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1. Introduction

1.1 Communication in Control Systems

For the transmission of information from a source where it is generated to a destination where

it is needed, it is a well known fact that the quality of the channel which connects source and

destination is the limiting factor for the amount of information that can be transmitted in a certain

time interval [1]. According to [1], “[t]he channel is merely the medium used to transmit the signal

from transmitter to receiver. It may be a pair of wires, a coaxial cable, a band of radio frequencies,

a beam of light, etc.” From this point of view, it is clear that the presence of a channel makes it

necessary to process signals at the input and the output of this channel. First of all, the information

must be represented in a way that is suitable for the channel. For example, when transmitting

speech over a wireless channel, the acoustic waves have to be transformed into electromagnetic

waves. The received signal has to be converted back to an acoustic signal at the destination. The

concrete conversion mechanisms are determined by the parameters of the wireless channels, e. g.,

its bandwidth or frequency response. Additionally, signals can be corrupted during the transmission

because “[w]hatever the physical medium used for transmission of the information, the essential

feature is that the transmitted signal is corrupted in a random manner by a variety of possible

mechanisms, such as additive thermal noise generated by electronic devices; man-made noise [...];

and atmospheric noise [...]” (cf. [2, p. 3]). Thus, it may be necessary to recover the transmitted

information from the distorted received signal, often it is even mandatory because the signal of

interest is completely masked by noise and distortions. These facts are captured in the generic

block diagram shown in Figure 1.1 which taken from [1].

Information
Source

MessageMessage

Transmitter

SignalSignal

Noise Source

Received
Receiver Destination

Figure 1.1: Schematic diagram of a general communication system [1].

The problem of information transmission is to design a transmitter-receiver pair such that the

message which is generated by the information source can be reconstructed at the destination either

perfectly (without an error) or with a distortion which is as small as possible. A major challenge in

the design of transmitters and receivers is that, in general, the resources which are available for the

transmission of information are limited. It has already been mentioned that the physical medium

may offer only a finite bandwidth which restricts the choice of possible signals to band-limited

ones. Sometimes the channel can only carry a finite number of signals for the transmission of an

uncountable number of messages which makes it necessary to decide which signal represents the

message best. Additionally, the power of the signals that amplifiers and electronic devices can

1



2 1. Introduction

handle and generate is finite. Thus, in general, a transmitter has to take a power constraint into

account. An even harder restriction might be that the signals are only allowed to have a finite

(peak) amplitude. The main point is that due to these limitations, the channel distortions can not be

neglected. As an example, assume that a real number x is transmitted over a channel that simply

adds an unknown constant n such that the receiver observes the value x + n. If it is possible to

transmit a real number with arbitrarily large magnitude, a transmitter can amplify x to x′ = αx

using an arbitrarily large real scalar α. A receiver simply performs the inverse operation to get

x′′ = α−1x′. It is easy to verify that limα→∞ x′′ = x, i. e., the number x can be reconstructed

perfectly. With an amplitude constraint on x′, this is not possible and it remains an error of α−1n

at the receiver. One can think of more sophisticated transmit and receive schemes, but in general a

limitation of communication resources results in imperfect transmission of information.

The term information is essential for a communication system, which is obvious as the first

block in Figure 1.1 is the information source which generates the messages to be transmitted. For

control systems, information also plays a central role. This can be confirmed with almost every

textbook concerning (stochastic) control problems (e. g., [3–6]) where one can find discussions

about the amount and quality of available information and how it is used for controller design.

In order to explain the importance, let us first describe what we understand by a control system

(see, e. g., [4, p. 119]). The starting point is a dynamical system or plant which represents a given

physical or technical process. Sensors at the output of the system provide observations about its

state1. Typically, the dynamical system is desired to show a certain behavior that is different from

its intrinsic one. The system itself, i. e., its parameters, structure etc., can not be changed, but it

has an input which can be used to manipulate the system in order to achieve the desired dynamical

behavior. The output of the system is used to compare the actual with the desired behavior and

an appropriate input signal has to be generated if a deviation is observed. The device which maps

the observations of the system output to input signals is the controller and has to be designed

accordingly. This setup is called a closed loop control2 system since a feedback loop between

output and input of the plant is created which can easily be identified in Figure 1.2.

Dynamical
System

Controller

External
Signals

Reference
Signal

Figure 1.2: Feedback control loop.

1At this point, we do not go into detail what the state of a dynamical system is. For the moment, we use it as an

abstract term: the state represents the condition of a dynamical system and summarizes all past information that is

relevant for the future evolution of the system (see, e. g., [6, p. 2] and [7, pp. 62-63]).
2This thesis considers the closed loop case only since open loop control systems can not take into account distur-

bances or changes of the plant which are not known to the controller (cf. [4, p. 123]). In situations where communica-

tion channels are present, such disturbances are inevitable in general.
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The feedback loop which is shown in Figure 1.2 also includes external signals at the dynamical

system and a reference signal at the controller. External signals are, e. g., disturbances or input

signals generated by the environment of the system, which are not known to and can not be changed

by the controller. This is a reason for the introduction of feedback since the controller can compare

the desired with the actual behavior of the plant which differs due to the unknown external signals.

The reference signal at the controller side is the representation of what has been called “desired

behavior” so far, e. g., a given trajectory that should be tracked by the system output signal or the

stabilization of an unstable dynamical system.

Using Figure 1.2, it can be seen how and which information flows in a control loop. The con-

troller obtains information about the dynamical system by observing the system output. This is

relevant information due to the presence of external signals at the plant which are not known to

the controller, i. e., the controller can not determine the system output with the knowledge of the

(self generated) system input and the parameters of the dynamical system alone. The information

flows from the plant to the controller and is used to determine an appropriate input signal for the

plant. In the other direction, i. e., from the controller to the plant, information flows about the de-

sired behavior of the dynamical system, represented by the reference signal and encoded in the

control signal which is sent to the system input. In the classical analysis of control systems, the

channels which connect the dynamical system and the controller are often assumed to be ideal,

i. e., the output of the plant is identical to the input at the controller and the output of the controller

is identical to the input of the system, and that all information is available instantaneously without

any delay. There are scenarios where this assumption is valid, e. g., when short and shielded wires

which offer a high physical bandwidth with low disturbances are used for the connection. But even

models used in classical control theory take into account disturbances like those described at the

beginning of the section. One example is the measurement or observation noise (cf., e. g., [4, p.

121]) which is present due to the amplifiers that are necessary for the sensing of output signals.

In that case, the output of the plant is not identical to the input of the controller but differs by

the additive observation noise. Especially when the dynamical system and the controller are spa-

tially separated, their physical connections or channels, as mentioned earlier, introduce additional

disturbances which are determined by the concrete model of the channels that are used and the

associated limited communication resources.

It can be seen that information is important for a control system, on the one hand information

about the actual system behavior (provided by the system output) and on the other hand about

the desired behavior (given by a reference signal and the control input). This information has to

be exchanged between the dynamical system and the controller. Thus, we identify two sources

of information and two destinations which are connected in a feedback loop. Having noticed that

the dynamical system and the controller exchange information over communication channels that

are, in general, not ideal due to limited communication resources, it is natural to apply the model

of the general communication system shown in Figure 1.1 to the two communication links of the

feedback control loop depicted in Figure 1.2. The resulting closed loop system is shown in Figure

1.3. In order to distinguish the directions of information flow, the channel which connects the

output of the dynamical system with the input of the controller is called the observation channel,

whereas the channel between the controller and the system input is called the control channel. In

contrast to Figure 1.1, the channels are depicted as abstract entities because a variety of different

channel models can be found in the literature for the present scenario. This point is discussed in

more detail in Chapter 2. As a final remark, note that the shaded area in Figure 1.3 indicates that

the three included blocks, i. e., receiver, controller and transmitter, can be interpreted as a joint
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controller-transceiver3 since all three components can be chosen by the system designer and their

connections are assumed to be ideal. Thus, the separation in three distinct blocks is not necessary.

Dynamical
System

ObservationControl
ChannelChannel

Controller

External
Signals

Reference
Signal

Transmitter

Transmitter

Receiver

Receiver

Figure 1.3: Feedback control loop closed over two communication channels.

Since communication channels introduce disturbances, we expect that the performance of a

control loop which is closed using such channels is generally worse than that of a loop with ideal

connections (cf. Figure 1.2). Nevertheless, the application of transmitters and receivers for the

exchange of information offers additional degrees of freedom to reduce the negative effects of the

communication channels within the limits that are given by the available communication resources.

The task of the system designer is to optimize the transmitters and receivers w.r.t. the performance

of the control system. Note that this goal can be different compared to objectives encountered

in pure communication systems as shown in Figure 1.1 because there the focus is put on the

information itself and not on the purpose it has been transmitted for.

1.2 Networked Control Systems

The control system shown in Figure 1.3 is one of the simplest4 instances of a so-called Networked

Control System (NCS). Following the definition in the guest editorial of [8], a key feature of such

systems is that the application of sensors, controllers and actuators is coordinated by “some form

of communication network”. Typically, these elements are spatially distributed and communicate

using wired or wireless links. From this point of view, the term NCS can be applied to a wide range

of systems, including sensor networks [9, 10], control over Internet-like data networks [11, 12] or

the Internet [13], control of individual systems using a shared communication medium [14–16] or

coordination of a group of individual control systems, e. g., a rendezvous in space [17] or formation

control of robots [18]. The examples and references given here are far from being exhaustive, but

the large interest in and variety of topics in NCSs can be verified with the special issues [8, 19, 20]

and the references therein. Note that the expression network is used ambiguously. On the one hand,

it refers to a wide area network (like the Internet) with advanced communication protocols where

3The expression transceiver refers to a pair of transmitter and receiver.
4Of course, the system model can be further simplified by assuming one of the two channels to be ideal. This would

correspond to the case where the controller is either directly located at the input or the output of the dynamical system.

Thus, such cases are included in the presented model of the control system.
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the control loop uses the network as an application without direct access to the physical parameters

of the communication channels that are used. On the other hand, it also refers to a single channel

with a direct interaction of the control system and the physical channels. Not surprisingly, the

challenges and solution approaches are quite different depending on the network model under

consideration. In this thesis we adopt the second point of view in order to explore the interaction

of control and communication and the degrees of freedom that are offered by a joint design of

controllers, transmitters and receivers.

It is worth noting that some of the effects encountered in the analysis of NCSs are discussed in

the literature on control system design for a long time already. One example are so called packet

drops (or packet loss, data loss etc.) which describe the effect that in networks information may be

lost due to network congestion [21] or because the receiver is not able to reconstruct the transmitted

information due to disturbances of the communication channel. The fact that information about

the system output or the control input may be lost can be modeled by switching input and output

parameters of the dynamical system from a regular mode of operation to a failure where the input

or the output is disconnected. The effect of such jump parameters on a control system is studied for

more than four decades (see, e. g., [22,23] and references therein). A second example is uncertainty

of system parameters which plays an important role when considering physical channel models.

The phenomenon of model or parameter uncertainty appears especially in wireless communication

systems. Due to the mobility of transmitters, receivers and the environment, the parameters of the

channel can change very fast (cf. [2, Chapter 14]) and often it is not possible to predict or estimate

these changes accurately. The resulting uncertainty can be interpreted as uncertainty about the

parameters of the dynamical system to be controlled. Starting in the 1970s, methods have been

developed to describe the effect of model uncertainties on control systems and to design controllers

that take into account these uncertainties (e. g., [24, 25], [26] and references therein). As a last

example, amplitude constraints on the control signals have been considered since the late 1950s

(cf. [27] and references therein) because the effect of saturating actuators can never be avoided in

physical control systems. Thus, it is necessary to take into account this kind of non-linearity in the

control design procedure in order to guarantee a desired system behavior in the presence of such

input constraints.

The fact that uncertainties and constraints that are encountered in NCSs are considered for the

design of control systems already for decades does not imply that research on NCSs is not neces-

sary and already covered by the existing results. The feature of NCSs is that the channel and net-

work models provided by information and communication theory define very specific constraints,

e. g., on bandwidth, rate, power etc., which have to be taken into account for the optimization of

a control system. Thus, the interaction between these constraints and the dynamical behavior of

the control system can be explored. Taking this point of view, some fundamental limitations, e. g.,

on stabilizability of linear systems, have been derived during the last years. The authors of [28]

determined the lowest rate5 that a communication channel which supports only a finite number of

input and output signals must provide in order to stabilize an unstable linear dynamical system

using feedback control. For the model of additive noise channels, the authors of [29] showed that

the stabilization of an unstable linear dynamical system is only possible if the Signal to Noise

Ratio (SNR) of the channel is large enough. For the packet drop model and an estimation prob-

5The term rate is often used in a misleading way in the literature on NCSs. In [28], it has not the general, informa-

tion theoretic meaning but refers to the number of input (and output) values of a discrete channel that are transmitted

instantaneously without an error. This corresponds to the number of quantization levels that are used for the represen-

tation of continuous control signals.
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lem, the authors of [30] derived upper and lower bounds for the critical probability of a packet

loss which leads to an unbounded expected estimation error variance. In all cases, the determined

bounds depend solely on the unstable eigenvalues of the system matrix. The main difference of the

results is the channel model that is used. Note that for the determination of the mentioned bounds,

the authors always considered unstable dynamical systems. The reason is that a stable system can

always be left in open loop, i. e., with no control input at all, without the danger of a catastrophic

system behavior. In such a case, the minimal requirement for any communication resource is al-

ways zero, but the system does not show the desired behavior, i. e., the performance of the control

system is poor. For unstable systems, a non-zero control input is mandatory and thus at least some

communication resources have to be provided.

1.3 Notation

Throughout the thesis, the following notation is used:

• The set of real numbers is denoted by R, the set of non-negative real numbers by R+,0, and

the set of strictly positive real numbers by R+. The set of integer numbers is denoted by Z,

of non-negative integers by N0, and of strictly positive integers by N. Finally, C is the set of

complex numbers.

• Scalars are denoted by upper or lower case letters, vectors by lower case bold letters and ma-

trices by upper case bold letters, e. g., a or A, a, and A, respectively.

• The constant matrix of dimension M ×N which contains only zeros is denoted by 0M×N and

the corresponding all-zeros vector of dimension M by 0M .

• The identity matrix of dimension M × M is IM . The i-th column of this identity matrix is

denoted by e
(M)
i .

• The imaginary unit is denoted by j and Euler’s constant by e.

• The operators tr, T and H are the trace, transpose and Hermitian transpose of a matrix (or vector

for T and H).

• diag [ai]
N

i=1 is the diagonal matrix
∑N

i=1 aie
(N)
i e

(N),T
i .

• The operator vec stacks the columns of a matrix, i. e., for A = [a1,a2, . . . ,aN ] ∈ RM×N it

holds vec [A] =
[

aT
1 ,a

T
2 , . . . ,a

T
N

]T ∈ RMN .

• The expectation operator w.r.t. to the distribution of a random variable x is denoted by Ex and

the conditional expected value w.r.t. to the conditional distribution of x given the event {y = η}
by Ex|y [•| η], where x and y are jointly distributed random variables (see also Appendix A5.2).

• The expected value of a random vector x is µx = Ex [x] and its covariance matrix

Cx = Ex

[

(x− µx) (x− µx)
T
]

. The correlation matrix is denoted by Rx = Ex

[

xxT
]

.

• N (µx,Cx) denotes the Gaussian (also called normal) distribution of the real random vector x

with expected value µx and covariance matrix Cx.
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1.4 Definitions

In this section, we provide standard definitions which are used throughout the thesis.

Definition 1.4.1: Positive (semi)definite matrix

A square matrix A ∈ RN×N is called positive definite if it is symmetric, i. e., A = AT, and it

holds that

xTAx > 0, ∀x ∈ R
N .

It is positive semidefinite if it is symmetric and it holds that

xTAx ≥ 0, ∀x ∈ R
N .

A necessary and sufficient condition for positive definiteness is that all eigenvalues of A are larger

than zero, while for semidefiniteness, all eigenvalues are non-negative. For a positive definite ma-

trix, we use the notation

A > 0N×N ,

whereas a positive semidefinite matrix is denoted by

A ≥ 0N×N .

Remark: The definition above is restricted to symmetric matrices despite the fact that this is

not necessary in general. Since an arbitrary square matrix A ∈ RN×N can be decomposed in its

symmetric and anti-symmetric part, i. e.,

A =
1

2
(A+AT) +

1

2
(A−AT),

and it holds that xT(A − AT)x = 0, ∀x ∈ R
N , a real matrix is positive (semi)definite if and

only if its symmetric part is positive (semi)definite. In the following, we are only interested in the

symmetric case, which is the reason for the restriction.

Definition 1.4.2: Matrix inequality

Let A ∈ RN×N and B ∈ RN×N be two symmetric matrices of the same dimension. The matrix

inequality

A ≥ B

is equivalent to the condition

A−B ≥ 0N×N ,

i. e., that the difference between A and B is positive semidefinite. The definite case is defined

analogously.
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Definition 1.4.3: Controllability [6, p. 152], [31, Chapter C.3]

Let A ∈ RN×N and B ∈ RN×M . The pair (A,B) is called controllable if and only if6 the matrix

[B,AB,A2B, . . . ,AN−1B]

has full rank N .

Remark: The name controllability stems from the interpretation of A and B as the parameters of

a controlled dynamical system which is described by the difference equation

xk+1 = Axk +Buk, k ∈ N0.

If (A,B) is controllable, there exists a sequence of N control inputs u0,u1, . . . ,uN−1 which

drives any initial state x0 to an arbitrary state xN at time index N .

Definition 1.4.4: Observability [6, p. 152], [31, Chapter C.4]

Let A ∈ R
N×N and C ∈ R

M×N . The pair (A,C) is called observable if and only if the pair

(AT,CT) is controllable.

Remark: The concept of observability stems from an interpretation of an autonomous dynamical

system given by the equations

xk+1 = Axk,

yk = Cxk, k ∈ N0.

If (A,C) is observable, it is possible to determine the initial state x0 exactly from the sequence of

state observations y0,y1, . . . ,yN−1.

Definition 1.4.5: Stabilizability [31, Chapter C.3], [6, p. 159]

Let A ∈ RN×N and B ∈ RN×M . The pair (A,B) is called stabilizable if there exists a matrix

L ∈ RM×N such that the eigenvalues of

A−BL

have magnitude less than 1.

6There exist equivalent definitions of controllability, see, e. g., [31, Chapter C.3]
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Remark: Stabilizability is a weaker condition than controllability as it only requires the unsta-

ble subspace of a dynamical system to be contained in the controllable subspace (cf. [4, p. 461]

and [31, p. 763]). This can be illustrated by a system which is stabilizable but not controllable and

thus can be represented as (cf. [32, p. 73] and [4, pp. 461-462])

xk+1 =

[

A11 A12

A22

]

xk +

[

B1

0U×M

]

uk, k ∈ N0,

with 0 < U < N and where the pair (A11,B1) is controllable. For the system to be stable, the

eigenvalues of A22 (which represents the uncontrollable subspace) must be less than 1 in magni-

tude since the corresponding subspace of the state space can not be reached by the control input.

The unstable subspace of the system (represented by A11 which has eigenvalues with magnitude

larger than 1) must be controllable or at least contained in the controllable subspace.

Definition 1.4.6: Detectability [31, Chapter C.4], [6, p. 159]

Let A ∈ RN×N and C ∈ RM×N . The pair (A,C) is called detectable if the pair (AT,CT) is

stabilizable.

Remark: Analogous to the case of stabilizability, detectability requires the subspace of the system

which is not observable to be stable (cf. [4, p. 465]), i. e., the corresponding part of the state vector

eventually goes to zero.

Definition 1.4.7: Wide Sense Stationary (WSS) random sequence [33, p. 361]

Let (xk : k ∈ N0) be a sequence of random vectors. The sequence is called WSS if

Exk
[xk] = µx, k ∈ N0

and

Exm,xn

[

xmx
T
n

]

= Exm+k,xn+k

[

xm+kx
T
n+k

]

, k ∈ Z and m,n,m+ k, n+ k ∈ N0,

i. e., if the first and second order moments of the random sequence are shift invariant.

Remark: A WSS random sequence is also called weakly or second-order stationary [33, p. 361].

Definition 1.4.8: Asymptotically WSS random sequence, (cf. [34, p. 392])

Let (xk : k ∈ N0) be a sequence of random vectors. The sequence is called asymptotically WSS if

Exk
[xk] and Exm,xn

[

xmx
T
n

]

exist and are finite for all m,n, k ∈ N0 and additionally

lim
k→∞

Exk
[xk] = µx
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and

lim
k→∞

Exm+k ,xn+k

[

xm+kx
T
n+k

]

= Rx(m− n),

i. e., if the expected value converges to a constant value and the cross-correlation matrix to a func-

tion Rx which only depends on the distance (m−n) of the sequence elements xm+k and xn+k for

k →∞.

Remark: Speaking in terms of dynamical systems, an asymptotically WSS random sequence may

possess a non-WSS transient phase but eventually reaches a WSS steady state.

Definition 1.4.9: Mean square stability [35]

Consider a dynamical system given by the difference equation

xk+1 = Axk +wk, k ∈ N0,

where A is a square matrix, x0 is a random vector with mean µx0
and covariance matrix Cx0

and

(wk : k ∈ N0) is an (asymptotically) WSS sequence of random vectors. The dynamical system is

said to be mean square stable if

lim
k→∞

Exk
[xk] = µx

and

lim
k→∞

Exk

[

xkx
T
k

]

= Rx,

irrespective of the distribution of the initial state x0, i. e., the first and second order moments of the

state vector xk converge to finite values.

Remark: Note that Definition 1.4.9 is only meaningful for time-invariant systems which are

driven by (asymptotically) WSS random sequences. The reason is that even if first and second

order moments remain bounded, the limits do not exist for systems with time varying parameters

and excitations. In this case, the definition from [36] that a system is mean square stable if

sup
k∈N0

Exk

[

‖xk‖22
]

<∞

is appropriate. It is easy to verify that a system which is mean square stable in the sense of Defini-

tion 1.4.9 also fulfills the above condition.

1.5 System Model

Throughout the thesis, we consider discrete-time7 linear dynamical systems which are described

by the state space representation

xk+1 = Akxk +Bkuk +wk,

yk = Ckxk + vk, k ∈ N0,
(1.1)

7For the conversion of a continuous-time linear model to discrete-time, see Appendix A1.
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where xk ∈ RNx is the system state, uk ∈ RNu is the system input and yk ∈ RNy the observation

of the system state, i. e., the output of the dynamical system, at time index k. The parameters of

the system, i. e., the system matrix Ak ∈ R
Nx×Nx , input matrix Bk ∈ R

Nx×Nu and output matrix

Ck ∈ RNy×Nx, are in general not constant but depend on the index k ∈ N0. The time-invariant

case when Ak = A, Bk = B and Ck = C for all k ∈ N0 will be of special importance in the

following and we will always assume that the pair (A,B) is stabilizable and the pair (A,C) is

detectable, respectively (see Definitions 1.4.5 and 1.4.6).

The initial state x0 ∈ R
Nx is modeled as a Gaussian random vector with x0 ∼ N

(

0Nx
,Cx0

)

.

For the sake on simplicity, the process noise (wk : k ∈ N0) and the observation noise (vk : k ∈ N0)
are assumed to be sequences of independent random vectors which are mutually independent as

well as independent of the initial state x0, and their distributions are wk ∼ N
(

0Nx
,Cwk

)

and

vk ∼ N
(

0Ny
,Cvk

)

, respectively, with k ∈ N0. When considering time-invariant systems, it

will be additionally assumed that the noise sequences are stationary. Together with the indepen-

dence assumption, this implies that (wk : k ∈ N0) and (vk : k ∈ N0) with wk ∼ N (0Nx
,Cw) and

vk ∼ N
(

0Ny
,Cv

)

for all k ∈ N0 are identically and independently distributed (i.i.d.) sequences

of random vectors in the time-invariant case.

Note that the independence assumption of the process and observation noise can be relaxed. If

the noise sequences are given by Gauss-Markov sequences, they can be described by a state space

model which is driven by a sequence of independent random vectors (cf. Theorem A7.2). Thus,

the overall system can be described using a model according to Equation (1.1) by augmenting the

model of the original dynamical system with the state space description of the noise sequences

(cf., e. g., [37, Chapter 11]). Mutual dependencies of (wk : k ∈ N0) and (vk : k ∈ N0) can also be

included and slightly affect the results presented in Appendix A7. A detailed description of the

necessary modifications can be found in, e. g., [38, pp. 69-71] and [31, Chapter 9].

1.6 Channel Model

The channels which are used to exchange information between the dynamical system described

above and a controller in a closed loop system are assumed to be linear, memoryless and to in-

troduce additive noise which corrupts the transmitted information. Thus, in the general case, the

received vector rk ∈ RM at time index k ∈ N0 at the channel output reads as

rk = Hktk + nk, (1.2)

where tk ∈ RN is the transmitted vector, Hk ∈ RM×N is the matrix which describes the linear

channel and nk is the additive noise described by a sequence of random vectors with properties

defined in Section 1.6.2. The sequence of transmit vectors (tk : k ∈ N0) is a sequence of random

vectors where we do not make specific assumptions about its properties at this point despite the

existence of finite first and second order moments for all k ∈ N0. Figure 1.4 illustrates the channel

model.

tk Hk

nk

rk

Figure 1.4: General model of a linear memoryless additive noise channel.
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Note that the dimensions N and M are not necessarily the same. However, if the channel matrix is

known, it can be included in the model of the dynamical system presented in Section 1.5. Assume

for example that the observations yk (cf. Equation 1.1) are transmitted using the channel model

of Equation (1.2). An equivalent channel without an explicit channel matrix can be constructed if

the system output matrix Ck is replaced by HkCk and the observation noise vk by Hkvk. In this

case, the remaining channel is simply represented by the additive noise nk and the dimensions of

the input and the output of this channel are the same.8

1.6.1 The Limited Communication Resource

The communication resource which is limited by the specific choice of the communication channel

is the power of the transmitted signal.9 It is given by its variance and limited by the available power

PTx ≥ 0 at the transmitter. Thus, in general, the constraint

Etk

[

‖tk − µtk‖22
]

= tr
[

Ctk

]

≤ PTx, k ∈ N0, (1.3)

has to be considered. Using this formulation of a communication constraint, it is implicitly assumed

that the variance of the additive noise is given and not a design parameter. In the literature on NCSs

which considers the presented channel model one can often find an equivalent formulation of the

constraint presented in Equation (1.3) which explicitly includes the variance of the channel noise.

In this case, the SNR, i. e., the ratio of the power of the transmitted signal and the power of the

channel noise, is the limiting factor and assumed to be bounded by some constant ϕ ≥ 0. Thus,

Equation (1.3) becomes

tr
[

Ctk

]

tr
[

Cnk

] ≤ ϕ, k ∈ N0. (1.4)

Equation (1.4) is obtained by dividing Equation (1.3) by tr
[

Cnk

]

, i. e., the variance of the channel

noise. This shows the equivalence of both representations of the limited communication resource

by noting that PTx = ϕ tr
[

Cnk

]

.

1.6.2 Additive (White) Gaussian Noise

For this channel model only the additive noise sequence (nk : k ∈ N0) is considered. Thus, Equa-

tion (1.2) reduces to

rk = tk + nk, k ∈ N0, (1.5)

with transmitted vector tk ∈ RM and received vector rk ∈ RM . The noise sequence (nk : k ∈ N0)
is assumed to be uncorrelated (white) and Gaussian with nk ∼ N

(

0M ,Cnk

)

for k ∈ N0. Addi-

tionally, it is independent of all other random variables which contribute to the sequence of transmit

vectors (tk : k ∈ N0). Due to its properties, the sequence (nk : k ∈ N0) is referred to as Additive

White Gaussian Noise (AWGN).

8Similar considerations lead to the treatment of channels with memory and temporarily correlated noise sequences

by including their descriptions in the system model given by Equation (1.1).
9If the power is not limited, an infinitely large amplification of the transmit signal together with the reverse opera-

tion at the receiver can be used to eliminate the additive channel noise (see Section 1.1). Thus, the consideration of a

non-zero noise always implies the limitation of the transmit power.
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Remark: The consideration of the AWGN case in the context of information exchange of dynam-

ical systems is not as restrictive as it may seem and can be extended to the case of Gauss-Markov

noise sequences (nk : k ∈ N0) which allow for a state space representation (cf. Theorem A7.2)10

x
(n)
k+1 = A

(n)
k x

(n)
k +B

(n)
k ηk,

nk = C
(n)
k x

(n)
k +D

(n)
k ηk, k ∈ N0,

(1.6)

with system state x
(n)
k ∈ RK , an uncorrelated (white) sequence (ηk : k ∈ N0) of zero-mean Gaus-

sian random vectors, i. e., ηk ∼ N
(

0L,Cηk

)

, and system parameters A
(n)
k , B

(n)
k , C

(n)
k and D

(n)
k

of appropriate dimensions. Additionally, the random vectors ηk, k ∈ N0, are independent of all

other random variables under consideration. As an example, assume that the output yk of the dy-

namical system introduced in Equation (1.1) is transmitted over the additive noise channel given

by Equation (1.5), i. e., tk = yk, with correlated noise nk according to Equation (1.6). The output

rk of the channel reads as

rk = yk + nk = Ckxk + vk +C
(n)
k x

(n)
k +D

(n)
k ηk

=
[

Ck, C
(n)
k , D

(n)
k

]





xk

x
(n)
k

ηk



+ vk.
(1.7)

This corresponds to the noisy observation of the state
[

xT
k , x

(n),T
k , ηT

k

]T

of a system given by the

difference equation





xk+1

x
(n)
k+1

ηk+1



 =





Ak

A
(n)
k B

(n)
k

0L×L









xk

x
(n)
k

ηk



+





Bk

0K×Nu

0L×Nu



uk +





wk

0K

ηk+1



 . (1.8)

Recalling the assumption that the sequences (wk : k ∈ N0), (ηk : k ∈ N0) and (vk : k ∈ N0) are

white and mutually independent, it can be seen that the correlated noise case can be included in

the AWGN channel model. Similar steps are possible if the correlated noise is added to the system

input uk. Thus, only the AWGN case will be considered in the following.

Finally, Figure 1.5 illustrates the application of the AWGN channel model to a control sys-

tem. It shows a control loop which is closed using two additive noise channels which introduce

the disturbances (qk : k ∈ N0) and (nk : k ∈ N0) and separate the controller from the dynamical

system to be controlled (cf. Section 1.5). Comparing with Figure 1.3, we identify the observation

and control channel and recognize that the transmitters and receivers for the respective channels

are not present in Figure 1.5. Their design subject to the limitation of communication resources

(cf. Section 1.6.1) will be discussed in the following chapters.

10In Theorem A7.2 the feed-through parameter Dk has not been introduced but can be included in the presented

stochastic model.
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Ak

Bk Ck

wk vk

qknk

xk

uk

yk

Controller

T

Figure 1.5: Model of the control loop which is closed over two additive noise channels.



2. Challenges in Control Problems Due to Communication

Constraints

In the preceding chapter, it has been explained what we understand by a control system and how

communication systems and the associated constraints extend the problem of control system de-

sign. At this point, we give some concrete examples of limitations and disturbances due to the

presence of communication channels in a control loop. The examples cover the most important

channel models that are used in the literature on NCSs. Note that for the following examples, we

will make use of specific system and channel models that have not been introduced so far, provide

solutions without a detailed derivation and sometimes anticipate results from subsequent sections.

Nevertheless, the reader who is familiar with stochastic systems and basics in communication the-

ory should be able to follow the explanations and may obtain some intuition about the problems

that arise when considering limited communication resources in a control loop.

2.1 Models of the Communication System

2.1.1 Distributed Control Systems

What has not been mentioned so far are the implications of the distributed nature of NCSs (cf. Sec-

tion 1.2). Having a look at Figure 1.3 and using a general approach, the joint design of transmitters,

receivers and the controller can be viewed as a controller design with a structural constraint. In this

case, the controller has a distributed configuration where each element has access to different in-

formation. One element (in communication terms: the transmitter) has direct access to the system

output, one (the receiver) has access to the system input and a third element (the traditional con-

troller) connects the other two using the observation and the control channel. Thus, the different

parts of the controller generate the information which is the input to the subsequent parts.

The configuration that defines what information is available at which component of a dis-

tributed controller is called information pattern [39]. The classical information pattern assumes

that all components of the controller have access to the same information at the same time. This

is of course true if a centralized controller which collects all available information in the feedback

loop is used. It is easy to verify that this is not the case for the distributed control system shown

in Figure 1.3, i. e., transmitter, receiver and controller have access to different information. The

author of [39] gave a very simple example of a control problem with a linear dynamical system

and quadratic cost function, but with distributed structure, i. e., with a non-classical information

pattern. He showed that the optimal control problem is not convex in the optimization variables and

that the optimal control scheme must be non-linear.1 However, with a classical information pattern,

the problem is convex and allows for a linear solution in the framework of Linear Quadratic Gaus-

1It may be interesting for the reader with a background on communication systems that in [39] it has been pointed

out that “[w]hen communications problems are considered as control problems (which they are), the information pat-

tern is never classical since at least two stations, not having access to the same data, are always involved.” Thus, the

well known fact is stated that optimal communication strategies are in general non-linear and the associated optimiza-

tion problems are non-convex.

15
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sian (LQG) control. In [40], this example is revisited and presented in a more information theoretic

context which provides some additional intuition about the results. As a final remark, the authors

of [41] analyzed the property of (non-)convexity in decentralized control and provided the largest

known class of convex problems for this case.

The results presented here demonstrate that we can not expect in general to find straightforward

solutions to the problem of joint optimization of transmitters, receivers and controllers for a NCS,

e. g., by applying convex optimization techniques, and suboptimal approaches may be necessary.

2.1.2 Packet Drops

The packet drop channel model is quite popular in the literature on NCSs for several reasons. First

of all, it can be motivated information theoretically [42] as well as from a practical point of view

since a lot of general purpose communication systems and data networks are packet switched , i. e.,

the network can either deliver a packet with all its information or lose the contained information if

a packet can not delivered or correctly decoded.2 A second reason is that such a channel abstracts

the physical properties of the communication channel and the question how to allocate the limited

communication resources in an optimal way is not part of the control system design. With the

packet drop model, the obvious goal of the communication system is to provide a probability of

packet loss which is as small as possible. Thus, the design of the communication and the control

system is decoupled. Note that despite the fact that the packet drop model typically is the result of

a digital, packet switched communication system, the effect of quantization of the transmitted data

is neglected in most cases. The standard argument is that a packet can carry such an amount of

information that the effect of quantization is extremely small or can be modeled as additive white

noise (cf. [44–46]). For a discussion of quantization in NCSs, see Section 2.1.3.

In order the get an intuition why the presence of packet drops has to be taken into account for

the design of a control system, consider the following example from [47] with a dynamical system

where the input signal can be lost due to packet drops, i. e., without a packet drop the system

operates as a closed loop while the loss of the input signal results in an open loop system. We will

use the function δ(k) to describe if the channel loses a packet. It has the value 0 when a packet

drop occurs and 1 otherwise. Assume that the dynamical system is linear and described by the

difference equation

xk+1 = Aδ(k)xk, k ∈ N0 and δ(k) ∈ {0, 1}, (2.1)

where xk ∈ RNx is the state of the dynamical system at time index k with the initial state x0.

The matrix Ai ∈ RNx×Nx , i ∈ {0, 1}, determines the dynamics of the system where A0 refers to

the open loop dynamics when the control input is lost and A1 to the closed loop dynamics when

the packet which contains the control signal has been delivered. We can see that due to the packet

drops the dynamical system becomes time variant and switches between two possible operation

modes. Assume that in both cases, i. e., if the system is operating in open or closed loop mode

exclusively, the system is stable in the sense that

lim
k→∞

xk = lim
k→∞

Ak
ix0 = 0Nx

, i ∈ {0, 1}, (2.2)

for all x0 ∈ R
Nx . An example for such a case is depicted in Figure 2.1 for Nx = 2, where x

(1)
k and

x
(2)
k denote the first and the second component of the state vector xk, respectively. It is relatively

2For an information theoretic discussion of the infinite alphabet erasure channel see [43, pp. 318-320].
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x
(1)
k

x
(2)
k

(a) Open loop dynamics with A0.

x
(1)
k

x
(2)
k

(b) Closed loop dynamics with A1.

Figure 2.1: Trajectories of a system which is open loop (left) and closed loop (right) stable.

easy to determine a sequence of packet drops, i. e., a switching between the open and the closed

loop dynamics, which produces an unstable behavior of the control system. The result is shown in

Figure 2.2.

x
(1)
k

x
(2)
k

Figure 2.2: Trajectory of a switched system which is open loop (dashed line) and closed loop (dash-dotted

line) stable. The system can become unstable by switching (switching points are denoted by �).

The presence of packet drops as a result of limited communication resources of course has

negative effects on the performance since the system is operating in open loop for a fraction of the

time and thus its behavior differs from the desired one which is realized by closed loop control. But

the example shows that the performance can become arbitrarily bad because of the loss of stability.

This effect must be taken into account for the design of a controller. Dynamical systems with

abruptly changing parameters have been studied in, e. g., in [22,23,47,48], under different aspects

like stability and controllability, where the change of the system parameters can be deterministic or

driven by a stochastic process. Especially the latter point of view is an interesting starting point for

the investigation of NCSs using the packet drop channel model. In this case, the loss of information

in a control loop can be modeled as a stochastic change of system parameters between two possible

modes, depending on the event of a packet drop. The problem of state estimation with probabilistic

loss of measurements of the system output has been investigated in, e. g., [30, 49–51]. The closed

loop control problem has been addressed in [11, 45, 52–58], which demonstrates the popularity of

the packet drop channel model for the investigation of NCSs.

Nevertheless, in this thesis we do not focus on this channel model because it does not allow for

a deeper analysis of the parameters of the physical communication channels and their impact on

the control system.
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As a final remark, the model of a channel which carries a real number without introducing

disturbances but with a certain probability of data loss is a good example why concepts from

information theory which solely concentrate on the problem of reliable transmission of information

may be inadequate for control system design. It has been pointed out in [42] and is proved3 in [43,

pp. 318-320] that the packet drop channel with infinite input alphabet has infinite Shannon capacity,

i. e., it can be used to reliably transmit any amount of information. Nevertheless, this property is not

sufficient for the feedback stabilization over packet drop channels (see, e. g., [56]). For a detailed

discussion of the properties of communication channels which are compatible with the objective

of closed loop control, see [42].

2.1.3 Quantization

A digital communication system offers a finite word length for the data that is transmitted. Typi-

cally, this is expressed by the number of bits that can be sent and received reliably per time unit.

Thus, it is necessary to evaluate the effect of quantization of the transmitted information in the

control system which is generally represented by real numbers. It has already been mentioned in

Section 2.1.2 that a possible way of doing this is to simply ignore the effects of quantization or

to use an additive noise model like in, e. g., [44, 46, 59]. A different line of research focuses ex-

plicitly (and often exclusively) on the effect of quantization as the main representation of limited

communication resources. For example, the authors of [36, 60–65] consider the case were a com-

munication channel supports a finite (sometimes relaxed to countable) set of messages which can

be transmitted without an error.4 This introduces the necessity of quantizers which determine a dis-

crete representation of the generally continuous information like sensor measurements and control

signals with a finite number of bits, which is the limited resource in this scenario.

One of the major challenges in the analysis and design of NCSs with error-free but bit rate

limited channels is the non-linearity of the quantizers which change the closed loop dynamics of

the control system significantly and can even lead to a chaotic behavior (cf. [60] and references

therein). This complicates the analysis of quantized control systems and the design of optimal

quantizers. A second problem occurs due to the boundedness of signals which have to be repre-

sented by a finite number of bits. In [66] a linear dynamical system which is driven by Gaussian

noise is considered. The control loop is closed over discrete channels with finite input and output

alphabets and it is assumed that the control loop which consists of dynamical system, channel

encoders and decoders, channels and controller is an irreducible Markov chain. In [66, Theorem

4.2] it is shown that for this scenario, a bounded control input leads to a transient behavior of the

Markov chain, which is in conflict with notions of stochastic stability (cf. [67, Section 1.3.1]), e. g.,

stability in the mean square sense. A possibility to overcome this problem is a zooming type of

quantizer which dynamically adapts the range of values that can be quantized [61, 65], i. e., the

same number of quantization points is distributed over a large range when large values have to be

quantized and over a small range for small values. This means that large values, e. g., of the state

or the control input, tolerate a larger quantization error than small ones. This effect has also been

observed in [62] where a quantizer is optimized such that a linear dynamical system with scalar

3The author of [43] considers an erasure channel with a countably infinite alphabet and it is shown that its capacity

is infinitely large. Since this alphabet is a subset of the real numbers, the capacity of an erasure channel with real input

is also infinitely large.
4This means that the message at the input of the channel is identical to the channel output. A positive effect of

this model is that the transmitter has exact knowledge about the information at the receiver which often simplifies the

analysis of such systems.
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control input is quadratically5 stabilized. The authors of [62] assume a countable instead of finite

number of values for the representation of the control signal and show that the coarsest quantizer

for the control signal is logarithmic, i. e., the control input at time index k ∈ N0 can represented as

uk = ±αρi, i ∈ Z, (2.3)

with the constants α > 0 and 0 < ρ < 1. An important result of [62] is that ρ can not be chosen

arbitrarily close to zero but has to be larger than a value that depends on the unstable eigenvalues

of the system matrix. The larger the magnitude of these eigenvalues, i. e., for a higher degree of

instability, the larger ρ must be which results in a smaller distance between the quantization points.

Note that irrespective of the size of ρ, a countably infinite set of values is always available for the

quantization. Obviously, this fact alone is not sufficient for a logarithmically quantized controller

to stabilize an unstable dynamical system.

The following example illustrates the result of [62]. The model of the dynamical system to be

controlled is given by the linear difference equation

xk+1 = Axk + buk, k ∈ N0, (2.4)

with the system state xk ∈ RNx , system matrix A ∈ RNx×Nx , system input vector b ∈ RNx and

initial state x0 ∈ RNx . For the determination of the control input uk according to Equation (2.3),

the complete knowledge of the state vector xk is available. For the example, Nx = 2 has been

chosen and for the applied system matrix6 we obtain the smallest value of ρ that ensures quadratic

stabilizability to be ρmin ≈ 0.714. In Figure 2.3, the basis for the logarithmic quantizer is ρ = 0.75
which implies quadratic stability. Consequently, it can be observed that the closed loop system

with quantized control reaches the zero state in approximately the same number of steps as the one

with unquantized control.
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Figure 2.3: System with logarithmically quantized control input. Applied quantizer basis is ρ = 0.75, coars-

est basis is ρmin ≈ 0.714.

The situation changes if the basis is chosen too small. The result for ρ = 0.49 is shown in Figure

2.4. Despite the fact that a countably infinite set of quantized values with unrestricted magnitude

is available, the closed loop system is not stabilized by the quantized controller.

The purpose of this section is to demonstrate the difficulties that arise in the design of control

systems with quantized information. Note a standard assumption for the investigation of control

5This stability criterion is also referred to as Lyapunov stability, see, e. g., [7, pp. 177- 180].

6The exact system parameters are A =

[

3 1
2

]

and bT = [0, 1]T, respectively. The initial state is xT
0 = [1, 0]T.
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Figure 2.4: System with logarithmically quantized control input. Applied quantizer basis is ρ = 0.49, coars-

est basis is ρmin ≈ 0.714.

systems that include quantization is the absence of any other disturbance due to limited commu-

nication resources. One possible implication of this assumption is the necessity of a very reliable

communication channel which might be realized by the application of a powerful channel code.

The situation becomes much more involved when the possibility of errors is considered, i. e., that

a transmitted value is mapped to a wrong value at the receiver. One approach for this scenario can

be found in [66].

2.1.4 Model Uncertainty

It has already been mentioned that limited communication resources lead to an imperfect exchange

of information, e. g., due to noise, data loss or quantization. In this case, the imperfections of the

communication channel directly affect the transmitted signals which carry the information. But

this is not the only consequence of imperfect communication. A second problem concerns the

knowledge of the parameters of the channels. In order to design a controller with satisfactory per-

formance, it is essential to have a precise model of the dynamical system to be controlled as well

as of the channels which connect the system and the controller. It is, for example, important that

the control signal at the output of the control channel (i. e., the input of the dynamical system, cf.

Figure 1.3) has the value which leads to the desired system behavior. Thus, the signal at the chan-

nel input, which is subject to distortions and disturbances, must be chosen accordingly. Without

accurate knowledge of the parameters of the channel model, this is not possible. Imperfect channel

knowledge is equivalent to uncertainties about the system dynamics, but this uncertainty enters the

control system at very specific points and can be modeled according to the channel model under

consideration.

The assumption that the model of the dynamical system and its parameters are perfectly known

for the controller design can be justified if it is a technical system which is completely determined7

by a system designer or if there are enough resources like time, bandwidth, power etc. to apply

identification techniques (cf., e. g., [68]) for the offline determination of the parameters of a phys-

ical system. For the latter case, we have to assume that the system parameters remain constant

for a sufficiently long time interval or that it is always possible to repeat the system identification

when the parameters change. But these two points are critical for the identification (or estima-

tion) of communication channels. Especially in wireless scenarios, parameters like the channel

gain change continuously over time and have to be identified repeatedly using channel estimation

7An example is the Internet where TCP is used to control the congestion of the network, see, e. g., [21].
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techniques (see, e. g., [69]). The amount of communication resources which is available for the

estimation procedure is a limiting factor for the accuracy of the estimate. Assume a model of a

communication channel with additive noise and an unknown channel gain such that a transmitted

real number x results in a channel output y = ax + n, where a is the gain factor and n the noise.

The value of a can be estimated by transmitting a so-called training symbol, i. e., a value of x that

is known to the transmitter and the receiver, and using the received value for the determination

of the unknown constant, e. g., by computing aestimate = x−1y = a + x−1n. Note that with finite

communication resources it is in general not possible to obtain a perfect estimate of a. For exam-

ple, with a constraint on the magnitude of x, there is a residual error in the estimate due to the

additive noise. This problem can be circumvented if other resources are not limited. With a rea-

sonable (stochastic) model of the noise, the error can be made arbitrarily small by transmitting an

infinitely long sequence of known symbols over the channel and applying estimation methods like

least squares, maximum likelihood etc. (cf. [31, Chapters 2 and 3] and [70, Chapters 6-9]). The

drawback of this approach is that it trades the limited magnitude of transmit signals with an un-

limited amount of time or bandwidth, respectively, in order to transmit an infinitely long sequence

of training symbols. But even if we could determine the value of a exactly, this information would

only be useful when a remained constant after the training period. Especially in wireless scenarios,

the parameters of a communication channel can change fast and it is very likely that parameters

that have been determined with training are not the same when transmitting relevant information.

