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Abstract

The border of magnetism, where a phase transition into a magnetically ordered state is
suppressed to zero temperature, is an interesting playground to study exotic electronic
ordering phenomena that are driven by quantum �uctuations like unconventional forms
of magnetic or superconducting order. Numerous important discoveries in contemporary
condensed matter physics like, e.g., high temperature superconductivity, are attributed
to such zero temperature phase transitions, so-called quantum phase transitions [1]. A
deeper understanding of these phenomena promises the development of new technologi-
cally relevant materials.

The conventional scenario for a quantum phase transition is a continuous, i.e., second
order, phase transition that is suppressed to zero temperature. As in classical continuous
phase transitions at �nite temperature, these phase transition are governed by �uctu-
ations whose length and timescale diverges on approaching the phase transition point.
However, at zero temperature the �uctuations are not thermal but quantum �uctuations.
Furthermore, the control parameter is non-thermal like pressure, magnetic �eld, or dop-
ing. The point where a second order phase transition is suppressed to zero Kelvin is called
quantum critical point (QCP). There, the free energy landscape is rather �at so that even
exotic forms of order with tiny energy scales can become the groundstate. The presence
of a QCP can be felt at �nite temperatures leading to a characteristic V-shaped region in
the phase diagram where anomalous temperature dependences of physical properties like,
e.g., the speci�c heat or resistivity are observed. The QCP is often masked by a dome of
an exotic ordered phase.

The probably best known scenario for studying the e�ects of QCPs is the border of
antiferromagnetic order. Numerous studies exist where the second order phase transi-
tion at the Néel temperature is suppressed to low temperatures. E.g., in CePd2Si2 [2],
CeRh2Si2 [3], CeCu2 [4], and CeIn3 [5] a superconducting dome emerges in the vicinity of
the QCP. In YbRh2Si2 [6] and CeCu1−xAux [7] the physical properties substantially de-
viate from the fundamental theory of metals at low temperatures, the Fermi liquid theory.

In contrast to antiferromagnetic order, it was found in all systems studied so far that
at the border of itinerant ferromagnetism the transitions at the Curie temperature turn
from second to �rst order before they are suppressed, precluding a QCP together with the
emerging quantum critical behavior. In a classical picture, �rst order phase transitions are
driven by local minima in the free energy where �uctuations do not play an important role.
However, due to the special nature of quantum phase transitions, quantum �uctuations
can also drive a �rst order quantum phase transition giving rise to interesting phenomena
like the coexistence of superconductivity and ferromagnetism [8] or non-Fermi liquid be-
havior (NFL) extending over a wide range in the phase diagram [9, 10]. Furthermore, it
was proposed that at ferromagnetic quantum phase transitions magnetic textures generi-
cally emerge above the critical pressure pc [11,12]. In this thesis we study the properties of
two prominent itinerant ferromagnets around the critical pressures: The superconducting
ferromagnet UGe2 and the helimagnet MnSi.
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In UGe2 a superconducting dome emerges inside the ferromagnetically ordered phase just
below the critical pressure pc. It has a maximum of the superconducting transition temper-
ature TSC at a pressure pX where a second transition TX between two ferromagnetic states
is suppressed. Both ferromagnetic transitions turn �rst order before they are suppressed
to zero Kelvin. The superconductivity is attributed to magnetic �uctuations associated
with the �rst order quantum phase transitions at pX and pC . For further insights we
chose to study the evolution of the TX transition under pressure in the thermal expansion
along all crystal axes of the orthorhombic UGe2. The thermal expansion promises vital
informations as the unit cell volume, and hence the thermal expansion, is the conjugate
physical property to these pressure induced phase transitions. The neutron spin-echo
technique of Larmor di�raction allowed us to track the thermal expansion concomitant
with the magnetization. This way we are able to separate contributions from the crystal
lattice from magnetostriction and other contributions to the thermal expansion. In total
we measured six pressure points between ambient pressure and 12.4 kbar.

On approaching pX , we �nd signatures of an additional transition TL several Kelvin above
the TX transition along the c-axis thermal expansion that can not be attributed to con-
tributions from the crystal lattice or magnetostriction. Hence, the TL transition has to
originate from a di�erent mechanism. Possibly, the TL transition is the signature of a
topological change of the Fermi surface a so-called electronic topological transition also
known as Lifshitz transition. This �nding provides new information that might help to
identify the mechanisms behind the unconventional superconductivity found in UGe2.

In MnSi a non-Fermi liquid phase is observed above the critical pressure pc that extends
over a large pressure range up to at least 3× pc rather than to a V-shaped region around
the quantum phase transition [10, 13]. As in UGe2, the transition temperature Tc turns
�rst order before it is suppressed to zero Kelvin. MnSi is probably the best studied weak
ferromagnetic system. It played a big role for the creation of a theory of band-magnetism
in the presence of strong �uctuations [14]. However, MnSi is a ferromagnet only in a
�rst approximation. Due to a missing inversion symmetry in the crystal structure a
Dzyaloshinskii-Moriya interaction arises that causes a helical modulation of the magne-
tization with a long wavelength of ≈ 180Å. In a speci�c �eld and temperature interval
of the phase diagram these helices form a periodic structure of magnetic whirls, so-called
skyrmions. One signature of a skyrmion lattice is a special contribution to the Hall ef-
fect called topological Hall e�ect (THE) that is sensitive to the topology of the magnetic
structure [15]. In MnSi the THE contribution appears as top-hat shaped signal that rides
on top of the anomalous Hall e�ect contribution. We chose to study the Hall e�ect in
MnSi to track the evolution of the skyrmion lattice with pressure. Our speci�c interest
was whether we can �nd signatures of topologically non-trivial magnetic textures above
the critical pressure pc where magnetic order is suppressed. And if yes how these signa-
tures can be linked to the extended non-Fermi liquid phase. Our experiments represent
a comprehensive study where we carefully checked the in�uence of various parameters
as sample quality, sample orientation, di�erent pressure media, and di�erent cooling pro-
cedures. In total we measured 38 pressure points between ambient pressure and 18.1 kbar.
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We �nd that the top-hat shaped signature in the Hall e�ect evolves continuously with
increasing pressure. This clearly links the signature under pressure to the skyrmion lat-
tice phase at ambient pressure. In addition, we can clearly identify the top-hat signature
as THE through comparison of Hall e�ect with magnetization measurements. With in-
creasing pressure at which the transition Tc shifts to lower temperature, the THE signal
increases tenfold from its ambient pressure value of ∆ρtop

xy ≈ 4.5 nΩcm to ≈ 40 nΩcm at
p ≈ 12 kbar.

Furthermore, we �nd that the skyrmion lattice phase, and hence the THE signal, can be
conserved down to the lowest temperatures measured (typically ≈ 2 K) when cooling in
a magnetic �eld in the range of the skyrmion lattice phase. As �nite temperature e�ects
like spin-�ip scattering are essentially switched o� at low temperatures, this reveals the
generic size of the THE in MnSi ∆ρtop

xy ≈ 50 nΩcm. A theoretical analysis by Rosch and
collaborators [16] can quantitatively account for the tenfold increase of the THE under
pressure and shows that the large size of the THE under pressure represents the generic
THE size in MnSi. The decreased THE size at ambient pressure and high temperatures
can be attributed to the change of the local polarization close to Tc for the most important
part. The remaining part is most likely due to one or a combination of several mechanisms
including changes of the Fermi surface, a change of the scattering processes, competition
between exchange splitting and spin-orbit coupling, and spin-�ip scattering.

Moreover, we �nd a topological contribution to the Hall e�ect in the non-Fermi liquid
region above the critical pressure pc where magnetic order is already suppressed. The
THE signal clearly evolves from the THE signal seen in the skyrmion lattice phase of
MnSi at ambient pressure. Sign and size of the THE remain unchanged below and above
pc pointing at skyrmion structures. The �eld boundaries of the THE coincide with the
metamagnetic transition where the NFL behavior abruptly switches back to Fermi liquid
behavior under applied magnetic �eld. Also the temperature and pressure boundaries
of the NFL state and the THE coincide. Thus, the magnetic textures and the NFL are
clearly linked to each other. This could be a �rst example of a more general phenomenon
where magnetic textures form on the border of ferromagnetism [11, 12]. Those complex
spin structures could be the the long-sought intrinsic mechanism driving the breakdown
of Fermi liquid behavior in MnSi.
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Abbreviations

AHE anomalous Hall e�ect
CF crystal �eld interactions
Chap(s). chapter(s)
dHvA de Haas-van Alphen e�ect
DMFT dynamical mean-�eld theory
DOS density of states
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Eq(s). equation(s)
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NHE normal Hall e�ect
PM paramagnetic
QCP quantum-critical point
Ref(s). reference(s)
RRR residual resistivity ratio
SANS small angle neutron scattering
SC superconductor
Sec(s). section(s)
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SOC spin-orbit coupling
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THE topological Hall e�ect
zfc/fh �eld heating after cooling in zero magnetic �eld
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Chapter 1

Motivation and theoretical background

1.1 The border of itinerant magnetism

The border of magnetism, i.e., a phase transition into a magnetically ordered state that is
suppressed to 0K, is an especially interesting and active �eld in solid state physics where
new, exotic electronic ordering phenomena can be observed. Such ordering phenomena
include unconventional forms of superconductivity, magnetic textures like spin density
waves, and deviations from the fundamental theory for metals at low temperatures, the
Fermi liquid theory. The physics close to the suppression of magnetic order is special in
that quantum �uctuations are the driving mechanism for a phase transition into an exotic
ordered state rather than thermal �uctuations that drive classical phase transitions. In
a more general context, this kind of phase transitions, called quantum phase transitions,
are also observed when other types of order like super�uidity or ferroelectricity are sup-
pressed. The research on quantum phase transitions has been very active over the past
two decades and numerous reviews can be found in the literature. For further reading
we refer, e.g., to Refs. [1, 17�26]. This section gives a general introduction into the �eld
of quantum phase transitions. This is followed by Sec. 1.2 which focuses on �rst order
quantum phase transitions observed at the border of itinerant ferromagnetism as in the
systems studied in this thesis, UGe2 and MnSi. Both systems are introduced and the goals
of this thesis are presented. At the end of this chapter, Lifshitz transitions and non-Fermi
liquids are brie�y introduced in Secs. 1.3 and 1.4 as both phenomena are relevant for the
discussion of our experimental results.

In general two types of phase transitions are classically observed that are classi�ed as �rst
and second order phase transitions according to Ehrenfest. Their basic properties may be
summarized as follows (see e.g. Refs. [1,27,28]): A �rst order phase transition is governed
by local minima in the free energy landscape F as illustrated in the upper row of Fig.
1.1. The system occupies one minimum of F and �jumps� over the potential barrier into
another minimum when the free energy landscape changes with increasing control param-
eter x. The change from one into another groundstate happens at a critical value xc of
the control parameter where two local minima are energetically equal. Examples for the
control parameter x are temperature, magnetic �eld, pressure, and doping. To describe
the ordered phase a unique thermodynamic quantity called the order parameter U is used.

1



2 CHAPTER 1. MOTIVATION AND THEORETICAL BACKGROUND

Figure 1.1: Order parameter and free energy at �rst and second order phase transi-
tions. Upper row: Discontinuous change of order parameter U with changing control parameter
x and free energy landscape F at a �rst order phase transition. Bottom row: Continuous change
of order parameter U with changing control parameter x and free energy landscape F at a second
order phase transition. Figure from [29].

U is non-zero in the ordered phase and zero in the disordered phase. An example for U
is the magnetization of a ferromagnet. Characteristic for a �rst oder phase transition are
a discontinuously vanishing order parameter U , a phase coexistence, and the release of a
certain amount of energy, the so-called latent heat, at the phase transition. Fluctuations
of the order parameter typically do not play an important role.

A second order phase transition, also referred to as continuous phase transition, is gov-
erned by order parameter �uctuations that drive the system towards a global minimum
in the �at free energy landscape F as illustrated in the bottom row of Fig. 1.1. With
increasing control parameter x the global minimum in the free energy landscape evolves
continuously and with it the groundstate of the observed system. Characteristic for a
second order phase transition is a continuously vanishing order parameter U . Close to
the transition point at xc the length and timescale of the �uctuations diverge rendering
details of the free energy landscape unimportant. Consequently, entire classes of phase
transitions show the same behavior close to the transition point even if they appear in
very di�erent physical systems. This phenomenon is called universality. The divergence
of the order parameter �uctuations lead to singularities of physical observables, the so-
called critical behavior. The divergence of the physical observables can be described by
the distance from the critical point t = |T − Tc| /Tc to the power of critical exponents.
According to the scaling relation, the critical exponents of the four thermodynamic ob-
servables speci�c heat, order parameter, susceptibility, and critical isotherm are connected
to each other. A particular class of phase transitions is completely characterized by its
critical exponents and called universality class.

Particularly interesting are second order phase transitions at zero temperature. Due to
the zero temperature these transitions are accessible by a non-thermal control parameter
like magnetic �eld, pressure, or doping. In contrast to classical phase transitions that
are driven by thermal �uctuations, at zero temperature a phase transition is governed by
quantum �uctuations as ~ωc > kBT . This circumstance was �rst realized by Hertz [30]
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who introduced the term �quantum phase transitions�. In particular, the point in the
phase diagram where a second order phase transition is suppressed to zero Kelvin is
called quantum critical point (QCP). The presence of a QCP leads to e�ects that are not
only detected at zero temperature but also at �nite temperatures. This raises quantum
phase transitions from a purely academic to a real world problem that can be studied
experimentally. Fig. 1.2a shows schematically a typical phase diagram that is observed
when a magnetically ordered phase (green shading) is suppressed through an increasing
control parameter. The QCP is usually masked by a dome of an emerging order like
unconventional superconductivity or a spin-density-wave (blue shading). In a character-
istic V-shaped region at temperatures above the QCP, called the quantum critical region,
anomalous temperature dependences of physical properties like the resistivity or the spe-
ci�c heat are observed (yellow shading). On the far side of the QCP a Fermi liquid phase
can emerge that may possess heavy fermion character in certain f -electron compounds
(red shading) (see Ref. [23] for details).

The probably best known examples for QCPs are observed at the border of antiferromag-
netic order. Two examples of antiferromagnetic QCPs are illustrated in Fig. 1.2b and c
where the second order phase transition at the Néel temperature TN is suppressed with
pressure and magnetic �eld, respectively. In CePd2Si2 weak antiferromagnetic order with
TN below 10K is suppressed with pressure. The QCP at a critical pressure pc ≈ 28 kbar
is masked by a superconducting dome. In YbRh2Si2 weak antiferromagnetic order with
TN < 70 mK is suppressed through the application of a magnetic �eld along the crystallo-
graphic c-axis. In a V-shaped region around the critical �eld Bc = 0.66 T the resistivity,
ρ (T ) = ATα + ρ0, deviates from Fermi liquid behavior with exponent α = 2 (blue shad-
ing) and shows a linear behavior with α = 1 (orange shading).

Besides in magnetic systems, quantum criticality can also be found related to other kinds
of order. For example, the paraelectric materials SrTiO3 and KTaO3 are very close to a
ferroelectric quantum critical point, i.e., they become ferroelectric through small pertur-
bations of the material or chemical environment like strain and element substitution [31].
As a consequence they exhibit quantum critical behavior without further tuning through,
e.g., pressure or doping as observed in an electric susceptibility that deviates substantially
from the Curie-Weiss dependence. Another example for quantum criticality are insulating
Ising ferromagnets like CoNb2O6 [32] and LiHoF4 [33]. When applying a transverse �eld
to these magnetically uniaxial Ising ferromagnets, the ordered phase undergoes a quan-
tum phase transition into a disordered state at a critical �eld value.

1.2 Quantum phase transitions in ferromagnets

In ferromagnetic systems the �standard� QCP scenario where a second order phase tran-
sition is continuously suppressed to zero temperature (Fig. 1.3a and b) is not observed
experimentally. Instead, ferromagnets follow certain �escape routes� to avoid the degen-
eracies of quantum �uctuations at QCPs. In itinerant ferromagnets studied so far as
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Figure 1.2: Quantum critical points. (a) Schematic phase diagram with a quantum critical
point on the border of magnetic order. Figure from [23]. (b) In CePd2Si2 a superconducting
phase emerges where antiferromagnetic order is suppressed with pressure. The inset shows the
drop of the resistivity at the superconducting transition. Figure from [2]. (c) In YbRh2Si2
antiferromagnetic order is suppressed by a magnetic �eld along the crystallographic c-axis. Non-
Fermi liquid behavior is observed in a V-shaped region around the quantum critical point (orange
shading). Figure from [6].

ZrZn2 [34], UGe2 [35], MnSi [9, 36], and CoS2 [37] the second order transition from para-
to ferromagnetism at the Curie temperature TC turns �rst order at a tri-critical point
(TCP) when suppressed to low temperatures (Fig. 1.3c and d). At control parameter
values above the TCP, tri-critical wings emerge under an applied magnetic �eld. In the
majority of cases the control parameter is pressure. The tri-critical wings consist of sheets
of �rst order transitions that are bounded by second order phase transition lines. The
second order phase transition lines can be tuned to T = 0 and form a pair of QCPs.
When crossing the �rst-order sheets, the magnetization shows a metamagnetic jump.
The change from a second to a �rst order character of the para- to ferromagnetic phase
transition can be explained through particle-hole excitations at the Fermi surface that
couple to the magnetic order parameter �uctuations [38, 39]. Another scenario how a
second order transition can be driven to �rst order is the Brazovskii scenario observed in
MnSi at ambient pressure where isotropic chiral �uctuations drive the paramagnetic to
helimagnetic transition to �rst order [40, 41]. An open issue concerns a quantum version
of the Brazovskii scenario that might persist up to the critical pressure in MnSi with a
potential connection to the partial order and the extended non-Fermi liquid phase (see
Part II). In addition to the behavior described above, a superconducting phase can emerge
near the suppression of TC as, e.g., observed in UGe2 [8] and UCoGe [42].

It was proposed that ferromagnets can also avoid a QCP through the emergence of a
modulated magnetic order [11, 12, 43�45]. Fig. 1.3e and f illustrate this for Nb1−xFe2+x

where a spin-density wave order is discussed that masks a putative QCP [46].

The fact that the para- to ferromagnetic transition turns �rst order before it is suppressed
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Figure 1.3: Quantum phase transitions in ferromagnets. (a) Schematic T -p-H phase
diagram where a second order phase transition is suppressed to zero temperature with pressure.
This classical quantum critical scenario is not observed in ferromagnets. (b) Schematic T -H
phase diagram just below the critical pressure corresponding to panel a. (c,d) In ferromagnets
the transition turns �rst order at a tri-critical point (TCP) before it is suppressed. At pressures
above the TCP, tri-critical wings emerge. (e,f) A scenario where a magnetic ordering masks a
QCP has been proposed. This scenario is in discussion for NbFe2 where a spin-density-wave
order is proposed. Figure from [47].
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precludes the presence of a quantum critical point (at zero �eld). Nonetheless, unusual be-
havior is observed. From a classical point of view, �rst order phase transitions are driven
by local minima in the free energy where �uctuations do not contribute signi�cantly. How-
ever, due to the special nature of quantum phase transitions, quantum �uctuations can
play an important role at so-called �rst order quantum phase transitions. The quantum
critical behavior found at �rst order quantum phase transitions yields similar phenomena
as the �conventional� second order quantum phase transitions, e.g., deviations from the
Fermi liquid theory [9, 37, 48] and unconventional forms of superconductivity [8]. In this
thesis we study the properties of two prominent itinerant ferromagnets around their criti-
cal pressures: The superconducting ferromagnet UGe2 and the itinerant helimagnet MnSi.

UGe2 In UGe2 a superconducting dome emerges just below the critical pressure pC
deep inside the ferromagnetic phase (Fig. 1.4a). As the magnetism in UGe2 is of itinerant
character, magnetism and superconductivity are carried by the same electrons. The su-
perconducting dome has a maximum transition temperature TSC at a pressure pX where a
second transition TX between two ferromagnetic states with di�erent magnetic moments
is suppressed. Both ferromagnetic transitions turn �rst order before they are suppressed
to zero Kelvin. According to the experimental evidence, the �rst order quantum phase
transition at pX appears to be closely connected to the emerging superconductivity that
is consequently thought to be driven by critical magnetic �uctuations. A deeper under-
standing of the TX transition thus seems to be the key to understand the unconventional
superconductivity in UGe2.

To gain new information about the TX transition we used a new neutron spin-echo tech-
nique called Larmor di�raction which allows to measure thermal expansion, magnetiza-
tion, and the distribution of lattice constants under pressure in the same experimental
setup. The thermal expansion yields crucial informations about the excitations of a sys-
tem, since the unit cell volume and hence the thermal expansion is the conjugate physical
property to this pressure induced phase transition. Moreover, studies on MnSi [49] re-
cently showed that the thermal expansion is a good probe for the investigation of quantum
phase transitions. Together with magnetization data it is possible to separate contribu-
tions from the crystal lattice and magnetic contributions from other contributions to the
thermal expansion. The distribution of lattice constants allows to check for uniaxial strain
within the crystal lattice. We �nd a yet unknown transition TL in the c-axis thermal ex-
pansion that lies several Kelvin above the TX transition. The TL transition may be the
signature of a so-called Lifshitz transition where the Fermi surface changes its topology.
Our experiments on UGe2 are presented and discussed in part I of this thesis. A brief
introduction to Lifshitz transitions is given in Sec. 1.3.

MnSi In MnSi a non-Fermi liquid (NFL) regime is observed above the critical pressure
pc that extends over a large pressure range up to at least 3×pc rather than to a V-shaped
region around the quantum phase transition. As in UGe2, the transition temperature
Tc turns �rst order before it is suppressed to zero Kelvin. In a small part of the phase
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diagram just above the critical pressure pc, a �uctuating long-range magnetic order on
timescales between 10−10 s and 10−11 s, so-called partial order, was reported in elastic neu-
tron scattering and NMR experiments [36, 50] (Fig. 1.4b). This partial order points at
magnetic textures as possible origin of the extended NFL regime. However, this peculiar
magnetic order is found only in a small part of the NFL regime so that its origin still
remains unclear. MnSi is probably the best studied weak ferromagnetic system. It played
an important role for the development of a theory of band-magnetism in the presence
of strong �uctuations [14]. However, MnSi can be considered as a ferromagnet only in
a �rst approximation. Due to a missing inversion symmetry of the crystal structure a
Dzyaloshinskii-Moriya interaction arises that causes a helical modulation of the magne-
tization with a long wavelength of ≈ 180Å. In a speci�c �eld and temperature interval
of the phase diagram a periodic structure of magnetic whirls, so-called skyrmions, is ob-
served. One signature of a skyrmion lattice is that it causes a special contribution to the
Hall e�ect called topological Hall e�ect due to its non-zero winding number.

We report a study of the Hall e�ect in MnSi to track the evolution of the skyrmion lat-
tice with pressure. The basic idea behind our study is that the partial magnetic order
above pc could be connected to the skyrmion lattice phase observed at ambient pressure.
The partial order would then consist of �uctuating skyrmionic textures that possess a
winding number and show a topological Hall e�ect signal. Furthermore, since the Hall
e�ect probes di�erent timescales than elastic neutron scattering and NMR experiments,
magnetic textures could be detected in regions where they are too fast for the latter two
techniques. Speci�cally interesting is thereby how the magnetic textures are connected
to the extended NFL regime.

Moreover, the evolution of the topological Hall e�ect signal below pc represents an in-
teresting project by itself since the topological Hall e�ect directly relates to the Berry
phase which is the coupling mechanism between current and magnetic structure in spin
transfer torque experiments. The critical current density jc above which the skyrmion lat-
tice begins to drift was reported to be exceptionally small compared to conventional spin
transfer torque experiments on ferromagnetic domain walls [51,52]. Hence, understanding
how the topological Hall e�ect changes under pressure may yield important information
for possible spintronics applications.

We �nd that the topological Hall e�ect signal increases tenfold under pressure up to
12 kbar [16]. Above the critical pressure pc we �nd signatures of topologically non-trivial
magnetic textures [53]. The phase boundaries of the topological Hall signal coincides with
the boundaries found for the non-Fermi liquid phase in the resistivity. This implies that
the NFL regime is closely connected to (�uctuating) skyrmionic textures. Our experi-
ments on MnSi are presented and discussed in part II of this thesis. A brief introduction
to Fermi liquid theory and non-Fermi liquids is given in Sec. 1.4.
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Figure 1.4: Temperature-pressure phase diagrams of UGe2 and MnSi. The inset in
panel b shows the resistivity exponent α. Figures from [29].

1.3 Lifshitz transitions

A Lifshitz transition, also known as electronic topological transition (ETT), describes a
topological change of the Fermi surface of a metal that leads to anomalies in the electron
dynamics [54]. The basic properties can be summarized as follows [55]: The Fermi surface
of a metal changes when the position of the Fermi energy changes relative to the band
structure and/or the band structure changes itself. This can be induced by external pa-
rameters as pressure or doping. When during such a change a van-Hove singularity of the
density of states (DOS), i.e., an extremum or a saddle-point of the band structure with
∂εn(~k)

∂~k
= 0, crosses the Fermi energy, the Fermi surface can change its topology. Here,

εn(~k) represents an energy band. In three dimensions four possibilities for topological
transitions in the Fermi surface exist (see Fig. 1.5): (1) Disruption or (2) creation of
a neck in the Fermi surface which is the case when a saddle-point of the band struc-
ture crosses the Fermi energy. (3) Appearance or (4) disappearance of a new pocket of
the Fermi surface when a maximum (minimum) of the band structure crosses the Fermi
energy. A maximum leads to a hole like pocket while a minimum leads to an electron
like pocket. A Lifshitz transition is not associated with a symmetry breaking and it is
assumed to be a continuous transition de�ned only at T = 0 that becomes a crossover at
�nite temperatures. A detailed theory of Lifshitz transition can be found in Ref. [56].

When the corresponding van-Hove singularity is large enough, a Lifshitz transition can
be observed experimentally as anomaly of thermodynamic properties such as the speci�c
heat, the compressibility, and the thermal expansion. However, the e�ects of a changing
Fermi surface are often small and obscured by thermal e�ects. Therefore, a Lifshitz transi-
tion only becomes observable when other degrees of freedom such as lattice or spin couple
strongly with electronic states. For example, the strong ferromagnet YCo5 exhibits a �rst
order Lifshitz transition under pressure (≈ 210 kbar) as a large peak in the spin-up DOS is
shifted through the Fermi surface which leads to a drop of magnetic moment of about 35%
accompanied by a volume collapse of 1.4% [55,57]. The volume decrease of this hexagonal
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Figure 1.5: Lifshitz transitions. Possible transitions of the Fermi surface in three dimensions.
(a) Disruption (left to right) or creation (right to left) of a neck in the Fermi surface. (b) Creation
(left to right) or disappearance (right to left) of a new pocket of the Fermi surface. Figure
from [54,55].

structure is anisotropic with a collapse of the c-axis at the transition pressure while the
other axes contract smoothly with increasing pressure. A �eld tuned Lifshitz transition
was reported in the ferromagnetic superconductor URhGe creating conditions favorable
for high-�eld superconductivity [58]. Other recent examples and proposals for Lifshitz
transitions include [59] electron-doped iron arsenic superconductors [60], the strongly cor-
related electron system NaxCoO2 [61], and the heavy-fermion metal YbRh2Si2 [62].

1.4 Fermi liquids and non-Fermi liquids

The Fermi liquid theory (FLT), developed by Landau in 1957 [63�65], is the fundamental
theory for metals at low temperatures. Since at low temperatures the interactions between
electrons cannot be neglected anymore, like it is the case with the Fermi gas description
valid at high temperatures, electron-electron interactions need to be considered. The FLT
preserves the non-interacting picture of the Fermi gas theory through the principle of adi-
abatic continuity, i.e., when the interactions are turned on slowly the eigenstates of the
non-interacting system evolve continuously into the eigenstates of the interacting system.
The energy levels change but the quantum numbers remain valid so that the interacting
system can be described as a non-interacting system of quasiparticles with a renormalized
mass that accounts for the interactions. The quasiparticles carry the same spin, charge,
and momentum as the electrons in the non-interacting system [66].

The FLT predicts speci�c temperature dependences for various physical quantities. For
example, a linear temperature dependence of the electronic contribution to the speci�c
heat, C (T ) /T ≈ γ0, is predicted. For the low temperature resistivity a quadratic tem-
perature dependence ρ ∝ T 2 is predicted. When other temperature dependences are
experimentally observed, the FLT is obviously violated and one talks about a non-Fermi
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liquid (NFL). Today, a large number of systems is known in which the thermodynamic
and transport properties deviate from the FLT. These systems consist of strongly corre-
lated d - and f -electron systems based on intermetallic compounds containing transition
metal, lanthanide, or actinide ions [67].

There are numerous mechanisms how deviations from the FLT can be caused and only for
some cases models exist. Most commonly, NFL behavior is found in the vicinity of QCPs.
In a widely accepted picture the order parameter �uctuations at a QCP can couple to the
electron density and lead to a NFL behavior [67, 68]. Also in the vicinity of �rst order
quantum phase transitions, as observed in ferromagnets, NFL behavior is found. Fig. 1.6
illustrates schematic phase diagrams for di�erent NFL scenarios in the vicinity of QCPs.
As discussed above, the NFL behavior observed in MnSi, a central topic of this thesis,
is a special case where NFL behavior is not only observed close to the suppression of
magnetic order but within a large region of the phase diagram (Fig. 1.6b). Furthermore,
the NFL behavior in MnSi occurs without the presence of a QCP. As will be discussed
in Chap. 9, the NFL regime in MnSi may be related to topologically non-trivial spin
textures. Another example where NFL behavior is observed are one-dimensional systems
where the Fermi liquid model breaks down and has to be replaced by the concept of a
Luttinger liquid. Taken together, up to now the only known mechanism for producing
NFL behavior are soft modes coupling to the relevant degrees of freedom [68]. Further
information about NFL can be found in the literature as, e.g., in Refs. [18,66,67,69,70].
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Figure 1.6: NFL behavior in the vicinity of QCPs. Schematic temperature vs. control pa-
rameter δ phase diagrams for di�erent NFL scenarios in the vicinity of QCPs. In some situations
a QCP is masked by a SC dome. (a) NFL behavior appears in a V-shaped region around the
QCP. This example is observed in YRh2Si2 with magnetic �eld as control parameter. [6, 71, 72].
(b) An extended NFL regime appears for δ > δc in Ce1−xYxRhIn5 as function of Y concentra-
tion [73] and in MnSi as function of pressure [74]. However, no QCP is present in MnSi [49] (c) A
superconducting dome masks the QCP in CeIn3 under applied pressure [5]. In a V-shaped region
around the QCP NFL behavior is found. (d) This phase diagram similar to panel c but with
an extended NFL regime was not observed so far. (e) Superconductivity only exists in a phase
pocket inside the ordered phase. An extended NLF regime is observed for δ > δc. UGe2 shows
a similar phase diagram under pressure, however, without NFL behavior [8, 75]. (f) Supercon-
ductivity only exists outside the ordered phase as seen in CeRhIn5 as a function of pressure [76].
Figure from [67].
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UGe2 is one of only four systems presently known in which superconductivity and fer-
romagnetism coexist and are carried by the same electrons [77]. The superconductivity
appears in a dome under pressures between between 9 kbar and 16 kbar close to where
ferromagnetism is suppressed. However, in contrast to superconductivity observed in
the standard quantum-critical point (QCP) scenario, e.g., on the border of antiferro-
magnetism, the whole superconducting (SC) dome lies within the ordered (ferromag-
netic) phase. The SC dome has a maximum of the SC transition temperature TSC at
pX ≈ 12 kbar where a transition TX between a low (FM1) and a high moment (FM2)
ferromagnetic phase is suppressed. Hence, the SC seems to be closely connected to the
FM1→ FM2 transition at TX and therefore, a detailed understanding of the TX transition
appears to be an essential step to understand the superconductivity in UGe2.

To gain further insights into the nature of the TX transition we performed thermal ex-
pansion measurements under pressure of all crystalline axes and systematically tracked
the TX transition. The technique of Larmor di�raction allows us to directly compare the
temperature dependence of the thermal expansion to the temperature dependence of the
magnetization. Hence, contributions to the thermal expansion due to magnetostriction
can be distinguished from other contributions. We �nd that while the thermal expan-
sion along the a- and b-axes can be explained by standard magnetostriction, the thermal
expansion along the c-axis shows an additional feature at a temperature TL that evolves
with pressure approaching pX . The presence of an additional, non-magnetic transition
close to pX shows that the phase diagram of UGe2 is more complex than assumed so
far. Furthermore, this implies that the superconducting pairing mechanism could be non-
magnetic contrary to what is discussed in the literature.

