantage here is that the estimated model 
parameters can be further used to assess and analyze the impacts of such geophysical 
phenomena. It is also straightforward and easy to apply. Due to model-based deformation 
retrieval, the final resolution of deformation velocity is in the order of the dimensions of 
objects (and not at sub-object resolution as in the previous subsection). 

 
Figure 37: A simple 1D example of integrating the relative deformation of the various patches to get the absolute 
values. 

    In the practical implementation, an elliptical subsidence bowl has been assumed for the test 
site Lueneburg, which has undergone salt mining induced subsidence. This is because the 
most common shape of surface deformation due to mining is a circular or elliptical sag 
(Spreckels, 2000; Raucoules et al., 2003; Leijen and Hanssen, 2007; Perski et al., 2009). A 2D 
elliptical Gaussian deformation velocity field ),( yxg  (in mm/year) along the x  and y  
directions is given by: 
 ( )2

000
2

0 )())((2)(),( yycyyxxbxxaepyxg −+−−+−−⋅=  (42) 

where p  is the height/depth of the peak/valley and ),( 00 yx  is the center of the deformation 
trough. The coefficients a , b  and c  are given as follows: 
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where θ  is the rotation of the ellipse from x  axis in clockwise direction and xσ  and yσ  are 
the spreads in x  and y  directions, respectively The deformation model is shown in Figure 
38. For simplicity, it has been assumed that the vertical deformation derived from the model 
expresses surface subsidence along the satellite’s LOS. Equation (42) allows the possibility to 
model an elliptical (or circular) subsidence bowl or even a non-deforming zone. The 
deformation integration is thus a model parameter estimation problem, wherein, the 2D 
Gaussian deformation field parameters p , 0x , 0y , θ , xσ , yσ  have to be estimated given the 

gradients of the deformation velocity j
vx

m  and j
vy

m for the reference points j
refx  and j

refy , 
respectively corresponding to the P  patches Pj ,...,1= . 

 
Figure 38: A 2D elliptical Gaussian deformation velocity model along the range ( x ) and azimuth ( y ) 
directions. It is defined by the parameters p , 0x , 0y , θ , xσ , yσ . p  is the height/depth of the peak/valley, 

),( 00 yx  is the center of the deformation, θ  is the rotation of the ellipse from x  axis in clockwise direction, and 

xσ  and yσ  are the spreads in x  and y  directions, respectively. 

    It is important to note that a non-linear least squares curve fitting cannot be directly 
performed as the observations are the “gradients” of the deformation velocity in range and 
azimuth directions. In fact, the model parameter estimation can be expressed as a 
multidimensional non-linear optimization problem, where, the sum of the absolute errors 
between the observed gradients of deformation velocity and the modelled gradients of 
deformation velocity has to be minimized. Conventional methods for multidimensional non-
linear minimization include Powell's conjugate gradient descent method (Powell, 1964), the 
downhill simplex method of Nelder and Mead (1965) and the truncated-Newton method by 
Nash (1982). However, most of these iterative methods need an initial starting point and find 
a local minimum of the function to be minimized and thus, may not be robust for the 
deformation integration. In addition, many of these optimization algorithms require 
derivatives’ evaluations, but the function to be minimized is not totally differentiable.  
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    Instead, Bayesian inference has been applied for the multidimensional non-linear 
regression (Papoulis and Pillai, 2002; Sivia and Skilling, 2006) by means of directed graphs 
and particle filters. It is a statistical approach in which all forms of uncertainty are expressed 
in terms of probability and parameter estimation is performed based on measured or empirical 
data. Bayesian inference has been demonstrated successfully for 3D positioning of PSs based 
on radargrammetry (Goel and Adam, 2012c).  

 
Figure 39: DGM for the estimation of 2D Gaussian deformation velocity field parameters. For each patch j , 

Pj ,...,1= , the gradients of deformation velocity j
vx

m  and j
vy

m  in range ( x ) and azimuth ( y ) directions, 

respectively (known RVs, blue nodes) depend on the Gaussian deformation velocity field parameters p , 0x , 0y
, θ , xσ , yσ  (RVs to be estimated, grey nodes) and also on the location j

refx  and j
refy  of the reference point 

(known RVs, white nodes), and hence the direction of the arrows (i.e. arcs). The RVs j
vx

m , j
vy

m , j
refx  and j

refy  
are enclosed in boxes, representing the multiple nodes for the P  patches. 

    The Directed Graphical Model (DGM) for deformation estimation is constructed as shown 
in Figure 39 (Bishop, 2006). DGMs reduce complex Bayesian inference computations into 
simple graph manipulations. The parameters which are either observed, known or need to be 
estimated are considered as Random Variables (RVs) and represented by nodes. Here, j

vx
m  

and j
vy

m  are observed RVs and are consequently represented by blue nodes in Figure 39. j
refx  

and j
refy  are white nodes because they are known parameters, whereas p , 0x , 0y , θ , xσ , yσ  

are grey nodes because they have to be estimated. j
vx

m , j
vy

m  and j
refx , j

refy  are enclosed in a 
box which represents multiple nodes (i.e. a sequential estimation) for the P  patches 

Pj ,...,1= . The directions of the arrows (i.e. arcs) describe the dependencies between the 
RVs. For the patch j , the gradients of the deformation velocity j

vx
m  and j

vy
m  in range and 

azimuth directions, respectively depend on the 2D Gaussian deformation velocity field 
parameters p , 0x , 0y , θ , xσ , yσ  and also on the location j

refx  and j
refy  of the reference 

point. The probabilistic relation between the RVs can be evaluated using the DGM as follows 
(obtainable also from Bayes’ theorem):  
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where l  is the likelihood function given by: 
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In Equation (46) above, the term on the left hand side of the equation is the joint posterior 
Probability Density Function (PDF) of the elliptical Gaussian model parameters p , 0x , 0y , 
θ , xσ , yσ . The numerator on the right hand side of Equation (46) is comprised of the 

likelihoods ),,,,,,,|( 00
j

ref
j

refyx
j

v yxyxpmf σσθ  of the measured (i.e. observed) gradients of 
the deformation velocity for the different patches and the prior PDFs )( pf , )( 0xf , )( 0yf , 

)(θf , )( xf σ , )( yf σ  of the Gaussian model parameters. The likelihood of an observed 
gradient j

vm  (in range or azimuth direction) of deformation velocity for a patch j  is 
computed using the absolute error between the observed gradient of deformation velocity and 
the modelled gradient of deformation velocity as follows: 
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Here, j
vgaussm _  is the modelled gradient (in range or azimuth direction) of deformation 

velocity for patch j , that is to say, it is calculated from the Gaussian model parameters p , 

0x , 0y , θ , xσ , yσ  and b  is a scale parameter. An L1-norm minimization has been used for 
the likelihood function, assuming Laplacian noise in the estimated gradients. This is because 
outliers might be present in the gradient estimates due to low spatial coherence of DS pixels. 
The L2-norm minimization results in a more stable solution when Gaussian noise is present in 
the estimated gradients, however, it is not robust when outliers are present. In contrast, the 
Laplacian density has larger tails than the Gaussian and thus, a greater number of large 
residuals are expected. Note that b  is an additional parameter to be estimated. The prior PDFs 
of the Gaussian model parameters depend upon the prior knowledge (e.g. they can be taken as 
a uniform distribution in a suitable range). The denominator on the right side of Equation (46) 
is the evidence and can be neglected for the parameter estimation. It is only important if 
model selection has to be performed, as explained later in Chapter 6. 

    For the deformation estimation, the joint posterior PDF is computed and maximized to get 
the parameter estimates MAPp , MAPx0 , MAPy0 , MAPθ , MAP

xσ , MAP
yσ . This estimator is the MAP 

estimator: 
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The applied framework employs bootstrap particle filtering (i.e. condensation algorithm) for 
the MAP parameter estimation (Isard and Blake, 1998; Arulampalam et al., 2002). Particle 
filter is a sequential Monte Carlo technique for implementing recursive Bayesian filter using 
the concepts of importance sampling (and resampling). The basic idea is to represent the 
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required distribution by a set of discrete PN  random particles (i.e. samples and weights 
associated to each sample), thus, inherently dealing with complex, multimodal non-Gaussian 
PDFs which are difficult to represent analytically. The MAP estimation via Equation (49) is 
performed based on these particles. The assessment of the estimation quality is performed by 
computing the standard deviation of the estimated parameters by means of the posterior PDF. 
It is also possible to estimate more than one deformation bowls by dividing the SAR scene 
into smaller areas and performing the parameter estimation for these individually. 

    Note that in case a model has to be optimally chosen from different spatial models of 
deformation, it can be easily done via Bayesian inference. A good model balances goodness- 
of-fit with simplicity. The model which best describes the Bayesian problem is the one with 
the highest evidence. Following the basic concept of Monte Carlo integration, the practical 
implementation of Bayesian inference using particle filters can easily calculate the evidence 
by converting the integral into some kind of average of the discrete random particles. 

    To end with, the algorithm provides the deformation velocity at a resolution approximately 
in the scale of the homogenous objects in typically decorrelated areas. Due to model-based 
deformation integration, the deformation velocity for the whole subsidence bowl is estimated, 
including its center, as compared to conventional techniques such as PSI, SBAS and 
SqueeSAR which have a lesser number of estimated points. 

 

4.3 Application Test Case and Results 
 

    The practical demonstration of this technique is provided using High Resolution Spotlight 
mode TerraSAR-X data of the town of Lueneburg in Germany, which was used in the 
previous chapter and has undergone salt mining induced subsidence. The area enclosed in red 
in Figure 33 is used as the test site. Figure 40 shows the Google Earth image of this test site. 
Figure 41 shows its corresponding SAR mean amplitude image. Important to note is the 
presence of vegetated and low reflectivity homogenous areas, leading to low density of PSs. 

     
Figure 40: Google Earth image of the test site Lueneburg in Germany (enclosed in red). 
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Figure 41: TerraSAR-X mean amplitude image of the test site Lueneburg in Germany. 

 
Figure 42: Identification of homogenous patches for Lueneburg in Germany using 17 TerraSAR-X amplitude 
images via Anderson-Darling statistical test. The region is divided into blocks by the blue lines, where, the 
points in green represent the homogenous pixels and the points in red represent the reference pixels. 

    The dataset has been processed using the new DSI technique. As mentioned in the previous 
chapter, 89 small baseline differential interferograms have been generated based on a 
maximum spatial baseline of 150 m and a maximum temporal baseline of 150 days. DLR’s 
PSI-GENESIS processor has been employed for DInSAR processing (Adam et al., 2003, 
Adam et al., 2004; Kampes, 2006). The baseline-time plot is shown in Figure 29. As can be 
noticed, it is a well-connected network of interferograms because of the short repeat cycle of 
TerraSAR-X and highly reproducible scene repetition of the spotlight acquisitions, 
consequently ensuring the temporal continuity of the deformation measurements. The 
coherence matrix of the dataset is illustrated in Figure 30. It can be seen that only small 
baseline combinations have been used for the processing. Moreover, the average coherence of 
this region can be observed as low, typical for rural areas, thus advocating the need for DSI.     
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    The identification of homogenous patches for Lueneburg using the 17 TerraSAR-X 
amplitude images is shown in Figure 42. The region was divided into rectangular blocks of 40 
pixels by 40 pixels, i.e. 24 m by 24 m approximately. Within each block, homogenous pixels 
were identified by means of the Anderson-Darling statistical test based on a minimum patch 
size of 400 pixels and a coherence threshold of 0.3.  

 
Figure 43: Residual DEM gradient estimation results for Lueneburg, Germany, using 89 small baseline 
differential interferograms. (a) Local gradients of residual DEM in range ( x ) direction in m/pixel. (b) Local 
gradients of residual DEM in azimuth ( y ) direction in m/pixel. 

 
Figure 44: Deformation gradient estimation results for Lueneburg, Germany, using 89 small baseline differential 
interferograms. (a) Local gradients of deformation velocity in range ( x ) direction in mm/year/pixel. (b) Local 
gradients of deformation velocity in azimuth ( y ) direction in mm/year/pixel. 

    Figure 43 visualizes the gradient estimation results for the residual DEM in range and 
azimuth directions in m/pixel for the test site. Estimation of residual DEM gradients is 
essential for an accurate estimation of deformation velocity gradients. Figure 44 visualizes the 
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gradient estimation results for the deformation velocity in range and azimuth directions in 
mm/year/pixel. The number of homogenous pixels and temporal coherence (i.e. peaks of the 
periodograms) for the patches are illustrated in Figure 45. The gradients have been estimated 
for a total of 536,456 points in an area of 1200 pixels by 1200 pixels. 

 
Figure 45: (a) The number of homogenous pixels for the patches of Lueneburg, Germany. (b) The temporal 
coherence (i.e. peaks of the periodograms) for the patches. 

    The deformation integration results using the DSI technique are presented in Figure 46. The 
scene was divided into nine equal areas of 400 pixels by 400 pixels each and deformation 
integration was performed independently for these, wherein, 10 million particles were used 
for representing the posterior distribution in Equation (46). The results obtained for surface 
deformation velocity show two Gaussian subsidence bowls, one having a larger deformation 
than the other and also covering a larger area. The Gaussian subsidence bowls with spreads 
smaller than a certain threshold were not taken into account. This is because, practically, at 
least three patches need to be fed into the integration model for an elliptical Gaussian 
subsidence (it has 6 parameters). Other types of deformation, e.g. structural stress of 
buildings, can spatially be fully described by 2 parameters only, i.e. a single homogeneous 
patch is sufficient for the deformation estimation. Keeping in mind that the minimum patch 
size used for this test case was 400 pixels (large enough to provide a reliable estimate of the 
deformation and topographic gradients as mentioned in Subsections 4.2.1 and 4.2.2), a 
threshold of 20 pixels was applied for the spreads of the Gaussian deformation bowl 
(assuming that the patch is a square of 20 pixels by 20 pixels).  

    The dataset was also processed using another technique, namely, the high resolution 
advanced SBAS technique which was explained in the previous chapter (Goel and Adam, 
2012a). It makes use of small baseline differential interferograms and incorporates an object-
adaptive spatial phase filtering and residual topography removal for an accurate phase and 
coherence estimation, while preserving the object resolution. This is followed by retrieval of 
deformation via the SBAS approach, wherein, the phase inversion is performed using an L1-
norm minimization which is more robust to the typical phase unwrapping errors encountered 
in non-urban areas, cf. Chapter 3. Again, the 17 TerraSAR-X images and the 89 small 
baseline differential interferograms were utilized to obtain the deformation time series for 
Lueneburg. Pixels that have an average spatial coherence of at least 0.3 were used (i.e. 
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121,024 points in an area of 1200 pixels by 1200 pixels). The mean deformation velocities 
estimated using this SBAS technique are presented in Figure 47. The high density of 
information which can be extracted using the DSI technique can be seen by comparing Figure 
47 with Figure 44 (which has 536,456 estimated points). 

 
Figure 46: Deformation velocity in mm/year estimated for Lueneburg in Germany using the new DSI technique. 

 
Figure 47: Deformation velocity in mm/year estimated for Lueneburg in Germany using the high resolution 
advanced SBAS technique (Goel and Adam, 2012a). Deformation time series comparison for points A, B and C 
using advanced SBAS and DSI are shown in Figure 48. 

    The features which have been identified as deforming in Figure 47 are also deforming in 
Figure 46. The DSI approach, significantly, provides spatially dense deformation velocity 
estimates instead of just a few measured points using advanced SBAS. The main reason is 
that the model-based gradient inversion is advantageous as compared to standard phase 
unwrapping in such areas as the deformation model is known. It is thus possible to better 
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define the areas which are subsiding and even identify new ones not previously detected using 
conventional techniques in non-urban terrains. 

    Deformation time series are visualized in Figure 48 for some of the pixels marked in Figure 
47. The time series using advanced SBAS and DSI (assuming a constant velocity model) have 
been compared. The estimated mean deformation velocities using DSI show a good fit to the 
non-linear deformation time series measured using SBAS. 

 
Figure 48: Deformation time series comparison for points A, B and C in Lueneburg, Germany, marked in Figure 
47, using DSI (assuming a constant velocity model) and advanced SBAS. 
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    The density histograms of the mean deformation velocity estimates utilizing the two 
techniques are shown in Figure 49. What can be seen is the advantage provided by DSI, 
which measures even the points with highest subsidence (i.e. centers of subsidence bowls), 
that are not measured by advanced SBAS due to high temporal decorrleation. It also shows 
that the points, where the subsidence has not been detected using DSI, have zero deformation 
velocities. This, of course, does not mean that there is no deformation outside the identified 
subsidence bowls. It just shows the absence of motion patterns that follow the Gaussian 
elliptical deformation velocity model. 

 
Figure 49: Density histograms of the mean deformation velocity estimates for Lueneburg, Germany, utilizing 
DSI and advanced SBAS. 

    Additionally, the ground truth for Lueneburg has been collected. Figure 50 shows the 
pictures of the area of the bigger subsidence bowl in Lueneburg, ‘Ochtmisser Kirchsteig’, 
which has been detected using the DSI technique (i.e. region surrounding point A marked in 
Figure 47). The effects of subsidence are encircled in yellow. Figure 51 shows the picture of 
the area of the smaller subsidence bowl in Lueneburg, ‘Frommestrasse’, which has been 
detected (i.e. region surrounding point B marked in Figure 47). It can be seen that both these 
regions have undergone high subsidence (and have suffered considerable damage), as 
measured by the DSI technique too. 

    The standard deviations of the estimated parameters have also been calculated from the 
posterior PDF. These provide information about the precision of estimation. The standard 
deviation values for MAPp , MAPx0 , MAPy0 , MAPθ , MAP

xσ , MAP
yσ  are in the order of 0.37 mm/year, 

5.96 pixels, 5.96 pixels, 0.01 radians, 1.28 pixels, 1.28 pixels, respectively. Evidently, the 
precision of this technique is good for high resolution sensors such as TerraSAR-X. The 
results demonstrate the potential of this new technique for deformation mapping in highly 
decorrelated areas utilizing DSs. 
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Figure 50: Pictures of the area of the bigger subsidence bowl in Lueneburg, ‘Ochtmisser Kirchsteig’, which has 
been detected using DSI (i.e. region surrounding point A marked in Figure 47). 

 
Figure 51: Picture of the area of the smaller subsidence bowl in Lueneburg, ‘Frommestrasse’, which has been 
detected using DSI (i.e. region surrounding point B marked in Figure 47). 

 

4.4 Discussion and Conclusion 
  

    A novel concept has been developed for a robust deformation velocity mapping and 
parametric modelling in highly decorrelated regions, at a suitable object resolution. The 
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increased density and quality of the deformation estimates is the clear advantage. This new 
DSI technique is based on an object-adaptive parameter estimation which makes use of the 
high resolution provided by modern sensors. Only the small baseline differential 
interferograms are utilized in order to reduce the computational burden. The algorithm 
compensates the DEM errors and atmosphere.  

    Note that a first order approximation is made that the deformation velocities and residual 
topographies of the homogenous pixels in a patch show a linear spatial behaviour in range and 
azimuth directions, respectively with respect to the reference pixel.  

    Essentially, this assumption is true for deformation as long as it is not varying spatially 
faster in comparison to the pixel size (otherwise, a higher SAR resolution would be 
beneficial), and moreover, it is also based on the sensor characteristics. In other words, the 
maximum deformation gradient which is measurable in an interferogram is determined by the 
signal wavelength and pixel spacing (Massonnet and Feigl, 1998). However, this is only valid 
under an ideal condition that there is no noise in the SAR observations. Phase noise due to 
uncompensated geometrical decorrelation, temporal decorrelation, thermal noise, atmospheric 
effects etc. can significantly affect the detectable deformation gradients. As a result, very 
small and large deformation gradients become undetectable if the level of noise is too high.  
In Baran et al. (2005), a new functional model has been proposed for the maximum and also 
the minimum detectable deformation gradients in an interferogram, taking into account the 
interferometric coherence which is a measure of the interferometric SNR, thus making the 
models more realistic. This way of modelling the spatial behaviour of surface deformation 
(assuming that it changes linearly over short distances) is especially valid for natural terrain, 
where, most surface deformation signals are smooth. 

    With regards to topography, the above-mentioned assumption is a typical attribute of 
statistically homogenous pixels, since radar brightness is strongly dependent on orientation 
and slope of a resolution cell. Explicitly, only those pixels would be selected as homogenous, 
which exhibit a smoothly varying topography. Thus, the identification of homogenous patches 
is crucial. Again, in natural areas, the topography is mostly smooth.  

    Given that the above conditions are satisfied, this technique estimates the deformation 
velocity at a suitable object resolution. This is advantageous in contrast to conventional SBAS 
which estimates the deformation at a low resolution, and moreover, does not provide the 
deformation at points which have undergone high temporal decorrelation. There are various 
advantages of deformation and topographic gradient estimation using the wrapped phase via a 
periodogram. It ensures that more points (even with low coherence i.e. high phase noise) are 
estimated and even high gradients are measured. The conventional phase unwrapping 
algorithms are prone to errors due to spatial decorrelation, surface discontinuities, spatial 
fringe rates etc. The deformation and topographic components are separately estimated and 
can be used directly for integration, instead of the need for deformation estimation after phase 
unwrapping which is susceptible to errors (e.g. SBAS). There is no error propagation from 
one patch to the next (based on some quality map) as compared to local (path-following) 
phase unwrapping. Different interferograms acquired from different baselines (3D) are used 
for the estimation and this is the reason that this method is more accurate. However, it is 
worth mentioning that SBAS estimates the non-linear deformation times series, whereas the 
DSI technique is concentrated on providing the mean deformation velocity. This is the reason 
that SBAS requires conventional phase unwrapping operations, which might be difficult in 
such sparsely urbanized areas. The DSI method is computationally costly in identification of 
homogenous patches and the gradient estimation, whereas SBAS is computationally 
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expensive in phase unwrapping. With respect to SqueeSAR, the computational complexity is 
greatly reduced since only the small baseline differential interferograms are used.  

    The following aspects need to be taken into consideration. 

    Single-look differential interferograms have been used for the processing. Multi-looked 
interferograms generally should not be used, since the basis of this technique is using 
homogenous pixels for the estimation. Anyhow, conventional rectangular multi-looking can 
work if homogenous areas are larger and the multi-looking and subsequent estimation is 
restricted to small fixed averaging areas. Adaptive multi-looking (Goel and Adam, 2012a) is 
better as larger patches are possible (if the test site allows) and it leads to a better precision. 
But the multi-looking can lead to a smoothing of the deformation estimates. Also, non-
overlapping blocks have been used for the identification of homogenous patches. Overlapping 
blocks can be considered too in the future to increase the resolution. 

   The units used for the local gradients of deformation velocity vm  are mm/year/pixel and for 
the local gradients of residual DEM hm  are m/pixel. This allows a generic estimation for 
different sensors. Needless to say, it is also possible to use “meters” instead of “pixels”, 
wherein, the sensor’s pixel spacing information is then required. 

    The smallest deformation pattern which can be measured depends on the type of 
subsidence effect and the resolution of the sensor. For example, as mentioned before in the 
previous section, if an elliptical Gaussian subsidence occurs, the minimum size of the bowl 
should be at least 3 patches. Anyhow, usually such a bowl has a larger dimension than this. In 
case of deformation due to structural stress of buildings or thermal dilation of bridges, even a 
single patch is enough.     

    For the test site, Lueneburg, which had been a salt mine, an elliptical subsidence has 
occurred. Subsidence bowls over mines usually occur when the overburden sags downwards 
due to failure of mine pillars. It results in a depression in the ground which is usually elliptical 
or circular in shape. The subsidence is nearly temporally linear and is normally greatest at the 
center of the bowl and decreases progressively till the boundaries of the impacted surface area 
are reached. Note that any appropriate model can be assumed and its parameters estimated in 
the same way using Bayesian inference, as described for the elliptical trough (just the number 
of unknowns should be less than or equal to the number of observations). For instance, 
sinkhole subsidence can instead occur in areas lying above underground mines which are 
located very close to the ground surface. This type of subsidence is pretty localized in extent 
and causes an abrupt depression of the ground surface as overburden material collapses into 
the mine. In addition, Bayesian inference also facilitates model selection for choosing the best 
model from different deformation models. The DSI approach is suitable to be applied to such 
phenomena as mining induced surface deformation and similar geological effects, which can 
be described by an appropriate model.     