In order to demonstrate why the accurate determination of system parameters is essential for

the design of control systems, we show the result of [25] which is called the uncertainty threshold

principle and considers a dynamical system with imperfect knowledge of its model parameters.

The time-variant linear system is described by the scalar difference equation

xk+1 = akxk + bkuk, k ∈ N0, (2.5)

where xk is the system state at time index k with initial state x0 and uk is the control input. In

order to model the effect of uncertainty, the parameters ak and bk, k ∈ N0, are assumed to be given

by i.i.d. random sequences which are mutually independent8. In more detail, the model for the

uncertainty is ak ∼ N (µa, ca) and bk ∼ N (µb, cb) for all k, where the mean is interpreted as the

actual knowledge (or estimate) of the respective parameter while the variance corresponds to the

degree of uncertainty, i. e., a parameter is perfectly known if its corresponding variance is zero. If

the controller has access to the state xk at time index k, the optimal control input for the system

which minimizes a quadratic cost function reads as (see [25] and [38, pp. 42-53 and Section III.3])

uk = −
(

gk+1

(

cb + µ2
b

)

+ r
)−1

gk+1µaµbxk, (2.6)

where gk, k ∈ {0, 1, . . . , N}, is given by the backward recursion

gk = gk+1

(

ca + µ2
a

)

− g2k+1µ
2
aµ

2
b

(

gk+1

(

cb + µ2
b

)

+ r
)−1

+ q, (2.7)

with initial condition gN = 0. The numbers N ∈ N, q > 0 and r > 0 are parameters of the

respective optimization problem. We refer to Appendix A6 for a detailed description of the cost

function and the meaning of its parameters. The optimal value of the cost function that is achieved

by applying the result of Equation (2.6) is given by

J∗ = g0x
2
0. (2.8)

8This assumption has not been made in [25] where correlations between ak and bk are considered. We omit these

correlations here for the sake of simplicity.
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The value of N determines the number of steps or the horizon of the control problem. If the

control system operates over a very long horizon, i. e., in the limit for N → ∞, it is of special

interest if the recursion in Equation (2.7) converges and does not grow without a limit which

would result in an unbounded optimal value of the cost function (cf. Equation 2.8). In [25] it has

been shown9 that the cost function is only bounded if

m = ca + µ2
a − µ2

aµ
2
b

(

cb + µ2
b

)−1
< 1. (2.9)

Thus, even if the dynamical system is, loosely speaking, stable on average, i. e., if |µa| < 1, a large

uncertainty of the system parameters, represented by large values of ca and cb, respectively, results

in unbounded costs for N →∞ because the sequence gk does not converge.
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Figure 2.5: Normalized cost (cf. Equation 2.8) of a control problem with uncertain parameters vs. horizon

(q=r=1).

Figure 2.5 shows the value of the optimal cost function given by Equation (2.8), normalized

w.r.t. x2
0. The uncertainty of the system parameters is given by µa = 0.5, µb = 1 and cb = 1. The

variance of ak is chosen to be ca ∈ {0.7, 0.8, 0.85, 0.9} which results in the threshold parameter

m ∈ {0.825, 0.925, 0.975, 1.025} (cf. Equation 2.9). It can be seen that the cost function is bounded

as long as m < 1, but it grows for increasing horizon without a bound if m is larger than one.

The result presented in this section is only one example of the consideration of dynamical

systems which are not perfectly known. The problem of control of and state estimation for sys-

tems with uncertain parameters has a long history and can be traced back through more than five

decades [25, 71–77]. The references named here model the uncertainty as random variables or

processes, respectively, which is consequent from the point of view of stochastic control theory.

This is of course not the only possibility to consider imperfect knowledge of system parameters,

sometimes there may be even not enough knowledge to provide a suitable stochastic model. A

different approach is to assume that the actual dynamical system is an element of a certain set. The

uncertainty is modeled by the fact that the system is not known but the set it is taken from. Several

approaches to deal with this model description can be found, e. g., in [32, 78, 79].

As a final remark, note that the problem of model uncertainty is not restricted to physical sys-

tems which can not be identified with infinite precision. For example, the fact that a coefficient

9The result can be verified by assuming that gk is large and thus neglecting the effect of r in Equation (2.7). The

resulting linear time-invariant difference equation converges under the condition of Equation (2.9). Another possibility

is to assume that a fixed point of Equation (2.7) exists. The optimal cost is only well defined if the resulting quadratic

equation has a positive solution. This also leads to the condition of Equation (2.9).
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of a communication channel is not perfectly known can not only be observed in wireless com-

munication scenarios. This uncertainty is also present on the abstract transportation layer in data

networks, despite the fact that its parameters are completely determined by the designer and thus

can be assumed to be perfectly known. Nevertheless, the data packets of different users that share

the network can lead to congestion and packet loss. From the point of view of one user, this can be

modeled as a channel coefficient which is either one (packet is delivered) or zero (packet is lost)

with a certain probability. In general, this coefficient can not be determined by a transmitter and

thus represents a model uncertainty.

2.1.5 Finite Signal-to-Noise Ratio

A fundamental resource for the transmission of information over a communication channel is the

power of the signals that carry the information [1]. If a channel is considered which introduces

additive noise with constant power, an equivalent representation of the transmit power for such a

channel is the so-called SNR [1,2,70], a common term for the ratio of the power of the transmitted

signal and the noise power. It is intuitively clear that the more power is available for the trans-

mission of information (or the higher the SNR), the less destructive is the effect of the noise. On

the other hand, the amount of available power is typically limited, e. g., due to regulatory reasons

or the non-linearity of power amplifiers, which gives rise to the question how to design transmit-

ters and receivers that use the limited communication resource such that the effect of the channel

disturbances is minimized.

For the isolated problem of information exchange between one transmitter and one receiver

(see Figure 1.1), an increase of the SNR typically10 results in a better performance of the commu-

nication system, but a decrease usually leads to a graceful performance degradation. One example

is the Shannon capacity of a scalar channel with real input and AWGN (cf. [1]) which is given

by the well known [1, 80] expression C = 1
2
log2

(

1 + P
N

)

bits per transmission, where P ≥ 0 is

the power (or variance) of the channel input signal and N ≥ 0 the power of the noise. Thus, as

long as the signal to noise ratio is larger than zero, the transmission of information is possible.

This situation can change when the AWGN channel is used to transmit observations of the state

of a dynamical system to a controller in a closed control loop. The critical point is the open loop

(in)stability of the dynamical system to be controlled. In the following, we give a simple example

of the effect of transmit power limitations in a control system.

Let the system to be controlled be scalar, linear and time-invariant and given by the stochastic

difference equation

xk+1 = axk + buk + wk, k ∈ N0, (2.10)

with the system state xk at time index k, initial state x0 ∼ N (0, cx0
), control input uk and the i.i.d.

driving process noise sequence wk ∼ N (0, cw). The system parameters a and b are assumed to be

known. At the output of the system, it is assumed that the state xk can be observed without any

error at time index k, but has to be transmitted over an AWGN channel to the controller subject to a

maximal transmit power of P . In order to control the power of the transmit signal, xk is multiplied

by the factor ck before transmitting it over the channel. Thus, the controller receives the observation

yk = ckxk + nk, k ∈ N0, (2.11)

10A properly designed communication system must not react on an increase of the available transmit power with a

decrease of performance.
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where nk ∼ N (0, cn) is the i.i.d. Gaussian channel noise. The controller is chosen such that

the infinite horizon LQG average cost function with q = 1 and r = 0 is minimized. We do not

discuss the approach in detail at this point and refer the reader to Appendix A6. Loosely speaking,

this controller minimizes the variance of the system state, i. e., the amount of information to be

transmitted, and thus helps the transmitter to exploit the available power efficiently. Finally, the

scalar ck is chosen to use the full amount of transmit power, which can be shown to be optimal in

the scenario under consideration, i. e.,

ck =

√

P

cxk

. (2.12)

Note that with the system and channel model from Sections 1.5 and 1.6 as well as the choice of

the controller, it is possible to determine the sequence of variances cxk
, k ∈ N0, which is given by

the iteration11

cxk+1
= a2

(

cxk
− c2xk

(

cxk
+

cn

c2k

)−1
)

+ cw (2.13)

with initial condition cx0
for k = 0. Finally, by inserting the factor ck from Equation (2.12) and

some algebraic manipulations, Equation (2.13) can be simplified to

cxk+1
= a2

cn

P + cn
cxk

+ cw

=

(

a2
cn

P + cn

)k+1

cx0
+

k
∑

i=0

(

a2
cn

P + cn

)i

cw.

(2.14)

Obviously, this sequence of covariances only converges for a2 cn
P+cn

< 1, otherwise it grows without

a bound. This inequality can be rewritten to provide an explicit condition for the transmit power

that has to be provided such that the variance of the system state stays bounded:

P > (a2 − 1)cn. (2.15)

The property of a bounded state covariance matrix corresponds to the stability of the system in the

mean square sense, see Definition 1.4.9. Thus, in order to obtain a stable control loop, the available

transmit power P has to be chosen depending on the system parameter a and the variance of the

channel noise.

Equation (2.15) shows the fundamental difference between the control of stable and unstable

dynamical systems with finite transmit power. If the system is stable even without control, i. e., if

|a| < 1, the available transmit power can be reduced down to zero, which is a quite obvious result:

a stable system does not need control to be stabilized. On the other hand, dynamical systems

which are open loop unstable always need some control input to be stabilized which results in the

requirement of a strictly positive transmit power. The amount of the power depends on the degree

of instability, i. e., the value of the squared system parameter a.

It can be seen by Equation (2.13) that as long as k is finite, the variance of the system state

is also finite and consequently the power constraint can be met with a non-zero transmit scaling.

In order to show the effect of the available transmit power on the stability of the control loop,

Figure 2.6 shows the asymptotic value of the state variance for k → ∞. As long as the transmit

11Equation (2.13) stems from the Riccati iteration for the error covariance matrix of the Kalman filter, see Appendix

A7, since the variance of the system state is in this case identical to the variance of the state prediction error.
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Figure 2.6: Asymptotic variance cx = lim
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cxk
of the system state over the SNR (a = 2, cw = 1).

power (or SNR, respectively) is large enough, the closed loop system is mean square stable and

thus has a finite variance of the system state. For the chosen parameters a = 2, the bound for the

SNR, given by P
cn

, is 3 (cf. Equation 2.15). Consequently, we observe an unbounded increase of the

asymptotic variance of the system state when the SNR approaches this value. On the other hand,

the asymptotic value of the state variance for P
cn
→∞ is (cf. Equation 2.14) cw = 1.

Finally, consider the case when the available transmit power does not suffice to stabilize the

scalar system in the mean square sense. For the parameters a = 2 and cn = 1, the power must be

larger than 3. If we chose instead only 95% of this value, i. e., P = 2.85, it can not be expected to

obtain a stable closed loop system. Figure 2.7 shows the effect on the variance of the system state.

In order to fulfill the power constraint, the transmitter has to chose a scaling factor ck which leads
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Figure 2.7: Variance of the system state, scalar at the transmitter and variance of the transmit signal for a

transmit power that is not sufficient for stabilizability in the mean square sense (a = 2, cn = 1, P = 2.85).

to an increase of the variance of the system state. Consequently, the transmitter further decreases

its scaling, leading to a further increase of the state variance and so on. The fact that the transmit

power is too low results in an unbounded increase.

The consideration of power constraints in control problems has a long history. Even the uncon-

strained optimization of a weighted quadratic cost function in LQG control problems (see, e. g., [4]

and Appendix A6) includes the desire to keep the variance of the system states, outputs or control

inputs small. An explicit consideration of variance constraints using Lagrange multipliers can be

found in [81] where the controller is the only instance which can be used to fulfill the constraints

and no additional transmitter like the scaling factor in the example above is present. The authors

of [82] take into account power constraints together with the optimization of the measurement (or
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transmission) strategy. The variance of signals at the system output is the subject of investigation

in [83, 84], where [84] formulates the constraints not in terms of power but SNR. A consideration

of limited transmit power as an extension to classical LQG control can be found in [85]. A break-

through for the investigation of linear systems with power or SNR constraints was [29] where a

condition similar to Equation (2.15) has been determined for general Single-Input Single-Output

(SISO) systems with linear controllers. The work has been extended in [86] with a scaling at the

transmitter and in [87] where it has been shown that the limits of stabilizability do not change

when arbitrary time varying or non-linear control is used. Contributions which emphasize the role

of (convex) optimization techniques for the controller, transmitter and receiver design are [35]

and [88], were the authors of [89] and [35] provide a connection between additive noise, data

rate limited channels and information theoretic aspects of control with communication constraints

which lead to implementable NCSs.

2.2 Scope of the Thesis

The concept of NCSs covers a wide range of models for the dynamical systems and the com-

munication infrastructure that is used for the information exchange of such systems. A common

feature which separates NCSs from the classical control system design is to consider explicitly

the influence of the communication infrastructure on the dynamical behavior of the control sys-

tem. Depending on the dynamical system and communication channel model under consideration,

different effects can be observed and a suitable analysis and design methodology has to be found.

The intention of this thesis is to investigate challenges and benefits of a joint design of control

systems, transmitters and receivers on a low level, i. e., with system and channel models which are

close to their physical description. From a practical point of view, other models like erasure chan-

nels (packet drops, cf. Section 2.1.2) or discrete channels (quantization, cf. Section 2.1.3) can be of

larger interest, e. g., if control systems are designed on top of a existing general purpose communi-

cation system like a Local Area Network (LAN) or the Internet. With the model of communication

imperfections on the higher level of abstraction which are provided by those networks, data loss

and quantization are relevant problems to deal with. But despite the practical importance of the

investigation of scenarios using these channel models and the theoretical bounds derived from it,

the degrees of freedom for a joint design of control and communication are somehow restricted.

If data loss is the only imperfection, the underlying communication system must be designed to

provide the lowest possible loss probability. If quantization is the only source of distortion, one

has to provide the largest possible resolution of the quantizer. Of course there may be a coupling

between the resolution of the quantizer which determines the data rate and the probability of data

loss in a communication network and it is not trivial to find the optimal trade-off. Nevertheless, the

design of the physical communication system is separated from the controller design and shifted

to higher levels of abstraction or layers, e. g., the design of control oriented communication and

routing protocols for data loss networks [90, 91].

In the following, for the goal of a joint design of control and communication, simple but not

trivial system and channel models have been chosen which can be treated in a common framework.

In more detail, the models are linear dynamical systems and additive noise channels. Additionally,

only linear transmitters and receivers are considered and optimized, although it is known that

even in such a simple scenario non-linear communication and control techniques are optimal (cf.

[39, 40]). The linear models are compatible in the sense that they can be treated on the same

level and in the same optimization framework. Additionally, the consideration of variance-based
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constraints is quite natural in this framework. Thus, the limited communication resource will be

the power of transmit signals or the SNR of the communication channels, respectively, where the

former is more common in the communication community and the latter in the control community.

At the time of writing, the author of this thesis was member of a research group with a focus

on signal processing for communications. Consequently, the following results are presented with

the intention to introduce the special features and problems of a joint investigation of control and

communication systems to the signal processing and communication community. This is the reason

why some results which might be considered standard in the context of control system design,

e. g., LQG optimal control, dynamic programming, optimal estimation using the Kalman filter,

Lyapunov and Riccati equations, are introduced in the Appendix. Since they represent the basic

tools for the analysis and design of control systems under power or SNR constraints, respectively,

we hope that the way of presenting these tools is useful for the reader who is not familiar with them.

The reader with a background in the corresponding topics may start directly with the discussion of

power (or SNR) constrained LQG control in the following chapter.





3. Optimal Control With Power Constraints

3.1 The Unconstrained Optimization Problem

Consider the problem of the optimal design of a controller which is separated from the dynamical

system to be controlled by two communication channels, one which is used for the transmission

of the system output to the controller and one for the transmission of the control signal back to the

system input. According to the system and channel model which have been presented in Sections

1.5 and 1.6, the dynamical system is assumed to be Linear Time-Invariant (LTI) and the channels

are assumed to introduce stationary additive noise into the closed control loop. Figure 3.1 illustrates

the scenario.
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Controller µk

T

Control

Channel

Observation

Channel

Figure 3.1: Model of the control loop which is closed over two channels with additive noise qk and nk.

The optimal controller is determined by the solution of the Linear Quadratic Gaussian (LQG)

optimization problem (cf. Chapter A6 and Section A6.3)

minimize
µ0,µ1,µ2...

lim
N→∞

1

N
E x0,w0,...,wN−1,v0,...,vN−1,

q0,...,qN−1,n0...,nN−1

[

xT
NQNxN +

N−1
∑

n=0

[

xn

un

]T [
Q S

ST R

] [

xn

un

]

]

(3.1)

subject to xk+1 = Axk +B(uk + nk) +wk, k ∈ N0,

yk = Cxk + vk, k ∈ N0,

uk = µk(Ik), k ∈ N0,

Ik =
{{(y0+q0)},
{(y0+q0), (y1+q1), . . . , (yk+qk),u0,u1, . . . ,uk−1},

k = 0,

k ∈ N,

where the controller µk, k ∈ N0, is the function which maps the available information at time index

k to the control signal uk. Note that the system input is the sum uk + nk, k ∈ N0, of the control

signal and the control channel noise, and the observations for the determination of the control

signal are given by the sum yk + qk, k ∈ N0, of the system output and the observation channel

noise. Since the additive noises of the communication channels are modeled as random sequences,

the expected value in Equation (3.1) is additionally taken w.r.t. the corresponding random vectors.

Recall the assumption that (wk : k ∈ N0), (vk : k ∈ N0), (qk : k ∈ N0) and (nk : k ∈ N0) are

mutually independent sequences of independent Gaussian random vectors and are additionally

29
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independent of the initial state x0 which is described by a Gaussian random vector. Since the time-

invariant case is considered, the noise sequences are also assumed to be stationary. Using these

assumptions, it can be seen that the above optimization is a standard LQG problem with process

noise Bnk +wk, k ∈ N0, and observation noise vk + qk, k ∈ N0, where the corresponding noise

sequences also fulfill the above independence assumptions. Thus, the channel noise sequences just

change the parameters of the process and observation noise. Note the coupling of the noise and

system parameters by the covariance matrix Cw +BCnB
T of the effective driving process noise.

In Section A6.3 it is shown that the solution to the above optimization problem, more precisely

the control sequence (uk : k ∈ N0), is given by

uk = Lx̂k, k ∈ N0, (3.2)

where

L = −
(

BTKB +R
)−1 (

BTKA+ ST
)

, (3.3)

with the stabilizing solution K of the Discrete Algebraic Riccati Equation (DARE) (see Appendix

A3)

K = ATKA−
(

ATKB + S
) (

BTKB +R
)−1 (

BTKA+ ST
)

+Q, (3.4)

and the state estimate

x̂k = Exk |Ik [xk| Ik] , k ∈ N0. (3.5)

The estimate x̂k is computed using the Kalman filter (cf. Appendix A7 and Section A7.2) which

also provides the covariance matrix of the asymptotic estimation error

Cx̃ = lim
k→∞

Exk,Ik

[

(xk − x̂k) (xk − x̂k)
T
]

= CP
x̃ −CP

x̃C
T
(

CCP
x̃C

T +Cv +Cq

)−1
CCP

x̃,

(3.6)

which is determined by the stabilizing solution of the DARE

CP
x̃ = A

(

CP
x̃ −CP

x̃C
T
(

CCP
x̃C

T +Cv +Cq

)−1
CCP

x̃

)

AT +Cw +BCnB
T. (3.7)

Since the observation and control channel represent a communication system, it is of importance

for the design of such a system which amount of transmit power has to be provided for the trans-

mission of the system output and the control signals. However, for the determination of the optimal

control sequence (uk : k ∈ N0) (cf. Equation 3.2), no constraints for the variances of yk and uk,

k ∈ N0, i. e., the powers of the signals at the input of the observation and the control channel,

respectively, have been considered. This means that we have to live with the result of the optimiza-

tion and provide the corresponding power for the transmission of these signals. In the following,

the necessary transmit power for the observation and control channel will be determined using the

results of the optimal controller given in Equations (3.2) to (3.7). To this end, we will consider

asymptotic variances which are associated to the property of mean square stability (cf. Definition

1.4.9). Note that under the assumption that the DAREs given by Equations (3.4) and (3.7) have sta-

bilizing solutions (see Appendix A3), the closed loop dynamics of the interconnection of the origi-

nal system and the optimal controller which is based on the Kalman filter are described by a stable

dynamical LTI system, see, e. g., [3, pp. 275-276], [4, pp. 542-543] and [5, pp. 300-301]. Thus,

if this system is driven by Wide Sense Stationary (WSS) noise sequences, the resulting state se-

quences (xk : k ∈ N0) and (x̂k : k ∈ N0) as well as the associated output sequences (yk : k ∈ N0)
and (uk : k ∈ N0) are asymptotically WSS (see Definition 1.4.8).
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Definition 3.1.1: Power of transmit signals

The transmit power of the observation channel is determined by the variance of the observations yk,

k ∈ N0, at the system output. With the LTI system, the time-invariant controller and the stationary

noise sequences, this power is (asymptotically) given by

P1 = lim
k→∞

Eyk

[

‖yk‖22
]

= tr
[

CCxC
T +Cv

]

. (3.8)

Analogously, the power of the control channel is given by the variance of the control signal uk,

k ∈ N0, and reads as

P2 = lim
k→∞

Euk

[

‖uk‖22
]

= tr [Cu] = tr
[

LCx̂L
T
]

. (3.9)

For both transmit powers, the assumption has been used that all random vectors have zero mean.

The first step for the computation of the covariance matrices Cx and Cx̂ which determine P1

and P2 is to insert the optimal control input given by Equation (3.2) in the state equation given by

the constrains of the optimization problem (3.1) which results in

xk+1 = Axk +BLx̂+wk +Bnk

= (A+BL)x̂k +Ax̃k +wk +Bnk, k ∈ N0,
(3.10)

with the state estimation error (cf. Equation 3.6)

x̃k = xk − x̂k, k ∈ N0. (3.11)

A standard result which is also used for the derivation of the Kalman filter (see Section A7.2) is

that the optimal state estimate x̂k and the resulting estimation error x̃k are uncorrelated for all

k ∈ N0, i. e., for the presented scenario it holds that

E
[

x̂kx̃
T
k

]

= 0Nx×Nx
, k ∈ N0. (3.12)

Using this fact, the asymptotic covariance matrix of the system state is given by,

Cx = (A+BL)Cx̂(A+BL)T +ACx̃A
T +Cw +BCnB

T. (3.13)

Due to the property of uncorrelatedness, the covariance matrix above can also be expressed as

Cx = Cx̂ +Cx̃, (3.14)

which together with Equation (3.13) provides the following Lyapunov equation for the determina-

tion of Cx̂:

Cx̂ = (A+BL)Cx̂(A+BL)T +CP
x̃ −Cx̃, (3.15)

where CP
x̃ = ACx̃A

T + Cw + BCnB
T (cf. Equations 3.7 and 3.6). Note that the difference

CP
x̃−Cx̃ is positive semidefinite, which can be verified with Equation (3.6), and that the magnitude

of all eigenvalues of A +BL is less than one because K is the stabilizing solution of the DARE
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given by Equation (3.4). Thus, Cx̂ is the unique positive semidefinite solution of Equation (3.15).

Finally, the covariance matrix Cx is given by Equation (3.14).

The following example will be used to illustrate the above result. It does not represent a specific

physical or technical system and has been chosen randomly in order to visualize and hopefully

clarify the presented concepts and the impact of different approaches to the joint treatment of

control and communication. Consequently, we will come back to this example repeatedly in the

following sections and chapters.

Example 3.1.1 Let the LTI system to be controlled be given by the matrices

A =





0.5 0.9 −0.4
1.5 0.3 0.3
−1.5 −1.3 1.2



 , B =





2.7 0.7
−1.3 0

3 0.7



 , C =

[

−0.2 1.5 1.4
−0.1 1.4 0.7

]

,

i. e., Nx = 3 and Ny = Nu = 2. The pair (A,B) is controllable and (A,C) is observable. The

matrix A has only real eigenvalues and is unstable, i. e., the magnitude of one eigenvalue is larger

than one (approximately 1.96).

The process and observation noise sequences are Gaussian, identically and independently dis-

tributed (i.i.d.) with zero mean and covariance matrices

Cw =





0.2 0 0.1
0 0.6 −0.2
0.1 −0.2 0.2



 , Cv = 0Ny×Ny
,

respectively. Note that we assume the absence of observation noise at this point without loss of

generality because it can be combined with the observation channel noise sequence (qk : k ∈ N0).
This sequence describes the effect of communication imperfections in one channel. The other

channel is characterized by the random sequence (nk : k ∈ N0). Both sequences are Gaussian

i.i.d. with zero mean and covariance matrices

Cq =

[

1 −0.1
−0.1 0.5

]

, Cn =

[

0.7 −0.4
−0.4 0.3

]

,

respectively. Finally, the parameters of the LQG cost function are given by

Q =





7.2 −0.7 −1.3
−0.7 4.2 −0.4
−1.3 −0.4 0.35



 , R =

[

2.7 0.6
0.6 0.3

]

, S = 03×2.

Using all these parameters of the dynamical system, the communication channels and the cost

function, the solution of the optimization problem in Equation (3.1) leads to the transmit powers

P1 = tr
[

CCxC
T
]

≈ 4189 and P2 = tr
[

LCx̂L
T
]

≈ 1661. (3.16)

The respective Signal to Noise Ratios (SNRs) are

ϕ1 =
P1

tr
[

Cq

] ≈ 2793 and ϕ2 =
P2

tr [Cn]
≈ 1661. (3.17)

In order to compare these values with later results, Figure 3.2 shows the SNRs with a logarithmic

scale, i. e.,

10 log10(ϕ1) ≈ 34.46 and 10 log10(ϕ2) ≈ 32.20.
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Figure 3.2: SNRs of the observation and control channel for the unconstrained LQG problem.

3.2 The Constrained Optimization Problem

The transmit powers or SNRs, respectively, which are the result of the optimization problem (3.1)

without the consideration of any power constraints may be unsatisfactory for many reasons. As-

sume for example an asymmetric communication scenario where the transmitter at the system out-

put has a much smaller maximum transmit power available than the transmitter at the controller.

This is often the case if the system to be controlled is a mobile unit with simple communication

equipment and the controller is located at a base station without this restriction. As a second exam-

ple, consider the case where both transmitters have more transmit power available than the amount

which must be provided for the optimal LQG controller. In this case, it is desirable to use the

additional communication resources to combat the negative effect of the channel noises.

The obvious way to incorporate the limited communication resources of the transmitters in a

control loop which is closed over communication channels is the addition of constraints to the prob-

lem (3.1). Let the available transmit powers for the observation and control channel be PTx,1 ≥ 0
and PTx,2 ≥ 0, respectively. The corresponding constraints for the actual transmit powers thus are

(cf. Equations 3.8 and 3.9)

tr
[

CCxC
T +Cv

]

≤ PTx,1 and

tr [Cu] ≤ PTx,2.
(3.18)

In this section we adopt a method which has been proposed, e. g., in [81] and recently in [88],

to include the constraints given by Equation (3.18) in the LQG control problem. The basic idea is

to reformulate the optimization problem in terms of (asymptotic) covariance matrices. This formu-

lation is equivalent to problem (3.1) if the optimization is carried out within the class of controllers

which provide asymptotically WSS state and control sequences (xk : k ∈ N0) and (uk : k ∈ N0),
respectively. Since the optimal controller shown in Equations (3.2) to (3.7) belongs to this class,

we expect no loss of optimality due to this restriction.1 The reason for the reformulation of the

1The constrained optimization problem can be solved using the formulation of Equation (3.1) (cf. Chapter 4) which

provides the same result as the one shown in the following. Thus, the optimality of the solution is not just a conjecture.
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LQG control problem in terms of covariance matrices is that it allows for a direct application of

general purpose software for semidefinite optimization for the numerical investigations. We do not

claim that this is the most efficient way of solving the problem, but it is not necessary to develop

a special algorithm for the numerical evaluation of the presented results and we can focus on the

structure of the problem in the following discussions.

We start with the reformulation of the basic LQG problem (3.1) in terms of covariance matrices

and include the power constraint in a second step. Since it is assumed that the controller gener-

ates jointly asymptotically WSS state and control sequences, the respective covariance matrices

converge to their stationary values and the average cost infinite horizon problem becomes

minimize
C

x
,C

x,u,Cu

tr

[[

Q S

ST R

] [

Cx Cx,u

CT
x,u Cu

]]

(3.19)

subject to Cx =
[

A B
]

[

Cx Cx,u

CT
x,u Cu

] [

AT

BT

]

+Cw +BCnB
T,

[

Cx Cx,u

CT
x,u Cu

]

≥ 0(Nx+Nu)×(Nx+Nu),

where we have to keep in mind that the control input uk at time index k ∈ N0 is restricted to be

a function µk of the information Ik. This restriction is not captured by the problem formulation

above and it can not be expected that its solution has the required property. In order to include

this constraint in the optimization problem (3.19), the fact can be used that the state estimate

x̂k = Exk|Ik [xk| Ik] and the associated estimation error x̃k = xk − x̂k are uncorrelated, which

results in the property Cx = Cx̂ +Cx̃. Additionally, the estimation error and any function of the

information for the determination of the estimate are uncorrelated (cf. [33, p. 346]), i. e.,

Cx̃,u = lim
k→∞

Exk ,uk,Ik

[(

xk − Exk |Ik [xk| Ik]
)

uT
k

]

= lim
k→∞

Exk ,Ik

[(

xk − Exk|Ik [xk| Ik]
)

µk(Ik)T
]

= lim
k→∞

(

Exk,Ik

[

xkµk(Ik)T
]

− EIk

[

Exk |Ik

[

xkµk(Ik)T
∣

∣ Ik
]])

= lim
k→∞

(

Exk,Ik

[

xkµk(Ik)T
]

− Exk ,Ik

[

xkµk(Ik)T
])

= 0Nx×Nu
,

(3.20)

where the results of Sections A5.1 and A5.2 have been used. Consequently, we have the identity

Cx,u = Cx̂,u. (3.21)

Note that the covariance matrix of the system state reads as Cx = Cx̂ +Cx̃, where the controller

has no impact on the covariance matrix Cx̃ of the estimation error (cf. Section A6.2) for the given

scenario. Thus, together with Equation (3.21), it can be seen that the LQG problem in Equation

(3.19) can be reformulated using the joint covariance matrix of the state estimate and the control

signal. Since the estimate at time index k ∈ N0 is a function of the information Ik, the opti-

mization over the joint covariance matrix ensures that no additional information is required by the

optimal controller. Using this formulation of the optimization problem (3.19) and considering the
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constraints given by Equation (3.18) finally leads to the power constrained LQG control problem

minimize
C

x̂
,C

x̂,u
,C

u

tr

[[

Q S

ST R

] [

Cx̂ Cx̂,u

CT
x̂,u Cu

]]

+ tr [QCx̃] (3.22)

subject to tr
[

CCx̂C
T +Cv

]

+ tr
[

CCx̃C
T
]

≤ PTx,1,

tr [Cu] ≤ PTx,2,

Cx̂ =
[

A B
]

[

Cx̂ Cx̂,u

CT
x̂,u Cu

] [

AT

BT

]

+CP
x̃ −Cx̃,

[

Cx̂ Cx̂,u

CT
x̂,u Cu

]

≥ 0(Nx+Nu)×(Nx+Nu),

where the estimation error covariance matrices Cx̃ and CP
x̃ do not depend on the optimization

variables and are obtained from Equations (3.6) and (3.7). For the equality constraint, the fact has

been used that CP
x̃ = ACx̃A

T +Cw +BCnB
T. The problem above consists of a cost function

and equality as well as inequality constraints which are linear in the optimization variables and an

additional semidefiniteness constraint for the joint covariance matrix of the state estimate and the

control input. Thus, it can be solved using standard software for semidefinite optimization. In the

following, the toolbox SeDuMi [92] will be used together with the interface YALMIP [93] which

allows for a direct implementation of the problem formulation above.

The remaining step is to recover the functions µk of the information Ik, k ∈ N0, for the

computation of the control sequence (uk : k ∈ N0) from the covariance matrices determined by

the optimization problem (3.22). Recall that in the unconstrained case, these functions are given

by a constant linear function of the optimal estimate of the system state xk given Ik, k ∈ N0, (cf.

Equation 3.2). Assume that in the constrained case, the optimizing covariance matrices are given

by C∗
x̂, C∗

x̂,u and C∗
u. Thus, we only know the joint covariance matrix of the state estimate x̂k and

the control uk but not the mapping from Ik to uk. On the other hand, since the state estimate x̂k is

a function of Ik, a mapping from x̂k to the control uk which provides the optimal joint covariance

matrix solves the problem.

It is not guaranteed that the optimal control input is a linear function of the optimal state

estimate alone since, in general, their joint covariance matrix may have full rank. In the following,

it will be shown that this is not the case for the optimizing joint covariance matrix given by C∗
x̂,

C∗
x̂,u and C∗

u. To this end, the linear estimate ûk, k ∈ N0, of the control signal given the state

estimate is computed, i. e.,

ûk = Lx̂k, k ∈ N0, (3.23)

where

L = C
∗,T
x̂,uC

∗,−1
x̂ , (3.24)

and it is assumed that the inverse exists.2 Note that ûk is the optimal linear estimate of uk given

x̂k in the mean square sense for the asymptotically stationary case (cf., e. g., [6, pp. 485-486]

or [31, Section 3.2]). The estimation error is

ũk = uk − ûk, k ∈ N0, (3.25)

2Noting that ûk is the optimal estimate of uk given x̂k, it is not necessary to assume the existence of the inverse.

Nevertheless, this facilitates the following derivations.
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which is (asymptotically) uncorrelated with the estimate ûk, i. e.,

C∗
u = C∗

û +C∗
ũ, (3.26)

as well as with the state estimate x̂k, i. e.,

C∗
x̂,u = C∗

x̂,û. (3.27)

Using these results, the optimal joint asymptotic covariance matrix of x̂k and uk reads as
[

C∗
x̂ C∗

x̂,u

C
∗,T
x̂,u C∗

u

]

=

[

C∗
x̂ C∗

x̂L
T

LC∗
x̂ LC∗

x̂L
T +C∗

ũ

]

=

[

INx

L

]

C∗
x̂

[

INx

L

]T

+

[

0Nx×Nx

C∗
ũ

]

, (3.28)

and the optimal value of the cost function (cf. optimization problem 3.22) is given by

J∗ = tr

[

[

INx

L

]T [
Q S

ST R

] [

INx

L

]

C∗
x̂

]

+ tr [QC∗
x̃] + tr [RC∗

ũ] . (3.29)

Additionally, the equality constraint of problem (3.22) can be rewritten as

C∗
x̂ = (A+BL)C∗

x̂ (A+BL)T +BC∗
ũB

T +CP
x̃ −Cx̃. (3.30)

Since Equation (3.30) is a Lyapunov equation, we conclude that all eigenvalues of A+BL have

magnitude less than one in order to obtain a positive semidefinite solution C∗
x̂.3

It is now easy to verify that the solution of optimization problem (3.22) has the property

C∗
ũ = 0Nu×Nu

. (3.31)

As a first step, note that the solution Cx̂ of Equation (3.15) is smaller (in the positive semidefinite

sense) than C∗
x̂ if ûk from Equation (3.23) instead of uk is applied to the dynamical system since

C∗
ũ is not present. It is obvious from Equation (3.26) that this holds analogously for the covariance

matrix C∗
û compared to C∗

u. Thus, if the transmit power constraints are fulfilled by the optimiz-

ing covariance matrices C∗
x̂ and C∗

u, they also hold for the matrices which are obtained by the

application of the control signal ûk shown in Equation (3.23). Additionally, the value J∗ of the

cost function shown in Equation (3.29) decreases in this case due to the decrease (in the posi-

tive semidefinite sense) of Cx̂ compared to C∗
x̂ and since the positive summand tr [RC∗

ũ] can be

dropped. Consequently, the assumption of C∗
ũ 6= 0Nu×Nu

leads to a contradiction since C∗
x̂, C∗

x̂,u

and C∗
u can not be optimal if there exist a controller, given by Equation (3.23), which fulfills the

power constraints and at the same time results in a reduction of the cost function. It follows that

the optimizing matrices lead to Equation (3.31) and thus a control signal which is a linear function

of the optimal state estimate.

Remark: The case of C∗
ũ 6= 0Nu×Nu

can be interpreted as a controller which artificially adds

independent noise to the control input given by Equation (3.23). It is intuitively clear that this

leads to an increase of the transmit power of the control signal and an increase of the variance of

the system state which again leads to a larger transmit power for the observation channel and to a

larger cost.

3The solutionC∗
x̂ is positive semidefinite due to the constraint of the optimization problem. Additionally, the matrix

Φ = BC∗
ũB

T + CP
x̃ − Cx̃ is positive semidefinite. Assume now that (A + BL)T has a real eigenvalue |λ| > 1

with corresponding eigenvector z. Multiplying Equation (3.30) with zT from the left and z from the right results in

zTC∗
x̂z = λ2zTC∗

x̂z + zTΦz. This equality can not be fulfilled for |λ| > 1 which leads to a contradiction. The case

of complex eigenvalues can be treated similarly.



3.3 Feasibility 37

The presented approach is essentially the one shown in [88], where additionally the finite hori-

zon case is considered. The author of [88] formulates the dual of the constrained optimization

problem in order to obtain the solution. This is not done here in order to keep things simple and

since the focus of this section is not to develop algorithms for the determination of the optimal con-

troller. Instead, a compact formulation for the problem has been chosen which allows for a direct

application of general purpose software for semidefinite optimization for the numerical evaluation

of power constrained LQG problems. Finally, note that the derivation of the optimal control se-

quence (uk : k ∈ N0) from the joint covariance matrix of the state estimate and the control signal

is different to the approach shown in [88] and relies on estimation theoretic arguments.

3.3 Feasibility

In the preceding section, a convex optimization problem for the determination of the LQG con-

troller with power constraints has been presented in terms of the joint covariance matrix of the

system state or its estimate, respectively, and the control input (see problem 3.22). Additionally,

given the optimal joint covariance matrix, it has been shown how to determine the actual control

sequence (uk : k ∈ N0) (see Equations 3.23 and 3.24). Nevertheless, until now no statement has

been made about the existence of such a solution. The critical point which may prevent the feasi-

bility of optimization problem (3.22) are the power constraints, given by the constants PTx,1 and

PTx,2. Without these constraints, the problem is always feasible if the system to be controlled is

stabilizable and detectable. In this case, the solution is the standard LQG controller.

It is possible to construct a very simple example where the constrained LQG problem is not

feasible. Assume that the system to be controlled is unstable, i. e., the matrix A has eigenvalues

with magnitude larger than one, and that PTx,2 = 0. In this case, the control sequence (uk : k ∈ N0)
must also be zero because its power, which is non-negative, is restricted to be zero.4 With no control

input, the system remains unstable which results in an unbounded covariance matrix of the system

state.5 Note that this example can still be feasible for stable systems since they have a bounded

asymptotic covariance matrix of the system state even without a control input. This covariance

matrix determines the power of the signal at the system output if no control is applied. If this

power is smaller than PTx,1, the problem is feasible, otherwise not.

The discussion above shows that there is a clear distinction between stable and unstable sys-

tems for the determination of the feasibility of the constrained LQG control problem. Thus, these

two cases are discussed separately in the following. Nevertheless, in both cases a closed form ex-

pression for the set of feasible values of (PTx,1, PTx,2) is not available in general which makes it

necessary to determine this set numerically. The corresponding problem to be solved is the de-

termination of the smallest values of transmit powers which allow for a solution of optimization

problem (3.22). The simple reason is that if the problem is feasible for given values of PTx,1 and

PTx,2, it is obviously also feasible if one or both powers are increased. Thus, transmit powers have

to be determined which can not be further decreased.

In order to formalize the problem, we notice that the value of the cost function of problem

(3.22) is not important for the question about minimal transmit powers as long as it is finite. Thus,

4We do not consider the case that uk, k ∈ N0, with variance zero can take values from a set with probability zero.
5More technically, the equality constraint which determines the asymptotic covariance matrix of the state estimate

can not be fulfilled with a positive semidefinite matrix.
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only the equality constraint which describes the system dynamics, i. e.,

Cx̂ =
[

A B
]

[

Cx̂ Cx̂,u

CT
x̂,u Cu

] [

AT

BT

]

+CP
x̃ −Cx̃, (3.32)

and the semidefiniteness constraint of the original LQG control problem have to be fulfilled for the

determination of the minimal values of the transmit powers P1 and P2, respectively, which can be

achieved by an LQG controller without the consideration of an additional performance criterion.

These minimal values determine the lower bounds for PTx,1 and PTx,2 such that the general power

constrained LQG problem (see optimization problem 3.22) is feasible. Unfortunately, the transmit

powers of the observation and the control channel are coupled by the joint distribution of the

system state and the control signal which can be seen by Equation (3.32). Thus, it can not be

expected in general that there exists a minimum6 pair (P1, P2) of achievable transmit powers in

the sense that all other achievable pairs of available transmit powers are larger than (P1, P2) in

both components. For example, it is intuitive that a smaller transmit power for the control channel

will lead to an increase of the variance of the system state due to the reduced control effort and

thus to a larger power of the observations at the system output. But despite the fact that it is

in general not possible to determine a pair of achievable transmit powers (P1, P2) such that all

other achievable pairs are larger in both components, it is possible to determine pairs (P1, P2) of

achievable transmit powers such that there exist no pairs which are smaller in both components.

Such values are called Pareto optimal [94, Section 4.7.3]. They have the property that, loosely

speaking, it is not possible to decrease the value of one component of (P1, P2) without the necessity

to increase the other one. The setP of Pareto optimal values of (P1, P2) determines the boundary of

the set of feasible transmit powers (PTx,1, PTx,2) for the constrained LQG control problem (3.22).

Thus, the optimization problem is feasible if the set P contains at least one pair of achievable

transmit powers which is smaller in both components than (or equal to) the pair (PTx,1, PTx,2) of

transmit powers which are available for the actual optimization problem.

One possible approach to the determination of Pareto optimal values of transmit powers is the

so-called scalarization (see [94, Section 4.7.4]) of the problem of jointly minimizing P1 and P2,

i. e., the transmit power of the observation channel and the control channel, subject to the system

dynamics. Instead of the joint minimization, a weighted sum of the transmit powers is considered

by the optimization problem

minimize
C

x
,C

x̂
,C

x̂,u
,C

u

ρ tr
[

CCxC
T +Cv

]

+ (1− ρ) tr [Cu] (3.33)

subject to Cx̂ =
[

A B
]

[

Cx̂ Cx̂,u

CT
x̂,u Cu

] [

AT

BT

]

+CP
x̃ −Cx̃,

Cx = Cx̂ +Cx̃,

[

Cx̂ Cx̂,u

CT
x̂,u Cu

]

≥ 0(Nx+Nu)×(Nx+Nu),

with the weighting factor ρ ∈ [0, 1] and where Definition 3.1.1 has been used for the transmit pow-

ers P1 and P2. Note that the minimization above fits into the framework of unconstrained LQG opti-

mization problems (see Section 3.1 and Equation 3.19) by choosing Q = ρCTC, R = (1− ρ)INu

and S = 0Nx×Nu
. A problem formulation using both Cx and Cx̂, although redundant, has been

6For a formal definition of minimum and minimal points see, e. g., [94, Section 2.4.2].
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chosen in order to make the minimization of P1 = tr
[

CCxC
T +Cv

]

explicit. The reason for the

introduction of Cx̂ is explained in Section 3.2.

In the following, the minimizing covariance matrices for a specific value of ρ in the optimiza-

tion problem (3.33) are denoted by C
(ρ)
x , C

(ρ)
x̂ , C

(ρ)
x̂,u and C

(ρ)
u , respectively. Choosing ρ = 1 in

problem (3.33) results in the smallest value of P1 without taking into account the value of P2 and

thus in the individual lower bound for PTx,1. For ρ = 0, we get the analogous result for P2 and

PTx,2. The trade-off between the decrease of one transmit power and the corresponding increase

of the other is performed by varying the value of ρ between zero and one. Putting a larger weight

on the power of the observation channel will typically result in a lower value of this power at the

expense of a larger power of the control signal, and vice versa. Thus, different elements of the set

P of Pareto optimal values are determined by the optimization problem (3.33) using different val-

ues for ρ. Note that in our case, all Pareto optimal values can be determined by varying ρ ∈ [0, 1]
since both transmit powers P1 and P2 as well as the constraints of problem (3.33) are convex func-

tions of the optimization variables (see, e. g., [94, pp. 179-180]). This also leads to the fact that the

trade-off curve of Pareto optimal values of the transmit powers is convex (cf. Appendix A8).

3.3.1 Stable Systems

It has already been mentioned that a fundamental difference between stable and unstable dynamical

systems is that the latter ones require a strictly positive value of PTx,2 because they always need

some stabilizing control input. Since the former ones are stable even in the case of no control, we

expect that the lowest possible value of PTx,2 which is feasible is zero. In fact this is true which can

be verified by considering optimization problem (3.33) with ρ = 0. The minimal value of the cost

function is zero by choosing C
(0)
u = 0Nu×Nu

. The constraints are fulfilled with C
(0)
x̂,u = 0Nx×Nu

and the covariance matrix of the state estimate which is determined by the Lyapunov equation

C
(0)
x̂ = AC

(0)
x̂ AT +CP

x̃ −Cx̃. (3.34)

This matrix is positive semidefinite since all eigenvalues of A have a magnitude less than one. The

corresponding covariance matrix of the system state is determined by

C(0)
x = AC(0)

x AT +BCnB
T +Cw, (3.35)

which can be verified using the system equation xk+1 = Axk+Bnk+wk when the control input

is zero. Note that the corresponding transmit power P1 of the observation channel is larger than

zero, i. e., even if the controller is effectively switched of by setting PTx,2 to zero, it is still necessary

to provide a positive amount of power for the transmission of the observations at the system output

to the controller. This behavior results from the system model which offers no possibility to stop

the transmission of observations in this case.

Example 3.3.1 In order to illustrate the region of feasible transmit powers, the parameters given

in Example 3.1.1 are used, but the system matrix A is replaced by Astable = 1
3
A, which has

only eigenvalues with magnitude less than one. The optimization problem (3.33) is solved for 200
values of ρ which are equidistantly sampled from the interval [0, 1]. The resulting transmit powers

P1 = tr
[

CC
(ρ)
x CT

]

+ tr [Cv] and P2 = tr
[

C
(ρ)
u

]

are shown in Figure 3.3.

It can be observed that the trade-off curve of Pareto optimal values of the two transmit powers is

convex and that the minimal value of P2 is zero which corresponds to the case where the controller
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Figure 3.3: The set of Pareto optimal values (solid line) of transmit powers for the observation and control

channel and feasible values (shaded area) for the constrained LQG control problem. The values of the

transmit powers for ρ = 0 and ρ = 1 are denoted by •, the transmit powers for the unconstrained LQG

problem by ×.

is switched off. The shaded area shows all values of PTx,1 and PTx,2, respectively, which result in a

feasible power constrained LQG control problem (cf. optimization problem 3.22).