In the following, the basics about the superconducting ferromagnet UGe2 are covered in
Chap. 2. Chap. 3 gives an introduction to Larmor di�raction and a description of the
experimental methods. Finally, our results are presented and discussed in Chap. 4.
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Chapter 2

The superconducting ferromagnet UGe2

The properties of the superconducting ferromagnet UGe2 can be summarized as fol-
lows [78, 79]: UGe2 crystallizes in the orthorhombic Cmmm structure (space group 65)
with the lattice constants a = 3.997(3)Å, b = 15.039(7)Å, c = 4.087(2)Å [80, 81]. As
can be seen in Fig. 2.1, the Uranium atoms form zig-zag chains along the a-axis with a
distance dU−U = 3.85Å which is above the Hill limit indicating no direct overlap of the 5f
wavefunctions. Due to the Uranium zig-zag lines the crystal structure has a certain two
dimensionality with respect to the b-axis, where the Uranium zig-zag chains form corru-
gated sheets that are separated by Germanium atoms. The two dimensional character
also manifests itself in the electronic structure (see below).

Below the Curie temperature TC = 52 K, UGe2 becomes ferromagnetic (Fig. 2.2) with
a strong uniaxial character with large anisotropy �elds of the magnetically hard b− and
c− axes with respect to the magnetically easy a-axis (e.g. ≈ 100 T for the c-axis) [82]. A
particular feature are two ferromagnetic phases FM1 and FM2 with di�erent ordered mo-
ments µs,FM1 ≈ 1.2µB/U and µs,FM2 ≈ 1.5µB/U that are separated through a crossover at
a temperature TX ≈ 25 K. Experimentally, the crossover at TX occurs, e.g., in the resistiv-
ity as broad maximum in dρ/dT [83] and as minimum in the a-axis thermal expansion [84].
The TX transition also appears in other observables as in the thermal conductivity [85],
in the Hall e�ect [86], and in the speci�c heat [87].

The magnetism is of itinerant character as can be seen, e.g., in the susceptibility where the
zero-temperature ordered moment, µs,FM2 ≈ 1.5µB/U, is found to be considerably smaller
than the Curie-Weiss-Moment, µCW ≈ 2.7µB. The itineracy can also be seen in the good
electrical conductance of UGe2 that manifests itself in residual resistivities well below
1µΩcm. De Haas-van Alphen (dHvA) experiments [88] show charge carriers with high
cyclotron masses of (15-20)m0 indicating that the 5f -states are itinerant but strongly cor-
related. The electronic speci�c heat coe�cient of UGe2, C (T ) /T = γ ≈ 35 mJ/K2 [82],
is, however, one order of magnitude smaller than in conventional heavy-fermion Uranium
compounds implying that UGe2 is not as strongly correlated [89].

As illustrated in the temperature-pressure phase diagram in Fig. 2.2, both the TC and
the TX transition can be suppressed at pressures pc ≈ 16 kbar and pX ≈ 12 kbar. Under
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Figure 2.1: Orthorhombic Cmmm crystal structure of UGe2. The arrows on the Uranium
sites indicate magnetic moments aligned along the magnetically easy a-axis. Figure from [79].

pressure, the transition at TC turns from second order to �rst order at a tricritical point
H = 0, TTCP = 24 K, pTCP = 14.2 kbar [90�92]. The crossover at TX that separates the
low moment FM1 phase from the high moment FM2 phase at low pressures turns into
a �rst order phase transition at pressures close to pX . The crossover and the �rst order
phase transition lines are separated through a critical end-point at H = 0, TXCEP ≈ 7 K
and pXCEP ≈ 11.6 kbar [92]. The evolution of the TX transition with pressure can be nicely
seen in the temperature dependence of the magnetization under pressure (Fig. 2.3) [93].
There, TX appears as an increase of magnetic moment (when coming from high temper-
atures) and becomes more pronounced with increasing pressure. At low temperatures,
the ordered moment changes discontinuously at pX and pc resulting in two jumps (Fig.
2.4b) [93].

DHvA experiments [94,95] with �eld along the b-axis show that the Fermi surface changes
when crossing both pX and pc. On crossing pX , the Fermi surface changes smoothly which
is indicated by a change in the dHvA spectrum: Out of the three fundamental dHvA
frequencies (α,β,γ) observed in the FM1 state two vanish (α,γ) and one decreases sub-
stantially (β). On top a new frequency emerges (δ) which can be interpreted as a change
in the Fermi surface, however, without a complete reconstruction. On crossing pc, the
Fermi surface changes drastically: Four new frequencies emerge that are not connected
to the frequencies found in the FM1 and FM2 state indicating a complete reconstruction
of the Fermi surface.

At pressures above pX and pc, UGe2 shows metamagnetic behavior and one can reenter
the FM1 and FM2 phase when applying a magnetic �eld along the magnetically easy
a-axis. The reentrant behavior is observed as jumps in the magnetization at the metam-
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a b

Figure 2.2: Temperature-pressure phase diagram of UGe2. (a) Experimental phase
diagram [8]. (b) Schematic phase diagram [97]. Thin lines represent 2nd order phase transitions,
thick lines represent 1st order phase transitions, broken lines represent crossovers.

agnetic transition �elds HX and Hm (Fig. 2.4c) [93]. The metamagnetic transition at Hm

terminates at a quantum critical endpoint at pQCEP ≈ 35 kbar and HQCEP ≈ 18 T [90,96].
Both the jumps in the low temperature magnetization and the metamagnetism indicate
the �rst order character of the phase transitions at pX (FM2 → FM1) and at pc (FM1
→ PM). Taken together, the T -p-B phase diagram of UGe2 exhibits tri-critical wings as
also observed in other ferromagnets (see Fig. 1.3b).

In the pressure range between 9 kbar ≤ p ≤ pc = 16 kbar a superconducting phase emerges
at low temperatures that lies entirely in the FM phase (Figs. 2.2 and 2.5) [8]. The tran-
sition temperature TSC is pressure dependent and has a maximum of TSC ≈ 0.7 K at the
pressure pX . Neutron di�raction experiments [98] prove the coexistence of SC and FM.
Together with the itinerant character of the magnetism this implies that FM and SC are
carried by the same set of electrons.

The SC appears to be of unconventional nature as: (i) It is very sensitive to impurities [99].
(ii) The critical current density is very low, i.e., of order jc ≈ 0.1 A/cm2 which is between
one and two orders of magnitude smaller than for typical heavy-fermion superconductors
and three orders of magnitude smaller than for conventional superconductors [87]. (iii)
The entire SC dome lies within the FM phase, in contrast to the standard QCP scenario,
implying that FM is a precondition for SC in UGe2. (iv) The large upper critical �elds
exceed paramagnetic and orbital limits for weak coupled s-wave SC implying an uncon-
ventional pairing mechanism [100]. Currently, there is no concluding picture about the
mechanisms behind the SC phase in UGe2. The experimental evidence points at an un-
conventional spin-triplet SC. As the SC is strongest around pX , the TX transition seems
to be closely connected to the SC. Hence, a natural candidate for mediation of SC are
�uctuations associated with the critical endpoint of the TX transition. To set the stage
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Figure 2.3: Temperature dependent magnetization of UGe2 under pressure [93].
Under pressure the TX transition appears as additional increase of the magnetic moment. TX
becomes more pronounced on approaching pX and vanishes above pX . The transition at TC
changes from second order at low pressure to �rst order at pressures close to pc.

Figure 2.4: Ferromagnetism in UGe2 under pressure. (a) Temperature-pressure phase
diagram with TX and TC inferred from the magnetization [93] and Ts inferred from the resistivity
[87]. (b) Low temperature magnetic moment µs at zero �eld (red datapoints) and the magnetic
moment µX extrapolated from �elds above HX . (c) Pressure dependence of the metamagnetic
transitions at HX and Hm at 2.3K. Figure from [93].
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Figure 2.5: Initial observation of superconductivity in the resistivity of UGe2 from
Ref. [8]. The graph shows the resistivity ρ versus the temperature squared, T 2, at ≈ 14 kbar.
ρ is roughly consistent with the Fermi liquid relation ρ = ρ0 + AT 2. The upper inset shows
the magnetic �eld dependence of the SC transition temperature TSC . The lower inset shows the
pressure dependence of the parameter A.

for our thermal expansion studies, Sec. 2.1 summarizes the thermal expansion of UGe2

reported so far, and Sec. 2.2 focuses on scenarios proposed to drive the TX transition.

2.1 Thermal expansion of UGe2

Thermal expansion data of UGe2 at ambient pressure by means of strain gauges [84,101]
and capacitive dilatometry [102] has been reported for all crystallographic axes. Under
pressure, the a- and b-axis thermal expansion [91,92,101�104] and the volumetric thermal
expansion [105, 106] all by means of strain gauges has been reported. No c-axis thermal
expansion data under pressure was reported so far. The basic properties of the thermal
expansion of UGe2 can be summarized as follows:

At ambient pressure all axes contract down to the Curie temperature TC ≈ 52 K (Fig.
2.6a)1. Below TC the a-axis contracts further with a slightly steeper slope until it reaches
a minimum around 37 K below which the a-axis expands again. The b-axis expands below
TC up to a �at maximum between 37 K and 26 K below which the b-axis contracts again.
The c-axis expands below TC down to the lowest temperatures measured. Summarized,
at ambient pressure, on cooling, all axes contract down to TC . Below TC the thermal ex-
pansion is connected to the ferromagnetic state through standard magnetostriction. This
is indicated through a ∆d/d which behaves as a smooth function of the magnetic moment
squared, m2, as will be discussed later (see Fig. 4.6). The magnetostriction e�ects are
most pronounced along the b- and the c-axes. A spontaneous volume magnetostriction
e�ect of ∆Vmag/V (T → 0 K) = 1.23 ·10−3 is observed at ambient pressure [101]. The min-

1Note that in Ref. [101] the a- and c-axis are interchanged as a Cmcm crystal structure instead of a
Cmmm crystal structure was assumed in studies before 1996 [95]. Labels in the �gure caption of Fig.
2.6 are corrected.



22 CHAPTER 2. THE SUPERCONDUCTING FERROMAGNET UGE2

Figure 2.6: Thermal expansion of UGe2 from Nishimura et. al [101]. (a) a-,b-, and
c-axes thermal expansion of UGe2 at ambient pressure. The low temperature part of this �gure is
shown magni�ed in Fig. 4.1 on p. 53. (b) a-axis thermal expansion under pressure. In Ref. [101]
the a- and c-axis labels are interchanged. See text for details.

ima and maxima in the a- and b-axis below TC already point at the crossover TX which
develops under pressure, respectively. Comparison with speci�c heat and magnetization
data shows that the magnetic and thermodynamic properties of UGe2 can be understood
in the context of a molecular �eld theory [102]. At ambient pressure TX can be clearly
identi�ed as a crossover rather than a phase transition as the TX transitions appear at
di�erent temperatures along the di�erent crystallographic axes. As it is known from mag-
netization measurements [93] that TX is a �rst order phase transition at pressures close
to pX this corroborates that the TX phase transition is separated from the crossover at
lower pressures by a critical end point. The ferromagnetic contribution can be described
by two parts with distinct Grüneisen parameters.

With increasing pressure the TX transition evolves from a broad crossover to a clear shoul-
der that can be seen in the volume and in the b-axis thermal expansion (Fig. 2.7). The
shape is analog to the magnetization data. The TX feature seen as peak in thermal expan-
sion coe�cient αb becomes larger under pressure. Above pX ≈ 12 kbar the TX transition
vanishes as known from magnetization data. In contrast, the a-axis thermal expansion
under pressure is relatively featureless except a change of slope at TC (Fig. 2.6b). The
spontaneous volume magnetostriction ∆Vmag/V decreases under pressure and vanishes
above pc [101].

In Chap. 4 we report thermal expansion measurements on UGe2 under pressure by means
of the neutron spin-echo method Larmor di�raction (LD). Our measurements distinguishes
itself from prior studies in that the LD technique allowed us to measure the thermal ex-
pansion along all crystallographic axes and the magnetization in the same experimental
setup. Therefore, we can directly compare the transition temperatures TC and TX of the
individual axes and the magnetization. We �nd an additional transition TL along the
c-axis thermal expansion that lies several Kelvin above the TX transition in the magne-
tization and the other axes. Furthermore, with LD we could measure the distribution
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Figure 2.7: Thermal expansion of UGe2 under pressure. (a) Volumetric thermal expan-
sion under pressure. Figure from [106]. (b) b-axis thermal expansion coe�cient αb and thermal
expansion ∆Lb/Lb (inset) under pressure. Figure from [92].

of lattice constants to check for uniaxial strains of the crystal lattice when UGe2 enters
the Ising-ferromagnetic state (see Sec. 3.4.3). To corroborate our thermal expansion data
which represents the �rst Larmor di�raction measurements on a ferromagnet, we compare
our data to data reported in the literature in Sec. 4.1. Overall, we �nd a good agreement.

2.2 Scenarios for the TX transition

The experimental evidence suggests that as the the SC is strongest around pX where the
TX transition is suppressed, the TX transition is the key to understanding the supercon-
ductivity in UGe2. Up to now there is no concluding picture about the TX transition, but
several scenarios have been proposed including (i) the formation of a coupled spin and
charge density wave [107], (ii) nearly degenerate FM1 and FM2 ground states that di�er
in their orbital moment [108], (iii) special features of the density of states (DOS) [109],
(iv) a coexistence of Kondo e�ect and magnetism [110,111], and (v) a transition between
a localized and an itinerant ferromagnetic phase [112]. These scenarios will be discussed
in this section.

(i) Watanabe et al. [107] propose a scenario where the TX transition may be related to
the formation of a coupled charge and spin density wave. This is in accordance with the
charge density wave forming in α-Uranium [113] which has a similar structure as UGe2

with the Uranium atoms aligned along zig-zag chains. In favor with this scenario are
electronic structure calculations [89] showing that the Fermi surface is dominated by a
cylindrical sheet with strong nesting. However, so far no direct experimental evidence
for a charge density was found and several experimental observations render this sce-
nario unlikely. First, in UGe2 the distance between the Uranium atoms is larger than
in α-Uranium making nesting less important. Second, dHvA experiments [94] show fre-
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quencies belonging to extremal orbits on the Fermi surface that could not exist together
with a CDW. A CDW due to nesting of two parallel sheets of the Fermi surface would
imply a gap opening in the Fermi surface which would destroy the extremal orbit. Third,
neutron scattering experiments under pressure show that the U-U distance is reduced to
dU−U = 3.5Å and that the zig-zag lines straighten [87]. Such large structural changes
would probably destroy the preconditions for nesting.

(ii) Shick et al. [108] propose a scenario based on LDA+U calculations in which they
consider not only the spin moment µS but also the orbital moment µL, since in actinide
systems spin-orbit coupling (SOC) becomes of the same order of magnitude as crystal-
�eld interactions (CF) [114]. In systems with a less than half �lled f -shell, µS opposes
the dominating µL so that the total moment is given by µ = µL − µS. Taking this into
account, Ref. [108] �nds solutions for the FM1 and FM2 ground states that are nearly
degenerate and di�er in the orbital moment. The FM1→FM2 transition is driven by the
competition of SOC and CF, where SOC>CF in the FM2 state and CF>SOC in the FM1
state. This scenario implies that �uctuations of the orbital moment at the TX transition
might drive the SC in UGe2. Such �uctuations have longitudinal character in agreement
with the proposal by Fay and Appel [115] that longitudinal magnetic �uctuations can
mediate unconventional spin-triplet superconductivity. Two experimental �ndings are in
favor of the scenario proposed by Shick et al.: First, longitudinal magnetic �uctuations
were reported in the magnetic excitation spectrum of UGe2 measured by neutron scat-
tering [97]. And second, the ratio of orbital to spin moment R = µL/µS was reported to
increases when crossing pX with RFM1/RFM2 = 1.10± 0.05 [97, 116].

(iii) Sandeman et al. [109] assume a zero-temperature Stoner model where the TX tran-
sition is associated with a double peak in the density of states (DOS). Tuning the peaks
in the DOS through the Fermi level produces the jumps in the magnetization observed at
pX and pc. Furthermore, they show that a large DOS at the majority spin Fermi surface
associated with the TX transition can lead to superconductivity that favors the FM state.
Such a double peaked DOS can arise naturally from a quasi one dimensional part of the
band structure. However, the model of Sandeman et al. is limited in that it only considers
the e�ects of spin but not spin-orbit coupling and crystal electric �elds that are known to
be important in UGe2.

(iv) The underscreened Kondo lattice model can explain the coexistence of ferromagnetism
and Kondo e�ect [110]. There, the conduction electrons are not su�cient to screen all
local moments so that unscreened local moments remain. In an extension to this model
by Thomas et al. [111] in which a weak delocalization of 5f -electrons is taken into account
a jump in the magnetization resembling the TX transition in UGe2 can be observed at low
temperatures in a speci�c scenario : If the Kondo temperature TK lies a bit higher than
the Curie temperature TC , apart from the Kondo phase and the ferromagnetic phase a co-
existence region is observed. The coexistence region originates in unscreened f -electrons
that can order ferromagnetically in the Kondo phase if the exchange interaction is large
enough. At lower temperature the magnetic moments, which act as an internal magnetic
�eld, increase and destroy the Kondo e�ect at some point. The transition from the Kondo
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phase to the coexistence region then refers to the TC transition and the transition from
the coexistence region to the purely ferromagnetic region refers to TX . However, so far
no experimental evidence con�rming or disproving this model was observed.

(v) In a theoretical study using dynamical mean-�eld theory (DMFT), Hoshino et al. [112]
discuss a generalized scenario in which the magnetism in heavy-fermion systems changes
from localized to itinerant heavy-electron magnetism. There, an itinerant-localized tran-
sition (ILT) of the f -electrons results from the competition of Heisenberg exchange in-
teraction and the Kondo e�ect. The Heisenberg interaction JH promotes ordering of
localized f -electron states while the Kondo e�ect leads to itinerant f -electrons. This ILT
takes place inside the magnetically ordered phase. In the case of UGe2 TX then refers
to a ILT between a localized and an itinerant ferromagnetic phase, as the Kondo e�ect
JK increases with increasing pressure. The nice thing about this scenario is that it is
very general and could explain the phase diagrams of a number of systems including
CeRh1−xCoxIn5, CeRu2(SixGe1−x)2, UGe2, and CeT2Al10 (T=Fe,Ru,Os). However, in the
case of UGe2 the scenario of a ILT from localized to itinerant f -electrons inside the FM
phase stands in contrast to two experimental observations which yield evidence against a
delocalization of the 5f electrons: First, the ratio of orbital to spin moment R = µL/µS
was reported to increases when crossing pX (see scenario (ii)) [97,116]. This implies that
the 5f electrons do not delocalize on crossing pX as the orbital contribution is then ex-
pected to decrease. Second, measurements of the magnetic form factor of the Uranium
atom show that both at ambient pressure and under pressure it is account equally well
for by a U3+ or a U4+ con�guration.

As will be discussed in Chap. 4, we �nd evidence of an additional phase transition TL
at pressures close to pX that lies several Kelvin above the TX transition. Such a second
transition in the ferromagnetic phase is hard to combine with scenario (i), (ii), and (iii)
from above. However, the TL transition is compatible with the scenarios (iv) and (v) that
explain TX through a competition of Heisenberg and Kondo exchange interactions (see
Sec. 4.3).
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Chapter 3

Experimental methods

3.1 Thermal expansion at low temperatures

Along with the speci�c heat, the thermal expansion is a an important property of a solid.
Its temperature dependence allows conclusions about the excitations of a system. In the
context of pressure driven phase transitions the thermal expansion yields crucial informa-
tions since the unit cell volume is the conjugate physical property to the control parameter
pressure. This section gives an overview of the basic properties and conventional mea-
surement methods of the thermal expansion. For a broad introduction see, e.g., Ref. [117].

The thermal expansion can be expressed through the coe�cient of volumetric expansion
β =

(
∂V
∂T

)
p
, the coe�cient of linear expansion α =

(
∂d
∂T

)
p
, or directly through the relative

change of lattice constants ∆d/d. Here, V refers to the crystal volume and d refers to a
lattice constant.

3.1.1 Contributions to the thermal expansion

The temperature dependence of the thermal expansion as well as the speci�c heat CV
re�ects the excitations of a system. Since thermal expansion and speci�c heat are closely
related to each other, it is useful to discuss these two properties together. The two main
contributions to the speci�c heat and the thermal expansion are the phononic contribu-
tion and the electronic contribution. In the case of a dominant phonon contribution CV
and β scale with ∝ T 3 to �rst order. It is important to note that while all phonons con-
tribute similarly, i.e. positive, to CV , which therefore is always positive, they can have a
quite di�erent e�ect on the thermal expansion, which can therefore also become negative
(Fig. 3.1a). Especially in non-cubic systems the thermal expansion can have a complex
behavior. The electronic contribution is usually much smaller than the phonon contribu-
tion and becomes typically visible not until T ≤ 1 K. In the case of simple metals like
Copper the electronic contribution to speci�c heat and thermal expansion scales linearly
with temperature.

27
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Figure 3.1: Examples of thermal expansion data. (a) Heat capacity Cp and thermal
expansion coe�cient α of the cubic material CuCl. Cp is dominated by the phonon contribution
and decreases as T 3. α is also dominated by the phonon contribution and also decreases with T 3

at higher temperatures. At low temperatures, however, α becomes negative as some vibrational
modes contribute positively and some negatively to the thermal expansion. (b) Volumetric
thermal expansion coe�cient β for various heavy fermion materials. The correlation e�ects
between electrons lead to strong signatures in the thermal expansion. (c) Anisotropic thermal
expansion of the orthorhombic heavy fermion material CeCu6. Figures from Ref. [118].

In the presence of ordering phenomena like superconductivity or magnetism the behav-
ior of speci�c heat and thermal expansion can be quite di�erent from the simple cases
described above. It is especially di�cult to distinguish the di�erent contributions from
each other since new excitations like magnons in magnetic systems arise. Furthermore, d
electrons from transition metals or f electrons from rare earth or Actinide elements can
lead to correlation e�ects that greatly enhance the electronic contributions.

The basic contributions arising from the most prominent ordering phenomena can be sum-
marized as follows: In a simple model for ferromagnets, the magnetic contributions to CV
and β, Cm and βm, scale with ∝ T 3/2 due to magnons. In turn, in antiferromagnets Cm
and βm scale with ∝ T 3 in a simple model. Also, magnetism can couple to the lattice, so
called magnetoelastic coupling, and lead to large volume changes up to a few percent. In
superconductors the basic feature is a �jump� is observed in the electronic contribution to
CV and α at the superconducting transition. The temperature dependence of the thermal
expansion in the superconducting phase depends on material speci�c details. In general,
speci�c heat and thermal expansion are complex in the presence of ordering phenomena
and/or correlation e�ects and the thermal expansion is often very anisotropic (see Fig.
3.1b and c).

3.1.2 Thermal expansion at phase transitions

When studying phase transitions that are driven by the control parameter pressure as it
is the case for many quantum phase transitions, the thermal expansion β =

(
∂V
∂T

)
p
yields

important informations since the unit cell volume, or equivalently the lattice constants,
is the conjugate physical property to the control parameter pressure [49]. This is in anal-
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ogy to temperature driven phase transitions where the conjugate variable to the control
parameter temperature is the entropy S which can be probed via the observable speci�c
heat Cp = T (∂S/∂T )p. The behavior of the thermal expansion at phase transitions can
be summarized as follows [118]: At �rst order phase transitions discontinuities in vol-
ume are observed. I.e., ∆V/V and ∆d/d show characteristic �jumps� at the transition
temperature. At second order phase transitions discontinuities in the thermal expansion
coe�cients α and β are observed.

An interesting side note is that with the knowledge of the discontinuities of α and C
at an superconducting transition one can predict the pressure dependence of Tc via the
Ehrenfest relation from ambient pressure data (see e.g. Refs. [117,118]):

βn − βs =

(
Cn − Cs

V

)
d lnTc
dp

(3.1)

The superscripts n and s denote the normal and the superconducting state.

The thermal expansion is a useful observable in the �eld of quantum criticality. For a pres-
sure induced quantum-critical point a sign change and divergence are predicted to occur
in the thermal expansion [119, 120]. Therefore, thermal expansion data allows to iden-
tify and classify quantum-critical points. Observations on several systems like CeRu2Si2,
CeCu6−xAux, TlCuCl3, and URu2Si2 support this prediction (see Ref. [120] and references
therein). Furthermore, a missing divergences in the thermal expansion was used to rule
out the presence of quantum-critical points in MnSi [49].

3.1.3 Experimental methods

Standard experimental methods for measuring the thermal expansion of solids are (i)
capacitive dilatometers (see e.g. Ref. [121]), (ii) strain gauges (see e.g. Ref. [122]), and
(iii) scattering methods with X-rays or neutrons. The operation principle and typical
resolutions are brie�y introduced below. This is followed by a discussion why we chose
a di�erent measurement method, namely the sophisticated and rather new neutron spin-
echo technique called Larmor di�raction, to perform our experiments on UGe2.

(i) In a capacitive dilatometer the sample is put between two plates of a capacitor. A
changing lattice constant then changes the distance between the capacitor plates and
hence can be detected by measuring the capacitance. The resolution of a capacitive
dilatometer can be as high as ∆d/d ≈ 10−10 [121]. (ii) A strain gauge is a conductive
path on a �exible, insulating backing that is glued onto the surface of a sample. Due
to the thermal expansion of the sample, the conductive path is compressed or stretched
and changes its resistance. The typical resolution of strain gauges is ∆d/d ≈ 10−6− 10−7

(see e.g. [122]). (iii) In conventional X-ray or neutron di�raction the lattice constants
are measured via the scattering angle of a nuclear Bragg peak. Compared to the tech-
niques mentioned above, the typical resolution of ∆d/d ≈ 10−4 is relatively low due to
limitations caused by the monochromaticity and the beam divergence of the used x-ray or
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neutron beam. E�orts to increase the resolution through, e.g., tighter beam collimation
considerably decrease the intensity yielding long experiment times.

For our experiments we used a sophisticated neutron spin-echo technique called Larmor
di�raction. There, the change of lattice constant is measured through the phase of a po-
larized neutron beam. Therefore, Larmor di�raction has certain advantages compared to
the conventional methods presented above. The most important being the combination
of a high resolution with a high intensity. This will be covered in detail in Sec. 3.2. We
chose Larmor di�raction mainly for two reasons: (1) As Larmor di�raction is a scattering
method, it is easy and reliable to use for high pressure experiments since no measurement
apparatus has to be mounted inside a pressure cell. Larmor di�raction distinguishes it-
self in comparison to other scattering methods through its relatively high resolution of
∆d/d ≈ 10−6, a high intensity and low heating e�ects compared to X-ray scattering. (2)
Larmor di�raction allows to measure the magnetization concomitantly with the thermal
expansion. Accordingly, transition temperatures can be compared directly. This is essen-
tial when trying to separate the di�erent contributions to the thermal expansion.

3.2 Introduction to Larmor di�raction

Larmor di�raction (LD) is a neutron scattering technique for measuring the change of
lattice constants that distinguishes itself from conventional scattering techniques through
the combination of a high resolution and a high intensity. The resolution of LD of
∆d/d ≈ 10−6 is much higher than the resolution of conventional scattering techniques
with ∆d/d ≈ 10−4 − 10−5. This is achieved by encoding the information of the change
of lattice constant in the spin precession of a polarized neutron beam rather than in
its scattering angle. Therefore, LD is insensitive to beam divergence and wavelength
spread yielding a high intensity. As a unique feature of LD, the distribution of lattice
constants over the whole sample volume can be determined. First proposed in 2000 by
Rekveldt [123] and implemented by Rekveldt, Keller, and Golub [124], LD was used to
tackle its �rst major scienti�c problem in 2007 by P�eiderer et al. [49]. There, the absence
of quantum critical points in the temperature-pressure phase diagram of MnSi could be
shown, underscoring the unusual nature of the extended non-Fermi liquid regime reported
under pressure (cf Sec. 5.2, p.74).

For the experiments presented in this thesis, LD provided two crucial features: (i) When
measuring magnetic systems, LD opens up the possibility of directly comparing mag-
netic transition temperatures through measuring the magnetization (via the intensity of
a magnetic Bragg peak) in the same setup as the change of lattice constants. (ii) Being a
scattering technique, LD it is well suited for high-pressure experiments since no measure-
ment apparatus has to be mounted inside a pressure cell. Thus, di�culties concerning
the interplay of pressure transmitting medium, measurement apparatus, and sample are
avoided. This distinguishes LD from conventional techniques for measuring changes of
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Figure 3.2: Trajectory of a neutron moving through two magnetic �eld regions
produced by two coils. When the �eld boundaries are tilted with respect to the neutron
trajectory, the path length through the magnetic �eld depends on the scattering angle Θ. Picture
from [124].

lattice constants, like strain gauges and capacitive dilatometers.

Experimentally, LD is realized on neutron spin-echo instruments. Thus, the following text
brie�y introduces the principle of neutron spin-echo and subsequently the basic principle
of LD along Ref. [124].

3.2.1 Principle of neutron spin-echo technique

Neutron scattering techniques using the spin-echo method are designed to measure ex-
citations, like magnons, with a high accuracy in the µeV range. The high accuracy is
achieved though using the precession of neutron spins to detect energy transfers between
neutron beam and sample. A detailed introduction to the neutron spin-echo technique
can be found in Ref. [125].

In a spin-echo experiment, the neutrons move through two magnetic �eld regions of same
magnitude and size before and after they scatter at the sample. In each �eld the neutron
precesses with a Larmor frequency ωL and picks up a Larmor phase

φ = ωLLi/vi (3.2)

with the length Li of and the velocity vi in each �eld region (Fig. 3.2). In a conventional
spin-echo setup the �eld directions are reversed, so that the total Larmor phase Φ = φ1−φ2

cancels out in cases where the neutron velocity before and after the scattering event is
the same. However, if the neutron velocity is changed due to an inelastic scattering event,
from v1 to v2, a non-vanishing Larmor phase remains and can be used to measure energy
transfers δE with a high resolution:

Φ = φ1 − φ2 = ωLL

(
1

v1

− 1

v2

)
=
ωLL

v2
δv =

ωLL

2vE
δE. (3.3)

When the boundaries of the magnetic �eld regions are tilted like in Fig. 3.2 the path
length through the �elds depends on the angle of the trajectory. Hence, a change in the
angle of the neutron trajectory results in a phase shift. This can be used to measure
q-dependent excitations at a high resolution.
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3.2.2 Measurement of lattice constants

In the so-called �parallel� mode the �elds in both spectrometer arms are set to point in
the same direction at which the precession of the neutron spins adds up. The advantage
of this �eld con�guration is that lattice constants can be measured with a high accuracy
via the total neutron precession independent of beam divergence and wavelength spread
provided that the instrument is arranged in a certain geometry (see below).

With the instrument set up in the parallel mode, the total precession of the scattered
neutrons is sensitive to the lattice constant of the analyzed sample when the precession
�eld boundaries are oriented parallel to the lattice planes of the analyzed sample. This
geometry is schematically illustrated in Fig. 3.3a (where the e�ective magnetic �eld
regions are shown as one extended region for didactic reasons). The neutron spins of a
polarized neutron beam (black) rotate in a magnetic �eld (gray shading) before and after
they scatter at the lattice planes of a sample. The total rotation only depends on the
velocity component v⊥ which is the same for all neutrons ful�lling the Bragg condition
~Q = 2kB sin (ΘB) = ~G, with the reciprocal lattice vector ~G (|~G| = 2π/d). It can be
shown that the total precession phase Φ is linearly proportional to the lattice spacing d
(see Ref. [124] for details):

Φ =
2ωLLm

π~
d. (3.4)

Thus, a change ∆d in the lattice spacing can be measured through a change in the Larmor
phase ∆Φ, which can be determined with a high precision, via the relation:

∆d

d
=

∆Φ

Φ
. (3.5)

Typical values for the total Larmor precession are Φ ≈ 104 rad corresponding to ≈ 103

precessions of the neutron spins. The resolution is presently ∆Φ/Φ = ∆d/d ≈ 10−6 (see
below).

Since in this measurement geometry the total precession phase depends only on the veloc-
ity component v⊥ and hence on the time the neutrons spend in the precession �elds, the
total phase is independent of the angle of incidence Θ and the neutron wavelength. I.e.,
the neutrons along the red, blue, and black trajectory in Fig. 3.3a acquire the same Lar-
mor phase. Therefore, a LD experiment can be performed with open collimation yielding
a combination of a high resolution with a high intensity. Furthermore, the Larmor phase
remains unchanged to �rst order, when the lattice plains are tilted with respect to the
�eld boundaries (Fig. 3.3b).

In the actual experimental setup the e�ect of the magnetic �elds is produced by four
radio-frequency coils that use short alternating �elds (Fig. 3.3c). On the neutron spin
the radio-frequency coils have the same e�ect as the extended magnetic �eld region in-
dicated by the dashed line. This type of setup is called neutron resonance spin-echo
(NRSE). For a detailed description of the NRSE technique see Refs. [126, 127]. The ad-
vantages are that the radio-frequency coils can be tilted by large angles, that outside the
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radio-frequency coils the magnetic �eld is B = 0 avoiding stray �elds at the sample po-
sition, and that the neutron phase is governed by the frequency with which the coils are
operated which is easier to determine than a �eld integral of an extended magnetic �eld.
To measure the Larmor phase Φ, the intensity of a �xed polarization direction is detected
at the detector while the length of the e�ective magnetic �eld region is varied through
translating one coil (C4 in Fig. 3.3c). The result is a sinusoidally varying intensity as
a function of the coil translation xTC4. Fig. 3.4 shows as example UGe2 at 9 kbar. The
change in the Larmor phase between the 225K (black) and the 5K (red) curve can be
clearly seen as horizontal shift between the two curves.