    This chapter, in fact, is a “principle demonstration” of a new technique which provides 
measurements in highly noisy areas, which are often an issue with DInSAR time series 
analysis. The problem with standard phase unwrapping is that the involved distribution to be 
maximized is periodic and multi-modal. Hence, besides the standard errors, occasionally 
wrong results are obtained due to getting trapped in a wrong maximum/minimum. If many 
measurements are combined, a periodogram can be computed which may have side-lobes 
(multi-modal). However, using more data to estimate only a few parameters makes the 
solution less ambiguous in highly noisy areas (in general). The current limitation of this DSI 
technique is the model-based implementation, which requires the surface deformation pattern 
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to be known before starting the data analysis. In the future, it would be beneficial to research 
about more advanced integration methods which are model-free, thus, making this DSI 
approach more general. 

    This technique can benefit from better prior information, e.g. the suitable deformation 
integration model to be applied and from future SAR systems with 600 MHz chirp bandwidth. 
Future work can concentrate on integrating the topography gradients and correcting the 
exploited DEM. This requires a model-free approach since usually, the residual DEM cannot 
be modelled. Afterwards, non-linear surface displacements, as well as the atmosphere, can be 
estimated from the residual phase by taking into account their different frequency 
characteristics in space and time. More importantly, model-free deformation velocity 
integration would be the upcoming focus.  
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5 Fusion of Monostatic and Bistatic Interferometric 
Data Stacks for Distributed Scatterers 
 

    In the previous chapters, the stacking algorithms based on monostatic repeat-pass 
interferometry have been presented for elevation mapping and deformation monitoring. The 
TerraSAR-X and TanDEM-X satellites now together allow bistatic single-pass (motion-free 
and atmosphere-free) interferometry too. This chapter describes the potential of joint 
monostatic and bistatic SAR interferometric stacking for complex urban area monitoring 
exploiting DSs. The aim is an improved scene elevation and surface deformation estimation. 
The following paper is summed up:  
A.4 Goel, K., Adam, N., 2013b. Fusion of monostatic/bistatic InSAR stacks for urban 
area analysis via distributed scatterers. IEEE Geoscience and Remote Sensing Letters 
PP (99), 1-5, DOI: 10.1109/LGRS.2013.2278204. 
An application test case is presented using high resolution mixed TerraSAR-X/TanDEM-X 
data stacks of Las Vegas, US.  

 

5.1 Introduction 
 

    In dense urban areas, interpretation of the SAR images and interferometric phase is 
problematic due to phase discontinuities (e.g. due to height discontinuities, noise etc.) and 
complex scattering situations such as radar layover and shadow. Spatial phase unwrapping 
proves to be a challenge and ambiguities in layover areas cannot be solved. Therefore, the 
standard SRTM/TanDEM-X DEMs are erroneous or even useless in urban areas, and 
advanced multi-baseline phase unwrapping algorithms are needed (Lachaise et al., 2007). 
Hence, there is a need to by-pass geometrical limitations (such as layover) of radar, and thus 
enhance the precision and quality of TanDEM-X height models. 

    PS-based multitemporal techniques allow analysis of individual structures in metropolitan 
areas with a high level of detail (Adam et al., 2008; Eineder et al., 2009). On buildings, there 
can be many such PS points. However, availability of such scatterers is opportunistic. To 
improve the spatial sampling of the measured points, partially coherent DSs can be exploited, 
since DSs also make up a significant percentage in X-band. On man-made structures like 
roofs, building walls, asphalt roads and concrete surfaces, the DSs also provide a long-time 
coherent radar return, although, the phase quality is not on par with the PSs. There is an 
increasing focus on an optimal processing of DSs for urban area monitoring. 

    The fusion of monostatic and bistatic high resolution InSAR stacks has been demonstrated 
exploiting DSs for complex urban area monitoring and by-passing scattering scenarios, for 
instance, radar layover. The bistatic and monostatic (small baseline) interferograms are first 
spatially adaptive multi-looked and DSs are selected (Parizzi and Brcic, 2011; Goel and 
Adam, 2012a). The bistatic interferograms with no deformation and atmospheric phase 
components are then exploited for topography estimation of each DS (no external DEM is 
used). These topographic phases are removed from the monostatic interferograms and the L1-
norm based SBAS technique is applied to retrieve the residual topography and deformation 
time series of each DS (Berardino et al., 2002; Goel and Adam, 2012a). 
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5.2 Methodology 
 

    Based on N  SAR images (including both bistatic and monostatic data), M  single-look 
bistatic interferograms and M ′  single-look small baseline monostatic interferograms are 
generated. The various steps involved in the fusion algorithm are: 

 

5.2.1 Adaptive Spatial Phase Multi-looking and Distributed Scatterers 
Selection 
 

    The fusion algorithm first involves the identification of DSs which are basically, image 
pixels (i.e. resolution cells) with distributed scattering mechanism. As mentioned in the 
previous chapters, for extracting information from DSs, the SNR has to be improved by a 
local spatial averaging. Spatially adaptive filters which average statistically homogenous 
pixels can be used to enhance the amplitude, interferometric phase and coherence. 
Rectangular windows can be used too, however, they result in a loss of resolution and usually 
bias the estimates, for example, when there is a PS present in the rectangular window (which 
is usually the case in high resolution images of urban areas). Statistically identical pixels can 
be selected for multi-looking based on their amplitude distributions using statistical tests such 
as the Anderson-Darling test (Parizzi and Brcic, 2011; Goel and Adam, 2012a). 

    The Anderson-Darling test is performed for each image pixel and the homogenous pixels 
surrounding it are identified (i.e. a spatially adaptive estimation window which can have any 
size and shape) via Equation (33). A pixel can be included in different estimation windows, as 
compared to segmentation where each pixel is assigned to a single class. Note that in case of 
complex topography in urban areas (for example, presence of a building façade, roof and 
ground in neighboring pixels), the similarity test algorithm ensures that the homogenous 
pixels which are identified for a certain image pixel (e.g. a point on a building façade) belong 
to the same class (i.e. points on the façade as well). This is because the different classes have 
different backscattering characteristics. The estimation window for each pixel is then used for 
complex phase multi-looking of the interferograms (bistatic and monostatic) for an improved 
phase and coherence estimation. The object resolution is preserved in this adaptive multi-
looking. Then, DSs are selected for further processing based on a minimum average spatial 
coherence and a minimum number of looks (so as to exclude PSs). Additionally, in the next 
subsection, a further selection of DSs is done based on the temporal coherence. 

 

5.2.2 Bistatic Stacking Interferometry 
 

    The bistatic interferograms which are free from motion, atmospheric disturbances and 
temporal decorrelation are now exploited for height estimation of DSs. An external DEM is 
not used, since it has artifacts in urban areas and is of low resolution (e.g. SRTM DEM). Also, 
the standard TanDEM-X DEM suffers from the side-looking geometry of SAR, due to which 
issues like radar layover and shadow remain unsolved,  unless multi-aspect data or a stack of 
acquisitions are used. For more details about layover geometry and modeling, see Wilkinson 
(1999) and Thiele et al. (2007). The interferometric phase k

modelBiInSAR __φ  for a generic pixel in 
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the k th bistatic interferogram can be modelled using Equation (17) and is composed of the 
phase components due to topography only: 
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where h  is the height of the pixel (relative to a reference pixel). 

    Given a few spatially adaptive multi-looked bistatic interferograms with different 
perpendicular baselines (and thus, different height of ambiguities) and referenced with respect 
to a single pixel, it is possible to retrieve the height information for each DS by using its 
wrapped interferometric phase vector. The height h  of a DS here refers to the average height 
of the DS area which has been multi-looked. Since a pixelwise adaptive multi-looking has 
been performed, as described in the previous subsection, areas with sloping or complex 
topography are appropriately handled. The following model coherence function 
(periodogram) ξ  is maximized for height estimation:  
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where k
obsBiInSAR __φ  is the observed (spatially adaptive multi-looked) interferometric phase for 

a generic pixel in the k th bistatic interferogram. Since there is no deformation phase in the 
bistatic interferograms, the periodogram is a 1D function dependent just on the DS’s height 
(and not on its velocity) and its values are known over an irregular grid defined by the 
available spatial baselines ( kB⊥ ). The topography estimate for each DS is estimated from the 
peak of this periodogram, i.e.: 
 ( )ξ

h
h maxarg)ˆ( =  (52) 

The maximum of the periodogram is the temporal coherence of the DS. The reference pixel is 
usually a highly coherent point located in a non-deforming zone (note that the same reference 
point is used later on for the monostatic interferograms in the next subsection). The precision 
of the estimation depends on the number of bistatic interferograms and the baseline 
distribution, since the sidelobes of the periodogram reduce by using more bistatic 
interferograms with varying perpendicular baselines (Rocca, 2004). It also depends on the 
phase stability of the DS and the sensor characteristics. The variance 2

hσ  of the height 
estimate of a DS is approximately given as follows (Bevington and Robinson, 1969): 
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where 
θλ

π
sin

2
R

Bx
k

k ⊥=  is the height-to-phase conversion factor and k
φσ  is the phase standard 

deviation of the DS for interferogram  k , respectively. The latter is a function of the spatial 
coherence and number of looks (Bamler and Hartl, 1998). Assuming 20=φσ  and the height 
of ambiguities of the TerraSAR-X dataset described in the next section, mh 5.1≅σ . Then, 
DSs based on a minimum temporal coherence are selected for subsequent processing.   

    It is to be noted that, first, since the DS pixel has been multi-looked using its statistically 
homogenous pixels, the possibility of a layover (e.g. building and ground) inside a resolution 
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cell is quite low and usually a clear periodogram peak is obtained. This is because the radar 
amplitude is strongly dependent on orientation and slope of a resolution cell. Explicitly, only 
those pixels would be selected as homogenous which exhibit a smoothly varying topography. 
Second, since wrapped phase data is used for height estimation of DSs and no phase 
unwrapping is required, radar layover is by-passed and does not affect the algorithm.  

 

5.2.3 Monostatic Stacking Interferometry 
 

    The DEM phase components estimated via the bistatic interferograms are used to compute 
the differential monostatic interferograms. These monostatic interferograms are then 
exploited for residual topography and deformation time series mapping. There might still be 
residual topography present in the flattened monostatic interferograms, since the baseline 
spread of bistatic interferograms is restricted by the number of data pairs and their 
perpendicular baseline separation. Only small baseline monostatic interferograms are used, so 
as to reduce the effects of residual topography and decorrelation on the DSs. 

    The SBAS technique is used to estimate the residual topography and complete non-linear 
deformation time series of the scatterers, incorporating the linear as well as the seasonal 
motion (e.g. for buildings), without using any model (Berardino et al., 2002). The 
conventional L2-norm minimization performs poorly in case of difficult-to-detect phase 
unwrapping errors. These errors might be present in urban areas due to tall and closely-
located buildings, which result in radar layover and shadow. Thus, the more robust L1-norm 
cost function is applied to estimate the deformation time series for each DS at object 
resolution (Goel and Adam, 2012a). 

 

5.3 Application Test Case and Results 
 

    The proposed algorithm has been applied on a test site approximately 4 km by 2.5 km 
centered at the Las Vegas Convention Center in Las Vegas, US. 84 High Resolution Spotlight 
mode TerraSAR-X/TanDEM-X images from February, 2008 to December, 2011 with a look 
angle of 36.04 degrees and VV polarization have been used. The mean amplitude image of 
the test site and its corresponding Google Earth optical image are shown in Figure 52. The 
pixel spacing is approximately 0.38 m in range direction and 0.42 m in azimuth direction 
(adapted to oversampling). A comparison between a bistatic and a monostatic interferogram 
of the test site Las Vegas can be seen in Figure 7.  

    The SAR images have been used to generate 5 bistatic interferograms with height of 
ambiguities -33.4, -44.7, -54.3, 53.9 and -53.8 m/cycle, respectively. Next, 174 monostatic 
interferograms have been generated. These include, first, small baseline interferograms based 
on a maximum perpendicular baseline of 150 m and a maximum temporal baseline of 30 
days. Second, these also include a few long time span (approximately 750 days) 
interferograms with very small perpendicular baselines (approximately 5 m) so as to include 
the full cycles of seasonal motion on buildings in these interferograms, the very small 
perpendicular baseline ensures that the effect of topographic phase on the interferograms is 
minimal. InSAR processing has been done using DLR’s PSI-GENESIS processor (Adam et 
al., 2003, Adam et al., 2004; Kampes, 2006). Figure 53 shows the baseline-time plot for the 
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scenes and interferograms, wherein, each dot represents a SAR image and each line represents 
an interferogram used in the processing.  

 
Figure 52: Mean SAR amplitude image and its corresponding Google Earth optical image of the test site Las 
Vegas, US. 

 
Figure 53: Baseline-time plot of the TerraSAR-X/TanDEM-X data of Las Vegas, US. Each dot represents a SAR 
image and each line represents an interferogram. The monostatic interferograms are shown in black, whereas the 
bistatic interferograms are shown in green. 

    Then, the adaptive spatial filtering algorithm is applied on the single-look interferograms, 
as demonstrated in Figure 54. The minimum and maximum size of the homogenous patch is 
set to 20 and 200 pixels, respectively. The reduction in the phase noise and the improvement 
in interferometric phase can be clearly seen.  

    This is followed by height estimation of the DSs for the test site by means of 1D 
periodogram approach using only the 5 bistatic single-pass interferograms, as presented in 
Figure 55. DSs have been selected which have an average spatial coherence of at least 0.7 and 
temporal coherence of at least 0.5, so as to exclude decorrelated areas. A total of 6,361,670 
points have been processed (approximately 600,000 DSs per square km). Assuming a best 
case scenario of 100,000 PSs per square km, this is a 6 times increase in the density of 
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measured points. The subsequent flattening of the monostatic repeat-pass interferograms is 
illustrated in Figure 56. Evidently, the fringes due to very high buildings in Las Vegas have 
been removed. It is worth mentioning that the residual topography is still present in the 
monostatic interferograms (due to possible errors in the height estimation using the bistatic 
interferograms) and has to be removed. The better the precision of the height estimation (as 
given by Equation (53)), the lower is the magnitude of the residual topography. 

 
Figure 54: A single-look monostatic interferogram of Las Vegas, US and its spatially adaptive multi-looked 
version. 

 
Figure 55: DS height estimates for Las Vegas, US, using bistatic interferograms via 1D periodogram. 

 
Figure 56: Illustration of removal of topographic phase from a monostatic interferogram of Las Vegas, US. 
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    The flattened monostatic interferograms are now unwrapped using the MCF algorithm 
(Costantini, 1998; Eineder et al., 1998). These are subsequently used for residual topography 
and deformation monitoring using the SBAS approach via the L1-norm minimization. The 
estimated residual topography for the DSs of Las Vegas is in the order of a few meters, 
although there are some DSs which have a significantly high DEM error which is greater than 
10 m (approximately 2.8% of the selected DSs). The estimated RMS deformation and an 
example of a deformation time series for a DS are shown in Figure 57. The RMS deformation 
is visually effective and provides integral information about the displacement with respect to 
time. As can be seen, even non-linear deformation time series can be estimated, which include 
the linear as well as seasonal deformation on buildings due to thermal dilation (Zhu and 
Bamler, 2011). The standard deviation of the deformation estimates using the L1 norm 
inversion is between 0 and 3.1 mm and thus, this method provides millimeter precision. The 
standard deviation is higher for DS points in layover regions or having a seasonal motion.  

 
Figure 57: DS deformation estimates for Las Vegas using flattened monostatic interferograms via L1-norm 
based SBAS. Deformation time series is visualized for a DS, where, the dots represent the estimated deformation 
at the time of SAR acquisitions and the solid line is a line fitting using cubic spline interpolation. 
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5.4 Discussion and Conclusion 
 

    High resolution SAR sensors TerraSAR-X and TanDEM-X enable bistatic and monostatic 
interferometry. Especially, the bistatic interferograms have a high data quality and are free 
from deformation, atmosphere and temporal decorrelation. By properly integrating the data 
stacks, an improved estimation of topography and deformation time series at object resolution 
is possible. In particular, an advanced integration of TerraSAR-X and TanDEM-X InSAR 
data has been investigated utilizing DSs in dense metropolitan areas, where the standard 
TanDEM-X elevation models are inaccurate. The DSs also have a high density in urban areas. 
The developed method complements coherent stacking techniques such as PSI and 
TomoSAR. The results of processing a TerraSAR-X/TanDEM-X dataset of Las Vegas in US 
show the millimeter precision which can be obtained. No standard TanDEM-X / external 
DEM was used in the processing. Since the same multi-looking window is used for 
topography and deformation estimation of DSs, error propagation is minimal. The fusion 
algorithm is easy to implement without much add-ons to the existing techniques and is 
computationally efficient.     

    Note that there might be bright pixel patterns along azimuth and range directions, 
especially in urban areas. These are caused by high power side lobes due to discontinuities at 
the margins of the signal spectrum for strong signal returns. Side lobe suppression can be 
performed to reduce this effect (Breit et al., 2008). 

    Additionally, the periodogram approach for estimating heights using the bistatic 
interferograms works well for single PSs too, however, it must be stressed that the 
periodogram can lead to a wrong estimation in case of PSs which are characterized by two (or 
few) dominant scatterers inside a resolution cell. In fact, the next chapter presents the 
potential of jointly processing TerraSAR-X/TanDEM-X data using PSs. 
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6 Fusion of Monostatic and Bistatic Interferometric 
Data Stacks for Persistent Scatterers 
 

    This chapter presents the integration of monostatic repeat-pass and bistatic single-pass SAR 
interferometric stacks for complex urban area monitoring exploiting PSs. The aim is to 
resolve single or double scattering mechanism present in the same resolution cell. The 
following paper is recapitulated:  
A.5 Goel, K., Adam, N., 2013c. Advanced stacking of TerraSAR-X and TanDEM-X data 
in complex urban areas. Proceedings of Joint Urban Remote Sensing Event, JURSE 
2013, Sao Paulo, Brazil, 21-23 April, 115-118. 
Additionally, simulations based on realistic acquisition and noise scenarios have been 
presented to evaluate the potential and limits of this fusion technique. Afterwards, a 
demonstration is provided using high resolution mixed TerraSAR-X/TanDEM-X data of Las 
Vegas, US which was used in the previous chapter.  

 

6.1 Introduction 
 

    PSI is a well-established interferometric stacking technique for measuring Earth’s 
topography and deformation (Ferretti et al., 2000; Ferretti et al., 2001). High resolution 
satellite TerraSAR-X allows millimeter accuracy with the standard monostatic mode (Adam 
et al., 2008; Eineder et al., 2009). Its twin satellite TanDEM-X, together with TerraSAR-X, 
now facilitates bistatic mode also. Addition of a few motion-free and atmosphere-free bistatic 
TanDEM-X data pairs to the existing monostatic TerraSAR-X data stack can improve the 3D 
positioning and deformation monitoring of objects. However, the combination of bistatic and 
monostatic data can be challenging in dense metropolitan areas, where, the standard 
TanDEM-X elevation models are inaccurate because of geometrical limitations such as radar 
layover. Also, complex urban structures and the side-looking radar observation geometry 
make it likely that more than one scatterer are inside a resolution cell (Ferretti et al., 2005). 
Typical example is a layover of building and ground. In urban areas, around 15-30% of the 
PSs are double scatterers characterized by two dominant scatterers inside the same azimuth - 
slant range resolution cell but located at different elevations (Adam et al., 2005; Zhu, 2011). 
The elevation here refers to the axis perpendicular to the azimuth - slant range plane, as 
described in Subsection 2.1.1. 

    An approach has been developed that jointly processes monostatic and bistatic data for 
resolving single or double scatterer in a resolution cell. The typical solution to this problem is 
TomoSAR (Lombardini, 2005; Fornaro et al., 2009; Zhu and Bamler, 2010a), which provides 
the radar reflectivity along the elevation direction (see Subsection 2.3.2). However, a classical 
spectral estimation is limited in resolution and needs exact information on different 
interferometric phase contributions. A parametric tomography approach performs better but 
needs the scatterer configuration beforehand. Thus, the full tomography (utilizing the 
amplitude and phase data) requires information which basically comes from the PSI or 
TomoSAR estimation itself and needs an iterative processing. Instead, the proposed algorithm 
extends conventional PSI and solves the model selection problem about the number of 
scatterers (one or two) inside the resolution cell using bistatic interferometric phase data and 
monostatic amplitude data only. The use of only the monostatic amplitudes (and not the 
phases) is to avoid deformation and atmospheric interference. The technique utilizes the 
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baseline-dependency of the amplitudes. The quality and precision of TanDEM-X elevation 
models can be enhanced and subsequently, monostatic differential interferometric phase data 
can be used for displacement monitoring.  

 

6.2 Methodology 
 

    Standard PSI is developed to cope with a single dominant scatterer inside a resolution cell 
(Ferretti et al., 2000; Ferretti et al., 2001). The periodogram based on a common master image 
is the optimal estimator in case of a single scatterer surrounded by incoherent clutter (see 
Equation (26)). Of course, the estimation is performed on arcs (linking neighboring PSs) to 
mitigate atmospheric propagation effects and the periodogram is a 2D function which 
estimates the differential velocity between the neighboring PSs, besides estimating the 
differential DEM error between them. 

    The TanDEM-X data pairs acquired simultaneously result in bistatic interferograms which 
have a high phase quality. There are no phase components due to motion and atmosphere and 
in addition, there is no temporal decorrelation (see Figure 7 for a comparison between a 
bistatic and a monostatic interferogram). Given a few bistatic interferograms with different 
height of ambiguities and calibrated with respect to a single pixel, it is possible to retrieve the 
height information in case of a single scatterer inside a resolution cell using the periodogram 
approach (similar to conventional PSI, without the need of a common master image). In this 
case, the periodogram is a 1D function which estimates the height (but not the velocity) of 
each PS. The topography estimation is performed akin to Subsection 5.2.2 based on M  
single-look bistatic interferograms, except that the observed interferometric phase is single-
look, there is no need to multi-look the data for PSs. Referencing to a single pixel works fine 
since the atmospheric phase components are negligible. The precision of the height estimate 
of a PS is given by Equation (53), wherein, the phase standard deviation of the PS is given 
either by Equation (22) or Equation (23), depending on the method used for selecting the PS. 

 
Figure 58: PS height estimates for Las Vegas, US, using bistatic interferograms via 1D periodogram. Processed 
points are overplotted on the mean amplitude image and color coded according to height values. 

    Figure 58 presents the PS height estimates via 1D periodogram for the test site Las Vegas 
using 5 bistatic interferograms with height of ambiguities -33.4, -44.7, -54.3, 53.9 and -53.8 
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m/cycle, respectively. The height estimates can be used later on for the removal of 
topographic phase from the monostatic interferograms. Afterwards, the flattened monostatic 
interferograms can be used for deformation mapping using standard PSI.  

    However, it can be seen in Figure 58 that there are many outliers in the results. This is 
because of the presence of double scatterers inside a resolution cell. An example of a 
periodogram for a single scatterer is shown in Figure 59 (a). What can be seen is the presence 
of strong sidelobes in the periodogram due to the use of only 5 TanDEM-X interferograms. 
Obviously, an ideal situation would be many bistatic interferograms with varying height of 
ambiguities to reduce the sidelobes of the periodogram and get a clear peak.  Practically, this 
is not always possible. The periodogram estimates the height accurately only when a single 
scatterer is present in a resolution cell. The case of double scatterers in a resolution cell leads 
to biased or even a wrong estimation as demonstrated in Figure 59 (b). 

 
Figure 59: (a) Example of a periodogram for a single scatterer of the test site Las Vegas, US. (b) Example of a 
periodogram for a double scatterer of the test site Las Vegas, US (biased or wrong estimation of height). 