Besides the illustration of the results of this section, Example 3.3.1 shows one fundamental

shortcoming of the presented approach to the consideration of power constraints in LQG control.

Even if the controller is switched off, i. e., when PTx,2 = 0 and consequently P2 = 0, the observa-

tions at the system output are still transmitted to the controller which results in a strictly positive

transmit power for the observation channel. This power is wasted since the controller does not use

the transmitted information. An obvious step would be to stop the transmission of observations in

this case which corresponds to a transmit power of zero. Unfortunately, the system model does not

allow for such a step because there is no degree of freedom at the system output to control the

transmission. This degree of freedom, the transmitter, will be considered in Chapter 4.

3.3.2 Unstable Systems

The discussion about the feasibility of the power constrained LQG control problem (3.22) for

unstable dynamical systems is in many ways analogous to the one concerning stable systems. Due

to the coupling of the transmit powers of the observation and the control channel (cf. Equation

3.32), it is again necessary to resort to the optimization problem (3.33) in order to determine Pareto

optimal values of transmit powers. Those values represent the boundary of the set of feasible values

of (PTx,1, PTx,2) for the power constraints.

The fundamental difference between the consideration of stable and unstable dynamical sys-

tems is that for the latter ones, the values of PTx,1 and PTx,2 which are the available transmit powers

of the observation and the control channel must both be strictly positive. The intuitive reason is

the fact that unstable systems always need a stabilizing control input in order to have a bounded

covariance matrix of the system state. Therefore, the power of the control channel must be larger

than zero. Additionally, the power of the observation channel must be larger than zero in order to
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provide the controller with information about the system state which is needed to stabilize the sys-

tem. It can be seen that the information exchange between the dynamical system and the controller

in both directions is essential for the task of stabilization, which leads to the fact that all transmit

powers in the closed loop system have to be strictly positive.

Example 3.3.2 Example 3.3.1 is revisited at this point with the original system matrix from Exam-

ple 3.1.1, i. e., with an unstable dynamical system. For the determination of Pareto optimal values

of the transmit powers for the observation and the control channel, 1000 values of the weighting

factor ρ of optimization problem (3.33) are sampled equidistantly from the interval ρ ∈ [0, 1].
Note that for the given parameters of the dynamical system and the noise sequences, the resulting

transmit powers vary over more than two orders of magnitude. Thus, a logarithmic scale has been

chosen in Figure 3.4 for the presentation of the results. Finally, since it is a common quantity in

communication systems, not the transmit power but the SNR is shown in this figure, i. e.,

ϕ1 = tr
[

Cq

]−1
P1 and ϕ2 = tr [Cn]

−1
P2,

where P1 = tr
[

CC(ρ)
x CT

]

+ tr [Cv] and P2 = tr
[

C(ρ)
u

]

are given by the solution of the opti-

mization problem (3.33) for a given weighting factor ρ. The SNRs ϕ1 and ϕ2 which correspond to

Pareto optimal values of the transmit powers P1 and P2 are also Pareto optimal. This can be seen

by noting that the SNRs and transmit powers are proportional, which means that the minimization

of the weighted sum of transmit powers with weighting factor ρ is equivalent to the minimization

of the weighted sum of SNRs with weighting factor ρ(SNR) which is a function of ρ, tr
[

Cq

]

and

tr [Cn].
7 As in Example 3.3.1, the set of Pareto optimal values of transmit powers or SNRs, respec-

tively, represents the boundary of feasible values for the constrained LQG control problem (3.22).
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Figure 3.4: The set of Pareto optimal values (solid line) of SNRs for the observation and control channel and

feasible values (shaded area) for the constrained LQG control problem. The values of the SNRs for ρ = 0
and ρ = 1 are denoted by •, the point of SNRs for the unconstrained LQG solution is denoted by ×.

7In fact, ρ(SNR) =
(

1− ρ+
tr[Cq]
tr[C

n
]ρ
)−1 tr[Cq]

tr[C
n
]ρ.
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Note that the trade-off curve of Pareto optimal values in Figure 3.4 does not seem to be convex

due to the logarithmic scales. In fact, it is convex, which is ensured by the result shown in Appendix

A8 and confirmed by Figure 3.5 which shows a detail of Figure 3.4 with linear scale.
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Figure 3.5: Detail of Figure 3.4 with linear scale where 10 log10 (ϕ1) and 10 log10 (ϕ2) are in the interval

[10, 40].

3.4 Solution of the Optimization Problem

The solution of the power constrained LQG control problem (3.22) is, at least from a theoretical

point of view, not a problem since it can be determined numerically with standard software pack-

ages due to the convexity of the optimization problem. Thus, in the preceding section, the question

about the feasibility of the problem (3.22), i. e., about the transmit powers PTx,1 and PTx,2 that have

to be provided for the transmission of observations and control signals, has been treated. In or-

der to answer this question, Pareto optimal values of transmit powers have been determined since

no pairs (P1, P2) can be realized which are smaller than those values in both components. Larger

values of PTx,1 and PTx,2 always lead to a feasible problem due to the existence of a controller,

determined by the optimization problem (3.33), which realizes Pareto optimal values of transmit

powers that obviously fulfill those power constraints.

Since the solution of the power constrained LQG problem is in principle obtained relatively

easy, it is of interest to have a closer look on some of its properties. Aspects which have not been

discussed so far are the influence of the transmit power constraints on the value of the LQG cost

function in problem (3.22) and the set of transmit powers that can actually be achieved by the opti-

mization of the controller for the considered scenario (see Figure 3.1). One important observation

has already been made in Example 3.3.1 where we saw that even for the case of a stable dynamical

system where the controller is switched of by setting PTx,2 = 0, the corresponding transmit power

P1 of the observation channel which is limited by PTx,1 is larger than zero. Thus, even not used

for any control action, observations of the system state are transmitted from the system output to

the controller and the corresponding transmit power is wasted. The reason for this behavior is that

the controller is the only entity which has an influence on the system performance, represented
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by the LQG cost function, and on the transmit powers for the control channel and the observation

channel. The former power is directly determined by the choice of the control signal while the

latter one is the result of the response of the dynamical system to the control action. Thus, it is the

task of the controller alone to optimize the system performance while simultaneously taking into

account the communication restrictions, i. e., the transmit power constraints. We will see later that

this does not only lead to the fact that transmit power may be wasted, but also that an increase of

transmit power does not always lead to an increase in system performance.

3.4.1 Inequality Constraints and Achievable Transmit Powers

Recall the power constrained LQG problem which has already been presented in Section 3.2:

minimize
C

x̂
,C

x̂,u
,C

u

tr

[[

Q S

ST R

] [

Cx̂ Cx̂,u

CT
x̂,u Cu

]]

+ tr [QCx̃] (3.36)

subject to tr
[

CCx̂C
T +Cv

]

+ tr
[

CCx̃C
T
]

≤ PTx,1,

tr [Cu] ≤ PTx,2,

Cx̂ =
[

A B
]

[

Cx̂ Cx̂,u

CT
x̂,u Cu

] [

AT

BT

]

+CP
x̃ −Cx̃,

[

Cx̂ Cx̂,u

CT
x̂,u Cu

]

≥ 0(Nx+Nu)×(Nx+Nu).

In Section 3.3 it has been shown that the transmit powers P1 and P2 of the observation and control

channel can not be made arbitrarily small and thus the optimization problem above is only feasible

if PTx,1 and PTx,2 are large enough. But the question which transmit powers can be achieved by a

controller that is determined by optimization problem (3.36) is not only interesting for small values

of PTx,1 and PTx,2 but also for large ones. In order to understand this, consider the optimization of

a controller using the LQG approach without any power constraints. The solution leads to specific

values of P1 and P2, respectively, which have been determined, e. g., in Example 3.1.1 (cf. Equation

3.16) and are depicted in Figures 3.2, 3.4 and 3.5. But if PTx,1 and PTx,2 are larger than the corre-

sponding values of P1 and P2 of the unconstrained optimization, the transmit power constraints are

not active. In other words, if more transmit power is provided than needed by the unconstrained

LQG controller, it will not be used. From the perspective of a communication system designer this

is an unsatisfactory result because additional communication resources can be used to improve the

quality of the transmitted information. In our case, the additional transmit power could be used to

reduce the negative effect of the channel noise. Nevertheless, this is obviously not possible for the

present scenario.

It has already been mentioned earlier that the transmit powers of the observation and control

channel are coupled by the state equation shown in Equation (3.32). Thus, it seems reasonable

that the set of unachievable transmit powers is not only determined by power constraints which

are too restrictive, but also by constraints which require the transmit power of one communication

channel to be small while the other channel is provided with a large amount of transmit power. The

following example illustrates this intuition.
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Example 3.4.1 The parameters of the dynamical system to be controlled, the noise sequences

and the LQG cost function are again given by Example 3.1.1. Without any power constraints (or

equivalently, for PTx,1 → ∞ and PTx,2 → ∞), the optimization problem (3.36) results in the

standard LQG controller with the associated transmit powers (cf. Figure 3.2). Let these to powers

be PLQG,1 for the observation channel and PLQG,2 for the control channel. Since the associated

solution results in the minimal value of the LQG cost function, any power constraints where both

values of PTx,1 and PTx,2 are larger than PLQG,1 and PLQG,2, respectively, will not be active. The

additional transmit power can not be used to decrease the value of the cost function.

In order to evaluate the largest values of the transmit powers which are the result of a con-

strained optimization of the LQG cost function, the following variants of the original problem

(3.36) are considered:

minimize
C

x̂
,C

x̂,u
,Cu

tr

[[

Q S

ST R

] [

Cx̂ Cx̂,u

CT
x̂,u Cu

]]

+ tr [QCx̃] (3.37)

subject to tr
[

CCx̂C
T +Cv

]

+ tr
[

CCx̃C
T
]

≤ PTx,1,

Cx̂ =
[

A B
]

[

Cx̂ Cx̂,u

CT
x̂,u Cu

] [

AT

BT

]

+CP
x̃ −Cx̃,

[

Cx̂ Cx̂,u

CT
x̂,u Cu

]

≥ 0(Nx+Nu)×(Nx+Nu),

i. e., no constraint is imposed on the power of the control channel. Thus, the controller can use

as much power as desired in order to minimize the value of the cost function while satisfying the

power constraint of the observation channel. Analogously, dropping the constraint on the power of

the observation channel results in the optimization problem

minimize
C

x̂
,C

x̂,u
,Cu

tr

[[

Q S

ST R

] [

Cx̂ Cx̂,u

CT
x̂,u Cu

]]

+ tr [QCx̃] (3.38)

subject to tr [Cu] ≤ PTx,2,

Cx̂ =
[

A B
]

[

Cx̂ Cx̂,u

CT
x̂,u Cu

] [

AT

BT

]

+CP
x̃ −Cx̃,

[

Cx̂ Cx̂,u

CT
x̂,u Cu

]

≥ 0(Nx+Nu)×(Nx+Nu),

which allows for an arbitrary amount of transmit power for the observation channel to minimize

the cost function while satisfying the power constraint of the control channel.

For the optimization problem (3.37), the relevant interval P1 of values for PTx,1 is between

PLQG,1 and the lowest Pareto optimal value of P1 which is determined by the optimization problem

(3.33) for ρ = 1. Lower values of PTx,1 obviously render the problem (3.37) infeasible, while

values larger than PLQG,1 lead to an inactive power constraint. Analogously, the relevant interval

P2 of values for PTx,2 in the optimization problem (3.38) is between PLQG,2 and the Pareto optimal

value of P2 determined by the optimization (3.33) for ρ = 0. For the results which are shown in

Figure 3.6, 200 logarithmically spaced values have been sampled from the intervals P1 and P2,
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Figure 3.6: The SNR region for the inequality constrained LQG problem (3.22).

respectively. Additionally, the Pareto optimal values of the SNRs (see Figure 3.4) and the SNR

point of the unconstrained LQG controller, denoted by ×, are shown.

It can be seen that the region of SNRs ϕ1 = tr
[

Cq

]−1
P1 and ϕ2 = tr [Cn]

−1
P2 which is the

result of the optimization problem (3.22) between the lowest possible, Pareto optimal values and

the maximal values when no or one power constraint is considered for the controller optimization

is relatively small. Thus, the potential to improve the system performance by increasing the amount

of available communication resources of one or both channels in the control loop is rather limited.

Example 3.4.1 demonstrates the inherent contradiction between the goal of minimizing the

LQG cost function and of using the communication resource transmit power for the improvement

of the value of the cost when the controller is the only entity which has an impact on all these

quantities. Both the cost function and the transmit powers depend on the joint covariance matrix of

the system state and the control signal (see problem 3.36). This means that the controller has only

limited possibilities to reduce the value of the cost function while at the same time increasing the

value of one or both transmit powers.

3.4.2 Equality Constraints and Shortcomings of the Solution

In the last section, we saw that the available transmit powers for the observation and the control

channel, given by PTx,1 and PTx,2, may not be used for the optimization of the system performance

and the corresponding inequality constraints of the optimization problem (3.36) are not active. An

ad hoc approach to change this behavior is to replace the inequality constraints by equalities. This

ensures that the available transmit power is used. Unfortunately, this is not a good idea in general

since the modification can only lead to an increase of the LQG cost function, i. e., a decrease of

system performance. The simple reason is that an inactive inequality constraint means that the

optimal value of the cost function is achieved without using the full transmit power. If we force

the constraint to hold with equality, the resulting solution can not exhibit a decrease of the optimal

value of the cost function.

Despite the fact that it results in a worse system performance, we investigate the case of equality

constraints for the transmit powers of the observation and the control channel in order to obtain
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some insights in the effects of power constraints on the LQG control problem. Until now, we

only relied on the fact that the constrained optimization problem (3.36) is convex to make the

statement that a solution exists and that the global optimum can be determined relatively easy

using standard software packages [92,93]. Nevertheless, we investigate some steps of the problem

solution in more detail at this point. In order to keep things simple, only one power constraint is

considered with equality while the other one is dropped. The equality constraint is reformulated as

two inequality constraints, i. e., we consider the optimization problem

minimize
C

x̂
,C

x̂,u
,Cu

tr

[[

Q S

ST R

] [

Cx̂ Cx̂,u

CT
x̂,u Cu

]]

+ tr [QCx̃] (3.39)

subject to tr
[

CCx̂C
T +Cv

]

+ tr
[

CCx̃C
T
]

≤ PTx,1,

tr
[

CCx̂C
T +Cv

]

+ tr
[

CCx̃C
T
]

≥ PTx,1,

Cx̂ =
[

A B
]

[

Cx̂ Cx̂,u

CT
x̂,u Cu

] [

AT

BT

]

+CP
x̃ −Cx̃,

[

Cx̂ Cx̂,u

CT
x̂,u Cu

]

≥ 0(Nx+Nu)×(Nx+Nu).

This problem is again convex and if it is feasible, the transmit power P1 of the observation channel

has the value PTx,1. To understand the effects of the power constraint on the LQG control prob-

lem, we use the method of Lagrangian duality (see, e. g., [94, Chapter 5] or [95, Chapter 6]) to

include the power constraints in the cost function and thus obtain the optimization problem for the

determination of the Lagrange dual function:

minimize
C

x̂
,C

x̂,u
,Cu

tr

[[(

Q+ (λ1 − λ2)C
TC
)

S

ST R

] [

Cx̂ Cx̂,u

CT
x̂,u Cu

]]

+ tr [QCx̃] (3.40)

+ (λ1 − λ2)
(

tr
[

CCx̃C
T +Cv

]

− PTx,1

)

subject to Cx̂ =
[

A B
]

[

Cx̂ Cx̂,u

CT
x̂,u Cu

] [

AT

BT

]

+CP
x̃ −Cx̃,

[

Cx̂ Cx̂,u

CT
x̂,u Cu

]

≥ 0(Nx+Nu)×(Nx+Nu),

where λ1 ≥ 0 and λ2 ≥ 0 are the Lagrange multipliers associated with the two inequality con-

straints for P1.8 Note that for given values of the multipliers, the minimization above corresponds

to an unconstrained LQG optimization (cf. problem 3.19), where the weighting matrix for the sys-

tem state Q is replaced by the matrix Q + (λ1 − λ2)C
TC. This replacement is quite intuitive

when considering the case that λ1 > 0 and λ2 = 0, i. e., the constraint which forces a larger value

of P1 to meet the more restrictive value PTx,1 is active. The loading of Q with the positive semidef-

inite matrix λ1C
TC shifts the solution of (3.40) towards covariance matrices with a lower value

of P1 = tr
[

CTCCx̂

]

+ tr
[

CCx̃C
T +Cv

]

. As long as the problem is feasible, the value of λ1 is

increased until the power constraint is met by the solution of the original problem (3.39).

8Obviously, the two non-negative multipliers can be combined to one real-valued one since the two inequality

power constraints are effectively one equality constraint.



3.4 Solution of the Optimization Problem 47

If the transmit power for the unconstrained LQG controller is smaller than PTx,1, the second

inequality constraint of the optimization problem (3.39) is active, i. e., the Lagrange multiplier

λ1 of problem (3.40) is zero while λ2 > 0. It can be seen that in order to increase the power

of the transmit signal for the observation channel, the weighting matrix Q gets a negative load-

ing with −λ2C
TC. Consequently, solutions of (3.39) are preferred which result in larger values

of P1. Note that the negative value of λ1 − λ2 can even lead to an indefinite weighting matrix

Q + (λ1 − λ2)C
TC. This is of special interest since for the indefinite case the cost function of

the problem (3.40) which is linear in the optimization variables is not bounded from below in gen-

eral for positive semidefinite covariance matrices of the state estimate and the control signal. The

corresponding solution of the minimization is not useful due to the fact that the variance of at least

one of the system states is not bounded from above in this case.

In the following, we investigate the case of λ1 = 0 and λ2 > 0, i. e., it is necessary to increase

the transmit power P1 to meet the value PTx,1 with equality. The goal is the determination of the

largest value of λ2 for which the minimum of the optimization problem (3.40) has a finite value.

Additionally, a numerical method for the solution of this problem is presented. This maximal value

limits the range of the optimal value of the dual variable λ2. Similarly to the preceding parts of

this chapter, the determination of the maximal value of λ2 is formulated as a convex optimization

problem. In order to keep the notation simple, we define the joint covariance matrix of the state

estimate and the control signal as

X =

[

Cx̂ Cx̂,u

CT
x̂,u Cu

]

. (3.41)

Additionally, define the matrix E = [INx
, 0Nx×Nu

] ∈ {0, 1}Nx×(Nx+Nu). Consequently, the equal-

ity constraint of the optimization problem (3.40) can be rewritten as

EXET =
[

A B
]

X

[

AT

BT

]

+CP
x̃ −Cx̃. (3.42)

Note that if X ≥ 0(Nx+Nu)×(Nx+Nu) fulfills Equation (3.42), i. e., X is a feasible matrix for the

problem (3.40), the matrix X + ξY , where ξ ≥ 0 and Y ≥ 0(Nx+Nu)×(Nx+Nu) fulfills the equation

EY ET =
[

A B
]

Y

[

AT

BT

]

, (3.43)

is also feasible. This can easily be verified by adding Equation (3.42) and Equation (3.43) which is

scaled by ξ ≥ 0. Note that with the stabilizability assumption, besides the trivial all-zeros solution,

Equation (3.43) has infinitely many solutions since it corresponds to the state equation of a closed

loop system where the state of the system to be controlled is known to the controller.9

In order to determine the largest value of λ2 such that the optimization problem (3.40) has a

bounded solution, its cost function which is evaluated at a feasible matrix X + ξY is rewritten as

tr

[[(

Q−λ2C
TC
)

S

ST R

]

X

]

+ξ

(

tr

[[

Q S

ST R

]

Y

]

− λ2 tr

[[

CTC 0Nx×Nu

0Nu×Nx
0Nu×Nu

]

Y

])

, (3.44)

9Let the state equation be xk+1 = Axk + B(uk + nk), k ∈ N0, with the standard assumptions of the LQG

scenario and let the controller be uk = Lxk such that the matrix A + BL has only eigenvalues with magnitudes

less than one. If the asymptotic covariance matrix of this system is partitioned according to Equation (3.41), it can

be rewritten as Equation (3.43). Due to the freedom of the choice of L and of the stationary covariance matrix of

(nk : k ∈ N0), we get infinitely many non-trivial solutions of Equation (3.43).
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where only the terms which depend on the optimization variables have been considered and where

λ1 = 0 has been used. Obviously, the value of Equation (3.44) is only bounded from below for

given values of X and Y if the difference in the parentheses is positive since it can be scaled with

an arbitrary large scalar ξ ≥ 0. Consequently, the largest value of λ2 is determined by the largest

absolute value of the negative trace expression in Equation (3.44) for a fixed value of the first trace

expression of the difference. This value of λ2 is given by the solution of the following optimization

problem, where the choice of the positive semidefinite matrix Y is restricted by Equation (3.43):

maximize
Y

tr

[[

CTC 0Nx×Nu

0Nu×Nx
0Nu×Nu

]

Y

]

(3.45)

subject to EY ET =
[

A B
]

Y

[

AT

BT

]

,

tr

[[

Q S

ST R

]

Y

]

= 1,

Y ≥ 0(Nx+Nu)×(Nx+Nu).

Note that the constant 1 for the constraint which fixes the value of the first summand inside the

parentheses in Equation (3.44) is chosen arbitrarily. Nevertheless, with this choice, the maximal

value of λ2 is given by (tr
[

CEY ∗ETCT
]

)−1, where Y ∗ is the optimizing matrix of the convex

maximization problem (3.45).

The same approach as the one presented above can be used to analyze an equality constraint

for the transmit power P2 of the control channel or equality constraints for both channels. In any

case, the requirement to use the full available transmit powers PTx,1 and PTx,2, respectively, can

effectively lead to a negative loading of the weighting matrices Q and R, respectively, for the

unconstrained LQG problem which has to be solved for the determination of the Lagrange dual

function (cf. optimization problem 3.40). As a result, the variance of the control signal and of the

system state, respectively, increases in this case which leads to a larger LQG cost compared to

the scenario where no (or inactive) inequality constraints are considered. This is the shortcoming

of controller solutions which are obtained by equality constrained LQG problems. Transmit pow-

ers which are larger than those obtained by unconstrained or inequality constrained optimization

problems can only be realized by increasing the variance of the system states which is in general

in conflict with the primary goal of LQG control. Additionally, the increased SNR (recall that the

noise variances of the observation and control channel are assumed to be fixed) does not lead to

a smaller error of the state estimate which is an integral part of all controller solutions obtained

in this chapter and which also contributes to the LQG cost (cf., e. g., optimization problems 3.36

and 3.39). The simple reason is that all increases of SNRs are due to the choice of the control

signal (uk : k ∈ N0) which has no influence on the estimation error and thus the cost function in

the scenario under consideration (see Section A6.2). Consequently, the intuition that larger SNRs

for the transmission of signals over a noisy channel lead to smaller estimation errors at the receiver

side does not apply here.

Example 3.4.2 To conclude this section, the following example presents several results obtained

so far. Again, the parameters of the dynamical system and the noise sequences of Example 3.1.1

are used. In order to determine the maximal region of transmit powers P1 and P2 which can be
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achieved with the equality constrained LQG approach, the optimization problem (3.39) is solved

with the specific choice of Q = 0Nx×Nx
and S = 0Nx×Nu

. For the weighting matrix of the control

signal, we chose R = INu
for the determination of the minimal value of P2 when P1 is fixed to

PTx,1. Analogously, R = −INu
is applied for the maximization of P2 for the given value of P1.

The transmit powers that can be realized for a given constraint on P1 must obviously lie between

these minimal and maximal values. For the constraint for P1, i. e., PTx,1, 250 logarithmically spaced

values between the minimal value of approx 92.1 which leads to a feasible optimization problem

(see Section 3.3) and 109 have been evaluated. The resulting region of SNRs, which is determined

by the minimal and maximal values of P2, is shown in Figure 3.7. Additionally, the maximal region

of transmit powers that can be realized with inequality constraints (cf. Figure 3.6) and the point of

transmit powers of the unconstrained LQG controller with the original weighting matrices Q, R

and S from Example 3.1.1 (cf. Figure 3.2) are shown.
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Figure 3.7: The SNR region for the equality constrained LQG problem.

In Figure 3.7, it can be seen that the region of SNRs ϕ1 and ϕ2 (cf. Equation 3.17) for the

inequality constrained LQG control problem lies inside the region for the equality constrained

optimization and shares the Pareto optimal set of transmit powers. Nevertheless, the larger set of

SNRs is achieved at the expense of a larger value of the cost function, i. e., of worse performance.

This is illustrated by the solution of the optimization problem (3.39) where the value of PTx,1 is set

to 4·105, i. e., 10 log10(tr
[

Cq

]−1
PTx,1) ≈ 54.26, and where the original matrices Q, R and S from

Example 3.1.1 are used. Since the equality constraint can be fulfilled, we have P1 = PTx,1. The

controller which minimizes the LQG cost subject to this constraint results in a transmit power for

the control channel of P2 ≈ 4.61 · 104 with the respective SNR of 10 log10(tr [Cn]
−1

P2) ≈ 46.63.

The cost associated with this SNR point, depicted by • in Figure 3.7, is approximately 2.40 · 104.
In contrast, the cost of the unconstrained LQG solution which leads to the SNR point depicted

by × is approximately 799. Thus, the cost is increased by a factor of 30 in order to provide the

desired values of transmit power. This increase is due to the negative contribution of the Lagrange

multipliers λ1 − λ2 ≈ −0.0591 in the optimization problem (3.40) which leads to the fact that

the weighting matrix Q + (λ1 − λ2)C
TC is indefinite. Considering the solution of the problem

(3.40), the magnitude of the largest eigenvalue of the associated matrix A +BL which describes

the closed loop dynamics of the controlled system and where L is given by Equation (3.24) is
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approximately 0.995. Thus, the closed loop system is stable, but the eigenvalue which is close to

one leads to a large variance of the system states.

Finally, the largest value of λ2 for the case when λ1 is zero and which is determined by the

optimization problem (3.45) is approximately 0.0591. The difference between this value and the

one determined above for the specific power constraint is in the order of 10−6.

3.5 Discussion

In this chapter, we presented an approach to LQG controller design with additional transmit power

constraints which is based on convex, or precisely, semidefinite optimization. For the reformula-

tion of the classical LQG optimization problem, the fact has been used that for LTI systems with

stationary Gaussian disturbances which are stabilized by a stationary LQG controller (and with

the respective stabilizability and observability assumptions), the joint distribution of the system

state and the control signal converges to an asymptotically stationary distribution. Since it is again

Gaussian due to the linearity of the closed loop system, the determination of the optimal controller

is equivalent to the determination of the optimal covariance matrix of the stationary distribution.

The mean vector has not been considered because it is zero due to the simplifying model assump-

tions. The reformulation of the LQG problem in terms of covariance matrices has the appealing

property that transmit power constraints can be included directly in the optimization of the cost

function. Besides the semidefiniteness constraint for the covariance matrices, the cost function and

all constraints are linear in the optimization variables and thus a numerical solution can be obtained

relatively easy using standard software packages for semidefinite optimization.

There are several examples of constrained LQG controller designs which use a description

of the optimization problem in terms of covariance matrices. In [81] (see also [96]), trace con-

straints for the covariance matrices of system output variables are considered and the Lagrangian

associated with the constrained optimization problem is formulated. In order to determine the op-

timal value of the dual variables, a quasi-Newton method is applied to the associated system of

non-linear equations. Nevertheless, the covariance matrix of the system state or its estimate, re-

spectively, is not optimized directly but is the solution of a Lyapunov equation (cf. Equation 3.13

or 3.15, respectively) which depends explicitly on the optimal feedback gain L (cf. Equation 3.3).

This gain matrix is determined by the solution of a DARE, see Equations (3.3) and (3.4).

A second example which uses a systematic approach to the constrained LQG control problem

in the context of convex optimization is [78, Chapter 12 and Section 14.5]. The authors consider

only the continuous-time case and formulate the LQG optimization in the frequency domain, i. e.,

in terms of transfer functions or power spectral densities, respectively (cf. Section A6.3). Con-

sequently, the variance constraints for output signals are taken into account by the norms of the

associated transfer functions. Unfortunately, in order to apply the proposed optimization algo-

rithms, it is necessary to find finite dimensional approximations for the transfer functions under

consideration [78, Chapter 15].

The authors of [83] do not restrict themselves to variance or power constraints, i. e., constraints

for the (weighted) trace of covariance matrices of output signals or the norm of the associated

transfer functions, but consider matrix inequalities for these covariance matrices. Although not

mentioned explicitly, a projected gradient algorithm is used to determine the optimal value of

the dual variables which are associated with the matrix constraints. Again, the controller itself is
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determined conventionally, i. e., according to Equations (3.3) and (3.4), where the case of output

feedback which makes it necessary to estimate the system state is also taken into account.

The approach introduced in [88] is the basis for the results presented in this chapter. The opti-

mization problem for the determination of the optimal LQG controller is not formulated in terms

of a linear function of the system state or its estimate, respectively, but of the joint covariance ma-

trix of those quantities and the control signal. The author of [88] analyzes the structure of the finite

horizon LQG problem using the dual of the original optimization problem and establishes relations

to the classical solution methods for the optimal LQG controller. Since this has not been the focus

of this chapter, we relied on the approach from [88] for the infinite horizon case to highlight the

convexity of the constrained optimization problem and to provide a formulation which can be im-

plemented almost directly using software packages for semidefinite optimization. Additionally, we

provided a discussion about the feasibility of the problem and some basic properties of the region

of transmit powers that can be realized using inequality and equality constraints. The analysis of

the latter case led to the consideration of LQG control problems with indefinite weighting matrices

and presented a condition which determines if the optimization problem is well-posed, i. e., has a

cost function which is bounded from below within the constraint set. Note that we did not intend

to provide a detailed analysis of the indefinite LQG control problem and thus refer the interested

reader to, e. g., [97, 98].

The investigation of the transmit powers which can be realized using the power constrained

LQG approach showed some shortcomings of this way to consider limited communication re-

sources. One example are dynamical systems which are stable even without control. In this case,

the minimal power which must be provided for the transmission of the control signal is obviously

zero (see Section 3.3.1). Since the controller is switched off, it is not necessary to transmit the ob-

servations at the system output to the controller, i. e., also this transmit power could be set to zero.

Unfortunately, this is not possible since the controller is the only degree of freedom which has an

influence on all transmit powers in the control loop. If it is switched off, the observations at the

system output require a certain amount of power which is determined by the open loop behavior

of the dynamical system and is larger than zero in general. A second example is the benefit of

available transmit power which exceeds the requirements of the optimal, unconstrained LQG con-

troller. This power can only be used if the variance of the system states and their estimates (which

determines the power of the control signal) is increased (see Sections 3.4.1 and 3.4.2). Since these

quantities are also elements of the LQG cost function, the performance of a system which ampli-

fies its transmit powers beyond the point that is determined by an unconstrained controller will

perform worse than without this increase. These two examples show that additional degrees of

freedom, i. e., transmitters and receivers for the signals in the control loop, have to be introduced

in order to use the available communication resources efficiently. A simple extension of the system

model shown in Figure 3.1 is presented in the following chapter.
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It has been shown in the preceding chapter how the optimal Linear Quadratic Gaussian (LQG)

controller which takes into account the limited communication resources, i. e., transmit powers, for

the exchange of information in a closed loop control system, is obtained by the solution of a convex

optimization problem. Nevertheless, the investigation of power constraints for the standard LQG

system model (see Figure 3.1) revealed some undesired properties of the solution. For example, if

the controller can be switched off without loosing stability (which is the case for open loop stable

dynamical systems), it is reasonable to stop the transmission of observations from the system

output to the controller. Consequently, it should be possible to reduce the transmit power at the

output of the dynamical system to zero. As a second example, assume that the controller is allowed

to use more power for the transmission of control signals than the optimal solution of the LQG

problem without constraints. Since the input matrix of the dynamical system B is fixed, it is in

general not possible to simply amplify the control signal due to the potential loss of stability of the

closed loop system. This behavior becomes clear if we consider a stabilizing controller, represented

by the matrix L (cf. Equation 3.3), such that the closed loop matrix A+BL has only eigenvalues

with magnitude less than one. If the control signal is amplified using a scaling factor c > 0 for the

controller gain L, it is obvious that the resulting closed loop matrix A+BcL will have eigenvalues

with magnitude larger than one if c is chosen too large and thus the system becomes unstable.

4.1 Extension of the System Model

The two examples mentioned above show that it is desirable to introduce two degrees of freedom

for the closed loop control system shown in Figure 3.1. One should allow for a scaling of the

transmit signal of the observation channel such that, in the limit, it can be switched off when it is

not needed by the controller. The other one should enable the receiver of the control channel to

scale the received signal such that the transmitting controller can adjust its transmit power without

the negative effects for the stability of the closed loop system. The most simple instances of these

degrees of freedom are scalars at the transmitter of the observation channel and the receiver of the

control channel, respectively, which fulfill the requirements mentioned above. The modification of

the system model from Chapter 3 using the two scalars t > 0 and g > 0 is shown in Figure 4.1.
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Figure 4.1: Model of the control loop which is closed over two channels with additive noise qk and nk. At

the system input and output, the receive scaling g
1

2 and the transmit scaling t−
1

2 , respectively, is introduced.
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The case of a zero transmit or receive scaling is not considered since it leads to an undetectable

or unstabilizable dynamical system, respectively.1 Note that the transmit and receive signals are

scaled by the square root of t−1 and g, respectively, The reason for this choice will become clear in

the following. Furthermore, the restriction to the positive root represents no loss of generality since

the optimal controller, which has to take into account the scaling of the system input and output,

has the possibility to change the sign of its input and output signals if the negative root is chosen.

This has no effect on the system performance or the transmit powers. In the following, we refer to

t as transmitter and to g as receiver. A pair of transmitter and receiver is called transceiver.

In Chapter 3, the state and observation equation shown in Equation (1.1) have been modified

for the problem (3.1) to take into account the channel noises, i. e., the communication channels

have been incorporated into the system model for the optimization of the LQG controller. The

analogous steps are necessary now to include the transmitter t and receiver g. The resulting LQG

optimization problem then reads as

minimize
µ0,µ1,µ2...

lim
N→∞

1

N
E

[

xT
NQNxN+

N−1
∑

n=0

[

xn

g
1

2un

]T[
Q S

ST R

][

xn

g
1

2un

]

]

+ g tr [RCn] (4.1)

subject to xk+1 = Axk +Bg
1

2 (uk + nk) +wk, k ∈ N0,

yk = Cxk + vk, k ∈ N0,

uk = µk(Ik), k ∈ N0,

Ik =

{

{(t− 1

2y0+q0)},
{(t− 1

2y0+q0), . . . , (t
− 1

2yk+qk),u0, . . . ,uk−1},
k = 0,

k ∈ N,

where the standard LQG assumptions are made (cf. Appendix A6) and where the indices of the ex-

pected value (cf. Equation 3.1) have been dropped in order to simplify the notation. Together with

the channel model assumptions (cf. Section 1.6.2), (wk : k ∈ N0), (vk : k ∈ N0), (qk : k ∈ N0)
and (nk : k ∈ N0) are mutually independent identically and independently distributed (i.i.d.) se-

quences of Gaussian random vectors which are independent of the initial state x0 which is also a

Gaussian random vector. Note that we do not optimize w.r.t. the transmitter t and the receiver g but

assume the two scalars to be fixed for the moment. It can be seen that for the optimization prob-

lem (4.1), the input of the dynamical system at time index k ∈ N0 is now given by g
1

2 (uk + nk).
The information Ik which is available to the controller at time index k ∈ N0 contains the noisy

observations t−
1

2yi + qi, i ∈ {0, 1, . . . , k}, which depend on the transmitter t−
1

2 .

The fact that the cost function of the optimization problem (4.1) takes into account the scaled

control signal g
1

2un, n ∈ N0, and gets the additional term g tr [RCn] needs some explanations.

The LQG cost captures the effort of the control signal which is actually applied to the dynamical

system, i. e., g
1

2 (un + nn), n ∈ N0, for the present scenario. Consequently, it takes into account

the cost associated with g
1

2un, n ∈ N0, rather than un. Additionally, the noise g
1

2nn, n ∈ N0, is

included in the cost function since it is fed in the dynamical system and thus contributes to the

control effort. Due to the model assumptions, the noise sequence (nn : n ∈ N0) is uncorrelated

with all other random variables describing the scenario under consideration. The increase of the

cost because of this disturbance is thus given by g tr [RCn].

1This corresponds to a disconnection in the closed control loop which can be considered for open loop stable

systems but is of no interest for unstable ones.
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4.2 Optimization of Controller and Transceiver With Power Constraints

4.2.1 Optimal Controller With Fixed Transceiver

Before we start with the consideration of power constraints for the optimization problem (4.1)

and the determination of the optimal values of the transmitter and receiver, the solution of the un-

constrained LQG problem according to Appendix A6 which has also been presented in Equations

(3.2) – (3.7) is investigated for the case of given values of t and g. For the adaption of the results,

it is useful to incorporate the transmitter and receiver in the system model and in the parameters

of the noise sequences and the cost function. Having a closer look at the cost function and the

constraints of the optimization problem (4.1), it can be seen that the weighting matrix for the cross

products of the system state and the control signal is not S but effectively g
1

2S by pulling the scalar

g
1

2 in the joint weighting matrix, while for the control signal alone R has to be replaced by gR.

The system input matrix becomes g
1

2B instead of B. Shifting the scalar t−
1

2 from the information

set Ik, k ∈ N0, to the observation equation which provides yk, k ∈ N0, leads to a replacement

of the system output matrix C by t−
1

2C. Finally, due to the scaling, the covariance matrix of the

observation noise is t−1Cv instead of Cv. Using these replacements, it is straightforward to see by

comparison with Equations (3.2) – (3.7) that the optimal control sequence is given by

uk = Lx̂k, k ∈ N0, (4.2)

where the controller gain reads as

L = −
(

gBTKB + gR
)−1
(

g
1

2BTKA+ g
1

2ST
)

= −g− 1

2

(

BTKB +R
)−1 (

BTKA+ ST
)

,
(4.3)

and where we used the fact that g 6= 0. This expression depends on the stabilizing solution of the

Discrete Algebraic Riccati Equation (DARE)

K = ATKA−
(

g
1

2ATKB + g
1

2S
)

(

gBTKB + gR
)−1
(

g
1

2BTKA+ g
1

2ST
)

+Q

= ATKA−
(

ATKB + S
) (

BTKB +R
)−1 (

BTKA+ ST
)

+Q.
(4.4)

The second lines of Equation (4.3) and (4.4), respectively, are valid since the non-zero scalar g can

be pulled out of the inverse. Thus, the DARE does not depend on the receiver scaling. Comparing

the controller solution in the equations above with the solution shown in Equations (3.2) – (3.4),

it can be seen that we get a controller gain L that is almost identical to the case when no receiver

scaling is present. The only difference is that with the receiver g
1

2 , the control signal is simply

scaled by the inverse g−
1

2 .

Since the overall system is linear using the scalar transmitter and receiver and all disturbances

are Gaussian, the estimate x̂k=Exk|Ik [xk| Ik], k ∈ N0, of the system state is computed using the

Kalman filter (see Appendix A7), where its estimation error covariance matrix now reads as

Cx̃ = CP
x̃ − t−

1

2CP
x̃C

T
(

t−1CCP
x̃C

T + t−1Cv +Cq

)−1
t−

1

2CCP
x̃

= CP
x̃ −CP

x̃C
T
(

CCP
x̃C

T +Cv + tCq

)−1
CCP

x̃

(4.5)

and depends on the stabilizing solution of the DARE

CP
x̃=A

(

CP
x̃ − t−

1

2CP
x̃C

T
(

t−1CCP
x̃C

T+t−1Cv+Cq

)−1
t−

1

2CCP
x̃

)

AT+Cw+gBCnB
T

= A
(

CP
x̃ −CP

x̃C
T
(

CCP
x̃C

T +Cv + tCq

)−1
CCP

x̃

)

AT +Cw + gBCnB
T.

(4.6)
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Remark: The results above show the equivalence of two different points of view in the context of

LQG control with power or Signal to Noise Ratio (SNR) constraints. It is common in the literature

on Networked Control Systems (NCSs) to consider the SNR as the limited communication resource

and not the transmit power for an additive noise channel with fixed noise variance, see, e. g., [29,46,

84]. One reason is that in a control loop, the variances of transmit signals like the system output or

the control signal, are directly related to the variance of disturbances which are fed into the system,

which makes it natural to investigate the ratio of these variances and not the transmit power alone.

Another reason is the additive noise approximation for noise free but quantized communication

channels, where the resolution of the quantizer determines the channel SNR [44, 46].

Having a closer look at the DAREs in Equations (4.4) and (4.6), it can be seen that they corre-

spond to the solution of an LQG optimization for the control system shown in Figure 4.2. In this

case, no transmit or receive scaling factors are present but the channel noises are scaled with t
1

2

and g
1

2 , respectively, which leads to the noise covariance matrices tCq and gBCnB
T in Equation

(4.6). From this point of view, not the transmit and receive scaling factors are design parameters

but the variances of the noise sequences in the communication channels. This is the reason for the

specific choice of the transmitter and receiver shown in Figure 4.1: the variances of the observa-

tion and control channel noise depend linearly on the scaling factors. Note that also for the scenario

shown in Figure 4.2, the covariance matrices Cq and Cn are assumed to be given and fixed.

A

B C

wk vk

t
1

2qkg
1

2nk

xk

uk

yk

Controller µk

T

Figure 4.2: Equivalent model of the control loop which is closed over two channels with additive noise qk

and nk where the transmitter t
1

2 and receiver g
1

2 are interpreted as parameters of the channel noise variances.

Considering the limited communication resources in an NCS, a power constraint for the scenario

shown in Figure 4.1, where it is assumed that the channel noise variance is fixed, translates into an

SNR constraint for the scenario in Figure 4.2. In the former case, let PTx,1 be the available trans-

mit power for the transmission of observations to the controller. The corresponding constraint thus

reads as t−1 tr
[

CCxC
T +Cv

]

≤ PTx,1 (cf. Equation 3.18). In the latter case, let ϕ1 be the maxi-

mal value of the SNR of the observation channel. The constraint now becomes
tr[CC

x
CT+C

v]
tr[tCq]

≤ ϕ1

which is equivalent to t−1 tr
[

CCxC
T +Cv

]

≤ ϕ1 tr
[

Cq

]

and thus to the power constraint.

The introduction of an inverse scaling at the input and the output of an additive noise com-

munication channel and the interpretation of an equivalent change of the noise statistics has been

discussed, e. g., in [86], [35] and also [44]. Nevertheless, no statement is made that the restriction

to an inverse pair of transmitters and receivers represents no loss of generality when the optimal

controller is used. Other works like [46] and [99] do not make use of explicit transmitters and

receivers but consider the variance of the channel noise as a design parameter, for example if the

disturbance models a quantization error which depends on the choice of the actual quantizer.
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Since it is an LQG problem, it is straightforward to determine the optimal value J∗
∞ of the opti-

mization problem (4.1). With the modifications due to the channel noises, the transmitter t and the

receiver g, this optimal value reads as (cf. Appendix A6.3)

J∗
∞ = tr

[

K
(

Cw + gBCnB
T
)]

+ tr [PCx̃] + g tr [RCn] , (4.7)

where P = ATKA−K+Q. Note that K and P do not depend on t and g, whereas the covariance

matrix Cx̃ of the state estimation error (see Equation 4.5) is a function of these parameters. Since

the transmitter and the receiver have an influence on the additional observation noise, given by

tCq, and process noise, given by gBCnB
T, respectively, it is intuitively clear that an increase of

g or t results in a larger estimation error and thus in a monotonic increase of J∗
∞. This intuition

is confirmed by [100] where it is shown that if t̃Cq ≥ tCq and g̃BCnB
T ≥ gBCnB

T, then

C̃P
x̃ ≥ CP

x̃, where C̃P
x̃ corresponds to the DARE with parameters t̃Cq and g̃BCnB

T. Additionally,

the results in Appendix A4 show that the derivative of Cx̃ w.r.t. t and g is positive semidefinite,

i. e., tr [PCx̃] increases monotonically with t and g.

4.2.2 Joint Optimization

Having established the basic results for the LQG control problem with fixed transmitters and re-

ceivers, we now turn to the optimization of these parameters when additionally power constraints

have to be taken into account. The optimization of the transmitter and receiver obviously only

makes sense with these constraints because otherwise t and g can be chosen to be arbitrarily small.

This would lead to the elimination of the negative effect of the channel noises on the control per-

formance by increasing all transmit powers towards infinity. In order to be compatible with the

infinite horizon average cost function of the optimization problem (4.1), the power constraints are

also formulated as averages over the infinite horizon.

Definition 4.2.1: Power of transmit signals

For the system model depicted in Figure 4.1, the transmit power P1 of the observation channel and

P2 of the control channel is given by

P1 = lim
N→∞

1

N
E

[

t−1

(

N−1
∑

n=0

xT
nC

TCxn + vT
nvn

)]

and (4.8)

P2 = lim
N→∞

1

N
E

[

N−1
∑

n=0

uT
nun

]

, (4.9)

respectively, where the expected values are w.r.t. all random variables of the system and channel

models. For P1, the cross terms of the system state and the observation noise have been omitted

since their expected value is zero due to the model assumptions.

Note that if the distributions of the system state and the control signal converge to stationary

values (which is the case for the following results), we obtain expressions for the transmit powers

analogous to Equations (3.8) and (3.9), which are formulated in terms of the asymptotic covariance

matrices of the system state and the control signal. Let the available power for the observation

channel be given by PTx,1 > 0 and for the control channel by PTx,2 > 0. With the constraints that
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P1 ≤ PTx,1 and P2 ≤ PTx,2, the optimization problem (4.1) becomes

minimize
t,g,µ0,µ1,µ2...

lim
N→∞

1

N
E

[

xT
NQNxN +

N−1
∑

n=0

[

xn

g
1

2un

]T [
Q S

ST R

] [

xn

g
1

2un

]

]

+ g tr [RCn] (4.10)

subject to xk+1 = Axk +Bg
1

2 (uk + nk) +wk, k ∈ N0,

yk = Cxk + vk, k ∈ N0,

uk = µk(Ik), k ∈ N0,

Ik =

{

{(t− 1

2y0 + q0)},
{(t− 1

2y0 + q0), . . . , (t
− 1

2yk + qk),u0, . . . ,uk−1},
k = 0,

k ∈ N,

t > 0, g > 0,

lim
N→∞

1

N
E

[

t−1

(

N−1
∑

n=0

xT
nC

TCxn + vT
nvn

)]

≤ PTx,1,

lim
N→∞

1

N
E

[

N−1
∑

n=0

uT
nun

]

≤ PTx,2,

where the minimization now is additionally w.r.t. t and g. Note that the positivity constraint for

the transmitter and the receiver is explicitly shown since otherwise the problem would not be well-

posed, e. g., if the weighting matrix R for the control variable is scaled by a negative value.