As proof of principle, Fig. 3.5 shows the comparison of the thermal expansion of single
crystal Cu measured by LD [49] and with a capacitive dilatometer [128]. The data shows
an excellent parameter-free agreement and illustrates the high accuracy of LD. At the
instrument TRISP at FRM II, where we performed our experiments, the present relative
resolution is ∆d/d ≈ 10−6 [49, 129]. Experimentally, the resolution is presently limited
in leading order by the size of the precession distances L1 and L2 (see Fig. 3.3) [49].
Theoretically, the resolution of LD is limited by the Darwin width of the Bragg peaks
which is typically around 10−7 [129].

It is also possible to determine the absolute value of a lattice constant with a high accuracy
of 7 · 10−5Å [130] through comparing the total Larmor phase of the sample of interest
Φtot,sample with the total Larmor phase of a reference sample Φtot,reference and applying the
relation:

dsample =
Φtot,sample

Φtot,reference

dreference. (3.6)

3.2.3 Measurement of the distribution of lattice constants

A unique feature of Larmor di�raction is the possibility to determine the distribution of
lattice constants through the dependence of the polarization P on the total Larmor phase
Φ [124,131]. This allows to study sample qualities and check for parasitic phases1 across
the entire sample volume. With this method it was, e.g., found that in URu2Si2 the small
antiferromagnetic moment reported in the hidden order phase is purely parasitic [132].

If a crystal has a distribution of lattice constants around an average value, the polarization
detected at the analyzer is reduced compared to a perfect crystal, where the polarization
at the analyzer is given as the average of the spin projection of the neutron beam. This is,

1A parasitic phase in the sense presented here means that a part of the sample volume has such
distorted lattice constants, that it e�ectively is at a di�erent position in the pressure dependent phase
diagram as the rest of the sample volume.
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a

b

c

Figure 3.3: Geometry of a Larmor di�raction (LD) experiment. (a) The neutron spins
of a polarized neutron beam (black) rotate in a magnetic �eld (gray shading) before and after
they scatter at the lattice planes of a sample. See text for details. AD: Analyzer and detector.
(b) When the lattice planes are tilted with respect to the magnetic �eld boundaries, the Larmor
phase remains unchanged to �rst order. I.e., when the lattice planes are tilted like illustrated, the
additional phase the neutrons acquire along an elongated path L1 is compensated by a shortened
L2. (c) Illustration of the experimental setup with four radio-frequency coils (C1,C2,C3,and C4)
producing the e�ective magnetic �eld region indicated by the dashed line (see text for details).
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Figure 3.4: Larmor di�ractions scans on UGe2 under 9 kbar at 225K and 5K. Shown is
the intensity, I, versus translation of coil C4, xTC4. The Larmor phase changes with temperature
which results in a horizontal shift of the I-vs-xTC4 curves.

Figure 3.5: Comparison of Larmor di�raction and capacitive dilatometry. (a) Thermal
expansion of single crystalline Cu measured by LD [49] and with a capacitive dilatometer [128]
at ambient pressure. The parameter-free comparison yields excellent agreement. (b) Di�erence
of LD and dilatometry data. Figure from [49].
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Figure 3.6: Polarization versus total Larmor phase Φ of mechanically deformed and
annealed polycrystalline aluminum. The lines represent �ts corresponding to Gaussian
distributions of ∆d/dHWHM = 6.9·10−5 for the annealed sample and 2.9·10−4 for the mechanically
deformed sample. Figure from [124].

because each d value produces a di�erent Larmor phase according to Eq. 3.4. Assuming
a Gaussian distribution of lattice constants

f (ε) =

√
4 ln 2

π

1

εFW

exp

(
−4 ln 2

ε2

ε2FW

)
(3.7)

with ε = ∆d
d

= ∆Φ
Φ0

and FWHM εFW, the polarization as a function of the total Larmor
phase Φ0 = ωL

2L
v
becomes

P (Φ0) = P0 〈cos ∆Φ (Φ0)〉 (3.8)

= P0

∞∫
−∞

f (ε) cos ∆Φ (ε) dε (3.9)

= P0 exp

(
− Φ2

0

16 ln 2
εFW2

)
(3.10)

Fig. 3.6 shows an example of P (Φ0) for a mechanically deformed and an annealed sam-
ple of polycrystalline aluminum [124]. A crystal of good quality has a εFW = ∆d

d FW
≈ 10−5.

In case of multiple Gaussian distributions Eq.3.10 changes to

P (Φ0) = P0

∑
wi exp

(
− Φ2

0

16 ln 2
εiFW2

)
(3.11)

with
∑
wi = 1.
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3.2.4 Spin-echo mode

When the �elds in both spectrometer arms are set to point in opposite directions, like
in the usual spin-echo con�guration, we have to distinguish two cases depending on the
orientation of the precession �eld boundaries:

(i) When the boundaries of the e�ective magnetic �elds are parallel to the lattice planes,
the neutron phase is sensitive to the mosaic spread of the sample (see [124] for details).

(ii) When the �eld boundaries are orthogonal to the neutron beam, the rotation of the
neutron spins is both sensitive to changes of the neutron velocity due to inelastic scat-
tering events, as described above (see p.31), and sensitive to rotations of the neutron
spins due to magnetic �elds besides the �elds produced by the radio-frequency coils like,
e.g., stray �elds. Accordingly, when performing a LD experiment, this spin-echo mode
con�guration allows to check for contributions to the neutron phase that are not related
to the change of lattice constant2. We refer to such contributions to the neutron phase in
this spin-echo con�guration as �spin-echo phase� in the following.

When a non-vanishing spin-echo phase is observed, the phase detected in the correspond-
ing LD experiment not only consists of a component related to the change of lattice con-
stant, but also has a component related to either inelastic scattering events or stray �elds.
The latter component of the neutron phase can be determined in spin-echo mode and di-
rectly subtracted from the LD data to obtain the actual change of lattice constants. In
our LD experiments on UGe2 under pressure we observed non-vanishing spin-echo phases.
This will be covered in Sec. 3.5.

3.3 Experimental setup

3.3.1 Spectrometer TRISP at FRM II

The spectrometer TRISP (Triple Axis Spin Echo) at the research reactor FRM II in
Munich combines neutron resonant spin-echo spectroscopy with triple-axis spectroscopy
[133, 134]. It is designed to measure lifetimes of dispersive excitations, like phonons and
magnons, over the entire Brillouin zone with a µeV energy resolution. The use of small
radio frequency spin �ipper coils (RF coils) instead of large DC coils, used in conventional
neutron spin-echo instruments, to de�ne the e�ective precession regions of the neutrons,
allows to use the tilted coil focusing technique [135]. There the RF coils are rotated to
achieve tilted boundaries of the precession �elds relative to the neutron beam, allowing
to tune the spin-echo resolution function to the slope of the dispersive curve. The tiltable
precession �eld boundaries can also be used to measure lattice constants with a high res-
olution of ∆d/d ≤ 10−6 as we did with our experiment (see Sec. 3.2) [133].

2Conveniently, only the direction of the precession �eld in one spectrometer arms has to be reversed
to switch from LD to spin-echo mode con�guration.
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Figure 3.7: Schematic drawing of the TRISP spectrometer. Picture from [133].

Fig. 3.7 shows a schematic drawing of the TRISP spectrometer. As TRISP is designed
for measuring excitations with high energies (1− 100 meV, resolution 1− 100µeV), it is
placed at a thermal neutron beam. Coming from the moderator the thermal neutrons
enter a neutron guide where the neutrons are polarized through FeCoV/TiN supermirrors
(m = 2.5 [136], critical wavelength 0.8 Å) in the polarizing section of the guide, yielding
typically 90% polarization and 60% transmission in a 0.8 Å ≤ λ ≤ 4 Å wavelength band
with a collimation of 30′λ[Å]. The guide is curved to block the direct view on the modera-
tor to achieve lower background. In combination with a pyrolitic graphite monochromator
the polarizing neutron guide outperforms Heusler monochromators (factor 3 at 2Å) and
3He spin �lters. Between monochromator and neutron guide a velocity selector is mounted
as higher order �lter [133].

Two tiltable RF coils are mounted in each spectrometer arm providing an e�ective �eld
of 1.2 kG. Tiltangles > 50◦ can be reached. The spectrometer arms as well as the sample
space region is shielded by µ-metal to eliminate crosstalk of the spectrometer arms and
to be insensitive to external �elds. After the second spectrometer arm the neutrons are
analyzed though a pyrolytic graphite analyzer together with a bender [133].

For our experiments on UGe2 we operated at e�ective frequencies ωreff of typically 2513 kHz
(LD-scans) and between 628 kHz and 6786 kHz (distribution-of-lattice-constants-scans).
We used wavelength of 1.55Å−1 (b-axis), 1.9Å−1 (a- and c-axis), and 2.51Å−1 (magnetic
peak and alignment).

3.3.2 Samples

The single crystalline UGe2 samples used for the Larmor di�raction experiment were
grown by the Czochralski technique under a puri�ed Argon atmosphere by D. Sokolov.
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Table 3.1: UGe2 samples used for Larmor di�raction experiments.

sample pressure cell weight (g) mosaicity pressures (kbar) axes
s1 - 0.82 ≈ 1.0◦ ambient a,b,c
s2 pc1 0.42 ≈ 1.5◦ 9.3, 10.2, 11.8, 12.3 c
s3 pc1 0.39 ≈ 1.5◦ 9.3, 10.2, 11.8, 12.3 a,b
s4 pc2 1.20 ≈ 2.4◦ 12.4 b,c

a b

Figure 3.8: UGe2 single crystals. (a) Sample s1. (b) Sample s4. Pictures from [138].

Crystal mosaics were ≈ 1◦(FWHM), RRR ≈ 70−120 and TC = 52.6 K [137]. All samples,
together with measured pressures and axes, are summarized in Table 3.1. Figs. 3.8a and
b show pictures of typical samples.

In preparation for our Larmor di�raction experiments, we checked for possible transi-
tions of the crystal structure under pressure via neutron single crystal di�raction on the
di�ractometer RESI at the research reactor FRM II in Munich at which we determined
the crystal structure of our highest quality sample, s1 (≈ 1.0◦ mosaicity), at ≈1 kbar and
≈10 kbar. We found that at both pressures UGe2 has a Cmmm structure and that no
structural transition can be observed. The determined structure is in good agreement
with published structure data [80].

3.3.3 Cryostats and pressure cells

The samples were placed in a standard closed cycle CCR cryostat (temperature range
≈3K-300K) mounted on the spectrometer. For some experiments the CCR cryostat was
combined with a 3He insert to access temperatures down to ≈ 300 mK (cf Ref. [139]).
The temperature was measured with Cernox thermometers attached on the outside of the
pressure cells close to the sample position.

In order to obtain su�cient polarization for Larmor di�raction scans (> 10%) at tem-
peratures below TC , it was necessary to cool the sample down in an AC magnetic �eld
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ensuring that the domains of the Ising FM UGe2 were populated equally. Therefore, a coil
was mounted around the sample region of the cryostat and an AC magnetic �eld of order
0.1T (f = 50 Hz) applied during cooldowns. This way the drop of polarization could be
reduced. This will be discussed in detail in Sec. 3.5.1.

A scaled version of the Cu:Be piston-cylinder cell described in Sec. 6.3.4 (see p.106 �
and Ref. [140] for details) with a bore diameter of 6mm was used for Larmor di�raction
experiments (see Fig. 6.11 (p.108)). As in contrast to the Hall e�ect experiments no
wiring was needed for the Larmor di�raction experiments, the obturator was replaced by
a second cutting ring and the lower end of the Te�on capsule was sealed with a Te�on cap.
A Fluorinert mixture FC72:FC84 with 1:1 volume ratio was used as pressure transmitting
medium providing approximately hydrostatic pressure conditions up to ≈ 20 kbar [141].

3.4 Data analysis

3.4.1 Determination of pressures

To determine the pressure values, the Curie temperature TC at each pressure was inferred
from the temperature dependence of the intensity of the magnetic Bragg peak (0,4,0) as
illustrated in Fig. 3.9a. With the phase diagram of P�eiderer et al. [93], deduced from
magnetization measurements (Fig. 3.9b), a pressure value could be assigned to each TC .
All values are listed in table 3.2.

As two samples were mounted in pressure cell pc1, s2 and s3, we could determine the
pressure inhomogeneity and anisotropy through a comparison of the Curie temperatures
TC of the two samples. A similar quality and hence comparable TC were assumed since s2
and s3 were cut from adjacent pieces of one UGe2 ingot. We �nd a pressure inhomogeneity
of ±0.2 kbar.

Table 3.2: Pressure values. The pressure values were determined from the Curie temperature
via the magnetization phase diagram of Ref. [93].

TC (K) p (kbar)
38.2 9.3
34.8 10.2
31.8 11.8
30.3 12.3
30.0 12.4
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Figure 3.9: Determination of pressures via the magnetic peak intensity. (a) Intensity
of the magnetic Bragg peak (0,4,0) versus temperature under pressure. The intensity is scaled
so that the low temperature value agrees with magnetization data in units µB/f.u. (see Fig.
2.4b). The Curie temperature was deduced from the onset of intensity increase coming from
high temperatures as illustrates by arrows. With the known Curie temperature the pressure was
then inferred from the phase diagram of P�eiderer et al. [93] shown in panel (b).
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3.4.2 Thermal expansion

For the analysis, the intensity I versus coil translation xTC4 curve at each temperature is
�tted with the formula

I = I0

(
1 + P cos

(
2π
xTC4 − xTC4,0

∆L

))
(3.12)

where the �t parameters are the average intensity I0, the polarization P , and the distance
the neutrons travel during one full rotation of its spin ∆L (see Fig. 3.4). The change of
lattice constant is then

∆d

d
=

∆Φ

Φ
=
xTC4 − xTC4,0

Lsp

(3.13)

with the length of the spectrometer arms Lsp.

Data taken in spin-echo geometry was analyzed analog to the LD scans with Eq. 3.12.
However, in this case only the second equal sign of Eq. 3.13, i.e., ∆Φ/Φ = (xTC4 − xTC4,0) /Lsp

is true as the data refers to the spin-echo phase rather than to the change of lattice con-
stant ∆d/d.

An overview of all LD and SE datasets acquired during this thesis with the corresponding
parameters ∆d/d (or spin-echo phase), I0, and P is given in the appendix in Figs. A.1,
A.2, A.3, A.4, A.5, and A.6.

All data was corrected for contributions related to the thermal expansion of the spec-
trometer due to changes in the room temperature. These contributions were determined
with the temperature of the spectrometer that was tracked along all measurements and
with the thermal expansion coe�cient of Aluminum, the material from which the spec-
trometer is mainly built, αAl = 2.3 · 10−5 K−1. All xTC4 determined with Eq. 3.12 were
then corrected with the relation

x̃TC4 = xTC4 (1 + αAl∆T ) . (3.14)

Here, ∆T represents the temperature di�erence between the spectrometer at the initial
scan, relative to which the data is normalized, and the momentarily considered scan.

3.4.3 Distribution of lattice constants

To determine the distribution of lattice constants, the polarization was measured as a
function of total precession phase Φ0. As Φ0 is governed by the operation frequencies of
the RF-coils described in Sec. 3.3.1, a change in Φ0 was experimentally realized though
changing bespoken frequencies. The data was then �tted with Eq. 3.10, assuming a
Gaussian distribution of lattice constants. Subsequently, the resulting P (Φ0) data was
corrected for depolarization e�ects caused by the spectrometer itself.
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Fig. 3.10a shows typical depolarization scans taken along the b-axis at temperatures above
and below the Curie temperature at a pressure of 9.3 kbar. Fits of the data with Eq. 3.10
yield a FWHM of εFW (T = 60 K) = 7.6 · 10−4 and εFW (T = 0.5 K) = 8.7 · 10−4 indicating
a medium crystal quality along the b-axis under pressure.

To consider the frequency dependent depolarization of the spectrometer itself, the po-
larization values of our data at each frequency, i.e., Φ0, were normalized to the dataset
of a high quality germanium crystal taken at a temperature of 7.6K (see Fig. 3.10b)
which was taken as a measure for the depolarization caused by the spectrometer. It was
assumed that the depolarization caused by the high quality germanium crystal is consid-
erably smaller than the depolarization caused by the spectrometer itself.

Fig. 3.11 illustrates the distribution widths εFW according to Eq. 3.10 for UGe2 at var-
ious pressures at temperatures below and above the Curie temperature. The general
trends are: (i) The distribution of lattice constants is broader in the ferromagnetic phase
(T < TC) than in the paramagnetic phase (T > TC). This implies that the crystal lat-
tice becomes slightly distorted when the sample becomes ferromagnetic with all moments
aligning along the a-axis. (ii) The distribution becomes broader with increasing pressure.
Increasing pressure gradients in the pressure cell probably contribute to this trend. How-
ever, as a caveat, the data scatters by a fair amount and the depolarization curves at some
pressures are better �tted with Eq. 3.11 with n = 2, i.e., the presence of two Gaussian
distributions.

3.5 Larmor di�raction on UGe2: Speci�c challenges

Our experiments on UGe2 represent the �rst Larmor di�raction measurements on a fer-
romagnetic system. Consequently, we encountered two major challenges that we had to
overcome: (i) A large depolarization of the neutron beam when the sample is in the fer-
romagnetic state leading to a loss of information encoded in the neutron phase. (ii) A
non-vanishing spin-echo phase, i.e., a phase rotation not related to a change of lattice
constant, that occurred in Larmor di�raction scans under pressure. The characteristics
and solutions of these two challenges are discussed below.

It is important to emphasize that our Larmor di�raction experiments on UGe2 represent
a comprehensive study covering 68 days of beamtime at TRISP. The large amount of
beamtime is mainly due to the orthorhombic crystal structure which makes it necessary
to measure all three crystalline axes, a relatively low intensity due to the large absorption
of the Cu:Be pressure cells, and the necessity to measure the spin-echo phase in addition
to the Larmor di�raction scans.

3.5.1 Depolarization

As illustrated in Fig. 3.12, a beam of polarized neutrons loses its polarization when it
traverses a ferromagnetic sample. In each ferromagnetic domain the neutrons are subject
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Figure 3.12: Depolarization due to a magnetic sample. Schematic illustration of a
magnetic sample depolarizing a polarized neutron beam.

to a rotation of its spins according to the magnetization direction of the individual do-
main. Accordingly, the detailed trajectory of a neutron though the sample determines its
spin direction on leaving the sample. Thus, neutrons with slightly di�erent trajectories
leave the sample with di�erent spin directions so that the neutron beam depolarizes and
information encoded in the neutron phase is lost. In our case, this means that the ampli-
tude of the sinusoidally signal shown in Fig. 3.4 decreases with decreasing polarization.
The phase Φ itself does not change with decreasing polarization, but the signal to noise
ratio becomes smaller. A polarization >10% is needed to perform useful LD scans, i.e.,
to be able to determine the phase through �tting the raw data with the sinusoidal func-
tion given in Eq. 3.12. Neutron depolarization measurements of Sakarya et al. [142] in
2005 yielded a polarization loss between T > TC = 52 K and 4K of ≈ 30%. Hence, LD
measurements in UGe2 appeared feasible provided that the initial polarization at high
temperature is su�ciently large.

In our experiments we observed a polarization loss about the same magnitude as Ref. [142].
However, as our initial polarization was only around 50% when using pressure cells, we
had to demagnetize our samples in an AC magnetic �eld while cooling to prepare the sam-
ple in the (Ising) ferromagnetic state with an equal domain population to have minimal
depolarization e�ects. As all moments are aligned along the magnetically easy a-axis in
the Ising ferromagnetic state of UGe2 (see Fig. 2.1), rotations of the neutron phase caused
by domains with magnetic moment in +a direction can be compensated by domains with
magnetic moment in −a direction and vice versa, provided that the domains are equally
populated along the path of the neutrons through the sample. In order to achieve such
an equal domain population, we applied an AC magnetic �eld to our UGe2 samples while
cooling though the Curie temperature. This way we were able to retain su�cient po-
larization at low temperatures. The AC magnetic �eld of order 0.1T (f = 50 Hz) was
produced by a coil wound around the sample region of the cryostat. Fig. 3.13 shows
the typical temperature dependence of the polarization during LD scans taken on heating
from base temperature after an initial cooldown in the bespoken AC magnetic �eld. In
turn, cooling the sample without AC magnetic �eld resulted in polarization values below
10% rendering LD scans impossible.
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Figure 3.13: Typical temperature dependence of the polarization during Larmor
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3.5.2 Non-vanishing spin-echo phase

As already mentioned in Sec. 3.2.4, when performing a LD experiment it is important to
check for a spin-echo (SE) phase to detect possible contributions to the neutron phase that
are not related to a change of lattice constant. Such additional contributions can either
relate to a change in the neutron velocity in the scattering process (inelastic scattering)
or to a magnetic �eld integral besides the precession �elds. Consequently, we performed
scans in SE geometry along the LD measurements and found a non-vanishing SE phase at
the high pressure experiments. Accordingly, the LD data was corrected through subtrac-
tion of the the SE phase signal. As will be discussed below, we so far cannot explain the
origin of the spin-echo phase. However, as all our results are inferred from data around
the TX transition, i.e. data at T < 20 K, where the temperature dependence of the SE
phase is much smaller than the LD signal, our conclusions are independent of the SE
phase subtraction.

To determine the spin-echo phase we used a geometry with the e�ective magnetic �elds in
the spectrometer arms pointing in opposite directions (see Fig. 3.14b). The �eld bound-
aries were oriented orthogonal to the propagation direction of the neutron beam so that
they are not sensitive to the mosaic spread of the sample. A non-vanishing signal in
this geometry is then either related to a change in the neutron velocity in the scattering
process (inelastic scattering) or due to a magnetic �eld integral.

In the experiments under pressure (pressure cell pc1) we �nd a non-vanishing, temperature
dependent spin-echo phase. Fig. 3.15a-c illustrate the SE phase (dark cyan datapoints) to-
gether with LD data (cyan datapoints) for the c-axis at 9.3 kbar, 10.2 kbar, and 11.8 kbar.
Coming from low temperatures, the SE phase increases and has a peak around TC . Above
TC the SE phase drops over a range of several Kelvin down to a constant value. Through
this additional contribution to the neutron phase, the raw data of the LD scans does not
directly relate to the change of lattice constant and shows, e.g., a sharp dip around TC
as artifact. However, the LD data can be easily corrected for this contributions when
subtracting the SE phase yielding a dataset that purely represents the change of lattice
constants (red datapoints).

The temperature dependence of the SE phase with a peak around TC implies that it is
connected to the sample. This leads to several possible origins that are most likely: (i)
Inelastic scattering; (ii) a magnetic �eld integral in the sample volume due to, e.g., an
incomplete demagnetization or stray �elds. As LD is performed on a strong Bragg peak,
inelastic contributions are insigni�cant and hence can be dismissed as possible origin which
leaves a magnetic �eld integral in the sample volume. As a quantitative estimate, if the
phase rotation is due to a vertical magnetic �eld in the sample volume, the �eld value
would have to be on the order of 1mT. Considering this large value and the fact that
the SE phase extends to several Kelvin above TC makes an incomplete demagnetization
unrealistic.

Another possibility are stray �elds produced by the tungsten carbide (WC) anvil used in



48 CHAPTER 3. EXPERIMENTAL METHODS

ki kf

B B

sample

ki kf

B B

sample(a) (b)

Figure 3.14: Measurement geometries. Schematic illustration of the TRISP spectrometer in
the (a) Larmor di�raction (LD) and (b) spin-echo (SE) geometry. The colored regions represent
e�ective magnetic �elds pointing up (red) and down (blue). The rotation of the neutron spins is
indicated by arrows.

the pressure cell. Those �elds could be magni�ed by the di�erential susceptibility of the
sample which would explain the temperature dependence with a peak around TC . Fur-
thermore, this would be consistent with the observation that the SE phase only appeared
when using a pressure cell. The WC anvils are made with a sintering process in which
either Nickel or Cobalt, both ferromagnets, are used as binder. Hence, impurities of the
binder in the anvils can provide a source of stray �elds. However, an estimate shows that
the magnetization of the WC anvil would need to be aroundManvil,est. ≈ 60 mA/m2 which
is unrealistically high. Separate magnetization measurements of several WC anvils yield
a saturation magnetization of the most magnetic anvil that is about two orders of magni-
tude smaller thanManvil,est., and a residual magnetization on the order of 100µA/m2 [143].

In conclusion, the origin of the SE phase is an open question but does not a�ect the in-
terpretations given in this thesis. Further experiments are required to unravel the mech-
anisms behind the SE phase. An overview of all LD and SE datasets acquired during this
thesis together with ∆d/d calculated from the SE-phase corrected LD data is given in the
appendix in Figs. A.1-A.6.
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Chapter 4

Results and Discussion

This chapter begins with a comparison of our Larmor di�raction (LD) data with thermal
expansion data reported in the literature as LD is a relatively new technique and as we
performed the �rst LD measurements on a ferromagnetic system (Sec. 4.1). Overall we
�nd a good agreement of data recorded with the conventional methods of strain gauges
and capacitive dilatometers with our LD data. The data reported in literature includes
the thermal expansion along all crystalline axes at ambient pressure, however, under pres-
sure only studies of either the a-axis, the b-axis, or volumetric thermal expansion were
reported up to now. Our comprehensive study, presented in Sec. 4.2, including the ther-
mal expansion of all crystalline axes under pressures up to 12.4 kbar together with the
magnetization considerably extends the literature. The main result of our study is the
observation of an additional transition TL in the c-axis thermal expansion under pressure.
As will be discussed in Sec. 4.3, the transition at TL is not related to contributions by
the crystal lattice or magnetostriction to the thermal expansion but has a di�erent yet
unknown origin. We speculate that TL might be driven by a change in the Fermi surface
topology, a so-called Lifshitz transition. However, further experiments are required to
verify this hypothesis.

So far, all mechanism that are discussed to drive the superconductivity in UGe2 relate
to magnetism. Therefore, our �nding of a non-magnetic transition close to the supercon-
ducting phase is an important evidence to also consider non-magnetic superconducting
pairing mechanisms in UGe2 and might be a �rst step to unravel the origin of the uncon-
ventional superconductivity in UGe2.

4.1 Comparison with literature

4.1.1 Ambient pressure

As a proof of principle we �rst measured the thermal expansion of UGe2 with Larmor
di�raction at ambient pressure for all three crystalline axes and compared our data with
data reported in the literature. In general, we �nd good agreement of our data with the

51
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literature.

Fig. 4.1 shows a comparison of our Larmor di�raction data recorded in sample s1 with
strain gauge data from Nishimura et al. [101] (panel a and b) and capacitive dilatometry
data from Hardy et al. [102] (panel c and d) at ambient pressure. Except for a temper-
ature o�set of +4.24K, for which the strain gauge data was shifted in Figs. 4.1a and b,
the datasets are in good agreement1. The origin of the temperature o�set is not clear.
However, as will be seen below, since our temperature values agree well with other values
reported in the literature (e.g. with [91, 102]), and since we used state of the art Cernox
temperature sensors in combination with Lakeshore LS 340 temperature controllers, we are
con�dent that our temperature values are reliable. Furthermore, capacitive dilatometry
data also is in good agreement with our data (Figs. 4.1c and d). The α values displayed in
Ref. [102] were extracted and integrated yielding the ∆d/d values used for the comparison.

4.1.2 Under pressure

Under pressure, several strain gauge measurements along the a- and b-axis [91,92,101�104]
and volumetric strain gauge measurements [105,106] have been reported. We �nd a very
good agreement of our b-axis data with literature. Our a-axis data is in less good agree-
ment with the literature which can be explained through the large spin-echo phase cor-
rection necessary in this measurement geometry. No c-axis data under pressure has been
reported so far in the literature.

Fig. 4.2 shows the thermal expansion along the b-axis under pressure measured with
strain gauges by Kabeya et al. [91] (SG1) and by Taufour shown in Ref. [102] (SG2) in
comparison to our Larmor di�raction data recorded in sample s3. In general, all datasets
are in good agreement. Only minor deviations are observed: In panel b and c the datasets
match perfectly, while in panel a the slopes below TC are slightly di�erent. In panel d,
deviations along the temperature axis can be seen between the LD and the SG1 data, both
nominally at 12.3 kbar. This temperature di�erence (corresponding to ∆p ≈ 0.7 kbar) can
be reasonably explained though uncertainties in determining the pressure. Considering
TC , the SG2 dataset indicated as 13 kbar is also shifted to higher temperatures by around
6K. However, since no technical information is given in Ref. [92] about the measurements
under pressure this issue cannot be resolved here.

A comparison of the thermal expansion along the a-axis between strain gauge data by
Nishimura et al. [101] and Larmor di�raction data, acquired on sample s3, is displayed in
Fig. 4.3. While the data matches quite good at ambient pressure (panel a), except the
temperature o�set discussed above (not corrected in this graph), the data under pressure
matches less well (panel b). The di�erent slopes between SG and LD data could be caused
by the large spin-echo phase correction necessary in this measurement geometry. Larmor
di�raction raw data, spin-echo phase, and ∆d/d at 9.3 kbar and 11.8 kbar are illustrated

1In Ref. [101] the a- and c-axis are interchanged as a Cmcm crystal structure instead of a Cmmm
crystal structure was assumed in studies before 1996 [95]. All labels shown here are corrected.
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Figure 4.1: Comparison of Larmor di�raction data at ambient pressure with the
literature. Comparison with strain gauge (SG) data from Nishimura et al. [101] at (a) low
temperatures and (b) up to room temperature. The data from Ref. [101] was shifted by +4.24 K.
See text for details. Comparison with capacitive dilatometry (CD) data from Hardy et al. [102]
at (c) low temperatures and (d) up to room temperature. The shown Larmor di�raction (LD)
data was taken on sample s1.
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in Figs. A.2 and A.4 in the appendix. As can be seen, since the overall change in lattice
constant along the a-axis is smaller compared to the other axes but the spin-echo phase
contribution is of equal size, the spin-echo phase correction has a much larger e�ect on the
∆d/d curves and changes the slope of the raw data qualitatively. Considering the scat-
tering of the raw data and the spin-echo phase, the di�erences between the SG data and
the Larmor di�raction data along the a-axis under pressure appear plausible. However,
it is important to note that the precise slope of the thermal expansion along the a-axis
under pressure does not a�ect our main result in any way. That is, as our main result is
inferred from the evolution of the transition temperatures TC and TX under pressure.
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4.2 Additional transition TL

In the ferromagnetic regime of UGe2, a transition TX between two ferromagnetic phases
appears under pressure. TX can be seen in the magnetization and the thermal expansion
as the onset of a signal increase when coming from high temperatures. As discussed in
Sec. 3.2, Larmor di�raction allows to directly compare the transition temperatures in
the thermal expansion and in the magnetization as they are measured in the same setup.
We �nd, that the TX transition in the magnetization coincides with the thermal expan-
sion along the a- and b-axis, as expected for standard magnetostriction. However, the TX
transition along the c-axis, labeled TL in the following, lies several Kelvin higher. This im-
plies that TL is not driven by the magnetization but originates from a di�erent mechanism.

In this chapter we �rst visualize the general behavior via ∆dm/d, which is the thermal
expansion corrected for contributions from the crystal lattice, in comparison with the
magnetization. ∆dm/d displays all electronic contributions to the thermal expansion.
Our main conclusion, that the TL transition cannot be explained by magnetostriction is
then deduced from ∆d/d as a function of the squared magnetization M2 at temperatures
below 30K where the lattice contribution can be neglected. Therefore our conclusions
are independent of the subtraction of the lattice contribution to the thermal expansion.
While the experimental evidence is discussed below, physical implications concerning this
new feature are discussed in Sec. 4.3.

For a closer look at the electronic contributions, we subtracted the lattice contribution to
the thermal expansion ∆dlattice/d from ∆d/d yielding a dataset ∆dm/d which is mainly
dominated by magnetostriction. To estimate ∆dlattice/d for all our ∆d/d datasets we cal-
culated the phonon contribution to the thermal expansion ∆dph/d from ambient pressure
speci�c heat data via the Grüneisen relation

∆dph/d =

∫
dT Γph

d Cph (T ) (4.1)

assuming temperature and pressure independent Grüneisen parameters Γph
d . We �nd that

the high temperature part of ∆d/d can be accounted for reasonably well through ∆dph/d
(see below). Therefore, we attribute ∆dlattice/d to phonons and use ∆dlattice/d ≈ ∆dph/d
in the following.

As shown in Ref. [144], the phononic part to the speci�c heat of UGe2 can be well de-
scribed by the phenomenological Debye model. Hence, we �rst made a Debye �t of the
ambient pressure speci�c heat of UGe2 reported in Ref. [138] �nding a Debye temperature
ΘD = 237K which is slightly lower than ΘD in Ref. [144] (Fig. 4.4a). In a second step,
this Debye �t was integrated according to Eq. 4.1, assuming temperature independent
Grüneisen parameters. The result was then scaled to the high temperature part of the
thermal expansion. As illustrated in Fig. 4.4b for the c-axis at 9.3 kbar as a typical exam-
ple, we �nd that the high temperature part of the thermal expansion measurements under
pressure can be described reasonably well with the ∆dph/d calculated from the ambient
pressure speci�c heat data. The resulting datasets which are dominated by magnetostric-
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Figure 4.4: Subtraction of phonon contribution to the thermal expansion. (a) Tem-
perature dependent speci�c heat of UGe2 at ambient pressure from Ref. [138]. The red line is
a Debye �t with ΘD = 237K. (b) Larmor di�raction raw data, i.e., without spin-echo phase
correction, at 9.3 kbar as measured (closed datapoints) and with subtracted phonon part (open
datapoints). The integrated speci�c heat was used to subtract the phonon contribution to the
thermal expansion, according to the Grüneisen relation in Eq. 4.1.

tion are labeled ∆dm/d = ∆d/d−∆dph/d in the following.