    To detect the scatterer configuration, the proposed algorithm increases the number of 
observations by making use of monostatic amplitude data (which is baseline-dependent as 
described later in Subsection 6.2.1 and Subsection 6.2.2), in addition to the bistatic 
interferometric phase data. It provides the number of dominant scatterers inside a resolution 
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cell and consequently solves the model selection problem. This allows resolving complicated 
scattering situations such as layover in urban areas, which is a problem for SAR. The scatterer 
configuration detection and height estimation support PSI and TomoSAR, which include the 
phase information and thus require the correction of displacement and atmospheric phase 
beforehand.  

    Given N  SAR monostatic amplitude images, the model selection is based on the following 
two mechanisms.  

 

6.2.1 Single Scattering Mechanism 

    A single scatterer, i.e. a panel made of metal can be described by a “Sinc fit”, i.e. the 
following amplitude Nja j ,...,1, =  (Adam et al., 2005; Bamler and Hartl, 1998; Ferretti et al., 
2005): 
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is the  reflectivity of the scatterer, ∆  is the extension of the panel and φ  is the orientation of 
the panel (i.e. orientation of the panel plane with respect to the azimuth - slant range plane).  

 

6.2.2 Double Scattering Mechanism 

    The alternative model describing the amplitude Nja j ,...,1, =  of a double scatterer is a 
“Cos fit” and results from the amplitude of the sum of two complex sinusoids and describes a 
fading (Adam et al., 2005). It is given by: 
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It models the reflectivities 1r  and 2r  of the two scatterers, their height difference h∆  and the 
phase shift φ  of the cosine. Here, the assumption is that the two scatterers inside the 
resolution cell are ideal point scatterers. A more complicated model is given by assuming that 
the two scatterers are panels of metals with certain extensions and orientations. In this case, 
the amplitude can be modelled by a “Cos fit with sinc envelope” as follows:  
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where ∆′  is the extension and φ′  is the phase shift of the sinc envelope, respectively.  
 

    Based on the above two scattering mechanisms, a robust joint MAP estimation of the 
unknown parameters and model selection is performed exploiting the coregistered and 
calibrated monostatic amplitude images. This is done via Bayesian inference (Papoulis and 
Pillai, 2002; Sivia and Skilling, 2006) making use of directed graphs (Bishop, 2006) and 
particle filters (Isard and Blake, 1998; Arulampalam et al., 2002), similar to Chapter 4. The 
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model which has the higher evidence (i.e. marginal likelihood) is chosen as the scatterer 
configuration as explained below.  

    Given the data D , assumed to have arisen from one of the two models 1M  or 2M  
according to a probability density  ( )1| MDf  or ( )2| MDf , respectively, the Bayes factor K  
is given by (Kass and Raftery, 1995): 
    ( )

( )2
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|
|
MDf
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(57) 

The probability density ( )kMDf | , where ( )2,1=k , is called the evidence or marginal 
likelihood of the data and is obtained by integrating over the parameter space kθ : 
    ( ) ( ) ( )∫ ⋅⋅= kkkkkk dMfMDfMDf θθθ |,||  (58) 

A value of 1>K  means that the model 1M  is supported more by the data under consideration 
than model 2M . Usually, it is difficult to calculate the evidence integral given by Equation 
(58) for high-dimensional and non-analytical cases. Instead, the likelihood corresponding to 
the ML estimate of the parameters for each model is used, and then, the test becomes a 
classical likelihood-ratio test. However, using particle filters, the evidence can be easily 
computed based on Monte Carlo integration. An advantage of the use of Bayes factors is that 
it includes a penalty for including too much model structure and guards against overfitting. 

    Then, depending upon the model selected, a suitable height estimation can later be 
performed using the bistatic interferograms (referenced with respect to a single pixel). For a 
single scatterer, this is done via the periodogram method described previously. In case of a 
double scatterer, the actual heights of the two dominant scatterers can be determined similarly 
to (Ferretti et al., 2005), wherein, the computation is greatly reduced since the velocity 
parameter can be neglected (as only the bistatic interferograms are being used) and the height 
difference and the reflectivities of the two dominant scatterers have been already estimated 
using the amplitude data. The Rayleigh elevation resolution lρ  is given by: 
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where ⊥∆B  is the elevation aperture size, i.e. the spread of the orbits perpendicular to the 
LOS.  

 

6.3 Application Test Case and Preliminary Results 
 

    This fusion technique has been first applied on simulated data for performance assessment. 
Then, high resolution TerraSAR-X/TanDEM-X data of Las Vegas, US, have been used and 
first results are presented.  

 

6.3.1 Simulated Data 
 

    The amplitudes of a single scatterer and a double scatterer are simulated based on real 
phase-to-height conversion factors of the high resolution TerraSAR-X dataset of Las Vegas, 
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US, consisting of 74 monostatic acquisitions. The single scatterer is simulated by assuming a 
panel of metal with 0.1=r , m0.1=∆ , 36=φ . The double scatterer is simulated by 
assuming two panels of metal with 0.1=r , m0.1=∆ , 36=φ  and 5.0=r , m0.1=∆ , 

54−=φ , respectively and a height difference of mh 50=∆ .  Gaussian noise with different 
SNR is added to the simulated scatterers.  

    Figure 60 shows the probability of detection DP  and the probability of false alarm faP  of a 
double scatterer for different SNR using different models for the double scatterer, namely, 
“Cos fit” and “Cos fit with sinc envelope”. For each SNR value, 1000 realizations were 
performed to evaluate the detection and false alarm rates. 100,000 particles were used for 
computing the particle PDFs for Bayesian inference for each realization. It can be seen that 
“Cos fit” has a higher DP  and faP . In comparison, “Cos fit with sinc envelope” has a lower 

DP  and faP . This is because it has a larger number of unknowns and more particles are 
needed to get the same detection rate. For example, if the number of particles used for each 
realization are increased to 1 million, the detection rate of a double scatterer using “Cos fit 
with sinc envelope” increases from 0.63 to 0.8 (for SNR=2dB) and from 0.83 to 0.9 (for 
SNR=4dB), although the computation time is more. Of course, the false alarm rate of a double 
scatterer using “Cos fit with sinc envelope” is better because it does not assume that the two 
dominant scatterers are ideal point scatterers and thus, this model fits the data better. Anyhow, 
for a typical SNR of 2 dB (which is often used as a threshold to identify PSs), the double 
scatterer detection rate is more than 60% for both the double scatterer models using 100,000 
particles per realization.  

 
Figure 60: Probability of detection DP  and probability of false alarm faP  of a double scatterer for different SNR 
using different models for the double scatterer, namely, “Cos fit” and “Cos fit with sinc envelope”. 

    Additionally, a building wall and ground layover scenario (i.e. 100 double scatterers) has 
been simulated, wherein, the building has a height of 100 m and the ground is at 0 m. A 
model selection and parameter estimation is performed based on 100,000 particles for each 
simulated scatterer. Figure 61 shows the estimated heights of the simulated double scatterers 
for SNR=2dB and SNR=10dB. Red dots show the detected double scatterers and green dots 
show the detected single scatterers (i.e. a wrong model selection). The true heights are 
depicted by the black line. The elevation resolution for the simulated data with m031.0=λ , 
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kmR 620=  and mB 67.561=∆ ⊥  is ml 11.17=ρ . This implies a height resolution of 
mz 07.10=ρ  for an incidence angle of 04.36=θ , as depicted by the blue lines in Figure 61. 

At low SNR, the resolution limit of this algorithm is clearly visible. However, for high SNR, 
the algorithm is able to achieve super-resolution for a few double scatterers (although this is 
limited since a sinc and a cosine tend to be similar when h∆  is small).  

    It is worth mentioning that the parameter estimation for “Cos fit with sinc envelope” model 
is more precise for the parameters 1r , 2r , h∆  and φ . The standard deviation of the parameters 
∆′  and φ′  is high since the sinc envelope passes through a few observations only.      

 

 
Figure 61: Estimated heights of simulated double scatterers for SNR=2dB and SNR=10dB. Red dots show the 
detected double scatterers and green dots show the detected single scatterers (i.e. a wrong model selection). For 
the upper plots, “Cos fit” model is used for double scatterers, whereas for the lower plots, “Cos fit with sinc 
envelope” model is used for double scatterers. “Sinc fit” model is used for single scatterers. The true heights are 
depicted by the black line. Blue lines show the height resolution. 
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6.3.2 Real Data 
 

    The real data is that of the city of Las Vegas in US. The same data stack used in the 
previous chapter, comprising of 84 High Resolution Spotlight acquisitions from 2008-2011 
and 5 bistatic interferograms with height of ambiguities -33.3927, -44.6864, -54.2698, 
53.9007 and -53.7940 m/cycle, respectively, has been exploited here. The pre-processing, 
including amplitude calibration and PS detection, has been done using DLR’s PSI-GENESIS 
system (Adam et al., 2003; Adam et al., 2004; Kampes, 2006). For simplicity, only the “Cos 
fit” has been used to model a double scatterer here. 1 million particles have been used for 
computing the particle PDFs for Bayesian inference.  

 
Figure 62: Demonstration of parametric “Sinc fit” (single scatterer) and “Cos fit” (double scatterer) for two PSs 
of the test site Las Vegas, US, respectively. 

    Figure 62 compares the parameter fits for the two resolution cell configuration models for 
two PSs of the test site. A “Sinc fit” corresponds well to the observed data for a single 
scatterer, whereas a “Cos fit” is an appropriate fit to the observed data for a double scatterer. 
As can be seen, the parametric modelling and robust fit allows the optimal estimation of the 
resolution cell configuration.  
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    Figure 63 shows the detected single scatterer and double scatterer resolution cells in green 
for a part of the test site (i.e. a building and its surroundings). The layover areas where double 
scatterers exist can be visualized in Figure 63 (a), which is the amplitude image of the test 
area. Figure 63 (c) is plausible, it shows the double scattering resolution cells in areas where 
they are expected (for example, layover of building and ground), thus, validating the 
algorithm. 

    Based on the number of scatterers inside a resolution cell, the optimal estimation and 
subsequent removal of topographic residuals from the monostatic interferograms can finally 
be implemented, followed by improved deformation monitoring using standard PSI. 

 
Figure 63: (a) Amplitude image of a part of the test site, Las Vegas, US. (b) Detected single scatterers are 
overplotted and shown in green. (c) Detected double scatterers are overplotted and shown in green. 
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6.4 Discussion and Conclusion 
    A new concept has been developed for the fusion of repeat-pass monostatic and single-pass 
bistatic SAR data. It makes use of bistatic interferograms and monostatic SAR amplitude 
images to cope with the typical PS resolution cell configurations and detects one or two 
scatterers inside a SAR resolution cell. It is insensitive to deformation and atmospheric 
disturbances as compared to PSI and TomoSAR. It can be applied in the early stages of 
interferometric processing. A preliminary demonstration has been provided using TerraSAR-
X and TanDEM-X data of Las Vegas in US. Future work can concentrate on providing 
processing examples for this technique.  
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7 Summary 
 

    This thesis broadens the scope of SAR interferometry for deformation and topographic 
mapping in difficult areas by exploiting high resolution SAR data with new algorithms. This 
summary chapter first starts with a discussion about the work done in the thesis and the 
conclusion, followed by an outlook about the potential improvements and future topics. 

 

7.1 Discussion and Conclusion  
 

    This dissertation was set out to explore new contributions which can be made to the 
research field of DInSAR, with the advent of high resolution SAR missions such as 
TerraSAR-X and TanDEM-X. Applicability of conventional InSAR stacking techniques (e.g. 
PSI, TomoSAR, SBAS and SqueeSAR) for deformation studies is limited by various factors. 
For instance, temporal decorrelation is a major problem in rural areas. In contrast, highly 
urbanized areas face the problem of radar layover and shadow. Taking into account these 
issues, this thesis aimed at development, test and analysis of advanced stacking techniques 
and applications in high resolution SAR interferometry, with a focus on deformation and 
topographic measurements in challenging regions. Furthermore, the intention was also to 
improve the precision, robustness and spatial resolution of the estimates, while reducing the 
computational efforts. In order to realize these objectives, the following techniques based on 
meter resolution SAR data have been implemented. 

    An advanced SBAS technique has been developed for deformation monitoring in non-urban 
areas. The following conclusions can be drawn about it: 

• It extends the applicability of conventional SBAS in rural areas and also, takes 
advantage of high resolution SAR data.  

• It estimates the deformation time series for DSs at a higher spatial resolution (i.e. 
object resolution, e.g. in the order of a meter for High Resolution Spotlight mode 
TerraSAR-X data) compared to conventional SBAS. 

• It is also more robust with respect to phase unwrapping errors in areas where 
decorrelated patches separate the coherent patches. This is because an L1-norm 
minimization is used to retrieve the deformation leading to a more robust solution in 
case of outliers. 

• The algorithm has been applied on high resolution TerraSAR-X data of a natural gas 
storage reservoir and the town of Lueneburg in Germany. The results obtained show 
that this method is capable of reconstructing the non-linear deformation time series in 
regions where there are a few coherent scatterers only. 

• Additionally, the adaptive spatial phase filtering algorithm developed as part of this 
technique can be used as the estimator of the complex correlation of any interferogram 
generated from the available SAR data.  

• This advanced SBAS method is, however, computationally more demanding than 
normal SBAS because the multilooked interferometric data is at a higher resolution.  

• Also, highly decorrelated areas (e.g. vegetated and low reflectivity homogenous 
regions with spatial coherence less than 0.3) still cannot be monitored using this 
technique.  
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    For precision monitoring of such difficult decorrelated areas whose deformation velocity 
can be described by a suitable model, another advanced DSI technique has been realized. The 
following can be inferred about it: 

• It contributes to the research field of DInSAR by a “principle demonstration” of 
providing measurements in highly noisy areas, which are often an issue with DInSAR 
time series analysis. This method is based on the assumption of smoothly varying 
displacement fields which can be modelled. It uses a periodogram approach and 
combines 3D wrapped phase data to provide deformation gradients for each coherent 
DS patch. These gradients are subsequently integrated using a model.  

• It provides spatially dense deformation velocity maps in contrast to conventional 
coherent methods. Provided that the assumption mentioned in the previous point is 
fulfilled, more points are estimated because no standard phase unwrapping is required 
and the deformation model is known. 

• It maps the mean deformation velocity of DSs at a suitable object resolution. This is 
advantageous in contrast to conventional SBAS which estimates the deformation at a 
low resolution. 

• With respect to SqueeSAR, it is computationally inexpensive as it exploits only small 
baseline differential interferograms.  

• The technique’s application using high resolution TerraSAR-X data of the town of 
Lueneburg in Germany demonstrates the high potential of this new technique in 
deformation mapping of areas undergoing high temporal decorrelation.  

• For implementing the deformation integration, a Bayesian inference estimation 
framework has been applied. Firstly, directed graphs are used to represent 
dependencies of RVs. And secondly, PDFs are modelled by particle representations. 
The implemented estimation framework allows a Bayesian model selection and 
provides an estimation based upon a well-established theory. As a matter of fact, this 
Bayesian inference tool can be used for solving general multidimensional non-linear 
optimization problems.   

• The current drawback of this technique is the model-based deformation velocity 
integration, which requires the surface deformation pattern to be known beforehand. 
Research is needed on more advanced model-free integration methods in the future. 

• In addition, this DSI technique provides only the mean deformation velocity estimates, 
as compared to non-linear deformation time series provides by SBAS. 

    Next, a fusion of monostatic repeat-pass and bistatic single-pass InSAR data stacks 
exploiting DSs has been performed for dense urban area monitoring. It can be concluded that: 

• This integration technique complements coherent stacking techniques such as PSI and 
TomoSAR. 

• It also complements standard SRTM/TanDEM-X DEMs which are inaccurate in urban 
areas due to spatial phase unwrapping problems caused by radar layover and shadow. 

• It combines monostatic and bistatic data to fully exploit the potential of TerraSAR-
X/TanDEM-X missions. 

• It provides an improved estimation of topography and deformation, since the bistatic 
interferograms have a high data quality and are free from deformation, atmosphere and 
temporal decorrelation.   

• More importantly, this technique demonstrates that DSs also, and not only PSs, have a 
high density in urban areas and can be optimally exploited for deformation studies. 

• The results of processing a TerraSAR-X/TanDEM-X dataset of Las Vegas, US, 
demonstrate the millimeter precision which can be obtained.  

• However, as compared to PSI, the deformation is mapped at object resolution. 
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    Last, a fusion of monostatic repeat-pass and bistatic single-pass InSAR data stacks 
exploiting PSs has been done for complex urban area monitoring. It can be implied that: 

• This technique extends standard PSI. 
• It increases the robustness of the estimates with respect to resolution cell 

characteristics by resolving single and double scattering (i.e. layover) mechanisms, 
based on bistatic phase data and monostatic amplitude data only and this is the reason 
that this technique is insensitive to temporal decorrelation, atmospheric propagation 
effects and displacement. 

• First results using TerraSAR-X/TanDEM-X dataset of Las Vegas in US show its high 
potential.  

    The vision of this thesis is to encourage the geo-user community in using these techniques 
and to fully exploit the potential of meter resolution SAR data. 

 

7.2 Outlook 
 

    Based on the current status of advanced SAR interferometry, the recommendations for 
future research are: 

• Fusion of PSs and DSs would considerably increase the information content. In fact, 
SqueeSAR is the first step towards such a combination. The DS-based techniques 
developed as part of this thesis can be improved further to optimally process 
information from PSs too. 

• The implemented techniques can also be enhanced for a wide area processing in order 
to take advantage of future SAR missions such as ESA’s Sentinel-1 operating in C-
band. 

• The advanced DSI technique can take benefit from a model-free approach for 
deformation velocity integration. This would also be useful for estimating the non-
linear deformation time series later.  

• Another key limitation of InSAR is that it estimates the deformation in the LOS. 
InSAR data stacks from different imaging geometries can be combined to retrieve the 
3D displacement vector. 

• An efficient 3D phase unwrapping algorithm exploiting both the spatial and temporal 
structure of the interferometric data would enhance the multitemporal techniques 
realized here. 

• The techniques can also use L-band SAR data in the future from JAXA’s ALOS-2-
PALSAR system. The advantage here would be a significant coherence improvement, 
although there would a reduced sensitivity in deformation detection due to the 
wavelength increase.  

    In the end, the advanced stacking techniques and applications presented in this dissertation 
have contributed to more precise surface displacement measurements of various areas for an 
effective Earth observation.  
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1. Introduction

Differential Interferometric SAR (D-InSAR) is a powerful tool for
displacement mapping in radar’s line of sight (Bamler and Hartl,
1998; Rosen et al., 2000). By using large stacks of SAR images ac-
quired over one and the same area and analyzing long time series,
temporal evolution of ground deformation can be extracted using
advanced techniques such as Persistent Scatterer Interferometry
(PSI) (Ferretti et al., 2000, 2001; Kampes, 2006; Adam et al.,
2008). In PSI, differential interferograms with respect to a single
master image are processed at single look resolution and point
scatterers that are coherent over long time intervals and for wide
look-angle variations are utilized. These phase stable points are
called persistent scatterers (PSs) and correspond to one or two
dominant scatterers in a resolution cell. PSI is most powerful in
urban areas because there are lots of man-made structures, and
consequently there is a high number of such PSs. Besides, the
new generation of high resolution SAR sensors such as the X-band
TerraSAR-X and COSMO-SkyMed have helped in obtaining a large
PS density, which has made it possible to retrieve millimetric
Society for Photogrammetry and R

x: +49 8153 28 1420.
ground displacement and structural stress of individual buildings
from space. However, PSI is difficult to apply in case of strong
non-linear motion and fast deformation. Another key limitation
of PSI is the low density of PSs in non-urban (rural) areas which
are characterized by vegetated or low reflectivity homogenous re-
gions (see Fig. 1a). Application examples include mines, volcanoes,
oil/gas/water reservoirs and seismic zones. In fact, there is an
increasing focus on increasing the spatial sampling of deformation
exploiting also the distributed scatterers (DSs) (see Fig. 1b) and
improving the quality of deformation estimates. Distributing scat-
tering mechanism involves a coherent sum of many independent
small scatterers (no dominant scatterer) within a resolution cell
(Goodman, 1976) and is modelled by a complex circular Gaussian
radar return (Bamler and Hartl, 1998). Stacking techniques such as
the Small Baseline Subset Algorithm (SBAS) (Berardino et al., 2002;
Mora et al., 2003) and SqueeSAR (Ferretti et al., 2011; Zan, 2008)
have been developed to process DSs (Gaussian scatterers).

Essentially, SBAS retrieves the deformation by making use of
spatially unwrapped small baseline differential interferograms.
These are linked using the singular value decomposition (SVD)
method and a minimum-norm least squares (LS) solution is ob-
tained (Golub and Loan, 1996). It is worth pointing out that even
non-linear deformation can be estimated using SBAS. There are
emote Sensing, Inc. (ISPRS) Published by Elsevier B.V. All rights reserved.
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Fig. 1. ERS image of Gardanne coal mine located in France. (a) Shows the PSs in green, whereas, (b) shows the PSs and DSs in green. We can clearly see that in this rural region,
the density of PSs is low compared to the DSs.
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certain drawbacks however as follows. First, the interferograms are
spatially filtered before the stacking to enhance the Signal to Noise
Ratio (SNR) (Zebker and Villasenor, 1992). This results not only in a
reduction of resolution and a superposition of different objects on
ground, but also, in a loss of deformation information contained in
isolated pixels. Additionally, abrupt changes in deformation are
smoothed out. There is a need for fully exploiting the high resolu-
tion SAR data available from sensors such as TerraSAR-X and
extracting deformation at a high resolution. Second, phase
unwrapping (Constantini, 1998; Eineder et al., 1998) is an impor-
tant step in SBAS and phase unwrapping errors often occur in data
with a lot of fringe discontinuities, which is especially the case in
non-urban areas. Several decorrelated areas such as forests, soil,
water etc. might separate the coherent areas and the relative val-
ues in the different coherent patches can have unknown integer
multiples of 2p phase offsets, thus making phase unwrapping time
consuming and error prone. In contrast, SqueeSAR uses amplitude
statistics to detect the DSs and carries out an accurate estimation
of covariance matrices for the DSs, i.e. it exploits all possible inter-
ferograms to ‘‘squeeze’’ the deformation. Afterwards, a phase trian-
gulation algorithm is applied to each DS to retrieve the optimized
phase values for the SAR images. The DSs are then processed jointly
with the PSs using the conventional PSI chain. However, this tech-
nique can be computationally expensive. Moreover, it usually
makes a linear model assumption and is not suitable for phenom-
ena characterized by highly non-linear deformation.

With respect to the above mentioned techniques, we introduce
an alternative approach for high resolution deformation monitor-
ing with a focus on natural terrains characterized by typical tem-
poral decorrelation and phase ambiguities. It is based on an
object adaptive parameter estimation, exploiting only the small
baseline differential interferograms so as to reduce the effects of
topography on the DSs. The practical implementation starts with
an accurate phase and coherence estimation and residual topogra-
phy removal for the small baseline interferograms using an adap-
tive spatial phase filtering algorithm (Parizzi and Brcic, 2011;
Goel and Adam, 2011). It reduces the phase noise while maintain-
ing the high geometric resolution provided by new satellites such
as TerraSAR-X (meter resolution). Subsequently, the phase esti-
mates are used to retrieve the line-of-sight deformation using
the SBAS technique. Here, phase inversion is performed using an
L1 norm minimization instead of the standard least squares (L2
norm minimization). This results in a more robust solution with re-
spect to the often occurring and difficult to detect phase unwrap-
ping errors found in non-urban areas (Lauknes et al., 2011).
Subject of this paper is to present the developed technique and
an application test case using high resolution TerraSAR-X data of
an underground gas storage field located in Germany.
2. Methodology

Assuming that we have N SAR images and M single look small
baseline differential interferograms available, the implemented
methodology for deformation estimation in rural regions involves
the following two steps:
2.1. Adaptive spatial phase filtering

In the first step, we start with an improved estimation of the
differential interferometric phase and coherence even in the pres-
ence of high phase noise and error sources (e.g. temporal decorre-
lation, topographic errors and atmospheric effects). The accurate
phase estimation supports deformation monitoring techniques
such as SBAS and also improves the phase unwrapping. The accu-
rate coherence estimation helps in selection of pixels for deforma-
tion monitoring as it provides information about temporal
decorrelation and also, for guiding phase unwrapping algorithms.