For fixed values of t and g, the minimization in (4.10) w.r.t. to the controller, i. e., µk, k ∈ N0,

reduces to the problem discussed in Chapter 3. In this case, the controller is the only degree of

freedom to minimize the LQG cost subject to the power constraints. With the additional transmit

and receive scaling, an interaction between the controller and the transceivers is introduced. For

example, the choice of a smaller value of t leads to a smaller error of the state estimate which is

computed by the optimal controller (cf. Equations 4.5 and 4.6) and thus has the potential to reduce

the variance of the system state and the associated observations. In contrast to this reduction, the

observations are multiplied with t−
1

2 before transmission, which corresponds to an increase of

transmit power. It follows that the choice of the optimal value of t, and also of g, such that the

LQG cost is minimized and the transmit power constraints are fulfilled is not obvious.

In order to get a better insight in the interaction of the controller and the transceivers, we

formulate the Lagrangian which is associated with the problem (4.10) where only the transmit

power constraints are dualized, i. e., attached to the cost function using the Lagrange multipliers

λ1 ≥ 0 and λ2 ≥ 0. To this end, the constraint which is associated with PTx,1 is multiplied by t on

both sides of the inequality, whereas the constraint associated with PTx,2 is multiplied by g. This

step does not change the validity of the power constraints because t as well as g is positive. The

reason for this equivalent formulation of the constraints will become clear in the following. Let

J∞ denote the cost function of the optimization problem (4.10) and P1 and P2 the variances of the

transmit signals for the observation and the control channel, respectively (cf. Equations 4.8 and

4.9). Then, the Lagrangian associated with the optimization problem (4.10) is given by

L = J∞ + λ1t(P1 − PTx,1) + λ2g(P2 − PTx,2)

= lim
N→∞

1

N
E

[

xT
NQNxN +

N−1
∑

n=0

[

xn

un

]T [
Q+ λ1C

TC g
1

2S

g
1

2ST gR+ λ2gINu

] [

xn

un

]

]

+ λ1 tr [Cv] + g tr [RCn]− λ1tPTx,1 − λ2gPTx,2.

(4.11)
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Note that for fixed positive (non-negative) values of t, g, λ1 and λ2, Equation (4.11) is again the

cost function of an LQG control problem where the weighting matrix of the system state is given

by Q+λ1C
TC and of the control variable by gR+λ2gINu

. Consequently, the minimization of L

w.r.t. µk, k ∈ N0, for fixed values of t, g, λ1 and λ2 subject to the state and observation equation and

the constraint that the control variable at time index k is a function of Ik alone, i. e., the problem

minimize
µ0,µ1,µ2...

L (4.12)

subject to xk+1 = Axk +Bg
1

2 (uk + nk) +wk, k ∈ N0,

yk = Cxk + vk, k ∈ N0,

uk = µk(Ik), k ∈ N0,

Ik =
{

{(t− 1

2y0 + q0)},
{(t− 1

2y0 + q0), . . . , (t
− 1

2yk + qk),u0, . . . ,uk−1},
k = 0,

k ∈ N,

is readily solved and provides the optimal value (cf. Equation 4.7)

L∗(t, g, λ1, λ2) = tr
[

K
(

Cw+gBCnB
T
)]

+ tr [PCx̃] + λ1 tr [Cv] + g tr [RCn]

− λ1tPTx,1 − λ2gPTx,2,
(4.13)

where it is explicitly shown that L∗ is a function of t, g, λ1 and λ2. This result can be verified

by comparison with the respective expressions of Equation (4.1) and (4.12). Note that L∗ is only

defined for positive (non-negative) arguments. Using the results from Equations (4.4) – (4.6), L∗

depends on the stabilizing solutions of the DAREs

K = ATKA−
(

ATKB+S
)(

BTKB+R+λ2INu

)−1(
BTKA+ST

)

+Q+λ1C
TC (4.14)

and

CP
x̃ = A

(

CP
x̃ −CP

x̃C
T
(

CCP
x̃C

T +Cv + tCq

)−1
CCP

x̃

)

AT +Cw + gBCnB
T, (4.15)

where P = ATKA−K+Q+λ1C
TC and Cx̃ = CP

x̃−CP
x̃C

T
(

CCP
x̃C

T +Cv + tCq

)−1
CCP

x̃.

For fixed values of t and g, e. g., t̄ and ḡ, the optimization problem (4.10) is convex (see Chapter

3) and L∗
t̄,ḡ(λ1, λ2) = L∗(t̄, ḡ, λ1, λ2) represents the dual function associated with it.2 Thus, an

approach to obtain a solution for given transmit and receive scaling factors is to maximize the

dual function w.r.t. the non-negative dual variables λ1 and λ2 (see, e. g., [94, Chapter 5] and [95,

Chapter 6]). This requires that strong duality holds, i. e., that the optimal value of the problem

(4.10) (evaluated at t̄ and ḡ) and the supremum of L∗
t̄,ḡ

w.r.t. λ1 ≥ 0 and λ2 ≥ 0 are equal.

A sufficient condition for this is Slater’s constraint qualification (see, e. g., [94, Section 5.2.3]

and [95, Section 5.3.1]), i. e., the existence of a controller such that the power constraints hold with

strict inequality while the equality constraints are satisfied. This condition is fulfilled if at least

one pair (P1, P2) of Pareto optimal transmit powers exists such that PTx,1 > P1 and PTx,2 > P2

(see Section 3.3). In the following, we assume that this is the case, i. e., that PTx,1 and PTx,2 are

chosen large enough, where the lowest possible values are determined according to Section 3.3.

Note that if the available transmit powers PTx,1 or PTx,2 are too small, i. e., the power constraints

are not feasible, the dual function L∗
t̄,ḡ

is unbounded from above.

2The indices t̄ and ḡ are used to emphasize that transmit and receive scaling are assumed to be fixed at this point.
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Equations (4.13), (4.14) and (4.15) show how the controller and transceiver optimization are

coupled. The optimal controller gain (cf. Equation 4.3)

L = −g− 1

2

(

BTKB +R + λ2INu

)−1 (
BTKA+ ST

)

(4.16)

depends, up to the inverse of the receiver scaling g
1

2 , only on the Lagrange multipliers λ1 and

λ2 via the solution of the DARE given in Equation (4.14). Thus, for fixed values of t and g, the

controller uses λ1 and λ2 to fulfill the power constraints at the expense of an increased LQG cost

by shifting the weighting matrix Q towards λ1C
TC (which represents the transmit power of the

observation channel) and R towards λ2INu
(which represents the transmit power of the control

channel). The transmit and receive scaling acts differently. Since uk = Lx̂k, k ∈ N0, (cf. Equation

4.2 and 4.16), where x̂k is the optimal estimate of the system state at time index k, a change of

t and g has an immediate impact on the transmit powers since the respective transmit signals are

scaled accordingly, which can be verified with Equations (4.8) and (4.9). A secondary effect is due

to the dependence of the variance of the estimation error on the parameters t and g, see Equations

(4.5) and (4.6). Recalling the equality xk = x̂k + x̃k, k ∈ N0, where x̂k and x̃k are uncorrelated

(see Appendix A7.2), we observe that a change of the variance of the estimation error x̃k has also

an effect on the variance of xk and x̂k and thus on P1 and P2.

It can be seen that there are two ways to manage the transmit powers of the communication

channels in the LQG control problem. One of changing the controller objective from the original

performance criterion towards the transmit powers, which is realized by the adaption of λ1 and λ2,

and the other one of scaling the controller and system output signals while taking into account the

resulting variance of the state estimation error. These approaches are coupled by the function L∗

(cf. Equation 4.13) in the subtractive terms λ1tPTx,1 and λ2gPTx,2. This specific representation of

the function L∗ is due to the multiplication of the power constraints of the optimization problem

(4.10) by the respective transmit and receive scaling for the construction of the Lagrangian L. The

equivalent formulation of the constraints results in the fact that the multipliers λ1 and λ2 only have

an effect on the controller gain (cf. Equations 4.16 and 4.14) which determines the closed loop

dynamics via the matrix Acl = A + Bg
1

2L (see Equation 3.10 and A36). With Equation (4.16)

it follows that this matrix does not depend on t and g. The transceivers have an immediate effect

on the transmit powers due to the scaling of the respective transmitted signals and the resulting

variance of the state estimation error (cf. Equation 4.15).

4.2.3 Properties of the Optimization Problem

With the formulation of the problem (4.10), it is immediate to see that the joint optimization of the

controller and the scalar transceivers is non-convex because the cost function as well as the state

equation (which is an equality constraint) contain the product of the optimization variables g
1

2 and

uk, k ∈ N0. Additionally, the constraint concerning the transmit power of the observation channel

is quadratic in the system state but multiplied by t−1, which represents also a non-convex function

of the optimization variables. Note that this property remains unchanged for a reformulation of

the problem without transmitter and receiver where the channel noise variance becomes a design

parameter and the power constraints are converted to SNR constraints like in [46, 99] (see Figure

4.2). Even if the optimization problem is formulated in this context, we obtain exactly the same

function L∗ as in Equation (4.13). Consequently, we can not expect to determine a solution of

(4.10) by minimizing L∗(t, g, λ1, λ2) (cf. Equation 4.13) w.r.t. t > 0 and g > 0 in order to obtain
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the dual function3 (see, e. g., [94, Section 5.1.2] and [95, Section 6.1])

D(λ1, λ2) = inf
t>0,g>0

L∗(t, g, λ1, λ2) (4.17)

for the problem (4.10), and then maximizing D(λ1, λ2) w.r.t. λ1 ≥ 0 and λ2 ≥ 0. The reason

is that the dual function represents a lower bound for the optimal value of the original (primal)

optimization problem which is in general not tight for the non-convex case. Thus, the largest lower

bound, i. e., the supremum of D(λ1, λ2) w.r.t. λ1 ≥ 0 and λ2 ≥ 0, is smaller than the optimal

value of the problem (4.10) and we have a so-called duality gap. Nevertheless, Equation (4.13)

allows for an investigation of the characteristics of the dual function for the specific problem at

hand. To this end, we use the properties of the solution of a DARE with parameters which depend

on scalar variables (see Appendix A4). Applying these results to the error covariance matrix CP
x̃

shown in Equation (4.15), it can be seen that its first derivative w.r.t. t and g, respectively, is positive

semidefinite, whereas the second derivatives are negative semidefinite. These properties carry over

to the error covariance matrix Cx̃, which can be verified using Equation (4.5) and applying the

steps analogous to Appendix A4 to the right hand side of the expression. Thus, we observe that

∂2L∗

∂t2
= tr

[

P
∂2Cx̃

∂t2

]

≤ 0 and
∂2L∗

∂g2
= tr

[

P
∂2Cx̃

∂g2

]

≤ 0, (4.18)

i. e., L∗(t, g, λ1, λ2) is a concave function of t and g, respectively, because all terms of L∗ except

for tr [PCx̃] are linear functions of the transmitter and receiver scaling. Since we are looking for

the minimal value of a concave function over all non-negative values of t and g, depending on the

values of λ1, λ2, PTx,1 and PTx,2, the infimum of L∗ w.r.t. t and g is either −∞ (with t → ∞ or

g → ∞) or the finite positive value which is obtained by setting t = 0 and g = 0. The latter case

which can easily constructed by setting λ1 = 0 and λ2 = 0 does not provide a valid solution, but

the resulting infimum is approached in the limit for t → 0 and g → 0. This corresponds to an

unbounded increase of the transmit powers for the observation and control channel (recall that the

scaling factor at the system output is t−
1

2 and that the controller gain is scaled by g−
1

2 , see Equation

4.16) and thus is not a feasible solution. Due to the concavity, the infimum of L∗(t, g, λ1, λ2) w.r.t.

t and g is−∞ if limt→∞
∂L∗

∂t
< 0 or limg→∞

∂L∗

∂g
< 0. Since all summands of the concave function

L∗ except for tr [PCx̃] are linear in t and g and the state estimation error increases monotonically

with these two variables, this trace expression can at most behave linearly in the limit for t → ∞
and g → ∞. Thus, if PTx,1 or PTx,2 is large enough, the respective part of L∗ with negative slope,

i. e., −λ1tPTx,1 or −λ2gPTx,2, dominates for t → ∞ or g → ∞, which leads to the infimal value

−∞. This case corresponds to scaling factors t−
1

2 and g−
1

2 (recall that the optimal controller gain

L contains the scaling factor g−
1

2 ) at the input of the observation and control channel, respectively,

which go to zero. Thus, the variance of the receiver noise is amplified towards infinity together

with the value of the LQG cost function, which is obviously not optimal if enough transmit power

is available.

The fact that the infimum of the function L∗ w.r.t. t > 0 and g > 0 corresponds either to an

infeasible or obviously not optimal solution has two reasons. The main one is the non-convexity

of the optimization problem (4.10). Due to this property, the dual function, i. e., the infimum of

L∗ w.r.t. t and g, provides only a lower bound for the optimal value of the original optimization

problem which is not tight. The value −∞ is a trivial lower bound, whereas the case t → 0 and

3The dual function is determined using the infimum because the minimum may not exist.
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g → 0 provides a lower bound by violating the power constraints. This behavior is due to the

second reason, i. e., the equivalent reformulation of the power constraints for the construction of

the Lagrangian L (cf. Equation 4.11). For example, the constraints

P1 ≤ PTx,1 and t > 0, (4.19)

where P1 is given by Equation (4.8), are equivalently expressed as

tP1 ≤ tPTx,1 and t > 0. (4.20)

The constraints for the power of the control channel are treated analogously. However, for t→ 0
or g → 0, the corresponding transmit powers grow towards infinity whereas the product tP1 or

gP2 converges4 to a constant value. Thus, the Lagrangian associated with the formulation of the

transmit power constraints according to Equation (4.20) does not grow towards infinity for t→ 0
or g → 0. On the other hand, if the transmit powers P1 and P2 are feasible for t → ∞ and

g →∞, i. e., smaller than or equal to PTx,1 and PTx,2, respectively, the Lagrangian associated with

the constraints according to Equation (4.20) may not be bounded from below even though the

LQG cost grows towards infinity due to the unbounded noise amplification at the receivers of the

observation and the control channel. In this case, the magnitude of the slope of λ1t(P1 − PTx,1) is

larger than the slope of the LQG cost function in the limit for t → ∞ (and analogously for the

power constraint of the control channel with g →∞).

Note that for both cases, i. e., for t → 0 and g → 0 or t → ∞ and g → ∞, the Lagrangian

associated with the original formulation of the transmit power constraints according to Equation

(4.19) grows towards infinity, either because of the unbounded transmit power or the unbounded

cost function. Thus, the infimum w.r.t. t and g corresponds in general to finite and non-zero values

of the transmit and receive scaling factors. Nevertheless, the optimization problem (4.10) remains

non-convex and it is even harder to determine the dual function D(λ1, λ2) because the associated

function L∗ has less exploitable properties, which is demonstrated in the following example.

Example 4.2.1 In order to illustrate the properties of the Lagrangian associated with the optimiza-

tion problem (4.10) and of the function L∗ (see Equation 4.13) as well as the effect of the different

formulations of the transmit power constraints on this function, we use the parameters from Exam-

ple 3.1.1. The available transmit powers PTx,1 and PTx,2 of the observation and the control channel

are given by

log10

(

tr
[

Cq

]−1
PTx,1

)

= log10

(

tr [Cn]
−1

PTx,2

)

= 31.1,

where the actual transmit powers P1 and P2 are determined according to Equations (4.8) and (4.9),

respectively, and the variance of the channel noises is assumed to be fixed. Additionally, the receive

scaling factor g of the control channel is chosen to have the fixed value

ḡ = 2.00565,

and the Lagrange multipliers for the function L∗ from Equations (4.11) and (4.13) are fixed to

λ̄1 = 9.44165 and λ̄2 = 24.0299.

4In the limit, the noise of the respective communication channel does not contribute to the state estimation error

any more. Thus, the transmit powers of these channels are proportional to t−1 or g−1, respectively.
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Thus, L∗
ḡ,λ̄1,λ̄2

(t) = L∗(t, ḡ, λ̄1, λ̄2) is only a function of t in order to show the dependence on

a single optimization variable. Note that the specific values of g, λ1 and λ2 are optimal for the

problem (4.10) with the given system parameters, where we do not comment at this point on how

they have been obtained. This question is treated in Section 4.3.4. Nevertheless, it can be seen in

Figure 4.3 that the function L∗
ḡ,λ̄1,λ̄2

is concave in t > 0. Its maximum is attained at

t̄ ≈ 2.42593,

which is, together with ḡ, λ̄1 and λ̄2 and the resulting controller (the controller gain is given by

Equation 4.16), the solution of problem (4.10). Again, we refer to Section 4.3.4 for a detailed

treatment of the determination of these values.

0 2 4 6 8 10 12 14
−7·104

−5·104

−3·104

−1·104

1·104

t

L
∗
(t
,ḡ
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Figure 4.3: The function L∗
ḡ,λ̄1,λ̄2

(t) = L∗(t, ḡ, λ̄1, λ̄2) which has been obtained from the Lagrangian as-

sociated with problem (4.10) and the formulation of power constraints according to Equation (4.20). L∗ is

evaluated at ḡ, λ̄1 and λ̄2 and depicted as a function of t.

The picture changes if the Lagrangian associated with the optimization problem (4.10) is not

constructed with the alternative formulation of the power constraints (see Equations 4.20 and 4.11)

but with the original one, i. e., according to Equation (4.19), which results in the Lagrangian

L̄ = J∞ + ν1(P1 − PTx,1) + ν2(P2 − PTx,2). (4.21)

The Lagrange multipliers are now ν1 ≥ 0 and ν2 ≥ 0 in order to emphasize the difference to the

Lagrangian L. The function L̄∗ is obtained analogously to L∗ by minimizing L̄ w.r.t. the controller

functions µk, k ∈ N0, which is again an LQG control problem (cf. optimization problem 4.12).

Finally, we define

ν̄1 = t̄λ̄1 and ν̄2 = ḡλ̄2.

Figure 4.4 shows the respective values of L̄∗
ḡ,ν̄1,ν̄2

(t) = L̄∗(t, ḡ, ν̄1, ν̄2) for t > 0. As expected, the

function increases for t→ 0, which is due to the increase of transmit power, and for t→∞, which

is due to the increase of the cost function, i. e., J∞.

It can also be seen in Figure 4.4 that L̄∗
ḡ,ν̄1,ν̄2

is neither convex nor concave and has three local

minima. The global minimum is attained at t̄ and is identical to the maximum of L∗
ḡ,λ̄1,λ̄2

at t̄. The

fact that the value of both functions at t̄ is the same is a result of the specific choice of ν̄1 and ν̄2.

Since L (cf. Equation 4.11) and L̄ (cf. Equation 4.21) only differ by the multiplication of the power

constraints with t and g, respectively, both functions are identical if they are evaluated at ν1 = λ1t
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Figure 4.4: The function L̄∗ which has been obtained from the Lagrangian associated with problem (4.10)

and the formulation of power constraints according to Equation (4.19). L̄∗ is evaluated at ḡ, ν̄1 and ν̄2 and

depicted as a function of t.

and ν2 = λ2g, which is also true for the specific choice of these variables in the this example.

The observation that L∗
ḡ,λ̄1,λ̄2

(t̄) is the maximum of L∗
ḡ,λ̄1,λ̄2

whereas L̄∗
ḡ,ν̄1,ν̄2

(t̄) with ν̄1 = t̄λ̄1

and ν̄2 = ḡλ̄2 is the global minimum of L̄∗
ḡ,ν̄1,ν̄2

is due to the fact that t̄, ḡ, λ̄1 and λ̄2 actually

solve the optimization problem (4.10). Since these values are optimal, the so-called Karush-Kuhn-

Tucker (KKT) conditions (see, e. g., [95, Section 4.2.13]), which are necessary for a locally optimal

feasible point, must hold at t = t̄, i. e., the derivatives of L∗
ḡ,λ̄1,λ̄2

and L̄∗
ḡ,ν̄1,ν̄2

w.r.t. t must vanish

at t̄. Although these conditions are in general not sufficient for optimality, the determination of

KKT points provides candidates for the solution of the original optimization problem. If such an

approach is taken, the Lagrangian L seems to be the better choice due to the concavity, at least

individually in t and g, and thus the absence of local minima.

4.3 Solution of the Optimization Problem

If the values of the transmit and receive scaling factors t and g are assumed to be fixed, the resulting

optimization of the LQG controller under power constraints is a convex optimization problem and

the results of Chapter 3 can be readily applied. Unfortunately, we have seen in the preceding section

that the joint optimization of controller, transmitter and receiver is a non-convex problem and it is

not obvious how to determine the solution. Even the question if the power constrained optimization

problem is feasible, i. e., if a solution exists such that the transmit powers of the observation and

the control channel are smaller than or equal to a predetermined value, has to be asked again. If the

problem is feasible for a specific choice of t and g, it is not ensured that this is true for arbitrary

values, e. g., if t and g are chosen to be so small such that the resulting amplification of the transmit

signals can not be compensated by the controller.

4.3.1 Feasibility

As in Chapter 3, it is of interest how the available transmit powers PTx,1 and PTx,2 for the obser-

vation and the control channel, respectively, can be chosen such that the power constrained LQG

optimization problem (4.10) is feasible. In order to answer this question, we determined Pareto op-

timal values of the transmit powers in Section 3.3, i. e., pairs of (PTx,1, PTx,2) such that no controller



4.3 Solution of the Optimization Problem 65

exist which achieves a transmit power for the observation channel which is smaller than PTx,1 and

at the same time a transmit power of the control channel which is smaller than PTx,2. Such points

have been computed by minimizing the weighted sum of both transmit powers. For the convex

setting in Chapter 3, all Pareto optimal transmit powers can be calculated using this approach (see

Section 3.3). However, with the additional degrees of freedom provided by the transmit and re-

ceive scaling factors t and g, the problem of finding Pareto optimal transmit powers becomes more

involved because, like the original problem (4.10), the joint minimization of the weighted sum of

the transmit powers w.r.t. the controller and the transceiver is a non-convex problem. This will be

discussed in more detail in Section 4.3.2.

In Chapter, 3 the feasibility question has been treated by the exploration of the set of Pareto

optimal transmit powers. However, it is not always practical to determine this set (or approximate

it by computing a sufficient number of Pareto optimal transmit powers) in order to decide if a

certain pair (PTx,1, PTx,2) of available transmit powers leads to a feasible optimization problem

for a specific choice of t and g. Thus, the approach described in [78, Section 14.5] can be used to

decide if a tuple (t, g, PTx,1, PTx,2) is feasible. The basic idea is to replace the LQG cost function for

the power constrained controller optimization by a constant, e. g., the value 0, and to consider the

Lagrangian associated with this modified problem. With these changes, Equation (4.11) becomes

Lfeas = 0 + λ1t(P1 − PTx,1) + λ2g(P2 − PTx,2)

= lim
N→∞

1

N
E

[

N−1
∑

n=0

[

xn

un

]T[
λ1C

TC

λ2gINu

][

xn

un

]

]

+λ1 tr [Cv]−λ1tPTx,1−λ2gPTx,2,
(4.22)

and the minimization of Lfeas w.r.t. the controller µk, k ∈ N0, analogous to the optimization prob-

lem (4.12), results in the solution

L∗
feas(λ1, λ2) = tr

[

K
(

Cw+gBCnB
T
)]

+ tr [PCx̃] + λ1 tr [Cv]− λ1tPTx,1− λ2gPTx,2, (4.23)

which depends on the stabilizing solutions of the DAREs

K = ATKA−ATKB
(

BTKB + λ2INu

)−1
BTKA+ λ1C

TC, (4.24)

and

CP
x̃ = A

(

CP
x̃ −CP

x̃C
T
(

CCP
x̃C

T +Cv + tCq

)−1
CCP

x̃

)

AT +Cw + gBCnB
T. (4.25)

Additionally, P = ATKA −K + λ1C
TC and Cx̃ is given by Equation (4.5). Note that com-

pared to Equation (4.13), the arguments t and g have been omitted in Equation (4.23) because they

are not considered to be optimization variables at this point and are interpreted as given system

parameters. Consequently, L∗
feas is the dual function associated with the problem of minimizing

a constant cost function subject to the constraints of the optimization problem (4.10). Although

the cost function does not depend on the optimization variables in this case, the dual function can

be used to determine the feasibility, i. e., the existence of a controller such that the constraints of

problem (4.10) are satisfied for fixed values of t and g. To this end, the dual function L∗
feas is maxi-

mized w.r.t. λ1 and λ2. The usual constraint that λ1 ≥ 0 and λ2 ≥ 0 is extended by the additional

(convex) constraint λ1 + λ2 = 1. This normalization is introduced because the multiplication of

the Lagrangian Lfeas by any positive value simply results in the scaling of the respective minimum
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L∗
feas with the same value. Note that the three constraints for the Lagrange multipliers can be equiv-

alently replaced by λ1 = ρ, λ2 = 1 − ρ and ρ ∈ [0, 1]. Using this formulation, the dual of the

feasibility problem is given by

maximize
ρ

L∗
feas(ρ, 1− ρ) subject to ρ ∈ [0, 1], (4.26)

which is a convex problem because a concave function (the dual function is always concave) is

maximized over a convex set. Due to the dependence of the solution K of the DARE in Equation

(4.24) on the Lagrange multipliers λ1 and λ2 or ρ, respectively, the results of Appendix A4 can be

used to determine the first and second derivative of the dual function L∗
feas w.r.t. ρ, which allows

for a variety of possibilities for the solution of problem (4.26), e. g., a gradient ascent, the Newton

algorithm or line search approaches like bisection.

The sign of the optimal value of problem (4.26) tells us if the power constrained LQG opti-

mization is feasible for given values of t, g, PTx,1 and PTx,2. A controller which satisfies the power

constraints exists if and only if the maximum determined by (4.26) is smaller than or equal to zero.

For a detailed treatment of this statement we refer to [78, Section 14.5]. However, its validity is

quite intuitive. Note that the minimization of the Lagrangian Lfeas with λ1 = ρ and λ2 = 1 − ρ,

where ρ ∈ [0, 1], w.r.t. to the controller is essentially identical to optimization problem (3.33)

which is used to determine Pareto optimal transmit powers. The only difference is that the system

model is extended by t and g and that the cost function differs in the subtractive terms −ρtPTx,1

and −(1− ρ)gPTx,2 which do not depend on the controller. Consequently, L∗
feas(ρ, 1− ρ) provides

the difference between the weighted sum power ρtP1 + (1 − ρ)gP2, which is minimized by a

specific controller, and the respective weighted sum of the available transmit powers, given by

ρtPTx,1 + (1− ρ)gPTx,2. If this difference is positive for some value of ρ, at least one of the power

constraints must be violated because the actual transmit power is larger than the available one. On

the other hand, if even the maximal difference, given by the maximum of L∗
feas w.r.t. ρ ∈ [0, 1], is

negative (or zero), there exists at least one controller which fulfills the power constraints, i. e., the

controller that minimizes Lfeas, and thus provides a Pareto optimal pair of transmit powers.

In order to get an intuition about the possible choices of t and g such that the power constrained

LQG controller optimization is feasible and to provide some insights for possible approaches to

the optimal choice of the transmit and receive scaling, the following example applies the feasibility

test described above to a set of sampled values of t and g.

Example 4.3.1 The parameters of the dynamical system as well of the noise sequences which

drive the system are again taken from Example 3.1.1. With the fixed channel noise variances, the

available transmit powers PTx,1 and PTx,2 are determined by the respective SNRs of the observation

and the control channel which are chosen to be

10 log10

(

tr
[

Cq

]−1
PTx,1

)

= 10 log10

(

tr [Cn]
−1

PTx,2

)

= 31.1.

Note that the transmit powers PTx,1 and PTx,2 lead to an infeasible optimization problem for t = 1
and g = 1, where this choice of t and g corresponds to the case considered in problem (3.33), since

they lie outside the region shown in Figure 3.4. Nevertheless, the additional degrees of freedom

provided by the scaling of transmit and receive signals allow us to determine a solution which

satisfies the power constraints. To this end, the intervals t ∈ [0, 14] and g ∈ [0, 7] are sampled

equidistantly to a set of 5 ·105 different pairs of transmit and receive scaling factors. The feasibility
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test described above is applied to each pair. Figure 4.5 shows the result of this procedure, where

a feasible point is depicted by a dot and only a subset of 2500 of such points which are randomly

chosen are shown due to the large amount of data. Approximately 25% of all tested pairs of t and

g resulted in a feasible optimization problem.

t

g

0
0

2

2

4

4

6

6
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Figure 4.5: Feasibility of the optimization problem (4.10) for 10 log10
(

tr
[

Cq

]−1
PTx,1

)

= 31.1 and

10 log10
(

tr [Cn]
−1 PTx,2

)

= 31.1 and given values t and g. A feasible pair (t, g) is denoted by a dot.

It is interesting to see that the set of transmit and receive scaling factors which lead to a fea-

sible power constrained controller optimization seems to consist of two disjoint regions. This is a

problem if a local optimization algorithm is applied to the determination of optimal values of t and

g due to the dependence of the resulting local optimum on the initialization of such an algorithm.

Of course this is not surprising since the problem of joint controller and transceiver optimization

is non-convex. A second observation is that the shape of the region seems to imply that if a certain

point (t̄, ḡ) is feasible, then the point (βt̄, βḡ) with β ≥ 1, i. e., a pair with the same ratio of transmit

and receive scaling factors which are not smaller that t̄ and ḡ, respectively, also leads to a feasible

optimization problem. We will see in the following section that the ratio of t and g is actually of

importance for the joint optimization of controller and transceiver with power constraints.

4.3.2 Achievable Transmit Powers

In the preceding section, the feasibility of the power constrained LQG control problem for fixed

values of the transmit and receive scaling factors t and g, respectively, and available transmit pow-

ers PTx,1 and PTx,2 has been treated. At this point, we come back to the question of how small

the values of PTx,1 and PTx,2 can be chosen if the degrees of freedom provided by the transceiver

are used and t and g are adapted in order to minimize the LQG cost function while satisfying the

transmit power constraints. As a first step to answer the question, we determine Pareto optimal

transmit powers analogous to the approach presented in Section 3.3, i. e., the weighted sum of the

transmit powers of the observation and the control channel is minimized. The difference is that now

this sum is minimized w.r.t. the LQG controller and additionally the transmit and receive scaling

factors, which turns the convex optimization problem from Section 3.3 into a non-convex one.
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Before we consider the optimization problem for the determination of Pareto optimal values of

the transmit powers, the state and observation equation which describe the dynamical system to be

controlled and which have been used above, e. g., for the optimization problem (4.10), are equiv-

alently reformulated. This facilitates the line of argumentation in the following. Define the scaled

state of the dynamical system zk = g−
1

2xk, k ∈ N0, and the scaled system output ηk = g−
1

2yk,

k ∈ N0. This step is not problematic since g > 0, i. e., g 6= 0. Using this notation, the corresponding

dynamical system is described by the state and observation equation

zk+1 = Azk +B (uk + nk) + g−
1

2wk,

ηk = Czk + g−
1

2vk.
(4.27)

Up to the scaling of the system output with g−
1

2 , the system above has the same input-output be-

havior as the original one with state xk and the scaling factor g
1

2 at the system input. The dynamical

system described by Equation (4.27) is the result of pulling g
1

2 from the input to the output of the

system. Finally, define the ratio of the transmit and receive scaling as

α =
t

g
. (4.28)

Using these definitions, the system model which has been introduced at the beginning of this

chapter and depicted in Figure 4.1 is equivalently represented by Figure 4.6. The transmit power

A

B C

g−
1

2wk g−
1

2vk

qk

nk

zk

uk

ηk

Controller µk

T

α−
1

2 INy

Figure 4.6: Model of the control loop which is closed over two channels with additive noise qk and nk. The

scaling factor g
1

2 is shifted from the input to the output of the system, resulting in the transmit scaling factor

α− 1

2 =
(

t
g

)− 1

2 .

of the observation channel which is given by Equation (4.8) now reads as

P1 = lim
N→∞

1

N
E

[

α−1

(

N−1
∑

n=0

zT
nC

TCzn + g−1vT
nvn

)]

, (4.29)

whereas the transmit power P2 of the control channel is given by Equation (4.9). Analogous to

the optimization problem (3.33), we use the cost function ρP1 + (1 − ρ)P2 with ρ ∈ [0, 1], i. e.,

the weighted sum of the transmit powers, for the determination of Pareto optimal values of these

powers. With the reformulation of the system model from above, this cost function fits in the

LQG framework with Q = ρα−1CTC, R = (1 − ρ)INu
and S = 0Nx×Nu

. Consequently, the
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minimization of the weighted sum of the transmit powers reads as

minimize
α,g,µ0,µ1,µ2...

lim
N→∞

1

N
E

[

N−1
∑

n=0

[

zn

un

]T[
ρα−1CTC

(1− ρ)INu

][

zn

un

]

]

+ ρ(αg)−1 tr [Cv] (4.30)

subject to zk+1 = Azk +B(uk + nk) + g−
1

2wk, k ∈ N0,

ηk = Czk + g−
1

2vk, k ∈ N0,

uk = µk(Ik), k ∈ N0,

Ik =

{

{(α− 1

2η0+q0)},
{(α− 1

2η0+q0), . . . , (α
− 1

2ηk+qk),u0, . . . ,uk−1},
k = 0,

k ∈ N,

α > 0, g > 0.

Since this minimization is an LQG control problem without power constraints for fixed values of

α and g, the minimum w.r.t. µk, k ∈ N0, is known and given by (cf. Appendix A6.3)

J∗
∞(α, g) = tr

[

K
(

g−1Cw +BCnB
T
)]

+ tr [PCz̃] + ρ(αg)−1 tr [Cv] , (4.31)

which depends on the stabilizing5 solutions of

K = ATKA−ATKB
(

BTKB + (1− ρ)INu

)−1
BTKA+ ρα−1CTC (4.32)

and

CP
z̃ = A

(

CP
z̃ − α−1CP

z̃C
T
(

α−1CCP
z̃C + (αg)−1Cv +Cq

)−1
CCP

z̃

)

AT + g−1Cw +BCnB
T

= A
(

CP
z̃ −CP

z̃C
T
(

CCP
z̃C + g−1Cv + αCq

)−1
CCP

z̃

)

AT + g−1Cw +BCnB
T,

(4.33)

where P = ATKA − K + ρα−1CTC and Cz̃ is the covariance matrix of the (scaled) state

estimation error which is given by Cz̃ = CP
z̃ − CP

z̃C
T
(

CCP
z̃C + g−1Cv + αCq

)−1
CCP

z̃ . Note

that J∗
∞ in Equation (4.31) is denoted as a function of α and g in order to emphasize the fact that

it still has to be minimized w.r.t. α > 0 and g > 0. Having a closer look at the cost function in

Equation (4.31) and the expressions of the covariance matrices CP
z̃ and Cz̃ of the state estimation

error (cf. Equation 4.33) it can be seen that the minimum of J∗
∞, or precisely the infimum, w.r.t. g

for a given value of α > 0 is achieved for g →∞, which corresponds to a dynamical system with

no process or observation noise. This statement is easy to verify since the summands tr [Kg−1Cw]
and ρ(αg)−1 tr [Cv] decrease monotonically towards zero in this case. Additionally, the estimation

error variance and thus tr [PCz̃] also decreases monotonically if the noise covariance matrices

Cw and Cv in Equation (4.33) are scaled down by g−1, which can be confirmed using the results

in Appendix A4 and [100]. Note that for a fixed value of α, letting g → ∞ implies together with

Equation (4.28) that also t→∞. Keeping in mind that this limit corresponds to the consideration

of a system with no process and observation noise, we are effectively left with a scenario where

5We have to keep in mind that the closed loop system is required to be stable. For the specific case considered here,

the choice of ρ = 1 can lead to the fact that Equation (4.32) has a non-stabilizing positive semidefinite solution which

minimizes the cost function given by Equation (4.31), see, e. g., Appendix A3 and [101].
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only the noise sequences (qk : k ∈ N0) and (nk : k ∈ N0) of the observation and control chan-

nel, respectively, drive the closed loop system and thus contribute to the transmit powers of both

channels. Such a scenario has been investigated, e. g., in [29]. With the definition of

I(α) = inf
g>0

J∗
∞(α, g)

= tr
[

KBCnB
T
]

+ tr [PCz̃] ,
(4.34)

where the estimation error covariance matrix Cz̃ = CP
z̃ − CP

z̃C
T
(

CCP
z̃C + αCq

)−1
CCP

z̃ is

determined using Equation (4.33) with g−1 replaced by 0 and where K and P are determined

according to Equation (4.32), the remaining part for the solution of optimization problem (4.30) is

minimize
α

I(α) subject to α > 0. (4.35)

Note that despite the fact that the infimum of the weighted sum of transmit powers which is given

by I is finite for α > 0, the resulting variance of the original system state xk, k ∈ N0, and thus of

the control signal uk, k ∈ N0, is unbounded from above for g →∞ (together with t→∞). This is

easy to see because the input of the dynamical system is scaled by g
1

2 which leads to an unbounded

amplification of the control channel noise (nk : k ∈ N0) (see Figures 4.1 and 4.2). Analogously, at

least for unstable dynamical systems, the estimation error of the system state grows towards infinity

if the observations at the output of the system are scaled by t−
1

2 which goes to zero. Consequently,

the performance of the closed loop control system which is measured by an LQG cost function

becomes arbitrarily worse in general if it is desired to achieve Pareto optimal transmit powers.

Although the minimization (4.35) is only w.r.t. to one real variable, its solution is not straight-

forward, which is expected due to the non-convexity of the original problem (4.30) and illustrated

by the following example.

Example 4.3.2 Consider the model parameters provided by Example 3.1.1. The optimization

problem (4.30) is solved for the parameter ρ = 2
3

and a given value of the variable α. Thus,

the solution provides the function I(α) shown in Equation (4.34), i. e., the infimum w.r.t. g > 0 of

I
(α

)

α
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103
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104

Figure 4.7: Infimum of the weighted sum power ρP1 + (1 − ρ)P2 with parameter ρ = 2
3 for g → ∞ (cf.

optimization problem 4.30 and Equation 4.34).

the weighted sum of the transmit powers which has been optimized w.r.t. the LQG controller µk,

k ∈ N0. In order to get an impression about the final minimization w.r.t. to α > 0, this function is

evaluated for a large range of values of α and shown in Figure 4.7.
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Note that in the limit for α → 0 and α → ∞, I behaves as expected, i. e., is not bounded

from above, because either the transmit power of the observation or the control channel is scaled

by a factor which goes to infinity. Between these two limits, the optimized weighted sum I of the

transmit powers exhibits one global minimum and additionally two local minima.

The example above shows that it is not straightforward to determine the solution of the mini-

mization problem (4.35). One approach is of course a sampling of the function I for a finite set of

values of the optimization variable α. It is easy to implement, but has the general problem of an

appropriate selection of the sampling range and the sampling intervals. Additionally, it is not guar-

anteed that the global optimum of I is actually determined. In order to avoid these problems and to

obtain a certificate about the optimality of a solution candidate of problem (4.35), the framework

of monotonic optimization is introduced and applied to the problem of the determination of Pareto

optimal transmit powers.

4.3.3 Determination of Achievable Powers by Monotonic Optimization

For the determination of the solution of the problems (4.30) and (4.35), respectively, efficient algo-

rithms for convex optimization can not be used due to the lack of convexity. The minimization of

the weighted sum of the transmit powers w.r.t. the ratio α > 0 of the transmit and receive scaling

factors does not even offer a quasi-convex structure but the respective cost function exhibits sev-

eral local minima (cf. Figure 4.7). Thus, line search algorithms like the golden section method or

bisection to determine the root of the derivative (see, e. g., [95, Chapter 8]) are not applicable for

the determination of the global minimum. Fortunately, there is usable structure left which allows

us to apply the global optimization framework of monotonic optimization.

In [102], the authors propose several algorithms to exploit the monotonicity of the cost function

and the constraints of an optimization problem to obtain globally optimal solutions when no other

simplifying structure is present. In this thesis, we concentrate on the branch and bound approach

which is based on a simple idea. By an exhaustive partitioning, i. e., branching, of the set the

optimization variables can be taken from, the optimal value of the problem under consideration is

determined. In order to reduce complexity, bounds for each set of the partition are generated which

allow for the decision if the optimal value of the problem lies within a certain set or not.

The following example of the approach is used to illustrate the idea and the necessary steps of

the branch and bound procedure. Assume that the optimization variable α is element of an interval

A = [a, b], a < b, which is a non-empty subset of R, and we want to determine the value of α within

this interval which minimizes a function I of α. Assume further that this function can be expressed

as I = I1− I2, where both I1 and I2 are monotonically increasing functions of α, i. e., for α1 < α2

it follows that Ik(α1) ≤ Ik(α2), k ∈ {1, 2}. No additional properties are required. In the branching

step, the interval A is partitioned into a number of subsets which cover the original set. For the

sake of simplicity, let this partition be A = A1 ∪ A2 with A1 = [a, c], A2 = [c, b] and a < c < b.

Now, the function I is evaluated at one point in each subset in order to obtain an upper bound for

the minimal value of the function within this interval. One possibility is to use a boundary point of

each interval, e. g., the upper bounds are determined by IA1
= I(a) for A1 and IA2

= I(c) for A2.

The next step of the bounding procedure is of great importance and determines a non-trivial lower

bound for the function I for each subset. At this point, the monotonicity of I1 and I2 is used. Since

both functions are increasing, a lower bound for I is obtained by evaluating the positive summand

I1 at the lower boundary point of the considered interval and the negative summand I2 at the upper
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boundary point. This minimizes the positive contribution to I and maximizes the summand which

is subtracted. The corresponding lower bounds in our example are thus given by IA1
= I1(a)−I2(c)

for A1 and IA2
= I1(c) − I2(b) for A2. The upper and lower bounds for the minimal value of I

within each subset of A are now used to determine if the optimal value of this function over the

whole interval A can lie in one of its subsets or not. Even if the global minimum is not known,

it is not possible that it lies in a subset Ak of A which has a lower bound IAk
with a larger value

than the smallest upper bound obtained so far, i. e., if IAk
> minn IAn

. Such sets can be excluded

from any further investigation of the minimization problem. With the remaining subsets of A, the

branching and bounding procedure described above is repeated. Due to the increasing refinement

of the partitioning of A with each step of the branching, the global minimum of I w.r.t. α ∈ A is

approximated with increasing accuracy, provided that if a subset of A collapses to a single point,

the value of the corresponding lower bound converges to the actual value of the function I at this

point. This property of the lower bound is called consistency (cf. [102, Section 7.5]).

Note that the approach described above can be interpreted as a sampling of the function I

within the interval A. The difference to a conventional sampling approach is that there is no a pri-

ori decision about the sampling method, e. g., equidistant, logarithmic or random, or the resolution,

i. e., the number of sampling points which are evaluated. Additionally, the branch and bound proce-

dure provides information about subsets of A which do not need to be sampled because they do not

contain the minimizer of I . Nevertheless, the most important feature is that the presented approach

allows for a statement about the (sub-)optimality of the result of the branch and bound process.

Due to the availability of upper bounds, i. e., actually sampled values of I , and lower bounds for

the optimal value of I , the gap between the smallest upper and smallest lower bound at a certain

point of the branching process tells us how far we are away from the global optimum. Thus, we get

a certificate for the optimality of a sampled point which is not available for any standard sampling

approach. The branching process can be stopped if a desired accuracy is obtained.

4.3.3.1 Minimization of Weighted Sum of Transmit Powers

After the short description of the branch and bound method which exploits the underlying mono-

tonicity of an optimization problem in order to find a solution, we come back to the computation of

Pareto optimal values for the transmit powers in a control loop which has been discussed in Section

4.3.2. Such values can be determined by minimizing the weighted sum of the transmit powers of

the observation and the control channel. We have seen that the minimization w.r.t. to the controller

µk, k ∈ N0, is a standard LQG problem and that the infimum of the weighted sum of the powers is

achieved in the limit for g → ∞. At this point, we start with the remaining optimization problem

(4.35) for the determination of the optimal ratio α of the transmit and receive scaling factors t and

g (cf. Equation 4.28). However, it is not possible to determine the lower bound for the branch and

bound approach as described above because the function I(α) = tr
[

KBCnB
T
]

+tr [PCz̃] (see

Equation 4.34) can not be simply rewritten as a difference I1 − I2 of increasing functions. Thus,

we use the fact that the matrix P = ATKA−K + ρα−1CTC allows us to obtain an alternative

expression for I , i. e.,

I(α) = tr
[

KBCnB
T
]

+ tr [PCz̃]

= tr
[

K
(

BCnB
T +ACz̃A

T −Cz̃

)]

+ ρα−1 tr
[

CCz̃C
T
]

= tr
[

K
(

CP
z̃ −Cz̃

)]

+ ρα−1 tr
[

CCz̃C
T
]

,

(4.36)
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where K is given by Equation (4.32) and CP
z̃ by Equation (4.33) with g−1 replaced by 0. The co-

variance matrix of the scaled state estimation error is Cz̃ = CP
z̃ −CP

z̃C
T
(

CCP
z̃C+αCq

)−1
CCP

z̃ .

Using the results of Appendix A4, it can be seen that the matrix K is increasing in α−1, i. e.,
∂K

∂(α−1)
≥ 0Nx×Nx

, and thus decreasing in α. On the other hand, CP
z̃ is increasing in α, i. e.,

∂CP
z̃

∂α
≥ 0Nx×Nx

, which is also true for Cz̃. These monotonicity results are used to obtain lower

bounds for the branch and bound algorithm. Let α ∈ A = [α, α] with 0 < α ≤ α. Then, it holds

I(α) = tr
[

K(α)
(

CP
z̃(α)−Cz̃(α)

)]

+ ρα−1 tr
[

CCz̃(α)C
T
]

≥ tr
[

K(α)
(

CP
z̃(α)−Cz̃(α)

)]

+ ρα−1 tr
[

CCz̃(α)C
T
]

= tr
[

K(α)BCnB
T
]

+ tr [P (α)Cz̃(α)]

≥ tr
[

K(α)BCnB
T
]

+ tr [P (α)Cz̃(α)]

= IA.