Fig. 4.5 shows a comparison of all thermal expansion datasets with subtracted phonon
contribution, ∆dm/d, and magnetization measurements acquired during this thesis. The
upper row shows ∆dm/d measured with Larmor di�raction for all crystalline axes for vari-
ous pressures. The lower row shows the magnetization squared inferred from the intensity
of a magnetic peak (under pressure) and VSM measurements from Ref. [93] (ambient
pressure). The panels are shown in the order of increasing pressure from left to right.
Concerning the spin-echo phase correction discussed in Sec. 3.5.2, it has to be noted
that due to limited beamtime no spin-echo phase correction was measured and hence
subtracted for several datasets. For the a-axis data at 10.2 kbar an estimated spin-echo
phase was subtracted (open datapoints in panel e). However, this has no e�ect on the
interpretation of our data. For details see Ref. [145].

The TC and TX transitions of the magnetization are seen as onsets of a signal increase
(coming from high temperatures) and are marked through vertical lines. The b- and c-
axes thermal expansion is qualitative comparable to the magnetization so that TC and
TX also appear as a signal increase. The a-axis thermal expansion has a qualitatively dif-
ferent course and drops below zero between TC and approximately TX . With increasing
pressure, the TC and TX transitions shift to lower temperatures. Above pX ≈ 12 kbar no
TX transition is observed in agreement with the literature. We �nd, that temperature
dependent changes in ∆dm/d along the a- and b-axes coincide with changes in the mag-
netization, and hence can be explained by standard magnetostriction. In contrast, along
the c-axis a clear signal increase is observed several Kelvin above the TX transition at a
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temperature TL. The signal increase at TL is most clear at 11.8 kbar and is smeared out
at lower pressures. The di�erence TL − TX ≈ 6 K at 11.8 kbar, the highest pressure we
measured below pX , on approaching pX ≈ 12 kbar. This temperature di�erence is larger
than any uncertainty in determining the transition temperatures or uncertainties related
to pressure inhomogeneities2.

To get a better insight in what features in the thermal expansion are driven by a chang-
ing magnetization independent of a phonon part subtraction, ∆d/d as a function of the
magnetization squared, M2, is shown in Fig. 4.6 for the b- (panel a) and the c-axis (panel
b) with temperature as an implicit parameter. Only data at temperatures T < 30 K are
shown where the phonon contribution to the thermal expansion is negligibly small. Also,
the spin-echo phases only have small temperature dependences in this temperature range
so that our conclusions are independent of the SE phase correction (see Sec. 3.5.2). Open
datapoints indicate T > TX , closed datapoints indicate T < TX . ∆b/b is a smooth func-
tion ofM2. Even around TX where both ∆b/b andM2 show strong changes when plotted
versus temperature (cf Fig. 4.5) no features are observed. This indicates that the b-axis
thermal expansion is due to standard magnetostriction. ∆c/c exhibits a distinct step as
a function of M2 corresponding to the TL transition discussed above. This implies that
the c-axis thermal expansion cannot be explained by standard magnetostriction and that
an additional mechanism is driving the TL transition. The step is sharp at 11.8 kbar and
smears out at lower pressures. At 10.2 kbar a broad cross-over is observed. At 9.3 kbar
the TL transition is completely smeared out. Physical interpretations about the origins of
this feature are discussed in Sec. 4.3.

2M2 and ∆c/c were measured on sample s3 and s2, respectively. However, the pressure inhomogeneity
needed to shift TX from 5.43K up to TL = 12.16 K is ∆p ≈ 1.8 kbar which is far greater than our estimated
pressure inhomogeneity of ∆p ≈ ±0.2 kbar (see Sec. 3.4.1).
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Figure 4.6: Thermal expansion ∆d/d versus the magnetization squared M2. (a) b-axis
thermal expansion ∆b/b versus M2 at 10.2 kbar and 11.8 kbar. Full and open symbols indicate
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thermal expansion ∆c/c versus M2 at 9.3 kbar, 10.2 kbar, and 11.8 kbar. As the TX transition
is very broad at 9.3 kbar all symbols are shown gray at this pressure.
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4.3 Discussion of the TL transition

Our main result is summarized in the temperature-pressure phase diagram of UGe2 in
Fig. 4.7. Illustrated are the two ferromagnetic transitions TC and TX inferred from mag-
netization measurements of Ref. [93] (open green datapoints) together with TC and TX
inferred from our magnetization measurements (full green datapoints) and thermal ex-
pansion data along the c-axis (blue datapoints), labeled TL. It is important to note, that
all TX values in Fig. 4.7 were inferred from the raw Larmor di�raction data and hence are
independent of spin-echo phase corrections or phonon part subtractions (see Fig. A.7). As
known from the literature, TC and TX are suppressed to 0 under pressures of pc ≈16 kbar
and pX ≈12 kbar. TX is a crossover at low pressures and becomes a �rst order phase
transition when approaching pX . Around pX , a superconducting dome emerges that has
a maximum of the superconducting transition temperature TSC at directly pX . We �nd
an additional transition TL in the thermal expansion along the c-axis that lies several
Kelvin above the TX transition. With pressure approaching pX , the di�erence TX − TL
increases, the transition at TL becomes more pronounced and appears more and more as
a jump in ∆c/c (see Fig. 4.6). Together, this marks TL as a discrete transition which has
a �rst order character close to pX . In contrast to the a- and b-axis thermal expansion,
the transitions in the c-axis do not coincide with transitions in the magnetization and
thus cannot be accounted for by standard magnetostriction. Therefore, TL has to origi-
nate from a di�erent mechanism. To gain further insights of the mechanism driving the
TL transition, the relation between our �ndings and the scenarios proposed for the TX
transitions (see Sec. 2.2,p. 23) are discussed in the following.

The TL transition and hence the �nding of two transitions in the ferromagnetic phase
in the vicinity of pX is hard to reconcile with the �rst three scenarios discussed in Sec.
2.2: In scenario (i) the formation of a spin and charge density wave is proposed [107].
This implies the existence of a single temperature at which the SDW forms and not two.
Besides, as discussed in Sec. 2.2 this scenario appears to be unlikely anyway. In scenario
(ii) two almost degenerate ferromagnetic ground states are identi�ed that di�er in their
orbital moment [108]. The TX transition thus refers to the change from one to the other
groundstate. Also here, two transitions in the ferromagnetic phase are hard to explain.
In scenario (iii) it is shown that a double peak in the density of states can produce the
transition at TC and TX [109]. A third transition at TL can not be combined with this
model in a simple manner.

Scenario (iv) and (v) both discuss the TX transition in the context of a competition
between Heisenberg and Kondo exchange interactions. Theoretical studies show that a
breakdown of Kondo physics, where the shielding of local moments by conduction electrons
suddenly ceases, can involve a drastic change of the topology of the Fermi surface, a so-
called Lifshitz transition [147]. At a Lifshitz transition, the topology of the Fermi surface
can change in two ways: Either the �neck� of the Fermi surface collapses, or a new split-o�
region of the Fermi surface appears/disappears (see Sec. 1.3). It is known that Lifshitz
transitions can give sharp isotropic discontinuities in the thermal expansion [54,148]. The
fact that we we observe this feature only in the c-axis and not concomitantly in the a-
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and b-axis could be explained by a weak coupling of the crystal axes, i.e. a small Poisson
ratio, as indicated by di�erent sound velocities along the individual axes [144]. Further-
more, it is known from dHvA [94, 95] and Hall e�ect [86] measurements that the Fermi
surface changes at TX . Hackl and Vojta [147] showed that when the electronic degrees
of freedom are coupled to the lattice degrees of freedom a Lifshitz transition is driven to
�rst order and is accompanied by a discontinuous change in the volume. The dependence
of the Kondo temperature TK on the lattice parameters in combination with the Lifshitz
transition can result in a second transition, as observed by us. This implies that if the TL
transition is indeed driven by a Lifshitz transition, it is in agreement with scenario (iv)
and (v) where the TX transition is explained through the sudden breakdown of the Kondo
e�ect through an increasing ferromagnetic ordering of the unscreened local 5f moments
when the temperature is lowered.

Considering the superconducting phase, the presence of a Lifshitz transition could lead to
small Fermi surfaces that can indirectly promote superconducting pairing as discussed for
UCoGe [149] and URhGe [58]. There, it is speculated that the presence of small Fermi
surfaces could be important for the superconducting pairing mechanism since then the
Fermi-wavevector can become of same magnitude as the short inverse-length scales of the
magnetic correlations.

In conclusion, we �nd an additional transition TL in the ferromagnetic phase of UGe2

at pressures close to pX that lies several Kelvin above the TX transition in the magne-
tization. Comparison with the magnetization shows that TL clearly has a non-magnetic
origin. We speculate that TL is the signature of a Lifshitz transition, i.e., a transition
where the Fermi surface changes its topology. However, this is speculative so far and
further experiments are required to proof this hypothesis. A Lifshitz transition at TL can
be reconciled with two scenarios proposed for the TX transition in which TX is attributed
to the competition between Kondo and Heisenberg interaction. The �nding of an ad-
ditional, non-magnetic transition close to pX shows that the phase diagram of UGe2 is
more complex than thought and that the superconducting pairing mechanism could be
non-magnetic contrary to what has been discussed so far.
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The goal of this study was to investigate a possible connection between the magnet-
ically non-trivial structure of the skyrmion lattice and the extended non-Fermi liquid
(NFL) regime in the itinerant helimagnet MnSi. As method we chose simultaneous mag-
netoresistance and Hall e�ect measurements under pressure since the NFL behavior is
characterized through an unusual temperature dependence of the resistivity and since the
Hall e�ect shows distinct topological signatures in the presence of a skyrmion lattice. We
�nd that indeed a topological Hall e�ect (THE) signal, signature of a nontrivial magnetic
structure, survives the suppression of helimagnetic magnetic order with pressure and is
observed inside the NFL state. The phase boundaries of NFL behavior and THE signal
coincide suggesting skyrmionic textures as origin for the extended NFL behavior.

To set the stage for the new magnetoresistance and Hall e�ect data, acquired during this
thesis, Secs. 5.1 and 5.2 will brie�y introduce the basics about the itinerant helimagnet
MnSi and summarize the current state of knowledge. Our results are presented and dis-
cussed in Chaps. 7 to 10 which closely follow our corresponding publications in Refs. [16]
and [53],
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Chapter 5

The helimagnet MnSi

5.1 MnSi at ambient pressure

MnSi is a weakly-magnetic itinerant electron system with a helical magnetic structure
below an ordering temperature Tc ≈ 29.5 K. The helical arrangement of the electron
spins is due to three hierarchically ordered energy scales. (i) On the largest scale ferro-
magnetic exchange tends to align the electron spins parallel to each other. (ii) Since MnSi
crystallizes in the non-centrosymmetric cubic B20 structure (space group P213) without
inversion symmetry, a Dzyaloshinskii-Moriya interaction arises that tends to align the
electron spins orthogonal to each other. The result of (i) and (ii) is a helical modula-
tion of the electron spins with propagation length λhelix (T → 0) ≈ 180Å. The helices are
pinned along the cubic space diagonal 〈111〉 due to magnetic anisotropies by higher order
spin-orbit coupling [150].

This leads to the magnetic �eld-temperature phase diagram shown in Fig. 5.1. At tem-
peratures below Tc two transitions are observed under magnetic �eld. Coming from the
helical state at low magnetic �elds, at Bc1 ≈ 0.1 T the propagation direction of the mag-
netic helices unpins from the 〈111〉 direction and aligns parallel to the applied magnetic
�eld. The individual electron spins in the helix orient themselves more and more into
the direction of the applied magnetic �eld forming a conical structure. The resulting
phase is called conical phase. Depending on the �eld direction the transition at Bc1 is a
crossover or a symmetry breaking 2nd order phase transition. At Bc2 ≈ 0.6 T the mag-
netic structure makes a transition from the conical phase to a �eld polarized ferromagnetic
state [151�153].

In a small phase pocket below Tc, called A-phase for historical reasons [152], the mag-
netic structure forms a lattice of magnetic whirls called skyrmions that is energetically
stabilized through thermal �uctuations [15, 154�156]. A magnetic skyrmion is a whirl of
the magnetization with a non-zero topological winding number (see Sec. 5.1.1). In MnSi
those magnetic whirls consists of the superposition of three helices in a plane perpendic-
ular to the applied magnetic �eld where the ~q-vectors of the helices are oriented under an
angle of 120◦ to each other. The skyrmions are arranged in a hexagonal lattice in a plane
perpendicular to the applied magnetic �eld. Each skyrmion carries one quantum of emer-
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gent �ux per magnetic unit cell. In the direction parallel to the applied magnetic �eld the
skyrmion lattice is translation invariant and forms so called skyrmions tubes analogous to
vortex lines in type II superconductors (see Fig. 5.2). The skyrmion lattice is a generic
feature of all helimagnetic B20 compounds ranging from high purity metals [154, 157] to
semiconductors [158,159] and insulators [160,161].

The two most prominent experimental signatures of the skyrmion lattice in MnSi are
a scattering pattern with six-fold-symmetry observed in small angle neutron scattering
(SANS) [154, 155] and a topological Hall signal [15, 162] where the latter is of central
interest for this thesis and will be discussed in Secs. 6.2.3 and 6.2.5 in detail. The topo-
logical Hall e�ect signal in MnSi shows up as a top-hat shaped signature that appears
on top of the anomalous Hall e�ect signal (see Fig.6.7 c and d (p. 102)). It is caused
by Berry phases that the conduction electrons pick up during their motion through the
topologically non-trivial structure of the skyrmion lattice. The size of 4.5 nΩcm re�ects
the density and the winding number of the skyrmion lattice in MnSi.

Under d.c. currents the skyrmion lattice in MnSi depins and begins to drift. The depin-
ning transition can be observed at exceptionally low current densities of jc ≈ 1 MA/m2

that are �ve orders of magnitude smaller than observed in conventional spin transfer
torque experiments [51, 52]. This is due to the very e�cient gyromagnetic coupling of
the electron spins to the magnetic structure via the Berry phases which also cause the
topological Hall e�ect signal. As each skyrmion carries a quantum of magnetic �ux, an
emergent electric �eld is induced when the skyrmion lattice moves, following Faraday's
law of induction [163]. Through the Hall e�ect, the emerging electric �eld can be directly
measured and hence the motion of the skyrmions can be detected quantitatively. This
direct control and quantitative detection of the motion of a magnetic structure combined
with the depinning at ultra-low current densities promises to be interesting for spintronic
devices like, e.g., racetrack memories.

5.1.1 More about skyrmions

Skyrmions are topologically stable �eld con�gurations that possess particle-like properties
[154]. They are named after the particle physicist Tony Skyrme who developed a theory
describing pions as topological solitons in the 1960s [165,166]. Schematically a skyrmion
can be depicted as the stereographic projection of a hairy ball or hedgehog who has been
combed, where in our case the �hairs� consist of magnetic moments (Fig. 5.3). According
to the hairy ball theorem [167, 168] the combing introduces vortices at the poles where
then one vortex is projected into the center of the skyrmion and one on the rim. The
resulting structure is topologically non-trivial in that it has a integer non-zero winding
number which can be calculated through the integral

W =
1

4π

∫
d2rM̂

(
∂xM̂ × ∂yM̂

)
. (5.1)
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Figure 5.1: Magnetic �eld-temperature phase diagram of MnSi. The small illustrations
around the phase diagram depict schematically the magnetic structure of the individual phases
where arrows represent electron spins. Figure from [154,164].

Figure 5.2: Schematic real space image of a skyrmion lattice. The skyrmions form in a
plane perpendicular to the applied magnetic �eld. The skyrmions are arranged in a hexagonal
lattice and propagate as skyrmion tubes in the direction parallel to the applied magnetic �eld,
analogous to vortex lines in type II superconductors. Figure from [164].
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In general, a structure cannot be continuously transformed in an object with a di�er-
ent winding number. Thus, a skyrmion is a topologically protected structure and stable
against external in�uences until it is ultimately destroyed.

In the itinerant helimagnet MnSi the skyrmions are formed as whirls of the magnetization
on top of a ferromagnetic background. Here, each whirl consists of the superposition of
three helices that are oriented under an angle of 120◦ to each other. The skyrmions
arrange themselves periodically in a hexagonal lattice in a plane perpendicular to the
applied magnetic �eld (Fig. 5.4). In the direction parallel to the applied magnetic �eld the
skyrmion lattice in translation invariant and forms so called skyrmions tubes analogous to
vortex lines in type II superconductors (Fig. 5.2). The skyrmion density can be calculated
as

Φµ =
1

8π
εµνλn̂ · (∂νn̂× ∂λn̂) (5.2)

with the antisymmetric unit tensor εµνλ and n̂ = ~M/|M | [15, 169]. The integral of Φµ

for each 2-dimensional magnetic unit cell is a measure for the winding number. In MnSi∫
dxdyΦz = −1, i.e., strictly speaking it is a lattice of anti-skyrmions where the magnetic

moments in the center point in the opposite direction as the magnetic moments on the
rim. As mentioned above, the skyrmion lattice can not be continuously transformed in a
magnetic structure with a di�erent winding number. Hence, the skyrmion lattice phase is
separated from the conical state, which is topologically trivial and has a winding number
zero, through a �rst order phase transition.
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Figure 5.3: From a hedgehog to a skyrmion. A skyrmion can be depicted as stereographic
projection of a combed hairy ball or hedgehog on a 2D plane. In our case the �hairs� represent
magnetic moments. See text for details. Figure from [164].

Figure 5.4: Skyrmion through superposition of helices. (a) Real space image of a
skyrmion lattice which forms in a plane perpendicular to the applied magnetic �eld H. The
vectors Q1, Q2, and Q3 represent the propagation vectors of the three helices which form the
indicated skyrmion. (b) Schematic image of the superposition of three helices in a plane under
an angle of 120◦ to each other. Blue arrows indicate the ferromagnetic background. Figure
from [170].
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5.2 MnSi under hydrostatic pressure

Under hydrostatic pressure the phase diagram shown in Fig. 5.5a arises. The magnetic
transition temperature Tc is shifted to lower temperatures with increasing pressure and is
suppressed at a critical pressure pc ≈ 14.6 kbar [171, 172]. The transition at Tc becomes
�rst order above p∗ ≈ 12 kbar, where Tc is already suppressed to T ∗ ≈ 12 K, which can be
seen, e.g., through a metamagnetic transition under applied magnetic �eld [74, 173, 174].
Therefore, the phase diagram of MnSi displays the tri-critical wings that are generically
observed in ferromagnets in the vicinity of the critical pressure (cf Figs. 1.3c and 5.6d).
In the ordered phase (light blue shading) MnSi follows the predictions of the Fermi liquid
theory, the fundamental theory for metals at low temperatures, and can be described as
a weakly spin-polarized ferromagnet1 through an Ginzburg Landau theory accounting for
the e�ects of spin �uctuations [14,175].

In the pressure range p∗ < p < pc a phase separation of the magnetic order is observed
in NMR [36] and µSR [176] experiments (dark blue shading) where one volume fraction
tracks Tc as inferred from resistivity and susceptibility data. Above pc, at temperatures
below T ∗ ≈ 12 K an extended non-Fermi liquid (NFL) regime with an unusual T 3/2 tem-
perature dependence of the resistivity is observed down to the low mK range that extends
up to at least 3 × pc (light green shading) [9, 10, 13, 177]. The exponent of the tempera-
ture dependence of the resistivity changes abruptly from the Fermi liquid value 2 to the
non-Fermi liquid value 3/2 at the critical pressure pc (Fig. 5.6 a). Through applying a
magnetic �eld the Fermi liquid exponent can be recovered (Fig. 5.6 b). Above 48 kbar the
exponent of the temperature dependence increases again from 1.5 [13]. The characteristic
�elds Bc1 and Bc2 do not change under pressure and survive even above pc [178]. This
indicates that the energy scales, ferromagnetism and Dzyaloshinskii-Moriya interaction,
do not change with pressure.

In the pressure range pc < p < p0 ≈ 21 kbar below a temperature T0, a smeared out scat-
tering intensity in elastic neutron scattering emerges on a sphere in reciprocal space at
the wavelength of the helical modulation (dark green shading) [50]. The broad scattering
intensity above pc is observed in 〈110〉 direction whereas below pc the helices are pinned
along the 〈111〉 direction (Fig. 5.5b and c). This implies that the helices survive above pc
into the NFL region but have lost their directional long-range order. In analogy to liquid
crystals this is called partial order. Since above pc a magnetic signal can be observed in
neutron scattering [50] and NMR [36] experiments whereas no magnetic signal is observed
in µSR experiments [176] which probes slower timescales, this suggests that the magnetic
moments are static on timescales between 10−10 s and 10−11 s. The temperature T0 below
which the partial order is observed represents a freezing temperature below which the
�uctuations of the partial order become slow enough to be observed by elastic neutron
scattering and NMR [67]. Since T0 extrapolates to 0 at p0 ≈ 21 kbar a quantum critical
point was suspected at p0. However, thermal expansion measurements under pressure
performed by means of Larmor di�raction [49] could neither �nd a sign change in the
Grüneisen parameter, that is expected at a pressure controlled quantum critical point

1Since the helix length is comparatively long the magnetic structure locally resembles a ferromagnet.
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(QCP) [120], at p0 nor at pc. Thus, neither pc nor p0 can be associated with a QCP.

Considering the experimental evidence, the NFL behavior observed in MnSi is remarkable
in that it is in con�ict with the present knowledge about normal metals [68,179]: On the
one hand, a T 3/2 dependence of the resistivity has been observed in spin glasses and amor-
phous ferromagnets and can be explained through a di�usive motion of the charge carriers
on length scales substantially larger than the mean free path [9, 180, 181]. However, this
scenario is unrealistic considering the high-quality MnSi single crystals investigated and
the extended temperature range in which the NFL behavior is observed. On the other
hand, Fermi liquid theory is known to break down in the vicinity of QCPs where critical
soft modes couple to the electron density. However, also this picture cannot explain the
experimental observations. First, no QCP is found in MnSi at pc and p0. Second, the
NFL behavior extends over a very large pressure range, so that even if there would be
a QCP, e.g. under �eld tuning, most of the NFL behavior would be far away from it.
Third, Tc at low temperatures is �rst order, so that no critical soft modes are expected
at this transition.

Theoretical models consider topological spin textures as origin for the partial order in-
cluding an amorphous skyrmion ground state [179], short-ranged helical order [182] or
periodic arrangement of double twist cylinders [183] both reminiscent of blue phases in
liquid crystals and columnar �uctuations possibly realized in skyrmion lines [68]. It is
speculated that these topological spin textures could be related to the NFL behavior.
However, so far no experimental evidence has been reported for topologically spin tex-
tures in the NFL regime.

With the Hall e�ect measurements reported and discussed in Chaps. 7 to 10 and in our
publications [16] and [53] we are able to present the �rst experimental evidence of topo-
logically non-trivial spin textures in the NFL regime of MnSi. We are also able to directly
link the topological Hall signal we observe at pressures > pc to the topological Hall signal
caused by the skyrmion lattice at ambient pressure. We �nd that the boundaries of the
NFL behavior and the topological Hall signal in the phase diagram coincide. This implies
that the NFL behavior in MnSi is intimately linked to topologically non-trivial spin tex-
tures.
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Figure 5.5: MnSi under pressure. (a) Temperature-pressure-phase diagram of MnSi as
reported in [49]. The helical order in which MnSi shows a typical Fermi liquid (FL) behavior
(light blue) is suppressed with pressure and vanishes at the critical pressure pc ≈ 14.6 kbar. Above
a pressure p∗ ≈ 12 kbar a phase separation is observed in NMR [36] and µSR [176] experiments
(dark blue shading) where one volume fraction tracks Tc as inferred from resistivity, susceptibility
and Larmor di�raction data [10,49,74,173,184,185]. At higher pressures an extended non-Fermi
liquid regime arises (light green) [9, 10, 13] up to a crossover temperature that can, e.g., be seen
in Larmor di�raction as TTE [49]. In a small region above pc a partial magnetic order is observed
up to p0 ≈ 21 kbar (dark green) where a broad scattering intensity along the 〈110〉 directions
is observed in elastic neutron scattering (ENS) below a temperature T0 (panel (c)) as opposed
to the sharp scattering intensity observed along the 〈111〉 directions in the helical order (panel
(b)) [50].
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Figure 5.6: Non-Fermi liquid behavior in MnSi. (a) At the critical pressure the tempera-
ture exponent of the resistivity changes abruptly from the Fermi liquid value 2 to the non-Fermi
liquid value 3/2. (b) Under magnetic �eld the Fermi liquid exponent can be recovered, like shown
here at ≈ 0.5 T at 15 kbar. (c) At higher pressures �elds exceeding 1 T are needed to recover
the Fermi liquid exponent. (d) Schematic temperature-pressure-magnetic �eld phase diagram of
MnSi. Figure from [10].
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Chapter 6

Experimental methods

6.1 Resistivity of metals at low temperatures

The electrical resistivity of metals is determined by the present scattering mechanisms
through which the electron motion is disturbed. Scattering mechanisms include the in-
teraction of electrons with excitations like phonons or magnons, defects in the crystalline
lattice, and other electrons. Each scattering mechanism leads to a characteristic temper-
ature dependence of the resistivity ρ. If several scattering mechanisms are present, their
contributions to the total resistivity can be summed up according to Matthiessens rule
ρtotal = ρ0 + ρphon. + ρel.−el. + ..., given that they are independent from each other.

The three most common forms of resistivity curves are illustrated in Fig. 6.1a: (1) The
resistivity drops to a minimum and increases again logarithmically on cooling due to
the Kondo e�ect. There, electrons scatter on screened local moments that form at low
temperatures. (2) The resistivity drops continuously and converges against a residual
resistivity ρ0. (3) On cooling, the resistivity drops discontinuously to zero at a critical
temperature below which the material is superconducting. In this section scenario (2)
will be discussed for non-magnetic (Sec. 6.1.1) and ferromagnetic (Sec. 6.1.2) metals
summarizing the most important scattering mechanisms together with their temperature
dependences. This is followed by a brief introduction on the magnetic �eld dependence
of the resistivity, the so-called magnetoresistance in Sec. 6.1.3. Sec. 6.1.4 then discusses
the resistivity and magnetoresistance of MnSi. More information about the resistivity of
metals and magnetoresistive e�ects can, e.g., be found in Ref. [186].

6.1.1 Non-magnetic metals

In non-magnetic metals electrons are mainly scattered due to (i) defects in the crystal
lattice, (ii) phonons, and (iii) electron-electron interactions. In the following the three
contributions will be brie�y discussed.

(i) Defects in the crystal lattice lead to a temperature independent contribution to the
resistivity. At very low temperatures when other contributions become small, the resis-
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tivity converges against a so-called residual resistivity ρ0. The ratio ρ (300 K) /ρ (T → 0),
the so-called residual resistivity ratio (RRR), is used as measure for the crystalline quality.

(ii) The phononic contribution to the resistivity depends on the considered temperature
range. For T >> Θ (Θ :Debye temperature) ρ ∝ T as all phonon states are occupied up
to the Debye frequency ωD and as the number of phonons per state are proportional to
kBT . For T << Θ one has to consider the occupied phonon states and a weighting factor
that takes into account that at low temperatures only small scattering angles are possible
due to the small momentum of the phonons. In total this yields ρ ∝ T 5.

(iii) Electron-electron scattering gives a contribution ρ ∝ T 2 due to simple phase-space
arguments for electron energies close to the Fermi level in the independent electron ap-
proximation. The contribution from electron-electron scattering is small and can only
be observed at low temperatures in clean samples where contributions from phonons and
defects are negligible. According to the principle of adiabatic continuity stated in the
Fermi-liquid theory, the predictions of the independent electron picture remain valid even
when interactions between electrons become large. This is achieved through consider-
ing quasiparticles with a renormalized mass in place of electrons (see Sec. 1.4). The
quasiparticle-quasiparticle scattering also yields a contribution ρ ∝ T 2. In the rare cases
where the Fermi liquid theory brakes down one talks about a non-Fermi liquid. Deviations
from the Fermi liquid theory can be probed by tracking the temperature exponent α of
the resistivity. For non-Fermi liquid behavior α 6= 2.

6.1.2 Ferromagnetic metals

In addition to the scattering mechanisms present in non-magnetic metals, new behavior
related to the electron spins arises in magnetic metals. In particular, in ferromagnetic
transition metals the resistance below the Curie temperature TC is usually lower than ex-
pected. At the Curie temperature TC the resistance shows a characteristic decrease since
the spin disorder and with it a scattering mechanism freezes out. In a simple scenario
for band-ferromagnets, the majority d-band is shifted below the Fermi energy so that
the s-electrons, that mainly carry the current, have less d-states in which they can scat-
ter. Hence, the resistance drops (see Fig. 6.1b and c). This e�ect is called the negative
magnetoresistance. From the change of slope in ρ (T ) the Curie temperature TC can be
determined.

At very low temperatures the electron-magnon scattering leads to a ρ ∝ T 2 dependence
of the resistivity as the number of magnons scales with T 3/2 and since kmagnon ∝ T 1/2 due
to the quadratic dispersion relation of magnons. Fig. 6.1d schematically shows the tem-
perature dependent resistivity of a ferromagnetic metal with a drop at TC and a ρ ∝ T 2

behavior at low temperatures.
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Figure 6.1: Resistivity of metals at low temperatures. (a) Schematic resistivity curves of
metals showing (1) a Kondo e�ect at low temperatures, (2) the resistivity converging against the
residual resistivity ρ0, and (3) a superconducting transition at low temperatures. (b) Resistance
of Ni and Pd normalized to ρ (TC) (Coles, 1958). The electronic structure of the non-magnetic
Pd resembles that of the ferromagnetic Ni. However, the resistance of Ni below TC drops faster
with decreasing temperature than that of Pd. At TC the resistance of Ni shows a change of slope.
(c) Below TC the majority d-band is shifted below the Fermi energy EF . (d) Typical resistivity
curve of a ferromagnetic metal. Figures in (b),(c),(d) from Ref. [186].
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6.1.3 Magnetoresistance

The resistivity of a material also shows a characteristic behavior when a magnetic �eld
is applied. The simplest e�ect of the magnetic �eld is that the electrons are subject to
a Lorentz force and move along curved trajectories. The e�ective path length between
two scattering events increases and hence the overall resistance increases. This e�ect is
called the positive magnetoresistance. When a phase transition into an ordered state,
like the transition from a paramagnet into a ferromagnet, is crossed under an applied
magnetic �eld, the magnetoresistance shows a change of slope as a scattering mechanism
�freezes� out. This change of slope can be used to determine phase transition �eld values.
Numerous magnetoresistance e�ects are known up to date, where an applied magnetic
�eld changes the resistance of magnetic and non-magnetic conductors in bulk samples
or heterostructures. In this thesis the magnetoresistance was only used to infer phase
transition �elds (see below). Therefore, we refer to the literature for more information
about magnetoresistive e�ects (cf e.g. [186]).

6.1.4 Resistivity and magnetoresistance of MnSi

A typical example for the resistivity of MnSi below the critical pressure pc is illustrated
in Fig. 6.2. The resistivity has a characteristic drop at the transition Tc from the para-
magnetic into the helimagnetic phase. In this thesis, we used the resulting maximum in
dρ/dT (T ) to infer the transition temperature Tc (see Fig. 6.16 (p.116)). At low temper-
atures Fermi liquid behavior with ρ ∝ T 2 is observed. As was already discussed in Sec.
5.2, a non-Fermi liquid behavior with α = 3/2 that extends over a wide region of the
temperature-pressure phase diagram is observed in MnSi at pressures above pc.

Fig. 6.3 shows the normalized magnetoresistance ρxx (B) /ρxx (B = 0) of MnSi up to 9T
between 10K and 292K (see also 6.6(b)). Below room temperature, MnSi shows a nega-
tive magnetoresistance. At temperatures below Tc the magnetoresistance shows distinct
changes of slope at the transition �elds Bc1 and Bc2. The strongest suppression of the
resistance (≈ 50% up to 9T) is observed around Tc ≈ 29.5 K. This implies that the
resistance is dominated by magnetic �uctuations which are softest around Tc [187]. In
our �eld dependent experiments we measured the magnetoresistance supplementary to
the Hall e�ect and used the data to infer phase transition �elds of MnSi. We tracked the
magnetoresistance through measuring the voltage between the longitudinal contacts Ul in
the typical Hall e�ect experiment geometry (Fig. 6.9 (p.105)) where the applied magnetic
�eld is aligned orthogonal to the current direction. The magnetoresistance measured in
this geometry is called the transverse magnetoresistance.
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Figure 6.2: Resistivity of MnSi at 7.0 kbar.