For extracting the geophysical parameters of interest in natu-
ral terrains affected by decorrelation phenomena, the SNR of the



Fig. 2. Adaptive spatial phase filtering algorithm for high resolution differential
interferometric stacking.
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differential interferograms has to be improved by a local spatial
averaging (multilooking). In other words, the statistics of inter-
ferograms characterized by DSs are governed by the covariance
(Bamler and Hartl, 1998) and this has to be estimated correctly.
The local complex covariance is the cross-correlation coefficient
of a SAR image pair estimated over a small window, once all
the deterministic phase components (mainly due to the topogra-
phy) have been compensated for. For a pixel, the complex covari-
ance (correlation) c for a SAR image pair is estimated as follows:

c ¼
PL

i¼1s1;i � s�2;i � e�jutopoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPL
i¼1js1;ij2 �

PL
i¼1js2;ij2

q ð1Þ

where s1,i and s2,i are the complex signal values of the SAR image
pair for the i th pixel of the L neighboring pixels in the estimation
window and /topo is the topographic phase of the window. Consid-
ering the amplitudes of images as one (i.e. we do not weigh the pix-
els according to their brightness, no assumption is made about a
pixel’s quality from its brightness), Eq. (1) can be reduced to:

c ¼ 1
L

XL

i¼1

e ju1;i � e�ju2;i � e�jutopo ð2Þ

where /1,i and /2,i are the phase values of the SAR image pair for
the ith pixel of the L neighboring pixels in the window. The
amplitude of the complex covariance is the coherence estimate
of the pixel (a measure of phase noise), whereas, its phase is
Fig. 3. Identification of homogenous pixels (in red) for the blue pixel by Anderson–Darl
enclosed in green rectangle in (a), (c) is a zoom-in of the green rectangle in (b).
the expected interferometric phase of the pixel. Unfortunately,
this estimator is biased and underestimates the covariance in case
of interferometric fringes present due to residual digital elevation
model (DEM), local slope and motion (Zebker and Chen, 2005).
Besides, usually, a rectangular patch around the pixel of interest
is used for multilooking. This might lead to averaging of pixels
arising from different distributions leading to a wrong estimation
of the covariance.

Keeping this in mind, we have implemented an object adaptive
spatial phase filtering algorithm for generating high resolution
coherent differential interferometric stacks (Goel and Adam,
2011). It is based on two principles. First, the high resolution of sat-
ellites such as TerraSAR-X leads to many resolution cells covering a
homogenous object (DS) in non-urban areas. This object can be de-
scribed by a single deformation parameter. The object area (pixels)
thus needs to be identified and interferometric phase can be im-
proved by an adaptive spatial filter, which also incorporates phase
flattening. Second, we just concentrate on small baseline differen-
tial interferograms to limit the effects of topographic errors on the
DSs. Practically, the algorithm involves three sub-steps which are
shown in Fig. 2 and described below:

1. Using a stack of N coregistered (up to sub-pixel accuracy) and
calibrated SAR amplitude images, we identify for each pixel the
statistically homogenous pixels surrounding it. Usually, it is as-
sumed that homogenous pixels can be found in a local neighbor-
hood such as a rectangular window. However, they can be far
apart depending upon reflectivity and boundaries of objects (fields,
trees, roads, etc.). The idea is thus to average a given pixel only
with neighbors that present similar scattering properties instead
of a rectangular (boxcar) averaging.

Various statistical tests have been proposed in recent years to
identify homogenous pixels based on the amplitude of coregistered
and calibrated stack of SAR images. These include the Kullback–
Leibler Divergence test (Bishop, 2006), the Kolmogorov–Smirnov
(KS) test (Papoulis and Pillai, 1984) (used in the SqueeSAR ap-
proach) and the Anderson–Darling (AD) test (Pettitt, 1976). The
AD test has been proven to be the most effective statistical test
to identify if two pixels arise from the same distribution (Parizzi
and Brcic, 2011). This test performs reasonably well even for a
stack of acquisitions containing as small as 10 images. It is a
non-parametric test, i.e. we do not assume that the samples belong
to a defined probability distribution. Instead, using the amplitude
of the stack of SAR images, we obtain the empirical cumulative dis-
tribution functions of amplitudes for the two pixels (points) under
consideration. The distance between the distributions, with
weighting given to tails (higher order moments of the distribution
are taken into consideration), tells us if the two points statistically
ing (AD) test. (a) is a Google Earth image, (b) is the TerraSAR-X image of the region
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arise from the same distribution. For a set of points a and b, the AD
statistic A2 is:

A2 ¼ N
2

X
Fa;bðxÞ

½FaðxÞ � FbðxÞ�2

½Fa;bðxÞ � ð1� Fa;bðxÞÞ�
ð3Þ

where N is the number of SAR amplitude images, Fa(x) and Fb(x) are
empirical cumulative distribution functions of amplitudes for
points a and b, Fa,b(x) is empirical distribution function of the pooled
distribution [a, b]. If the AD statistic is less than a threshold value,
the two pixels are homogenous.

Fig. 3 shows an example of the AD test. 55 TerraSAR-X images
(January, 2008 to May, 2010) of a gas storage reservoir located in
Germany were used for the processing. We performed the AD test
for the blue pixel (which lies on a road) with each of its neighbors.
The homogenous pixels were identified and marked in red. We see
that using the AD test, the homogenous pixels identified lie on the
same road as well.

2. The homogenous pixels identified are then used for adaptive
phase flattening of M single look small baseline differential inter-
ferograms to compensate for topographic residuals (due to errors
in DEM). The phase flattening or debiasing is important because
the topographic errors affect subsequent estimation of an
improved phase and coherence (Zebker and Chen, 2005).

For a robust estimation of the local slopes mx and my of the
residual DEM in range and azimuth directions resp. for each pixel,
a search algorithm in the solution space is applied. M periodograms
are generated corresponding to each interferogram using the L
homogenous pixels identified. A periodogram nk, k = 1, ..., M, is a
function of the local slopes in range and azimuth directions for
the adaptive neighborhood:

nkðmx;myÞ ¼
1
L
j
XL

i¼1

e jðui;k�uk
ref
�4p

k

Bk
?

R sin h
ðmxpi

xþmypi
yÞÞj ð4Þ

where k is the transmitted wavelength, Bk
? is the perpendicular

baseline for interferogram k, R is the sensor-scatterer distance, h
is the local incidence angle (for flat terrain), /i,k is the single look
Fig. 4. Pictorial representation of ada
differential interferometric phase for homogenous pixel i and
interferogram k, uk

ref is the single look differential interferometric
phase for the reference pixel (the pixel for which we are estimat-
ing the covariance and the local slopes) and interferogram k, and
finally, pi

x and pi
y are pixel indices in range and azimuth directions

resp. for homogenous pixel i. Further on, we make the slope
estimation robust by averaging all the periodograms for a pixel
to reduce side lobes. We finally get an averaged periodogram n
as follows:

nðmx;myÞ ¼
1
M

XM

k¼1

nk ð5Þ

The local slopes m̂x and m̂y for each pixel are estimated from the
peak of the averaged periodogram (which is the maximum likeli-
hood estimate), i.e.:

ðm̂x; m̂yÞ ¼ arg max
mx ;my

ðnÞ ð6Þ

The estimated slopes for each pixel are then removed from
each interferogram to get the flattened interferograms uk

flat ;

k ¼ 1; . . . ;M. It is worth mentioning that computational complex-
ity can be reduced by generating fewer periodograms using some
highly coherent interferograms with a suitable variation of base-
lines. The variation in baselines is needed for reducing the side
lobes. In other words, some interferograms with relatively large
baselines are also needed for a better precision. Practically, this
simplified computation can also reasonably estimate the local
slopes. But, of course, a rough estimate of the coherence is re-
quired, which is possible by a normal rectangular multilooking
of the interferograms.

Adaptive phase flattening is depicted pictorially in Fig. 4.
3. Finally, estimation of the M filtered small baseline interfero-

grams and their coherence is performed. This is done pixelwise
for each interferogram, wherein, an adaptive complex averaging
(multilooking) of the flattened interferometric phase of the
adaptive neighborhood is performed for an accurate phase and
coherence estimation, as derived in Eq. (2), i.e.:
ptive phase flattening for a pixel.



Fig. 5. (a) is a Google Earth image and its single look interferogram , (b) is coherence and interferogram estimate after boxcar multilooking, (c) is coherence and interferogram
estimate after adaptive spatial filtering.

Fig. 6. Residuals obtained after L2 and L1 norm inversion for a pixel during SBAS
processing. The phase unwrapping errors (outliers) are encircled in black.
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ci;k ¼ 1
L

XL

i¼1

e jðui;k
flat
Þ ð7Þ

where ui;k
flat is the flattened differential interferometric phase for

homogenous pixel i and interferogram k and ci,k is the complex
correlation statistically describing the DS. Phase value of ci,k is the
filtered interferometric phase estimate and absolute value of ci,k is
the coherence estimate resp. for homogenous pixel i and interfero-
gram k. Coherence tells us about the SNR and therefore the reliabil-
ity of the interferometric phase and varies from 0 to 1.

Fig. 5 illustrates the adaptive spatial filtering algorithm in com-
parison with the conventional rectangular multilooking, as applied
on the TerraSAR-X data of the gas storage site. Fig. 5a is a Google
Earth image of a part of the test site and its single look interfero-
gram. Fig. 5b shows the coherence and interferogram estimate
after boxcar (rectangular) multilooking. Fig. 5c shows the
coherence and interferogram estimate after adaptive spatial phase
filtering. We can clearly distinguish features such as fields and
roads after applying adaptive spatial phase filtering as compared
to the typical boxcar (rectangular) multilooking. We can see that
the object resolution is preserved.

2.2. Deformation retrieval

In this second step, we use the improved full resolution small
baseline differential interferograms to retrieve the LOS deforma-
tion and residual topography using an L1 norm based SBAS tech-
nique. SBAS is described in detail in (Berardino et al., 2002). Each
of the differential interferograms is unwrapped and all coherent
pixels are referenced to one pixel which has a high coherence
and a known deformation. Subsequently, the low pass (LP) compo-
nent of the deformation signal and topographic (DEM) residuals
are estimated for each coherent pixel using a displacement model.
In practice, this displacement model is only used in this step and
does not restrict the estimation of non-linear deformation later
on. After the removal of residual topography, the resulting small
baseline interferograms form the following system of equations
for every coherent pixel:

Bv ¼ du0 ð8Þ
where B is the matrix defining the small baseline combinations
used, du0 is the vector of unwrapped differential interferometric
phase values after the removal of topographic error and v is the vec-
tor of unknown mean phase velocities between time-adjacent
acquisitions. A minimum-norm least squares (LS) solution (L2 norm
minimization) of Eq. (8) is obtained by using the SVD method
(Golub and Loan, 1996). An additional integration step gives the
deformation solution. Even non-linear deformation can be esti-
mated using SBAS. Finally, the atmospheric effects are estimated
and removed by carrying out a spatial low pass (after removing
the low pass deformation estimated previously) and a temporal
high pass filtering operation.

However, in rural areas, there might be several decorrelated
areas (e.g. trees, soil, water, etc.) separating the coherent patches.
This often introduces phase unwrapping errors and the relative
values in the different coherent patches can have unknown integer
multiples of 2p phase jumps. These phase jumps in the unwrapped
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data are outliers (spike noise) and inversion using L2 norm minimi-
zation often performs poorly. Instead, a more robust phase inver-
sion solution, with respect to the often occurring and difficult to
detect phase unwrapping errors found in non-urban areas, can be
obtained by using an L1 norm minimization (Lauknes et al., 2011).

A generic Lp norm solution is given by:

v̂ ¼ arg min
v

XM�1

i¼0

jdu0 � Bvjpi

 !1
p

ð9Þ
Fig. 7. Baseline-time plot of the TerraSAR-X dataset of the gas storage site, each do
(interferograms) are color coded according to the L2 norm and L1 norm residuals for a pix
in black.

Fig. 8. (a) Is the Google Earth image of the test site in Germany, (b) is the TerraSAR-X mea
inside the red rectangle.
The L2 norm minimizes the sum of squared residuals, whereas, the
L1 norm minimizes the sum of the absolute values of the residuals.
The L2 norm inversion is optimal when Gaussian noise is present in
the data. But if L2 norm minimization is used in the presence of a
spike, the estimated fit tends to deviate towards the outlier thereby
resulting in a wrong estimation. In (Rodriguez-Gonzalez et al.,
2011), L1 network inversion was demonstrated for robust outlier
rejection in PSI. In this paper, we apply the L1 norm cost function
to solve Eq. (8). The algorithm proposed by Barrodale and Roberts
t represents a SAR image and each line represents an interferogram. The lines
el in the two plots respectively. The phase unwrapping errors (outliers) are encircled

n amplitude image of the test site. The underground gas storage reservoir is located



Fig. 9. TerraSAR-X image of the gas storage site in Germany. (a) shows the PSs in green (54,258 points), whereas, (b) shows the PSs and DSs in green (284,081 points). The
density of PSs is very low compared to the DSs in this non-urban area.

Fig. 10. Covariance matrix of the TerraSAR-X dataset of the gas storage reservoir
situated in Germany. It depicts the average coherence of the small baseline
differential interferograms used in the processing.
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(Barrodale and Roberts, 1973) is used for L1 norm minimization. It
is a modification of the simplex method of linear programming and
is computationally efficient.

We have compared the performance of L2 and L1 norm inver-
sion for the SBAS technique. Fig. 6 shows the L2 and L1 norm resid-
uals for a pixel belonging to the TerraSAR-X dataset of the gas
storage site. We see that in case of phase unwrapping errors, i.e.
outliers (encircled in black), the residuals are high for L2 norm,
but even higher for L1 norm. Thus, L1 norm minimization can be
used for outlier detection and correction (phase unwrapping error
map). Misdetections are avoided because of the higher residual
peaks. Fig. 7 shows the baseline-time plot for the TerraSAR-X data-
set. Each dot corresponds to a SAR image and each line corresponds
to an interferogram. The lines (representing the interferograms)
are color coded according to the L2 norm and L1 norm residuals
for the pixel in the two plots respectively. We can see that in the
presence of outliers (encircled in black), L2 norm spreads the phase
unwrapping errors to the neighboring interferograms. On the other
hand, L1 norm provides a robust solution, a small disturbance in
the data leads to only a small disturbance in the signal
reconstruction.
3. Results and discussion

The newly developed technique for deformation estimation in
non-urban areas is applied and demonstrated on a natural gas stor-
age reservoir in Germany. The test site is visualized in Google Earth
in Fig. 8a, the approximate area of the gas storage is enclosed in
red. As we can see, this is a rural region covered mostly by vegeta-
tion and agricultural fields, thus making it ideal for testing our
algorithm. Underground gas storage causes subsidence and uplift
of terrain depending on the reservoir pressure. The annual storage
cycle generally comprises of gas injection in summer and extrac-
tion in winter, leading to a cyclic deformation pattern. Mapping
this surface movement is important for reservoir monitoring and
hazard analysis.
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For measuring the ground displacement, we have used 55 Strip-
map TerraSAR-X scenes of the reservoir from January, 2008 to May,
2010 with a look angle of 41.05� and ‘HH’ polarization. The Terra-
SAR-X satellite with its high resolution of up to 1 m and a short re-
visit time of 11 days allows high precision mapping of wide areas
in a cost-effective way. The short X-band wavelength of 31.3 mm
Fig. 11. (a) is a single look interferogram of the gas storage site, (b) is the interferogram
spatial filtering.

Fig. 12. RMS deformation [mm] for the gas storage site using L2 norm and L1 norm bas
coded according to RMS deformation values. Deformation time series of points A, B and
allows monitoring of even small surface deformation, as compared
to the C-band sensors such as ERS operating at 56.6 mm. Fig. 8b
shows the mean SAR amplitude image of the test site. An area of
approximately 7 km � 14 km. has been processed. The pixel
dimensions in range and azimuth directions are 1.27 m and
1.35 m resp. This non-urban site covered by vegetation and fields
estimate after adaptive spatial filtering, (c) is the coherence estimate after adaptive

ed SBAS. Processed points are overplotted on the mean amplitude image and color
C are shown in Fig. 13.
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has a low density of PSs in comparison with the DSs, as shown in
Fig. 9. Fig. 9a visualizes the PSs in green (54,258 points), whereas,
Fig. 9b visualizes the PSs and DSs in green (284,081 points).
Improving the spatial density and the quality of deformation esti-
mates in non-urban areas is the main objective of this paper.

The dataset has been processed using our new technique. We
generated 123 single look small baseline differential interfero-
grams based on a maximum spatial baseline of 150 m and a max-
imum temporal baseline of 100 days. For coregistration and D-
InSAR processing, DLR’s operational PSI-GENESIS processor has
been employed (Adam et al., 2003, 2004). The coregistration mod-
ule of the processor uses a geometry based algorithm which
Fig. 13. Deformation time series using L2 norm and L1 norm based SBAS for points
A, B and C marked in Fig. 12.
utilizes precise orbits and a DEM from SRTM. Fig. 7 shows the SBAS
configuration for the test site, i.e. the baseline time plot for the
scenes and the interferograms. The covariance matrix of the data-
set is illustrated in Fig. 10. It shows the combinations of acquisi-
tions used (i.e. the interferograms), each of which is color coded
according to its average coherence. We can see that only small
baseline combinations have been used for the processing. More-
over, the average coherence of this rural region can be observed
as low, typical for areas affected by temporal decorrelation.

We then apply our adaptive spatial filtering algorithm on the
single look interferograms, as demonstrated in Fig. 11. Fig. 11a
shows a single look small baseline differential interferogram of
the test site, Fig. 11b shows the interferogram estimate after adap-
tive spatial filtering and Fig. 11c shows the coherence estimate
after adaptive spatial filtering. We clearly see a big improvement
in the quality of the interferometric phase. Later on, we use the
minimum cost flow (MCF) algorithm for phase unwrapping (Con-
stantini, 1998; Eineder et al., 1998).

The unwrapped interferograms are subsequently used for
deformation monitoring using the SBAS approach via the L1 norm
minimization. We use pixels that have an average coherence of at
least 0.4, as shown in Fig. 9b. The deformation estimation results
have been presented in Fig. 12 and compared with the results ob-
tained from the typical L2 norm based SBAS approach. We have
used the root-mean-square (RMS) deformation for visualizing the
results as it is visually effective and provides an integral informa-
tion about the displacement with respect to time. We can observe
that the coherent points of the test case are not well connected,
leading to phase unwrapping errors. The L2 norm inversion propa-
gates these errors spatially, as can be seen in Fig. 12, as compared
to the L1 norm based solution.

Deformation time series are visualized in Fig. 13 for some of the
pixels marked in Fig. 12. The L2 norm inversion fails to estimate
the cyclic non-linear deformation occurring in the area of the gas
storage (points A and B), although it performs reasonably well
for point C which is located far away from the reservoir. L1 norm
solution, on the other hand, corresponds well to the cyclic nature
Fig. 14. Variance [mm �mm] of deformation estimates using L1 norm based SBAS.



Fig. 15. Comparison of quality and density of deformation estimates in non-urban areas using standard SBAS and our technique. (a) is the TerraSAR-X image of the area
surrounding point A (marked in Fig. 12), (b) shows the RMS deformation (mm) using standard SBAS, (c) shows the RMS deformation (mm) using our new approach.
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of operation of the gas storage reservoir (injection during summer,
production during winter) and the related reservoir pressure. We
can observe minima during winter and maxima during summer.
Also to be noticed is the fact that small displacement in the order
of a few millimeters can be observed using the TerraSAR-X sensor.
The variance of the deformation estimates using the L1 norm
inversion is shown in Fig. 14.

The results demonstrate the potential of this new technique for
providing accurate deformation in natural terrains. The increased
quality and density of the deformation estimates of DSs in non-ur-
ban areas can also be seen in Fig. 15, where, a comparison with the
normal SBAS approach has been provided. Here, a small area sur-
rounding point A (of Fig. 12) is shown. Fig. 15a shows the Terra-
SAR-X image of this area. Fig. 15b shows the RMS deformation
using conventional SBAS. Fig. 15c shows the RMS deformation
using our new method and the improvement is clearly visible. Be-
sides, one of the main advantages of the technique is the capability
to estimate even non-linear deformation, as has been demon-
strated for the application test case.

Of course, there is a slight reduction of resolution due to the
adaptive multilooking, but, the object resolution is preserved. In
fact, this technique is more suitable for high resolution sensors.
For conventional sensors, the homogenous objects need a large
dimension and thus the applicability of the technique is test site
dependent. It is to be noted that a minimum number of scenes
are required for the detection of homogenous objects and the esti-
mation of covariance.

In terms of the computational complexity, the amount of data
to be processed is increased and more processing time is needed.
However, this technique is straightforward to implement with only
little changes with respect to the existing algorithms.

Finally, we would like to remark the applicability of our ap-
proach for monitoring such phenomena as gas storage induced sur-
face deformation and similar non-linear geophysical effects. In
practice, the subsidence maps can be used for further geological
analysis and risk mitigation.
4. Conclusion

A new technique has been developed for high resolution non-
linear deformation monitoring in rural areas. The aim is to improve
the robustness and precision of the parameter estimation in areas
characterized by DSs. The technique first makes use of an adaptive
spatial filtering algorithm to improve the differential interferomet-
ric phase, wherein, phase flattening and multilooking are incorpo-
rated using a statistically homogenous adaptive neighborhood.
Then, deformation estimation is performed using an L1 norm based
SBAS approach. A demonstration has been provided using Terra-
SAR-X data of a gas storage reservoir located in Germany.
Future work can concentrate on deformation estimation of DSs
using a 4D periodogram approach, without any need of phase
unwrapping.
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ABSTRACT: 
 
In recent years, several SAR satellites such as TerraSAR-X, COSMO-SkyMed and Radarsat-2 have been launched. These satellites 
provide high resolution data suitable for sophisticated interferometric applications. With shorter repeat cycles, smaller orbital tubes 
and higher bandwidth of the satellites; deformation time series analysis of distributed scatterers (DSs) is now supported by a practical 
data basis. Techniques for exploiting DSs in non-urban (rural) areas include the Small Baseline Subset Algorithm (SBAS). However, 
it involves spatial phase unwrapping, and phase unwrapping errors are typically encountered in rural areas and are difficult to detect. 
In addition, the SBAS technique involves a rectangular multilooking of the differential interferograms to reduce phase noise, 
resulting in a loss of resolution and superposition of different objects on ground. In this paper, we introduce a new approach for 
deformation monitoring with a focus on DSs, wherein, there is no need to unwrap the differential interferograms and the deformation 
is mapped at object resolution. It is based on a robust object adaptive parameter estimation using single look differential 
interferograms, where, the local tilts of deformation velocity and local slopes of residual DEM in range and azimuth directions are 
estimated. We present here the technical details and a processing example of this newly developed algorithm. 
 

1. INTRODUCTION 

Various differential SAR interferometric stacking techniques 
have been developed that exploit phase stable i.e. persistent 
scatterers (PSs). PS interferometry provides a parametric 
estimation of the displacement and 3D location based on the 
assumption of one or two dominant scatterers in the resolution 
cell (Ferretti et al., 2000, Ferretti et al., 2001, Kampes, 2006, 
Adam et al., 2008). However, it has some limitations in non-
urban (rural) areas due to low density of PSs, their 
inhomogenous spatial distribution, phase ambiguities and 
atmospheric effects. There is an increasing focus on utilizing 
distributed scatterers (DSs) to extract geophysical parameters of 
interest (i.e. LOS deformation and DEM error) for surfaces 
characterized by fields, forests, soil and rock surfaces. 
Application examples include mines, volcanoes, oil/gas/water 
reservoirs and seismic zones. Distributing scattering mechanism 
involves a coherent sum of many independent small scatterers 
(no dominant scatterer) within a resolution cell (Goodman, 
1976).  Techniques such as the Small Baseline Subset 
Algorithm (SBAS) and SqueeSAR have been proposed to 
process DSs.  
 