(4.37)

Note that in Equation (4.37) the matrices K, P , CP
z̃ and Cz̃ are explicitly denoted as functions

of α in order to illustrate which element of I is lower bounded using the corresponding boundary

point of A. It can be seen that IA is a lower bound for I(α) for all α ∈ A since it only depends

on the boundary points of A. Thus, it is also a lower bound for the minimal value of I within this

interval. In order to obtain an upper bound for the minimum, I is evaluated at some α ∈ A, e. g.,

at α, which results in

IA = I(α). (4.38)

Remark: The specific choice of the lower bound IA given by Equation (4.37) can be interpreted

as a relaxation of the original optimization problem (4.30). Note that for IA, the matrices K and

P are evaluated at α. Since these matrices depend on the parameters of the LQG cost function

(see Appendix A6.3) it can be seen that this contribution to the underestimate of I is due to the

replacement of the cost function, i. e., the weighted sum of the transmit powers, by a function

which is smaller than or equal to the original cost for each given state sequence (xk : k ∈ N0) and

control sequence (uk : k ∈ N0). The covariance matrix of the estimation error is evaluated at α for

the determination of IA. With Equation (4.33) it can be seen that this corresponds to a relaxation

of problem (4.30) by replacing the scaled covariance matrix αCq of the noise sequence in the

observation channel with the smaller one αCq which leads to a smaller state estimation error and

thus a smaller value of the optimum of (4.30). With this interpretation, the determination of the

lower bound IA fits into the framework discussed in [103] where the optimization problem under

consideration exhibits a convex structure for some of the optimization variables and a monotonic

structure for the other ones. In our case, the problem is a convex LQG controller optimization for

fixed values of g and α, and monotonic w.r.t. those scalar variables for a fixed controller.

Note that in order to determine the global minimum of I for α > 0, the lower bound given in

Equation (4.37) needs to be consistent, which means that if the interval A = [α, α] collapses to a

single point α, i. e., for α → α and α → α, it is required that IA → I(α). This is the case if the

solutions K and CP
z̃ of the corresponding DAREs are continuous w.r.t. the optimization variable

α. Concerning the continuity of such solutions w.r.t. to the parameters of the dynamical system

and the LQG cost function, we refer to [104]. The continuity of the stabilizing solution of a DARE

is shown under the assumption of left invertibility of the corresponding dynamical system, which
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means that its input is uniquely determined by its output (see, e. g., [105]). Keeping in mind the

LQG cost function and the optimal estimation of the system state, the parameters of the DAREs

for the determination of K and CP
z̃ correspond, in the context of [104], to left invertible systems

for ρ 6= 1 and if Cq has full rank. Using the generic formulation of the DARE in Appendix A3,

this means that the matrix R has to be invertible.

Before the branch and bound algorithm is applied to the problem (4.35), we have to deal with

the fact that the optimization variable α is constrained to be larger than zero, implying that it can

become arbitrarily large. The set A = ]0,∞[ is not suited for a branching procedure, which is the

reason why we map it to the interval B = ]0, 1[ by

β =
α

1 + α
, α > 0, (4.39)

or equivalently α = (1−β)−1β with β ∈ ]0, 1[. The branching is then performed w.r.t. β. Note that

we use the initial set B = [β, β] = [0, 1] for the search of the global optimum of I . The inclusion

of the boundary points is not a problem for the determination of the lower bound IA (cf. Equation

4.37) since the matrices K and P depend on α−1 = β
−1
(1− β), which is zero at β = 1, whereas

the estimation error covariance matrix of the system state depends on α = (1 − β)−1β, which is

also zero for β = 0. Consequently, the lower bound for I can be evaluated for B = [0, 1] and

any subset of it. For the upper bound, one can either chose a different value than α or α if they

correspond to β = 0 or β = 1, respectively, or the trivial upper bound IA = ∞ is used in such a

case. Finally, we are in the position to apply Algorithm 4.1 to the optimization problem (4.35).

Algorithm 4.1 Branch and bound approach for weighted sum power minimization (cf. [102,103])

1: Select a desired relative accuracy ε > 0
2: Use as initial partition S1 = P1 = B = [0, 1]
3: k = 1
4: I∗ = 0 and I

∗
=∞

5: while 1− I∗

I
∗ ≥ ε do

6: Compute the lower bound IA for each A ∈ Pk

7: Compute the upper bound IA for each A ∈ Pk

8: Determine the smallest upper bound I
∗
= minA∈Sk IA

9: Remove every A ∈ Sk with IA ≥ I
∗

from Sk and let the set of remaining members of Sk

be Rk

10: Determine I∗ = minA∈Rk
IA as well as B = argminA∈Rk

IA
(if more than one minimizer is present, choose one randomly)

11: Determine the partition Pk+1 =
{[

β, 1
2

(

β + β
)]

,
[

1
2

(

β + β
)

, β,
]}

of B = [β, β]
12: Sk+1 = (Rk \B) ∪ Pk+1

13: k ← k + 1
14: end while

For the above algorithm, the sets Sk, Rk and Pk, k ∈ N, are introduced. In the k-th iteration,

Rk is the set of remaining intervals after removing all subsets of [0, 1] with a corresponding lower

bound that is larger than the best upper bound obtained so far, meaning that they can not contain

the optimizer of problem (4.35). Sk is determined by replacing one of its elements by a subdivision

of the respective interval. Finally, Pk contains the intervals which are the result of a subdivision of

the set B which corresponds to the smallest lower bound obtained so far.
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The rule for the subdivision of a given set B = [β, β] is a simple bisection (cf. [102]), which

can be seen in line 11 of Algorithm 4.1. This subdivision rule has the property that an interval

eventually collapses to a single point. For the subdivision in iteration k, the set B with the smallest

corresponding lower bound is chosen (cf. line 10). The set Sk+1 for the next iteration is then

determined by removing B from the set of remaining intervals and replacing it with its subdivision

in line 12. In the next iteration, the new lower and upper bounds for the sets which have been

created by the subdivision are determined (see lines 6 and 7). Finally, the intervals which can

be excluded from further steps are determined using the best upper bound I
∗

which might have

changed due to the subdivision of the interval B in the last iteration (see line 8 and 9). The accuracy

of the result after each iteration is measured by the gap between the smallest upper bound and the

smallest lower bound (which is a lower bound for the global optimum), relative to the best value

of I obtained so far, which given by the smallest upper bound I
∗
.

Example 4.3.3 Using the parameters given in Example 3.1.1, Algorithm 4.1 (with a relative ac-

curacy of ε = 10−3) is applied to the minimization of the function I (cf. Equation 4.34) which

is depicted in Figure 4.7 for ρ = 2
3
. For the determination of Pareto optimal values of the powers

P1 and P2, 1000 values of ρ = (1 + θ)−1 are considered, where θ is sampled logarithmically in

the interval [10−10, 1010]. In Figure 4.8 the resulting values of the SNRs ϕ1 = tr
[

Cq

]−1
P1 and

ϕ2=tr [Cn]
−1

P2 are shown as a solid line. Since all pairs of SNRs below this line are not feasible,

the shaded area shows the region of SNRs which correspond to feasible transmit powers.
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Figure 4.8: Outer bound (solid line) of the region of feasible SNRs (shaded area) for the power constrained

LQG problem with optimal selection of the parameter α.

The region of feasible transmit powers or SNRs, respectively, for the power constrained LQG

control problem with no transmit and receive scaling which is shown in Figure 3.7 lies inside the

shaded area in Figure 4.8. This is not unexpected because the scenario discussed in Chapter 3 is

a special case of the scenario considered here where the transmit and receive scaling factors are

fixed to t=g=1. If the transceiver is not optimized, the resulting optimal value of the optimization

problem (3.33) is larger than the corresponding optimum of problem (4.30) in general.
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Note that the solid line in Figure 4.8 is not connected but shows a gap. This is no inaccuracy

but relates to a discontinuity of the value of α which minimizes the cost function I given by

Equation (4.34). Let α∗ = (1 − β∗)−1β∗ = argminα>0 I(α) be the optimizing value which has

been obtained by the application of Algorithm 4.1. In Figure 4.9, α∗ is depicted as a function

of θ = ρ−1(1 − ρ), where θ has been introduced above. It can be seen that for θ ≈ 3000, the
α
∗

10−6

10−4

10−2

100

102

104

106

10−9 10−6 10−3 100 103 106 109

ρ−1(1− ρ)

Figure 4.9: Optimal value α∗ of the scaling parameter α over θ = ρ−1(1 − ρ), where ρ is the weighting

factor for the minimization of the weighted sum of the transmit powers (cf. optimization problem 4.30).

optimal value of α jumps over more than two orders of magnitude. This jump leads to the gap in

the set of Pareto optimal transmit powers which can be observed in Figure 4.8 and is the result of

the non-convexity of the optimization problem (4.30). In this case, the approach of minimizing the

weighted sum of the transmit powersP1 and P2 can still be used to determine Pareto optimal values,

but it is generally not possible to determine all of them if the set of feasible transmit powers is not

convex (see, e. g., [94, Section 4.7.4]). Besides the non-convexity, a more precise explanation for

the discontinuity of the optimal value α∗ which is shown in Figure 4.9 is possible. Recall Example

4.3.2 where we have seen that the cost function I exhibits one global minimum and two additional

local minima for a specific value of the weighting factor ρ. This configuration, i. e., location and

number of local minima, varies for changing values of ρ, which becomes important for θ ≈ 3000
or ρ ≈ 3.33 · 10−4, respectively. Figure 4.10 shows the function I near the global optimum for

two different values of ρ which are close to the value mentioned above. Choosing ρ ≈ 3.21 · 10−4

results in the minimal value which is slightly less than 60, but the nearest local minimum is only

a little bit larger. For increasing values of ρ, the values of the global and the local minimum get

closer and finally switch their position, i. e., the global optimum becomes a local one and vice

versa. The resulting cost function for ρ ≈ 3.66 · 10−4 is shown by the solid line in Figure 4.10.

Thus, the optimizer of I exhibits a jump, which has been observed in Figure 4.9.

Example 4.3.3 demonstrates that the set of feasible transmit powers for the joint optimization of

controller and scalar transceiver is not convex, which has been expected due to the properties of the

original optimization problem (4.10). Consequently, the approach of the weighted minimization of

the transmit powers in the observation and the control channel to determine Pareto optimal values

only provides an outer bound for the set of feasible transmit powers. This bound is tight for the

solution of problem (4.10) with a specific choice of the weighting factor ρ, i. e., the corresponding

transmit powers can be approached arbitrarily close for t → ∞ and g → ∞ with a fixed ratio of

both values. For a gap in the set of Pareto optimal transmit powers like in Figure 4.8, the bound is
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Figure 4.10: Weighted sum power for different values of ρ. For ρ ≈ 3.33 · 10−4, the optimal value of the

scaling parameter α jumps from approximately 0.4 to approximately 1.2 · 10−3.

generally not tight, i. e., transmit powers which are obtained by a linear interpolation between the

boundary points of the gap are not feasible.

4.3.3.2 Constrained Minimization of Transmit Power

Due to the non-convexity which has been observed in the last section, the approach of minimizing

the weighted sum of the transmit powers of the observation and the control channel is not suitable

for the determination of the whole set of Pareto optimal transmit powers. This set is of special

interest because it provides the bound for feasible power constraints for the optimization problem

(4.10). In order to determine Pareto optimal values of the transmit powers also for the non-convex

part of the set of feasible transmit powers, an approach is proposed which is slightly more in-

volved than the unconstrained minimization of the weighted sum of transmit powers presented in

the preceding section. The idea is to minimize only one of the transmit powers, i. e., P1 for the ob-

servation channel or P2 for the control channel, while taking into account a constraint for the other

one. Loosely speaking, we try to make one transmit power as small as possible while keeping the

other one below a given value. Using the formulations introduced earlier, the resulting optimization

problem reads as

minimize
t,g,µ0,µ1,µ2...

lim
N→∞

1

N
E

[

t−1

(

N−1
∑

n=0

xT
nC

TCxn + vT
nvn

)]

(4.40)

subject to xk+1 = Axk +Bg
1

2 (uk + nk) +wk, k ∈ N0,

yk = Cxk + vk, k ∈ N0,

uk = µk(Ik), k ∈ N0,

Ik =

{

{(t− 1

2y0 + q0)},
{(t− 1

2y0 + q0), . . . , (t
− 1

2yk + qk),u0, . . . ,uk−1},
k = 0,

k ∈ N,

t > 0, g > 0,

lim
N→∞

1

N
E

[

N−1
∑

n=0

uT
nun

]

≤ PTx,2,



78 4. Joint Design of Controller and Scalar Transceiver

where the transmit power P1 of the observation channel (see Equation 4.8) is minimized subject to

the controller, the transmitter t and the receiver g while taking into account that the transmit power

P2 of the control channel (see Equation 4.9) must not exceed the available power PTx,2. For the

solution of problem (4.40), we reformulate the system state and observation equation equivalently

analogous to Equation (4.27). Note that the reformulation introduced there could also be used at

this point, but the expressions derived in the following result in a convenient structure of the prob-

lem which has already been observed in Section 4.2.2. Additionally, the problem setting becomes

comparable to a very similar approach presented in [46]. This point will be discussed later.

Analogously to Equation (4.27), define the scaled system state zk = t−
1

2xk, k ∈ N0, which

is not problematic since t 6= 0 due to the constraints of problem (4.40). The resulting state and

observation equation of the dynamical system to be controlled thus become

zk+1 = Azk + α− 1

2B (uk + nk) + t−
1

2wk,

ηk = Czk + t−
1

2vk,
(4.41)

where α = t
g

as in Equation (4.28) and ηk = t−
1

2yk, k ∈ N0. The reformulation introduced

above corresponds to a dynamical system which is driven by process noise with covariance matrix

t−1Cw, exhibits observation noise with covariance matrix t−1Cv and scales its input signal by

α− 1

2 . Figure 4.11 shows the respective closed loop control system.

A

B C

t−
1

2wk t−
1

2vk

qk

nk

zk

uk

ηk

Controller µk

T

α−
1

2 INu

Figure 4.11: Model of the control loop which is closed over two channels with additive noise qk and nk.

The scaling factor t−
1

2 is shifted from the output to the input of the system, resulting in the receive scaling

factor α− 1

2 =
(

t
g

)− 1

2 .

With Equation (4.41) the transmit power P1 of the observation channel reads as

P1 = lim
N→∞

1

N
E

[

N−1
∑

n=0

zT
nC

TCzn + t−1vT
n vn

]

. (4.42)

For reasons which will become clear soon, the inequality constraint is multiplied with α−1, which

is a valid step due to the constraints that t > 0 and g > 0, i. e., α > 0. Thus, we require that

lim
N→∞

1

N
E

[

N−1
∑

n=0

α−1uT
nun

]

≤ α−1PTx,2, (4.43)

with α > 0.
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Putting together all previous steps, the optimization problem (4.40) becomes

minimize
α,t,µ0,µ1,µ2...

lim
N→∞

1

N
E

[

N−1
∑

n=0

zT
nC

TCzn + t−1vT
nvn

]

(4.44)

subject to zk+1 = Azk + α− 1

2B(uk + nk) + t−
1

2wk, k ∈ N0,

ηk = Czk + t−
1

2vk, k ∈ N0,

uk = µk(Ik), k ∈ N0,

Ik =

{{(η0 + q0)},
{(η0 + q0), . . . , (ηk + qk),u0, . . . ,uk−1},

k = 0,

k ∈ N,

α > 0, t > 0,

lim
N→∞

1

N
E

[

N−1
∑

n=0

α−1uT
nun

]

≤ α−1PTx,2.

For fixed values of α and t, this optimization is a power constrained LQG control problem which

can be solved using the approach from Chapter 3 or the with the help of Lagrangian duality. At

this point the latter approach will be used since is provides insights in the joint optimization of the

controller and the transceiver as well as the corresponding solution. Taking into account the power

constraint by the multiplier λ ≥ 0, the Lagrangian associated with problem (4.44) is given by

L = lim
N→∞

1

N
E

[

N−1
∑

n=0

zT
nC

TCzn + λα−1uT
nun + t−1vT

nvn

]

− λα−1PTx,2, (4.45)

and its minimum w.r.t. µk, k ∈ N0, and the remaining constraints of problem (4.44) reads as

L∗(α, t, λ) = tr
[

K
(

t−1Cw + α−1BCnB
T
)]

+ tr [PCz̃] + tr
[

t−1Cv

]

− λα−1PTx,2, (4.46)

where

K = ATKA− α−1ATKB
(

α−1BTKB + λα−1
INu

)−1
BTKA+CTC

= ATKA−ATKB
(

BTKB + λINu

)−1
BTKA+CTC

(4.47)

and

CP
z̃ = A

(

CP
z̃ −CP

z̃C
T
(

CCP
z̃C

T + t−1Cv +Cq

)−1
CCP

z̃

)

AT+ t−1Cw + α−1BCnB
T. (4.48)

Finally, the matrices P and Cz̃ in Equation (4.46) are given by P = ATKA − K + CTC

and Cz̃ = CP
z̃ −CP

z̃C
T
(

CCP
z̃C

T + t−1Cv +Cq

)−1
CCP

z̃ , respectively. We make an observation

analogous to Section 4.3.2 and the optimization problem (4.30), i. e., the infimum of problem

(4.44) is achieved for t → ∞. This is intuitively clear since this limit corresponds to a dynamical

system without process and observation noise, i. e., with Cw = 0Nx×Nx
and Cv = 0Ny×Ny

. For a

formal argumentation, assume that problem (4.44) is feasible and that strong duality holds. Then,

the solution for fixed values of α and t is found by maximizing L∗ w.r.t. λ ≥ 0. Now, for any given

values of λ and α, L∗(α, t, λ) is a monotonically increasing function of t−1. This is obvious for the

summands tr [Kt−1Cw] and tr [t−1Cv] (cf. Equation 4.46) and can be shown for tr [PCz̃] using
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the results from Appendix A4, i. e., the derivative of tr [PCz̃] w.r.t. t−1 is non-negative. Since the

monotonicity w.r.t. t−1 holds for each λ, also the maximum of L∗(α, t, λ) w.r.t. λ ≥ 0 increases

with t−1. Consequently, the infimum of problem (4.44) for a fixed value of α is achieved for t→∞
due to the assumption of strong duality, i. e., the optimal value of (4.44) is found by maximizing

the dual function w.r.t. λ ≥ 0. Thus, in the following we consider

G(α, λ) = inf
t>0

L∗(α, t, λ)

= tr
[

Kα−1BCnB
T
]

+ tr [PCz̃]− λα−1PTx,2,
(4.49)

where K (cf. Equation 4.47) and P are given above and the covariance matrix of the state estima-

tion error reads as Cz̃ = CP
z̃ −CP

z̃C
T
(

CCP
z̃C

T +Cq

)−1
CCP

z̃ with

CP
z̃ = A

(

CP
z̃ −CP

z̃C
T
(

CCP
z̃C

T +Cq

)−1
CCP

z̃

)

AT + α−1BCnB
T. (4.50)

Comparing the function G from Equation (4.49) with L∗ shown in Equation (4.13), it can be seen

that the results of Section 4.2.3 are also applicable at this point, i. e., G is concave in α−1 for a given

value of λ ≥ 0. It follows that problem (4.44) can not be solved by minimizing G w.r.t. α > 0 and

maximizing the resulting dual function w.r.t. λ ≥ 0.6 We will thus solve the optimization problem

(4.44) by keeping α fixed, which reduces the problem to a convex optimization and provides the

function

I(α) = sup
λ≥0

G(α, λ). (4.51)

Then, the value of α which minimizes I is determined using the monotonic optimization frame-

work introduced above. The following example shows why this step is necessary.

Example 4.3.4 With the parameters given in Example 3.1.1, the optimization problem (4.44) is

solved for fixed values of α, where α ∈ [2 · 10−4, αmax]. The value αmax ≈ 967 is the largest

value such that the minimization of P1 with the constraint P2 ≤ PTx,2 ≈ 1288 is feasible, which

is equivalent to the SNR constraint 10 log10
(

tr [Cn]
−1

P2

)

≤ 31.1 from Example 4.3.1. For the

determination of αmax, the feasibility test introduced in Section 4.3.1 can be used to perform a

bisection on α.7

Figure 4.12 shows the resulting transmit powers P1, i. e., the cost function of problem (4.44),

and P2, i. e., the power which is constrained by PTx,2. It can be seen that the transmit power con-

straint is always satisfied but not active for small values of α. The global minimum of P1 ≈ 559 is

achieved for α ≈ 492, but there are additionally two local minima for smaller values of α.

Example 4.3.4 demonstrates that due to the lack of convexity or quasi-convexity, it is not

straightforward to determine the solution of problem (4.44) when α is also considered as an opti-

mization variable. It is of course possible to sample values of α and to chose the one which leads to

the smallest value of P1, but this implies the difficulties of, e. g., the selection of the sampling range

6This means that strong duality holds for a fixed value of α but not if this scalar is also an optimization variable.
7A faster approach is a fixed point iteration for the determination of the root of L∗

feas (cf. Equation 4.23) w.r.t.

α−1, where this function has to be adapted to the problem at hand. The concavity in α−1 can be used to show the

convergence of the iteration.
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Figure 4.12: Minimal value of P1 = I(α) for a given value of α with the constraint P2 ≤ PTx,2, where

PTx,2 ≈ 1288. For small values of α the constraint is not active, for large values the problem is not feasible.

and sampling interval, and does not provide information about the optimality of the best sampled

solution. Thus, we resort to the monotonic optimization framework introduced in Section 4.3.3.

Due to the assumption that strong duality holds, I(α) defined in Equation (4.51) provides the

optimal value of problem (4.44) for a fixed value of α. In order to apply the branch and bound

approach, which is the basis of Algorithm 4.1, to the minimization of I(α) w.r.t. α > 0, it is neces-

sary to derive a lower bound for the optimal value of (4.44) when α is restricted to lie in an interval

A ⊂ R+. In contrast to Section 4.3.3.1, we are dealing with a constrained optimization problem

and thus use the function G given by Equation (4.49) for the derivation. Let α ∈ A = [α, α] with

0 < α ≤ α. Then, it holds for every λ ≥ 0 that

G(α, λ) = tr
[

Kα−1BCnB
T
]

+ tr
[

PCz̃(α
−1)
]

− λα−1PTx,2

≥ tr
[

Kα−1BCnB
T
]

+ tr
[

PCz̃(α
−1)
]

− λα−1PTx,2

≥ tr
[

Kα−1BCnB
T
]

+ tr
[

PCz̃(α
−1)
]

− λα−1PTx,2 = GA(λ).

(4.52)

Note that the matrices K and P do not depend on α (cf. Equation 4.47) and that the error covari-

ance matrix Cz̃ is explicitly denoted as a function of α−1 (cf. Equation 4.50). The monotonicity

of the first and the last summand of Equation (4.52) which has been used for the lower bound is

obvious, whereas the monotonicity of the second summand has been discussed earlier and can be

shown using the results of Appendix A4. It can be seen that for each value of the Lagrange multi-

plier λ ≥ 0, GA(λ) is a lower bound for G(α, λ) which holds for all α ∈ A. Consequently, GA can

now be used to lower bound the optimal value of problem (4.44) by IA when α is taken from the

interval A:

I(α) = sup
λ≥0

G(α, λ) ≥ G(α, λ) ≥ GA(λ) = sup
λ≥0

GA(λ) = IA, α ∈ A. (4.53)

Here, λ denotes the maximizer of GA(λ), where it is assumed that λ exists and is finite. Note that

even the relaxed problem for the determination of the lower bound IA may not be feasible, which

means that IA = I(α) = ∞. In this case, the intermediate steps in Equation (4.53) have to be

ignored. In order to obtain an upper bound IA, the optimization problem (4.44) is solved for some

value of α ∈ A = [α, α], e. g.,

IA = I(α). (4.54)

Again, if the corresponding optimization problem is not feasible, we have IA =∞.
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Remark: The lower bound GA (cf. Equation 4.52) which is a function of λ ≥ 0 can be interpreted

as the dual function which corresponds to a relaxation of the optimization problem (4.44) when α

is constrained to lie in the interval A. This relaxation has two elements. The first one is the scaling

of the covariance matrix of the driving noise process from α−1BCnB
T down to α−1BCnB

T.

The second element is the relaxation of the transmit power constraint from P2 ≤ PTx,2 to the less

restrictive requirement P2 ≤ α−1αPTx,2. With the results of Appendix A9, it can be seen that the

associated lower bound IA for the optimal value I(α) which is derived from GA (cf. Equation

4.53) is consistent, i. e., for α → α and α → α, it holds that IA → I(α). The required properties

for the derivations in Appendix A9 are the monotonicity and continuity of the function GA in

Equation (4.52) w.r.t. α and α, respectively. The monotonicity follows from, e. g., [100], whereas

the continuity can be shown using the results from [104] under the assumption that Cq in Equation

(4.50) has full rank.

Basically, we are now in the position to apply the branch and bound Algorithm 4.1 using the

mapping of the parameter α ∈ A = R+ to β ∈ B = ]0, 1[ with (cf. Equation 4.39)

β =
α

1 + α
, α > 0. (4.55)

Like in Section 4.3.3.1, we include the boundary points of the interval B, i. e., we will use

B = [β, β] = [0, 1]. For the evaluation of IA and IA, the larger boundary point β = 1 is not prob-

lematic because IA and IA are actually evaluated at α−1 = β
−1
(1 − β), which is zero at β = 1.

For the smaller boundary point β = 0, we use the convention that 0 · ∞ = 0. In this case, the

function GA given by Equation (4.52) has a finite positive value for λ = 0 and is unbounded from

below for λ > 0 when evaluated at the boundary point β = 0. Thus, we obtain IA = GA(0) if

α = 0.8 Finally, because we have to deal with a constrained optimization problem, it is necessary

to perform a feasibility check of the problems for the determination of IA and IA, e. g., using the

approach discussed in Section 4.3.1. If the corresponding optimization problems are not feasible,

we set IA =∞ or IA =∞, respectively. A second possibility is to determine the value αmax which

has been introduced in Example 4.3.4 and to initialize Algorithm 4.1 with the set B = [0, βmax],
where βmax = (1 + αmax)

−1αmax.

For the following example, Algorithm 4.1 is applied to the optimization problem (4.44), where

the feasibility issue is taken into account by setting the upper and lower bounds to infinity if the

corresponding optimization problem is not feasible. Of special interest is the determination of

Pareto optimal transmit powers which can not be computed with the approach of Section 4.3.3.1,

i. e., the gap in the solid line shown in Figure 4.8.

Example 4.3.5 As in Example 4.3.3, the system and noise parameters of Example 3.1.1 are used

in the following. Algorithm 4.1 is applied to solve optimization problem (4.44) with a relative

accuracy of ε = 10−3. In order to fill the gap in the set of Pareto optimal transmit powers shown

in Figure 4.8, 100 values of PTx,2 which determine the constraint for the transmit power of the

control channel are selected between 28.2 and 46.8. Figure 4.13 shows the resulting Pareto optimal

transmit powers as a solid line. The boundary points of the gap which has been observed in Figure

4.8 are denoted by dots, and the linear interpolation between these two points is indicated by the

8This is confirmed by the interpretation that the lower bound IA corresponds to a relaxed optimization problem.

For α→ 0, the constraint on P2 is effectively removed which leads to an inactive power constraint with λ = 0.
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dashed line. Note that Figure 4.13 depicts the SNRs ϕ1 = tr
[

Cq

]−1
P1 and ϕ2 = tr [Cn]

−1
P2 with

linear scale. Thus, it can be seen that the set of feasible transmit powers is not convex.
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Figure 4.13: Pareto optimal transmit powers with optimal scaling ratio α (solid line). Since the optimization

problem is not convex, the region of feasible transmit powers is not a convex set (dashed line).

Remark: The scenario which is depicted in Figure 4.11 and investigated in Example 4.3.4 fits into

the framework discussed in [46]. For the situation considered there, the transmit power P1 which

is minimized with problem (4.44) has to be interpreted as a tracking error variance and the power

constraint P2 ≤ PTx,2 corresponds to an SNR constraint. Although the limiting case for t → ∞
is discussed, Example 4.3.4 demonstrates that the associated optimization problem may exhibit

several local minima. Consequently, the minimization based on a line search which is proposed

in [46] does not guarantee to find the global optimum since it requires at least quasi-convexity

of the optimization problem.9 The sampling approach in [58] is in principle capable to determine

the optimum, but suffers from problems like the selection of the sampling range and the sampling

interval. Additionally, it does not provide information about the optimality of the sampled values,

which is available for the monotonic optimization approach.

4.3.4 Solution of the Joint Optimization of Controller and Transceiver

After the discussions in the preceding sections about the properties and the feasibility of the joint

optimization of an LQG controller and scalar transceivers, we come back to the original goal, i. e.,

the solution of the optimization problem (4.10). To summarize the task, it is required to minimize

a standard infinite horizon LQG cost function, which is characterized by the weighting matrices

Q, R and S (see Appendix A6), while satisfying the transmit power constraints of the observation

and the control channel, given by the available transmit powers PTx,1 and PTx,2, respectively. The

degrees of freedom which are added to the conventional power constrained LQG control problem

(see Chapter 3) are the scaling factors t−
1

2 and g
1

2 at the output and the input, respectively, of the

system to be controlled (cf. Figure 4.1).

9The proposed approach which requires quasi-convexity is the golden section method, see, e. g., [95, Section 8.1].
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We start with the solution of the joint controller and transceiver optimization by restating the

problem to be solved, i. e.,

minimize
t,g,µ0,µ1,µ2...

lim
N→∞

1

N
E

[

xT
NQNxN +

N−1
∑

n=0

[

xn

g
1

2un

]T [
Q S

ST R

] [

xn

g
1

2un

]

]

+ g tr [RCn] (4.56)

subject to xk+1 = Axk +Bg
1

2 (uk + nk) +wk, k ∈ N0,

yk = Cxk + vk, k ∈ N0,

uk = µk(Ik), k ∈ N0,

Ik =

{

{(t− 1

2y0 + q0)},
{(t− 1

2y0 + q0), . . . , (t
− 1

2yk + qk),u0, . . . ,uk−1},
k = 0,

k ∈ N,

t > 0, g > 0,

lim
N→∞

1

N
E

[(

N−1
∑

n=0

xT
nC

TCxn + vT
nvn

)]

≤ tPTx,1,

lim
N→∞

1

N
E

[

g

N−1
∑

n=0

uT
nun

]

≤ gPTx,2.

Note that the transmit power constraints (see Equations 4.8 and 4.9) are equivalently reformulated

by multiplying them by t > 0 and g > 0, respectively. For given values of t and g, the power con-

strained optimization of the controller is a convex problem and we have chosen a solution method

based on Lagrangian duality in the preceding sections, but other methods for convex optimiza-

tion can also be used. Since the minimization of the Lagrangian in Equation (4.11) corresponds

to an LQG control problem, the minimum is readily obtained and reads as (cf. problem 4.12 and

Equation 4.13)

L∗(t, g, λ1, λ2) = tr
[

K
(

Cw+gBCnB
T
)]

+ tr [PCx̃] + λ1 tr [Cv] + g tr [RCn]

− λ1tPTx,1 − λ2gPTx,2,
(4.57)

where the matrices K and P are determined by the DARE shown in Equation (4.14) and where

the covariance matrix of the state estimation error Cx̃ depends on the solution CP
x̃ of the DARE

from Equation (4.15). Assuming that strong duality holds, the solution of problem (4.56) for fixed

values of t and g is found by maximizing the dual function L∗ w.r.t. λ1 ≥ 0 and λ2 ≥ 0. Thus, the

optimal value in this case is given by

I(t, g) = sup
λ1≥0
λ2≥0

L∗(t, g, λ1, λ2). (4.58)

This representation of the optimal value of problem (4.56) with fixed values of t and g is the basis

for the remaining optimization w.r.t. these two variables.

Due to the properties of problem (4.56) which have been described in Section 4.2.3, we resort

again to the monotonic optimization approach introduced in Section 4.3.3. More precisely, Algo-

rithm 4.1 is applied but has to be slightly modified because the remaining minimization w.r.t. t

and g is a two dimensional problem. Thus, the branch and bound procedure is performed on two

dimensional sets, but the determination of upper and lower bounds for the optimal value of prob-

lem (4.56) when the pair of transmit and receive scaling factors is constrained to a set A ⊂ R2
+ is



4.3 Solution of the Optimization Problem 85

completed analogously to Section 4.3.3.2. Let this set be A = [t, t]× [g, g], i. e., the scaling factor

t is constrained to lie in the interval [t, t] with 0 < t ≤ t and at the same time we require that g

lies in the interval [g, g] with 0 < g ≤ g. For all values of the transmit and receive scaling factors

within this set, a lower bound for the dual function L∗ is given by

L∗(t, g, λ1, λ2) = tr
[

K
(

Cw+gBCnB
T
)]

+ tr [PCx̃(t, g)] + λ1 tr [Cv] + g tr [RCn]

− λ1tPTx,1 − λ2gPTx,2

≥ tr
[

K
(

Cw+gBCnB
T
)]

+ tr
[

PCx̃(t, g)
]

+λ1 tr [Cv] + g tr [RCn]

− λ1tPTx,1 − λ2gPTx,2

= L∗
A(λ1, λ2),

(4.59)

where the covariance matrix Cx̃(t, g) is explicitly denoted as a function of t and g. In order to

obtain the inequality above, all summands which depend linearly on the optimization variables are

evaluated at the smallest possible value within the set A if they represent a positive contribution

to L∗ whereas the largest value is inserted for negative contributions. Since the error covariance

matrix Cx̃ is a monotonically increasing function of t and g, the respective summand tr [PCx̃] is

lower bounded using t and g. At this point we repeat the steps from Equation (4.53) with the lower

bound given by Equation (4.59) which holds for every pair (t, g) ∈ A = [t, t]× [g, g] and for each

λ1 ≥ 0 and λ2 ≥ 0. Thus, we obtain a lower bound IA for the optimal value of the optimization

problem (4.56), which is given by I(t, g) (cf. Equation 4.58), with the restriction that (t, g) ∈ A:

I(t, g) = sup
λ1≥0
λ2≥0

L∗(t, g, λ1, λ2) ≥ L∗(t, g, λ1, λ2) ≥ L∗
A(λ1, λ2) = sup

λ1≥0
λ2≥0

L∗
A(λ1, λ2) = IA, (4.60)

where it is assumed that the maximizers λ1 and λ2 exist and are finite.

Remark: As in Section 4.3.3.2, the lower bound given by Equation (4.59) can be interpreted as

the dual function which corresponds to a relaxed version of optimization problem (4.56). First,

the scalar g in the cost function is replaced by g which leads to a smaller cost for each given

state sequence (xk : k ∈ N0) and control sequence (uk : k ∈ N0). Second, the covariance matrix

of the noise in the control channel which enters the dynamical system as additional process noise

is scaled down from gCn to gCn. Moreover, the covariance matrix of the noise in the observation

channel which acts like additional observation noise is scaled from tCq down to tCq (cf. Figure

4.2). Finally, the power constraints are relaxed by tP1 ≤ tPTx,1 and gP2 ≤ gPTx,2, respectively,

which corresponds to an increase of the available transmit power by a factor of t−1t ≥ 1 and

g−1g ≥ 1. Consequently, the optimal value of the relaxed optimization problem is an underestimate

of the solution of problem (4.56). Note that with the monotonicity and continuity properties of

the functions L∗ and L∗
A (cf. Equation 4.59) which are summed up in Appendix A9, the results

presented there show that the lower bound IA in Equation (4.60) is consistent, i. e., for t → t,

t→ t, g → g and g → g, we have IA → I(t, g).10

If the optimization problem for the determination of IA is not feasible, we obtain IA = ∞. Since

this value is still a lower bound for I(t, g), the inequality in Equation (4.60) also holds for this case

10For a discussion of the monotonicity and continuity of the stabilizing solutions of the DAREs which are involved

in Equation (4.59), we refer again to [100], Appendix A4 and [104]. The continuity holds in our case under the

assumption that R in Equation (4.14) and Cq or Cv in Equation (4.15) have full rank.
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but the intermediate steps have to be omitted. In order to check the feasibility for a given interval

A, the approach described in Section 4.3.1 can be used, where the relaxations mentioned in the

remark above have to be taken into account, i. e., the replacement of gCn and tCq by gCn and

tCq, respectively, in Equation (4.25), and of the (scaled) transmit power constraints tP1 ≤ tPTx,1

and gP2≤gPTx,2 by tP1≤ tPTx,1 and gP2≤gPTx,2, respectively, in Equation (4.22).

A further modification of the monotonic optimization Algorithm 4.1 concerns the subdivision

rule for certain set A in order to obtain lower bounds for subsets of A. For the one dimensional

case discussed in Section 4.3.3, an interval has been divided into two subsets by simple bisection,

i. e., the set has been split in the middle. A similar approach is used for the two dimensional case

with A ⊂ R2
+. According to [102], if a set A is selected during the branch and bound procedure for

a subdivision, the longer side of A is divided at its midpoint which provides two subsets A1 and

A2 of A which have equal size and where A1 ∪ A2 = A.

Finally, in order to deal with the fact that the optimization variables t and g are elements of the

unbounded set R2
+, the pair (t, g) is mapped as in Section 4.3.3 to the set B = ]0, 1[2 by

(π, γ) =

(

t

1 + t
,

g

1 + g

)

, (t, g) ∈ R
2
+. (4.61)

For the application of the branch and bound procedure, the boundary of B is included, i. e., the

monotonic optimization algorithm is initialized with B = [0, 1]2. The lower boundary points π = 0
and γ = 0 which correspond to t = 0 and g = 0 can be inserted directly in Equation (4.59) for

the computation of the lower bound IA (cf. Equation 4.60). The application of the upper boundary

points with π = 1 and γ = 1 corresponds to an optimization problem where either the power

constraint for the observation channel or the control channel is removed, which leads to an inactive

power constraint with λ1 = 0 or λ2 = 0, respectively.11 Thus, these points can be included in

the preceding discussion. Note that Example 4.3.1 (see Figure 4.5) demonstrated that it is not

obvious if a certain pair (t, g) of transmit and receive scaling factors leads to a feasible optimization

problem. Additionally, even if the lower bound IA corresponds to a relaxed problem, we have to

take into account that it still may be infeasible. It is therefore necessary to perform a feasibility

check for the computation of the value I(t, g) with (t, g) ∈ A as well as for the corresponding

lower bound IA (or the respective mapped variables (π, γ), see Equation 4.61).

Example 4.3.6 In Section 4.2.3, Example 4.2.1 illustrated some properties of the problem of joint

controller and transceiver optimization. The respective values of t and g, i. e., the transmit and

receive scaling factors, and of the resulting Lagrange multipliers λ1 and λ2 were given without an

explanation how they have been obtained. At this point, Algorithm 4.2 is applied to optimization

problem (4.56) to compute these values. The algorithm is initialized with the set B = [0, 1]2 (cf.

Equation 4.61) and with a desired relative accuracy of ε = 10−2. Due to the repeated subdivision,

subsets A ⊂ B which lead to an infeasible optimization problem for the determination of the lower

bound IA are eventually discarded. The subdivision rule for the set B and its subsets in line 11 of

Algorithm 4.2 is the bisection of the larger side of B as mentioned above.

As in Example 4.2.1, the SNRs of the observation and the control channel are constrained by

log10

(

tr
[

Cq

]−1
PTx,1

)

= log10

(

tr [Cn]
−1

PTx,2

)

= 31.1,

11This can also be interpreted as setting tPTx,1 =∞ or gPTx,2 =∞, respectively, and using the convention 0·∞ = 0
in Equations (4.59) and (4.60).
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Algorithm 4.2 Branch and bound approach for the joint optimization of controller and transceiver

under power constraints (cf. [102, 103])

1: Select a desired relative accuracy ε > 0
2: Use as initial partition S1 = P1 = B

3: k = 1
4: I∗ = 0 and I

∗
=∞

5: while 1− I∗

I
∗ ≥ ε do

6: Compute the lower bound IA for each A ∈ Pk

7: Compute the upper bound IA for each A ∈ Pk

8: Determine the smallest upper bound I
∗
= minA∈Sk IA

9: Remove every A ∈ Sk with IA ≥ I
∗

from Sk and let the set of remaining members of Sk

be Rk

10: Determine I∗ = minA∈Rk
IA as well as B = argminA∈Rk

IA
(if more than one minimizer is present, choose one randomly)

11: Determine the partition Pk+1 of B according to the chosen subdivision method

12: Sk+1 = (Rk \B) ∪ Pk+1

13: k ← k + 1
14: end while

where the parameters of the dynamical system to be controlled and of the noise sequences are

again taken from Example 3.1.1. With the described initialization, 4.2 provides the solution

t∗ ≈ 2.42618 and g∗ ≈ 2.00569.

For these values, the corresponding Lagrange multipliers are given by

λ∗
1 ≈ 9.40201 and λ∗

2 ≈ 23.9293.

The transmit power constraints are fulfilled with an absolute deviation of less than 2 · 10−10, and

the value of the LQG cost function for the solution of problem (4.56) is given by

J∗
∞ ≈ 2580.25.

Note that the derivatives of L∗ (see Equation 4.57) w.r.t. t and g (where the results of Appendix

A4 are used to determine the derivatives) are not zero at t∗, g∗, λ∗
1 and λ∗

2, respectively, implying

that these values are not optimal. In order to determine a local optimum in the neighborhood of

(t∗, g∗), a gradient descent which is initialized at this point is performed. The resulting values of

the transmit and receive scaling factors as well as the associated Lagrange multipliers read as

t∇ ≈ 2.42593, g∇ ≈ 2.00565,

λ1,∇ ≈ 9.44165, λ2,∇ ≈ 24.0299.

The norm of the gradient of L∗ at this point is ‖∇t,g,λ1,λ2
L∗(t∇, g∇, λ1,∇, λ2,∇)‖2 ≈ 1.75 · 10−8.

The absolute value of the difference between the corresponding LQG cost and the value of J∗
∞

given above is less than 3 · 10−4, i. e., even less than the desired relative accuracy.

For a comparison of the result provided by the monotonic optimization approach with the

solution of the subsequent local optimization based on the gradient descent, Figure 4.14 shows
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a contour plot of the function I (see Equation 4.58) in the neighborhood of pairs (t∗, g∗) and

(t∇, g∇). Thus, for the whole range of transmit and receive scaling factors shown there, the power

constrained controller optimization is feasible and the power constraints are fulfilled. The small-

est value of the resulting LQG cost function is attained using (t∇, g∇). This pair which has been

obtained by the gradient descent mentioned above is depicted in Figure 4.14 as the point ×. The

associated value of the cost function is given by I(t∇, g∇) ≈ 2580.25168.

t

g

2.4250 2.4260 2.4270
2.0050

2.0055

2.0060

2.0065

Figure 4.14: Values of the function I(t, g) in the neighborhood of the result provided by Algorithm 4.2.

Points which have been evaluated by Algorithm 4.2 are denoted by ◦, the minimizing point by ×.

The LQG cost at the point (t∗, g∗) (depicted as • in the figure above) which is the result of

the monotonic optimization approach, is I(t∗, g∗) ≈ 2580.25192, i. e., only slightly larger than

I(t∇, g∇). Feasible points which have also been evaluated by Algorithm 4.2 are marked by ◦. Note

that the largest value of the cost function for all pairs of transmit and receive scaling factors shown

in Figure 4.14 is approximately 2580.28058.

In the example above, we were able to determine feasible values of the transmit and receive

scaling factors t and g as well as the Lagrange multipliers λ1 and λ2 such that the gradient of

the function L∗ vanishes. Thus, it has been shown that the actual accuracy of the result which is

determined by the monotonic optimization approach is significantly better than ε, i. e., the relative

accuracy which is guaranteed by Algorithm 4.2.

Unfortunately, despite the fact that it worked for Example 4.3.6, the gradient descent algorithm

mentioned above is based on some assumptions which might not hold in general. Nevertheless, we

give a short outline of the approach in the following. The gradient descent is actually performed

using the function I(t, g) (cf. Equation 4.58) which provides the optimal value of the power con-

strained controller optimization with fixed values of t and g. Since this function is the supremum

w.r.t. the Lagrange multipliers λ1 and λ2, it is not obvious how to compute its derivatives w.r.t. t

and g. Assume that I(t, g) is actually a maximum and that it is attained at λ∗
1 and λ∗

2, i. e.,

I(t, g) = max
λ1≥0
λ2≥0

L∗(t, g, λ1, λ2) = L∗(t, g, λ∗
1, λ

∗
2), (4.62)

and

(λ∗
1, λ

∗
2) = argmax

λ1≥0
λ2≥0

L∗(t, g, λ1, λ2). (4.63)
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With reference to Equation (4.63), the optimizing Lagrange multipliers λ∗
1 and λ∗

2 are functions of

the transmit and receive scaling factors, i. e.,

λ∗
1 = λ1(t, g) and λ∗

2 = λ2(t, g). (4.64)

Using the chain rule for the computation of the derivative of I w.r.t. t and g, we get

∂I

∂t
=

∂L∗

∂t
+

∂L∗

∂λ1

∂λ1

∂t
+

∂L∗

∂λ2

∂λ2

∂t
, (4.65)

where it is assumed that the respective derivatives exist (especially for the derivatives of the La-

grange multipliers w.r.t. t this is not obvious). The derivative ∂I
∂g

is given by the analogous ex-

pression. If the transmit power constraints are active, i. e., λ1 > 0 and λ2 > 0, Equation (4.63)

together with the assumption of differentiability implies that ∂L∗

∂λ1
(t, g, λ∗

1, λ
∗
2) = 0 as well as

∂L∗

∂λ2
(t, g, λ∗

1, λ
∗
2) = 0. Thus, it holds

∂I

∂t
(t, g) =

∂L∗

∂t
(t, g, λ∗

1, λ
∗
2), (4.66)

with the analogous result for the derivative w.r.t. g. Consequently, the derivatives of I w.r.t. t

and g are obtained by first solving the power constrained LQG control problem for fixed values

of the transmit and receive scaling factors, which provides the Lagrange multipliers λ∗
1 and λ∗

2 (cf.

Equations 4.62 and 4.63). Then, the derivative of L∗ (see Equation 4.57) w.r.t. t and g, respectively,

is computed for the given values λ∗
1 and λ∗

2.

The assumption of strictly positive values of λ∗
1 and λ∗

2 at the minimum of I , i. e., the power

constraints are active and thus hold with equality, can be verified with Equation (4.57). The KKT

conditions (see, e. g., [95, Section 4.2.13]), which are necessary for a locally optimal point, must

hold, i. e., the derivatives of L∗ w.r.t. t and g must vanish at the optimum. Thus, we require that

∂L∗

∂t
(t, g, λ∗

1, λ
∗
2) = tr

[

P
∂Cx̃

∂t

]

− λ∗
1PTx,1 = 0, and

∂L∗

∂g
(t, g, λ∗

1, λ
∗
2) = tr

[

KBCnB
T
]

+ tr

[

P
∂Cx̃

∂g

]

+ tr [RCn]− λ∗
2PTx,2 = 0.