Figure 6.3: Magnetoresistance of MnSi. Normalized magnetoresistance
ρxx (B) /ρxx (B = 0) of MnSi up to 9T between 10K and 292K. See text for details.
Figure from [187].
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6.2 Hall e�ect

The Hall e�ect describes the appearance of a transverse voltage in a current-carrying con-
ductor placed in a magnetic �eld. In the simplest scenario of a non-magnetic conductor,
charge carriers are de�ected due to a Lorentz force and accumulate on one side of the
sample leading to a so-called Hall voltage that scales with the applied magnetic �eld, the
charge carrier concentration, and a constant which is sensitive to the detailed band struc-
ture. In addition to this simple case discovered by Hall in 1879 [188] called the ordinary
or the normal Hall e�ect (NHE) other mechanisms leading to a Hall e�ect have been iden-
ti�ed during the past century. Here, we concentrate on Hall e�ect contributions observed
in 3 dimensional magnetic metals. In ferromagnets like e.g. Fe, Ni, and Co an additional
contribution to the Hall e�ect arises which scales with the magnetization. This contribu-
tion is called the anomalous Hall e�ect (AHE) [189]. Recently, a new type of Hall e�ect
sensitive to the topology of non-coplanar spin structures was found. This so-called topo-
logical Hall e�ect (THE) was, e.g., identi�ed in experiments on the frustration driven spin
structure in 3D pyrochlore lattices and the skyrmion lattice in MnSi [15,162,169,190,191].

This section gives a short overview of basic concepts behind the NHE, the AHE, and the
THE. Since one goal of this thesis was to study the evolution of the THE in the skyrmion
lattice phase (A-phase) of MnSi under pressure, Sec. 6.2.5 describes the Hall e�ect fea-
tures of MnSi known so far.

6.2.1 General remarks

Nomenclature

In a typical geometry of a Hall e�ect experiment, illustrated in Fig. 6.4, current is applied
along the long side of a platelet shaped sample labeled x-direction. The magnetic �eld
is applied perpendicular to the platelet along the z-direction. There, the longitudinal
(magneto-)resistance ρl is labeled as ρxx and the transverse (Hall) resistance ρH as ρxy.
Likewise, the conductivities are labeled σxx and σxy. Considering the tensorial relation

between
↔
σ and

↔
ρ in two dimensions the Hall conductivity σxy can be expressed through

ρxx and ρxy as

σxy = − ρxy
ρ2
xx + ρ2

xy

≈ −ρxy
ρ2
xx

(6.1)

where the relation ρxy = −ρyx and ρxx = ρyy for isotropic materials was used (see
e.g. [192]). Here, ρ2

xy can be neglected in the denominator when ρxx � ρxy (like it is
the case in MnSi).

The contributions to the Hall resistivity ρxy from the normal (NHE), the anomalous
(AHE), and the topological (THE) Hall e�ect are labeled as ρNHE

xy , ρAHE
xy , and ρtop

xy .
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Figure 6.4: Geometry of a Hall e�ect experiment. Figure from [193].

Experimental evidence of the various Hall e�ect contributions

Fig. 6.5a - c illustrates schematically the experimental signatures of the NHE, the AHE,
and the THE in ρxy (B) together with the corresponding magnetization. The NHE is lin-
early proportional to the applied magnetic �eld B, with the slope of ρxy (B) depending on
the type of charge carriers. A positive (negative) slope of ρxy (B) indicates a conduction
dominated by electrons (holes), respectively1. Fig. 6.5a illustrates the case of electron
conduction.

In ferromagnetic materials an AHE contribution arises on top of the NHE. The AHE
contribution scales with the magnetization M and thus leads to a increase in ρxy in �eld
regions where the magnetization M is increasing with �eld (green shaded region in Fig.
6.5b). Once M is saturated, the AHE contribution remains constant and the slope of
ρH (B) is again determined by the NHE (blue shaded region). In materials with a non-
trivial spin structure, a THE can arise in the AHE �eld region and yields an additional
contribution to the Hall e�ect. In the case of MnSi the THE contribution is a top hat
shaped signal on top of the AHE contribution (red region in Fig. 6.5c). In the corre-
sponding �eld interval no additional feature is observed in the magnetization. Fig. 6.5d
shows typical Hall e�ect data of MnSi under pressure where contributions from the NHE,
the AHE, and the THE are observed. This will be discussed further in Sec. 6.2.5 and
Chaps. 7-10.

1Note, that the sign of ρxy is opposite to the sign of the Hall voltage UH and the normal Hall constant
R0: UH ∝ RH ∝ −ρxy (see Eq. 6.34 and e.g. [192])
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Figure 6.5: Examples of normal (NHE), anomalous (AHE), and topological Hall
e�ect (THE). (a) NHE as observed in non-magnetic metals. The upper panel shows the Hall
resistivity ρxy, the lower panel shows the corresponding magnetization M . (b) In ferromagnetic
metals AHE and NHE are observed. In �eld regions where the magnetization is not saturated
(green), the AHE contribution dominates ρxy. At �elds where the magnetization is saturated
(blue), the NHE contribution dominates the slope of ρxy. (c) In the helimagnet MnSi a THE
signal corresponding to the skyrmion lattice is observed on top of the AHE contribution (red). In
the same �eld region no signature is observed in the magnetization. (d) Hall resistivity of MnSi
at 7.4 kbar and 13.9K. The dominating Hall e�ect contributions in the di�erent �eld ranges are
indicated.
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6.2.2 Normal Hall e�ect

When a current-carrying conductor is placed in a magnetic �eld the charge carriers are
de�ected by the Lorentz force to one side of the conductor. An electric �eld called Hall
�eld builds up until the force of the Hall �eld on the charge carriers balances the Lorentz
force. The Hall �eld and hence the observable Hall voltage is proportional to the charge
carrier type and density.

In the Drude theory of metals this can be calculated as follows with electrons as charge
carriers (cgs units) [193]: With the force ~f = −e

(
~E + ~v × ~H/c

)
due to the applied

electric and magnetic �elds, ~E and ~H, acting on each electron, the momentum ~p per
electron becomes

d~p

dt
= −e

(
~E +

~p

mc
× ~H

)
− ~p

τ
(6.2)

with the relaxation time τ . In a geometry as shown in Fig. 6.4 an electric �eld Ex is
applied along the x-direction leading to a current density jx �owing in the conductor. A
magnetic �eld H along the z-direction leads to a Lorentz force e

c
~v × ~H on the electrons

pointing in y-direction. Electrons accumulate on the lower sample edge and build up
the Hall �eld Ey which is proportional to H and jx. Therefore, a Hall coe�cient can be
de�ned as

RH =
Ey
jxH

. (6.3)

With the current being time independent in the steady state d~p
dt

= 0 and with jy = 0, as
no current is �owing in y-direction, the Hall coe�cient becomes

RH = − 1

nec
. (6.4)

once Ey has built up. Therefore, the Hall coe�cient depends on no parameter of the metal
except the density of charge carriers n. In real materials RH can be �eld and temperature
dependent contrary to Eq. 6.3 when the Drude model is not su�cient to describe the
actual situation. For example, n can vary with temperature due to the band structure
yielding RH (T ) = − 1

e·n(T )c
. In many metals the Drude result seems to be a limit value

reached at very low temperatures in very pure samples at very high magnetic �elds. Also,
RH can be positive or negative depending on the type of charge carrier.

In this thesis the SI-unit formulations of Eqs. 6.3 and 6.4, R0 = − 1
ne

and ρNHE
xy = R0 ·B,

will be used for data analysis. Here, R0 and ρNHE
xy are labeled as normal Hall constant

and normal Hall resistivity, respectively, to distinguish between the contributions from
the di�erent Hall e�ects.
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6.2.3 Intrinsic anomalous and topological Hall e�ect

In ferromagnetic conductors an additional contribution to the Hall e�ect is observed that
scales with the magnetization. This contribution is called the anomalous Hall e�ect
(AHE). In �elds where the magnetization increases the AHE contribution dominates the
Hall signal. Early on, the empirical formula ρxy = R0B +RSM with the anomalous Hall
coe�cient RS was established by Pugh and Lippert [194, 195]. Karplus and Luttinger
(KL) formulated a �rst microscopic theory in which the electrons acquire an anomalous
velocity perpendicular to the applied electric �eld and therefore contribute to the Hall
e�ect [189,196]. According to the KL theory this contribution depends only on the band
structure, is largely independent of scattering and proportional to ρ2

xx. However, the KL
theory describes only the situation in some materials and completely neglects scattering
from disorder. Since then several AHE mechanisms have been proposed and only recently
the AHE problem seems to become resolved.

The state of the art distinguishes between three AHE contributions: The two extrin-
sic contributions from (i) skew-scattering and (ii) side-jump scattering that describe the
asymmetric scattering amplitudes for spin-up and spin-down electrons. And (iii) an in-
trinsic contribution due to an anomalous velocity caused by the Berry phase that the
electrons acquire while moving in a curved band [197]. The conductivities can be added
linearly to give the full AHE σAHE

xy = σAHE−skew
xy +σAHE−sj

xy +σAHE−int
xy . Recent experiments

showed that electrons can not only acquire Berry phases when moving in a curved band
in momentum space but also when moving through a topologically non-trivial magnetic
structure in real space [15, 162, 169, 190, 191]. A topologically non-trivial structure is a
structure with non-zero winding number (see Sec. 5.1.1). This leads to the so-called
topological Hall e�ect (THE).

This section focuses on the intrinsic anomalous and the topological Hall e�ect which are
closely connected to each other. The extrinsic contributions to the AHE will be covered
in Sec. 6.2.4. The basic properties of the three contributions to the AHE are summarized
in Table 6.2. The parts in the AHE follow the reviews of Nagaosa et al. [189] and Xiao
et. al [197], and the paper of Ong et al. [198]. The presented theory of the THE and the
interplay of intrinsic AHE and THE were developed by Rosch and collaborators along the
experimental results on MnSi of this thesis and are published in our paper [16]. Earlier
work on the THE in MnSi by Rosch and collaborators was presented in Ref. [15].

Intrinsic anomalous Hall e�ect

When electrons move in a conductor with broken time reversal or broken spatial inversion
symmetry they pick up a transverse velocity that is connected to the topological proper-
ties of its Bloch states. This transverse velocity leads to dissipationless Hall currents that
only dependent on the band structure. Hence, the resulting contribution to the Hall ef-
fect is called the intrinsic AHE. It is observed in, e.g., ferromagnets (broken time-reversal
symmetry), in 2D conducting planes or at interfaces (broken spatial inversion symme-
try). The intrinsic AHE dominates in materials with strong spin-orbit coupling. Since it
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depends only on the band structure, the intrinsic AHE is independent of the transport
lifetime τ , i.e., independent of σxx. With the concept of the Berry-phase [199] the intrinsic
AHE contribution can be calculated.

The Berry concept states that a quantity ~Ω(~k), called the Berry curvature, exists and
behaves like a magnetic �eld in momentum space with the Berry vector potential ~X(~k).
When electrons move adiabatically on the Fermi surface in the Berry vector potential,
they accumulate a so-called Berry phase, analogous to the Aharonov-Bohm phase in mo-
mentum space. The Berry-phase is connected to the curvature of the bands in which the
electrons move. An example is given below.

The semiclassical equation of motion for an electron in an electric �eld ~~v = ∇~kεn turns
out to be incomplete. A term e ~E × ~Ω called Luttinger term has to be added which takes
accumulated Berry phases into account

~~v = ∇εn − e ~E × ~Ω. (6.5)

The Luttinger terms yields a velocity that is transverse to the electric �eld and gives rise
to a Hall current which can be calculated as (see [198] for details)

~JH =
e2

~
~E ×

∑
~k,~s

~Ω(~k)f 0
~k

(6.6)

with the equilibrium distribution function f 0
~k

2. Because ~JH derives from f 0
~k
it is inde-

pendent of the transport lifetime τ . Furthermore, the Hall conductivity can be calculated
as

σxy = n
e2

~
〈Ω〉 (6.7)

with the weighted average of the Berry curvature 〈Ω〉 = n−1
∑

~k Ωz(~k)f 0
~k
. And �nally, the

Hall resistivity can be calculated as

ρxy =
e2

~
〈Ω〉nρ2

xx. (6.8)

A symmetry analysis yields that the Berry curvature vanishes in crystals with both time-
reversal and spatial inversion symmetry (see [197]). Then the Luttinger term in Eq. 6.5
does not need to be considered. In systems with either broken time-reversal or inversion
symmetries the Berry curvature does not vanish and the Luttinger term has to be con-
sidered. Examples for a broken time-reversal symmetry are crystals with ferromagnetic
or antiferromagnetic order. An example for broken inversion symmetry is a single-layered
graphene sheet.

2f0~k implies a contribution of all electrons of the Fermi sea in contradiction to the Fermi liquid theory
ideas where only electrons at the Fermi surface contribute. Haldane showed that the intrinsic anomalous
Hall e�ect can also be expressed as a Fermi surface property [200].
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The case when an electron moves along a curved band in momentum space is not the only
case how it can accumulate a Berry-phase. Also nontrivial spin textures in real space give
rise to a Berry phase yielding the topological Hall e�ect (THE). The THE will be covered
below. It follows an example of the Berry phase an electron acquires when moving in a
periodic potential.

Berry phase of an electron in a periodic potential

When an electrons drifts along a path C in momentum space it essentially moves through
a curved parameter space. With the concept of parallel transport from di�erential ge-
ometry, the movement can be described through introducing a local coordinate system
which has a lower dimension than the parameter space 3. Then one can calculate with
the simpler local coordinates and introduce a phase factor, which is proportional to the
curvature of the enclosed plane, when completing a closed path. In this case the phase
factor is called Berry-phase.

For example (see [198] for details), for an electron in a periodic potential with the (Bloch)
eigenstates

Ψn~k (~r) =
1√
N
ei
~k·~run~k (~r) (6.9)

and a Hamiltonian perturbed by a static potential V (~r)

H = V (~r) + εn(~k) (6.10)

the electron acquires a Berry-phase along C of

χ(~k) = −
∫ ~k

C

d~k′ · ~X(~k′) (6.11)

with the Berry vector potential

~X(~k) =

∫
cell

d3r u∗
n~k

(~r) i∇~kun~k (~r) . (6.12)

Analog to the Aharonov-Bohm e�ect where electrons acquire a phase factor in real space
due to a vector potential ~A (~r), the phase factor χ can be viewed as the Aharonov-Bohm
phase in momentum space acquired through the vector potential ~X(~k) with the magnetic
�eld

~Ω(~k) = ∇~k × ~X(~k) (6.13)

called the Berry curvature. Due to ~Ω the way an electron reacts to a potential V is
changed. This is expressed through a Luttinger term e ~E×~Ω that enters the group velocity
so that the semiclassical equations of motion in real and momentum space become

3E.g. for a 3D sphere as parameter space the local coordinate system is a 2D plane which is spanned
by two vectors tangential to the sphere.
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~~̇k = e ~E + e~v × ~B (6.14)

~~v = ∇εn − e ~E × ~Ω. (6.15)

Topological Hall e�ect (THE)

Like the intrinsic AHE, the topological Hall e�ect (THE) is due to Berry phases that
are accumulated by electrons while moving through a crystal lattice with broken time-
reversal symmetry. However, the Berry phases accumulated by electrons contributing to
the intrinsic AHE are connected to the topology of the Fermi surface, where the Berry
phases originate from the movement in a curved band in momentum space at wave vec-
tors ~k ≈ ~kf . As discussed above, this can be interpreted as an e�ective magnetic �eld in
momentum space ~Ω. Hence, the intrinsic AHE is due to momentum space Berry phases.
The underlying driving force is spin-orbit coupling (SOC) which locks the orientation of
the charge carrier spin to its momentum.

On the other hand the THE is due to electrons with wave vectors ~k � ~kf which are
sensitive to the curvature of the spin structure in real space 4. Again, this can be viewed
as the movement in an e�ective magnetic �eld ~Beff but now in real space. Hence, the THE
is due to real space Berry phases. The driving force here is the exchange splitting which
aligns the electron spins parallel or antiparallel to the local magnetization. Therefore,
the THE is independent of SOC. The ratio of SOC to exchange splitting determines if
intrinsic AHE or THE dominates [201].

To summarize, electrons can also acquire Berry phases while their spins follow adiabat-
ically the local magnetization in real space. For trivial spin-structures the Berry phases
vanish but in cases where the spin-structure is topologically non-trivial, i.e., that is has a
non vanishing winding number, a THE contribution arises.

So far a THE was reported for 3D pyrochlore lattices in Pr2Ir2O7 [191] and Nd2Mo2O7 [190]
in which a non-coplanar spin structure is produced on short length scales by frustrated
magnetic moments, and in the skyrmion lattice phase of B20 structures like MnSi [15]
and MnGe [202]. In other materials like the perovskite SrFeO3 [203], the manganite
La1−xCoxMnO3 [204], and the double-exchange ferromagnets CrO2 [205] and Gd [206], a
THE has been proposed.

In the following we concentrate on a THE invoked by the topologically non-trivial mag-
netic structure of a skyrmion lattice like it was developed by Rosch and collaborators
along experimental results of MnSi at ambient pressure. Both theory and experimental
results were reported in Ref. [15]. Triggered by the experimental results of this thesis,
Rosch and collaborators derived a more detailed theory of the THE in a skyrmion lattice
and the interplay between intrinsic AHE and THE [16, 201]. This will be covered in the

4given that the variations of the spin structure are large compared to the mean free path so that
modi�cations of the band structure due to the spin order may be ignored [189].
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next section. All relations below are also valid for other materials of the B20 family in
which a skyrmion lattice phase can be observed.

The case of a conduction electron moving through a magnetic skyrmion is illustrated
in Fig. 6.7a. The electron spin follows the local magnetization and hence begins to
twist. The sideward de�ection is caused by the Berry phase accumulated by moving in
the e�ective magnetic �eld of the skyrmion ~Beff . In case of a skyrmion lattice ~Beff is
proportional to the skyrmion density given in Eq. 5.2:

Φµ =
1

8π
εµνλn̂ · (∂νn̂× ∂λn̂)

with the antisymmetric unit tensor εµνλ and n̂ = ~M/|M |. ~Beff can be calculated as
~Beff = Φ0

~Φ with the �ux quantum for a single electron Φ0 = h/e and ~Φ being the in-
tegrated skyrmion density [15, 169]. The latter is a measure for the winding number if
taken per unit cell. E.g., for the lattice of anti-skyrmions in MnSi

∫
dxdyΦz = −1 for each

2-dimensional magnetic unit cell [154]. In turn, for a single Q-structure ~Φ = 0 and hence
~Beff = 0 which illustrates that only for a non-trivial spin-texture with non-zero winding
number a THE can be observed.

In a semiquantitative approach the size of ∆ρtop
xy in MnSi can be calculated taking into

account several factors [15]: (i) As MnSi is a multiband system the size of ∆ρtop
xy depends

on details of the bandstructure and the relative size of scattering rates. As these values
enter the normal Hall constant R0 it can be used for a semiquantitative prediction. (ii)
An adiabatic limit is assumed in which the charge carriers smoothly follow the texture
~M with in�nite lifetime. Spin-�ip scattering is neglected. (iii) As majority and minority
charge carriers collect Berry phases of opposite signs the local spin polarization P has to
be considered. It is ∆ρtop

xy → 0 for P → 0 and ∆ρtop
xy maximal for P = 1. Taken together,

∆ρtop
xy = PR0B

z
eff (6.16)

with ẑ being the direction of the applied magnetic �eld. From Eqs. 5.2 and 6.16 it be-
comes clear that the size of ∆ρtop

xy scales with the skyrmion density which itself scales with
the helix length λhelix of the underlying host material. Hence, a large ∆ρtop

xy is expected for
a small λhelix and vice versa. Table 6.1 summarizes λhelix and ∆ρtop

xy for several materials
of the B20 family.

Since the applied magnetic �eld is needed to induce a non-zero spin chirality but as it also
destroys the spin texture when increased above a certain threshold (because all moments
will align along the direction of the applied �eld), the THE is a non-monotonic contribu-
tion to the Hall conductivity and only takes place in a certain interval of magnitude of
the applied magnetic �eld like seen in Fig. 6.7b,c, and d [169].
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Table 6.1: Topological Hall e�ect in various materials. Length of magnetic helix λhelix,
corresponding size of the THE ∆ρtop

xy , and e�ective magnetic �eld Beff for materials of the B20
family. Beff was calculated with Eq. 6.30.

material λhelix [nm] ∆ρtop
xy [nΩcm] Beff [T]

FeGe [157] ≈ 60 � 1 -0.99
Fe1−xCoxSi, x=0.2% 38.7 [207] � 1 [208] -2.39
MnSi 18 [154] 4.5 [15] -13.15
MnSi, p ≈ 11 kbar ≈ 16 [50] ≈ 40 [16,162] -13.15
Mn1−xFexSi, x=0.08% 10.5 [207] ≈ 40 [208] -32.49
Mn1−xCoxSi, x=0.04% 9.7 [207] ≈ 32 [208] -38.07
MnGe [202] 3 200 -397.95

Interplay of intrinsic anomalous and topological Hall e�ect

Discussions about the size of the giant topological Hall signal under pressure that was dis-
covered in this thesis (see Chaps. 7 and 8) revealed that the complicated band structure
of MnSi with many bands at the Fermi level needs to be taken into account. Where in
Neubauer et al. [15] all bands were treated equally, a closer inspection shows that di�er-
ent bands contribute di�erently to the THE depending on the competition of spin-orbit
coupling (SOC) and exchange splitting (see below). The contribution of each band to the
THE scales with the relative size of its scattering rates while the THE is approximately
independent of the total scattering rate. In the following the interplay of the contribu-
tions from intrinsic AHE and THE to the Hall e�ect are discussed along the corresponding
section in our paper that was developed by Rosch and collaborators [16].

In magnetic metals without inversion symmetry the orientation of the electron spins is de-
termined through exchange splitting and SOC. Exchange splitting of the bands is caused
by magnetism and is described by a Zeeman �eld ~bex (~r) in real space (real space coordi-
nate ~r). It leads to a parallel or antiparallel alignment of the electron spins with respect
to the local magnetic �eld. When exchange splitting is the dominant interaction, the
electron spins smoothly follow the magnetic structure and pick up Berry phases in real
space which leads to a THE.

SOC also leads to a splitting of the bands and is described by ~gSO (~p) (momentum space
coordinate ~p). SOC locks the electron spins to its momentum. When SOC is the dom-
inant interaction the electrons pick up Berry phases in momentum space which leads to
an intrinsic AHE.

In cases where SOC is of the same order of magnitude as the exchange splitting both real
and momentum space movements of the electrons need to be considered. I.e., the general
description is in the 6-dimensional phase space with coordinate ~x = (~r, ~p). For weak SOC
and smooth magnetic textures the two interactions can be added up to obtain a single
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band model Hamiltonian

H = ε~p1 + ~gSO (~p)~σ +~bex (~r)~σ. (6.17)

The sign of the electron charge e < 0 is taken into account, so that the spin (magnetic
moment) of an electron orients preferentially antiparallel (parallel) to the Zeeman �eld,
respectively. The direction of the local magnetization can be de�ned in the semiclassical
limit as

n̂ =
~gSO (~p) +~bex (~r)

|~gSO (~p) +~bex (~r) |
. (6.18)

Accordingly, spin up ↑ can be de�ned as parallel to n̂, and spin down ↓ as antiparallel to
n̂. Spin down ↓ is the state with the lower energy and carried by the majority electrons.
In the following, we concentrate on cases where the exchange �elds vary on length scales
much longer than the Fermi wavelength, like it is the case in MnSi.

The Berry phases picked up by electrons with majority (↓) and minority (↑) spins have
opposite signs. To take this into account it is useful to introduce the emergent charges
qe↓ = 1/2 and qe↑ = −1/2. For the majority spins then the Berry vector potential

qe↓Aj (x) = i~
〈
u (~x)

∣∣∣∣ ∂

∂xj

∣∣∣∣u (~x)

〉
, j = 1...6 (6.19)

arises (cf Eq. 6.12). Here, |u (~x)〉 is the local wave function of the majority spin de�ned
through the relation (n̂ (~x)~σ) |u (~x)〉 = − |u (~x)〉. With the Berry vector potential, the
e�ective magnetic �elds Ωij (Berry curvature) can be calculated. Where for the intrinsic
AHE discussed above the e�ective magnetic �eld was only considered in momentum space,
the e�ective �elds here are in momentum and real space. Correspondingly, the e�ective
�elds Ωij are represented though an antisymmetric 6× 6 matrix

↔
Ω

Ωij =
∂Aj
∂xi
− ∂Ai
∂xj

= ~n̂
(
∂

∂xi
n̂× ∂

∂xj
n̂

)
. (6.20)

The components i ∈ {1, 2, 3} (3×3 submatrix in the upper left) of
↔
Ω describe the e�ective

�eld in real space

Be
i (~x) =

∣∣∣∣ eqeσ
∣∣∣∣Beff

i (~x) =
1

2

∑
j,k=1...3

εijkΩjk (6.21)

where the emergent �eld Be, in units ~/area, is related to the e�ective �eld Beff , measured
in the unit Tesla, by the factor |e/qeσ|. The components i, j, k ∈ {4, 5, 6} (3× 3 submatrix

in the lower right) of
↔
Ω describe the e�ective �eld in momentum space. The remaining

9 independent components are mixed terms. Geometrically, Ωijdxidxj is the Berry phase
(times ~) accumulated along an in�nitesimal loop in the ij-plane with area dxidxj. The
area dxidxj is de�ned by the solid angle enclosed by the vector n̂ (~x) when moving around
this loop.



6.2. HALL EFFECT 95

As described above, due to
↔
Ω a Luttinger term has to be added to the semiclassical equa-

tions of motions (see Eqs. 6.14 and 6.15). It is important to note that other than in the
discussion about the intrinsic AHE, phase space coordinates are used here.

The emergent �ux Φe can be calculated by integrating ~Be over a magnetic unit cell of the
skyrmion lattice in real space. The result is ~ times the total solid angle covered by n̂.
The total solid angle has to be a multiple of 4π = 2π/|qe| due to the periodic boundary
condition. Thus, the emergent �ux is quantized and n(p) is an integer.

Φe (~p) =

∫
UC

~Be (~x) d2~r =
2π~
|qe|

n (p) =

0
∣∣~gSO (~p)

∣∣ > ∣∣∣~bex (~r0)
∣∣∣

−2π~
|qe|

∣∣~gSO (~p)
∣∣ < ∣∣∣~bex (~r0)

∣∣∣ (6.22)

Two regimes have to be distinguished: (i) When the exchange splitting is larger than the
SOC (|~bex (~r0) | > |~gSO (~p) |) the electron spins follows the magnetic structure, i.e., ~bex.
The emergent �ux is then determined by the winding number of the magnetic structure.
In the case of the SLP of MnSi the winding is −1 and thus the emergent �ux is −~4π. (ii)
When the SOC is larger than the exchange splitting (|~gSO (~p) | > |~bex (~r0) |) the electron
spins follow the direction of ~gSO. In this case ~bex leads only to small deviations from the
dominant direction of ~gSO. The winding number and with it the emergent �ux vanishes.

For the case of negligible SOC (|~gSO (~p) | � |~bex (~r0) |) the topological contribution to the
Hall conductivity σtop

xy can be estimated from the Boltzmann equation in the relaxation
time approximation. The following assumptions are used: The relaxation time is spin
dependent with τ↑ for minority spin and τ↓ for majority spin electrons; ~Be points in
z-direction; the scattering rates are independent of ~k. This leads to

σtop
xy ≈ Be

∑
σn

∫
e2qeστ

2
σn


(
~vy~kn

)2

mxx
~kn

−
~vx~kn~v

y
~kn

mxy
~kn

× ∂f0

(
ε~kσn

)
∂ε

d3k

(2π)3 (6.23)

= Be
∑
σn

∫
e2qeσw~kσn

d3k

(2π)3 (6.24)

with ~v~kn velocity in band n, mij
~kn

=
(
∂2ε~kσn/~

2∂ki∂kj
)−1

being elements of the e�ective
mass tensor, and the spin dependent scattering rates w~kσn (see below). A Hall conductivity
due to orbital magnetic �elds leads to the exact same formula if the emergent charge qeσ
is replaced by the electron charge e < 0. Hence, the topological Hall resistivity ∆ρtop

yx can
be expressed through the normal Hall constant R0 as

∆ρtop
yx ≈ R0B

e

〈
qeσ
e

〉
FS

= R0B
effP. (6.25)

P =
∣∣∣ eqeσ ∣∣∣ 〈 qeσe 〉FS

is an e�ective polarization. 〈...〉FS is an average over all Fermi surfaces

weighted by the square of spin dependent scattering rates w~kσn:
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〈...〉FS =

∑
nσ

∫
...w~kσn∑

nσ

∫
w~kσn

(6.26)

w~kσn = τ 2
σn


(
~vy~kn

)2

mxx
~kn

−
~vx~kn~v

y
~kn

mxy
~kn

 ∂f0

(
ε~kσn

)
∂ε

(6.27)

The di�erence to Neubauer et al. [15] is that each band is considered individually weighted
by its scattering rate instead of just taking one single estimated value for the polarization
P . So it is possible that some bands do not contribute or that the contribution of some
bands cancel each other. In MnSi the e�ective magnetic �eld is Beff ≈ −13.15 T (see Eq.
6.30).

6.2.4 Extrinsic anomalous Hall e�ect

In this section the two extrinsic contributions to the anomalous Hall e�ect (AHE) from
skew-scattering and side-jump scattering will be brie�y introduced. Whereas the intrinsic
AHE and THE relate to the band structure and the magnetic structure, respectively,
both extrinsic contributions relate to asymmetric scattering amplitudes for spin-up and
spin-down electrons. The basic properties of all contributions to the AHE are summarized
in Table 6.2.

Skew scattering contribution

The skew scattering contribution of the AHE �rst proposed by Smit [209,210] arises due
to asymmetric scattering processes of the charge carriers on, e.g., impurities in the pres-
ence of spin-orbit coupling.

When a charge carrier is scattered at a potential V from, e.g., a magnetic impurity, it
undergoes a transition between two statesm and n with wave vector ~k and ~k′, respectively.
The principle of detailed balance states that the transition probability between these two
states is identical in both directions Wn→m and Wm→n, like it is assumed in semiclassical
Boltzmann transport theory. This assumption is not valid anymore in the presence of
spin-orbit coupling. In a simple model a term

WA
~k~k′

= −τ−1
A
~k × ~k′ · ~Ms (6.28)

can be introduced in the transition probability to describe the e�ect of spin-orbit cou-
pling. According to this term, a transition which is right handed with respect to the
magnetization direction has a di�erent transition probability than the corresponding left
handed one. The wave vector ~k′ of the scattered charge carrier is orthogonal to both the
incident wave vector ~k and the magnetization ~Ms and hence leads to a transverse current
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Table 6.2: Properties of the anomalous Hall e�ect contributions. τ is the transport
lifetime and l is the carrier mean free path. The approximation ρxy � ρxx was used, so that,
e.g., σxy = − ρxy

ρ2xx+ρ2xy
≈ −ρxy

ρ2xx
.

contribution dominant regime

intrinsic σxy ∝ τ0,∝ l0,∝ σ0
xx,∝ ρ0xx ρxy ∝ ρ2xx

strong spin-orbit coupling,
104(Ωm)−1 < σxx < 106(Ωm)−1

skew-scattering σxy ∝ τ1,∝ l1,∝ σ1
xx,∝ ρ−1

xx ρxy ∝ ρxx
high conductivity,
σxx > 106(Ωm)−1

side-jump σxy ∝ τ0,∝ l0,∝ σ0
xx,∝ ρ0xx ρxy ∝ ρ2xx

104(Ωm)−1 < σxx < 106(Ωm)−1

(if not intrinsic)

orthogonal to the applied electric �eld ~E.

When skew scattering dominates the AHE the Hall conductivity σAHE−skew
xy and the con-

ductivity σxx are both proportional to the transport lifetime τ . Hence, ρAHE−skew
xy =

σAHE−skew
xy ρ2

xx is proportional to the longitudinal resistivity ρxx.

Side-jump contribution

The side-jump mechanism describes a microscopic displacement ∆y ≈ 10−10− 10−11 m of
charge carriers scattering from a magnetic impurity [211,212].

In the theoretical picture charge carriers treated as Gaussian wave packets with
wave vector ~k scatter from a spherical impurity with spin-orbit interaction HSO =
(1/2m2c2) (r−1∂V/∂r)SzLz. The impurity distorts the wave function locally and cre-
ates a local current density. This leads to a displacement transverse to ~k of size
1
6
k~2/m2c2. With the strict de�nitions for the intrinsic and the skew-scattering con-

tribution from Nagaosa et al. [189], the side-jump contribution can also be de�ned as
σAHE−sj
xy = σAHE

xy − σAHE−int
xy − σAHE−skew

xy . The side-jump contribution is independent of
the transport lifetime τ , i.e., σAHE−sj

xy independent of σxx, and hence hard to distinguish
from the intrinsic contribution which is also independent of τ (see below). When a σAHE

xy

independent of σxx is observed, the intrinsic contribution is usually calculated and com-
pared to the experimental data. In most cases the intrinsic contribution accounts for the
AHE. In the other cases the AHE is attributed to side-jump scattering.
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6.2.5 Hall E�ect in MnSi

Three contributions to the Hall e�ect could be identi�ed in MnSi: (i) A NHE contribution
ρNHE
xy = R0B which scales linearly with the applied magnetic �eld B. (ii) An intrinsic AHE
contribution to the conductivity below Tc = 29.5 K which scales with the magnetization
σAHE−int
xy = SHM [187,213]. (iii) A THE contribution ∆ρtop

xy in the regime of the skyrmion
lattice phase which re�ects the non-zero topological winding number of the spin structure
[15,16]. The three contributions are summarized in Fig. 6.5.