SBAS makes use of spatially unwrapped small baseline 
differential interferograms (Berardino et al., 2002, Mora et al., 
2003).  These are linked using the Singular Value 
Decomposition (SVD) method and a minimum-norm least 
squares (LS) solution is obtained (Golub and Loan, 1996). 
Essentially, the phase is averaged in an estimation window to 
reduce the phase noise (Zebker and Villasenor, 1992). 
However, the drawback of the straightforward rectangular 
estimation window is a loss of resolution and a superposition of 
different objects on ground. In addition, phase unwrapping 
(Constantini, 1998, Eineder et al., 1998) is an important step in 
SBAS and phase unwrapping errors are often encountered in 

natural terrains. There might be several decorrelated areas (e.g. 
trees, soil, water etc.) separating the coherent patches and the 
relative values in the different coherent patches can have 
unknown integer multiples of π2  phase offsets.  
 
SqueeSAR, on the other hand, makes use of all possible 
interferograms and employs an adaptive spatial multilooking to 
reduce the phase noise and estimate the covariance matrix for 
each DS (Ferretti et al., 2011, Zan et al., 2008). Afterwards, a 
phase triangulation algorithm is applied to each DS to retrieve 
the optimized phase values for the SAR images. The DSs are 
then processed jointly with the PSs using the traditional PS 
interferometric chain. However, this technique can be 
computationally expensive.  
 
With respect to the above-mentioned techniques, we have 
developed and implemented an alternative method for high 
resolution deformation monitoring of DSs. The proposed 
method performs an object adaptive parameter estimation which 
is based on two principles. First, the high resolution of satellites 
such as TerraSAR-X leads to many resolution cells covering a 
homogenous object in non-urban areas. This object can be 
described by a single deformation parameter. The object’s area 
(pixels) thus needs to be identified for an optimal estimation of 
the model parameter, namely, the LOS deformation velocity. 
Second, we just concentrate on small baseline differential 
interferograms to reduce the effects of topography on the DSs, 
and mainly to reduce the computational complexity.  
 
Practically, the algorithm involves the identification of the 
object’s area (pixels) by a similarity test algorithm using a stack 
of SAR amplitude images (Parizzi and Brcic, 2011). The 
differential interferometric phase values of the object’s pixels 
(calibrated with respect to a reference pixel which lies within 
the object boundary, so that, the atmospheric effects and orbital 
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errors are cancelled out) are then exploited for parameter 
estimation using a search algorithm in the solution space. For 
each object patch, a periodogram approach is applied in the 
spatial domain (object area) and time domain (small baseline 
differential interferometric stack) for a robust estimation of the 
local tilts of displacement velocity and local slopes of residual 
DEM in range and azimuth directions with respect to the 
reference pixel. Finally, since the independent estimated 
neighboring patches are close and deformation is assumed to be 
smooth, a 2D-model-deformation integration can be performed 
to get the absolute deformation. The new concept with respect 
to the existing algorithms is that there is no need for spatial 
phase unwrapping and the deformation time series is estimated 
at full resolution. Even in the presence of high phase noise, the 
algorithm compensates DEM errors and additionally, 
atmospheric artifacts are removed automatically for each patch 
as the phase values are referred to one pixel within the patch. 
Objective of this paper is to present the developed algorithm 
and demonstrate it using TerraSAR-X high resolution spotlight 
data of Lueneburg in Germany.  
 
 

2. METHODOLOGY 

Assuming that we have N  SAR images and M  single look 
small baseline differential interferograms available, the 
implemented methodology for deformation estimation of DSs 
involves the following steps: 

2.1 Identification of Homogenous Patches 

We start with the identification of independent homogenous 
patches using a stack of coregistered and calibrated SAR 
amplitude images. These statistically homogenous patches are 
dependent on the reflectivity, have typically a constant local 
slope and clear boundaries (e.g. fields, roads etc.).  
 
Various statistical tests have been proposed in recent years to 
identify homogenous pixels based on the amplitude of 
coregistered and calibrated stack of SAR images. These include 
the Kullback-Leibler Divergence test (Bishop, 2006), the 
Kolmogorov-Smirnov (KS) test (Papoulis and Pillai, 1984) 
(used in the SqueeSAR approach (Ferretti et al., 2011)) and the 
Anderson-Darling (AD) test (Pettitt, 1976). The AD test has 
been proven to be the most effective statistical test to identify if 
two pixels arise from the same distribution (Parizzi and Brcic, 
2011).  It is a non-parametric test i.e. we do not assume that the 

samples belong to a defined probability distribution. Instead, 
using the amplitude of the stack of SAR images, we obtain the 
empirical cumulative distribution functions of amplitudes for 
the two pixels (points) under consideration. The distance 
between the distributions, with weighting given to tails (higher 
order moments of the distribution are taken into consideration), 
tells us if the two points statistically arise from the same 
distribution. For a set of points a  and b , the AD statistic 2A  
is:  
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where, N  is the number of SAR amplitude images, )(xFa  and 
)(xFb  are empirical cumulative distribution functions of 

amplitudes x  for points a  and b , )(, xF ba  is empirical 
distribution function of the pooled distribution [ ]ba, . If the AD 
statistic is less than a threshold value, the two pixels are 
assumed to belong to the same homogenous area.  
 
In this step, we divide the area into rectangular blocks. The 
block size is chosen in such a way that the atmosphere is 
mitigated if we subtract the phase of the reference pixel from 
the phases of the other pixels in the block, and also considering 
that the patch size should be large enough to provide us with a 
reliable estimation. Then, within each rectangular block, 
homogenous patch pixels are identified based on a certain 
criterion which gives us the best possible estimate of the DS 
inside the block. In practice, the estimation takes advantage of 
large homogenous areas. It is based on the fact that the large 
number of samples improves the precision and the large spatial 
extension increases the sensitivity of the estimation. This is the 
reason that we consider a minimum patch size. Also, the 
average coherence of the patch should be larger than a certain 
threshold. The coherence of the pixels can be calculated using 
an adaptive multilooking algorithm (Parizzi and Brcic, 2011, 
Goel and Adam, 2011a). For each detected patch, a reference 
pixel is selected. Fig. 1 shows an example of the identification 
of homogenous patches for a small region in the town of 
Lueneburg in Germany. 17 TerraSAR-X images (high 
resolution spotlight mode) of the test site from 2010-2011 were 
used.  In this demonstration, the region was divided into blocks 
of 40 ×  40 pixels. A minimum patch size of 20 pixels and a 
coherence threshold of 0.3 was applied.  

 

 
       (a)        (b) (c) 

Figure 1: Identification of homogenous patches. (a) is a Google Earth image of a small part of Lueneburg in Germany, the region of 
interest is enclosed in red. (b) is the mean amplitude image of the region of interest. (c) shows the division of the region into blocks 
by the blue lines, wherein, the points in green represent the homogenous pixels and the points in red represent the reference pixels. 
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2.2 Tilt and Slope Estimation 

The single look small baseline differential interferograms can 
now be exploited for estimation of tilts of deformation velocity 
and slopes of residual DEM for each patch with respect to the 
reference pixel of that patch.  First, the phase values of each 
patch are corrected with respect to the reference pixel so that the 
atmospheric effects and orbital errors are negligible. Second, 
these are then used for parameter estimation using a 4D 
periodogram.  
 
For each object patch, to estimate the local tilts of deformation 
velocity 

xvm  and 
yvm  in range and azimuth directions resp. (in 

mm/year/pixel) and the local slopes of residual DEM 
xhm  and 

yhm  in range and azimuth directions resp. (in m/pixel), M  

periodograms are generated in spatial domain from the ( )LM *  
interferometric phase values of the patch, where L  is the 
number of homogenous pixels. A periodogram Mkk ,...,1, =ξ , 
is a function of the local tilts of deformation velocity and local 
slopes of residual DEM for the object patch: 
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where, L  is the number of homogenous pixels for the patch, 
ki,φ  is the single look interferometric phase for homogenous 

pixel i  and interferogram k , kT  is the velocity conversion 

factor for interferogram k , kB  is the height conversion factor 
for interferogram k , 

xvm  and 
yvm  are local tilts of deformation 

velocity in range and azimuth directions resp. (in 
mm/year/pixel), 

xhm  and 
yhm  are local slopes of residual DEM 

in range and azimuth directions resp. (in m/pixel), i
xp  and i

yp  

are pixel indices in range and azimuth directions resp. for 
homogenous pixel i . The velocity conversion factor for an 
interferogram k  is given by: 
 k

t
k BT

λ
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where, λ  is the transmitted wavelength, k
tB  is the temporal 

baseline for interferogram k . The height conversion factor for 
an interferogram k  is given by: 
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where, kB⊥
 is the perpendicular baseline for interferogram k , 

R  is the sensor-target distance, θ  is the local incidence angle 
(for flat terrain). 
 
Further on, we make the parameter estimation robust by 
averaging all the periodograms for a patch to reduce side lobes. 
We finally get an averaged periodogram ξ  as follows: 
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The local tilts of the deformation velocity 

xvm  and 
yvm  and the 

local slopes of the residual DEM 
xhm  and 

yhm  for each patch 

are estimated from the peak of the averaged periodogram i.e.:  
 ( )ξ
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2.3 Network Inversion 

Since the independent estimated neighboring patches are close 
and deformation is assumed to be smooth, a 2D-model-
deformation integration can finally be performed to get the 
absolute deformation. A simple 1D case is shown in Fig. 2. 
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Figure 2: A simple 1D example of integrating the relative deformation of the various patches to get the absolute values. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-7, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

31



 

 

 
       (a)        (b) (c) 

Figure 3: Identification of homogenous patches for a part of Lueneburg which has deformed highly in the considered time period. (a) 
is a Google Earth image of a small part of Lueneburg in Germany, the region of interest is enclosed in red. (b) is the mean amplitude 

image of the region of interest. (c) shows the homogenous pixels in green and the reference pixels in red.  
 
 

3. APPLICATION TEST CASE AND RESULTS 

The town of Lueneburg in Germany has been used to 
demonstrate our technique. It is situated in the German state of 
Lower Saxony. The old part of this town lies on a salt dome. As 
a result of constant salt mining dating back to the 19th century, 
various areas of the town have experienced a gradual or high 
subsidence, became unstable and had to be demolished. The 
sinking still continues even today. Many ground stations have 
been established since 1946 to monitor the deformation, but due 
to the changing subsidence patterns and locations, space-borne 
differential SAR interferometric technique is better suited for 
deformation mapping of Lueneburg (Goel et al., 2011).  
 
We used 17 high resolution spotlight TerraSAR-X images of 
Lueneburg from October, 2010 to September, 2011 with a look 
angle of 29.6 degrees and ‘HH’ polarization. We generated 89 
small baseline differential interferograms. Fig. 3 shows the 

identification of homogenous patches for a part of Lueneburg 
which has deformed highly in the considered time period. In 
Fig. 4, we present deformation estimation results for this region 
using a different approach so that we can compare the new 
technique with them. The approach which we used for 
comparison is object adaptive phase filtering, followed by an L1 
norm based SBAS technique (Goel and Adam, 2011b).  
 
Fig. 5 shows the preliminary tilt estimation results for the 
deformation velocity in range and azimuth directions in 
mm/year/pixel using the newly developed technique. We can 
see that the results compare well with the SBAS results. Fig. 6 
shows the preliminary slope estimation results for the residual 
DEM in range and azimuth directions in m/pixel. The 
comparison of the results with ground truth data is foreseen in 
the future. We are in contact with the local government of 
Lueneburg for the levelling data. 
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                    (a)                (b)        (c) 

Figure 4: Deformation estimation results using a different approach (adaptive spatial phase filtering and L1 based SBAS technique). 
(a) The total deformation in mm. (b) Local tilts of deformation velocity in range (x) direction in mm/year/pixel calculated from (a). 

(c) Local tilts of deformation velocity in azimuth (y) direction in mm/year/pixel calculated from (a).   
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           (a)        (b) 

Figure 5: Deformation estimation results using the newly developed technique. (a) Estimates of local tilts of deformation velocity in 
range (x) direction in mm/year/pixel. (b) Estimates of local tilts of deformation velocity in azimuth (y) direction in mm/year/pixel.   
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           (a)        (b) 

Figure 6: Residual DEM estimation results using the newly developed technique. (a) Estimates of local slopes of residual DEM in 
range (x) direction in m/pixel. (b) Estimates of local slopes of residual DEM in azimuth (y) direction in m/pixel.   

4. CONCLUSION 

A new concept has been developed to estimate deformation of 
DSs at full resolution without any phase unwrapping. Even in 
the presence of high phase noise, the algorithm compensates 
DEM errors and additionally, atmospheric artifacts are removed 
automatically for each patch as the phase values are referred to 
one pixel within the patch. A demonstration has been provided 
using TerraSAR-X data of Lueneburg in Germany. Future work 
will concentrate on network inversion algorithms to retrieve the 
absolute LOS deformation velocities and residual DEM.  

 

REFERENCES 

Adam, N., Eineder, M., Yague-Martinez, N. & Bamler, R., 
2008. High resolution interferometric stacking with TerraSAR-
X. In: Proc. Intl. Geosci. Rem. Sens. Symp. (IGARSS), Boston. 
 
Berardino, P., Fornaro, G., Lanari, R. & Sansosti, E., 2002. A 
new algorithm for surface deformation monitoring based on 

small baseline differential SAR interferograms. IEEE TGRS, 
vol. 40, no. 11, p. 2375. 
 
Bishop, C. M., 2006. Pattern recognition and machine 
learning. Springer, New York. 
 
Constantini, M., 1998. A novel phase unwrapping method 
based on network programming. IEEE TGRS, vol. 36, no. 3, pp. 
813-821. 
 
Eineder, M., Hubig, M. & Milcke, B., 1998. Unwrapping large 
interferograms using the minimum cost flow algorithm. In: 
Proc. IGARSS, Seattle. 
 
Ferretti, A., Prati, C. & Rocca, F., 2000. Nonlinear subsidence 
rate estimation using permanent scatterers in differential SAR 
interferometry. IEEE TGRS, vol. 38, no. 5, pp. 2202–2212. 
 
Ferretti, A., Prati, C. & Rocca, F., 2001. Permanent scatterers in 
SAR interferometry. IEEE TGARS, vol. 39, No. 1, pp. 8-20. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-7, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

33



 

 
Ferretti, A., Fumagalli, A., Novali, F., Prati, C., Rocca, F. 
& Rucci, A., 2011. A New Algorithm for Processing 
Interferometric Data-Stacks: SqueeSAR. IEEE TGRS, vol. 49, 
no. 9, p. 3460. 
 
Goel, K. & Adam, N., 2011a. High resolution differential 
interferometric stacking via adaptive spatial phase filtering. In: 
Proc. IGARSS, Vancouver, Canada. 
 
Goel, K. & Adam, N., 2011b. Deformation estimation in non-
urban areas exploiting high resolution SAR data. In: Proc. 
FRINGE, Frascati, Italy. 
 
Goel, K., Parizzi, A. & Adam, N., 2011. Salt mining induced 
subsidence mapping of Lueneburg (Germany) using PSI and 
SBAS techniques exploiting ERS and TerraSAR-X data. In: 
Proc. FRINGE, Frascati, Italy. 
 
Goodman, J. W., 1976. Some fundamental properties of 
speckle. J. Opt. Soc. Am. A, vol. 66, no. 11, pp. 1145–1150. 
 
Golub, G. & Loan, C., 1996. Matrix Computations, 3rd ed. 
Baltimore: John Hopkins University Press.  
 
Kampes, B. M., 2006. Radar Interferometry - Persistent 
Scatterer Technique. Springer. 

 
Mora, O., Mallorqui, J.J., Broquetas, A., 2003. Linear and 
nonlinear terrain deformation maps from a reduced set of 
interferometric SAR images. IEEE TGRS, vol. 41, no. 10, p. 
2243. 
 
Papoulis, A. & Pillai, S. U., 1984. Probability, random 
variables, and stochastic processes. Second Edition, McGraw-
Hill, New York. 
 
Parizzi A. & Brcic, R., 2011. Adaptive InSAR stacks 
multilooking exploiting amplitude statistics: A comparison 
between different techniques and practical results. IEEE GRSL, 
vol. 8, no. 3. 
 
Pettitt, A. N., 1976. A two-sample Anderson–Darling rank 
statistic. Biometrika, vol. 63, no. 1, pp. 161–168. 
 
Zan, F. D., 2008. Optimizing SAR interferometry for 
decorrelating scatterers. Doctoral dissertation, Politecnico di 
Milano, Italy. 
 
Zebker, H. A. & Villasenor, J., 1992. Decorrelation in 
interferometric radar echoes. IEEE TGRS, vol. 30, no. 5, pp. 
950–959.

 
 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-7, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

34



117 
 

A.3 Goel, K., Adam, N., 2013a. A distributed scatterer 
interferometry approach for precision monitoring of known 
surface deformation phenomena. IEEE Transactions on 
Geoscience and Remote Sensing PP (99), 1-15, DOI: 
10.1109/TGRS.2013.2289370. 
  



5454 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 52, NO. 9, SEPTEMBER 2014

A Distributed Scatterer Interferometry Approach for
Precision Monitoring of Known Surface

Deformation Phenomena
Kanika Goel and Nico Adam

Abstract—This paper presents a new technique for mapping
mean deformation velocity in highly decorrelated areas with
known deformation patterns, exploiting high-resolution synthetic
aperture radar (SAR) data. The implemented method is based on
distributed scatterers and first makes use of the Anderson–Darling
(AD) statistical test to identify homogenous patches of pixels
based on SAR amplitude images. Then, a robust object adaptive
parameter estimation is performed to estimate the local gradients
of deformation velocity and the local gradients of residual DEM
in range and azimuth directions for these patches, utilizing small
baseline differential interferograms. Finally, the information ob-
tained from different patches is connected to get the deformation
velocity, via a 2-D model-based deformation integration using
Bayesian inference. Compared with published multitemporal in-
terferometric work, the main advantage of the newly developed
algorithm is that it does not require any phase unwrapping, and
because of this, the method is largely insensitive to decorrelation
phenomenon occurring in natural terrains and the availability of
persistent scatterers (PSs), in contrast to the coherent stacking
techniques such as PS interferometry, small baseline subset algo-
rithm, and SqueeSAR. The method is computationally inexpensive
with respect to SqueeSAR as only the small baseline interfero-
grams are used for the processing. The method provides spatially
dense deformation velocity maps at a suitable object resolution,
as compared with a few measured points provided by the stack-
ing techniques in difficult decorrelated regions. High Resolution
Spotlight TerraSAR-X data set of Lueneburg in Germany is used
as a processing example of this technique.

Index Terms—Differential interferometric synthetic aperture
radar (DInSAR), distributed scatterer (DS), high-resolution SAR,
small baseline subset algorithm (SBAS), SqueeSAR, synthetic
aperture radar (SAR), TerraSAR-X.

I. INTRODUCTION

D IFFERENTIAL interferrometric synthetic aperture radar
(DInSAR) is an effective technique for measuring surface

displacements [1], [2]. Various multitemporal DInSAR tech-
niques have been developed that exploit permanently coherent,
i.e., phase-stable persistent scatterers (PSs). PS interferometry
(PSI) utilizes long-time-span differential interferograms with
respect to a single master image and provides a parametric
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estimation of the displacement and 3-D location based on the
assumption of one or two dominant scatterers in the resolution
cell [3], [4]. However, it has some limitations in nonurban/rural
areas due to low density of PSs, their inhomogenous spatial dis-
tribution, and phase ambiguities. There is an increasing focus
on utilizing distributed scatterers (DSs) to extract geophysical
parameters of interest [i.e., line-of-sight (LOS) deformation and
residual digital elevation model (DEM)] for surfaces character-
ized by fields, soil, and rock surfaces. In recent years, several
SAR satellites such as TerraSAR-X, COSMO-SkyMed, and
Radarsat-2 have been providing high-resolution data suitable
for sophisticated interferometric applications. With shorter re-
peat cycles, smaller orbital tubes and higher bandwidths of
the satellites, DS interferometry (DSI) is now supported by
a practical data basis. The distributed scattering mechanism
involves a coherent sum of many independent small scatterers
(and no dominant scatterer) within a resolution cell [5] and
is modeled by a complex circular Gaussian radar return [1].
DSs tend to decorrelate temporally, and the phase quality is not
on par with the PSs. They usually span several image pixels
where the backscattered energy is less strong but statistically
homogeneous within the area. It is possible to process DSs with
high precision using advanced stacking techniques such as the
small baseline subset algorithm (SBAS) and SqueeSAR.

Differently to PSI, SBAS [6] makes use of differential in-
terferograms with small geometric and temporal baselines to
limit the decorrelation phenomena. Essentially, in conventional
SBAS, the phase is averaged/multilooked in an estimation
window to reduce the phase noise [7]. The interferograms are
then spatially unwrapped, and the deformation is estimated via
the singular value decomposition method (based on L2-norm
minimization) [8]. Advantageously, SBAS provides complete
nonlinear deformation time series of the scatterers. However, a
drawback of the straightforward rectangular estimation window
is a loss of resolution and a superposition of different objects
on ground. Techniques presented in [9] and [10] have been pro-
posed to counter this and extend standard SBAS. The approach
implemented in [9] uses both single-look and multilook data
and provides deformation at two spatial scales, i.e., regional and
local. In contrast, the technique presented in [10] first performs
an adaptive spatial phase filtering to preserve object resolution,
followed by an L1-norm-based deformation retrieval, which
results in a more robust solution with respect to the phase
unwrapping errors frequently occurring in nonurban areas. In
fact, spatial phase unwrapping via the minimum cost flow

0196-2892 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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(MCF) algorithm [11], [12] is an important step in SBAS, and
local phase unwrapping errors are often encountered in natural
terrains and are difficult to detect. Although some endeavors
have been made to limit the impact of severe phase unwrapping
errors on the estimated deformation time series, for example,
techniques proposed in [13] and [14], exploit both the temporal
and the spatial structure of the data by a 3-D phase unwrap-
ping and further extend the MCF phase unwrapping technique,
nonetheless, phase unwrapping still remains a major source of
error in spotted coherent areas and is time consuming too.

SqueeSAR [15], on the other hand, makes use of all N ×
(N − 1)/2 interferograms that are possible with N acquisitions
to yield the best possible estimates of the N − 1 phases associ-
ated with the deformation of each DS. It first employs adaptive
spatial multilooking to reduce the phase noise and estimate the
covariance matrix for each DS. Afterward, a phase triangulation
algorithm is applied to each DS to retrieve the optimized N − 1
phase values. The DSs are then processed jointly with the PSs
using the traditional PS interferometric chain. Following the
basic concept of SqueeSAR, a demonstration of the estimation
of DSs’ phase histories in urban areas is provided in [16].
SqueeSAR provides motion parameter estimates for DSs with
significantly enhanced signal-to-noise ratio (SNR). Although,
it can be computationally expensive as it utilizes all possible
interferograms.

Nonetheless, highly decorrelated regions still pose a chal-
lenge in displacement monitoring. New algorithms are required
for measuring difficult areas characterized by high temporal
decorrelation and for providing spatially dense deformation
maps. With respect to the aforementioned techniques, we have
developed and implemented an alternative method for deforma-
tion velocity monitoring in difficult decorrelated areas whose
deformation velocity can be described by a suitable model,
exploiting high-resolution SAR data. Typical application ex-
amples include subsurface mining areas, subsurface construc-
tion sites, and oil/gas/water reservoirs. The proposed method
utilizes DSs and first involves the identification of DSs, i.e.,
homogenous object patches of pixels, by a similarity test algo-
rithm using a stack of SAR amplitude images [15], [17]. Then,
a robust object adaptive parameter estimation is performed to
estimate the local gradients of deformation velocity and the
local gradients of residual DEM in range and azimuth directions
for these patches, utilizing small baseline differential interfer-
ograms. Finally, since the independent estimated neighboring
patches are close and deformation is assumed to be smooth,
2-D model-based deformation integration is performed to get
the LOS deformation velocity. To implement this inversion,
a Bayesian estimation framework [18], [19] is applied, which
makes use of directed graphs [20] and particle filters [21], [22].
The new concept with respect to the existing DS algorithms
is that:

1) There is no need for spatial phase unwrapping, and the
mean deformation velocity is estimated at a suitable
resolution on the order of the dimension of objects.