(4.67)

With the results of Appendix A4 it can be shown that the derivative of Cx̃ w.r.t. t and g, respec-

tively, is a positive semidefinite matrix. Assuming that the derivative
∂C

x̃

∂t
and the noise covariance

matrix Cn or the weighting matrix R are positive definite and noting that PTx,1 > 0 and PTx,2 > 0,

it can be seen that λ∗
1 > 0 and λ∗

2 > 0.

It has to be mentioned again that the argumentation based on Equations (4.62) – (4.67) relies

on a number of assumptions which do not hold in general. Nevertheless, the goal of the preceding

discussion is not to provide a universally applicable local minimization algorithm for the determi-

nation of the optimal transmit and receive scaling factors. Instead, it demonstrates that the result

provided by the monotonic optimization approach may be much better than the guaranteed accu-

racy suggests.

A final example demonstrates that the introduction of transmit and receive scaling factors is

beneficial for the system performance even if no explicit transmit power constraints are given and

the control loop which is closed over two communication channels could be optimized using an

unconstrained LQG approach.
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Example 4.3.7 Let J∗
∞,LQG be the value of the LQG cost function which is obtained by an opti-

mization with no power constraints and with no transceivers, i. e., with t = 1 and g = 1, which

means that J∗
∞,LQG = L∗(1, 1, 0, 0), see Equation (4.57). This case has been considered in Example

3.1.1 and provides the optimal value

J∗
∞,LQG ≈ 800.5.

The corresponding transmit powers have been computed there and are given by (cf. Equation 3.16)

P1,LQG ≈ 4189 and P2,LQG ≈ 1661.

For the comparison with the LQG controller which uses the optimal scaling factors t and g, the

transmit power constraints of problem (4.56) are set to the values of the unconstrained controller

optimization, i. e., we require that P1 ≤ PTx,1 = P1,LQG and P2 ≤ PTx,2 = P2,LQG. The application

of Algorithm 4.2 to the system in Example 3.1.1 determines the solution of the joint optimization

of controller and transceiver and provides the corresponding parameters

t∗ ≈ 0.0790306, g∗ ≈ 0.0804537,

λ∗
1 ≈ 0.313852, λ∗

2 ≈ 0.960286.

Note that Algorithm 4.2 is initialized with B = [0, 1]2, where the mapping to the actual opti-

mization variables t and g is performed according to Equation (4.61), and a relative accuracy of

ε = 10−2 is chosen. Using the values given above, the power constraints of problem (4.56) are

met with an absolute deviation of less than 10−9, i. e., the power constrained LQG controller with

the optimal choice of transmit and receive scaling factors uses the same amount of transmit power

as the LQG controller without transceiver and power constraints. Nevertheless, the optimal value

provided by Algorithm 4.2 is

J∗
∞ ≈ 119.037.

This significant decrease of the LQG cost is due to the relatively small values of t and g which

reduce the negative effect of the channel noise on the system performance. Because of the ampli-

fication of the transmit signals in the observation and control channel (recall that these signals are

multiplied by t−
1

2 and g−
1

2 , respectively), the Lagrange multipliers λ1 and λ2 have a positive value.

Thus, a penalty based on the respective transmit power is added to the Lagrangian L∗ (cf. Equation

4.11). This Lagrangian is the effective cost function for the determination of the optimal controller.

Obviously, the fact that the controller now uses the weighting matrices Q+λ1C
TC and R+λ2INu

(cf. Equation 4.14) as performance criterion instead of Q and R alone (cf. Equation 3.4) and thus

does not simply focus in the smallest value of the original cost function, is more than compensated

by the reduction of the channel noise which is fed into the closed loop control system.

4.4 Discussion

Having identified some of its shortcomings, the system model for the solution of power constrained

LQG control problems from Chapter 3 has been extended in the present chapter by the introduction

of scaling factors as the most simple instances of linear and memoryless transmitters and receivers

at the input and the output of the system to be controlled. These additional degrees of freedom
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allow for an amplification or attenuation of the signals which are transmitted in the closed control

loop and thus offer the possibility to either meet transmit power requirements which can not be

fulfilled by the controller alone or to improve the system performance if the available transmit

power is increased.

In Section 4.2.1, the unsurprising fact has been shown that the only impact of transmit and

receive scaling factors effectively is a change of the variance of the channel noise sequences. Con-

sequently, for fixed values of these factors, the power constrained controller optimization reduces

to the case discussed in Chapter 3. A new quality is introduced by the joint optimization of the

transmit and receive scaling factors and the controller in Sections 4.2.2 and 4.2.3. Compared to

the optimization of the controller alone, the appealing property of convexity is lost and the jointly

optimal solution of transmitters, receivers and controller can not be determined by a dual approach,

which has been illustrated in Section 4.2.3. Even the set of feasible values of the transmit and re-

ceive scaling factors for given power constraints is not necessarily connected (see Example 4.3.1).

Note that the non-convexity of distributed, i. e., structurally constrained, controller optimizations

is a well known phenomenon, see, e. g., [39–41].

In order to get an impression about the set of feasible transmit power constraints, Pareto opti-

mal values have been computed by the minimization of the weighted sum of the transmit powers

of the observation and the control channel. In Section 4.3.2, it has been shown that this approach

requires the determination of the optimal ratio of the transmit and receive scaling factors which

is a demanding task due to the non-convexity of the considered optimization problem and the ex-

istence of local optima (see Example 4.3.2). Despite the fact that convexity can not be used to

efficiently calculate Pareto optimal values of the transmit powers, the problem exhibits monotonic-

ity properties which allow for the application of the monotonic optimization framework for global

minimization [102,103], see Section 4.3.3. This approach has been used to minimize the weighted

sum of the transmit powers in Section 4.3.3.1, where it could also be observed that not all Pareto

optimal values can be determined this way. In order to fill this gap, such transmit powers have been

computed in Section 4.3.3.2 by minimizing the power of the observation channel with a constraint

for the power of the control channel. Again, the monotonic optimization framework has been ap-

plied. Finally, a solution method for the original problem of the joint optimization of controller,

transmitter and receiver based on the presented global optimization method has been introduced in

Section 4.3.4.

Note that we did no consider problems as in [106] where the communication channel itself

has a non-trivial transfer function, or tracking problems as in [35, 46]. The reason is that if the

corresponding processes, represented by the transfer function of the communication channel or the

power spectral density of the signal to be tracked, allow for a state space representation, they can be

included in the description of the dynamical system to be controlled and the resulting optimization

can be treated as a standard LQG control problem.

Despite its simplicity, the model of additive noise communication channel is used in a consid-

erable amount of literature related to NCS, e. g., [29, 35, 59, 81–88, 99, 107]. Especially the more

recent publications often focus on a scenario where only one communication channel, i. e., the ob-

servation or the control channel, is present in the control loop while the other channel is assumed

to be ideal. For the further restriction to Single-Input Single-Output (SISO) systems, fundamental

results have been derived like the smallest value of the channel SNR which allows for the stabi-

lization of an unstable Linear Time-Invariant (LTI) system [29, 89, 106, 107]. Since this scenario

is a special case of the general system model considered in Chapter 4, the proposed numerical

methods are also applicable and allow for the minimization of transmit powers or the optimization
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of an LQG cost function subject to a transmit power or SNR constraint. The corresponding results

for SISO systems with one communication channel in the control loop are presented in Chapter 6

where also some of the results of [29], which rely on a frequency domain approach, are reproduced

in the framework of this thesis.

It is important to note that in [35, 46, 108] essentially the same problem as in this thesis, i. e.,

a power constrained controller optimization with the additional degree of freedom to choose the

variance of the channel noise, is treated for the one channel SISO case. The main difference is that a

frequency domain approach is applied and that the properties of the optimization w.r.t. the channel

noise variance (in our case the transmit or receive scaling factors) are not discussed in detail.

Especially the non-convexity of the problem which becomes apparent in the examples presented

in Chapter 4 and which prohibits a straightforward solution is not considered.

Finally, we want to mention the early contribution [84] to the investigation of control loops

which are closed over communication channels with fixed SNR, where the imperfect communica-

tion is due to computations with finite precision and thus rounding errors. The SNR constraints are

not explicitly taken into account, but the covariance matrices of the channel noises are expressed

as functions of the covariance matrix of the system state and thus implicitly define the constraints.

The corresponding optimization problem is solved using a formulation based on Lyapunov(-like)

and Riccati(-like) equations and with a Lagrangian approach. Additionally, an algorithm for the

computation of a solution (if one exists) is provided. A major difference to the other approaches

mentioned so far is that a static feedback controller which has only access to a noisy version of

the system state is used, i. e., no state estimate is computed. Consequently, the available state in-

formation is not used optimally. The absence of the state estimation problem leads to the fact the

optimization problem considered in [84] is convex and can be solved with an approach analogous

to the one presented in Chapter 3, where the respective continuous-time formulation of the problem

has to be used. This comment also applies to [109] where the authors assume that the controller

has perfect knowledge about the system state and that the communication channel can be modeled

as an additive noise channel. Despite the fact that the variance of the channel noise is considered

as an optimization variable, the joint optimization together with the controller turns out to be a

convex problem. It is expected that this property is lost for the output feedback case, i. e., if the

choice of the channel noise has an impact on the error of the optimal state estimate.
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In Chapter 4, we considered the problem of the joint optimization of a Linear Quadratic Gaussian

(LQG) controller together with scalar transceivers, i. e., the processing of signals at the input and

the output of the dynamical system to be controlled was represented by a scaled identity matrix

(see Figure 4.1). The non-convexity of the problem was the reason for the introduction of the

monotonic optimization framework for the global minimization of the LQG cost function subject

to transmit power constraints. Due to the generality of this optimization approach, the question

arises now if it can be used to extend the simple scaling factors at the system input and output to a

larger class of transceivers. In the following, it will be shown that this can be achieved in principle,

but a straightforward generalization of the preceding results is only possible for the special case

of diagonal covariance matrices of the channel noise. For the general case, a suboptimal approach

based on the diagonalization of the covariance matrices is proposed in Section 5.2.1. Finally, the

case of additive noise with general covariance matrix in addition to linear distortions of the channel

input signal, represented by a channel matrix H (see Equation 1.2 and Figure 1.4), is discussed in

Section 5.2.2.

5.1 Communication Channels With Diagonal Noise Covariance Matrices

With the assumption that both covariance matrices of the additive noise sequences in the obser-

vation and the control channel are diagonal, the methods for the analysis and the optimization of

the power constrained control problem developed in Chapter 4 can be extended in a straightfor-

ward way to diagonal transmit and receive scaling matrices. We start with the description of the

respective model of the communication channels, transmitters and receivers.

5.1.1 System Model

The system to be controlled is, as in the previous to chapters, the discrete-time linear dynamical

system which has been introduced in Equation (1.1), with the assumption that it is time-invariant,

i. e., the system parameters are constant. For the closed loop control, additive noise communication

channels are used for the transmission of observations from the system output to the controller and

of control signals from the controller back to the input of the system (see Section 1.6 and Fig-

ures 3.1 and 4.1). Assume now that the communication channels which are used to transmit the

Ny-dimensional observations and the Nu-dimensional control signals consist of Ny and Nu inde-

pendent scalar sub-channels, respectively. In this case, it is reasonable to model the corresponding

additive noise in all scalar channels as mutually independent random sequences. Due to the inde-

pendence assumption, the covariance matrices which describe the joint distribution of the scalar

noise sequences are diagonal, i. e.,

Cq = diag [cq,i]
Ny

i=1 and Cn = diag [cn,i]
Nu

i=1 , (5.1)

93



94 5. Joint Optimization of Controller and Diagonal Transceivers

respectively. Thus, the variance of the channel noise in the i-th scalar channel for the observations

and the control signal is given by cq,i > 0, i ∈ {1, 2, . . . , Ny}, and cn,i > 0, i ∈ {1, 2, . . . , Nu},
respectively.1

In Chapter 4, the system model which has been used in Chapter 3 for the solution of the

LQG control problem under power constraints has been extended by scaling factors at the input

and the output of the dynamical system to be controlled. These additional degrees of freedom

allowed for a more efficient use of the available communication resources compared to the case

when the controller alone has to satisfy all control and communication requirements. Regarding the

model of independent sub-channels, represented by the diagonal noise covariance matrices shown

in Equation (5.1), it is desirable to use a different scaling factor for each of these channels. The

reason for this extension is that the quality of the channels, represented by the respective Signal to

Noise Ratios (SNRs), is not equal in general, or it may be necessary to take into account different

power constraints for different channels. Formally, this modification is represented by replacing

the scaled identity matrices at the system input and output (see Figure 4.1) by diagonal matrices,

i. e., by introducing the diagonal scaling

T = diag [ti]
Ny

i=1 , ti > 0, i ∈ {1, 2, . . . , Ny}, (5.2)

for the observation channel and

G = diag [gi]
Nu

i=1 , gi > 0, i ∈ {1, 2, . . . , Nu}, (5.3)

for the control channel. Note that the diagonal elements of T and G are assumed to be strictly

positive. A negative sign has no influence on the closed control loop because the optimal LQG

controller can invert the sign of the respective communication channel without changing the diago-

nal covariance matrix of the channel noise. Consequently, negative values can be excluded without

loss of generality. This is not true for the restriction to non-zero values. In Chapter 4, the value

of the scaling factors at the system input and output had to be non-zero. Otherwise the properties

of stabilizability or detectability of the resulting system would have been lost. With the different

scaling factors for the individual scalar sub-channels which are taken into account in this chapter,

some of these channels can be switched off, i. e., multiplied by zero at the channel input or output,

as long as the resulting open loop system remains stabilizable and observable. Regarding the joint

optimization of the controller and the transceivers, it is not obvious that the optimizing values of

the transmit and receive scaling factors for the individual sub-channels are non-zero because ev-

ery scalar channel introduces additional noise to the closed loop system and requires additional

transmit power. Thus, the optimal transceivers may switch off one or more scalar channels. Since

the focus of this chapter lies on the investigation of diagonal instead of scalar transceivers, we do

not consider the additional problem of how to determine the optimal subset of the available scalar

channels for the transmission of control inputs and of observations obtained at the system output.

With the restriction to strictly positive scaling factors for each sub-channel (cf. Equations 5.2

and 5.3), we obtain the system model depicted in Figure 5.1 which allows for a notation analogous

to the preceding chapter due to the invertibility of the scaling matrices T and G. Note that the

square root of T−1 and G is used in Figure 5.1. The reason for this step is analogous to the scenario

with scalar transceivers: the effective variance of the noise sequence in each scalar communication

channel is proportional to the respective diagonal element of T and G, which will become clear in

the following.

1The variances of all scalar sub-channels are assumed to be strictly positive. Otherwise, the optimization of the

LQG controller subject to power constraints is of no interest because any constraint can be met in this case.
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Figure 5.1: Model of the control loop which is closed over two channels with additive noise qk and nk.

Both noise sequences are assumed to have diagonal covariance matrices. At the system input and output, the

diagonal receiver G
1
2 and transmitter T −

1
2 , respectively, is introduced.

5.1.2 Optimization Problem and Solution

The optimization problem to be solved is, as in Chapters 3 and 4, an LQG control problem with

power constraints for the observation and the control channel. The respective transmit powers

which are limited by the available communication resources are given by expressions analogous to

Equations (4.8) and (4.9), i. e.,

P1 = lim
N→∞

1

N
E

[

N−1
∑

n=0

xT
nC

TT−1Cxn + vT
nT

−1vn

]

and

P2 = lim
N→∞

1

N
E

[

N−1
∑

n=0

uT
nun

]

.

(5.4)

The values of P1 and P2 represent the sum of the powers of all scalar sub-channels for the trans-

mission of observations and control signals, respectively. In the following, we consider constraints

for these sum powers, but it is not a problem to take into account individual constraints for the

scalar channels in the presented framework. This can be verified for fixed values of T and G using

the problem formulation in Equation (3.22) where the sum-power constraints are expressed by the

trace of the covariance matrices of the signals to be transmitted. Constraints for the diagonal ele-

ments of these covariance matrices (which represent the transmit powers of the individual scalar

channels) are again inequalities containing linear functions of the optimization variables which

renders the resulting optimization problem convex. The remaining minimization w.r.t. the diagonal

elements of T and G has the monotonicity properties which are required for the application of

the monotonic optimization framework introduced in Section 4.3.3 and which will be used for the

subsequent derivations.

It has already been mentioned that we consider sum-power constraints (cf. Equation 5.4) in

the following for the sake of simplicity. The cost function to be minimized is the infinite horizon

average cost (see Appendix A6.3)

J∞ = lim
N→∞

1

N
E

[

xT
NQNxN +

N−1
∑

n=0

[

xn

G
1

2un

]T [
Q S

ST R

] [

xn

G
1

2un

]

]

+ tr
[

RG
1

2CnG
1

2

]

. (5.5)

Since the input which is actually applied to the dynamical system (see Figure 5.1) is G
1

2 (uk + nk),

k ∈ N0, the LQG cost in Equation (5.5) contains the additional term tr
[

RG
1

2CnG
1

2

]

due to the
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channel noise which is fed into the system. The control sequence (uk : k ∈ N0) is multiplied by

G
1

2 at the system input which makes it necessary to take into account the control signal G
1

2uk,

k ∈ N0, in the cost function. The problem of the joint optimization of an LQG controller and the

diagonal matrices T and G thus reads as

minimize
T ,G,µ0,µ1,µ2...

J∞ (5.6)

subject to xk+1 = Axk +BG
1

2 (uk + nk) +wk, k ∈ N0,

yk = Cxk + vk, k ∈ N0,

uk = µk(Ik), k ∈ N0,

Ik =

{

{(T− 1

2y0 + q0)},
{(T− 1

2y0 + q0), . . . , (T
− 1

2yk + qk),u0, . . . ,uk−1},
k = 0,

k ∈ N,

T = diag [ti]
Ny

i=1 > 0Ny×Ny
,

G = diag [gi]
Nu

i=1 > 0Nu×Nu
,

P1 ≤ PTx,1,

P2 ≤ PTx,2.

Note that the requirement of positive diagonal elements of T and G has been expressed as positive

definiteness constraints above for notational compactness.

As in Section 4.3.4, we start the solution of optimization problem (5.6) by minimizing the

LQG cost function w.r.t. the controller alone and for fixed values of T and G. It has already been

mentioned in Section 4.3.4 that the minimization of the Lagrangian associated with problem (5.6)

i. e., of

L = J∞ + λ1 (P1 − PTx,1) + λ2 (P2 − PTx,2) , (5.7)

w.r.t. to the controller µk, k ∈ N0, where λ1 ≥ 0 and λ2 ≥ 0 are the Lagrange multipliers which are

associated with the constraints for P1 and P2, respectively, is again an LQG problem. This makes

it easy to determine the minimum of L which is given by

L∗(T ,G, λ1, λ2) = tr
[

K
(

Cw+BGCnB
T
)]

+tr [PCx̃]+λ1 tr
[

T−1Cv

]

+tr [RGCn]

− λ1PTx,1 − λ2PTx,2,
(5.8)

where we used the fact that diagonal matrices commute and thus the square roots of G can be

merged. Note that L∗ in Equation (5.8) is explicitly denoted as a function of T and G, and the dual

variables λ1 and λ2. The matrices K and P are given by the stabilizing solution of the Discrete

Algebraic Riccati Equation (DARE)

K = ATKA−
(

ATKBG
1

2 + SG
1

2

)(

G
1

2BTKBG
1

2 +G
1

2RG
1

2 + λ2INu

)−1

×
(

G
1

2BTKA+G
1

2ST
)

+Q+ λ1C
TT−1C

= ATKA−
(

ATKB + S
) (

BTKB +R + λ2G
−1
)−1 (

BTKA+ ST
)

+Q+ λ1C
TT−1C,

(5.9)
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with P = ATKA −K +Q + λ1C
TT−1C. The covariance matrix Cx̃ of the optimal estimate

of the system state is determined by the stabilizing solution of the DARE

CP
x̃ = A

(

CP
x̃ −CP

x̃C
TT− 1

2

(

T− 1

2CCP
x̃C

TT− 1

2 + T− 1

2CvT
− 1

2 +Cq

)−1

T− 1

2CCP
x̃

)

AT

+Cw +BG
1

2CnG
1

2BT

= A
(

CP
x̃ −CP

x̃C
T
(

CCP
x̃C

T +Cv + TCq

)−1
CCP

x̃

)

AT +Cw +BGCnB
T

(5.10)

and reads as Cx̃ = CP
x̃ − CP

x̃C
T
(

CCP
x̃C

T +Cv + TCq

)−1
CCP

x̃. Due to the convexity of the

optimization problem for given values of T and G and with the assumption that strong duality

holds, the minimal value of the optimization problem (5.6) w.r.t. the controller alone is given by

I(T ,G) = sup
λ1≥0
λ2≥0

L∗(T ,G, λ1, λ2). (5.11)

For the remaining minimization of the LQG cost function w.r.t. to the diagonal matrices T and

G, the branch and bound approach presented in Section 4.3.3 is applied. In order to see that the

required monotonicity is also present for the model with diagonal transceivers, note that the scaled

covariance matrices of the channel noise sequences which contribute to the Lagrangian in Equation

(5.8) and the covariance matrix in Equation (5.10) read as

TCq = diag [ticq,i]
Ny

i=1 and GCn = diag [gicn,i]
Nu

i=1 . (5.12)

Thus, if T ≥ T and G ≥ G, the corresponding error covariance matrices have the property that

CP
x̃(T ,G) ≥ CP

x̃(T ,G), which follows from [100] or the results from Appendix A4. Addition-

ally, it is intuitively clear that an increased noise variance results in a larger variance of the state

estimation error in any subspace of the state space (or at least not in a smaller variance). These

arguments carry over to the covariance matrix Cx̃.2 A final application of the results provides

the relation K(T ,G) ≤ K(T ,G) since K depends on the inverse of the diagonal transmit and

receive matrix, i. e., CTT
−1
C ≤ CTT−1C and G

−1 ≤ G−1.

In order to apply the branch and bound approach for the minimization of I (see Equation

5.11) w.r.t. T and G, the monotonicity results mentioned above are used. Recall that this approach

sequentially partitions the set B of possible values of the optimization variables. For each subset

A of such a partition, upper and lower bounds of the optimal value of the optimization problem

under consideration are computed where the optimization variables are constrained to lie within

the subset A. The availability of such bounds then allows for a systematic search of the global

optimum within the original set B. We refer to Section 4.3.3 for a detailed description.

Assume that a set A of diagonal transmit and receive matrices is defined by

A =
{

(T ,G)
∣

∣

∣
T ≤ T ≤ T ,G ≤ G ≤ G, T = diag [ti]

Ny

i=1 ,G = diag [g]Nu

i=1

}

, (5.13)

where T ,T ,G and G are diagonal matrices with positive diagonal elements. A lower bound for

the optimal value of the problem (5.6) when T and G are constrained to lie in A is obtained as

2This means that by increasing the noise variance, it holds zTCx̃(T ,G)z ≥ zTCx̃(T ,G)z for all z ∈ RNx and

thus Cx̃(T ,G) ≥ Cx̃(T ,G).
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follows. As a first step, note that for all pairs of transmitters and receivers within this set, a lower

bound for the Lagrangian from Equation (5.8) is given by

L∗(T ,G, λ1, λ2) = tr
[

K(T ,G)
(

Cw +BGCnB
T
)]

+ tr [P (T ,G)Cx̃(T ,G)]

+ λ1 tr
[

T−1Cv

]

+ tr [RGCn]− λ1PTx,1 − λ2PTx,2

≥ tr
[

K(T ,G)
(

Cw +BGCnB
T
)]

+ tr [P (T ,G)Cx̃(T ,G)]

+ λ1 tr
[

T
−1
Cv

]

+ tr [RGCn]− λ1PTx,1 − λ2PTx,2

= tr
[

K(T ,G)
(

CP
x̃(T ,G)−Cx̃(T ,G)

)]

+ tr
[(

Q+ λ1C
TT−1C

)

Cx̃(T ,G)
]

+ λ1 tr
[

T
−1
Cv

]

+ tr [RGCn]− λ1PTx,1 − λ2PTx,2

≥ tr
[

K(T ,G)
(

CP
x̃(T ,G)−Cx̃(T ,G)

)]

+ tr
[(

Q+ λ1C
TT

−1
C
)

Cx̃(T ,G)
]

+ λ1 tr
[

T
−1
Cv

]

+ tr [RGCn]− λ1PTx,1 − λ2PTx,2

= L∗
A(λ1, λ2).

(5.14)

For the derivation, the matrices K, P , Cx̃ and CP
x̃ are denoted as functions of the diagonal transmit

and receive matrices and the fact is used that P = ATKA −K + Q + λ1C
TT−1C. Note the

similar expressions in Equations (4.36) and (4.59) which have been derived earlier. A reformulation

of the lower bound L∗
A(λ1, λ2) as

L∗
A(λ1, λ2) = tr

[

K(T ,G)
(

Cw +BGCnB
T
)]

+ tr
[

P (T ,G)Cx̃(T ,G)
]

+ λ1 tr
[

T
−1
Cv

]

+ tr [RGCn]− λ1PTx,1 − λ2PTx,2

(5.15)

shows that it is the dual function of a power constrained LQG problem where the controller gain

(represented by the matrices K and P ) is determined using T and G, whereas the estimator prob-

lem (represented by the error covariance matrices CP
x̃ and Cx̃) is solved using T and G, i. e., by

an underestimate of the variance of channel noise sequences. The fact that the controller gain is

determined based on T and G results in the possibility to use a control signal with smaller variance

compared to the case with G since the gain at the system input is increased. Thus, the power con-

straint on the control signal is less restrictive. The application of T at the system output effectively

relaxes the power constraint for the observation channel. Together with the underestimate of the

variances of the channel noise sequences, the corresponding relaxed optimization problem leads to

the lower bound L∗
A shown in Equation (5.15).

With the availability of a lower bound for L∗, the respective lower bound for the optimal value

of the optimization problem (5.6) for given values of T and G within the set A (cf. Equation 5.13)

is determined analogous to Equation (4.60):

I(T ,G)= sup
λ1≥0
λ2≥0

L∗(T ,G, λ1, λ2)≥L∗(T ,G, λ1, λ2)≥L∗
A(λ1, λ2)= sup

λ1≥0
λ2≥0

L∗
A(λ1, λ2)=IA, (5.16)

where it is again assumed that strong duality holds and the corresponding optimization problem

is feasible. For the case that the problem which is used for the determination of the lower bound
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is not feasible, IA as well as I(T ,G) are unbounded from above. The consistency of the lower

bound, i. e., the fact that the value of the lower bound converges to the actual value of I if the set

A collapses to a single point, is shown in Appendix A9. This property depends on the continuity

of the solutions K and CP
x̃ of the respective DAREs w.r.t. T , G. We refer again to [104] for a

discussion of the continuity properties and note that the stabilizing solutions of the DAREs are

continuous w.r.t. T and G if R and either Cv or Cq have full rank.

For the application of the branch and bound approach to the determination of the global op-

timum of problem (5.6) w.r.t. T and G, it remains to find an upper bound for the optimal value

within a given set A (see Equation 5.13). Additionally, a subdivision rule for such sets which pro-

vides an exhaustive partitioning process has to be determined as well as a method to handle the

unboundedness and positivity of the diagonal elements of T and G. The upper bound is simply

obtained by evaluating I at an arbitrary point from A, i. e.,

IA = I(T ,G), (T ,G) ∈ A. (5.17)

The subdivision rule is chosen to be a bisection, i. e., a set A is partitioned in two smaller sets by

dividing it at the midpoint of its longest side. A partition process performed this way is exhaustive,

i. e., eventually collapses to a single point (see, e. g., [102, 103]). For the sake of simplicity, the

initial set for the search of the optimal diagonal transmit and receive matrices is chosen to be

B =
{

(T ,G)
∣

∣t INy
≤ T ≤ t INy

, g INu
≤ G ≤ g INu

}

, (5.18)

where t, t, g and g have to be selected according to the desired search interval.3 Note that this choice

does not guarantee that the optimal matrices T and G are elements of B. In the following, it is

assumed that this requirement holds by choosing t and g sufficiently small and t and g sufficiently

large. With the lower bound IA (cf. Equation 5.16), the upper bound IA (cf. Equation 5.17), the

selection of the initial set B (cf. Equation 5.18) and the bisection subdivision rule, Algorithm 4.2

from Section 4.3.4 can now be used for the determination of the optimal diagonal transmit and

receive matrices T and G within the set B.

In order to demonstrate the benefits of the joint optimization of LQG controller and scalar as

well as diagonal transceivers, the following example considers a scenario with diagonal covariance

matrices of the channel noise sequences and a power constraint which can also be fulfilled by the

LQG controller alone.

Example 5.1.1 Analogous to the examples in the preceding sections, the system and noise

parameters given in Example 3.1.1 are used, but channel noise sequences (qk : k ∈ N0) and

(nk : k ∈ N0) are assumed to have uncorrelated components with the same variance as before.

Thus, their covariance matrices read as

Cq = diag [1, 0.5] and Cn = diag [0.7, 0.3] ,

3The positive diagonal elements of T and G can be mapped to the interval ]0, 1[ as in the preceding sections (see

Equations 4.39, 4.55 and 4.61).The boundary points 0 and 1 can also be included for the computation of the upper and

lower bounds IA and IA, respectively. These points correspond either to the case that one or more components of the

observation or the control signal are multiplied by zero (which effectively reduces the dimension of the observation or

the control channel) or to the case that one or more components of transmitted or received signals are amplified by an

unbounded scaling factor (which leads to an unbounded value of the respective upper or lower bound).
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respectively. Using these matrices, the solution of the LQG control problem without transmitters,

receivers and power constraints is computed as a reference. Taking into account a limited transmit

power, solutions are determined according to the approaches presented in Chapter 3 (no trans-

mitters and receivers but power constraints), Section 4.3.4 (scalar transceivers) and Section 5.1

(diagonal transceivers). Table 5.1 shows the results for different LQG controller optimizations.

LQG cost P1 P2 T G λ1 λ2

no constraints 954.7 5020 1972 I2 I2 — —

no Tx/Rx 1513 2377 1585 I2 I2 1.318 1.556
scalar4 895.6 2377 1585 0.8347 · I2 0.5401 · I2 3.038 10.21

diagonal 71.36 2377 1585
diag [t1, t2]
t1 = 0.09930
t2 = 0.06334

diag [g1, g2]
g1 = 0.005894
g2 = 0.1551

0.02177 0.008706

ideal channels 28.84 ∞ ∞ — — — —

Table 5.1: Comparison of power constrained control approaches with and without transmitters and receivers.

The first row contains the values for the optimal LQG controller without transceiver (equiva-

lently, the transmitter and receiver is represented by the identity matrix) which does not take into

account any power constraints and closes the control loop over the communication channels with

additive noise. Without power constrains, there are also no dual variables λ1 and λ2. The val-

ues of the resulting transmit powers correspond to SNRs of 10 log10(tr
[

Cq

]−1
P1) ≈ 35.25 and

10 log10(tr [Cn]
−1

P2) ≈ 32.95, respectively.

For the power constrained controller optimizations, we require that the logarithmic values of

the SNRs of the observation as well as of the control channel fulfill the inequalities

10 log10

(

tr
[

Cq

]−1
P1

)

≤ 32 and 10 log10

(

tr [Cn]
−1

P2

)

≤ 32,

respectively, which corresponds to the upper bounds PTx,1 ≈ 2377 and PTx,2 ≈ 1585 for the re-

spective transmit powers P1 and P2. For these values, the power constrained LQG control problem

without transmitters and receivers which has been discussed in Chapter 3 is feasible. The solution

of the resulting convex optimization problem is shown in the second row of Table 5.1. Note that the

value of the cost function is increased significantly compared to the solution of the unconstrained

LQG problem. This is not surprising since the transmit powers of both the observation and the

control channel are required to be smaller than the powers for the case without power constraints.

The third row of Table 5.1 contains the results when a simple scaling factor is introduced

at the system input and output (i. e., the transmitter and the receiver is represented by a scaled

identity matrix) and optimized jointly with the controller using the approach described in 4.3.4.

The desired relative accuracy of the minimal value of the cost function is ε = 10−2 and the values

of the transmit and receive scaling factors are mapped to the set [0, 1]2 as described in Section 4.3.4

(see Equation 4.61). The subdivision rule is a bisection in the image space of this mapping. Since

the scaling factors for T = tI2 and G = gI2 are both smaller than one, the impact of the channel

noise on the control performance is reduced, which results in a smaller value of the LQG cost

4Note that in Section 4.3, the transmit power constraints are multiplied by t and g, respectively. For the constrained

optimization problem without this multiplication (e. g., when comparing to the case without transceivers), the Lagrange

multipliers read as ν1 = tλ1 ≈ 2.536 and ν2 = gλ2 ≈ 5.516, respectively, see Example 4.2.1.
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function even with a smaller amount of transmit power compared to the original and unconstrained

LQG controller.

Note that the problems related to the non-convexity of the joint optimization problem which

have been encountered in the preceding sections remain for the case of diagonal noise covariance

matrices. For example, Figure 5.2 shows pairs (t, g) of transmit and receive scaling factors which

lead to a feasible optimization problem for the given power constraints. Compared to Figure 4.5

which shows analogous results for non-diagonal covariance matrices, we observe a similar behav-

ior, especially the disjoint regions of feasible pairs. Consequently, local optimization approaches

do not guarantee to find the global optimum which requires the application of global approaches

like the presented branch and bound algorithm.

t

g

0
0

2

2

4

4

6

6

8

8

10

10

Figure 5.2: Feasibility of the optimization problem (4.10) (i. e., the joint optimization of controller and scalar

transceivers) for 10 log10(tr
[

Cq

]−1
PTx,1) = 32 and 10 log10(tr [Cn]

−1
PTx,2) = 32 and given values of t

and g. A feasible pair (t, g) is denoted by a dot.

Finally, the monotonic optimization approach is used to determine the optimal diagonal trans-

mit and receive matrices T = diag [t1, t2] and G = diag [g1, g2] with t1, t2, g1, g2 > 0, i. e., the

search for the global optimum is performed in a four dimensional set. Nevertheless, Algorithm 4.2

from Section 4.3.4 can readily be applied. The initial set for the optimization is chosen according

to Equation (5.18) with t = g = 10−10 and t = g = 107 and the desired relative accuracy of the

result is ε = 2 · 10−2. Note that despite the fact that it is not necessary here, each scalar optimiza-

tion variable is again mapped to the set [0, 1] as in Chapter 4 (see Equations 4.39, 4.55 and 4.61).

The subdivision using a bisection of sets selected by Algorithm 4.2 is then performed w.r.t. subsets

of [0, 1]4. With this setup, Algorithm 4.2 provides the solution shown in the fourth row of Table

5.1. Note that the value of the LQG cost is reduced by a factor of more than 12 compared to the

case with scalar transceivers and a factor of more than 21 compared to the power constrained LQG

controller without transmitter and receiver.

In order to get an impression about the control performance which could be achieved without

the noisy communication channels, the last row provides the performance of an unconstrained

LQG controller where it is allowed to use an infinitely large amount of transmit power for the

transmission of observations and control signals or, equivalently, where no channel noise is present.
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5.1.3 Impact of the Channel Assignment

Until now, the assignment of individual components of the input and output signals of the dynam-

ical system to be controlled to the components of the communication channels, i. e., the scalar

sub-channels, has been considered to be given and fixed. However, this assignment is only arbi-

trary and has no impact on the performance of the closed loop system if the variances of the noise

sequences in all sub-channels are identical. Otherwise, the response of the dynamical system to

the noise which is fed in at the system input, i. e., the channel noise of the control channel, and the

impact of the noise in the observation channel on the state estimation error is generally different for

each permutation of the available scalar sub-channels and the associated variances of the channel

noise sequences.

Since the dynamical system to be controlled and the communication channels which are used

for the information exchange between the system and the controller are distinct (physical or techni-

cal) entities, it is a degree of freedom for the system designer to decide which scalar component of

the system output or the control signal is transmitted over which scalar sub-channel. This assign-

ment of inputs and outputs of the dynamical system to inputs and outputs of the communication

channels is formally described by a permutation matrix

F =
K
∑

k=1

e
(K)
k e

(K),T
ik

∈ {0, 1}K×K, (5.19)

where K is either equal to the dimension Ny of the system output or to Nu, i. e., the dimen-

sion of the system input. The permutation is determined by the numbers ik ∈ {1, 2, . . . , K} for

k ∈ {1, 2, . . . , K} with the property that ik ∈ {1, 2, . . . , K} \ {i1, i2, . . . , ik−1}. In the following

we assume that different permutations can be chosen at the system input and output, which results

in the following modification of the state and observation equation of the dynamical system to be

controlled:

xk+1 = Axk +BF2G
1

2 (uk + nk) +wk,

yk = F1 (Cxk + vk) ,
(5.20)

for k ∈ N0, and where F1 ∈ {0, 1}Ny×Ny and F2 ∈ {0, 1}Nu×Nu are permutation matrices (cf.

Equation 5.19). Compared to the system model described in Section 5.1.1, we obtain the same

scenario by replacing the system input matrix B with BF2, the system output matrix C with

F1C and the covariance matrix Cv with F1CvF
T
1 . Additionally, due to the permutation of the

system input, the weighting matrices R and S for the control signal in the LQG cost function (cf.

Equation 5.5) have to be replaced with F T
2 RF2 and SF2, respectively. Thus, for fixed channel

assignments, given by F1 and F2, the optimal scalar or diagonal transceivers can be determined

using the approach presented in Section 5.1.2.

In order to demonstrate the effect of changing the assignment of system inputs and outputs to

the scalar sub-channels, Example 5.1.1 is revisited. In the following we will see that the compari-

son of the results presented there using no, scalar and diagonal transceivers should be interpreted

carefully.

Example 5.1.2 The diagonal covariance matrices of the noise sequences in the observa-

tion and the control channel, i. e., Cq = diag [1, 0.5] and Cn = diag [0.7, 0.3], and the asso-

ciated power constraints, i. e., transmit powers P1 and P2 which are limited according to
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10 log10(tr
[

Cq

]−1
P1) ≤ 32 and 10 log10

(

tr [Cn]
−1

P2

)

≤ 32, from Example 5.1.1 are used for

the solution of the optimization problem (5.6).5 Since a permutation of the scalar components of

the system input and output is taken into account, the state and observation equation for the con-

straints of problem (5.6) have to be replaced with Equation (5.20). Additionally, the weighting

matrices Q, R and S of the LQG cost function (see Equation 5.5) have to be replaced with Q,

i. e., no replacement, F T
2 RF2 and SF2, respectively. The values of Q, R and S are provided by

Example 3.1.1.

Since the dimensions of the input and the output signals of the dynamical system are

Nu = Ny = 2, there exist only two permutations for the scalar components of these signals, i. e.,

Fi ∈ {I2,Π}, (5.21)

for i ∈ {1, 2}, where the non-identity permutation matrix is given by

Π =

[

1
1

]

. (5.22)

Table 5.2 shows the resulting values of the LQG cost and the associated transmit powers for the

observation and the control channel using different permutations of the input and output signals of

the dynamical system. Additionally, the values of the optimizing scalar and diagonal transmitters

and receivers are provided. For the sake completeness, results which have already been presented

in Table 5.1, i. e., for F1 = F2 = I2, are also shown in Table 5.2.

Note that the different channel assignments have a significant impact on the value of the cost

function as well as on the transmit powers for the unconstrained, standard LQG controller without

any transceiver (i. e., with T = G = I2), which are shown in the first row of Table 5.2. The

qualitative results for this scenario carry over to the case when the transmit power constraints are

included in the controller optimization, provided in the second row of Table 5.2. Since at least one

power constraint is violated by the LQG controller for the unconstrained case irrespective of the

channel assignment, the value of the cost function increases if it is required that both constraints

are satisfied. Interestingly, the power constrained controller optimization becomes infeasible if

the assignment for the observation channel is switched, i. e., if F1 = Π and F2 = I2. On the

other hand, the power constraint for the control channel is inactive if only the assignment for the

control channel is switched or if both F1 and F2 are equal to Π . As in Chapter 3, we observe

that the introduction of power constraints without the degrees of freedom which are offered by

transmitters and receivers at the output and the input of the dynamical system to be controlled lead

to unsatisfactory results.

The third row of Table 5.2 shows the optimal values of the LQG cost function, the associated

transmit powers and the optimizing values of the scalar transceivers which are obtained using the

approach presented in Chapter 4. For the determination of these results, Algorithm 4.2 has been

applied with a relative desired accuracy of ε = 10−2. The search interval for the transmit and

receive scaling factors t and g has been set to [10−10, 107] and mapped into the interval [0, 1] (see

Section 4.3.4). The subdivision rule is again a bisection of sets in the image space of this mapping

(cf. Equation 4.61). For the obtained results, all transmit power constraints hold with equality

for each possible channel assignment, but the value of the cost function varies significantly, i. e.,

5The constraints for the SNRs of the individual communication channels translate to the power constraints

P1 ≤ 2377 and P2 ≤ 1585, where the numerical values are rounded to four significant digits.
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F1=F2=I2 F1=Π , F2=I2 F1=I2, F2=Π F1=F2=Π

no constraints

LQG cost 954.7 1032 622.0 675.7
P1 5020 5407 3247 3505
P2 1972 2149 1317 1441

no Tx/Rx

LQG cost 1513 ∞ 656.2 736.9
P1 2377 — 2377 2377
P2 1585 — 1337 1459

scalar

LQG cost 895.6 2659 131.2 173.2
P1 2377 2377 2377 2377
P2 1585 1585 1585 1585
T 0.8347 · I2 4.802 · I2 0.1216 · I2 0.1454 · I2
G 0.5401 · I2 0.06583 · I2 0.09930 · I2 0.1281 · I2

diagonal

LQG cost 71.36 70.47 72.89 72.05
P1 2377 2377 2377 2377
P2 1585 1585 1585 1585

T
t1=0.09930
t2=0.06334

t1=0.04597
t2=0.1416

t1=0.09871
t2=0.06334

t1=0.04543
t2=0.1416

G
g1=0.005894
g2=0.1551

g1=0.005894
g2=0.1532

g1=0.1082
g2=0.009364

g1=0.1088
g2=0.009116

Table 5.2: Impact of different assignments of system inputs and outputs to scalar sub-channels on the LQG

cost function and the transmit powers of the observation and control channel.

the maximal cost of 2659 is more than 20 times larger than the minimal value of 131.2 which is

obtained for F1 = I2 and F2 = Π .

Finally, the last row of Table 5.2 contains the results of the power constrained LQG problem

where the optimal diagonal transmit and receive matrices T = diag [t1, t2] and G = diag [g1, g2]
are applied. Due to the slower convergence compared to the scalar case (recall that 4 instead of 2
parameters have to be optimized), the relative desired accuracy is now chosen to be ε = 2 · 10−2

and the search interval for each scalar optimization variable is again [10−10, 107], together with the

mapping to [0, 1] and the bisection subdivision rule. As expected, the value of the cost function can

be further decreased while the power constraints hold with equality.

In contrast to Example 5.1.1 which presented only the results of the first column of Table

5.2 above, the gains which can be achieved by the optimization of diagonal instead of scalar

transceivers are less impressive. Comparing the best performance of each approach which takes

into account the power constraints, the LQG cost without transceivers can be reduced by a fac-

tor of approximately 9.3 and the cost using scalar transceivers by a factor of approximately 1.8 if

the optimal diagonal transmitters and receivers are applied. Nevertheless, for the optimal diagonal

transceivers, a remarkable observation is that the minimal value of the cost function differs from

the maximal one by less that 4%. This suggests that the diagonal transceivers are better suited for

scalar sub-channels with unequal noise variances. It is however important to remember that not

only the channel noise variances determine the behavior of the closed loop system but also the

parameters of the dynamical system to be controlled. Consequently, it is not clear if the results

presented using one specific example can be generalized to other scenarios.
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The example above demonstrates that if more than one scalar sub-channel is available for

the transmission of observations and control signals, respectively, in the closed control loop, it

becomes important how the components of input and output signals of the dynamical system to

be controlled are assigned to the available scalar sub-channels of the control and the observation

channel, respectively.6 The following example demonstrates that the optimal assignment does not

only depend on the properties of the dynamical system and the communication channels but also

on the operating point, i. e., the values of the available transmit powers PTx,1 and PTx,2.

Example 5.1.3 The same scenario as in Example 5.1.2 is considered here, i. e., the dynamical

system to be controlled and the communication channels are described by the same parameters. In

the following, we solve the problem of minimizing the weighted sum ρP1+(1−ρ)P2, ρ ∈ [0, 1], of

the transmit powers P1 and P2 (cf. Equation 5.4) w.r.t. the LQG controller and scalar transceivers,

i. e., using T = tI2 and G = gI2. This problem has already been investigated in Section 4.3.3.1.

At this point, the goal is to demonstrate the impact of the channel assignment which is represented

by the permutation matrices F1 and F2 (see Equations 5.20, 5.21, 5.22) on the resulting Pareto

optimal transmit powers. For the computation of these powers, optimization problem (4.30) is

solved for 1000 values of the weighting parameter ρ, where ρ = (1 + θ)−1 and the values of θ are

logarithmically spaced in the interval [10−10, 1010] (see Example 4.3.3).

Figure 5.3 shows the resulting Pareto optimal values of the SNRs ϕ1 = tr
[

Cq

]−1
P1 and

ϕ2 = tr [Cn]
−1

P2 for different choices of the permutation matrices Fi ∈ {I2,Π}, i ∈ {1, 2} (see

Equation 5.21 and 5.22). For their computation, Algorithm 4.1 is initialized with the set B = [0, 1],
where the optimization variable α ∈ R+ is mapped to this set by the function given in Equation

(4.39). For more details we refer to Section 4.3.3. The desired relative accuracy for the result of

the optimization is chosen to be ε = 10−3.

It can be observed that the assignment of inputs and outputs of the dynamical system to the

available scalar sub-channels has a clear impact on the set of feasible transmit powers or SNRs,

respectively, which is bounded by the Pareto optimal values. Especially for large values of ϕ2,

the associated minimal value of ϕ1 can be reduced significantly. Note that this is not true if the

roles of ϕ1 and ϕ2 are changed. In this case the channel assignment has a much smaller impact on

the set of feasible SNRs. Another important observation is that there is no unique optimal channel

assignment in the sense that the set of feasible SNRs is maximized. For example, over a large range

of SNRs the choice F1 = F2 = Π (solid line) seems to be the best channel assignment. However,

in a neighborhood of 10 log10(ϕ1) ≈ 50, there exist pairs of SNRs which are only feasible for

F1 = I2 and F2 = Π (dash-dotted line).

Finally, recall the results presented in Table 5.2, i. e., the solutions of an LQG control problem

with the constraints 10 log10(ϕ1) ≤ 32 and 10 log10(ϕ2) ≤ 32. Despite the fact that this operating

point has the largest distance to the Pareto optimal SNRs which are obtained using the channel

assignment F1 = F2 = Π , the optimal value of the cost function is achieved with F1 = I2 and

F2 = Π . It can be seen that the optimal channel assignments which have been found for a certain

design criterion do not necessarily carry over to optimization problems using a different criterion.