Normal Hall e�ect & intrinsic anomalous Hall e�ect in MnSi

For a ferromagnet, MnSi has a low resistivity of ρxx ≈ 2−5µΩcm at 4K and an unusually
large charge carrier mean free path l up to ≈ 240Å at 4K. σxy proves to be independent
of l which hints at the intrinsic AHE as dominating contribution [187,213]. Furthermore,
band structure calculations show that both extrinsic contributions to the AHE, i.e., side-
jump and skew scattering, are not relevant in MnSi [214].

With a large magnetoresistance (up to ≈ 40% up to ≈ 5 T near Tc), as expected in
a high purity metal, the empirical formula ρxy = R0B + RSM cannot account for the
experimental data, for M fails to match ρ′xy = ρxy −R0B (Fig. 6.6). The data can rather
be explained with

ρxy = R0B + SHρ
2
xxM (6.29)

at temperatures below Tc where the scaling factor SH derives from the Hall conductivity
σAHE
xy = SHM ≈

ρAHE
xy

ρ2xx
. SH proves to be temperature independent below Tc so that σAHE

xy

is only determined by M (T,H) and hence independent of l [213].

At high (T ' 100 K) and low (T / 5 K) temperatures, ρxy (B) is linear indicating that the
NHE contribution dominates (Fig. 6.6c). The positive slope above 150K hints at positive
charge carriers with density between n ≈ 3.78·1022 cm−3 and n ≈ 8.5·1022 cm−3 [187,213].
At intermediate temperatures ρxy has a �knee� feature due to a dominating AHE contri-
bution. For T < Tc the �knee� feature tracks the upper critical �eld Bc2.

Above Tc, Eq. 6.29 fails to describe the experimental data which can rather be �tted with
the empirical relationship ρ′xy = ρxy − R0B = αρ2

xxM
1.5 with the temperature dependent

parameter α. However, the mechanism behind this relation is unclear up to now [187].

Topological Hall e�ect in MnSi

In the skyrmion lattice phase (A-phase) of MnSi, a THE contribution arises due to the
non-zero winding number of the spin-structure. Fig. 6.7c and d shows the data of Ref. [15]
where the topological contribution ∆ρtop

xy can be seen as a top hat shaped additional signal
that rides on top of the AHE. The THE signal occurs in the �eld and temperature interval
of the skyrmion lattice phase of MnSi (B ≈ 0.15 − 0.2T , T ≈ 28.0 − 28.8K, see Fig.
6.7b). As discussed in Sec. 6.2.3, the size of ∆ρtop

xy can be estimated by Eq. 6.25:
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Figure 6.6: Magnetoresistance and Hall e�ect in MnSi. (a) Magnetization up to 5T
between 5K and 30K. (b) Magnetoresistance ∆ρ/ρ. (c) ρxy (B) up to 5T and in a temperature
range 5K - 200K. At highest and lowest temperatures, ρyx is linear indicating that NHE contri-
butions dominate. At intermediate temperatures ρyx has a �knee� feature indicating dominating
AHE contributions that scale with the magnetization. (d) The solid lines calculated with Eq.
6.29 nicely describe ρ′yx = ρyx − R0B below Tc. (e) Below Tc the parameters SH and R0 prove
to be temperature independent. (f) With decreasing temperature the normal Hall conductivity
σNHE
xy and the conductivity σ which is ∝ l increase strongly while the σAHE

xy changes only slightly
with the magnetization. All �gures from [213].
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∆ρtop
yx ≈ R0B

e

〈
qeσ
e

〉
FS

= R0B
effP

The magnitude of the e�ective magnetic �eld Bz
eff can be derived from the proposed

magnetic structure of a lattice of anti-skyrmions with winding number
∫

dxdyΦz = −1
for each 2-dimensional magnetic unit cell [15]. The skyrmion lattice is a hexagonal lattice
with lattice vectors 2π/λS in reciprocal and λS/ sin (2π/3) in real space, respectively. The
size of the unit cell is λ2

S/ sin (2π/3) which leads to

Beff = −h
e

(√
3

2λ2
S

)
≈ −13.15 T. (6.30)

Here, λS is approximately the helix length in the helical phase close to Tc, λhelix ≈ λS ≈
165Å [16]5.

The polarization P = µspo/µsat represents the ratio of ordered magnetic moment in the
skyrmion-lattice-phase (A-phase) µspo ≈ 0.2± 0.05µB/f.u. to the saturated magnetic mo-
ment µsat ≈ 2.2 ± 0.2µB/f.u. which can be taken from the Curie-Weiss moment in the
paramagnetic state or the free Mn moment and has the magnitude P ≈ 0.1± 0.02. The
normal Hall constant R0 = 1.7 ·10−10 ΩmT−1 can be inferred from the Hall signal at room
temperature. Due to a calculation mistake the e�ective magnetic �eld was calculated as
Beff ≈ −2.5 T in Neubauer et al. [15] leading to ∆ρtop

xy = (4 ± 1) nΩcm. With Beff from
Eq. 6.30 ∆ρtop

xy ≈ 21 nΩcm is estimated which is approximately �ve times larger than the
experimental value of ∆ρtop

xy = 4.5nΩcm. However, considering the uncertainties of R0

and P and the possibility that some bands do not contribute to the THE depending on
the competition of exchange splitting and SOC, which will be discussed in Chap. 8, that
were not considered in Neubauer et al. [15], this seems plausible.

At the same time as Neubauer et al. [15] showed that the top hat shaped signal in ρxy (B)
at ambient pressure is a THE due to the skyrmion lattice in MnSi, Lee et al. [162] found
a 10 times larger signature in ρxy (B) at hydrostatic pressures between 6 kbar and 12 kbar
in a �eld range of 0.1T to 0.5T, i.e., from Bc1 to Bc2 (see Fig. 6.8). However, both
the size and the �eld range of the signature seemed puzzling. The �eld range is several
100mT larger than found for the skyrmion lattice phase at ambient pressure. Also, the
tenfold size compared to ambient pressure measurements could not be explained, since,
with what was known, the parameters in Eq. 6.16 are only weakly pressure dependent.
(i) Beff : The helix length and hence the density of the skyrmion lattice is known to
be almost unchanged under pressure, implying an approximately pressure independent
Beff [50]. (ii) P : The polarization decreases slightly with pressure as the ordered moment
in the helimagnetic state decreases by 10% up to 12 kbar and as the Curie-Weiss moment
in the paramagnetic state also remains unchanged. The decreased P would even lead to a
reduced ∆ρtop

xy . (iii) R0: Neither the electrical resistivity ρxx nor the Hall e�ect ρxy shown
in Ref. [162] suggest a change of R0 with pressure. (iv) The critical �elds Bc1 and Bc2 do
not change with pressure [173, 178] and hence the �eld range of the skyrmion lattice is

5The helix length changes from λhelix ≈ 180Å for T → 0 to λhelix ≈ 165Å for T → Tc (cf [40,215,216])
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expected to be similar as compared with ambient pressure.

One goal of this thesis was to track the evolution of the THE in MnSi under pres-
sure and establish a connection between the data of Neubauer et al. [15] and Lee et
al. [162] if possible. As will be shown, ∆ρtop

xy evolves from 4.5 nΩcm at ambient pressure
to ≈ 40 nΩcm at 12 kbar with a �eld range consistent with the ambient pressure skyrmion
lattice phase due to an unexpected conspiration of mechanisms. The large �eld range
seen by Lee et al. [162] can be identi�ed to originate from low sample qualities (low RRR
ρxx (300 K) /ρxx (4.2 K) ≈ 50) and pressure inhomogeneities. This will be discussed in
Chap. 7 and 8.

Furthermore, a major goal was to study the Hall e�ect at pressures above the critical
pressure pc. Signatures linking the skyrmion lattice phase seen at ambient pressure to the
non-Fermi-Liquid regime (NFL) at high pressures were found. The top hat shaped ∆ρtop

xy

seen at p < pc evolves into a broad peak whose phase boundaries coincide with the phase
boundaries of the ρxx ∝ T 3/2 temperature dependence of the NFL regime. This will be
discussed in Chaps. 9 and 10.



102 CHAPTER 6. EXPERIMENTAL METHODS

Figure 6.7: Topological Hall e�ect in MnSi. (a) Electron moving through a skyrmion. The
electron spin follows the local magnetization and hence twists. The accumulated Berry phase
leads to a sideways de�ection and is the origin of the THE. Picture from [165]. (b) Magnetic
phase diagram of MnSi [15]. (c) The THE in MnSi is seen as an increase in ρxy riding on top of
the AHE. (d) After subtracting the AHE the THE becomes clear as top hat shaped signal (gray
shading). Picture from [15].
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Figure 6.8: Signature in the Hall e�ect of MnSi under pressure. ρxy in the pressure
range between 6 kbar and 12 kbar measured by Lee et al. [162]. A large, top-hat shaped signature
(≈ 40 nΩcm) in the �eld range of 0.1T to 0.5T is observed. However, both size and �eld range
are larger than the topological Hall e�ect contribution seen at ambient pressure and cannot be
explained with what is known so far.



104 CHAPTER 6. EXPERIMENTAL METHODS

6.3 Experimental setup

6.3.1 Crystals

MnSi samples for this study were grown by Neubauer, Münzer, and Bauer in a three-step
procedure: (i) puri�cation of the starting elements, (ii) preparation of polycrystalline rods,
and (iii) single-crystal growth by optical �oat zoning. After purifying the starting elements
via etching and ultrasonic cleaning, polycrystalline rods were casted using a water-cooled
Huykin crucible with radio-frequency heating inside an all-metal sealed furnace. The
polycrystalline rods were subsequently mounted in an ultrahigh vacuum compatible four-
mirror image furnace where they were �oat-zoned into single crystals [217,218].

Float-zoned rods were characterized via x-ray Laue di�raction in backscattering geom-
etry. Samples were cut out of the identi�ed single crystalline regions with a wire saw.
Subsequent grinding with abrasive paper of �neness up to 4000 yielded samples with di-
mensions 2.8× 1× 0.2 mm3.

As summarized in table 6.3, the MnSi samples had residual resistivity ratios (RRR)
between ≈ 40 and ≈ 150 and were oriented with magnetic �eld B pointing along the
crystalline 〈110〉 and applied current I pointing along either the 〈100〉 or 〈110〉 direction
(see Fig. 6.9). All samples agreed well with the literature in terms of temperature, �eld,
and pressure dependence of resistivity and Hall e�ect in regions known so far.

6.3.2 Magnetcryostat

All measurements on MnSi shown in this thesis were performed with a continuous-�ow
cryostat from Oxford Instruments containing a 14/16T superconducting magnet with a
temperature range 1.5K - 300K. Pressure cells were attached to a sample stick which was
mounted inside a variable temperature insert (VTI) and cooled through a Helium gas-�ow.

The Helium gas �owing around the pressure cell was heated to the desired temperatures
with a resistive heater during the intake from the Helium bath to the VTI. The intake
pathway with which the �owing gas thermalized consisted of a capillary and a copper
block. The latter contained a Cernox thermometer (control thermometer) and the afore-
said resistive heater for a PID temperature control through a Oxford Instruments ITC503
temperature controller. A pressure in the mbar range inside the VTI allowed access to
temperatures down to 1.5K.

The sample stick we used is based on a tube made from stainless steel (diameter 10mm)
with attached radiation shields. Electric wiring consisted of twisted pairs of 80µm thick
copper wires running along the outside of the sample stick. Pressure cells were tightly
screwed to a copper block (20×15×15 mm3) via a copper adapter piece at the end of the
sample stick yielding a good thermal contact. The sample temperature was determined
with a calibrated Lakeshore Cernox thermometer CX-1030-AA mounted inside a bore in
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Figure 6.9: Measurement geometry. Geometry used for Hall e�ect measurements with
current I �owing along the x-direction, magnetic �eld B pointing along the z-direction, Ul being
the longitudinal and UH being the Hall voltage. Directions B||〈110〉 and I||〈110〉 or 〈100〉 were
used. Samples were contacted in a 6-terminal-con�guration. b and d are the width and the
thickness of the sample, respectively. ll and lH are the distances between the longitudinal and
the Hall voltage contacts.

the copper block mentioned before (sample thermometer).

Temperature sweeps were performed with slow rates of 0.2 K/min and 0.3 K/min to
minimize the sample temperature lagging behind the control temperature. Before
magnetic �eld sweeps a waiting time between 60min and 120min allowed the sample
temperature to converge against the desired control temperature. Despite careful
measurement procedures samples were subject to temperature drifts of around 0.14K
during ±2T magnetic �eld sweeps leading to small o�sets of the measured data. However
these o�sets did not have any relevance for the interpretation of our data.

Magnetic �eld sweeps up to ±14T were performed in continuous ramps with 0.2T/min.
Due to the induction of the magnet recorded �eld values which were calculated from the
current applied with an Oxford Instruments IPS 120 current source were lagging behind
the actual �eld values in the magnet bore. This led to a systematic error of 0.14T and
was corrected before symmetrization and antisymmetrization (see Sec. 6.4.1).

Small magnetic �eld sweeps up to ±2T were performed through changing the �eld in
10mT steps with a 20 s waiting time per step during which data was recorded. This
procedure was not subject to systematic errors like described above.

6.3.3 Measurement electronics

Magnetoresistance and Hall e�ect measurements were performed through application of
an ac current to our samples while tracking the corresponding voltages Ul and UH along
the longitudinal and the Hall contacts with a Lock-In ampli�er. Fig. 6.9 shows a sketch
of a sample contacted in a 6-terminal-con�guration. Fig. 6.10 shows a sketch of the
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A
B

(b) (c) (d)(a)

1:100

PSD

Figure 6.10: Sketch of the measurement setup. (a) 1 kΩ current limiting resistor. (b) Sam-
ple. (c) Signal Recovery Model 1900 Precision Low-Noise Signal Transformer with ampli�cation
1:100. (d) SR830 Lock-In ampli�er with phase sensitive detector (PSD) and sine generator (G)
operating at Vrms = 5 V and 22.08Hz. For clarity, only the measurement setup for the longitu-
dinal resistance Ul is shown. The voltage along the Hall contacts UH is simultaneously recorded
with a similar setup of transformer and Lock-In ampli�er.

measurement setup.

The ac current applied to the sample was produced by a sinusoidal signal of Vrms = 5 V
of the internal oscillator of a Stanford Research SR830 Lock-In ampli�er together with a
current limiting resistor of 1 kΩ. As the 1 kΩ resistor was about two orders of magnitudes
larger than the sample with connected wiring (≈ 16 Ω) this yielded a current of Irms =
5 mA. A frequency of 22.08 Hz was chosen to operate the Signal Recovery Model 1900
Precision Low-Noise Signal Transformer, which was used to amplify Ul and UH by a factor
of 100, in a range with less than 1 dB attenuation. The wiring consisted of coaxial cables
outside of the cryostat, and 80µm thick copper wires arranged in twisted pairs inside the
cryostat. Typical signal sizes at the Lock-In ampli�er were Ul (T = 280 K,B = 0 T) ≈
7 mV, Ul (T = 5 K,B = 0 T) ≈ 90µV, Ul (T = 3 K,B = 14 T) ≈ 60µV for the longitu-
dinal voltage, and UH (T = 280 K,B = 0 T) ≈ 160µV, UH (T = 5 K,B = 0 T) ≈ 3µV,
UH (T = 3 K,B = 14 T) ≈ 4µV for the Hall voltage.

6.3.4 Pressure cells

Hydrostatic pressures up to the critical pressure pc ≈ 14.6 kbar of MnSi and above were
generated with piston-cylinder cells as described in Ref. [140] (Fig. 6.11).

Samples were mounted inside a Te�on capsule �lled with liquid pressure medium, where
the lower end was sealed with an obturator also acting as a wire-feedthrough. Hydro-
static pressure was created through compressing the Te�on capsule with a non-magnetic
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tungsten-carbide (WC) anvil while the obturator was held in place by a locknut. A cell-
body of hardened Berylco 25, Copper with 2.5% Beryllium (Cu:Be), prevented bagging of
the Te�on capsule. Locknuts, obturators, and sealing rings were also manufactured from
hardened Berylco 25.

With this kind of setup with bore diameter 5mm, pressures of about 25 kbar can be
reached. The maximum pressure is limited through the yield strength of 960N/mm2 -
1460N/mm2 of hardened Berylco 25 [219]. For experiments requiring higher pressures,
the pressure limit can be increased up to 35 kbar by placing a cartridge of hard metal like
NiCrAl in the bore of the pressure cell [220].

The tungsten-carbide (WC) anvils which were labeled non-magnetic nonetheless carried a
small magnetic moment originating from Cobalt or Nickel used as binder in the sintering
process. This led to a systematic error of about 15mT at the sample position. As all
features of interest in MnSi are �eld dependent in the order of 102 mT this systematic
error had no impact on any interpretation and could be neglected.

Fig. 6.12 shows pictures of the sample as set up inside the pressure cell. Twisted pairs
of copper wire with diameter of either 80µm or 120µm were glued in the obturator
feedthrough with Stycast 2850 FT epoxy and checked for pressure tightness. A hat shaped
Te�on sample holder was mounted holding wires in a de�ned position. The sample was
then suspended in a de�ned orientation through soldering both ends onto the 120µm
copper wires used as current contacts. Hence, the pressure medium could completely �ow
around the sample reducing uniaxial strains.

As voltage contacts 25µm Pt wires were spot welded directly onto the sample surface
with a Schmidt Instruments Model UIP 1000 digital spot-welding-apparatus. The con-
tacts were arranged in a 6-terminal-con�guration for magnetoresistance and Hall e�ect
measurements as shown in Fig. 6.9. The Pt wires were then soldered onto the 80µm
copper wires. A thin piece of tin was soldered directly onto two pairs of 80µm copper
wire and used as pressure gauge (see Sec. 6.4.4).

For �rst experiments, a Fluorinert FC72:FC84 mixture with volume ratio 1:1 (FC) was
used. As a dependence of the topological Hall signal on the cooling procedure was observed
(see Sec. 6.4.5), all further experiments were performed with a methanol:ethanol mixture
with volume ratio 4:1 (ME) known to have a higher hydrostatic limit (≈ 100 kbar [221])
than Fluorinert mixtures (≈ 20 kbar [141]). Table 6.3 summarizes all pressure cells as-
sembled for this project.
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Figure 6.11: Pressure cell. Sketch of a piston-cylinder-cell with a 5 mm bore. The sample is
mounted inside a Te�on capsule �lled with liquid pressure medium. The lower end of the Te�on
capsule is sealed by an obturator which is held in place by a locknut. Pressure transmitted
through a WC piston compresses the Te�on capsule and hence leads to a hydrostatic pressure
acting on the sample. See text for details.
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Figure 6.12: Setup inside of the clampcell. (a) Obturator (1) with 80− 120µm Cu wires
(3) glued in with Stycast 2850 FT epoxy. On top of the obturator a hat shaped sample holder
(Te�on) is mounted (2). The Cu wires are led though holes in the sample holder and shortened
subsequently. (b) Top view of a MnSi sample (4) mounted on the sample holder. The small
faces of the sample are soldered onto two 120µm Cu wires (used as current leads) and thus held
in a de�ned orientation (5). As voltage contacts 25µm Pt wires (6) are spot welded onto the
up side of the sample. The other ends of the Pt wires are soldered onto 80µm Cu wires exiting
the pressure cell. Geometry factors were determined optically via microscope as a �rst approach
(see Sec. 6.4.2). On the bottom left a piece of Sn soldered between Cu leads can can be seen
(7). The Sn is used as pressure gauge
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6.4 Data analysis

6.4.1 Symmetrization & antisymmetrization

Due to unavoidable misalignments of the contact positions there is always a transverse
voltage pick-up in the voltage Ul measured along the longitudinal contacts. Vice versa,
longitudinal contributions to the voltage UH are measured along the Hall contacts. As-
suming that the magnetoresistance is symmetric and the Hall e�ect antisymmetric to
B = 0, the data can be corrected for these misalignment contributions. Through mea-
suring a magnetic �eld interval of a �eld sweep (ρxx (B),ρxy (B)) two times with the �eld
being swept upwards and downwards the relation

ρxx = Fxx Uxx = Fxx
1

2
(Ul (+B) + Ul (−B)) (6.31)

ρxy = −Fxy Uxy = −Fxy
1

2
(UH (+B)− UH (−B)) (6.32)

called symmetrization and antisymmetrization, respectively, can be applied. Fxx and Fxy
are geometry factors (see 6.4.2)6.

Fig. 6.13 illustrates the application of Eqs. 6.31 and 6.32 to a magnetic �eld sweep. Panel
a and d show raw data of Ul and UH with measurement directions up (red) and down
(blue). The downsweeps (blue) are mirrored about B = 0 (panel b and e) and then added
to (panel c) or subtracted from (panel f) the upsweeps. The result is one dataset with an
e�ective measurement direction (black curves).

The same relations can be used for temperature sweeps (ρxx (T ), ρxy (T )). There, the
temperature sweep is measured two times at magnetic �eld values +B and −B and Eqs.
6.31 and 6.32 applied subsequently. The resulting dataset refers to a magnetic �eld with
absolute value |B|.

6.4.2 Geometry factors

For a quantitative comparison of the data from di�erent pressure cells, the speci�c re-
sistivities were calculated through multiplying the measured voltages Uxx and Uxy with
geometry factors Fxx and Fxy

ρxx =
bd

ll

1

T

1

I
Uxx = Fxx Uxx (6.33)

ρxy = −Exy
J

1

T
= −bd

lH

1

T

1

I
Uxy = −Fxy Uxy (6.34)

with sample width b, sample thickness d, distance of transport contacts ll, distance of
Hall contacts lH , and ampli�cation through a transformer T 7 (see Fig. 6.9). In a �rst

6 The minus sign of ρxy originates from general considerations about the experimental setup (see [192]).
7 see footnote 6.
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Figure 6.13: Symmetrization and antisymmetrization. (a),(b),(c) Symmetrization of
voltages Ul measured along the longitudinal contacts during �eld sweeps. (d),(e),(f) Antisym-
metrization of voltages UH measured simultaneously along the Hall contacts during the same
�eld sweeps. The arrows indicate the measurement direction of each �eld sweep.
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approach, b, d, ll and lH were determined optically through a microscope to calculate the
geometry factors Fxx,opt and Fxy,opt (see �g 6.12b). Subsequently, the geometry factors
were adjusted via scaling ρxx (p) and ρxy (p) data to a reference to achieve a higher accu-
racy (see below).

As shown in Fig. 6.14a, the pressure dependence of the longitudinal resistance at 35K,
ρxx (p, T = 35 K,B = 0), was extracted from temperature sweeps evaluated with Fxx,opt

(full data points). A linear �t of data from P�eiderer et al. [74] and pressure cell pc5,
yielding ρxx (p, T = 35 K,B = 0) = 48µΩcm− 0.8µΩcm/kbar · p, was then used as refer-
ence to adjust the geometry factors Fxx from the other pressure cells. The corresponding
scaled ρxx (p, T = 35 K,B = 0) data is shown as open data points.

Analogously, the pressure dependence of the Hall resistance at 2.8K and 13.5T,
ρxy (p, T = 2.8 K,B = 13.5 T), was extracted from �eld sweeps evaluated with Fxy,opt (full
data points in Fig. 6.14b). A linear �t of data from pressure cells pc5 and pc6, yielding
ρxy (p, T = 2.8 K,B = 13.5 T) = 0.19µΩcm−0.002µΩcm/kbar ·p, was then used as refer-
ence to adjust the geometry factors Fxy from the other pressure cells. The corresponding
scaled ρxy (p, T = 2.8 K,B = 13.5 T) data is shown as open data points.

6.4.3 Demagnetization factors

When a sample is brought into an external magnetic �eld Bext the actual �eld at the
sample position Bint is reduced due to stray �elds created by the magnetization M of
the sample. This demagnetizing �eld, which depends on the sample geometry and its
magnetization M , can be subtracted from the external �eld through the relation

Bint = Bext − µ0NM (Bext) (6.35)

with the demagnetizing factor N [222]. For the case of rectangular shaped ferromagnetic
samples N can be calculated with the formulas given in Ref. [223] which show that a
sample con�guration with the long edge parallel and the short edges orthogonal to Bext,
as ideally suited for magnetization measurements, yields the smallest N . A Con�guration
with the shortest edge parallel to Bext, as ideally suited for Hall e�ect measurements,
yields the highest N . In our case, with Hall e�ect con�guration and sample dimensions
0.2 × 2.8 × 1 mm3 NH = 0.760. Magnetization measurements by Halder [224] could be
used to determine Bint. There, NM = 0.079 with sample dimensions 5.6× 1× 1 mm3.

To simplify calculations, we used that in MnSi χ = µ0dM/dB can be approximated by
a constant χext

con in the �eld interval B < Bc2 which contains all features of interest (see
Fig. 6.15). For B > Bc2 the approximation Bint ≈ Bext − µ0M

sat was used as χ becomes
small, i.e., the magnetization nearly saturates [225]. With µ0M (Bext) ≈ χext

conBext and
M
(
Bint
c2

)
= M (Bext

c2 ) = M sat:



114 CHAPTER 6. EXPERIMENTAL METHODS

a

0 1 0 2 02 0

3 0

4 0

5 0

6 0   P f l e i d e r e r  e t  a l . ,
  p c 5
  f i t  o f     a n d        
  p c 2
  p c 6
  p c 7
  p c 8
  p c 2  s c a l e d
  p c 6  s c a l e d
  p c 7  s c a l e d
  p c 8  s c a l e d

 

 

ρ xx(µ
Ω

cm
)

p ( k b a r )

T = 3 5 K

b

0 1 0 2 0
5 0

1 0 0

1 5 0

2 0 0

2 5 0   p c 5
  p c 6
  l i n e a r  f i t

    o f   a n d   
  p c 2
  p c 7
  p c 8
  p c 2  s c a l e d
  p c 7  s c a l e d
  p c 8  s c a l e d

 

 

ρ xy(n
Ω

cm
)

p ( k b a r )

B = 1 3 . 5 T ,  2 . 8 K
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Bint = Bext

(
1−Nχext

con

)
(6.36)

⇒ χint
con =

µ0M
sat

Bint
c2

=
µ0M

sat

Bext
c2︸ ︷︷ ︸

=χext
con

1

1−Nχext
con

=
1

1
χext
con
−N

(6.37)

With χM := χext
con,M for magnetization and χH := χext

con,H for Hall e�ect samples

χint
con =

1
1
χM
−NM

=
1

1
χH
−NH

(6.38)

⇒ χH =
χM

1− χM (NM −NH)
(6.39)

Magnetization : Bint = Bext (1−NMχM) (6.40)

Halleffect : Bint = Bext

(
1−NH

χM
1− χM (NM −NH)

)
(6.41)

For B < Bc2 the �eld reduction of Bext in the Hall e�ect experiments ranged between
12% at 11.8 kbar and 19% at ambient pressure.

6.4.4 Determination of pressures

For each pressure point the pressure value was determined through a comparison of the
transition temperature Tc, inferred from the position Tmax of the maximum in dUl (T ) /dT ,
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Figure 6.16: Determination of pressure values. (a) ρxx (T ) and (b) dUl (T ) /dT from
pressure cell pc5 where Ul is the raw signal measured along the longitudinal voltage contacts.
The transition temperature Tc was inferred from the position Tmax of the peak in dUl (T ) /dT .
The inset shows Tc (p) inferred from ρ and χ data from P�eiderer et al. [74]. (c) Pressure
dependent superconducting transition of a piece of Sn inside the same pressure cell.

with Tc (p), inferred from ρ and χ data, from P�eiderer et al. [74]. Fig. 6.16 illustrates
this for pressure cell pc5 as a showcase. The consistency between the pressure value in-
ferred from dUl (Tmax) /dT and the pressure value inferred from the pressure dependent
superconducting transition of a piece of Sn, mounted inside the same pressure cell, was
checked for several pressures and was in good agreement [226].

Pressure values above pc, where Tc is suppressed, were determined through the Sn-
transition and alternatively through extrapolating the characteristic pressure dependence
of ρxx (T = 35 K,B = 0) and ρxy (T = 2.8 K,B = 13.5 T) in cases where the Sn could not
be measured due to, e.g., broken contact wires (see Sec. 6.4.2).

The accuracies lie around ±0.5 kbar for absolute pressure values and around ±0.2 kbar
for relative pressure values between di�erent pressure points of the same pressure cell.

6.4.5 In�uence of pressure media and cooling procedures

The size and occurrence of the topological Hall signal ρtop
xy in MnSi showed di�erences

depending on (i) the pressure transmitting medium and (ii) the cooldown procedure con-
sistent with uniaxial strains in the sample produced by non-hydrostatic components in
the pressure transmitting medium.

(i) As shown in Fig. 7.10a (p. 134), experiments performed with a Fluorinert FC72:FC84
mixture with volume ratio 1:1 (FC) as pressure transmitting medium produced an
A-phase extending over a much wider temperature region as opposed to experiments
with a methanol:ethanol mixture with volume ratio 4:1 (ME). ME is known to provide
better hydrostatic pressure conditions than Fluorinert mixtures. This is, e.g., re�ected in
a much higher hydrostatic limit of ≈ 100 kbar [221] of ME as compared to a hydrostatic
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Figure 6.17: E�ect of cooling procedure on THE. The same �eld-sweep measured after
cooldown procedures with di�erent cooling rates X through the solidi�cation points of methanol
(175K) and ethanol (159K). The following cooling procedures were used: 300K/250K → 200K
@ 3K/min, 200K → 100K @ XK/min, 100K → 15K @ 3K/min, 15K → 3K @ 1K/min with
X values given in the graph. (*) After sample was heated to 250K with 1 h waiting time for
thermalization. (**) After sample-stick was removed from cryostat for complete warm-up. The
topological Hall signal ρtop

xy depends sensitively on the cooling procedure. See text for details.

limit of ≈ 20 kbar [141] of Fluorinert mixtures. As discussed later in Sec. 7.3, the
extended A-phase is consistent with typical anisotropies (/ 10−1 kbar) reported to occur
in Fluorinert mixtures. As a consequence all experiments, following the �rst ones, were
performed with ME as pressure transmitting medium.

(ii) When cooling a pressure cell, the liquid pressure medium solidi�es which potentially
leads to non-hydrostatic pressure components. Like shown by Sidorov et al. [141], for
Fluorinert mixtures a hydrostatic pressure can be retained when cooling with a small
rate of 1K/min. Hence, all experiments were performed with a cooling rate of 1K/min
through the interval 200K-100K containing the solidi�cation points of methanol (175K)
and ethanol (159K). Fig. 6.17 shows the Hall e�ect ρxy (B) of MnSi at 2.6 kbar for dif-
ferent cooldown procedures in a pressure cell with ME as pressure transmitting medium
(pc5). The largest topological Hall signals ρtop

xy are observed for the initial cooldowns
from room temperature with a rate of 1K/min through the interval 200K-100K. Heating
the pressure cell to 250K and cooling down again at di�erent rates between 0.5K/min
and 3K/min produces a reduced ρtop

xy illustrating the dependence on the cooling procedure.

It is important to note that earlier Hall e�ect measurements on MnSi under pressure
by Lee et al. [162] were performed with a single component Fluorinert FC77, known to
have poor hydrostatic pressure properties. We believe that this produced the unusual
topological Hall signal smeared out over a wide �eld region (up to Bc2) they observed.
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Chapter 7

Results p < p∗

7.1 Magnetic �eld dependence

The Hall e�ect ρxy (B) shows a pressure dependent top-hat shaped signal whose size in-
creases up to ≈ 40 nΩcm with pressures up to 12 kbar. As shown below, through studying
�eld boundaries, pressure dependence, and the evolution of its size, the top-hat signal in
ρxy (B) can be attributed to the topological Hall e�ect (THE) signal ∆ρtop

xy ≈ 4.5 nΩcm
seen at ambient pressures [15]. Measurements on samples with di�erent qualities and
the usage of di�erent pressure transmitting media suggest that the large top-hat signal
reported by Lee et al. [162] also represents a THE signal. However, as we can show, the
signal they observed is broadened due to low sample quality and pressure inhomogeneities
and hence emerges in an unexpected �eld range.