2) The computational complexity is reduced, as compared
to SqueeSAR, by making use of only small baseline
differential interferograms.

3) Even in the presence of high-phase noise, the algorithm
compensates DEM errors and atmospheric artifacts.

4) Due to model-based deformation integration, a spatially
dense deformation velocity map is estimated, instead of
just a few measured points.

The objective of this paper is to present the developed
algorithm and its application on a real TerraSAR-X data set
of Lueneburg in Germany, which has undergone salt-mining-
induced subsidence. We demonstrate its effectiveness to ro-
bustly provide deformation velocity maps in areas with high
decorrelation and also, counteract some of the limitations of
conventional coherent SAR techniques such as PSI, SBAS, and
SqueeSAR.

II. METHODOLOGY

Assuming that N SAR images and M single-look small
baseline differential interferograms are available, the imple-
mented methodology for deformation estimation of DSs in-
volves the following steps.

A. Identification of Homogenous Patches

We start with the identification of independent homogenous
patches i.e., DSs using the stack of coregistered and calibrated
SAR amplitude images. A DS object covers several pixels in
high-resolution SAR images, and these pixels exhibit simi-
lar scattering properties and belong to the same distribution.
These statistically homogenous patches are dependent on the
reflectivity and typically have a constant local slope and clear
boundaries (e.g., fields and roads).

Various statistical tests have been proposed in recent
years to identify homogenous pixels based on the ampli-
tude of coregistered and calibrated stack of SAR images.
These include the Kullback–Leibler divergence test [20], the
Kolmogorov–Smirnov test [18] (used in the SqueeSAR ap-
proach [15]), and the Anderson–Darling (AD) test [23]. The
AD test has been proven to be the most effective [17]. It gives
the best detection rate at a constant false alarm rate. It performs
reasonably well even for a stack of acquisitions containing as
small as ten images. This is the reason we use this algorithm in
our implementation. For a pair of pixels a and b, the AD statistic
A2 is

A2 =
N

2

∑
Fa,b(x)

[Fa(x)− Fb(x)]
2

[Fa,b(x) · (1− Fa,b(x))]
(1)

where N is the number of SAR amplitude images, Fa(x) and
Fb(x) are the empirical cumulative distribution functions of
amplitudes x for pixels a and b, and Fa,b(x) is the empirical
distribution function of the pooled distribution [a, b]. If the
AD statistic is less than a threshold value, the two pixels are
assumed to belong to the same homogenous area.

In this step, the area is divided into nonoverlapping rectangu-
lar blocks. Then, within each rectangular block, a homogenous
patch of pixels is identified. The patch should have a minimum
size since the estimation takes advantage of large homogenous
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Fig. 1. Identification of homogenous patches. (a) Google Earth image of a small part of Lueneburg in Germany. The region of interest is enclosed in red.
(b) Mean amplitude TerraSAR-X image of the region of interest. (c) Division of the region into blocks by the blue lines, wherein the points in green represent the
homogenous pixels and the points in red represent the reference pixels.

areas. In addition, the average spatial coherence of the patch
should be larger than a certain threshold to counter phase noise.
For each detected patch, a reference pixel is selected. Any pixel
in the homogenous patch can be assigned as the reference pixel
(since, ideally, all the pixels in the homogenous patch have
the same coherence). The block size is chosen in such a way
that the atmosphere is mitigated if we subtract the phase of
the reference pixel from the phases of the other pixels in the
block and also considering that the patch size should be large
enough to provide us with a reliable estimation. Fig. 1 shows
an example of the identification of homogenous patches for a
small region in the town of Lueneburg in Germany. In addition,
17 TerraSAR-X High Resolution Spotlight mode images of the
test site from 2010 to 2011 were used. In this demonstration,
the region is divided into blocks of 40 pixels × 40 pixels, i.e.,
24 m × 24 m approximately. A minimum patch size of 20 pixels
and a coherence threshold of 0.3 have been applied.

B. Gradient Estimation for Deformation Velocity and
Residual DEM

The single-look differential interferograms with small spatial
and temporal baselines are now exploited for the parameter
estimation of DSs in order to reduce the residual topography
and temporal decorrelation. In addition, the computational
complexity is reduced. The single-look differential interfero-
metric phase of a pixel i for interferogram k, with respect to a
reference pixel, is composed of the phase components related
to deformation, residual topography, atmosphere, and noise

φi,k = φi,k
defo + φi,k

topo + φi,k
atmo + φi,k

noise (2)

where φi,k
defo is the deformation phase, φi,k

topo is the residual

topographic phase, φi,k
atmo is the atmospheric phase, and φi,k

noise

is the phase noise. The deformation phase is given as follows
(assuming a constant velocity model):

φi,k
defo = T kvi (3)

where vi is the mean deformation velocity of the pixel i with
respect to the reference pixel, and T k is the velocity conversion
factor for interferogram k given by

T k =
4π

λ
Bk

t (4)

where λ is the transmitted wavelength, and Bk
t is the temporal

baseline for interferogram k. The residual topographic phase is
given as follows:

φi,k
topo = BkΔhi (5)

where Δhi is the residual topography of the pixel i with respect
to the reference pixel, and Bk is the height conversion factor for
interferogram k given by

Bk =
4π

λ

Bk
⊥

R sin θ
(6)

where Bk
⊥ is the perpendicular baseline for interferogram k, R

is the sensor–target distance, and θ is the local incidence angle.
The atmospheric phase is minimized if the reference pixel is in
close spatial proximity, i.e., less than 1 km away [24], [25]. The
phase noise is due to temporal decorrelation, uncompensated
spectral shift decorrelation, orbital errors, and thermal noise.
Similar to atmosphere, the orbital errors become negligible if
the reference pixel is located nearby.

Accordingly, the homogenous patch can be described by
the model parameters, LOS deformation velocity, and residual
DEM. Since each patch is composed of many neighboring
pixels, we do not assign a single average deformation veloc-
ity or residual DEM to the homogenous pixels. In fact, the
deformation velocities and residual DEMs of the homogenous
pixels can be, to the first order, well approximated by a linear
spatial behavior in range and azimuth directions, respectively,
with respect to the reference pixel. Given the differential phase
data, the local gradients of deformation velocity mvx

, mvy

(in millimeters per year per pixel) and the local gradients of
residual DEM mhx

, mhy
(in meters per pixel) in range x

and azimuth y directions, respectively, are estimated for the
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Fig. 2. Periodogram demonstration using Lueneburg data set for a highly deforming patch. (a) Periodogram ξ for mvx = [−1, 1] (in millimeters per year per
pixel), mvy = [−1, 1] (in millimeters per year per pixel), mhx = 0 (in meters per pixel), and mhy = 0 (in meters per pixel). (b) Periodogram ξ for mvx = 0

(in millimeters per year per pixel), mvy = 0 (in millimeters per year per pixel), mhx = [−1, 1] (in meters per pixel), and mhy = [−1, 1] (in meters per pixel).

homogenous patches at subobject resolution. Then, the local
gradients of deformation velocity are integrated to obtain the
deformation velocity for each DS pixel, as explained in the next
section.

Practically, first, the phase values of each patch for every
differential interferogram are corrected with respect to the
patch’s reference pixel so that the atmospheric effects and
orbital errors are negligible. Second, these are then used for
parameter estimation by adjusting to the data a phase model
φi,k
model, which is given as follows:

φi,k
model=T kmvx

pix+T kmvy
piy+Bkmhx

pix+Bkmhy
piy (7)

where i = 1, . . . , L (L being the number of homogenous pixels
in the patch), k = 1, . . . ,M (M being the number of interfero-
grams), and pix and piy are pixel indices (related to the reference
pixel indices) in range and azimuth directions, respectively,
for homogenous pixel i. Since a DS pixel’s phase quality is
not on par with a PS, the phase model is not adjusted to
the data pixelwise. Instead, all the homogenous pixels inside
the DS object patch are simultaneously used for the model
fitting by maximizing the following model coherence function
(periodogram) ξ:

ξ
(
mvx

,mvy
,mhx

,mhy

)
=

1

M

M∑
k=1

(
1

L

∣∣∣∣∣
L∑

i=1

ej(φ
i,k−φi,k

model)

∣∣∣∣∣
)

(8)

where φi,k is the single-look interferometric phase for homoge-
nous pixel i and interferogram k calibrated with respect to the
respective reference pixel, and φi,k

model is the phase model given
by (7). Of course, the gradients of deformation velocity and the
residual topography for each patch are estimated from the peak
of this periodogram, i.e.,(

m̂vx
, m̂vy

, m̂hx
, m̂hy

)
= argmax

mvx ,mvy ,mhx ,mhy

(ξ). (9)

The maximum of ξ is the temporal coherence of the DS object.
Note that usually it is not as good as the temporal coherence
of a PS due to temporal decorrelation phenomenon. The range
of the gradients of linear deformation and residual DEM, over
which the maximum is searched, is based on prior knowledge.
Usually, mv = [−1, 1] (in millimeters per year per pixel) and
mh = [−1, 1] (in meters per pixel) is a suitable search range.
The precision of the estimation depends upon the number of ho-
mogenous pixels and spatial extension of the patch, in addition
to the average spatial coherence of the patch. Further on, the
more the number of interferograms, the better is the estimation
as the sidelobes (i.e., ambiguous solutions) are reduced and
a clear peak is obtained. An illustration of the periodogram
is provided in Fig. 2 using Lueneburg data set for a highly
deforming patch. In addition, 89 small baseline differential
interferograms were utilized for processing. A minimum patch
size of 400 and an average spatial coherence threshold of 0.3
were set. A distinct peak is clearly noticeable. At this point, the
algorithm has compensated residual DEM and the atmospheric
phase screen. The gradients of deformation velocity have been
estimated at subobject resolution using only small baseline
differential interferograms.

C. Deformation Velocity Integration

Since the independent estimated neighboring patches are
close and deformation velocity is assumed to vary smoothly
in space, a 2-D deformation velocity integration can finally be
performed to get the deformation velocity. A simple 1-D case
is shown in Fig. 3. A 2-D model-based deformation integration
proves useful as it is straightforward and easy to implement.
Depending on the source of the subsidence, e.g., mining, oil/gas
extraction, volcano, and earthquake, a suitable model can be
adopted and its parameters estimated. The advantage here is
that the estimated model parameters can be further used to
assess and analyze the impacts of such geophysical phenomena.
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Fig. 3. Simple 1-D example of integrating the relative deformation of the various patches to get the integrated values.

Due to model-based deformation retrieval, the final resolution
of deformation velocity is on the order of the dimensions of
objects.

In our practical implementation, we have assumed an ellip-
tical subsidence bowl for the test site Lueneburg, which has
undergone salt-mining-induced subsidence. This is because the
most common shape of surface deformation due to mining is a
circular or elliptical sag [26]–[29]. A 2-D elliptical Gaussian
deformation velocity field g(x, y) (in millimeters per year)
along the x- and y-directions is given by

g(x, y) = p · e−(a(x−x0)
2+2b(x−x0)(y−y0)+c(y−y0)

2) (10)

where p is the height/depth of the peak/valley, and (x0, y0) is
the center of the deformation trough. Coefficients a, b, and c
are given as follows:

a =
cos2 θ

2σ2
x

+
sin2 θ

2σ2
y

(11)

b = − sin 2θ

4σ2
x

+
sin 2θ

4σ2
y

(12)

c =
sin2 θ

2σ2
x

+
cos2 θ

2σ2
y

(13)

where θ is the rotation of the ellipse from the x-axis in the
clockwise direction, and σx and σy are the spreads in the

x- and y-directions, respectively. The deformation model is
shown in Fig. 4. For simplicity, it has been assumed that the
vertical deformation derived from the model expresses surface
subsidence along the satellite’s LOS. Equation (10) allows the
possibility to model an elliptical (or circular) subsidence bowl
or even a nondeforming zone. The deformation integration is
thus a model parameter estimation problem, wherein the 2-D
Gaussian deformation field parameters p, x0, y0, θ, σx, and
σy have to be estimated given the gradients of the deformation
velocity mj

vx
and mj

vy
for the reference points xj

ref and yjref ,
respectively, corresponding to the P patches j = 1, . . . , P .

It is important to note that nonlinear least squares curve
fitting cannot be directly performed as the observations are the
gradients of the deformation velocity in the range and azimuth
directions. In fact, the model parameter estimation can be ex-
pressed as a multidimensional nonlinear optimization problem,
where the sum of the absolute errors between the observed
gradients of deformation velocity and the modeled gradients
of deformation velocity has to be minimized. Conventional
methods for multidimensional nonlinear minimization include
Powell’s conjugate gradient descent method [30], the downhill
simplex method of Nelder and Mead [31], and the truncated
Newton method by Stephen Nash [32]. However, most of these
iterative methods need an initial starting point and find a local
minimum of the function to be minimized and thus may not
be robust for the deformation integration. In addition, many of
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Fig. 4. Two-dimensional elliptical Gaussian deformation velocity model along the x (range)- and y (azimuth)-directions. It is defined by the parameters p, x0,
y0, θ, σx, and σy . p is the height/depth of the peak/valley, (x0, y0) is the center of the deformation, θ is the rotation of the ellipse from the x-axis in the clockwise
direction, and σx and σy are the spreads in the x- and y-directions, respectively.

these optimization algorithms require derivatives’ evaluations,
but the function to be minimized is not totally differentiable.

Instead, we have applied Bayesian inference for the multidi-
mensional nonlinear regression [18], [19] by means of directed
graphs and particle filters. It is a statistical approach in which
all forms of uncertainty are expressed in terms of probability
and parameter estimation is performed based on measured
or empirical data. Bayesian inference has been successfully
demonstrated for 3-D positioning of PSs based on radargram-
metry [33].

We construct the directed graphical model (DGM) for de-
formation estimation, as shown in Fig. 5 [20]. DGMs reduce
complex Bayesian inference computations into simple graph
manipulations. The parameters that are either observed, known,
or need to be estimated are considered as random variables
(RVs) and represented by nodes. In our case, mj

vx
and mj

vy

are observed RVs and are consequently represented by blue
nodes in Fig. 5. xj

ref and yjref are white nodes because they are
known parameters, whereas p, x0, y0, θ, σx, and σy are gray
nodes because they have to be estimated. mj

vx
, mj

vy
and xj

ref ,

yjref are enclosed in a box that represents multiple nodes (i.e.,

a sequential estimation) for the P patches j = 1, . . . , P . The
directions of the arrows/arcs describe the dependence values
between the RVs. For the patch j, the gradients of the deforma-
tion velocity mj

vx
and mj

vy
in the range and azimuth directions

respectively depend on the 2-D Gaussian deformation velocity
field parameters p, x0, y0, θ, σx, and σy, as well as on the
location xj

ref and yjref of the reference point. The probabilistic
relation between the RVs can be evaluated using the DGM
(obtainable also from Bayes’ theorem) in (14), shown at the
bottom of the page, where l is the likelihood function given by

l =
P∏

j=1

f(mj
vx
|p, x0, y0, θ, σx, σy, x

j
ref , y

j
ref)

·
P∏

j=1

f(mj
vy
|p, x0, y0, θ, σx, σy, x

j
ref , y

j
ref). (15)

In (14) above, the term on the left-hand side of the equa-
tion is the joint posterior probability density function (PDF)
of the elliptical Gaussian model parameters p, x0, y0, θ,
σx, and σy . The numerator on the right-hand side of

f(p, x0, y0, θ, σx, σy|m1,...,P
vx

,m1,...,P
vy

, x1,...,P
ref , y1,...,Pref )

=
l · f(p) · f(x0) · f(y0) · f(θ) · f(σx) · f(σy)∫

σy

∫
σx

∫
θ

∫
y0

∫
x0

∫
p

l · f(p) · f(x0) · f(y0) · f(θ) · f(σx) · f(σy) · dp · dx0 · dy0 · d θ · d σx · d σy
(14)
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Fig. 5. DGM for the estimation of 2-D Gaussian deformation velocity field
parameters. We have P patches denoted by j = 1, . . . , P . For each patch j, the
gradients of the deformation velocity mj

vx and mj
vy in the range and azimuth

directions, respectively (known RVs, blue nodes) depend on the 2-D Gaussian
deformation velocity field parameters p, x0, y0, θ, σx, and σy (RVs to be
estimated, gray nodes) and also on the location xj

ref
and yj

ref
of the reference

point (known RVs, white nodes) and, hence, the direction of the arrows/arcs.
We enclose mj

vx , mj
vy , xj

ref
, and yj

ref
in the box, representing the multiple

nodes for the P patches.

(14) is composed of the conditional PDFs or likelihood
f(mj

v|p, x0, y0, θ, σx, σy, x
j
ref , y

j
ref) of the measured/observed

gradients of the deformation velocity for the different patches
and the prior PDFs f(p), f(x0), f(y0), f(θ), f(σx), and f(σy)
of the Gaussian model parameters. The conditional PDF or
likelihood of an observed gradient mj

v (in range or azimuth di-
rection) of deformation velocity for a patch j is computed using
the normalized absolute error between the observed gradient of
deformation velocity and the modeled gradient of deformation
velocity as follows:

f
(
mj

v|p, x0, y0, θ, σx, σy, x
j
ref , y

j
ref

)
= 1− normalized

(∣∣mj
v −m_gaussjv

∣∣) . (16)

Here, m_gaussjv is the modeled gradient (in range or azimuth
direction) of deformation velocity for the patch j; this is to
say that it is calculated from the Gaussian model parameters p,

x0, y0, θ, σx, and σy . The prior PDFs of the Gaussian model
parameters depend upon the prior knowledge (e.g., they can
be taken as a uniform distribution in a suitable range). The
denominator on the right side of (14) is the evidence and can
be neglected for the parameter estimation. It is only important
if model selection has to be performed.

For the deformation estimation, the joint posterior PDF is
computed and maximized to give us the parameter estimates
pMAP, xMAP

0 , yMAP
0 , θMAP, σMAP

x , and σMAP
y . This estimator

is called the maximum a posteriori (MAP) estimator(
pMAP, xMAP

0 , yMAP
0 , θMAP, σMAP

x , σMAP
y

)
= argmax

p,x0,y0,θ,σx,σy

(
f
(
p, x0, y0, θ, σx, σy|m1,...,P

vx

m1,...,P
vy

, x1,...,P
ref , y1,...,Pref

))
. (17)

Our applied framework employs bootstrap particle filtering
(i.e., condensation algorithm) for the MAP parameter esti-
mation [21], [22]. Particle filter is a sequential Monte Carlo
technique for implementing recursive Bayesian filter using the
concepts of importance sampling (and resampling). The basic
idea is to represent the required distribution by a set of dis-
crete NP random particles (i.e., samples and weights associ-
ated to each sample), thus inherently dealing with complex
multimodal/non-Gaussian PDFs, which are difficult to repre-
sent analytically. The MAP estimation via (17) is performed
based on these particles. The assessment of the estimation
quality is performed by computing the standard deviation of
the estimated parameters by means of the posterior PDF. It is
also possible to estimate more than one deformation bowls by
dividing the SAR scene into smaller areas and performing the
parameter estimation for these individually.

Note that, in case we have to optimally choose between dif-
ferent spatial models for the deformation, it can be easily done
via Bayesian inference. A good model balances goodness of
fit with simplicity. The model that best describes the Bayesian
problem is the one that has the highest evidence. Following
the basic concept of Monte Carlo integration, our practical
implementation of Bayesian inference using particle filters can
easily calculate the evidence by converting the integral into
some kind of average of the discrete random particles.

To end with, the algorithm provides the deformation velocity
at a resolution approximately in the scale of homogenous
objects and that too, without any phase unwrapping in typically
decorrelated areas. Due to model-based deformation integra-
tion, the deformation velocity for the whole subsidence bowl is
estimated, including its center, as compared with conventional
techniques such as PSI, SBAS, and SqueeSAR, which have a
lesser number of estimated points.

III. APPLICATION TEST CASE AND RESULTS

A. Application Test Case

We provide practical demonstration of our technique using
High Resolution Spotlight 300-MHz TerraSAR-X data of the
town of Lueneburg, which is situated in the German state of
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Fig. 6. Google Earth image of the test site Lueneburg in Germany (enclosed
in red).

Lower Saxony. The old part of this town lies on a salt dome.
As a result of constant salt mining dating back to the 19th
century and continuing until 1980, various areas of the town
experienced a gradual or high subsidence, became unstable,
and had to be demolished. The sinking still continues even
today. Many ground stations have been established since 1946
to monitor the deformation, but due to the changing subsidence
patterns and locations, spaceborne differential SAR interfero-
metric technique is better suited for deformation mapping of
Lueneburg.

Since October 2010, stacks of the X-band SAR satellite
TerraSAR-X have been ordered to monitor the subsidence.
TerraSAR-X provides a resolution of 0.6 m in slant range
direction and 1.1 m in azimuth direction in the High Resolution
Spotlight mode, and even single buildings can be mapped from
space. With a short repeat cycle of 11 days, stack of acquisitions
can be acquired rapidly for time-series analysis. We have used
17 TerraSAR-X images of Lueneburg from October 2010 to
September 2011 with a look angle of 29.6◦ and “HH” po-
larization to monitor the highly localized salt-mining-induced
subsidence phenomenon. The pixel spacing is approximately
0.6 m in range direction and 0.58 m in azimuth direction
(adapted to oversampling). In Fig. 6, we can see the Google
Earth image of the test site. Fig. 7 shows its corresponding SAR
mean amplitude image. Important to note is the presence of
vegetated and low-reflectivity homogenous areas, due to which,
the density of PSs is low.

The data set has been processed using our new technique.
The stack of TerraSAR-X images was coregistered and cal-
ibrated. The calibration constants are provided with the L1b
products; TerraSAR-X is a very stable precision instrument
for radar imaging [34], [35]. We generated 89 differential
interferograms based on a maximum spatial baseline of 150 m
and a maximum temporal baseline of 150 days. As afore-

Fig. 7. TerraSAR-X mean amplitude image of the test site Lueneburg.

mentioned, small baseline interferograms are used to limit the
effects of topography on the DSs but, more importantly, to
reduce the computational complexity. For coregistration and
DInSAR processing, DLR’s operational PSI-GENESIS pro-
cessor was employed [36], [37]. The coregistration module
of the processor uses a geometry-based algorithm, which uti-
lizes precise orbits and a DEM from shuttle radar topogra-
phy mission (SRTM). Fig. 8 shows the baseline time plot
for the scenes and the interferograms. As can be noticed,
we have a well-connected network because of short repeat
cycle of TerraSAR-X and highly reproducible scene repeti-
tion of the spotlight acquisitions, consequently ensuring the
temporal continuity of the deformation measurements. The
coherence matrix of the data set is illustrated in Fig. 9. It
demonstrates the combinations of acquisitions used (i.e., the
interferograms), each of which is color coded according to
its average spatial coherence. We can see that only small
baseline combinations have been used for the processing.
Moreover, the average coherence of this region can be ob-
served as low, typical for rural areas, thus advocating the need
for DSI.

B. Results

The identification of homogenous patches for Lueneburg
using the 17 TerraSAR-X amplitude images is shown in Fig. 10.
The region was divided into rectangular blocks of 40 pixels ×
40 pixels, i.e., 24 m × 24 m approximately. Within each
block, homogenous pixels were identified by means of the AD
statistical test based on a minimum patch size of 400 pixels and
a coherence threshold of 0.3.

Fig. 11 visualizes the gradient estimation results for the
residual DEM in the range and azimuth directions in meters
per pixel for the test site. Estimation of residual DEM gradients
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Fig. 8. Baseline-time plot of the TerraSAR-X data set of Lueneburg. Each dot
represents a SAR image, and each line represents an interferogram.

Fig. 9. Coherence matrix of the TerraSAR-X data set of Lueneburg. It depicts
the average spatial coherence of the small baseline differential interferograms
used in the processing.

is essential for an accurate estimation of deformation velocity
gradients. Fig. 12 visualizes the gradient estimation results for
the deformation velocity in the range and azimuth directions
in millimeters per year per pixel. The number of homogenous
pixels and temporal coherence (i.e., peaks of the periodograms)
for the patches are illustrated in Fig. 13. The gradients have
been estimated for a total of 536 456 points in an area of
1200 pixels × 1200 pixels.