6At this point it becomes obvious that the concentration on diagonal transmitters and receivers is restrictive and

that is in general possible to obtain better results for general transmit and receive filter matrices. Unfortunately, the

monotonicity properties which have been used so far for the joint optimization of controller and transceivers are not

present in the latter case.
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Figure 5.3: Pareto optimal values of SNRs ϕ1 of the observation channel and ϕ2 of the control channel ob-

tained by the minimization of the weighted sum power ρP1+(1−ρ)P2, ρ ∈ [0, 1], using scalar transceivers.

The goal of this section is to demonstrate that the problem of the assignment of inputs and

outputs of the dynamical system to be controlled to the available scalar sub-channels of the control

and observation channel can not be neglected. Unfortunately, we are not able to provide a sys-

tematic approach to the determination of the optimal assignment. Consequently, the two examples

which are shown in this section provide results where different assignments are simply fixed and

the corresponding optimization problems are solved using the approaches presented in the preced-

ing chapters and sections. Note further that the consideration of transmitters and receivers which

consist of diagonal and permutation matrices is restrictive and it would be desirable to determine

general optimal transceivers, i. e., matrices without structural constraints. However, a suitable ap-

proach to this problem is still missing.

5.2 Generalizations

The channel model with diagonal noise covariance matrices which has been introduced in Section

5.1.1 to describe a scenario with parallel and independent communication channels allowed for an

extension of simple scaling factors at the input and output of these channels to the class of diagonal

transmitters and receivers. Thus, the approach for the joint optimization of the LQG controller and

the diagonal transceivers can be used for any communication system which is able to provide a set

of independent scalar channels with mutually independent channel noise sequences. However, for

the system model at hand, it is possible to consider some specific generalizations of the diagonal

scenario investigated in Section 5.1.

5.2.1 Communication Channels With General Noise Covariance Matrices

In the following, an approach is proposed which reduces the case of communication channels with

non-diagonal channel noise covariance matrices to the scenario presented in Section 5.1. In this

context, it is not possible to optimize diagonal transceiver matrices based on the monotonicity

properties of the associated optimization problem because these properties which are required by
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the branch and bound approach in the preceding sections are not present any more. The reason for

this behavior can be found, e. g., in the DARE for the determination of the covariance matrix of

the prediction (and estimation) error of the system state shown in Equation (5.10). If Cq and Cn

are not diagonal, this equation becomes

CP
x̃=A

(

CP
x̃−CP

x̃C
T
(

CCP
x̃C

T+Cv+T
1

2CqT
1

2

)−1

CCP
x̃

)

AT+Cw+BG
1

2CnG
1

2BT. (5.23)

For the diagonal matrices T and G, it is generally not true that, e. g., for T
1

2 ≥ T
1

2 , it follows that

T
1

2CqT
1

2 ≥ T
1

2CqT
1

2 . A simple example illustrates this fact.

Example 5.2.1 Let D = diag [dk]
2
k=1 be a diagonal matrix with d1, d2 ∈ ]0, 1[ and

X =

[

10.5 −9.5
−9.5 10.5

]

=
1√
2

[

1 1
1 −1

] [

1
20

] [

1 1
1 −1

]

1√
2

be a positive definite matrix with the corresponding eigenvalue decomposition. Without loss of

generality, we consider the definiteness of the matrix X − DXD in order to investigate if

DXD ≥DXD for D ≥ D. With the specific choice of

D =

[

0.75
0.25

]

and q =

[

1
1

]

,

we observe that

qT (X −DXD) q = −1,

which shows that X 6≥DXD. In fact, the matrix X −DXD is indefinite.

Since the partial ordering the of diagonal transmit and receive matrices T and G does not

carry over to the diagonally scaled noise covariance matrices, i. e., T
1

2CqT
1

2 and G
1

2CnG
1

2 , the

monotonicity results from [100] can not be used to determine the bounds which are required by

the monotonic optimization approach introduced earlier. Actually, it is not difficult to construct

examples where the solutions of the corresponding DAREs do not inherit the partial ordering of T

and G. As a result, it is not clear how to jointly optimize an LQG controller together with diagonal

transceivers and non-diagonal noise covariance matrices.

Having noticed that the applicability of the monotonic optimization approach is prevented by

the fact that the covariance matrices of the channel noise sequences are not diagonal, and motivated

by the results from, e. g., [110–112], we propose a heuristic design approach. Consider the system

model shown in Figure 5.4 where it is not assumed that the covariance matrices of the channel noise

sequences (qk : k ∈ N0) and (nk : k ∈ N0) are diagonal. For this case, it is proposed to chose a

transmit and receive matrix, respectively, with the special structure

T̃ = UqT
− 1

2 and G̃ = G
1

2UT
n , (5.24)

respectively, where the orthonormal matrices Uq and Un are given by the eigenvalue decomposi-

tions of the noise covariance matrices

Cq = UqΛqU
T
q and Cn = UnΛnU

T
n , (5.25)
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A

B C

wk vk

qk
nk

xk

uk

yk

Controller µk

T

T̃G̃

Figure 5.4: Model of the control loop which is closed over two channels with additive noise qk and nk. At

the system input and output, the receiver G̃ and transmitter T̃ , respectively, is introduced.

with the diagonal matrices of eigenvalues Λq and Λn. At this point, it is important to note that

the eigenvalue decompositions are not unique, e. g., it is possible to introduce a permutation of the

eigenvalues which are contained in Λq and Λn and the associated eigenvectors, i. e., the columns

of Uq and Un. This permutation corresponds to the problem of the channel assignment discussed

in Section 5.1.3.

Analogous to Section 5.1, T and G are diagonal matrices with positive diagonal elements, i. e.,

T = diag [ti]
Ny

i=1 and G = diag [gi]
Nu

i=1 , (5.26)

with ti > 0 and gi > 0. Due to the invertibility of the transmitter and receiver matrices, the joint

optimization problem of LQG controller and transceiver is almost identical to problem (5.6) and

reads as (see also Equations 5.4 and 5.5)

minimize
T ,G,µ0,µ1,µ2...

lim
N→∞

1

N
E

[

xT
NQNxN+

N−1
∑

n=0

[

xn

G̃un

]T[
Q S

ST R

][

xn

G̃un

]

]

+tr
[

RG̃CnG̃
T
]

(5.27)

subject to xk+1 = Axk +BG̃(uk + nk) +wk, k ∈ N0,

yk = Cxk + vk, k ∈ N0,

uk = µk(Ik), k ∈ N0,

Ik =

{

{(T̃ y0 + q0)},
{(T̃ y0 + q0), . . . , (T̃ yk + qk),u0, . . . ,uk−1},

k = 0,

k ∈ N,

UT
q T̃ = T− 1

2 =
(

diag [ti]
Ny

i=1

)− 1

2

> 0Ny×Ny
,

G̃Un = G
1

2 =
(

diag [gi]
Nu

i=1

)
1

2

> 0Nu×Nu
,

lim
N→∞

1

N
E

[

N−1
∑

n=0

xT
nC

TT̃ TT̃Cxn + vT
n T̃

TT̃ vn

]

≤ PTx,1,

lim
N→∞

1

N
E

[

N−1
∑

n=0

uT
nun

]

≤ PTx,2.

Paralleling the derivations in Section 5.1, we observe that for given matrices T̃ and G̃ the mini-

mization of the Lagrangian associated with the problem above (where only the power constraints
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are dualized) w.r.t. the controller is an LQG problem and has the optimal value (cf. Equation 5.8)

L∗ (T ,G, λ1, λ2) = tr
[

K
(

Cw +BG̃CnG̃
TBT

)]

+ tr [PCx̃] + λ1 tr
[

T̃CvT̃
T
]

+ tr
[

RG̃CnG̃
T
]

− λ1PTx,1 − λ2PTx,2

= tr
[

K
(

Cw +BGΛnB
T
)]

+ tr [PCx̃] + λ1 tr
[

T−1Cv

]

+ tr [RGΛn]− λ1PTx,1 − λ2PTx,2,

(5.28)

where the fact has been used that G̃CnG̃
T = G

1

2UT
nCnUnG

1

2 = GΛn and that tr
[

T̃CvT̃
T
]

=

tr
[

UnT
− 1

2CvT
− 1

2UT
n

]

= tr [T−1Cv]. Applying analogous identities, the matrices K, P and Cx̃

are determined by the DAREs (see Equations 5.9 and 5.10)

K = ATKA−
(

ATKB + S
) (

BTKB +R + λ2G
−1
)−1 (

BTKA+ ST
)

+Q+ λ1C
TT−1C,

(5.29)

where P = ATKA−K +Q+ λ1C
TT−1C, and

CP
x̃ = A

(

CP
x̃ −CP

x̃C
T
(

CCP
x̃C

T +Cv + TΛq

)−1
CCP

x̃

)

AT +Cw +BGΛnB
T, (5.30)

which results in Cx̃ =CP
x̃−CP

x̃C
T
(

CCP
x̃C

T+Cv+TΛq

)−1
CCP

x̃. Comparing Equations (5.8),

(5.9) and (5.10) from Section 5.1 with Equations (5.28), (5.29) and (5.30) and recalling that T and

G are diagonal matrices with positive diagonal elements, it becomes clear that problem of finding

the optimal values of T and G is identical to the problem considered in Section 5.1.

Remark: The basic idea for the specific choice of T̃ and G̃ in Equation (5.24) is to apply an

orthonormal matrix to the transmit an received signal, respectively, which diagonalizes the covari-

ance matrix of channel noise. The orthonormality ensures that the (sum) power of the transmit

signals is not increased and that there is no amplification of the (sum) power of the channel noise

at the receivers. The monotonic optimization framework can then be used to determine the optimal

diagonal scaling matrices T and G. Unfortunately, with the introduction of the orthonormal matri-

ces for the joint optimization of the controller, the transmitter and the receiver, it is not possible any

more to consider individual power constraints for the different scalar components of the transmit-

ted vectors of observations and control signals. The reason is that even though these orthonormal

transformations diagonalize the covariance matrices of the channel noise, this is not true for the

summands in the DARE for the determination of the matrix K which are introduced by the con-

sideration of individual power constraints. Only for the sum power constraints considered in the

optimization problem (5.27), the special choice of T̃ and G̃ shown in Equation (5.24) preserves

the monotonicity properties which are required by the global optimization approach.

The following example demonstrates that the proposed heuristic for the joint optimization of con-

troller, transmitter and receiver has the potential to reduce the LQG cost function for the general

case of non-diagonal covariance matrices of the channel noise. The reduction is in the same order

of magnitude as it could be observed for the diagonal case in Example 5.1.1, but the impact of the

channel assignment (cf. Section 5.1.2) is even more severe as in Example 5.1.2.
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Example 5.2.2 Using the system and noise parameters from Example 3.1.1 (i. e., the covariance

matrices of the channel noise sequences are not diagonal), solutions of the LQG control problem

with different transceiver configurations are compared. Table 5.3 shows the corresponding results.

The first row contains the values of the LQG cost function and the transmit powers of the observa-

tion and the control channel when no transmitter and receiver is used and the control loop is closed

over the additive noise communication channels.

Example 5.1.2 demonstrated that a permutation of the scalar components of the input and

output signals of the dynamical system to be controlled may have a significant impact on the

performance of the closed loop control system (see Equation 5.20 for the corresponding modifi-

cation of the system model using the permutation matrices F1 and F2). Despite the fact that we

do not assume here that the covariance matrices of the channel noise sequences (qk : k ∈ N0) and

(nk : k ∈ N0) are diagonal, such a permutation is of course still possible. The second row of Table

5.3 thus shows the results for the optimal channel assignment which are obtained using F1 = I2

and F2 = Π (we refer again to Equations 5.20, 5.21 and 5.22 for a definition of these matrices).

LQG cost P1 P2 T G λ1 λ2

no constraints 800.5 4189 1661 I2 I2 — —

no constraints
(opt. assign.)

413.6 2126 886.1 I2 I2 — —

no Tx/Rx ∞ — — I2 I2 — —

no Tx/Rx
(opt. assign.)

415.4 1932 890.8 I2 I2 0.01981 0

scalar7 2580 1932 1288 2.426 · I2 2.006 · I2 9.402 23.92

scalar
(opt. assign.)

115.5 1932 1288 0.1228 · I2 0.1185 · I2 0.4974 0.3243

diagonal 84.77 1932 1288
T =diag [t1, t2]

t1 = 0.1824
t2 = 0.05785

G=diag [g1, g2]
g1 = 0.02811
g2 = 0.1155

0.03812 0.01805

diagonal
(opt. assign.)

79.33 1932 1288
t1 = 0.1852
t2 = 0.06004

g1 = 0.4066
g2 = 0.005894

0.03326 0.01058

ideal channels 28.84 ∞ ∞ — — — —

Table 5.3: Comparison of power constrained control approaches with and without transmitters and receivers.

The next step is the addition of the power, or precisely SNR, constraints

10 log10

(

tr
[

Cq

]−1
P1

)

≤ 31.1 and 10 log10

(

tr [Cn]
−1

P2

)

≤ 31.1

to the problem of minimizing the LQG cost function. These constraints correspond to a limitation

of the transmit powers to approximately P1 ≤ 1932 and P2 ≤ 1288, respectively. The addition of

these constraints leads to an infeasible optimization problem when the degrees of freedom which

are provided by a transmitter and receiver are missing and the communication channels are used

7In order to compare the values of the Lagrange multipliers, the scaled values ν1 = tλ1 ≈ 22.81 and

ν2 = gλ2 ≈ 47.99 have to be considered.
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as they are, i. e., with F1 = F2 = I2. The corresponding value of the cost function is denoted as

∞ in the third row of Table 5.3. With the optimal channel assignment, represented by F1 = I2 and

F2 = Π , the problem becomes feasible (see fourth row of Table 5.3), where the constraint for the

transmit power P2 remains inactive.

With the introduction of scaling factors at the input and the output of the dynamical system to

be controlled, the power constrained joint optimization problem of the LQG controller and these

scaling factors becomes feasible for F1 = F2 = I2 and is solved using the approach presented in

Section 4.3.4. The relative accuracy for the branch and bound algorithm is chosen to be ε = 10−2.

The set for the search of the optimal scaling factors is [10−10, 107]2, which is again mapped to

[0, 1]2 to obtain the initial set B of Algorithm 4.2 (see Equation 4.61) and the bisection subdivision

rule is applied. Note that with the optimal channel assignment using F1 = I2 and F2 = Π , we

observe a tremendous decrease of the LQG cost, which demonstrates that care must be taken for

the assignment of the communication channels if scalar transceivers are applied to a system with

multiple inputs and outputs.

Finally, with a relative accuracy of ε = 2 · 10−2, the transmit and receive matrices based on

the diagonalization of the noise covariance matrices and diagonal transmitters and receivers T

and G (see Equation 5.24) are optimized. The initial set B for the branch and bound algorithm is

obtained by mapping [10−10, 105]4 to a subset of [0, 1]4 analogous to Equations (4.39), (4.55) and

(4.61), i. e., the minimal and maximal values for the search of the optimizing diagonal elements

of T and G have been chosen to be 10−10 and 105. The eigenvalue decomposition of Cq and Cn

which is computed for the actual transmitters T̃ and G̃ provides the diagonalized noise covariance

matrices

Λq ≈ diag [0.4807, 1.019] and Λn ≈ diag [0.05279, 0.9472] , (5.31)

respectively. Note that the ascending order of the eigenvalues is chosen, but due to the non-

uniqueness of the decomposition w.r.t. a permutation of the eigenvalues, a different order is possi-

ble. This degree of freedom is analogous to the channel assignment discussed in Section 5.1.3 for

the case of diagonal covariance matrices of the channel noise sequences. Unfortunately, we are not

able to provide a satisfactory answer to the question which permutation is optimal. Nevertheless,

the ascending order is chosen arbitrarily at this point since we observed a relatively small depen-

dence of the value of the LQG cost function on the channel assignment in Example 5.1.2, at least

for the case of diagonal transceivers.

The seventh and eighth row of Table 5.3 provide a picture analogous to the results of Example

5.1.2: the LQG cost which can be achieved using scalar transceivers can be further decreased if

diagonal transmit and receive matrices are applied, but the gain is moderate if the optimal channel

assignments are used. Additionally, changing the order of the eigenvalues has a minor impact on the

optimal value of the cost function which suggests that the diagonal transceivers have the potential

to balance an unequal distribution of the eigenvalues of the noise covariance matrices even without

the optimal choice of their order. Note that the optimal permutation of the eigenvalues is given

by the matrices F1 = I2 and F2 = Π , i. e., Λq is given by Equation (5.31) whereas the order of

the eigenvalues in Λn is reversed, and that the associated cost of 79.33 is only determined with a

relative accuracy of approximately 4.1 · 10−2 which is obtained after 500000 iterations.

The last row shows the value of the LQG cost function which can be achieved if an infinitely

large amount of transmit power is available or, equivalently, no channel noise is present.
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As a final remark concerning the branch and bound approach for the determination of the

optimal transmitters and receivers together with the optimal controller, note that a good solution

candidate, represented by the upper bound which is determined by the monotonic optimization

algorithm, can often be found relatively fast. Nevertheless, the certificate that it is actually a good

solution, which is provided by the lower bound, needs a lot of computations, i. e., iterations of

the algorithm. The following example illustrates this fact for the optimization of T and G from

Example 5.2.2.

Example 5.2.3 In order to demonstrate the behavior of the monotonic optimization approach

given by Algorithm 4.2, we revisit Example 5.2.2 and the problem of finding the optimal values

of T and G for the transmitter and receiver proposed in Equation (5.24). The solution presented

there resulted in the value 84.77 of the LQG cost function.

Figure 5.5 shows the evolution of the minimal value I
∗

of the upper bound (the cost function

which is evaluated at specific values of T and G) and the minimal value I∗ of the lower bound (the

solution of a relaxed optimization problem) with an increasing number of iterations of Algorithm

4.2. Note that the optimization is performed w.r.t. a four-dimensional set in this case. The set for

the search of the optimizing matrices T and G is chosen according to Equation (5.18). The values

of t and g and those of t and g are 10−10 and 105, respectively. The initial set B of Algorithm 4.2 is

obtained by mapping this set to a subset of [0, 1]4 analogous to Equations (4.39), (4.55) and (4.61).8

One iteration corresponds to a bisection of the (mapped) set which provides the smallest value I∗

of all currently available lower bounds, and the determination of the upper and lower bound for the

cost function in the so obtained sets.
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Figure 5.5: Smallest upper bound I
∗

and lower bound I∗ over the number of iterations of Algorithm 4.2.

It can be observed that the value of the smallest upper bound I
∗

decreases relatively fast and

provides a feasible result for controller, transmitter and receiver with a corresponding cost below

100 after 44 iterations and with a cost below 90 after 219 iterations.9 Nevertheless, the confirmation

that this is actually an acceptable value, which is given by the smallest lower bound I∗, needs a

significantly larger amount of iterations. The desired relative accuracy of ε = 2 · 10−2 and the

8Again, this mapping is not necessary at this point but is performed in order to be consistent with preceding

examples.
9On a 2.2 GHz AMD Opteron CPU, 219 iterations can be executed in approximately one minute of CPU time

using a Matlab implementation of the branch and bound algorithm.
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associated value 84.77 of the LQG cost function is attained after 130650 iterations.10 This number

corresponds in the worst case11 to 391950 evaluations of the optimization problem (5.27). Note

that this number is equivalent to approximately 25 sampling points in each dimension (i. e., for

t1, t2, g1 and g2) which are distributed over a search interval spanning 15 orders of magnitude.

Since it is not obvious where these points should be placed by an approach which only samples

the diagonal elements of T and G and does not use the information provided by the branch and

bound approach, it is expected that the resulting solution will be generally worse compared to the

monotonic optimization approach with the same computational complexity.

5.2.2 Communication Channels With Linear Distortions

For the second generalization of the optimization approach presented in Section 5.1, we take into

account the general model of the communication channel which is described in Section 1.6 (see

Equation 1.2 and Figure 1.4). Thus, besides non-diagonal covariance matrices of the channel noise

sequences, linear distortions of the signals which are transmitted over the observation and the

control channel are considered. These distortions are represented by the channel matrices H1 and

H2, respectively, where the dimension of these matrices is discussed below. Figure 5.6 depicts the

model of the closed loop control system which extends the model used in Section 5.2.1 (see Figure

5.4) by the channel matrices.

A

B C

wk vk

qk

nk

xk

uk

ũk

yk

Controller µk

T T̃G̃

H1

H2

Figure 5.6: Model of the control loop which is closed over two channels with additive noise qk and nk.

At the system input and output, the receiver G̃ and transmitter T̃ , respectively, is introduced. Besides the

additive noise, the channels lead to linear distortions, represented by H1 and H2.

All model assumptions which have been made in the preceding chapters, e. g., the independence

of all noise sequences or constant parameters of the dynamical system, are used in the following

and thus not restated at this point. Note that the channel matrices H1 and H2 are also assumed to

be constant. Consequently, they fit into the LQG control framework which has been applied so far.

Thus, the information at time index k which is available for the computation of control signals uk

reads as

Ik =

{

{(H1T̃ y0 + q0)}, k = 0,

{(H1T̃ y0 + q0), . . . , (H1T̃ yk + qk),u0, . . . ,uk−1}, k ∈ N,
(5.32)

10The final value of the cost function is actually found after 46901 iterations, but the refinement of the lower bound

for the optimal value needs the larger number of iterations.
11Assume that no subset can be excluded from the search. Then, due to the bisection in every iteration, it is necessary

to compute one upper bound (the other one can be taken from the original, unpartitioned set) and two lower bounds

for each of the two new sets. For the computation of each bound, the optimization problem (5.27) is solved one time.
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and the actual input signal for the dynamical system to be controlled as

ũk = G̃ (H2uk + nk) . (5.33)

The goal is now to jointly optimize the controller, i. e., the mapping from the information Ik
to the control signal uk, k ∈ N0, together with the transmit matrix T̃ and the receive matrix G̃.

It has been mentioned earlier that this problem is hard to solve in general, but that the restriction

to diagonal transmit and receive matrices allows for a systematic approach for channels without

distortions, i. e., for H1 = INy
and H2 = INu

, and diagonal channel noise covariance matrices. For

non-diagonal covariance matrices, we proposed an approach in Section 5.2.1 which is based on the

diagonalization of these matrices and thus reduces the more general case to the diagonal one. The

same idea will be applied in the following, where we derive the necessary transformations at the

transmitter and the receiver based on the solution of the optimal control problem for fixed matrices

T̃ and G̃.

For the sake of simplicity, we assume in the following that H1 has more rows than columns,

i. e., is tall, and that H2 has more columns than rows, i. e., is a wide matrix. This simplifies the

subsequent derivations and is motivated by a scenario where the largest amount of computational

complexity is represented by the controller and where the transmitter and receiver perform only

memoryless linear operations. Thus, it is justified to assume that a larger dimension of the channel

input and output signals can be handled at the controller and not at the input and the output of the

dynamical system. Finally, we make the assumption that H1 has full column rank, H2 has full

row rank, and that the number of columns of H1 is Ny whereas H2 has Nu rows in order to be

compatible with the dimensions of the dynamical system.

With the introduction of the channel matrices H1 and H2, the control problem (5.27) presented

in Section 5.2.1 becomes

minimize
T ,G,µ0,µ1,...

lim
N→∞

1

N
E

[

xT
NQNxN+

N−1
∑

n=0

[

xn

G̃H2un

]T[
Q S

ST R

][

xn

G̃H2un

]

]

+tr
[

RG̃CnG̃
T
]

(5.34)

subject to xk+1 = Axk +BG̃(H2uk + nk) +wk, k ∈ N0,

yk = Cxk + vk, k ∈ N0,

uk = µk(Ik), k ∈ N0,

Ik =

{

{(H1T̃ y0 + q0)},
{(H1T̃ y0 + q0), . . . , (H1T̃ yk + qk),u0, . . . ,uk−1},

k = 0,

k ∈ N,

T̃ = VTT
− 1

2 , T = diag [ti]
Ny

i=1 > 0Ny×Ny
,

G̃ = G
1

2VG, G = diag [gi]
Nu

i=1 > 0Nu×Nu
,

lim
N→∞

1

N
E

[

N−1
∑

n=0

xT
nC

TT̃ TT̃Cxn + vT
n T̃

TT̃ vn

]

≤ PTx,1,

lim
N→∞

1

N
E

[

N−1
∑

n=0

uT
nun

]

≤ PTx,2.

Note that the channel matrix H2 is included in the cost function of problem (5.34) since it affects

the actual input signal of the dynamical system. Additionally, the state equation and the expression
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for the information Ik which is available to the controller at time index k ∈ N0 are modified

according to Equations (5.33) and (5.32), respectively. Finally, the transmit matrix T̃ and receive

matrix G̃ are chosen to have the special structure

T̃ = VTT
− 1

2 and G̃ = G
1

2VG, (5.35)

respectively, where T and G are diagonal matrices with positive diagonal elements as in Equation

(5.26). This choice is analogous to the transmitter and receiver given by Equation (5.24). However,

the matrices VT and VG are not determined by the eigenvalue decompositions of the covariance

matrices Cq and Cn alone as in Section 5.2.1. In the following, we propose a specific choice which

effectively reduces the general channel model considered in this section to the one of Section 5.1.

For fixed transmit and receive matrices T̃ and G̃, i. e., without the optimization of the LQG

cost function w.r.t. the associated diagonal matrices T and G, the solution of optimization problem

(5.34) can be determined as in the preceding sections. More precisely, the dual function of the

problem (5.34) which has to be maximized w.r.t. the dual variables λ1 ≥ 0 and λ2 ≥ 0 reads as

(cf. Equation 5.28)

L∗ (T ,G, λ1, λ2) = tr
[

K
(

Cw +BG̃CnG̃
TBT

)]

+ tr [PCx̃] + λ1 tr
[

T̃CvT̃
T
]

+ tr
[

RG̃CnG̃
T
]

− λ1PTx,1 − λ2PTx,2.
(5.36)

As before, λ1 and λ2 are the dual variables associated with the power constraints P1 ≤ PTx,1 and

P2 ≤ PTx,2, respectively. In contrast to Section 5.2.1, the DAREs for the determination of K and

CP
x̃ are now given by12

K = ATKA−
(

ATKBG̃H2 + SG̃H2

)(

HT
2 G̃

T
(

BTKB +R
)

G̃H2 + λ2INH

)−1

×
(

HT
2 G̃

TBTKA+HT
2 G̃

TST
)

+Q+ λ1C
TT̃ TT̃C,

(5.37)

where NH ≥ Nu is the number of columns of H2 ∈ RNu×NH , and

CP
x̃ = A

(

CP
x̃ −CP

x̃C
TT̃ THT

1

(

H1T̃
(

CCP
x̃C

T+Cv

)

T̃ THT
1 +Cq

)−1

H1T̃CCP
x̃

)

AT

+Cw +BG̃CnG̃
TBT.

(5.38)

Analogously, the matrix P which depends on the solution of Equation (5.37) reads as

P = ATKA−K +Q+ λ1C
TT̃ TT̃C, whereas the covariance matrix Cx̃ of the state estima-

tion error is given by Cx̃ = CP
x̃−CP

x̃C
TT̃ THT

1

(

H1T̃
(

CCP
x̃C

T+Cv

)

T̃ THT
1+Cq

)−1
H1T̃CCP

x̃.

For the determination of the matrices VT and VG (see Equation 5.35) such that the general sce-

nario described above is reduced to the diagonal case discussed in Section 5.1, Equations (5.37)

12Note that we assumed that H2 is a wide matrix. Thus, the inverse in Equation (5.37) exists only for λ2 > 0, i. e.,

if the transmit power constraint of the control channel is active. This case can be assumed without loss of generality

because otherwise the solution K (and consequently P ) would not depend on G̃. In this case the value of the LQG

cost function would be minimized for vanishing values of G̃, i. e., by eliminating the effect of the control channel

noise (cf. Equation 5.36).
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and (5.38) are suitably rewritten. We begin with Equation (5.38), more precisely with the covari-

ance matrix Cx̃ of the state estimation error. With the assumption that Cq is invertible13, and by

the application of the matrix inversion lemma (see, e. g., [113]), the equation which determines Cx̃

also reads as

Cx̃ = CP
x̃ −CP

x̃C
TT̃ THT

1

(

H1T̃
(

CCP
x̃C

T +Cv

)

T̃ THT
1 +Cq

)−1

H1T̃CCP
x̃

= CP
x̃ −CP

x̃C
TT̃ THT

1

×
(

C−1
q −C−1

q H1T̃
(

(

CCP
x̃C

T +Cv

)−1
+ T̃ THT

1 C
−1
q H1T̃

)−1

T̃ THT
1 C

−1
q

)

×H1T̃CCP
x̃

= CP
x̃ −CP

x̃C
T

(

T̃ THT
1 C

−1
q H1T̃ − T̃ THT

1 C
−1
q H1T̃

×
(

(

CCP
x̃C

T +Cv

)−1
+ T̃ THT

1 C
−1
q H1T̃

)−1

T̃ THT
1 C

−1
q H1T̃

)

CCP
x̃.

(5.39)

With a second application of the matrix inversion lemma and by inserting the result in Equation

(5.38), we finally get

CP
x̃ = A

(

CP
x̃ −CP

x̃C
T

(

CCP
x̃C

T +Cv +
(

T̃ THT
1 C

−1
q H1T̃

)−1
)−1

CCP
x̃

)

AT

+Cw +BG̃CnG̃
TBT,

(5.40)

i. e., a DARE for the determination of the covariance matrix CP
x̃ where the effective channel noise

has the covariance matrix
(

T̃ THT
1 C

−1
q H1T̃

)−1
. Note that we assumed the invertibility of this

matrix which must be ensured by the choice of T̃ . Thus, following the same approach as in Section

5.2.1, the monotonic optimization approach for the determination of the diagonal matrix T shown

in Equation (5.35) can be applied if VT diagonalizes the matrix HT
1 C

−1
q H1.14 Consequently, we

use the orthonormal matrix

VT = UH1,q, (5.41)

which is determined by the eigenvalue decomposition

HT
1 C

−1
q H1 = UH1,qΛ

−1
H1,q

UT
H1,q

, (5.42)

where the diagonal matrix ΛH1,q contains the inverse of the eigenvalues of HT
1 C

−1
q H1. Note that

this notation has been chosen in order to be compatible with the results in Sections 5.1 and 5.2.1.

Additionally, due to the non-uniqueness of the eigenvalue decomposition w.r.t., e. g., a permutation

of the eigenvalues, the discussion from Section 5.1.3 concerning the channel assignment is also

relevant at this point.

The situation for the determination of the matrix VG is more involved. The simple reason is

that it has an influence on the LQG cost function through the state estimation error (see Equation

13This assumption has already been made earlier since a non-invertible covariance matrix would provide a noise

free sub-channel such that an arbitrary (positive) power constraint could be fulfilled.
14Since the authors of [110–112] consider communication systems which minimize the mean square error of the

transmitted data, they take into account the analogous matrix and diagonalize it by an eigenvalue decomposition.
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5.40) and additionally due to the modified input matrix of the dynamical system which is not B but

BG̃. This latter point is reflected by the DARE for the determination of the matrix K in Equation

(5.37). Paralleling the derivations in Equations (5.39) and (5.40), this DARE can be rewritten as

K = ATKA−
(

ATKB+S
)

(

BTKB+R+
(

λ−1
2 G̃H2H

T
2 G̃

T
)−1
)−1
(

BTKA+ST
)

+Q+ λ1C
TT̃ TT̃C,

(5.43)

where the assumption that λ2 > 0 is used.

Now we are in the position to propose a matrix VG such that the monotonic optimization

framework can be applied. The scenario which is considered in the present section is reduced

to the one from Section 5.1 if VG jointly diagonalizes the channel noise covariance matrix Cn

and the product H2H
T
2 by congruence, i. e., such that both VGCnV

T
G and VGH2H

T
2 V

T
G are

diagonal. The conditions which ensure that this is possible can be found in, e. g., [114, p. 229] and

hold in our case. The authors of [114] discuss this topic in detail and also provide a method for

the diagonalization. However, we propose an alternative procedure which hopefully contributes to

obtain some intuition about the relation between the properties of the channel matrix H2, the noise

covariance matrix Cn, and the resulting matrix VG. As a first step, the eigenvalue decomposition

of H2H
T
2 is computed, i. e.,

H2H
T
2 = UH2

ΛH2
UT

H2
, (5.44)

where the diagonal matrix ΛH2
contains the eigenvalues of H2H

T
2 which are strictly positive by

assumption. As a next step, the following eigenvalue decomposition is determined:

Λ
− 1

2

H2
UT

H2
CnUH2

Λ
− 1

2

H2
= UH2,nΛH2,nU

T
H2,n

, (5.45)

where the diagonal matrix ΛH2,n again contains the strictly positive eigenvalues. Since UH2,n is

orthonormal, it is easy to verify that the matrix

VG = UT
H2,n

Λ
− 1

2

H2
UT

H2
(5.46)

jointly diagonalizes H2H
T
2 and Cn by congruence, i. e.,

VGH2H
T
2 V

T
G = INu

and VGCnV
T
G = ΛH2,n. (5.47)

With the proposed choice of VT (see Equations 5.41 and 5.42) and VG (see Equations 5.46,

5.44 and 5.45), and together with the matrices T̃ and G̃ given by Equation (5.35), the DAREs

which have to be solved for the determination of the solution of optimization problem (5.34) read

as

K = ATKA−
(

ATKB + S
) (

BTKB +R + λ2G
−1
)−1 (

BTKA+ ST
)

+Q+ λ1C
TT−1C,

(5.48)

and

CP
x̃ = A

(

CP
x̃ −CP

x̃C
T
(

CCP
x̃C

T+Cv+TΛH1,q

)−1
CCP

x̃

)

AT +Cw +BGΛH2,nB
T, (5.49)
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with the associated matrix P = ATKA−K +Q+ λ1C
TT−1C and the error covariance matrix

Cx̃ = CP
x̃−CP

x̃C
T
(

CCP
x̃C

T+Cv+TΛH1,q

)−1
CCP

x̃. With these results, the dual function from

Equation (5.36) which is associated with problem (5.34) is finally given by

L∗ (T ,G, λ1, λ2) = tr
[

K
(

Cw +BGΛH2,nB
T
)]

+ tr [PCx̃] + λ1 tr
[

T−1Cv

]

+ tr [RGΛH2,n]− λ1PTx,1 − λ2PTx,2.
(5.50)

The problem described above has the same properties as the results shown Sections 5.1 and 5.2.1,

i. e., in Equations (5.8), (5.9) and (5.10) or (5.28), (5.29) and (5.30). Thus, the same approach as

before can be used for the determination of the optimizing diagonal matrices T and G.

Note that the structure of the transmit and receive matrices T̃ and G̃ given by Equation (5.35)

and the choice of VT and VG shown in Equations (5.41) and (5.46) can not be motivated by some

optimality criterion. The reason for these specific decisions is that they preserve the property of

monotonicity which can be used by the monotonic optimization approach introduced in Chapter

4. We have no answer to the question how the optimal transmit and receive matrices look like in

general and how much loss in performance has to be accepted due to the restricted structure of the

transmitters and the receivers which are considered in this thesis.

5.3 Feasibility and Achievable Transmit Powers

We conclude this section with the consideration of the feasibility question for the power con-

strained controller design with diagonal transmitters and receivers. An associated problem is the

determination of the set of feasible transmit power constraints. For the scalar case, this problem

has been treated in Sections 4.3.1 – 4.3.3. With fixed transmit and receive matrices T and G (or T̃

and G̃, respectively), the approach presented in Section 4.3.1 can be applied in order to determine

if a pair of power constraints, given by the values PTx,1 and PTx,2 of the available transmit powers,

can be fulfilled. Note that a slightly different formulation of the power constraints has been used

in Section 4.3.1, but the general approach stays the same. The remaining problem is to identify if a

pair of transmit and receive matrices exists such that the power constrained controller optimization

is feasible.

In Section 4.3.3, Pareto optimal values of the transmit powers for the observation and the

control channel have been determined. These values separate feasible from infeasible problems

since no transmit powers can be realized which are smaller than P1 for the observation channel

and at the same time smaller than P2 for the control channel if (P1, P2) is a Pareto optimal pair. On

the other hand, all inequality constraints which allow for a power larger than P1 for the observation

channel and at the same time for a power larger than P2 for the control channel can be fulfilled. In

order to determine the set of feasible power constraints for the case of diagonal transmitters and

receivers, we adapt the approach presented in Section 4.3.3.2 for the computation of Pareto optimal

pairs of transmit powers.15 Thus, the transmit power of one communication channel is minimized

while the power of the other channel is required to be smaller than a given value. To this end, recall

the optimization problem (4.40) for the determination of the minimal value of P1 subject to the

constraint that P2 ≤ PTx,2, where PTx,2 > 0 is the available transmit power for the control channel.

For the problem at hand, the powers P1 and P2 are given by Equation (5.4). Consequently, the

15Since the heuristic approaches proposed in Section 5.2 reduce to the optimization of diagonal transceivers for

channels with diagonal noise covariance matrices, only the latter case will be considered in the following.
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optimization problem to be solved reads as

minimize
T ,G,µ0,µ1,µ2...

P1 (5.51)

subject to xk+1 = Axk +BG
1

2 (uk + nk) +wk, k ∈ N0,

yk = Cxk + vk, k ∈ N0,

uk = µk(Ik), k ∈ N0,

Ik =

{

{(T− 1

2y0 + q0)},
{(T− 1

2y0 + q0), . . . , (T
− 1

2yk + qk),u0, . . . ,uk−1},
k = 0,

k ∈ N,

T = diag [ti]
Ny

i=1 > 0Ny×Ny
,

G = diag [gi]
Nu

i=1 > 0Nu×Nu
,

P2 ≤ PTx,2.

In Section 4.3.3.2, a reformulation of the system model has been used to demonstrate that if the

problem is feasible, the infimum of the transmit power of the observation channel subject to the

constrained power of the control channel is achieved if the transmit scaling factor t−1 goes to zero

and the receive scaling g grows towards infinity with a fixed ratio α = g−1t (see also Figure 4.6 and

Equation 4.28). Simply speaking, if the signal at the system input is amplified with an unbounded

scaling factor while the output signal is attenuated by a vanishing scalar, the channel noise se-

quences (qk : k ∈ N0) and (nk : k ∈ N0) become the dominant driving disturbances whereas the

impact of the process and observation noise (wk : k ∈ N0) and (vk : k ∈ N0) on the transmit pow-

ers becomes negligible. Thus, the infimal transmit powers are determined using the same system

model as for the optimization problem (5.51) but with vanishing process and observation noise.

The same line of argumentation also holds for the case of diagonal transmit and receiver ma-

trices, i. e., the solution of problem (5.51) provides optimizing matrices T and G with unbounded

diagonal elements. In order to see this, consider the optimization problem (5.6) and the dual func-

tion L∗ for fixed values of T and G which is given by Equation (5.8). For the problem (5.51), we

obtain the analogous function which is given by

L∗(T ,G, λ) = tr
[

K
(

Cw +BGCnB
T
)]

+ tr [PCx̃] + tr
[

T−1Cv

]

− λPTx,2, (5.52)

where λ ≥ 0 is the dual variable associated with the transmit power constraint. The matrix K is

the stabilizing solution of the DARE (cf. Equation 5.9)

K = ATKA−ATKB
(

BTKB + λG−1
)−1

BTKA+CTT−1C. (5.53)

With this solution, the matrix P is given by P = ATKA − K + CTT−1C. The covariance

matrix of the state estimation error Cx̃ = CP
x̃−CP

x̃C
T
(

CCP
x̃C

T +Cv + TCq

)−1
CCP

x̃ depends

on the stabilizing solution of the DARE (cf. Equation 5.10)

CP
x̃ = A

(

CP
x̃ −CP

x̃C
T
(

CCP
x̃C

T +Cv + TCq

)−1
CCP

x̃

)

AT +Cw +BGCnB
T. (5.54)

Note that a common scaling of T and G by a factor c > 0 leads to the inverse scaling of the

solution K from Equation (5.53) and the associated matrix P , i. e., K(cT , cG) = c−1K(T ,G)
and P (cT , cG)=c−1P (T ,G). Thus, the evaluation of L∗ at cT and cG results in

L∗(cT , cG, λ)=tr
[

c−1K
(

Cw+BcGCnB
T
)]

+tr
[

c−1PCx̃

]

+tr
[

c−1T−1Cv

]

−λPTx,2

=tr
[

K
(

c−1Cw+BGCnB
T
)]

+tr
[

PCx̃

]

+tr
[

T−1c−1Cv

]

−λPTx,2,
(5.55)



120 5. Joint Optimization of Controller and Diagonal Transceivers

where Cx̃ = c−1Cx̃ = CP
x̃ −CP

x̃C
T
(

CCP
x̃C

T + c−1Cv + TCq

)−1
CCP

x̃ which depends on

CP
x̃ = A

(

CP
x̃ −CP

x̃C
T
(

CCP
x̃C

T+ c−1Cv + TCq

)−1
CCP

x̃

)

AT+ c−1Cw +BGCnB
T. (5.56)

Together with the fact that a smaller noise variance results in a smaller state estimation error in

Equation (5.56), it can be seen that the value of the dual function in Equation (5.55) decreases

monotonically with increasing values of c for each T , G and λ. In the limit for c → ∞, Equation

(5.55) is the dual function for the optimization problem (5.51) with vanishing observation and

process noise. The corresponding optimal value is smaller than the one that can be achieved in any

scenario where these noise sequences are non-zero. Thus, the infimum of problem (5.51), if it is

feasible, is achieved for transmit and receive matrices T and G with unbounded diagonal elements.

One result of the discussion above is the unboundedness of the optimizing transmitter T and

receiver G when observation and process noise is present. A second one is the fact that if this

limiting case is considered or, equivalently, if Cw = 0Nx×Nx
and Cv = 0Ny×Ny

, the corresponding

optimization problem becomes invariant w.r.t. a common scaling of T and G. Thus, in order to

determine unique optimizing transmitters and receivers, it is necessary to keep an arbitrary diagonal

element of either T or G fixed, e. g., by setting it to one.16 Taking into account these results, the

infimal value of the transmit power in the observation channel subject to a power constraint for the

control channel is determined by the following optimization problem:

minimize
T ,G,µ0,µ1,µ2...

lim
N→∞

1

N
E

[

N−1
∑

n=0

xT
nC

TT−1Cxn

]

(5.57)

subject to xk+1 = Axk +BG
1

2 (uk + nk), k ∈ N0,

yk = Cxk, k ∈ N0,

uk = µk(Ik), k ∈ N0,

Ik =

{

{(T− 1

2y0 + q0)},
{(T− 1

2y0 + q0), . . . , (T
− 1

2yk + qk),u0, . . . ,uk−1},
k = 0,

k ∈ N,

T = diag [ti]
Ny

i=1 > 0Ny×Ny
,

G = diag [gi]
Nu

i=1 > 0Nu×Nu
,

t1 = 1,

lim
N→∞

1

N
E

[

N−1
∑

n=0

uT
nun

]

≤ PTx,2.

The choice of setting t1 = 1 is arbitrary, any other diagonal element could have been selected.17

Note that this additional constraint reduces the dimensionality of the optimization w.r.t. T and G

by one. This fact has already been observed in Section 4.3.3 where the optimization w.r.t. to the

transmit and receive scaling factors t and g reduced to the determination of the optimal ratio of

these factors.

16Setting a diagonal element of T or G to one corresponds to a normalization of all other diagonal elements w.r.t.

the selected one. The remaining optimization is then w.r.t. these normalized values. For example, in Section 4.3.2, the

scaling factor g has been set to one and the normalized value of t has been called α, see Equation (4.28).
17This is of course only true due to the assumption that T and G are invertible. Without this restriction, setting a

diagonal element of those matrices to one excludes a solution where the respective value is zero.
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For fixed transmit and receive matrices, the dual function of optimization problem (5.57) which

is obtained by the dualization of the transmit power constraint is (cf. Equation 5.52)

L∗(T ,G, λ) = tr
[

KBGCnB
T
]

+ tr [PCx̃]− λPTx,2, (5.58)

where K and P are determined using Equation (5.53) and Cx̃ is obtained with the solution of

Equation (5.54) where the covariance matrices Cv and Cw are set to zero. Note that one diagonal

element of T or G, e. g., the first diagonal element of T for optimization problem (5.57), has been

chosen to be fixed and is thus not an optimization variable. With the assumption that strong duality

holds, the solution of optimization problem (5.57) is determined by maximizing the concave dual

function L∗ w.r.t. λ ≥ 0. For the remaining optimization w.r.t. the positive diagonal elements of

T and G, the monotonic optimization approach which has been used in Section 5.1 can be read-

ily applied since the optimization problem (5.57) and the resulting dual function L∗ in Equation

(5.58) have the required monotonicity properties. Thus, the lower bound which has been derived

in Equations (5.14)–(5.16) is also applicable for the determination of the optimizing transmit and

receive matrices T and G using the monotonic optimization framework.

Analogous to the results shown in Figures 3.4, 4.8 and 4.13, the following example presents a

numerical evaluation of the optimization problem (5.57), i. e., Pareto optimal values of the transmit

powers for the case of diagonal transmit and receive matrices are determined.

Example 5.3.1 For the computation of Pareto optimal pairs of transmit powers, the system and

noise parameters from Example 3.1.1 are used. Since the covariance matrices Cq and Cn of the

channel noise sequences are not diagonal, the heuristic optimization approach presented in Section

5.2.1 is applied, i. e., the transmit and receive matrix is composed of an orthonormal matrix, which

effectively diagonalizes the covariance matrix of the channel noise, and a diagonal matrix T and

G, respectively (see Equations 5.24 and 5.25). Besides the controller, these diagonal matrices

which act on the so obtained channel with diagonal noise covariance matrices are the variables to

be optimized.

Figure 5.7 shows the SNRs which are obtained by solving the optimization problem

(5.57), where 11 values of the available transmit power PTx,2 are selected according to

10 log10
(

tr [Cn]
−1

PTx,2

)

∈ {0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50}. For the determination of the

optimizing transmit and receive matrices, Algorithm 4.2 is initialized with the set B which is ob-

tained by mapping the set [10−5, 105]3 to a subset of [0, 1]3 analogous to Equations (4.39), (4.55)

and (4.61), i. e., the diagonal elements of those matrices which are not fixed (cf. optimization prob-

lem 5.57) are constrained to be larger than 10−5 and smaller than 105. Despite the fact that a larger

set would be desirable for the determination of the global optimum, the reason for this choice is

the very slow convergence of the monotonic optimization algorithm for the problem at hand which

renders larger search spaces problematic. The subdivision rule for Algorithm 4.2 is again a bi-

section (in the image space of the mapping described above) of the largest side of the subsets of

B which are generated during the branching process. Finally, the desired relative accuracy of the

result is chosen to be ε = 10−2.