Fig. 7.1 shows the magneto-transport properties of MnSi at 2.8K for pressures up to
11.5 kbar and �elds up to 14T. With increasing �eld the magnetoresistance ρxx (B) nor-
malized to ρxx (B = 0) drops, i.e., shows a negative magnetoresistance, from the sharp
maximum at B = 0 by about 9% up to Bc2, shows a shallow minimum and increases again
to higher �elds, i.e., shows a positive magnetoresistance at high �elds. With pressure in-
creasing up to ≈ 12 kbar the same qualitative behavior is observed (Fig. 7.1a). The Hall
resistivity ρxy (B) decreases down to ≈ −190 nΩcm with increasing �eld and displays only
a small increase with increasing pressure by about 10% at 14T from 0.5 kbar to 11.5 kbar
(Fig. 7.1b). Its slope, and hence the charge carrier concentration, does essentially not
change with pressure, and with it the normal Hall constant R0 (p, T = 2.8 K) derived
from the slope of ρxy (B) above 10T as shown later in Fig. 8.1b. The Hall conductivity
σxy = − ρxy

ρ2xx+ρ2xy
≈ −ρxy

ρ2xx
is practically featureless and shows only small non-linear contri-

butions due to the AHE. σxy has only a small pressure dependence and drops by about
5% at 14T from 0.5 kbar to 11.5 kbar (Fig. 7.1c).

The magneto-transport properties at small �elds up to 1T are shown in Fig. 7.2 for a
pressure of 7.0 kbar and at various temperatures below and above Tc = 19.2 K. At tem-
peratures above Tc, ρxx (B) displays a featureless negative magnetoresistance (Fig. 7.2a).
Below Tc, ρxx (B) rises up to Bc1 before it drops with distinct changes of slope at Bc1 and
Bc2. In a �eld and temperature range somewhat larger than the skyrmion lattice phase
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(SLP) at ambient pressure, ρxx (B) displays a shallow maximum. In the same range a
top-hat shaped signal can be observed in the Hall resistivity ρxy (B) on top of NHE and
AHE contributions to the Hall e�ect (Fig. 7.2b). The size of ≈ 40 nΩcm, which is tenfold
the size of ∆ρtop

xy ≈ 4.5 nΩcm at ambient pressure, is in agreement with the signal reported
by Lee et al. [162].

The top-hat signal appears and vanishes abruptly at certain �elds Ba1 and Ba2 as it is
expected of a THE contribution. However, the �eld range does not expand all the way
from Bc1 to Bc2, as reported by Lee et al. [162], but is smaller. Through studying samples
of di�erent qualities, i.e. di�erent RRRs, we can show that the extended �eld range is an
e�ect seen in low quality samples as used by Lee et al. [162]. Higher quality samples show
the top-hat signal in a smaller �eld range as will be discussed in Fig. 7.5. In the temper-
ature range where the top-hat signal can be observed, the size of the Hall conductivity
σxy = − ρxy

ρ2xx+ρ2xy
≈ −ρxy

ρ2xx
increases with decreasing temperature before vanishing like ∆ρtop

xy

at ambient pressure when exiting the SLP (Fig. 7.2c). Also, the signal increase in σxy on
cooling is expected for a THE since the polarization increases with the magnetization as
opposed to a temperature independent σAH−int

xy ∝ ρ0
xx expected for the intrinsic AHE seen

otherwise in MnSi (see Sec. 6.2.3). Thus, the data suggests that the top-hat signal can
be identi�ed with a THE.

Fig. 7.3 shows examples of typical ρxx (B) curves for T < Tc (panels a and c) and
ρxy (B) curves at temperatures where the top-hat signal is observed under pressures up
to 12 kbar (panels b and d). The transition �elds Bc1, Bc2 and Ba1, Ba2, identi�ed by
distinct changes of slope, are indicated by arrows. As explained in Sec. 6.4.1, sym-
metrization/antisymmetrization yields datasets with an e�ective measurement direction
from negative to positive �eld, i.e., here from -1T to 1T. Hence, transition �elds at neg-
ative (positive) e�ective �elds were measured at decreasing (increasing) �elds and are
labeled with the superscript �-� (�+�). The data for pressures p > pc shown in panels e to
i will be covered in Chap. 9.

The �elds Bc1 and Bc2 can be identi�ed in ρxx (B) where the signatures of Bc1 and Bc2

change qualitatively with temperature and pressure. At lower pressures ρxx (B) displays a
maximum at B = 0 whereas it displays a shallow minimum up to Bc1 at higher pressures.
With increasing temperature, the curvature d2ρxx (B = Bc2) /dB2 changes from positive
to negative. The �elds Bc2, Ba1 and Ba2 can be identi�ed in ρxy (B) which shows the
same qualitative �eld dependence at all pressures up to 12 kbar. In contrast to Bc1 and
Bc2 a hysteresis is observed for Ba1 and Ba2 (see below).

Fig. 7.4a shows the Hall resistivity ρxy (B) at 7.4 kbar in the temperature range of the
top-hat signal for increasing (red curve) and decreasing (blue curve) �elds. Ba1 and Ba2

show a hysteresis indicating a �rst order transition into the SLP whereas no hystere-
sis is observed outside of it. The size ∆ρtop

xy of the top-hat signal can be determined
after subtracting NHE and AHE contributions from ρxy (B) (Fig. 7.4b). The slope of
the NHE is determined at �elds B > Bc2 and subtracted from ρxy (B) �rst. In a sec-
ond step the AHE contribution, assumed linearly in B up to Bc2, is subtracted yielding
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.
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ρ∗xy =
(
ρxy − ρNHExy

)
− ρAHExy in which a clear peak can be seen. ∆ρtop

xy is then estimated
as the peak height as illustrated.

When considering the evolution of the top-hat signal in the Hall resistivity ρxy (B), the
peak height increases up to ≈ 50 nΩcm at 12 kbar, i.e., to the tenfold size of the THE
signal at ambient pressure (Fig. 7.5). A comparison with the magnetization M (B) from
Halder [224] shows that the boundaries of the top-hat signal coincide with that of the
SLP, and that it cannot originate from a feature in the uniform magnetization M (B).
Thus, an AHE can be ruled out as origin suggesting a THE. Furthermore, the �eld and
temperature range of the top-hat signal proves to be dependent on the sample quality
and explains the wide �eld range reported by Lee et al. [162].

Fig. 7.5a and b show the Hall resistivity ρxy (B) at low �elds in two samples of di�erent
quality, RRR≈45 and RRR≈150, at a reduced temperature Tred = (T − Tc) /Tc where
the top-hat signal becomes maximal (Tred,max). Dependent on the sample quality ρxy (B)
exhibits changes. First, the top-hat signal peaks at di�erent reduced temperatures. For
the low quality sample Tred,max ≈ −0.17, i.e., the largest top-hat signal is observed at
T = 0.83Tc. For the high quality sample Tred,max ≈ −0.04, i.e., the largest top-hat signal
is observed at T = 0.96Tc. However, the size of the top-hat signal proves to be indepen-
dent of sample quality. Second, in the high quality sample the temperature and �eld range
coincides well with the SLP at ambient pressure, whereas in the low quality sample the
�eld range of the top-hat signal is much wider and also a di�erent temperature dependence
is observed. Experiments with a FC72:FC84 Fluorinert mixture (FI) as pressure trans-
mitting medium (instead of a Methanol:Ethanol mixture (ME) used otherwise), known to
provide much less isotropic pressure conditions, also lead to an extended temperature and
�eld range of the top-hat signal (see Fig. 7.10a). The changed top-hat signal in low qual-
ity samples suggests that local di�erences of the compressibility of MnSi in the vicinity of
defects and inhomogeneities leads to pressure inhomogeneities and local uniaxial strain.
Taken together, the top-hat signal reported by Lee et al. [162], which extended up to Bc2,
seems to be due to a combination of a low sample quality (RRR≈50) and inhomogeneous
pressure conditions. In Ref. [162] a single component Fluorinert FC:77 was used, known
to yield even less favorable pressure homogeneity than Fluorinert mixtures [141]. Third,
the non-top-hat signal part of ρxy (B) of the low quality sample is much less pressure de-
pendent than the high quality sample. Since the dominant AHE contribution follows the
relation ρxy = R0B+SHρ

2
xxM [213], the decrease in ρxy re�ects the decrease in ρxx as the

temperature range of the magnetic phase is shifted to lower temperatures with increasing
pressure. The decrease is larger in the high quality sample in which ρxx converges against
a lower residual resistance as compared to the low quality sample.

Fig. 7.5c illustrates magnetization data in a sample with RRR≈70 at a reduced temper-
ature 5% below Tc, according to Tred,max observed in the high quality Hall e�ect sample.
M (B) qualitatively tracks ρxy (B) outside the top-hat signal region as expected for a
dominating AHE contribution. In turn, inside the �eld region of the top-hat signal in
ρxy (B) the magnetization M (B) does not show a comparable signature and even de-
creases by ≈ 20% with pressure increasing up to 12 kbar, whereas the size of the top-hat
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Figure 7.3: Typical Hall e�ect and magnetoresistance of MnSi under pressure. Ex-
amples of typical ρxx (B) curves for T < Tc (panels a,c,e), ρxy (B) curves at temperatures where
the top-hat signal is observed for pressures < pc (panels b,d), and ρxy (B) at 2.8K for p > pc
where a broad feature emerges in the Hall e�ect (panel f). The transition �elds Bc1, Bc2 and
Ba1, Ba2 for p < pc, and Bm, Btop for p > pc, that are identi�ed by distinct changes of slope, are
indicated by arrows. (g) Exponent α from ρxx (T ). (h) Temperature dependent Hall resistivity
ρxy (T ). (i) Hall resistivity ρxy (B) up to high �elds.
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signal increases. Hence, the top-hat signal does not derive from an AHE contribution
tracking a feature in the magnetization. This supports a THE contribution as origin.

Susceptibility dM/dH data calculated from the magnetization (Fig. 7.5d) allows to vi-
sualize even small changes in M (B) as well as to track transition �elds as a comparison
with AC susceptibility data recently showed [153]. The phase boundaries of the SLP at
ambient pressure are clearly visible as spikes, indicating a �rst order transition, and coin-
cide with the �eld region of the top-hat signal in ρxy (B) (Fig. 7.5d). Under pressure, the
transition �elds are unchanged while the spike signatures smear out. The presence of the
top-hat signal in ρxy (B) in the same pressure region suggests that the spikes in dM/dH
smear out due to small pressure inhomogeneities while the SLP remains.

In summary, the �eld dependence of Hall resistivity, Hall conductivity, magnetization and
susceptibility at various pressures and temperatures allows us to attribute the top-hat
signal in ρxy (B) and σxy (B) to the THE signal at ambient pressure. Hence, the top-hat
signal will be referred to as ∆ρtop

xy in the following. Its size increases by a factor of ≈ 10
from 4.5 nΩcm at ambient pressure to ≈ 40 nΩcm at 12 kbar. The �eld and temperature
range of ∆ρtop

xy does not change with pressure, however, it depends on sample quality and
pressure conditions. The top-hat signal reported by Lee et al. [162] can be identi�ed as a
∆ρtop

xy broadened due to poor sample quality and pressure conditions.
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ρxy (B) for a low and a high quality sample in comparison to magnetization data from Halder [224]
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below Tc where a maximal top-hat signal was observed (see text). All �eld values were corrected
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data both �eld sweep directions are shown. (a) ρxy (B) in a low quality sample with RRR≈ 45
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Magnetization M (B) in a sample with RRR≈ 70. (d) Susceptibility dM/dH calculated from
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7.2 Temperature dependence

The temperature dependent Hall resistivity ρxy (T ) shows a metastable high value down
to the lowest temperatures measured after �eld cooling at �elds where a top-hat ∆ρtop

xy

signal is seen in ρxy (B). A comparison with the magnetization identi�es the metastable
signal as THE, implying a metastable skyrmion lattice phase (SLP) as origin, like it was
seen in Fe1−xCoxSi in small angle neutron scattering studies [159]. Furthermore, a depen-
dence on sample quality is discussed.

Typical ρxy (T ) data at pressures up to ≈ 12 kbar is illustrated in Fig. 7.6a,b,c. Two
di�erent measurement procedures were performed: (i) Data recorded on heating in a
magnetic �eld after cooling in zero �eld, labeled as �zfc/fh�. (ii) Data recorded on heating
in a magnetic �eld after cooling down in the same unchanged �eld, labeled as �fc/fh�. As
a crosscheck, data recorded while cooling in a �eld yielded the same results as recording
on heating in the same �eld after �eld cooling, thereby justifying the fc/fh procedure.
The lowest temperature accessible was typically 2K.

At pressures below pc and magnetic �elds outside the SLP, ρxy (T ) behaves as expected
for a dominating AHE contribution, following the relation ρxy = R0B + SHρ

2
xxM [213].

ρxy (T ) shows a maximum at Tc and becomes small for both low and high temperatures
due to the dropping resistivity ρxx and magnetization M , respectively. Fc/fh and zfc/fh
yield the same results (Fig. 7.6a and c). However, for �elds inside the SLP a high Hall
signal remains below Tc for fc/fh while zfc/fh curves drop to low temperatures as seen at
other �eld values (Fig. 7.6b). This implies a metastable SLP down to the lowest temper-
atures measured. So once the SLP is prepared, thermal �uctuations cannot unwind the
magnetic structure. Further tests show that the fc/fh procedure is the only way to obtain
a high Hall signal down to lowest temperatures. ρxy (T ) at pressures above pc illustrated
in Fig. 7.6d,e,f will be covered in Chap. 9.

When studying ρxy (T ) at various pressures in samples of di�erent quality, a consider-
able variation can be seen in the metastable Hall signal that emerges under pressure at
temperatures below Tc for �eld cooled measurements. Fig. 7.7 shows ρxy (T ) for a high
quality sample with RRR≈ 150 in the panels on the left hand side and for a low quality
sample with RRR≈ 45 on the right hand side. Panel a and d display �eld cooled mea-
surements, panel b and e display the corresponding zero �eld cooled measurements, and
�nally panel c and f display the di�erences between �eld and zero �eld cooled measure-
ments. The metastable Hall signal shows much less variation in the low quality sample
than in the high quality sample, suggesting that pinning at defects is needed to stabilize
the �eld cooled SLP at low temperatures. At all pressures and for all samples studied the
metastable Hall signal converges against a limit of ≈ 50 nΩcm.

A comparison of the Hall resistivity ρxy (T ) with the magnetization M (T ) allows to dis-
tinguish between AHE and a THE contributions, since the AHE scales with the uniform
magnetization whereas the THE does not. Fig. 7.8 shows magnetization measurements
under pressure from Halder [224] which were performed following the same zfc/fc and fc/fh
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Figure 7.6: Temperature dependent Hall e�ect below and above the critical pressure.
Temperature dependent Hall resistivity ρxy (T ) at 7.4 kbar (panels a,b,c) and 15.7 kbar (panels
d,e,f), i.e. below and above pc at various magnetic �elds. Curves obtained for two di�erent
measurement procedures are shown: Black curves were measured while heating in a �eld after
cooling in zero-�eld (zfc/fh). Red curves were measured while heating in a �eld after cooling in
the same �eld (fc/fh) or while cooling in a �eld (fc) which was checked to yield the same results
as fc/fh. At �elds above and below the �eld range of the SLP no di�erence between zfc/fh and
fc/fh,fc is observed. At pressures below pc, ρxy (T ) is governed by a broad peak around Tc while
above pc a small smeared out peak emerges below ≈15K, i.e. in the NFL region. In the �eld
region of the SLP a metastable Hall signal is observed down to the lowest temperatures for fc/fh
measured curves at pressures below pc (panel b). At pressures above pc, no di�erence is observed
at the same �eld (panel e).
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Figure 7.7: Field cooled THE. Temperature dependent Hall resistivity ρxy (T ) at �eld values
inside the SLP, for two samples of di�erent quality, RRR≈ 150 (left side panels) and RRR≈ 45
(right side panels), at various pressures up to 12.3 kbar. Panel a and d show curves measured
on �eld cooling (fc) and �eld heating after �eld cooling (fc/fh), respectively. Panel b and e show
the corresponding curves on heating after zero �eld cooling (zfc/fh). The di�erences of �eld
cooling and zero �eld cooling, i.e. ∆ρxy (T ) = ρfc

xy (T ) − ρzfc
xy (T ), are �nally shown in panel c

and f. Under pressure, a metastable high Hall signal emerges down to the lowest temperatures
measured on �eld cooling.
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Figure 7.8: Temperature dependent magnetization under pressure. Magnetization
measurements under pressure from Halder [224] performed on pressure cell pcM following the
same zfc/fc and fc/fh procedures as for the Hall e�ect measurements shown above. First row: No
signi�cant di�erences between �eld and zero �eld cooling can be observed in the magnetization
M (T ). Second row: M/H (T ) plotted to reveal better di�erences between zfc and fc curves.

Also no signi�cant di�erences can be observed. Third row:
d(M/H)
dT (T ) permits to determine Tc

accurately and corresponds to the magnetocaloric e�ect dM/dT = dS/dB. The sharp spike near
Tc for p = 0 vanishes with increasing pressure. The qualitative behavior remains unchanged.

procedures as for the Hall e�ect measurements shown above. No signi�cant di�erences
between �eld and zero �eld cooling can be observed in the magnetization M (T ) shown
in the panels of the �rst row, in M/H (T ) shown in the second row, and in d(M/H)

dT
(T )

shown in the third row. Hence, the metastable Hall signal seems to represent a THE.

Summarized, a metastable Hall signal emerges in the temperature dependent Hall e�ect
ρxy (T ) under pressure after �eld cooling. The metastable Hall signal does not follow
the uniform magnetization and hence seems to represent a THE contribution. At all
pressures and for all samples studied the metastable Hall signal converges against a limit
of ≈ 50 nΩcm at 2.0K, the lowest temperature measured. This value seems to be the
generic THE value in MnSi that is reached once the e�ects of �nite temperatures are
switched o�.

7.3 Magnetic phase diagram

At ambient pressure the phase boundaries of the magnetic phase diagram inferred from
magneto-transport measurements are consistent with susceptibility data from Bauer et
al. [153, 218]. Under pressure, the magnetic phase diagram inferred from magneto-
transport measurements does not change qualitatively, except an emerging metastable
skyrmion lattice phase (SLP) under �eld cooling. Therefore, the observed top-hat Hall
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signal under pressure is linked to the THE of the SLP seen at ambient pressure. Pressure
inhomogeneities in�uence the �eld boundaries of the SLP, whereas no dependence on the
current direction can be seen.

Fig. 7.9a shows the magnetic phase diagram inferred from magneto-transport measure-
ments (full data points) in comparison to susceptibility data from Bauer et al. [153, 218]
(open data points). All phase boundaries prove to be consistent. Furthermore, the
magneto-transport data allows to track the evolution of the phase diagram under pressure
(Fig. 7.9b, c, d, e). With increasing pressure the helimagnetic transition Tc is suppressed
to lower temperatures. The transition Bc2 from the conical (spin-�op) phase to a spin
polarized state does not change with pressure, consistent with SANS data from P�eiderer
et al. [178]. In contrast to Ref. [178], the transition Bc1 from the helical to the conical
phase slightly increases with pressure. However, this re�ects mainly the changing form of
the magnetoresistance (see Fig. 7.3).

In contrast to Lee et al. [162], the THE signal forms a well-de�ned phase pocket below
Tc (red shading). As discussed in Sec. 7.2, a metastable THE signal emerges under �eld
cooling, so that the phase pocket is then extended down to the lowest temperatures mea-
sured (bright red shading). Taken together, the phase diagram under pressure remains
qualitatively unchanged, except the emerging metastable region under �eld cooling. The
small phase pocket below Tc at ambient pressure, related to the SLP, evolves continuously
with pressure into a phase pocket with a larger �eld and temperature range. Therefore,
we also identify the phase pocket under pressure as a SLP (denoted �A-phase�). As will be
discussed in Chap. 8, the THE signal in the SLP under pressure can also be quantitatively
linked to the THE signal at ambient pressure.

To determine the role of pressure inhomogeneities and local strains on the SLP under pres-
sure, further studies were performed with a FC72:FC84 Fluorinert mixture with volume
ratio 1:1 (FI) as pressure transmitting medium, known to provide less uniform pressure
conditions than the methanol:ethanol mixture with volume ratio 4:1 (ME) used otherwise.
A comparison at pressures around 7 kbar in Fig. 7.10a shows a signi�cantly larger SLP
in a high quality sample (RRR≈ 92) with FI as pressure transmitting medium than in a
low quality sample (RRR≈ 40) with ME. Since ρxy (T ) data in Sec. 7.2 suggested that
pinning at defects stabilize the SLP at low temperatures, the extended range seems to be
completely caused through the usage of FI consistent with typical anisotropies reported to
be / 10−1 kbar. However, those anisotropies are tiny as compared to the overall pressure
of order ≈ 10 kbar.

Furthermore, as expected, no signi�cant di�erence was observed in the Hall signal for
the current being applied along di�erent directions, i.e., I ‖ 〈100〉 and 〈110〉 with �eld
B ‖ 〈110〉 (Fig. 7.10b).
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Figure 7.9: Magnetic �eld-temperature phase diagram of MnSi under pressure.
Magnetic phase diagram at various pressures for B ‖ 〈110〉. The data was recorded on samples
with RRR ≈ 40−45 and with ME as pressure transmitting medium. Bc1, Bc2, Ba1, and Ba2 refer
to B+

c1, B
+
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+
a1, and B

+
a2 in Fig. 7.3. Tmax represents the temperature dependent maximum

in ρxy (T ) (see Figs. 7.3h, 7.6, 7.7). (a) At ambient pressure magneto-transport data (full
data symbols) is consistent with susceptibility data of Bauer et al. [153, 218] (empty symbols).
(b),(c),(d),(e) Phase diagram under pressure inferred from magneto-transport data. Except a
metastable SLP observed under �eld cooling (bright red shading) the phase diagram remains
qualitatively the same.
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Chapter 8

Discussion p < p∗

As seen in the previous chapter, the size of the topological Hall e�ect (THE) in the
skyrmion lattice phase (SLP) of MnSi increases from ∆ρtop

xy ≈ 4.5 nΩcm to ≈ 40 nΩcm
with pressure up to ≈ 12 kbar. Furthermore, a large Hall signal ≈ 50 nΩcm is observed
at low temperatures in �eld cooled temperature sweeps that could be identi�ed as THE.
In this chapter we will �rst summarize the behavior of the THE under pressure in Sec.
8.1. Furthermore, we will show in Sec. 8.2 that size and pressure dependence of the large
Hall signal observed in �eld cooled temperature sweeps can be described by Eq. 6.25:

∆ρtop
yx ≈ R0B

e

〈
qeσ
e

〉
FS

= R0B
effP.

This con�rms that the Hall signal truly represents a THE whose size represents the generic
size of the THE in MnSi that can be seen when the e�ects of �nite temperature are essen-
tially switched o�. A discussion about how the factors in Eq. 6.25 evolve with pressure
reveals that the decreased THE size at ambient pressure and high temperatures can be
attributed to the change of the local polarization close to Tc for the most important part
(Sec. 8.3). The remaining part is most likely due to one or a combination of several
mechanisms including changes of the Fermi surface, change of scattering processes, com-
petition between exchange splitting and spin-orbit coupling, and spin-�ip scattering. All
conclusions will be summarized in Sec. 8.4.

8.1 ∆ρtop
xy under pressure

The key features that we �nd of the THE signal ∆ρtop
xy under pressure are illustrated in

Fig. 8.1a. (i) We �nd that ∆ρtop
xy observed in magnetic �eld sweeps (cf Fig. 7.5a and b)

increases under pressure by roughly a factor of ten from ≈ 4.5 nΩcm at ambient pressure
to ≈ 40 nΩcm at ≈ 12 kbar (full data points). In the following we will refer to this signal
as ∆ρtop

xy,BS. The size of ∆ρtop
xy,BS was estimated as shown in Fig. 7.4 at temperatures close

to Tc where it becomes maximal. The solid line is a guide to the eye and illustrates an
upper boundary. As Tc is suppressed to lower temperatures with increasing pressure, the
increase in ∆ρtop

xy,BS also means an increase with decreasing temperature. Since sample

135
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quality only a�ects the reduced temperature at which the maximal THE signal is ob-
served but not the size of ∆ρtop

xy,BS, we do not distinguish between di�erent pressure cells
here.

(ii) The metastable THE signal observed in �eld cooled temperature sweeps at B = 0.25 T
(see Fig. 7.7) allows to study the generic size of the THE in MnSi in the low tempera-
ture limit, i.e., without the e�ects of �nite temperature. The open data points in Fig.
8.1a correspond to the di�erence of �eld and zero-�eld cooled ρxy (T ), i.e., THE of the
metastable SLP, at 2K, the lowest temperature measured. In the following we refer to
this signal as ∆ρtop

xy,TS. Here, only data from low quality samples is shown for clarity since
they exhibit a more stable �eld cooled SLP at low temperatures (cf Fig. 7.7c and f). With
increasing pressure, the metastable THE signal decreases slightly. The decrease agrees
with the relative pressure dependence of the magnetization dmred/dp ≈ −0.02 kbar−1,
with mred = m (p) /m (p = 0), as extrapolated for zero �eld from �elds above Bc2 [174]
(solid straight line). At pressures above 12 kbar, Tc is su�ciently suppressed so that
∆ρtop

xy,BS from �eld sweeps reach the size of those from metastable temperature sweeps,
∆ρtop

xy,TS, and the full and open datapoints overlap. When extrapolated to ambient pres-
sure, ∆ρtop

xy,TS runs against a value of ≈ 50 nΩcm.

Considering the key features above, two question arise: Can the size of ∆ρtop
xy,TS be suc-

cessfully described by Eq. 6.25 which implies that it truly represents the generic size of
the THE in MnSi caused by a skyrmion lattice? Why is ∆ρtop

xy,BS at ambient pressure so
much smaller? These two questions will be discussed in Secs. 8.2 and 8.3.

8.2 Generic size of ∆ρtop
xy

In this section we clarify that the THE signal observed in the low temperature limit,
∆ρtop

xy,TS, can be described by Eq. 6.25 and therefore represents the generic THE size in
MnSi caused by a skyrmion lattice. First, we will see that Eq. 6.25 yields a reason-
able value for the polarization P at ambient pressure where ∆ρtop

xy,TS, R0, and Beff are
known. Second, through a comparison with the magnetization we will see that the pres-
sure dependence of ∆ρtop

xy,TS can be described quantitatively by Eq. 6.25. There, the main
contribution to the pressure dependence relates to a decreasing polarization. With this
knowledge we are then able to discuss the mechanisms behind the pressure dependence
of ∆ρtop

xy,BS observed in �eld sweeps in Sec. 8.3.

According to Eq. 6.25 the local spin polarization can be calculated as

P =

∣∣∣∣ eqeσ
∣∣∣∣ 〈qeσe

〉
FS

≈
∆ρtop

yx

R0Beff
. (8.1)

At ambient pressure we can insert the values known from our experiments and the litera-
ture. With ∆ρtop

xy,TS ≈ −50 nΩcm, Beff ≈ −13.15 T, and R0 = 17 nΩm/T the polarization
becomes P ≈ 0.22. This is of the same order of magnitude as the ratio of local magneti-
zation to the saturated magnetic moment of the Mn ions P = µspo/µsat ≈ 0.4µB

2.2µB
≈ 0.18,
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Figure 8.1: Evolution of the THE and the normal Hall constant R0 under pressure.
(a) full data points: ∆ρtop

xy (p) inferred from magnetic �eld sweeps at temperatures where it
becomes maximal (see Fig. 7.4). Data from pressure cells pc5, pc6, pc8 and at ambient pressure
from Neubauer et al. [15] is shown. open data points: ∆ρtop

xy (p) inferred from the di�erence of
�eld cooled and zero-�eld cooled temperature sweeps at 2K (see Fig. 7.7). For clarity, only data
from pressure cells pc5 and pc6 are shown since they exhibit a more stable �eld cooled SLP at
low temperatures due to low quality samples. (b) Normal Hall constant inferred from the slope
of ρxy (B) at �elds larger 10T (see Fig. 7.1). Data from pressure cells pc5, pc6, pc8 and at
ambient pressure from Neubauer et al. [15] is shown.
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and hence a reasonable value. Considering the complex band-structure of MnSi, where for
both majority and minority charge carriers electron-like and hole-like parts of the Fermi
surfaces exist [227,228], and the complicated 〈qeσ/e〉FS that determines P , Eq. 6.25 yields
a quantitative result that explains the large Hall signal under pressure. Furthermore, it
con�rms that the large Hall signal can be explained by a THE contribution caused by a
skyrmion lattice.

As illustrated by the open datapoints in Fig. 8.1a, ∆ρtop
xy,TS decreases linearly with increas-

ing pressure. Since R0 is only weakly pressure dependent in the low temperature limit
and since Be is in general only weakly pressure dependent as will be discussed below, the
decrease in ∆ρtop

xy,TS has to originate from the change of the Fermi surface average of the
emergent charge 〈qeσ/e〉FS. To test this, we compare the pressure dependence of ∆ρtop

xy,TS

with that of the magnetization. As the emergent charge is of opposite sign for majority
and minority spins, one expects a linear dependence of 〈qeσ/e〉FS on the local spin polar-
ization1 and hence on the magnetization. The straight solid line in Fig. 8.1a shows the
slope of the relative pressure dependence of the magnetization dmred/dp ≈ −0.02 kbar−1,
with mred = m (p) /m (p = 0), as extrapolated for zero �eld from �elds above Bc2 [174].
The rate of decrease is also consistent with the ordered magnetic moment inferred from
SANS data [50, 178]. We �nd that the pressure dependence of ∆ρtop

xy,TS and equivalently
the pressure dependence of 〈qeσ/e〉FS quantitatively coincides with that of the magnetiza-
tion. This shows that the pressure dependence of the generic THE can be described by
Eq. 6.25 and is dominated by 〈qeσ/e〉FS.

The check of the consistency at ambient pressure and the quantitative agreement with
the pressure dependence show that Eq. 6.25 can describe the large Hall signal observed
in the low temperature limit. Therefore, ∆ρtop

xy,TS represents the generic size of the THE
in MnSi caused by the skyrmion lattice. The pressure dependence of the normal Hall
constant R0 and the emergent magnetic �eld Be will be discussed below. The pressure
dependence of the THE inferred from �eld sweeps, ∆ρtop

xy,BS, will be discussed in Sec. 8.3.

8.2.1 Normal Hall constant R0 under pressure

At low temperatures and high magnetic �elds the normal Hall constant R0 is approxi-
mately independent of pressure as seen in Fig. 8.1b where R0, inferred from the slope of
ρxy (B) at 2.8K at �elds larger 10T (see Fig. 7.1), is shown. The value is in agreement
with the ambient pressure value evaluated at room temperature of R0 ≈ 16.5 nΩcm/T
corresponding to a charge carrier concentration of n ≈ 3.78×1022 cm−3 [187]. However, it
is di�cult to evaluate R0 at small �elds where the local magnetization is small, like it is
the case close to Tc, since the AHE contribution dominates in this regime. Non-relativistic
band-structure calculations by Jeong et al. [227], which reproduce in all details the exper-
imentally observed Fermi surfaces at large �elds as De-Haas van-Alphen measurements
showed [228], allow to deduce that R0 is only weakly pressure dependent at �xed magne-

1if there are no strong changes in the band-structure
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tizations, but might have sizable changes when the magnetization is small and changes.
From Jeong et al. [227] it can be seen that topology, shape, size and sign of e�ective masses
of minority and majority Fermi surfaces in MnSi change strongly when the magnetization
is increased from 0 to 0.4µB, i.e., the size of ordered moment at low T .

Taken together, R0 does essentially not change with pressure at �xed magnetizations.
Close to Tc where the magnetization is small, however, R0 might have sizable changes.

8.2.2 Emergent magnetic �eld Be under pressure

There are two possibilities how the emergent magnetic �eld Be can change with pressure.
First, the winding number per magnetic unit cell can change when the spin-orbit coupling
becomes of a size comparable to the exchange splitting. However, for low temperatures
and deep in the ordered phase we can assume that the exchange splitting is larger than
the spin-orbit coupling, ruling out a change of the winding number.

Second, the length of the helical magnetic modulation can change with pressure and with
it the magnetic unit cell of the skyrmion lattice. So far, no data exists about the size of
the helix length in the SLP in MnSi under pressure. However, since in all B20 structures
studied so far the helix length had the same value in the SLP and in the helimagnetic
state, as expected from theory [154], it seems su�cient to consider existing data of the
change of the helix length in the helimagnetic state under pressure to determine changes
of the helix length in the SLP. Studies under uniaxial pressure show that one does not
have to worry about uniaxial pressure components inside the pressure cells as the helix
length remains unchanged under uniaxial pressure [229]. Neutron scattering studies show
that the helix length remains essentially unchanged in the helimagnetic state under pres-
sure [50, 230] which is also re�ected by the fact that the transition �eld Bc2 proves to be
pressure independent [178]. Therefore, the size of the magnetic unit cell in the SLP in
MnSi does not change with pressure.

Taken together, the emergent magnetic �eld remains unchanged under pressure and is
given by one �ux quantum per magnetic unit cell. The magnitude of the e�ective magnetic
�eld remains Beff ≈ −13.15 T and may at best increase at the percent level.