The deformation integration results using our technique, i.e.,
DSI, are presented in Fig. 14. The scene was divided into nine
equal areas of 400 pixels × 400 pixels each, and deformation
integration was independently performed for these, wherein ten
million particles were used for representing the posterior dis-
tribution in (14). The results obtained for surface deformation
velocity show two Gaussian subsidence bowls, one having a
larger deformation than the other and also covering a larger
area. The Gaussian subsidence bowls with spreads smaller than
a certain threshold (i.e., 20 pixels) were not taken into account.
This is because, practically, at least three patches need to be fed
into the integration model for an elliptical Gaussian subsidence
(it has six parameters). Other types of deformation, e.g., struc-

Fig. 10. Identification of homogenous patches for Lueneburg using 17
TerraSAR-X amplitude images via AD test. The region is divided into blocks
by the blue lines, where the points in green represent the homogenous pixels
and the points in red represent the reference pixels.

tural stress of buildings, can spatially be fully described by two
parameters only, i.e., a single homogeneous patch is sufficient
for the deformation estimation.

The data set was also processed using another technique,
i.e., the high-resolution advanced SBAS technique, which was
briefly explained in Section I [10]. It makes use of small base-
line differential interferograms and incorporates an object adap-
tive spatial phase filtering and residual topography removal for
an accurate phase and coherence estimation while preserving
the object resolution. This is followed by retrieval of deforma-
tion via the SBAS approach, wherein the phase inversion is per-
formed using an L1-norm minimization, which is more robust
to the typical phase unwrapping errors encountered in nonurban
areas. Again, the 17 TerraSAR-X images and the 89 small
baseline differential interferograms were utilized to obtain the
deformation time series for Lueneburg. We used pixels that
have an average spatial coherence of at least 0.3 (i.e., 121 024
points in an area of 1200 pixels × 1200 pixels). The mean
deformation velocities estimated using this SBAS technique are
presented in Fig. 15. The high density of information that can
be extracted using our DSI technique can be seen by comparing
Fig. 15 with Fig. 12 (which has 536 456 estimated points).

The features that have been identified as deforming in Fig. 15
are also deforming in Fig. 14. The DSI approach, significantly,
provides spatially dense deformation velocity estimates instead
of just a few measured points using advanced SBAS. The main
reason is that the model-based gradient inversion is advanta-
geous compared with phase unwrapping in such areas as the
volume of the deformation model is known. It is thus possible to
better define the areas that are subsiding and also even identify
new ones not previously detected using conventional techniques
in nonurban areas.
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Fig. 11. Residual DEM gradient estimation results for Lueneburg using 89 small baseline differential interferograms. (a) Local gradients of residual DEM in the
range x-direction in meters per pixel. (b) Local gradients of residual DEM in the azimuth y-direction in meters per pixel.

Fig. 12. Deformation gradient estimation results for Lueneburg using 89 small baseline differential interferograms. (a) Local gradients of deformation velocity
in the range x-direction in millimeters per year per pixel. (b) Local gradients of deformation velocity in the azimuth y-direction in meters per pixel.

Deformation time series are visualized in Fig. 16 for some
of the pixels marked in Fig. 15. We have compared the time
series using advanced SBAS and DSI (assuming a constant
velocity model). The estimated mean deformation velocities
using DSI show a good fit to the nonlinear deformation time
series measured using SBAS.

The density histograms of the mean deformation velocity
estimates utilizing the two techniques are shown in Fig. 17.

What can be seen is the advantage provided by DSI, which
measures even the points with highest subsidence (i.e., centers
of subsidence bowls), which are not measured by advanced
SBAS due to high temporal decorrelation. It also shows that
the points, where the subsidence has not been detected using
DSI, have zero deformation velocities. This of course does
not mean that there is no deformation outside the identi-
fied subsidence bowls. It just shows the absence of motion
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Fig. 13. (a) Number of homogenous pixels for the patches of Lueneburg. (b) Temporal coherence (i.e., peaks of the periodograms) for the patches.

Fig. 14. Deformation velocity in mm/year estimated for Lueneburg using the
new DSI technique.

patterns that follow the Gaussian elliptical deformation velocity
model.

Additionally, we have collected ground truth for Lueneburg.
Fig. 18 shows the pictures of the area of the bigger subsidence
bowl in Lueneburg, “Ochtmisser Kirchsteig,” which has been
detected using our technique (i.e., the region surrounding point
A marked in Fig. 15). The effects of subsidence are encircled
in yellow. Fig. 19 shows the picture of the area of the smaller
subsidence bowl in Lueneburg, “Frommestrasse,” which has
been detected (i.e., the region surrounding point B marked in

Fig. 15. Deformation velocity in mm/year estimated for Lueneburg using
the high-resolution advanced SBAS technique [10]. Deformation time-series
comparison for points A, B, and C using advanced SBAS and DSI is shown in
Fig. 16.

Fig. 15). We can see that both these regions have undergone
high subsidence (and have suffered considerable damage), as
measured by our technique too.

We have also calculated the standard deviation of the esti-
mated parameters from the posterior PDF. It provides informa-
tion about the precision of estimation. The standard deviation
values for pMAP, xMAP

0 , yMAP
0 , θMAP, σMAP

x , and σMAP
y

are on the order of 0.37 mm/year, 5.96 pixels, 5.96 pixels,



GOEL AND ADAM: DSI APPROACH FOR PRECISION MONITORING OF KNOWN SURFACE DEFORMATION PHENOMENA 5465

Fig. 16. Deformation time-series comparison for points A, B, and C in
Lueneburg marked in Fig. 15 using DSI (assuming a constant velocity model)
and advanced SBAS.

0.01 rad, 1.28 pixels, and 1.28 pixels, respectively. Evidently,
the precision of this technique is good for high-resolution
sensors such as TerraSAR-X.

IV. DISCUSSION

The results demonstrate the potential of this new technique
for providing the deformation velocity and parametric modeling

of the deformation bowls at a suitable resolution in highly
decorrelated areas utilizing DSs. We make a first-order approx-
imation that the deformation velocities and residual topogra-
phies of the homogenous pixels show a linear spatial behavior
in the range and azimuth directions, respectively, with respect
to the reference pixel.

Essentially, this assumption is true for deformation as long as
it is not varying spatially faster in comparison to the pixel size
(otherwise, a higher SAR resolution would be beneficial), and
moreover, it is also based on the sensor characteristics. In other
words, the maximum deformation gradient, which is measur-
able in an interferogram, is determined by the signal wavelength
and pixel spacing [38]. However, this is only valid under an
ideal condition that there is no noise in the SAR observations.
Phase noise due to uncompensated geometrical decorrelation,
temporal decorrelation, thermal noise, atmospheric effects, etc.,
can significantly affect the detectable deformation gradients.
As a result, very small and large deformation gradients be-
come undetectable if the level of noise is too high. In [39],
a new functional model has been proposed for the maximum
and also for the minimum detectable deformation gradients
in an interferogram, taking into account the interferometric
coherence, which is a measure of the interferometric SNR,
thus making the models more realistic. This way of modeling
the spatial behavior of surface deformation (assuming that it
linearly changes over short distances) is particularly valid for
natural terrains, where most surface deformation signals are
smooth.

With regard to topography, the aforementioned assumption
is a typical attribute of statistically homogenous pixels since
radar brightness is strongly dependent on the orientation and
slope of a resolution cell. Explicitly, only those pixels would
be selected as homogenous, which exhibit a smoothly varying
topography. Thus, the identification of homogenous patches is
crucial. Again, in natural areas, the topography is mostly smooth.

Given that the above conditions are satisfied, our tech-
nique estimates the deformation velocity at a suitable object
resolution. This is advantageous in contrast to conventional
SBAS, which estimates the deformation at a low resolution
and, moreover, does not provide the deformation at points that
have undergone high temporal decorrelation. More points are
estimated using our technique because no phase unwrapping is
required. However, it is worth mentioning that SBAS estimates
the nonlinear deformation times series, whereas our technique
is concentrated on providing the mean deformation velocity.
This is the reason that SBAS requires phase unwrapping op-
erations, which might be difficult in such sparsely urbanized
areas. With respect to SqueeSAR, the computational complex-
ity is greatly reduced since only the small baseline differential
interferograms are used. With regard to conventional SBAS,
our method is computationally costly in identification of ho-
mogenous patches and the gradient estimation, whereas SBAS
is computationally expensive in phase unwrapping.

The precision of the estimates is quite good for high-
resolution satellites, e.g., TerraSAR-X. This method is more ap-
propriate for high-resolution sensors. For conventional sensors,
e.g., ERS, the homogenous objects need a large dimension, and
thus, the applicability of the method is test site dependent. It
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Fig. 17. Density histograms of the mean deformation velocity estimates for Lueneburg utilizing DSI and advanced SBAS.

Fig. 18. Pictures of the area of the bigger subsidence bowl in Lueneburg, “Ochtmisser Kirchsteig,” which has been detected using DSI (i.e., the region surrounding
point A marked in Fig. 15).

is to be noted that a minimum number of scenes are required
for the detection of homogenous patches. The precision of the
gradient estimation depends upon the number of homogenous

pixels and spatial extension of the patch, number of inter-
ferograms, and also the average coherence of the patch. The
following aspects need to be taken into consideration.
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Fig. 19. Picture of the area of the smaller subsidence bowl in Lueneburg,
“Frommestrasse,” which has been detected using DSI (i.e., the region surround-
ing point B marked in Fig. 15).

We have used single-look differential interferograms for
processing. Multilooked interferograms generally should not
be used since the basis of this technique is using homogenous
pixels for the estimation. Anyhow, conventional rectangular
multilooking can work if homogenous areas are larger, and we
restrict the multilooking and subsequent estimation to small
fixed averaging areas. Adaptive multilooking [10], [17] is better
as larger patches are possible (if the test site allows) and it
leads to a better precision. However, multilooking/averaging
can lead to smoothing of the deformation estimates. In addition,
we have used nonoverlapping blocks for the identification of
homogenous patches. Overlapping blocks can be considered
also in the future to increase the resolution.

The smallest deformation pattern that can be measured de-
pends on the type of subsidence effect and the resolution of
the sensor. For example, as aforementioned in this section, if
elliptical Gaussian subsidence occurs, the minimum size of the
bowl should be at least three patches. Anyhow, usually, such a
bowl has a larger dimension than this. In case of deformation
due to structural stress of buildings or thermal dilation of
bridges, even a single patch is enough.

For our test site in Lueneburg, which had been a salt mine,
an elliptical subsidence has occurred. Subsidence bowls over
mines usually occur when the overburden sags downward due
to failure of mine pillars. It results in a depression in the ground,
which is usually elliptical or circular in shape. The subsidence
is nearly temporally linear and is normally greatest at the center
of the bowl and progressively decreases until the boundaries
of the impacted surface area are reached. Note that we can
assume any appropriate model and estimate its parameters in
the same way using Bayesian inference, as described for the
elliptical trough (just the number of unknowns should be less
than or equal to the number of observations). For instance,
sinkhole subsidence can instead occur in areas lying above
underground mines, which are located very close to the ground
surface. This type of subsidence is pretty localized in extent
and causes an abrupt depression of the ground surface as over-
burden material collapses into the mine. In addition, Bayesian

inference also facilitates model selection for choosing the best
model from different deformation models. We would like to
remark that our approach is suitable to be applied to such
phenomena as mining-induced surface deformation and similar
geological effects, which can be described by an appropriate
model.

This paper, in fact, is a “principle demonstration” of a new
technique that avoids the necessity of phase unwrapping, which
is often an issue with DInSAR time-series analysis. The current
limitation of this technique is the model-based implementation,
which requires the surface deformation pattern to be known
before starting the data analysis. In the future, more advanced
integration methods can be model free, thus making this DSI
approach more general.

V. CONCLUSION

A novel concept has been developed for a robust defor-
mation velocity mapping and parametric modeling in highly
decorrelated regions, at a suitable object resolution without any
phase unwrapping. The increased density and quality of the
deformation estimates is the clear advantage. This new DSI
technique is based on an object adaptive parameter estimation
that makes use of the high resolution provided by modern
sensors. Only the small baseline differential interferograms are
utilized in order to reduce the computational burden. The algo-
rithm compensates the DEM errors and atmosphere. The tech-
nique’s application using High Resolution Spotlight 300-MHz
TerraSAR-X data of Lueneburg in Germany demonstrates its
high potential.

This technique can benefit from better prior information,
e.g., the suitable deformation integration model to be applied
and from future SAR systems with 600-MHz chirp bandwidth.
Future work can concentrate on integrating the topography
gradients and correcting the exploited DEM. Note that this
requires a non-model-based approach since, usually, the resid-
ual DEM cannot be modeled. Afterward, nonlinear surface
displacements, as well as the atmosphere, can be estimated
from the residual phase by taking into account their different
frequency characteristics in space and time. More importantly,
non-model-based deformation velocity integration would be the
upcoming focus.
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Fusion of Monostatic/Bistatic InSAR Stacks for
Urban Area Analysis via Distributed Scatterers

Kanika Goel and Nico Adam

Abstract—Interferometric synthetic aperture radar (SAR) is
a powerful technique providing meter-precision elevation maps
and millimeter-precision surface displacement maps. Since 2007,
the high-resolution SAR satellite TerraSAR-X allows monitoring
of even single buildings from space using advanced monostatic
repeat-pass stacking techniques. Furthermore, the launch of its
twin satellite TanDEM-X in 2010 facilitates bistatic single-pass
SAR interferometry. The main objective of this mission is the
generation of a global digital elevation model. It also provides a
configurable SAR platform for demonstrating new interferometric
techniques and applications. However, in dense urban areas, stan-
dard TanDEM-X elevation models are inaccurate because ambigu-
ities in radar layover areas cannot be solved. This letter describes
the potential of joint monostatic and bistatic (motion-free and
atmosphere-free) SAR interferometric stacking for an improved
scene elevation and surface deformation estimation in complex
urban areas. It involves exploiting distributed scatterers (DSs) us-
ing an advanced high-resolution small-baseline subset algorithm.
Since most of the scatterers within a radar image can be classified
as DSs, there is an increasing focus on an optimal processing of
DSs for urban area monitoring. The fusion technique and an ap-
plication test case are presented using a high-resolution spotlight
mixed TerraSAR-X/TanDEM-X data stack of Las Vegas, USA.

Index Terms—Digital elevation model (DEM), distributed
scatterer (DS), interferometric synthetic aperture radar (SAR)
(InSAR), TanDEM-X, TerraSAR-X, urban area monitoring.

I. INTRODUCTION

THE NEW generation of high-resolution X-band synthetic
aperture radar (SAR) sensors such as TerraSAR-X and

COSMO-SkyMed is providing imagery with unique charac-
teristics, enabling multitemporal interferometric SAR (InSAR)
for 3-D mapping and deformation monitoring. In urban areas,
these data facilitate monostatic repeat-pass interferometry [1]
and allow analysis of individual structures on the ground with
a high level of detail [2]. With the launch of the TanDEM-X
satellite, high-resolution bistatic single-pass interferometry is
now possible in conjunction with TerraSAR-X [3]. TanDEM-X
allows the acquisition of highly accurate bistatic across-track
interferograms which are free from motion, atmospheric distur-
bances, and temporal decorrelation. Thus, adding a few bistatic
data pairs to the existing monostatic data stack can be used
for an improvement in the accuracy of 3-D localization and
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deformation estimation of objects in urban areas. Basically, the
TerraSAR-X/TanDEM-X mission represents a specific sensor
availability scenario in space where the two satellites were
launched one after the other. There was a long monostatic
acquisition period at the beginning of the mission, followed by
a bistatic acquisition period which is going on currently, and
finally, there would be a monostatic acquisition period again.
Consequently, fusion of monostatic and bistatic data is essential
to fully exploit the mission potential.

However, in complex metropolitan areas, interpretation of
the SAR images and interferometric phase is problematic due
to phase discontinuities (e.g., due to height discontinuities,
noise, etc.) and complex scattering situations such as radar
layover and shadow. Spatial phase unwrapping proves to be a
challenge, and ambiguities in layover areas cannot be solved.
Therefore, the standard Shuttle Radar Topography Mission
(SRTM)/TanDEM-X digital elevation models (DEMs) are erro-
neous or even useless in urban areas, and advanced multibase-
line phase unwrapping algorithms are needed [4]. Hence, there
is a need to bypass geometrical limitations (such as layover) of
radar and thus enhance the precision and quality of TanDEM-X
height models.

Coherent phase-based multitemporal techniques, for in-
stance, persistent scatterer (PS) interferometry (PSI) [1] and
SAR tomography [5], make use of points with stable phase to
counter some of the aforementioned problems for urban area
monitoring. These long-time coherent points are called PSs
and are characterized by one or two dominant scatterers in a
resolution cell. On buildings, there can be many such points.
However, availability of such scatterers is opportunistic. To
improve the spatial sampling of the measured points, partially
coherent distributed scatterers (DSs) can be exploited, since
DSs also make up a significant percentage in X-band. The
complex response of a DS in a SAR acquisition involves a co-
herent sum of many independent small scatterers (no dominant
scatterer) within a resolution cell [6] and is modeled as a com-
plex circular Gaussian variate [7]. On man-made structures like
roofs, building walls, asphalt roads, and concrete surfaces, the
DSs also provide a long-time coherent radar return, although
the phase quality is not on par with the PSs. It is possible to
estimate the parameters (elevation and deformation) for DSs
with good precision using advanced algorithms such as the
small-baseline subset (SBAS) algorithm [8] and SqueeSAR [9].

This letter provides the first demonstration of the integra-
tion of monostatic and bistatic high-resolution InSAR stacks
for complex urban area monitoring and bypassing scattering
scenarios, for instance, radar layover. The technique exploits
DSs to estimate the topography and full deformation time series
using an advanced high-resolution SBAS algorithm. It first
utilizes motion-free and atmosphere-free bistatic single-pass

1545-598X © 2013 IEEE
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interferograms and then utilizes small-baseline monostatic
repeat-pass interferograms (no external DEM is used). The
objective of this letter is to present the fusion technique and
a test case using high-resolution spotlight mixed TerraSAR-X/
TanDEM-X data of Las Vegas, USA.

II. METHODOLOGY

Based on N SAR images (including both bistatic and mono-
static data), we generate M single-look bistatic interferograms
and M ′ single-look small-baseline monostatic interferograms.
The interferograms are first spatially adaptive multilooked, and
DSs are selected. The bistatic interferograms are then exploited
for topography estimation of each DS. These topographic
phases are removed from the monostatic interferograms, and
the SBAS technique is applied to retrieve the residual topogra-
phy and deformation time series for each DS. The various steps
involved in the fusion algorithm are as follows.

A. Spatially Adaptive Phase Multilooking and DS Selection

The fusion algorithm first involves the identification of image
pixels (i.e., resolution cells) with distributed scattering mech-
anism, hereafter called DSs. The DSs are characterized by a
low SNR, which has to be improved by local spatial averaging/
multilooking. A DS object usually spans several image pix-
els where the backscattered energy is lower/weaker, but is
statistically homogeneous within the area. Spatially adaptive
filters which average these statistically homogeneous pixels can
be used to enhance the amplitude, interferometric phase, and
coherence. Rectangular windows can be used too; however,
they result in a loss of resolution and usually bias the estimates,
for example, when there is a PS present in the rectangular
window (which is usually the case in high-resolution images
of urban areas).

The amplitudes of the complex returns are a good indicator
for distinguishing between different backscatters. Statistically
similar pixels can thus be selected for multilooking based
on their amplitude distributions using various statistical tests
[9], [10]. The Anderson–Darling (AD) test has proven to be
the most effective for identifying if two pixels arise from the
same distribution, given the stack of N SAR amplitude images
(coregistered and calibrated). It gives the best detection rate at
a constant false alarm rate. It performs reasonably well even for
a stack of acquisitions containing as small as ten images.

The AD test is performed for each image pixel, and the
homogeneous pixels surrounding it are identified (i.e., a spa-
tially adaptive estimation window which can have any size
and shape). A pixel can be included in different estimation
windows, as compared to segmentation wherein each pixel is
assigned to a single class. The estimation window for each
pixel is then used for complex phase multilooking of the
interferograms (bistatic and monostatic) for an improved phase
and coherence estimation. Of course, there is a slight reduction
of resolution due to the adaptive multilooking, but the object
resolution is preserved. Then, we select the DSs for further pro-
cessing based on a minimum average spatial coherence and a
minimum number of looks (so as to exclude PSs). Additionally,
in the next step (i.e., Section II-B), a further selection of DSs is
done based on the temporal coherence.

B. Bistatic Stacking Interferometry

The bistatic interferograms are now exploited for height
estimation of DSs. An external DEM is not used, since it has
artifacts in urban areas and is of low resolution (e.g., SRTM
DEM). Also, the standard TanDEM-X DEM suffers from the
side-looking geometry of SAR, due to which issues like radar
layover and shadow remain unsolved, unless multiaspect data
or a stack of acquisitions are used. The spatially adaptive
multilooked interferometric phase for a generic pixel in the kth
bistatic interferogram is composed of the phase components
due to topography (φk

topo) and noise (φk
noise) only

φk
ML = φk

topo + φk
noise. (1)

The topographic phase depends on the perpendicular baseline
Bk

⊥, the distance R between the target and master sensor, and
the local incidence angle (for flat terrain) θ as follows:

φk
topo = xkh =

(
2π

λ

Bk
⊥

R sin θ

)
h =

2π

ak
h (2)

where λ is the transmitted wavelength, h is the height of the
pixel, and ak is the height of ambiguity. The phase noise is
due to possible uncompensated geometrical decorrelation and
thermal noise effects.

Given a few spatially adaptive multilooked bistatic interfer-
ograms with different perpendicular baselines/heights of am-
biguities and referenced with respect to a single pixel, it is
possible to retrieve the height information for each DS by using
its wrapped interferometric phase vector. The height h of a DS
here refers to the average height of the DS area which has been
multilooked. Since a pixelwise adaptive multilooking has been
performed, as described in Section II-A, areas with sloping or
complex topography are appropriately handled. The following
model coherence function (periodogram) ξ is maximized for
height estimation:

ξ(h) =
1

M

∣∣∣∣∣
M∑
k=1

ej(φ
k
ML−φk

topo)

∣∣∣∣∣ . (3)

Since there is no deformation phase in the bistatic interfero-
grams, the periodogram is a 1-D function dependent just on the
DS’s height (and not on its velocity), and its values are known
over an irregular grid defined by the available spatial baselines
(Bk

⊥). The topography estimate for each DS is estimated from
the peak of this periodogram, i.e.,

(ĥ) = argmax
h

(ξ). (4)

The maximum of the periodogram is the temporal coherence
of the DS. The reference pixel is usually a high coherent point
located in a nondeforming zone (note that the same reference
point is used later on for the monostatic interferograms in
Section II-C). The precision of the estimation depends on the
number of bistatic interferograms and the baseline distribution,
since the sidelobes of the periodogram reduce by using more
bistatic interferograms with varying perpendicular baselines
[11]. It also depends on the phase stability of the DS and the
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sensor characteristics. The variance of the height estimate of a
DS is approximately given as follows [12]:

σ2
h
∼=

M∑
k=1

(
1
σk
φ

)2

M∑
k=1

(
1
σk
φ

)2 M∑
k=1

(
xk

σk
φ

)2

−
(

M∑
k=1

xk

(σk
φ)

2

)2 (5)

where σk
φ is the phase standard deviation of the DS for inter-

ferogram k. It is a function of the spatial coherence and the
number of looks [7]. Assuming that σφ = 20◦ and the height of
ambiguities of the TerraSAR-X data set described in Section III,
we get σh

∼= 1.5 m.
Important to note is that, first, since the DS pixel has been

multilooked using its statistically homogeneous pixels, the
possibility of a layover (e.g., building and ground) inside a
resolution cell is quite low, and usually, a clear periodogram
peak is obtained. This is because the radar amplitude is strongly
dependent on the orientation and slope of a resolution cell.
Explicitly, only those pixels would be selected as homoge-
neous, which exhibit a smoothly varying topography. Note
that the periodogram approach works well for single PSs too;
however, we must stress that the periodogram can lead to a
wrong estimation in the case of PSs which are characterized by
double (or more) dominant scatterers inside a resolution cell.
Anyhow, we choose only DSs for the processing, as mentioned
in Section II-A. Second, since wrapped phase data are used for
height estimation of DSs and no phase unwrapping is required,
radar layover is bypassed and does not affect the algorithm.

We then select those DSs for subsequent processing, which
exhibit a temporal coherence greater than a certain threshold.

C. Monostatic Stacking Interferometry

The monostatic interferograms are now exploited for defor-
mation time series mapping using the SBAS technique. The
DEM phase components estimated via the bistatic interfero-
grams are used to compute the differential monostatic interfer-
ograms. There might still be residual topography present in the
flattened monostatic interferograms, since the baseline spread
of bistatic interferograms is restricted by the number of data
pairs and their perpendicular baseline separation. We use only
small-baseline monostatic interferograms so as to reduce the
effects of residual topography and decorrelation on the DSs.
The spatially adaptive multilooked interferometric phase for a
generic pixel in the kth flattened monostatic interferogram is
composed of the phase components due to residual topography
(φk

topo_flat), deformation (φk
defo_flat), atmosphere (φk

atm_flat),
and noise (φk

noise_flat)

φk
ML_flat=φk

topo_flat+φk
defo_flat+φk

atm_flat+φk
noise_flat. (6)

The residual topography phase is given as follows:

φk
topo_flat = xkΔh =

4π

λ

Bk
⊥

R sin θ
Δh =

2π

ak
Δh (7)

where Δh is the residual topography of the pixel. The phase-
to-height sensitivity of a monostatic interferogram is double as
compared to that of a bistatic interferogram. The phase noise

Fig. 1. Mean SAR amplitude image and its corresponding Google Earth
optical image of the test site Las Vegas.

here is due to temporal decorrelation, in addition to uncompen-
sated baseline decorrelation and thermal noise effects.

SBAS is explained in detail in [8]. The main steps are as
follows.

1) The interferograms are spatially unwrapped, and all co-
herent pixels are calibrated with respect to the reference
pixel (which has been used in Section II-B).

2) Next, the residual DEM and mean deformation velocity
are estimated for the DSs via the least squares solution
of the computed sequence of differential InSAR interfer-
ograms.

3) After this operation, the estimated residual topography
and mean deformation velocity are subtracted modulo
2π from each interferogram, resulting in a fringe rate
reduction.

4) Accordingly, a new unwrapping step is then applied to the
residual wrapped phase, with the phase unwrapping being
considerably simplified. By adding back the subtracted
mean deformation velocity, refined unwrapped differen-
tial interferograms are obtained.

5) The interferogram subsets are afterward linked using the
singular-value decomposition method, and a minimum-
norm least squares solution (i.e., L2 norm minimization)
is obtained. Advantageously, SBAS provides complete
nonlinear deformation time series of the scatterers, incor-
porating the linear as well as the seasonal motion (e.g.,
for buildings), without using any model.

6) Finally, the atmospheric effects are estimated and re-
moved via a spatial low-pass and a temporal high-pass
filtering.

However, L2 norm minimization (step 5 above) performs
poorly in case of difficult-to-detect phase unwrapping errors
(spike noise). These might be present in urban areas due to tall
and closely located buildings, which result in radar layover and
shadow. Instead, a more robust phase inversion solution can be
obtained by using an L1 norm minimization [13], [14]. Thus,
the L1 norm cost function is applied to estimate the deformation
time series for each DS at object resolution.

III. APPLICATION TEST CASE AND RESULTS

We have applied the proposed algorithm on a test site approx-
imately 4 km by 2.5 km centered at the Las Vegas Convention
Center in Las Vegas, USA. Eighty-four “high-resolution spot-
light” TerraSAR-X/TanDEM-X images from February 2008
to December 2011 with a look angle of 36.04◦ and “VV”
polarization have been used. The mean amplitude image of the
test site and its corresponding Google Earth optical image are
shown in Fig. 1. The pixel spacing is approximately 0.38 m
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Fig. 2. Comparison of a bistatic and a monostatic interferogram of Las Vegas.

Fig. 3. Baseline–time plot of the TerraSAR-X/TanDEM-X data of Las Vegas.

in the range direction and 0.42 m in the azimuth direction
(adapted to oversampling). Fig. 2 shows a comparison between
a multilooked bistatic and a monostatic interferogram of the
test site Las Vegas. The bistatic interferogram is free from
fringes due to deformation and atmosphere and has no temporal
decorrelation, as compared to the monostatic interferogram.

The SAR images have been used to generate five bistatic in-
terferograms with height of ambiguities −33.3927, −44.6864,
−54.2698, 53.9007, and −53.7940 m/cycle, respectively. Next,
174 monostatic interferograms have been generated. These
include, first, small-baseline interferograms based on a maxi-
mum perpendicular baseline of 150 m and a maximum tem-
poral baseline of 30 days. Second, these also include a few
long-time-span (approximately 750 days) interferograms with
very small perpendicular baselines (approximately 5 m) so
as to include the full cycles of seasonal motion on buildings
in these interferograms; the very small perpendicular baseline
ensures that the effect of topographic phase on the interfero-
grams is minimal. For coregistration and InSAR processing, the
German Aerospace Center (DLR)’s operational PSI-GENESIS
processor has been employed [15]. Fig. 3 shows the baseline–
time plot for the scenes and interferograms, wherein each dot
represents a SAR image and each line represents an interfero-
gram used in the processing.

We then apply the adaptive spatial filtering algorithm on
the single-look interferograms, as demonstrated in Fig. 4. The
minimum and maximum sizes of the homogeneous patch are set
to 20 and 200 pixels, respectively. We clearly see the reduction
in the phase noise and the improvement in the interferometric
phase.

This is followed by height estimation of the DSs for the test
site by means of 1-D ensemble coherence maximization using

Fig. 4. Single-look monostatic interferogram of Las Vegas and its spatially
adaptive multilooked version.

Fig. 5. DS height estimates for Las Vegas using bistatic interferograms via
ensemble coherence maximization.

Fig. 6. Illustration of the removal of the topographic phase from a monostatic
interferogram of Las Vegas.

only the five bistatic single-pass interferograms, as presented
in Fig. 5. We have selected DSs which have an average spatial
coherence of at least 0.7 and a temporal coherence of at least 0.5
so as to exclude decorrelated areas. A total of 6 361 670 points
have been processed (approximately 600 000 DSs per square
kilometer). Assuming a best case scenario of 100 000 PSs per
square kilometer, this is a six times increase in the density of
measured points. The subsequent flattening of the monostatic
repeat-pass interferograms is illustrated in Fig. 6. Evidently,
the fringes due to very high buildings in Las Vegas have been
removed. It is worth mentioning that the residual DEM is still
present in the monostatic interferograms and has to be removed.
The better the precision of the height estimation (as described
in Section II-B), the lower the magnitude of the residual DEM.

The flattened monostatic interferograms are now unwrapped
using the minimum-cost flow algorithm [16]. These are subse-
quently used for residual topography and deformation monitor-
ing using the SBAS approach via the L1 norm minimization.
The algorithm proposed by Barrodale and Roberts [17] is used
for L1 norm minimization. The estimated residual DEM for the
DSs of Las Vegas is on the order of a few meters, although
there are some DSs which have a significantly high DEM error
which is greater than 10 m (approximately 2.8% of the selected
DSs). The estimated root-mean-square (rms) deformation and
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Fig. 7. DS deformation estimates for Las Vegas using flattened monostatic
interferograms via L1-norm-based SBAS. The deformation time series is
visualized for a DS, where the dots represent the estimated deformation at the
time of SAR acquisitions and the solid line is a line fitting using cubic spline
interpolation.

an example of a deformation time series for a DS are shown in
Fig. 7. We have used the rms deformation for visualizing the re-
sults as it is visually effective and provides integral information
about the displacement with respect to time. As can be seen,
even nonlinear deformation time series can be estimated, which
include the linear as well as seasonal deformation on buildings
due to thermal dilation [18]. The variance of the deforma-
tion estimates using the L1 norm inversion is between 0 and
10 (mm × mm), and thus, this method provides millimeter
precision. The variance is higher for DS points in layover
regions or having a seasonal motion.

We would like to remark that no standard TanDEM-X/
external DEM has been used in our processing. Since the same
multilooking window is used for topography and deformation
estimation of DSs, error propagation is minimal. The fusion
algorithm is easy to implement without much add-ons to the
existing techniques and is computationally efficient.

IV. CONCLUSION

High-resolution SAR sensors TerraSAR-X and TanDEM-X
enable bistatic and monostatic interferometry. In particular,
the bistatic interferograms have a high data quality and are
free from deformation, atmosphere, and temporal decorrelation.
By properly integrating the data stacks, an improved estimation

of topography and deformation time series at object resolution
is possible. We have investigated in particular an advanced fu-
sion of TerraSAR-X and TanDEM-X InSAR data utilizing DSs
in dense metropolitan areas, where the standard TanDEM-X
elevation models are inaccurate. It complements PS-based
techniques such as PSI and SAR tomography. The results of
processing a TerraSAR-X/TanDEM-X data set of Las Vegas,
USA, show the millimeter precision which can be obtained.
The topic of further investigation is the potential of jointly
processing TerraSAR-X/TanDEM-X data using PSs.
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Abstract This paper presents the fusion of monostatic repeat-
pass and bistatic single-pass SAR data for an improved 3D 
positioning and deformation monitoring of objects in urban 
areas. Addition of a few TanDEM-X data pairs (which are free 
from displacement, atmosphere and temporal decorrelation) to
the existing TerraSAR-X data stack can improve the results of 
stacking techniques such as Persistent Scatterer Interferometry 
(PSI). However, in dense urban areas, geometrical limitations 
such as layover make it difficult for an accurate mapping using 
the standard TanDEM-X elevation models. In this paper, we
investigate the potential of jointly processing TerraSAR-X and 
TanDEM-X data for resolving single or double scattering 
mechanisms present in the same resolution cell. The technical 
details and demonstration are provided using high resolution 
spotlight mixed TerraSAR-X /TanDEM-X data of Las Vegas, US. 

Index Terms  SAR Interferometry, Persistent Scatterer (PS), 
TanDEM-X, TerraSAR-X.

I. INTRODUCTION 

SAR interferometry is a well-established technique for 
TerraSAR-X

allows millimetric accuracy with its High Resolution Spotlight 
mode using advanced stacking techniques such as Persistent 
Scatterer Interferometry (PSI) [1], [2]. The launch of TanDEM-
X mission in 2010 facilitates high resolution single pass SAR 
interferometry [3]. The main objective of this mission is the 
generation of a global digital elevation model (DEM). 
Furthermore, it also provides a configurable SAR platform for 
demonstrating new interferometric techniques and applications.
It enables the acquisition of highly accurate across-track 
interferograms which are free from motion, atmospheric 
disturbances and temporal decorrelation, as compared to 
repeat-pass interferometry. Adding a few TanDEM-X data 
pairs to the existing TerraSAR-X data stack can be used to 
improve the results of the stacking techniques. Though, the 
combination of bistatic and monostatic data can be difficult. 

Essentially, the TerraSAR-X/Tandem-X case represents a 
typical sensor availability scenario in space, where, the 
satellites in a mission are launched one after the other. 
Typically, there is a long monostatic acquisition period at the 
beginning of the mission, followed by a short bistatic 
acquisition period and finally, again a monostatic acquisition 

period. Thus, fusion of bistatic and monostatic data is essential 
to fully exploit the potential of high resolution SAR missions. 

Also, there is an increased focus on monitoring urban 
infrastructure from space. In dense metropolitan areas, it is 
difficult to interpret the SAR images and interferometric phase 
due to discontinuities and complex scattering situations such as 
layover and shadow. Spatial phase unwrapping is a challenge. 
This is the reason that standard TanDEM-X height models are 
incapable of providing an accurate 3D positioning of objects in 
urban areas.  

This paper explores the integration of monostatic repeat-
pass and bistatic single-pass SAR data in complex urban areas 
for an improved 3D positioning and deformation mapping of 
persistent scatterers (PSs). Our approach jointly processes
TerraSAR-X and TanDEM-X data for resolving single or 
double scattering mechanisms present in the same resolution 
cell. It complements coherent phase-based techniques such as 
conventional PSI, SAR tomography [4] and multi-baseline 
phase unwrapping [5]. The developed method is more robust 
because it uses repeat-pass amplitude data and single-pass 
interferometric phase data only for enhancing the quality and 
precision of TanDEM-X elevation models. Subsequently, 
repeat-pass differential interferometric phase data can be used 
for displacement monitoring. The technical details and first 
results are presented using high resolution spotlight mixed 
TerraSAR-X/TanDEM-X data of Las Vegas, US. 

II. METHODOLOGY

Standard interferometric processing systems such as PSI 
are developed to cope with a single scatterer inside a resolution 
cell. The periodogram (ensemble coherence maximization) 
based on a common master image is the optimal estimator in 
case of a single scatterer surrounded by incoherent clutter. The 
TanDEM-X data pairs acquired simultaneously result in single-
pass interferograms which have a high data quality and are free 
from deformation, atmosphere and temporal decorrelation. Fig. 
1 shows a comparison between a single-pass and a repeat-pass 
interferogram. Given a few single-pass interferograms with 
different height of ambiguities and calibrated with respect to a 
single pixel, it is possible to retrieve the height information in
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case of a single scatterer inside a resolution cell using the 
periodogram method (without the need of a common master 
image). In this case, the ensemble coherence as a function of 
height h  for a pixel is given by: 
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where, M  is the number of single-pass interferograms, k  is 

the interferometric phase of the pixel for interferogram k ,  is 

the transmitted wavelength, kB  is the perpendicular baseline 

for interferogram k , R  is the sensor-target distance and  is 
the local incidence angle (for flat terrain). Important to note is 
the fact that since there is no deformation phase in the single-
pass interferograms, the ensemble coherence is a 1D function 
dependent just on the 

of 
PSs for the test site Las Vegas, using only 5 bistatic 
interferograms with height of ambiguities -33.3927, -44.6864, -
54.2698, 53.9007 and -53.7940 m/cycle respectively. The 
maximum of  is called temporal coherence (shown in Fig. 3). 

The height estimates can then be used for the removal of 
topographic phase from the monostatic interferograms. 
Afterwards, the flattened monostatic interferograms can be 
used for deformation mapping using standard stacking 
algorithms. 

Figure 1. Comparison of a single-pass interferogram (TanDEM-X) and a
repeat-pass interferogram (TerraSAR-X) of Las Vegas, US. 

We can visualize in Fig. 3 and 4 that some of the results are 
not correct (lower temporal coherence). This is because of the 
presence of double scatterers inside a resolution cell. An 
example of a periodogram for a single scatterer is shown in 
Fig. 4 (a). What can be seen is the presence of strong side lobes 

due to the use of only 5 TanDEM-X interferograms. Of course, 
an ideal situation would be many bistatic interferograms with 
varying height of ambiguities to reduce the side lobes.  
Practically, this is not always possible. The periodogram 
estimates the height accurately only when a single scatterer is 
present in a resolution cell. The case of multiple scatterers in a 
resolution cell leads to biased or even a wrong estimation as 
demonstrated in Fig. 4 (b).  

Figure 2. PS height estimation results for Las Vegas via a 1D ensemble 
coherence maximization approach using 5 TanDEM-X interferograms. 

Figure 3. PS temporal coherence results for Las Vegas via a 1D ensemble 
coherence maximization approach using 5 TanDEM-X interferograms. 

Complex urban structures and the side-looking radar 
observation geometry make it likely that more than one 
scatterer are inside a resolution cell [6]. Typical example is 
layover of building and ground. Around 15% of the persistent 
scatterers (PSs) are multiple scatterers in an urban area [7]. To 
resolve this ambiguity, the proposed algorithm increases the 
number of observations by making use of repeat-pass 
TerraSAR-X amplitude data [7], [8], in addition to the single-
pass TanDEM-X interferemetric phase data. The use of only 
the repeat-pass amplitudes is to avoid deformation and 
atmospheric interference. The technique utilizes the baseline 
dependency of the amplitude.  It provides the number of 
dominant scatterers inside a resolution cell and consequently 
solves the model selection problem. It can be applied in the 
early stages of interferometric processing and complements 
coherent techniques such as PSI and SAR tomography which 
include the phase information and thus require the correction of 
displacement and atmospheric phase beforehand.  

Single Pass (TanDEM)

Dual Pass



Figure 4. (a) is the periodogram for a single scatterer. (b) is the 
periodogram for a double scatterer (biased or wrong estimation of height). 

Given N  amplitude images (coregistered and calibrated) 
and M  bistatic interferograms (referenced to a single pixel), 
the model selection is based on the following two mechanisms: 

A. Single Scattering Mechanism 

A single scatterer i.e. a panel made of metal can be 
described by the following amplitude (baseline dependent): 
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where,  Ni ,...,1  is the image index, iB  is the height-to-
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s  is the  reflectivity of the scatterer,  is the extension of the 
panel and  the orientation of the panel. The ensemble 

coherence of the single scatterer using only the bistatic 
interferograms is given by (1).  

B. Double Scattering Mechanism 

The alternative model describing the amplitude (baseline 
dependent) of two dominant scatterers inside a resolution cell 
results from the amplitude of the sum of two complex sinusoids 
and describes a fading. It is given by: 
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It models the reflectivities 1s  and 2s  of the two scatterers, their 

heights 1h  and 2h  respectively and the orientation . The 

ensemble coherence of the double scatterer using only the 
bistatic interferograms can be derived from [6]. 

Based on the above two models, we perform a robust joint 
maximum a-posteriori (MAP) estimation of the unknown 
parameters and model selection exploiting the monostatic 
amplitude and bistatic interferometric phase observations. This 
is done via Bayesian inference making use of directed graphs 
and particle filters [9], [10]. It is a statistical approach in 
which all forms of uncertainty are expressed in terms of 
probability and parameter estimation is performed based on 
measured or empirical data. Our practically applied 
framework estimates the posterior distribution by making use 
of bootstrap particle filtering (condensation algorithm), which 
is a computationally efficient method.  

Figure 5. Demonstration of parametric sinc and cos fits for two pixels (PSs) of the test site respectively. 

(a)

(b)

Observed data

Sinc fit

Observed data

Cos fit



Figure 6. (a) Amplitude image of a part of the test site, Las Vegas, US. (b) 
Detected single scatterer resolution cells are overplotted and shown in green. 

(c) Detected double scatterer resolution cells are overplotted and shown in 
green. 

III. APPLICATION TEST CASE

The test site is the city of Las Vegas in US. The data stack
comprises of 84 High Resolution Spotlight acquisitions from
2008 2011. For the processing, we used these 84 amplitude 
images and 5 bistatic interferograms with height of ambiguities 
-33.3927, -44.6864, -54.2698, 53.9007 and -53.7940 m/cycle. 
The number of amplitude images required for a reliable 
estimation can be even less, but the number of unknowns 
should be less than the number of observations during the MAP 
estimation and model selection. In this section, we provide the 
first preliminary results of our approach. 

Fig. 5 compares the parameter fits for the two resolution 
cell configuration models for two pixels (PSs) of the test site. 
As can be seen, the parametric modeling and fit allows the 
optimal estimation of the resolution cell configuration. Fig. 6 

shows the detected single scatterer and double scatterer 
resolution cells in green for a part of the test site. The areas 
where double scatterers exist can be visualized in Fig. 6 (a),
which is the amplitude image of the test area. Fig. 6 (c) is 
plausible, it shows the double scattering resolution cells in 

, thus, validating the algorithm. 

Based on the number of scatterers inside a resolution cell, 
the optimal removal of topographic residuals can finally be 
implemented, followed by improved deformation monitoring 
using standard techniques. 

IV. CONCLUSION

A new concept has been developed for the fusion of repeat-
pass monostatic and single-pass bistatic SAR data. It makes use 
of single-pass interferograms and repeat-pass SAR amplitude 
images to cope with the typical PS resolution cell 
configurations and detects one or two scatterers inside a SAR 
resolution cell. It is insensitive to deformation and atmospheric 
disturbances. It complements phase based techniques, e.g., PSI 
and SAR tomography. A preliminary demonstration has been 
provided using TerraSAR-X and TanDEM-X data of Las 
Vegas in US. Future work will concentrate on providing 
processing examples for this technique. Also, fusion of 
TerraSAR-X and TanDEM-X data for distributed scatterers 
(DSs) would be investigated.

ACKNOWLEDGMENT 

We would like to thank Prof. Dr. Richard Bamler for his 
valuable and constructive suggestions.  

REFERENCES

[1]
IEEE TGRS, vol. 39, No. 1, pp. 8-20, 2001. 

[2] N. Adam, M. Eineder, N. Yague- High 
resolution interferometric stacking with TerraSAR-  In: Proc. IEEE 
IGARSS, Boston, 2008. 

[3] G. Krieger, A. Moreira, H. Fiedler, I. Hajnsek, M. Younis, M.Werner, 
and -X mission: A satellite formation for high 
resolution IEEE TGRS, vol. 45, no. 11, pp. 3317
3341,  2007.  

[4]
tomography IEEE TGRS, vol. 48, no. 12, pp. 
4296 4308, Dec. 2010. 

[5]
concepts and phase unwrapping algorithms for the TanDEM-X
M  In: Proc. IEEE IGARSS, pp. 5272 5276, 2007. 

[6] A. Ferretti, m. Bianchi, C. P Higher-order permanent 
scatterers analysis EURASIP Journal on Applied Signal Processing,
20, 3231 3242, 2005.

[7] N. Adam, R. Bamler, M. Eineder, and B. Kampes, 
Estimation and  Model  Selection Based on Amplitude-Only Data in 

FRINGE, Frascati, Italy, 2005. 

[8] N. Adam, and M. Eineder,
: Symposium of ISPRS 

Commission I, Paris, France, 2005.  

[9] K. Goel, and N. Adam, Three-dimensional positioning of point 
scatterers based on radargrammetry IEEE TGRS, vol. 50. No. 6, pp. 
2355-2363, 2012. 

[10] K. Goel, and N. Adam, 
Proc. IEEE IGARSS, Munich, 

Germany, 2012. 



144 
 

Errata Sheet 
 

This errata sheet lists an error in the paper: 
A.5 Goel, K., Adam, N., 2013b. Advanced stacking of TerraSAR-X and TanDEM-X data 
in complex urban areas. Proceedings of Joint Urban Remote Sensing Event, JURSE 
2013, Sao Paulo, Brazil, 21-23 April, 115-118. 

The Equation (1) in this paper is corrected to: 
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List of Abbreviations 
 

APS: Atmospheric Phase Screen 

BF: Beamforming  

CPT: Coherent Pixels Technique 

Compressive Sensing: CS 

DEM: Digital Elevation Model 

DGM: Directed Graphical Model 

DInSAR: Differential Interferometric Synthetic Aperture Radar 

DTomoSAR: Differential SAR Tomography 

DS: Distributed Scatterer 

DSI: Distributed Scatterer Interferometry 

InSAR: Interferometric Synthetic Aperture Radar 

LOS: Line-of-Sight 

LS: Least Squares 

MAP: Maximum A-Posteriori 

MCF: Minimum Cost Flow 

ML: Maximum Likelihood 

NLS: Non-linear Least Squares  

NWP: Numerical Weather Prediction 

PDF: Probability Density Function 

PS: Persistent Scatterer 

PSI: Persistent Scatterer Interferometry 

PSI-GENESIS: PSI module of the GENEric System for Interferometric SAR 

Radar: RAdio Detection And Ranging 

RMS: Root-Mean-Square 

RV: Random Variable 

SAR: Synthetic Aperture Radar 

SBAS: Small Baseline Subset Algorithm 

SCR: Signal to Clutter Ratio 
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SNR: Signal to Noise Ratio 

SVD: Singular Value Decomposition 

TomoSAR: SAR Tomography  
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