8.3 Temperature dependence of ∆ρtop
xy

While the last section discussed whether the large Hall signal ∆ρtop
xy,TS observed in �eld

cooled temperature sweeps at low temperatures truly represents a THE that can be de-
scribed by Eq. 6.25, this section focuses on the question why a considerably smaller
THE signal ∆ρtop

xy,BS is observed in magnetic �eld sweeps at ambient pressure and at high
temperatures. The most important part of the decreased size can be attributed to the
change of the local spin polarization at temperatures close to Tc compared to T → 0.
The remaining part is most likely due to one or a combination of several mechanisms in-
cluding changes of the Fermi surface, change of scattering processes, competition between
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exchange splitting, and spin-orbit coupling and spin-�ip scattering.

As seen in Fig. 8.1 and discussed in Sec. 8.2, the polarization scales linearly with the
magnetization. Hence, the decrease of the magnetization with increasing temperature
explains part of the decreased size of ∆ρtop

xy,BS at temperatures close to Tc compared to
∆ρtop

xy,TS in the low temperature limit. In Neubauer et al. [15] the polarization in the SLP
was estimated as P = µspo/µsat ≈ 0.2µB

2.2µB
≈ 0.09 being a factor two smaller than at zero

temperature P ≈ 0.4µB
2.2µB

≈ 0.18 and therefore accounts for a factor of two in the change
of ∆ρtop

xy . Although the reduction of P was certainly underestimated in [15] this does not
explain the di�erence by a factor of ten in ∆ρtop

xy between ∆ρtop
xy,TS at T → 0 and ∆ρtop

xy,BS

in the temperature range of the SLP. The remaining factor of �ve is most probably due
to one of or a combination of the following �ve scenarios:

1. Changes of Fermi surface: Band-structure calculations suggest strong changes of
Fermi surface for small local magnetizations. These would modify R0 and the Fermi
surface averages 〈qeσ/e〉FS.

2. Scattering processes : Close to Tc the scattering processes are completely di�erent
than at low temperatures. This can strongly a�ect the Fermi surface averages
〈qeσ/e〉FS as di�erent Fermi surfaces are weighted by the square of the scattering
time.

3. Spin-orbit coupling : Close to Tc the exchange splitting becomes small and might
give way to spin-orbit coupling as the dominating interaction. This implies that
electron spins do not follow the magnetic texture completely anymore reducing the
real space Berry phase pick up. For some bands the topological contribution may be
switched o� completely. Also only a part of a Fermi surface can be a�ected by the
real space Berry phases while for other parts the emergent magnetic �ux vanishes.

4. Spin-�ip scattering : Close to Tc it is possible that the adiabatic approximation is not
valid anymore and electrons are subject to spin-�ip scattering. Hence the electrons
lose the accumulated Berry phase when they scatter from a majority to a minority
electron and vice versa. This is especially the case when the spin-�ip scattering
length is smaller than the distance between the skyrmions.

5. Competition of momentum and phase-space Berry phases : When exchange splitting
and spin-orbit coupling become of the same order of magnitude, besides real-space
Berry phases momentum-space Berry phases (intrinsic AHE) and even phase-space
Berry phases can arise.

8.4 Conclusions

Taken together, our comprehensive studies of the Hall e�ect of MnSi at low temperatures
and pressures up to 12 kbar show that the top-hat shaped THE seen in the SLP at am-
bient pressure increases by a factor of ten from ≈ 4.5 nΩcm to ≈ 40 nΩcm at ≈ 12 kbar.
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The large top-hat shaped Hall e�ect signal observed under pressure clearly evolves out
of the SLP at ambient pressure and, therefore, can be attributed to a THE arising from
a SLP. As Tc is su�ciently suppressed to lower temperatures under pressure, e�ects of
�nite temperatures are essentially switched o� revealing the generic size of the THE. Fur-
thermore, the metastable SLP under �eld cooling allows to directly observe the generic
size of the THE of ≈ 50 nΩcm which depends only weakly on sample quality and pressure.

Exploring samples of di�erent qualities and pressure cells with di�erent pressure media,
we can show that the signal observed by Lee et al. [162] represents a THE signal broad-
ened by defect induced pinning and pressure inhomogeneities.

The tenfold increase in size of the THE is mainly determined by how the scattering
rates average over the various Fermi surfaces. The reduced size observed at ambient
pressure is due to a unusual combination of mechanisms including changes of the polar-
ization, changes of the Fermi surface, change of scattering processes, competition between
exchange splitting and spin-orbit coupling and spin-�ip scattering, where the most im-
portant contribution is the reduction of the polarization close to Tc.

The Hall e�ect experiments up to ≈ 12 kbar, presented here in Chaps. 7 and 8, allow to
unambiguously link the large Hall e�ect signal under pressure to a skyrmion lattice. This
establishes a sound basis for the experiments at pressures exceeding p∗ and pc presented
in the following Chaps. 9 and 10. There, it will be shown that the THE signal survives
up into the non-Fermi liquid (NFL) phase, however, in a broadened �eld and temperature
range that coincides with the boundaries of the NFL regime. This implies that skyrmionic
textures exist in, and potentially are the reason for, the extended NFL regime observed
in MnSi.
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Chapter 9

Results p > p∗

For pressures exceeding p∗ ≈ 12 kbar, an extended non-Fermi liquid (NFL) regime appears
above Tc and pc in the phase diagram of MnSi (cf Fig. 5.5a). The top-hat shaped topolog-
ical Hall e�ect (THE) signal observed in the skyrmion lattice phase (SLP) survives in the
NFL regime. Compared to pressures p < p∗ the THE signal exists in a broadened �eld
and temperature range whose boundaries coincide with that of the NFL regime. Here, we
present resistivity and Hall e�ect measurements up to 18.1 kbar. First, we reproduce the
temperature and �eld boundaries of the NFL regime shown in the literature by P�eiderer
et al. [9] and Doiron-Leyraud et al. [10] through the temperature dependent longitudinal
resistivity ρxx (T ). Furthermore, we show magnetoresistance and �eld dependent Hall
e�ect data across a wide �eld range, up to 14 T, of the magnetic phase diagram to be able
to unambiguously distinguish between AHE, NHE, and THE contributions. Our main
result is then inferred from magnetic �eld sweeps at small �elds where the THE signal is
observed. Finally, the magnetic phase diagram is discussed at various pressures.

9.1 Temperature dependence

The longitudinal resistivity ρxx (T ) shows an abrupt transition from a Fermi liquid (FL)
T 2 to a non-Fermi liquid (NFL) T 3/2 temperature dependence on crossing the critical
pressure pc, consistent with literature [9,10]. Also, the return of ρxx (T ) to a FL temper-
ature dependence when crossing the metamagnetic transition under an applied magnetic
�eld is reproduced. Contrary to data at pressures below pc, no metastable Hall e�ect
signal can be observed above pc in �eld cooled temperature sweeps of ρxy (T ).

Fig. 9.1a shows the temperature dependence of the longitudinal resistance ρxx (T ) at
B = 0 for pressures up to 15.7 kbar. The transition temperature Tc, seen as change of
slope, is suppressed from ≈ 30 K to lower temperatures with increasing pressure and van-
ishes at a critical pressure pc ≈ 14.6 kbar. At pc, the T 2 dependence at low temperatures
changes abruptly into a T 3/2 dependence that is observed up to T ∗ ≈ 12 K. This is further
illustrated in the inset which shows the exponent α from low temperature �ts of ρxx (T )
with the formula T = ATα + ρ0. α = 2 is associated with a Fermi liquid behavior (blue
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shading) whereas α = 3/2 is associated with a non-Fermi liquid behavior (orange shading).

Fig. 9.1b shows ρxx (T ) at 15.7 kbar for various magnetic �elds up to 2.5 T. As illustrated
in the inset, when applying a magnetic �eld the α = 3/2 NFL behavior abruptly reverts
to α = 2 FL behavior at the �eld BNFL ≈ 0.7 T which coincides with the itinerant meta-
magnetic transition at Bm. Exponents close to BNFL in the center of the crossover are
not shown.

At pressures below pc, the temperature dependent Hall resistivity ρxy (T ) is governed by
a broad peak around Tc, while at pressures above pc, a small broad peak emerges below
≈15K, i.e. in the NFL regime. As will be discussed in Sec. 9.3 along magnetic �eld
sweeps, the broad peak is due to a THE contribution. However, unlike at pressures below
pc, no metastable Hall signal is observed in �eld cooled temperature sweeps at pressures
above pc. This is illustrated in Fig. 7.6 (p.129) where ρxy (T ) at 7.4 kbar (< pc) is shown
in comparison to ρxy (T ) at 15.7 kbar (> pc). The data in panels a,c,d, and f was mea-
sured at �elds outside of the �eld range of the SLP. Field cooled and zero �eld cooled
data display no di�erence. Data in panel b and e was measured at �elds inside the �eld
range of the SLP. For �eld cooled data at 7.4 kbar a metastable Hall signal emerges. This
was already discussed in Sec. 7.2. In turn, for data at 15.7 kbar no metastable Hall signal
can be observed. As for lower pressures a slight dependence of the metastable Hall signal
on the sample quality was observed, we checked a high (RRR ≈ 150) and a low quality
(RRR ≈ 45) sample at pressures above pc. Neither showed a metastable Hall signal.

9.2 Magnetic �eld dependence at high �elds

At low temperatures, the magnetoresistance exhibits distinct drops at the transition �elds
Bc2 for pressures below pc and at Bm, the itinerant metamagnetic transition, for p > pc.
At higher temperatures, the magnetoresistance shows no distinct features. The Hall ef-
fect is dominated by the NHE and hence shows a linear slope at low temperatures. At
higher temperatures a large AHE contribution arises as a �knee� shaped feature that is
accompanied by a shoulder sitting on top of the AHE contribution. The shoulder vanishes
above ≈ 70 K and can be clearly distinguished from the THE signals at small �elds that
represent our main result and will be presented in the next section.

Fig. 9.2a shows the magnetoresistance ρxx (B) at pressures up to 15.7 kbar at �elds up
to 14T for temperatures of 2.8K (upper panel) and 28.7K (lower panel). At 2.8K and
p < pc, ρxx (B) drops by about 10% up to Bc2 before increasing again monotonously up
to high �elds. For p > pc, ρxx (B) increases by about 10% up to Bm, the itinerant meta-
magnetic transition, then drops by about 40% before increasing again monotonously up
to high �elds. At higher temperatures (cf 28.7K) the drop in ρxx (B) evolves into a broad
crossover. The drop at low temperatures resembles a magnetic scattering mechanism
that is quenched by the applied �eld. At higher temperatures higher �elds are needed to
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Figure 9.1: Non-Fermi liquid behavior of the resistivity under pressure. (a) ρxx (T )
at B = 0 for pressures up to 15.7 kbar in pressure cell pc8. The inset shows the exponent α from
low temperature �ts of ρxx (T ). At the critical pressure pc ≈ 14.6 kbar a T 2 dependence (blue
shading) at low temperatures changes abruptly into a T 3/2 dependence (orange shading). (b)
ρxx (T ) at 15.7 kbar for various magnetic �elds up to 2.5T. At an applied �eld BNFL ≈ 0.7 T, the
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in the inset.
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quench those spin excitations.

Fig. 9.2b shows the Hall resistivity ρxy (B) at pressures up to 15.7 kbar at �elds up to
14T for temperatures of 2.8K (upper panel) and 28.7K (lower panel). At 2.8K, ρxy (B)
decreases monotonously, almost linear to higher �elds down to ≈ −180 nΩcm without
notable features, i.e., ρxy (B) is dominated by the NHE. We neglect the THE contribu-
tions at small �elds for now as they will be discussed in detail below. At 28.7K, ρxy (B)
is dominated by the AHE at �elds up to a �knee� shaped features above which ρxy (B)
reverts to the linear slope, determined through the NHE, as observed at low tempera-
tures. On top of the AHE contribution a shoulder emerges below �elds BS that coincides
with the itinerant metamagnetic transition at Bm (see Fig. 7.3 for the de�nition of BS

and Bm). The shoulder can neither be observed in the magnetoresistance ρxx nor in the
magnetization [16,173,174].

The temperature dependence of the shoulder in ρxy is shown in Fig. 9.3 at 15.7 kbar and
temperatures up to 97K. At low temperatures, ρxy is dominated by the NHE and has a
linear slope. Again, we neglect the THE contributions at small �elds for now as they will
be discussed in detail below. With increasing temperature, a strong AHE contribution
emerges along with the shoulder. The AHE contribution and the shoulder both vanish
for temperatures above ≈ 70 K. For now, the origin of the shoulder emerging below BS is
unclear. The corresponding transition �elds BS and Bm imply a connection to the itin-
erant metamagnetic transition. However, as the THE features of interest can be clearly
distinguished from the emerging shoulder on top of the AHE, the interpretation of our
data is not a�ected in any way.

9.3 Magnetic �eld dependence at small �elds

The Hall e�ect data at small �elds shows that the THE signal, observed in the SLP of
MnSi, survives above pc/Tc and is seen as a broad peak across the entire NFL regime of
the phase diagram. The boundaries in which the THE signal emerges coincide with the
boundaries of the NFL behavior. These �ndings represent the main result of our data at
high pressures.

Fig. 9.4 shows the �eld dependent Hall resistivity ρxy (B) at various pressures and
temperatures at small magnetic �elds inferred from high-quality samples (RRR > 92).
From left to right the columns show selected pressures covering the range from below p∗

to pressures above pc (p = 7.0 kbar, 10.3 kbar, 13.7 kbar, 15.7 kbar). The color shadings
illustrate the di�erent metallic states in the phase diagram inferred from the longitudinal
resistance ρxx (cf Fig. 9.1 and 9.5 discussed below). White shading corresponds to
the paramagnetic region, blue shading to regions where Fermi liquid behavior (FL)
is observed and orange shading to regions where non-Fermi liquid behavior (NFL) is
observed. The top-hat shaped THE signal seen in the FL regions below Tc survives
into the NFL regime (red shading). On crossing the boundary to the NFL regime, the
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Figure 9.2: Hall e�ect and magnetoresistance at high magnetic �elds. (a) Normalized
magnetoresistance ρxx (B) /ρxx (B = 0) at pressures up to 15.7 kbar at �elds up to 14T at 2.8K
(upper panel) and at 28.7K (lower panel) in pressure cell pc8. The most notable feature is the
≈ 40% drop at Bm for low temperatures and for p > pc. (b) Hall resistivity ρxy (B) at pressures
up to 15.7 kbar at �elds up to 14T at 2.8K (upper panel) and 28.7K (lower panel) in pressure
cell pc8. At 2.8K ρxy is dominated by the NHE, i.e. it decreases monotonously without notable
features (the THE signal seen at small �elds will be discussed later). At 28.7K ρxy is dominated
by a AHE contribution, i.e., it shows a distinct �knee� shaped feature. On top of the AHE
contribution a shoulder appears.
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rather sharp THE signal in the FL phase evolves into a broad peak of the same sign and
roughly the same size which, however, extends over a larger �eld region from B = 0 to
Btop (see Fig. 7.3 for the de�nition of Btop). The evolution of the THE signal across Tc
can be seen at p∗ < 13.7 kbar < pc, where NFL behavior is observed at temperatures
above Tc up to T ∗ ≈ 12 K (cf Fig. 5.5a). With increasing temperature (coming from low
temperatures) the top-hat shaped THE signal emerges in the SLP. On crossing Tc, the
THE signal becomes a broad peak ranging from B = 0 to Btop with the same sign and
the same order of magnitude as below Tc. Above T ∗ ≈ 12 K the THE signal vanishes
together with the NFL behavior. At pressures above pc, the THE signal appears at all
temperatures below T ∗ ≈ 12 K across the entire NFL regime.

The �eld boundaries of the NFL region and the THE signal coincide as illustrated in
Fig. 9.5 where a comparison of the normalized magnetoresistance ρxx (B) /ρxx (B = 0)
with the Hall resistivity ρxy (B)− ρxy,norm (B) (corrected for the NHE contribution) and
the exponent α of the temperature dependence of ρxx (T ) at 14.7 kbar (> pc) is shown.
The columns correspond to di�erent temperatures between 1.6K and 9.6K. The NFL-FL
transition at BNFL, inferred from the jump in α, coincides with the drop in the magne-
toresistance at Bm and a vanishing of the broad maximum in the Hall e�ect at Btop (see
Fig. 7.3 for the de�nitions of BNFL, Bm, and Btop).

Low quality samples with RRR ≈ 40−45 show a similar behavior (Fig. 9.6). However, as
it was observed for lower pressures, the THE signal in the low quality samples is overall
broadened and appears to be bigger in the NFL region compared to the signal in the high
quality samples. Also, a strong hysteresis is observed at 13.7 kbar and 2.8K, i.e. very
close to pc, in a region of the phase diagram where a phase segregation was reported in
neutron scattering [49,50], µ-SR [176], and NMR [36].
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for the NHE contribution) and the exponent α of the temperature dependence of ρxx (T ) at
p = 14.7 kbar (> pc). FL and NFL behavior are indicated by blue and orange shading. The
columns correspond to di�erent temperatures between 1.6K and 9.6K. The NFL-FL transition
inferred from α coincides with a drop in the magnetoresistance and a vanishing of the broad
maximum in the Hall e�ect.
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9.4 Magnetic phase diagram under pressure

Finally, we sum up the results obtained from �eld and temperature dependent measure-
ments of the longitudinal resistance and the Hall e�ect in temperature-pressure and mag-
netic �eld-temperature phase diagrams. All transition �elds and temperatures used in the
phase diagrams will be introduced in Sec. 9.4.1. The phase diagrams will be discussed in
Sec. 9.4.2.

9.4.1 De�nition of transition �elds and temperatures

The de�nition of all transition �elds and temperatures is illustrated in Fig. 7.3 (p. 124).
Panels a,b,c,d show typical ρxx (B) and ρxy (B) data for pressures below pc, as already
discussed in Sec. 7.1. Panels e to i show typical ρxx (B), ρxy (B), α, and ρxy (T ) data
at 15.7 kbar (> pc). When the pressure is increased above pc, the magnetoresistance
ρxx (B) shows only one characteristic �eld Bm at low temperatures, where the magnetore-
sistance shows a large drop of ≈ 40% that indicates an itinerant metamagnetic transition
(Fig. 7.3e). At higher temperatures (above T ∗), the drop in ρxx (B) evolves into a broad
crossover. The Hall resistivity ρxy (B) displays the THE signal below T ∗ ≈ 12 K discussed
above ranging from B = 0 to a �eld Btop that coincides with Bm (Fig. 7.3f). However, the
change of ρxx (B) at Bm does not account for changes in ρxy (B) through an intrinsic AHE
contribution which is very small at these low temperatures and has an entirely di�erent
temperature dependence. This can be seen, e.g., through the fact that samples of di�erent
quality, and hence di�erent residual resistivities, display a similar THE contribution. If
the feature we identi�ed as THE signal had its origin in an intrinsic AHE, it would scale
with ρxx and thus would strongly depend on the sample quality.

The temperature exponent α of ρxx (T ) switches abruptly from from a T 3/2 (NFL) to a
T 2 (FL) dependence at a �eld BNFL (Fig. 7.3g), as already shown in the inset of Fig. 9.1.
Here, α was evaluated in a temperature range between 2.0 K and 3.0 K. α values in the
center of the crossover close to BNFL are not shown. The temperature dependent Hall
resistivity ρxy (T ) at numerous magnetic �elds is shown in Fig. 7.3h. The maximum of
ρxy (T ) is due to the intrinsic AHE that scales with ρxy = R0B + SHρ

2
xxM as shown in

Eq. 6.29 [213]. At high temperatures, ρxy (T ) decreases due to a decreasing magnetiza-
tion. At low temperature two regimes have to be distinguished. First, at low �elds the
downturn of ρxy (T ) is due to a decreasing ρxx. Here, the maximum of ρxy (T ) is labeled
Tmax. At high �elds (' 1 T), the downturn below TS is due to a shoulder in the �eld
dependence of ρxy at BS (see below). Here, the maximum of ρxy (T ) is labeled TS. At
high magnetic �elds and temperatures between ≈ 10 K and ≈ 70 K, a shoulder emerges
on the Hall resistivity on top of the AHE contribution (Fig. 7.3i). The onset of the shoul-
der, where ρxy (T ) leaves a linear slope (coming from high �elds), is marked as the �eld BS.
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9.4.2 Phase diagrams

Fig. 9.7a shows the temperature-pressure phase diagram inferred from the longitudinal
resistivity ρxx (T ). As known from the literature, Tc is suppressed with increasing pressure
and vanishes at pc ≈ 14.6 kbar. The color shading refers to the underlying nature of the
metallic state like it was used in Secs. 9.1, 9.2, and 9.3. The phase diagram reproduces
the one shown in P�eiderer et al. [49] (see Fig. 5.5a). As discussed above, the NFL regime
(orange shading) is accompanied by a THE signal.

Fig. 9.7b - e shows the magnetic phase diagram at selected pressures covering the ranges
p < p∗ (7.4 kbar), p∗ < p < pc (13.7 kbar), and p > pc (15.7 kbar and 18.1 kbar). For pres-
sures below p∗, the magnetic phase diagram is qualitatively as seen at ambient pressure.
However, the A-phase (SLP) is extended over a larger temperature range and displays a
larger THE signal compared to ambient pressure as already discussed in Chaps. 7 and 8.
Above p∗, where Tc is suppressed below T ∗ ≈ 12 K, NFL behavior is observed above Tc at
temperatures up to T ∗. As discussed along the �eld dependent data (see Sec. 9.3), a THE
signal is observed in the entire NFL regime. The boundaries of the NFL regime (BNFL)
and the THE signal (Btop) coincide. Above pc, the magnetic phases are suppressed and
an extended NFL region accompanied by a THE signal is seen up to T ∗ ≈ 12 K and up
to �elds Btop, BNFL.
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Chapter 10

Discussion p > p∗

As seen in the last chapter, the extended non-Fermi liquid (NFL) regime in MnSi is ac-
companied by a topological Hall e�ect (THE) signal. The THE signal clearly evolves from
the THE signal seen in the skyrmion lattice phase (SLP) of MnSi at ambient pressure.
On crossing Tc/pc, i.e., the phase boundaries to the NFL state, the top-hat shaped THE
signal, observed within the �eld range of the SLP, becomes a broad peak with a much
broader �eld range. Already at tiny �elds a THE appears. The �eld boundaries of the
THE, B+

top and B−top, coincide with the metamagnetic transition where the NFL behavior
abruptly switches back to Fermi liquid (FL) behavior under applied magnetic �eld at
BNFL.

The missing dependence on sample quality, the di�erent temperature dependence than
ρxx, the absence of comparable features in the magnetization, and the connection to the
THE of the SLP clearly indicate that the broad peak in the Hall signal in the NFL regime
is a THE. The fact that the THE signal in the FL and NFL regime evolve into each other,
and the fact that sign and the order of magnitude of the THE in the FL and NFL regimes
are the same - pointing at an unchanged winding number of -1 - imply that in the NFL
regime skyrmionic textures are the reason for the THE signal. As the temperature, �eld
and pressure boundaries of the NFL state and the THE coincide, the magnetic textures
and the NFL are clearly linked to each other.

Several theoretical studies [179, 182, 183, 231] propose topologically non-trivial spin tex-
tures as the origin of the partial order in MnSi, where elastic neutron scattering studies
show that helices - with an unchanged pitch compared to the helical phase at low pres-
sures - exist above pc below a temperature T0 but have lost their directional dependence.
However, the partial order, as observed by elastic neutron scattering and NMR, appears
only in a small phase pocket within the NFL regime whereas the THE signal covers the
entire NFL regime.

Kirkpatrick et al. [68] proposed columnar �uctuations of chiral spin textures as origin
of the partial order and the extended NFL regime. While this theory is in contrast to
some experimental observations, i.e., the prefactor of the T 3/2 dependence of the resistiv-
ity, a lot of aspects �t nicely to our observations of a THE signal across the entire NFL
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regime. According to Ref. [68] chiral spin textures, possibly realized through skyrmions,
exist above pc and can be viewed as a columnar chiral �uid which exhibits a �rst order
phase transition at T0 from a chiral liquid to a chiral gas. The soft modes of this chiral
�uid are columnar �uctuations, possibly skyrmion lines, that are slow enough below T0

to be observed by elastic neutron scattering [50] and NMR [36]. If soft modes of this
spin texture couple to the charge density this could explain the extended NFL behavior
in MnSi. Combined with our results this implies that those soft modes can be observed
on timescales probed by the Hall e�ect across the entire NFL regime.

Taken together, our observations support one of or combinations of the following three
scenarios: (i) Spontaneously forming randomly oriented skyrmions at B = 0 that are
strati�ed in a magnetic �eld. (ii) Formation of skyrmions already at tiny �elds. (iii)
Strong �uctuations between helical modulations and skyrmionic textures.

In a more general context it was proposed that when itinerant ferromagnetism is sup-
pressed �uctuations arise that can lead to the formation of complex spin structures [11,12].
In turn, those complex spin structures could lead to a breakdown of the Fermi liquid be-
havior. For example, in the ferromagnets ZrZn2 [48] and Ni3Al [232] a T 3/2 temperature
dependence of the resistivity extending over a larger range of the temperature-pressure
phase diagram has also been observed in connection with the suppression of a magnetic
phase. However, so far no complex spin structures have been observed in ZrZn2 and Ni3Al.
Since both materials are ferromagnets one would expect complex spin structures with a
zero winding number, unlike the topologically non-trivial spin structures we observe in
MnSi. In principle, MnSi could be an �rst example of these complex spin structures at
the border of itinerant magnetism. Since MnSi exhibits a Dzyaloshinskii-Moriya interac-
tion those spin structures are topologically non-trivial, i.e., they have a non-zero winding
number.

In conclusion, our observation of a THE signal across the entire NFL regime, that clearly
evolves from the THE connected to the SLP at low pressures, is the �rst experimental
evidence of topological non-trivial spin textures within the NFL regime. Sign and size of
the THE remain unchanged below and above pc pointing at skyrmion structures. As the
phase boundaries of NFL regime and THE coincide, this skyrmion structures are a good
candidate for the long-sought intrinsic mechanism behind the NFL behavior.
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Summary and outlook
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In this thesis the two itinerant ferromagnets UGe2 and MnSi were studied around the
critical pressures. In both materials the considered phase transitions turn �rst order be-
fore they are suppressed giving rise to quantum critical behavior without the presence
of a quantum critical point. In the superconducting ferromagnet UGe2 we performed
measurements of the thermal expansion under pressure concomitant with the magnetiza-
tion using the neutron spin echo technique called Larmor di�raction. We concentrated
on the pressure range around the pressure pX where a phase transition TX between two
ferromagnetic phases is suppressed and a superconducting dome emerges. Experimental
results reported so far imply that the suppression of the TX transition, whose origin is
yet unclear, is intimately connected to the emerging superconductivity. In the helimagnet
MnSi we studied the evolution of a topological Hall e�ect signal, that is signature of a
lattice of magnetic whirls, a so-called the skyrmion lattice, under pressure. We covered
the pressure range from ambient pressure to pressures above the critical pressure where
an extended non-Fermi liquid phase was reported in earlier studies. The main results of
the two projects are summarized below.

Thermal expansion of UGe2 under pressure [137]

For our project on UGe2 we performed the neutron spin echo technique Larmor di�raction
for the �rst time on a ferromagnet. We overcame the experimental di�culties resulting
from a neutron depolarization when the sample is in the ferromagnetic state through
applying an demagnetizing AC magnetic �eld when cooling through the Curie tempera-
ture yielding equally populated domains. Furthermore, we could straight forward correct
our raw data for contributions to the phase rotations not related to a change in lattice
constant, so-called spin-echo phases, that are observed in our high-pressure experiments.
The origin of the spin-echo phases is still unclear and further experiments are required
to settle this issue. However, the interpretation of our data is completely independent
from any spin-echo phase corrections. In total we measured six pressure points between
ambient pressure and 12.4 kbar. Our data matches well with thermal expansion data ac-
quired with the established methods of capacitive dilatometry and strain gauges that was
reported in literature so far.

Through concomitant measurements of the thermal expansion and the magnetization we
were able to separate contributions from the crystal lattice and magnetostriction to the
thermal expansion from other contributions. We �nd that under pressure the a- and
b-axis thermal expansion can be well accounted for by the lattice contribution and mag-
netostriction while an additional contribution emerges at a transition temperature TL
several Kelvin above TX . We speculate that the TL transition could be signature of a
change in the Fermi surface topology at a Lifshitz transition. However, more experimen-
tal information is needed to proof this hypothesis. This could be an important piece of
information for identifying the mechanism behind the unconventional superconductivity
found in UGe2.
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Topological Hall e�ect in MnSi under pressure

We performed a comprehensive study of the Hall e�ect in MnSi where we measured a
total of 38 pressure points. We carefully checked the in�uence of various experimental
parameters as sample quality, sample orientation, pressure media, and cooling procedures.
We were able to track the evolution of the topological Hall e�ect (THE) up to pressures
above pc. The results for the pressure ranges p < p∗ ≈ 12 kbar and p > p∗ are summarized
below.

p < p∗ - Giant generic topological Hall e�ect signal [16]

With increasing pressure the size of the THE increases tenfold from ∆ρtop
xy (p = 0) ≈

4.5 nΩcm up to ∆ρtop
xy (p ≈ 12 kbar) ≈ 40 nΩcm. The THE signature clearly evolves from

the THE signal of the skyrmion lattice phase at ambient pressure and can furthermore
be unambiguously identi�ed as THE through its temperature dependence and through a
comparison with magnetization measurements under pressure. We are able to identify the
signature reported in the Hall e�ect between 6 and 12 kbar in a wide �eld interval by Lee
et al. [162] as THE broadened due to a low sample quality and poor pressure conditions.

The large THE signal can be conserved down to the lowest temperatures measured (typ-
ically ≈ 2 K) when cooling down in a magnetic �eld. The THE reveals its generic size
in the low temperature limit as ∆ρtop

xy ≈ 50 nΩcm where �nite temperature e�ects are
essentially switched o�.

The size of the THE can be explained quantitatively through a theoretical analysis by
Rosch and collaborators in our paper [16]. The decreased THE signal size at ambient
pressure and high temperatures can be attributed to the change of the local polarization
close to Tc for the most important part. The remaining part is most likely due to one
or a combination of several mechanisms including changes of the Fermi surface, change
of scattering processes, competition between exchange splitting and spin-orbit coupling,
and spin-�ip scattering.

Our results imply that the large THE reported in other materials as MnGe [202] and
SrFeO3 [203] with ≈ 200 nΩcm could generically be much larger when �nite temperature
e�ects can essentially be switched o� through suppressing the skyrmion lattice phase to
lower temperatures with pressure or doping. As the THE is the mechanism that couples
current to the magnetic structure, the critical current jc in spin transfer torque experi-
ments, that was found to be ultralow in MnSi [51, 52, 233], is expected to decrease with
increasing THE. Studies on iron doped MnSi with THE signals up to ≈ 40 nΩcm show
that jc decreases with the THE size, however, in these systems the disorder introduced
pinning on iron sites which leads to an increased jc has to be overcompensated �rst [234].
Therefore, spin transfer torque experiments on MnSi under pressure are currently on its
way where the in�uence of the THE size on jc can be studied directly without the e�ect
of pinning at impurities. These results are of great interest for applications of skyrmions
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in spintronic devices that seem to become more and more achievable [235].

p > p∗ - Topological non-Fermi liquid [53]

We �nd a THE in the non-Fermi liquid region above the critical pressure pc where mag-
netic order is already suppressed. The THE signal clearly evolves from the THE signal
seen in the skyrmion lattice phase of MnSi at ambient pressure. Sign and size of the
THE remain unchanged below and above pc pointing at skyrmion structures. The �eld
boundaries of the THE coincide with the metamagnetic transition where the NFL behav-
ior abruptly switches back to Fermi liquid behavior under applied magnetic �eld. Also
the temperature and pressure boundaries of the NFL state and the THE coincide. Thus,
the magnetic textures and the NFL are clearly linked to each other. This could be a
�rst example of a more general phenomenon where magnetic textures form on the border
of ferromagnetism [11, 12]. Those complex spin structures could be the the long-sought
intrinsic mechanism driving the breakdown of Fermi liquid behavior in MnSi.
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Appendix A

Overview LD and SE scans

In this section all UGe2 data recorded in Larmor di�raction (LD) and spin-echo (SE) geom-
etry are summarized in Figs. A.1 - A.6. In each �gure, the upper row shows ∆draw−data/d
(black datapoints) and the SE phase (red datapoints) calculated according to Eq. 3.12:

I = I0

(
1 + P cos

(
2π
xTC4 − xTC4,0

∆L

))
The SE phase corrected ∆draw−data/d is illustrated when available (green datapoints).
The middle row shows the corresponding polarization P , and the bottom row shows the
intensity I0 normalized to the intensity at base temperature. At 10.2 kbar, the a-axis
SE phase was estimated from the corresponding polarization (open red datapoints) as is
was found empirically, that the a-axis SE phase at 9.3 kbar and 11.8 kbar resembles the
corresponding polarization curves (Fig. A.3a).

Fig. A.7 illustrates how the TX and TL transitions were determined in the magnetization
and in the ∆draw−data/d at 9.3 kbar, 10.2 kbar, and 11.8 kbar.
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Figure A.1: Phase, intensity and polarization of all LD and SE scans at ambient
pressure. The parameters ∆d/d, I0, and P refer to equation 3.12 with which the raw data was
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Figure A.5: Phase, intensity and polarization of all LD and SE scans at 12.3 kbar.
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