In order to compare the Pareto optimal transmit powers or SNRs, respectively, with the case

where transmitter and receiver are scaled identity matrices (see Section 4.3), the results presented

in Figures 4.8 and 4.13 are shown as a reference (solid line and shaded area). Since we observed a

strong dependence of the system performance and transmit powers on the channel assignment (cf.

Section 5.1.3) for the case of scalar transceivers, Pareto optimal pairs of transmit powers or SNRs,
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respectively, are computed for all of the four possible channel assignments. The corresponding

SNRs are depicted in Figure 5.7 by dashed lines. Note that the original assignment is not optimal

for almost all operating points and that significant gains are observed for a large range of SNRs.

The solutions of optimization problem (5.57) for diagonal transceivers are denoted by× in Fig-

ure 5.7. For a verification of these results, the power constrained power minimization is additionally

solved where the roles of P1 and P2 have been changed, i. e., the transmit power P2 is minimized

subject to the constraint P1 ≤ PTx,1. The corresponding results, where PTx,1 is chosen according

to 10 log10
(

tr
[

Cq

]−1
PTx,1

)

∈{0, 5, 10, 15, 20, 25, 27.5, 30, 35, 40, 45, 50, 55}, are denoted by • in

Figure 5.7. It can be seen that the region of feasible power or SNR constraints becomes larger for

the optimal choice of diagonal transceivers compared to the case of scalar transceivers, but the

gains are relatively small for medium to large values of the SNR ϕ2 = tr [Cn]
−1

P2 of the control

channel. Note that we do not consider a permutation of the eigenvalues in Λq and Λn given by

Equation (5.31) (see also Equation 5.25) which is analogous to the problem of the optimal channel

assignment.
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Figure 5.7: Pareto optimal values of SNRs determined by optimization problem (5.57) (denoted by ×).

Results of an analogous optimization where the roles of P1 and P2 are exchanged are denoted by •. The

shaded region is taken from Figures 4.8 and 4.10. The SNRs ϕ1 and ϕ2 are defined in Equation (3.17).

For the computation of the optimizing diagonal matrices T and G, problem (5.57) (or the anal-

ogous problem where the roles of P1 and P2 are swapped) is solved, i. e., the first diagonal element

t1 of T is set to the constant value one. Only for the minimization of P1 subject to the constraint

10 log10
(

tr [Cn]
−1

P2

)

≤ 0 the second diagonal element g2 of G is set to the value one which re-

sults in a better relative accuracy after 500000 iterations of the branch and bound algorithm. Note

that the desired relative accuracy of ε = 10−2 is not achieved after 500000 iterations of Algorithm

4.2 for any result with 10 log10 (ϕ1) ≥ 45, where ϕ1 = tr
[

Cq

]−1
P1. The other results are obtained

with the required accuracy after 6653 to 246207 iterations. For the two solutions of optimization

problem (5.57) with a power constraint of 10 log10
(

tr [Cn]
−1

PTx,2

)

∈ {0, 5}, the relative accuracy

after 500000 iterations is approximately 0.6, which means that the obtained solutions exceed the

optimal value by a factor of 2.5 in the worst case. Unfortunately, although supported by these two

solutions, the other mentioned results do not show an acceptable accuracy.
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In Example 5.3.1 above, the set for the search of each diagonal element of T and G is chosen

to be [10−5, 105]. This limitation is due to slow and in some cases unsatisfactory convergence of the

monotonic optimization algorithm, e. g., for large values of the transmit power of the observation

channel. Nevertheless, the obtained results suggest that not all subspaces of the communication

channels are used for the transmission of system outputs and control inputs in order to obtain

Pareto optimal values of transmit powers. This observation is discussed in the following example.

Example 5.3.2 Consider the matrices T and G which are computed in Example 5.3.1 by

Algorithm 4.2 for the optimization problem (5.57) with a power constraint according to

10 log10
(

tr [Cn]
−1

PTx,2

)

= 50, the initial set B = [10−5, 105]3 and the required accuracy

ε = 10−2. Since the first diagonal element of T is set to the constant value one, the resulting

matrices read as

T ≈ diag
[

1, 105
]

and G ≈ diag
[

1.722 · 10−3, 4.547 · 10−3
]

. (5.59)

The eigenvalue decompositions which are needed for the determination of the actual transmit and

receive matrices T̃ and G̃ (see Equations 5.24 and 5.25) are again computed with an increasing

order of the eigenvalues, i. e., the diagonalized noise covariance matrices read as

Λq ≈ diag [0.4807, 1.019] and Λn ≈ diag [0.05279, 0.9472] . (5.60)

Noting that the transmitter uses the inverse of T
1

2 for a diagonal scaling of transmit signals (see

Equation 5.24), it can be seen that the power which corresponds to the larger eigenvalue of the

covariance matrix Cq is attenuated significantly compared to the transmit power for the channel

which is associated with the smaller eigenvalue. This is also true for the actual transmit powers

since the (asymptotic) covariance matrix of the system output yk, k ∈ N0, of the optimization

problem (5.57) is given by (note that the covariance matrix of the observation noise is Cv = 02×2)

Cy = CCxC
T +Cv ≈

[

1.727 0.8041
0.8041 1.273

]

,

i. e., the variances of the scalar components of the system output, which are the signals to be

transmitted, have the same order of magnitude.18 Consequently, the covariance matrix of the signal

which is transmitted over the effective channel with diagonalized noise covariance matrix reads as

T− 1

2CyT
− 1

2 ≈
[

1.727 0.002543
0.002543 1.273 · 10−5

]

.

This suggests that only one of the two dimensions which are provided by the observation channel

is effectively used and that the second diagonal element of the transmit matrix T is only bounded19

from above due to the restricted search interval of the monotonic optimization algorithm.

With the conjecture that the optimal transmitter only uses the subspace of the observation

channel which is associated with the smaller eigenvalue of the noise covariance matrix Cq, it is

18For the determination of the covariance matrix Cy, the transmit and receiver matrices T̃ = UqT
− 1

2 and

G̃ = G
1

2UT
n (cf. Equation 5.24), where T and G are given by Equation (5.59), of course have to be taken into

account in the model of the closed loop system.
19Taking into account the normalization w.r.t. the first diagonal element of T , the case that the second diagonal

element of T goes to infinity means that the inverse scaling of the corresponding signal to be transmitted goes to zero,

i. e., this component of the transmit signal is switched off.
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straightforward to modify the system model used in optimization problem (5.57) accordingly. Due

to the fixed value of the first diagonal element of T , the transmitter T̃ becomes (cf. Equation 5.24)

T̃ = Uqe
(2)
1 e

(2),T
1 . (5.61)

Note that this matrix is not invertible, which makes it necessary to formulate the optimization

problem for the determination of Pareto optimal transmit powers analogous to problem (5.27).

Since the transmitter in Equation (5.61) is constant, the solution of optimization problem (5.57)

has only to be determined w.r.t. the controller and the diagonal matrix G at the receiver. To this end,

Algorithm 4.2 is applied with the initial set B which is obtained by mapping the set [10−10, 1010]2

to a subset of [0, 1]2 analogous to Equation (4.61) for the two variables of the diagonal elements

of G. The desired relative accuracy is ε = 10−3 and the subdivision rule is again bisection. The

resulting receiver matrix is obtained after 823 iterations and given by

G ≈ diag
[

1.651 · 10−3, 4.599 · 10−3
]

, (5.62)

which is very close to the result determined by the full optimization of the transmit-

ter and the receiver shown in Equation (5.59). Using the same power constraint, given by

10 log10
(

tr [Cn]
−1

PTx,2

)

= 50, the value of P1 which is achieved by the transmit and receive

matrices in Equation (5.59), i. e., with T̃ = UqT
− 1

2 and G̃ = G
1

2UT
n , is P1 ≈ 1.7267. The respec-

tive result for the fixed transmitter from Equation (5.61) and the receiver matrix G from Equation

(5.62) is given by P1 ≈ 1.7265, where we have to keep in mind that the latter value is obtained

using a larger set for the search of the optimal receiver and a desired relative accuracy of ε = 10−3.

Having noticed that (almost) identical results are achieved for the computation of Pareto

optimal transmit powers if one dimension of the observation channel is not used, the next

step is to determine more of such transmit powers under the restriction that the transmitter

T̃ is given by Equation (5.61). To this end, 80 values of PTx,2 are sampled in the interval

10 log10
(

tr [Cn]
−1

PTx,2

)

∈ [14.098, 79] and the transmit powers P1 of the observation channel

for the corresponding power constraints are determined. The results are shown in Figure 5.8 by

the dashed line. As before, the initial set for the branch and bound algorithm is chosen to be

[10−10, 1010], but the desired relative accuracy now is ε = 10−2.

It can be observed that the results for the fixed transmitter which uses only one of the two

dimensions of the observation channel (see Equation 5.61) coincide over a large range of SNRs

with the results where this restriction is not imposed. Nevertheless, the SNR of the control channel

can not be decreased below 10 log10
(

tr [Cn]
−1

P2

)

≈ 14.098, which demonstrates that the chosen

transmitter is not optimal for all possible transmit power constraints. However, an optimization

problem analogous to the one investigated so far suggests similar properties of the transmitter and

receiver for the case of smaller values of P2, i. e., the power for the control channel.

Consider the problem of minimizing the transmit power P2 with a constraint for the power P1

w.r.t. the controller, the diagonal transmitter T and receiver G.20 The application of the mono-

tonic optimization algorithm to this minimization problem with a power constraint according to

10 log10
(

tr
[

Cq

]−1
PTx,1

)

= 40 and where, in contrast to the case considered above, the first di-

agonal element of G is fixed to be one provides the value P1 ≈ 12.543. The associated diagonal

20For the minimization, an optimization problem analogous to problem (5.57) is formulated where the roles of

P1 and P2 are exchanged and P1 is constrained by the value of PTx,1. Additionally, since we consider the case of

non-diagonal noise covariance matrices, the system model of Section 5.2.1 is used.
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Figure 5.8: Pareto optimal values of SNRs ϕ1 and ϕ2 (see Equation 3.17) determined by switching off the

second component of the transmit signal in the observation channel (dashed line) and the receive signal in

the control channel (dotted line). For a comparison, the results shown in Figure 5.7 (no signal switched off,

• and ×) are also shown.

transmit and receive matrices read as

T ≈ diag [0.4884, 0.1730] and G ≈ diag
[

1, 9.875 · 10−4
]

.

The initial set for the monotonic optimization is chosen to be B = [10−5, 105]3 and the solution has

the relative accuracy of ε = 10−2. Increasing the desired accuracy to ε = 10−3 slightly changes

the result to

T ≈ diag [0.4868, 0.1700] and G ≈ diag
[

1, 1.321 · 10−4
]

, (5.63)

which leads to the transmit power P1 ≈ 12.529. This suggests that the second diagonal element

of G is driven towards zero and thus only the subspace of the channel which is associated with

the smaller eigenvalue of Cn is used for the transmission of control signals to the system input. In

order to emphasize this suggestion, note that the covariance matrix of the signal which is applied

to the input of the dynamical system to be controlled reads as

G
1

2UT
n

(

LCx̂L
T +Cn

)

UnG
1

2 ≈
[

12.53 0.001171
0.001171 1.122 · 10−7

]

+G
1

2ΛnG
1

2 ,

where the transmitter and receiver with the diagonal matrices from Equation (5.63) are used and

where Λn is given in Equation (5.60). It can be seen that the controller puts much more weight on

the first component of the signal which is fed into the system than on the second such that the latter

one is dominated by the channel noise. Thus, it seems to be reasonable to switch off the second

component of the system input by setting G = diag [1, 0] which results in the fixed receiver (cf.

Equation 5.24)

G̃ = e
(2)
1 e

(2),T
1 UT

n . (5.64)

The minimization of the transmit power P2 subject to the constraint P1 ≤ PTx,1 now has to be

performed w.r.t. to the controller and the diagonal matrix T at the transmitter. This optimization
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problem can again be solved using the branch and bound approach given by Algorithm 4.2. With

the initial set B = [10−10, 1010]2 and a desired relative accuracy of ε = 10−3, the transmit power

P1 ≈ 12.527 and the associated transmitter

T ≈ diag [0.4873, 0.1700]

are obtained. This solution is almost identical to the respective transmit matrix in Equation (5.63)

which has been computed without the assumption that the second diagonal element of G is zero.

For a comparison with previous results, the minimization of P2 subject to the requirement

that the transmit power P1 does not exceed PTx,1 is solved using the fixed transmitter given

in Equation (5.64). For the power constraint, 95 values of PTx,1 are sampled from the interval

10 log10
(

tr
[

Cq

]−1
PTx,1

)

∈ [21.93, 79]. The initial set of the branch and bound algorithm is again

B = [10−10, 1010]2 and the desired accuracy is chosen to be ε = 10−2. The resulting transmit

powers or SNRs, respectively, are depicted in Figure 5.8 by the dotted line. Note that SNRs below

the value of 10 log10
(

tr
[

Cq

]−1
PTx,1

)

≈ 21.93 are not feasible with the specific choice of the

receiver from Equation (5.64).

Example 5.3.2 above demonstrates that the assumption of invertible transmit and receive matri-

ces T and G (or T̃ and G̃, respectively) is too restrictive in general. It has already been mentioned

in Section 5.1 that the additional power which is required to transmit, e. g., a two-dimensional

instead of a scalar signal, and the additional channel noise which is fed into the closed control

loop may lead to the fact that the optimal transceivers do not use all available degrees of freedom

of the communication channels. In this case, it is optimal to allocate all available communication

resources, i. e., transmit power, to a lower dimensional subspace of the channel. Unfortunately, a

systematic answer to the question when this behavior can be observed is not available. The exam-

ple above suggests that for very low transmit powers of the observation and the control channel,

only the subspace which corresponds to the smallest eigenvalue of the respective noise covariance

matrix is actually used for the transmission of observations or control signals. However, also the

assignment of the scalar components of the control and observation channels to the individual in-

puts and outputs of the dynamical system to be controlled is of importance (see Section 5.1.3 and

Example 5.2.2). This fact is not taken into account for any result presented in Examples 5.2.3, 5.3.1

and 5.3.2 where the assignment is determined by computing the eigenvalue decomposition of the

covariance matrices of the channel noise sequences with an ascending order of the eigenvalues.

The question if this is the optimal allocation remains open at this point.

5.4 Discussion

In Chapter 4, the transceivers have been chosen to be scaled identity matrices. The degrees of

freedom provided by the scaling of transmit and receive signals have only impact on the transmit

powers or, taking a different perspective, the variances of the channel noise sequences. While this

is the only possibility to affect the transmit signals in scenarios with Single-Input Single-Output

(SISO), i. e., scalar, communication channels, the Multiple-Input Multiple-Output (MIMO) chan-

nel models considered here allow for the application of general transmitter and receiver matrices

at the output and the input of the dynamical system to be controlled. Consequently, within the

class of linear memoryless transceiver schemes, the goal is to determine the optimal transmitter

and receiver matrices and not only scaling factors.
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A first step towards this direction has been taken in the present chapter with the optimization

of diagonal transmitters and receivers when the channel noise covariance matrices are diagonal.

For the general case of non-diagonal covariance matrices, a heuristic has been proposed which is

based on the diagonalization of these matrices and motivated by solutions developed in the area of

signal processing and communication, e. g., [110–112], for a pure communication setting without a

closed control loop. Unfortunately, those approaches can not be adapted in a straightforward way to

the closed loop control scenario. For a pure communication setting, the transmitter and the receiver

are designed to minimize a given cost function, e. g., the mean square error, subject to a transmit

power constraint. For the LQG control setting, the design goal for, e. g., a transmitter at the system

output, is to minimize the state estimation error, which is one contribution to the LQG cost function

(see, e. g., Appendix A6.3, Summary A6.2), subject to a power constraint. A first problem is that

the power constraint is associated with the covariance matrix of the system state whereas the state

estimation error is associated with the covariance matrix of the innovation sequence computed by

the Kalman filter. These two matrices are related to each other by the solution of a DARE and a

discrete Lyapunov equation (cf. Equations 3.6, 3.7 and 3.13 – 3.15), which makes the consideration

of this relation challenging. The second problem is the common scenario that the dimension of

the system state is larger than the dimension of the communication channel, which violates the

assumptions of [110, 111]. Finally, the solutions presented there use transceivers which are based

on a diagonalization of the covariance matrix of the transmit signal. However, in a closed control

loop, the covariance matrix of the system state depends on the actual transmit and receive matrix

and thus can not be diagonalized independently to the transceiver design.21

For the case of diagonal covariance matrices of the observation and control channel noise se-

quences, the approach for the joint optimization of controller and transceivers presented in Chapter

4 could be extended to diagonal transmit and receive matrices in a straightforward way. The rea-

son is that the monotonicity properties required by the monotonic optimization algorithm still hold

for diagonal transceivers in combination with diagonal noise covariance matrices. However, it has

been demonstrated in Section 5.1.3 that the assumption of unequal variances of the scalar com-

ponents of the channel noise sequences leads to the unsurprising fact that the assignment of the

components of input and output signals of the dynamical system to be controlled to the scalar com-

ponents of the communication channels has a significant impact on the closed loop behavior, e. g.,

the transmit powers or the LQG cost function. This problem is not covered by diagonal transmit

and receive matrices. Unfortunately, an approach for the determination of the optimal permutation

of the scalar components of the communication channels is not available. Nevertheless, Example

5.1.2 showed that the impact of the channel assignment on the closed loop performance can be

compensated up to a certain degree by the optimal choice of the diagonal transmitter and receiver,

which is not the case for the optimal scalar transceivers.

In Section 5.2, two generalizations of the optimization of diagonal transceivers to the case of

non-diagonal channel noise covariances and to communication channels with linear distortions

have been proposed. To summarize, both approaches aim at a diagonalization of the communica-

tion channels and the associated noise covariance matrix. Once this goal is achieved, the problem

of the joint optimization of controller and diagonal transceivers can be solved using the approach

presented in Section 5.1. This means that the joint design of the control and the communication

system is separated at this point. As a first step, a set of independent scalar communication channels

21Note further that the sequences which are transmitted in the closed control loop are temporally correlated in

general, which can not be handled by memoryless transceivers. If not the control but the estimation problem alone is

considered, the results of [115] can be applied which are also derived in [116] using a different approach.
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is provided by the diagonalization of the available, non-diagonal channels. The joint optimization

of diagonal transceivers and the controller subject to power constraints is performed subsequently.

However, we do not claim that this separation is optimal. Finally, note that the authors of [117]

investigate the case of parallel Gaussian communication channels, i. e., the scenario considered in

Section 5.1, where only the control channel is modeled as an additive noise channel and where

the state of the dynamical system to be controlled is available for the design of the controller, or

encoder and decoder, respectively. They derive bounds for the stabilizability of the system under

power constraints and investigate a more general class of controller, transmitter and receiver than

in this thesis. However, this requires the knowledge of the system state and no results beyond

stabilizability are available.

The dependence of properties of the transmitted signals on the transceivers which are used

for their transmission makes it hard to find solutions which are jointly optimal together with the

controller. Even the simple case with scalar transceivers is not easy to solve. Note that the authors

of [50] analyzed the impact of a matrix transmitter for packet drop channels (cf. Section 2.1.2). But

despite the fact that the state estimation problem alone is considered, i. e., no closed loop system is

investigated, no systematic design procedure could be derived due to the problem structure. Thus,

the joint optimal design of controller and transceivers remains a challenging task.



6. Results for SISO Systems With One Communication

Channel

Throughout this thesis, a general system model with Multiple-Input Multiple-Output (MIMO) Lin-

ear Time-Invariant (LTI) systems and Additive White Gaussian Noise (AWGN) communication

channels has been investigated. Additionally, both links which connect the dynamical system to

be controlled with the controller have been modeled as communication channels with transmit

power or, effectively, Signal to Noise Ratio (SNR) constraints, which models a spatial separation

of controller and dynamical system. The resulting optimization problems allowed for numerical

solution approaches, but their properties prevented an analytical investigation, e. g., the region of

feasible transmit powers could only be determined numerically. Nevertheless, the related literature

on Networked Control Systems (NCSs), e. g., [29, 35, 46, 53, 59, 85–87, 106, 107, 118], provides

analytical results, like the relation of minimal transmit power (or SNR) to the unstable eigenvalues

of the system matrix A.

All references mentioned above have in common that they consider Single-Input Single-Output

(SISO) systems, i. e., dynamical systems with scalar input and output signals, and only one commu-

nication channel in the control loop. This allows for a concentration on the impact of the channel

on the control system without the coupling of the two different channels.1 A second advantage

of the SISO model is that the only parameter which describes the properties of a channel noise

sequence is its variance and not a covariance matrix. Thus, the channel noise can not have a differ-

ent impact on different subspaces of the transmit signals since all these signals are of dimension

one. Nevertheless, the problem formulation and the insights from the preceding chapters provide

valuable tools for a unified treatment of the scenarios with SISO systems and one communication

channel. Using these tools, existing results are reproduced in a different context in the following.

6.1 Ideal Observation Channel

An ideal observation channel describes the situation where the observations which are obtained

at the system output can be transmitted to the controller without any error, i. e., where the input

and the output signal of the observation channel are identical. In the limit for t→ 0, this situation

is a special case of the system model which has been used so far because the channel noise is

effectively scaled down to zero (cf. Figure 4.2). Consequently, all preceding results from Chapter

4 can be applied to the scenario where the observations obtained at the output of the dynamical

system are transmitted over an ideal communication channel to the controller, provided that there

is no power constraint for the corresponding channel or that the available transmit power PTx,1 is

set to infinity.

Figure 6.1 depicts the scenario with an ideal observation channel, where the special case of a

SISO system is considered, i. e., where the dimension of the system input and output is equal to

1For example, a decrease of the available transmit power for the control signal typically leads to an increased

variance of the system state and thus an increased demand for communication resources for the transmission of the

system output signal to the controller.
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one and thus yk and uk, k ∈ N0, are scalars. Consequently, the system input vector b and output

vector c are elements of RNx . A similar situation for the MIMO case has already been investigated

in Section 4.3.3.2 and is depicted in Figure 4.11. By comparison, the model which is considered

in Figure 6.1 is a special case with Cq = 0Ny×Ny
, Ny = Nu = 1 and t = 1, which leads to the

equivalence α−1 = g (cf. Equation 4.28).

A

b cT

wk vk

nk

xk

uk

yk

Controller µk

T

g
1

2

Figure 6.1: Model of the control loop which is closed over one channel with additive noise nk. At the system

input, the receive scaling g
1

2 is introduced.

Since it is has been shown in the preceding chapters how to jointly optimize the controller and

the transmitter with a power constrained Linear Quadratic Gaussian (LQG) approach, which is

also possible for the special case with t = 1 and Cq = 0Ny×Ny
when Ny = 1, we address again

the feasibility problem. More precisely, we want to determine the smallest value of the available

transmit power PTx,2 such that optimization problem (4.10) is feasible for the special case consid-

ered here. To this end, the feasibility test described in Section 4.3.1 is applied. Note that a power

constraint for the ideal observation channel does not make sense at this point because it is either

implicitly assumed that an infinite amount of power is available or, because no channel noise is

present, any positive value of transmit power can be achieved by an appropriate scaling of the

transmit signal yk, k ∈ N0. Thus, the Lagrange multiplier λ1 (cf. Equation 4.22) which is associ-

ated with the power constraint for the observation channel is set to zero. Additionally, in order to

simplify the derivations, the transmit power constraints are not multiplied with the corresponding

transmit and receive scaling factor, which provides the Lagrangian for the feasibility problem (cf.

Equation 4.22)

Lfeas = λ2(P2 − PTx,2), (6.1)

where the transmit power P2 is given by Equation (4.9) and we set λ1 = 0. Consequently, the dual

function (cf. Equation 4.23) for the feasibility test reads as

L∗
feas(λ2) = tr

[

K
(

Cw + gbcnb
T
)]

+ tr [PCx̃]− λ2PTx,2, (6.2)

where

K = ATKA− g
1

2ATKb
(

gbTKb+ λ2

)−1
g

1

2bTKA

= ATKA−ATKb
(

bTKb+ g−1λ2

)−1
bTKA

(6.3)

and

CP
x̃ = A

(

CP
x̃ −CP

x̃c
(

cTCP
x̃c+ cv

)−1
cTCP

x̃

)

AT +Cw + gbcnb
T. (6.4)

Additionally, we have P = ATKA −K and Cx̃ = CP
x̃ − CP

x̃c
(

cTCP
x̃c + cv

)−1
cTCP

x̃. For the

feasibility test in Section 4.3.1, the Lagrangian is maximized w.r.t. λ1 ≥ 0 and λ2 ≥ 0 in order
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to determine if the power constraints can be satisfied, where additionally the sum of the Lagrange

multipliers is required to be equal to one. The latter constraint ensures that the dual function does

not grow towards infinity (or zero) by a positive scaling of λ1 and λ2. Since in the present scenario

we have λ1 = 0, this constraint determines the value of λ2 to be one and a maximization of the

dual function (cf. optimization problem 4.26) is not necessary. Thus we are interested in the sign

of L∗
feas(1) which tells us if the minimal value of the difference P2−PTx,2 can be negative and thus

the power constraints can be fulfilled.

In order to analyze L∗
feas(1), note that the solution of the Discrete Algebraic Riccati Equation

(DARE) in Equation (6.3) is a scaled version of

K = ATKA−ATKb
(

bTKb+ 1
)−1

bTKA, (6.5)

were K = g−1λ2K. Using this identity, we get

L∗
feas(1) = tr

[

K
(

g−1Cw + bcnb
T
)]

+ tr
[

P Cx̃

]

− PTx,2, (6.6)

where P = gλ−1
2 P and Cx̃ = CP

x̃ −CP
x̃c
(

cTCP
x̃c+ g−1cv

)−1

cTCP
x̃ with

CP
x̃ = A

(

CP
x̃ −CP

x̃c
(

cTCP
x̃c+ g−1cv

)−1

cTCP
x̃

)

AT + g−1Cw + bcnb
T. (6.7)

Since the first two summands of L∗
feas(1) represent the actual transmit power P2, the available

transmit power PTx,2 has to be larger than this sum, otherwise there exists no LQG controller

which fulfills the power constraint.

Note that the preceding discussion is valid for a given value of g, where this scaling factor is still

a degree of freedom which is used to determine a feasible solution. Thus, if we are interested in the

smallest possible value of PTx,2 such that L∗
feas(1) (cf. Equation 6.6) is non-positive, we have to find

the value of g which minimizes the sum tr
[

K
(

g−1Cw + bcnb
T
)]

+tr
[

P Cx̃

]

, which is identical

to the actual transmit power P2. Fortunately, it is easy to verify that L∗
feas(1) is a monotonically

decreasing function of g because an increase of g corresponds to a decrease of the variance of the

driving noise process, given by the scaled covariance matrix g−1Cw, and of the observation noise,

given by g−1cv (see Equations 6.6 and 6.7). Consequently, the infimal value of P2 which can be

approached arbitrarily close for g → ∞ determines the lower bound for PTx,2, i. e., in order to

ensure feasibility of the power constrained LQG controller optimization, for λ2 = 1 it must hold

that (cf. Equation 6.6)

PTx,2 > tr
[

Kbcnb
T
]

+ tr
[

P Cx̃

]

, (6.8)

with the asymptotic estimation error covariance matrix Cx̃ = CP
x̃ − CP

x̃c
(

cTCP
x̃c
)−1

cTCP
x̃ and

the corresponding DARE

CP
x̃ = A

(

CP
x̃ −CP

x̃c
(

cTCP
x̃c
)−1

cTCP
x̃

)

AT + bcnb
T. (6.9)

The dependence of the first summand of the right hand side of Equation (6.8) on the eigenvalues

of the system matrix A can now be made explicit. It has been shown in [62] and [29] that for the

DARE in Equation (6.5) it holds

bTKb+ 1 =
∏

|σi|>1
|σi|2 , (6.10)
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where σi, i ∈ {1, 2, . . . , Nx}, are the eigenvalues of the system matrix A. Inserting Equation (6.10)

in (6.8) results in the inequality

PTx,2 >

((

∏

|σi|>1
|σi|2

)

− 1

)

cn + tr
[

P Cx̃

]

. (6.11)

The first summand of the right hand side of Equation (6.11) is a well known result which provides

the infimal value of the transmit power (or SNR when divided by the variance cn of the channel

noise) which has to be provided to stabilize an open loop unstable dynamical system over an

additive noise channel.2 The second summand which increases this value is also known, but in

a different representation and with a different interpretation. In [29], this summand is absent if

the controller has perfect information about the system state (the state feedback case) whereas it

is a function of the relative degree and the non-minimum phase zeros of the open loop transfer

function of the system to be stabilized (given by A, b and c) in the output feedback case, i. e., if

the controller has only knowledge about yk, k ∈ N0.

The absence of the second summand of the right hand side of Equation (6.11) is obvious for the

state feedback case because the estimation error of the system state is zero if the state is known. For

the output feedback case, the relative degree and the non-minimum phase zeros of the dynamical

system have to be interpreted in terms of the resulting state estimation error. At this point, we

only provide a qualitative discussion, the quantitative description can be found in [29]. Assume

that the dynamical system to be controlled is minimum phase and has relative degree one, i. e., all

zeros of its corresponding transfer function have a magnitude less than one and the degree of its

denominator is greater than the degree of numerator by one. Using Equation (6.9), it is easy to

verify that

CP
x̃ = bcnb

T (6.12)

is a positive semidefinite solution of the corresponding DARE if cTb 6= 0, which holds because

the relative degree of the system is assumed to be one (see, e. g., [32, p. 93]). With the minimum

phase assumption, it is a stabilizing solution, i. e., the magnitude of all eigenvalues of

AT − c
(

cTCP
x̃c
)−1

cTCP
x̃A

T = AT − c
(

cTb
)−1

bTAT (6.13)

is less than one. It is shown in [119] that the eigenvalues of the matrix in Equation (6.13) are the

zeros of the open loop transfer function of the system under consideration, which have a magnitude

less than one by assumption.3 Having shown that the covariance matrix in Equation (6.12) is the

positive semidefinite stabilizing solution of the DARE in Equation (6.9), it can be seen that the

resulting covariance matrix of the state estimation error is zero, i. e., Cx̃ = 0Nx×Nx
, and the second

summand of the right hand size of Equation (6.11) is also zero.

The result above allows for a more intuitive interpretation. If the dynamical system to be con-

trolled is minimum phase, it can be inverted using a stable system. Consequently, with the ideal

2The authors of [29] provide a remark for the case when A has eigenvalues with magnitude one. These eigenvalues

obviously do not contribute to Equation (6.10) but still have to be stabilized. Nevertheless, this can be established with

an arbitrarily small increase of transmit power.
3The eigenvalues of the matrix in Equation (6.13) correspond to the zeros of the transfer function for the system

described by AT, the system input vector c and the output vector b. Since this system has the same transfer function

as the original one, the above statement is correct. Additionally, it is shown in [120] that a stabilizing controller gain

for this situation is given by lT = −
(

bTc
)−1

bTAT, which provides the stable closed loop matrix AT + clT =

AT − c
(

cTb
)−1

bTAT.
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knowledge of the system output sequence (yk : k ∈ N0), its input sequence which is the scaled

sum of (uk : k ∈ N0) and (nk : k ∈ N0) can be reconstructed after the transient phase. Due to the

relative degree of one, a one step delay has to be introduced for a causal inversion. Now, with

the knowledge of the system input4, the decay of the influence of the initial state (the closed loop

system is stable) and the absence of process noise (since we are considering the asymptotic case

for g → ∞), the system state can be estimated asymptotically with no error. This interpretation

also shows why the estimation error grows with the relative degree and for non-minimum phase

systems. In the minimum phase case, the increase of the relative degree results in an additional

delay for the state estimate, which increases the estimation error. Non-minimum phase systems

can not be stably inverted and thus their input sequence (precisely, the channel noise which is fed

into the system) can not be perfectly reconstructed, which also leads to an increase of the state

estimation error.

6.2 Ideal Control Channel

For the second scenario which takes into account only one communication channel in the closed

control loop, it is assumed that the control signal is transmitted to the input of the dynamical

system to be controlled over an ideal channel, e. g., when the controller is spatially very close

to the system input. As in Section 6.1, this is a special case of the general scenario considered

in Chapter 4 if no power constraint is taken into account for the control channel, i. e., if PTx,2 is

arbitrarily large. With no power constraint, the receive scaling factor g in the control channel can

be chosen arbitrarily small which effectively results in a vanishing effect of the corresponding

channel noise on the closed loop system. A second point of view is the case where the channel

noise is zero, i. e., Cn = 0Nu×Nu
. In this case, a transmit power constraint is meaningless since it

can be set to any positive value by the appropriate choice of g. Note that this is a special case of

the scenario considered in Section 4.3.2 (cf. Figure 4.6). Using Cn = 0Nu×Nu
with Ny = Nu = 1

there, the fixed value of g = 1 and the resulting identity α = t (cf. Equation 4.28) lead to the

scenario depicted in Figure 6.2. Consequently, the results which have been derived earlier also

apply to this special case.

A

b c

wk vk

qk

xk

uk

yk

Controller µk

T

t−
1

2

Figure 6.2: Model of the control loop which is closed over one channel with additive noise qk. At the system

output, the transmit scaling t−
1

2 is introduced.

For the investigation of the feasibility problem with the ideal control channel, i. e., the deter-

mination of the smallest value of the available transmit power PTx,1 which has to be provided such

that a power constrained LQG controller exists, we parallel Section 6.1 to a large extent. Using

4Due to the one step delay, the system input g
1

2 (uk−1+nk−1) can be reconstructed at time index k. In the noiseless

case, this corresponds to the knowledge of the system state xk = Axk−1 + bg
1

2 (uk−1 + nk−1).
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again the approach presented in Section 4.3.1, the Lagrangian for the feasibility test reads as (cf.

Equation 6.1):

Lfeas = λ1 (P1 − PTx,1) , (6.14)

where the actual transmit power P1 of the observation channel is given by Equation (4.8). For a

fixed value of the scaling factor t, the corresponding dual function reads as (cf. Equation 6.2)

L∗
feas(λ1) = tr [KCw] + tr [PCx̃]− λ1PTx,1, (6.15)

where

K = ATKA−ATKb
(

bTKb
)−1

bTKA+ t−1λ1cc
T (6.16)

and

CP
x̃ = A

(

CP
x̃ − t−

1

2CP
x̃c
(

t−1cTCP
x̃c+ t−1cv + cq

)−1
t−

1

2cTCP
x̃

)

AT +Cw

= A
(

CP
x̃ −CP

x̃c
(

cTCP
x̃c+ cv + tcq

)−1
cTCP

x̃

)

AT +Cw.
(6.17)

The matrices P and Cx̃ in Equation (6.15) are given by P = ATKA − K + t−1λ1cc
T and

Cx̃ = CP
x̃ − CP

x̃c
(

cTCP
x̃c + cv + tcq

)−1
cTCP

x̃. Since only one power constraint, represented by

PTx,1, is present, the feasibility test described in Section 4.3.1 reduces to the evaluation of L∗
feas(λ1)

at λ1 = 1 and to verify if its sign is not positive, i. e., the minimal value of the actual transmit power

P1 does not exceed the available power PTx,1. As in Section 6.1, the degree of freedom which is

provided by the transmit scaling factor t is used to determine the smallest lower bound for PTx,1

such that the power constrained LQG controller design is feasible.

Note that the solution of the DARE in Equation (6.16) can also been obtained by solving

K = ATKA−ATKb
(

bTKb
)−1

bTKA+ ccT (6.18)

and using the identity K = t−1λ1K, i. e., both solutions only differ by a scalar factor. Together

with the matrices P = tλ−1
1 P and Cx̃ = CP

x̃ −CP
x̃c
(

cTCP
x̃c+ t−1cv + cq

)−1

cTCP
x̃, where

CP
x̃ = A

(

CP
x̃ −CP

x̃c
(

cTCP
x̃c+ t−1cv + cq

)−1

cTCP
x̃

)

AT + t−1Cw, (6.19)

the value L∗
feas(1) reads as

L∗
feas(1) = tr

[

t−1KCw

]

+ tr
[

P Cx̃

]

− PTx,1. (6.20)

Since this value is non-positive for a feasible optimization problem, the first two summands of the

right hand side of Equation (6.20) should be as small as possible. This is achieved for t → ∞,

which is obvious for the first summand and intuitively clear for the second because the effective

variance t−1cv of the observation noise and the covariance matrix t−1Cw of the process noise are

scaled down towards zero in this case which results in a monotonic decrease of the estimation error

of the (scaled) system state. Consequently, the available transmit power must fulfill the inequality

PTx,1 > tr
[

P Cx̃

]

, (6.21)
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where Cx̃ = CP
x̃ −CP

x̃c
(

cTCP
x̃c+ cq

)−1

cTCP
x̃ with (cf. Equation 6.19)

CP
x̃ = A

(

CP
x̃ −CP

x̃c
(

cTCP
x̃c + cq

)−1

cTCP
x̃

)

AT. (6.22)

In order to obtain results analogous to Section 6.1, it is advantageous to rewrite the right hand side

of Equation (6.21). This expression is nothing but the infimal value of the transmit power P1 for

the observation channel which can be achieved by an LQG controller in the limit for t → ∞. For

a finite value of t, this power is also given by (cf. Equations 3.8 and 4.8)

P1 = t−1
(

cTCxc + cv
)

, (6.23)

where the covariance matrix Cx of the system state is determined according to Equations (3.13) –

(3.15) and reads in our case as

Cx = (A+ blT)Cx̂(A+ blT)T +CP
x̃, (6.24)

with the optimal controller gain

lT = −
(

bTKb
)−1

bTKA = −
(

bTKb
)−1

bTKA. (6.25)

Using Equation (6.24) which is multiplied by t−1 for the determination of the transmit power (cf.

Equation 6.23), the right hand side of Equation (6.21), which is the limit for t→∞, can now also

be expressed as

tr
[

PCx̃

]

= cT
(

(A+ blT)Cx̂(A+ blT)T +CP
x̃

)

c. (6.26)

The (scaled) covariance matrix Cx̂ is the solution of a discrete Lyapunov equation analogous to

Equation (3.15) where the error covariance matrices CP
x̃ and Cx̃ are replaced by their (scaled)

counterparts CP
x̃ and Cx̃, respectively. Thus, the inequality from Equation (6.21) becomes

PTx,1 > cTCP
x̃c + cT(A+ blT)Cx̂(A+ blT)Tc. (6.27)

We are now in the position to provide a formulation of this inequality analogous to Equation (6.11).

Noting that the DAREs for the determination of K (cf. Equation 6.5) in the preceding section and

CP
x̃ (cf. Equation 6.22) in this section are structurally identical and obtained from each other when

replacing A by AT, b by c, and a multiplication by cq, the result of Equation (6.10) can be used

and we obtain

cTCP
x̃c+ cq =

(

∏

|σi|>1
|σi|2

)

cq, (6.28)

where σi, i ∈ {1, 2, . . . , Nx}, are the eigenvalues of AT and thus also of A. This provides the final

representation of the inequality which must hold in order to obtain a feasible power constrained

LQG optimization problem:

PTx,1 >

((

∏

|σi|>1
|σi|2

)

− 1

)

cq + cT(A+ blT)Cx̂(A+ blT)Tc. (6.29)

The first summand of the right hand side of Equation (6.29) is, analogous to Equation (6.11),

the well known infimal value of the transmit power (or the SNR when divided by the channel
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noise variance cq) which is necessary to stabilize an open loop unstable dynamical system over an

additive noise communication channel. Since it depends on the error covariance matrix CP
x̃ and the

system output vector c alone, the controller has no influence on this part of the transmit power.

Recalling that the optimal LQG controller uses the Kalman filter (see Appendix A7) to determine

the optimal estimate of the system state, it seems reasonable that the available transmit power must

be at least as large as cTCP
x̃c since this is the variance of the innovation sequence (subtracted by the

variance of the channel noise) which is computed by the Kalman filter to decorrelate the channel

output sequence for the sequential estimate of the system state (see Equations A192, A193 and

A196). Thus, the variance of the innovations, which represent the actual information processed by

the Kalman filter, determines the infimal value of the transmit power PTx,1.

The second summand of the right hand side of Equation (6.29) can be interpreted as in Section

6.1 in terms of the relative degree of the system to be controlled and the zeros of its transfer

function. Assume that the system to be controlled is minimum phase and has relative degree one.

Repeating the argumentation of Section 6.1, it can be shown that

K = ccT (6.30)

is a positive semidefinite stabilizing solution of the DARE in Equation (6.18), which results in the

optimal controller gain (cf. Equation 6.25)

lT = −(bTc)−1cTA. (6.31)

It is now easy to verify that the product cT
(

A+ blT
)

is equal to 0
T
Nx

and thus the second sum-

mand on the right hand side of Equation (6.29) is zero. This behavior has been reported in [86]

and explained by the fact that the optimal controller inverts the system to be controlled, which is

possible using a stable system due to the minimum phase assumption, and subtracts the optimal

prediction of the system output from the actual output. A transmit power of zero would be achieved

if the system output could be subtracted from itself, but since the controller can only determine an

(imperfect) state estimate, the signal that must be subtracted from the system output in order to

minimize the variance of the difference is its optimally predicted value. Consequently, the vari-

ance of the remaining transmit signal is the variance of the prediction error, given by cTCP
x̃c. The

prediction and not estimate is subtracted due to the one step delay of the closed control loop which

is a result of the relative degree, assumed to be one, of the dynamical system to be controlled.

From this point of view it becomes clear that the summand cT(A + blT)Cx̂(A + blT)Tc in

Equation (6.29) is strictly larger than zero for the non-minimum phase case or for systems with

a relative degree larger than one. In this case, additional delay is present in the control loop and

thus the variance of the transmit signal increases because the one step prediction of the system

output can not be subtracted at the transmitter any more. With a non-minimum phase system, it is

not possible to stably invert the dynamical system to be controlled and thus it is not possible for a

controller to subtract an arbitrary signal from the system output.

6.3 Discussion

Due to the general treatment of the joint optimization of LQG controller and scalar transceivers,

the results presented in Chapter 4 can easily be applied to the case of SISO systems with only one

communication channel in the control loop. In order to compare the presented approaches with

known results, Chapter 6 considered this special case since it received considerable attention in the
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existing literature on NCSs. The solutions obtained in Chapter 4 are confirmed by the reproduction

of well known results for the SISO one channel case, i. e., the feasible transmit power which is

lower bounded by a function of the unstable eigenvalues of the open loop system. Additionally, the

fact that this lower bound is increased for non-minimum phase systems with relative degree larger

than one has also been verified.

For the SISO case where only the control signals are transmitted over an imperfect, i. e., noisy,

communication channel, the authors of [29] carry out an extensive analysis of control loops which

are closed over an additive noise channel using frequency domain formulations. They consider

continuous-time as well as discrete-time systems with state and output feedback and provide ex-

pressions for the minimal SNRs which is necessary to stabilize open loop unstable systems in

terms of the unstable poles, non-minimum phase zeros and the relative degree of the system. The

optimization of transmit and receive scaling factors is not considered because these degrees of

freedom are not necessary in their system model in the absence of process and observation noise.

Additionally, system performance is not considered since the authors investigate the relation of

SNR and stabilizability.

The authors of [86] describe the observation channel by an additive noise model while the

control channel is assumed to be ideal and extend the system model of [29] by introducing process

noise and an inverse scaling of the transmit and received signal of the communication channel.

The cost function to be minimized is the variance of the observations at the system output, i. e., the

transmit signal of the observation channel. With the assumption of a minimum phase system with

relative degree equal to one, the structure of the optimal controller is derived and it is shown that

the system output is (except for the channel noise) identical with the innovation sequence of the

optimal estimator. It is also demonstrated how the transmit scaling factor can be used for a trade-off

between the value of the cost function and the available transmit power. Additionally, information

theoretic tools are applied to analyze the dependence of the transmit power requirements on the

process noise sequence. In [87], information theoretic quantities are used for the investigation

of the transmit power requirements for general non-linear and time varying transmit and receive

strategies.

A different approach to the consideration of a transmit scaling factor at the output of a dynam-

ical system to be controlled is proposed in [85], where again the observation channel is assumed

to be non-ideal. The authors extend the classical LQG cost function by an additional summand

containing the squared value of the scaling factor. The resulting optimization problem is analyzed

in terms of (quasi-)convexity for a scalar dynamical system where the transmitter has access to the

scalar system state. Instead of frequency domain formulations, the analysis relies on the DAREs

for the optimal regulator and state estimator. Using the modified LQG cost function, the trans-

mit power is bounded by preventing the scaling factor at the transmitter from going to infinity,

but there is no explicit control over the actual transmit power, e. g., by a power constraint for the

optimization of the LQG controller.

A constrained optimization approach based on transfer functions is used in [46] and [35] for the

design of an LQG controller subject to a limited SNR of the communication channel. The variance

of the channel noise becomes a design variable, which renders the considered problem equivalent

to one with a power constraint and scaling factors at transmitter and receiver. This fact is pointed

out in [35]. Besides the investigation of minimal SNR requirements, also performance issues are

addressed and a joint optimization of the controller and the channel noise variance is proposed.

Unfortunately, no statement about the (non-)convexity of the problem is provided. Since it has been

demonstrated that the general problem considered in Chapter 4 is not convex, it is not obvious that
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the algorithm proposed in [46] is capable to determine the global optimum. Nevertheless, many

questions treated in Chapter 4 are motivated by [46] and [35].
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In the context of optimal control, it is natural to consider constraints in the optimization prob-

lems which are solved for the determination of the optimal controller. This is reflected by the

monographs [78] and [121] which provide a lot of examples for constrained controller designs.

Networked Control Systems (NCSs) are a special class of such optimization problems, where

the channels which are used for the exchange of information in a control system are explicitly

taken into account. Consequently, the constraints to be considered are not due to the required per-

formance of the control system but due to the limitations which are inherent to communication

systems. Ultimately, these limitations are the result of finite physical resources for the transmis-

sion of information, e. g., bandwidth or power. This leads to effects like received signals which

are corrupted by noise, data loss because of collisions of users which have to share the same com-

munication channel or finite data rates due to channels with limited Shannon capacity, which are

observed for different types of communication infrastructures.

In order to take into account the communication system for the design of the controller, the op-

timization problems which are formulated for the determination of a controller have to be modified

depending on the actual model of the communication channels which are used for the transmission

of information. Section 2.1 provided an overview of the variety of models which are commonly

used in the literature on NCSs and references which give an example of the various approaches to

the joint treatment of communications and control. In this thesis, we decided for a simple additive

noise channel model. This implies that the limited communication resource is the transmit power

because otherwise an unbounded amplification of the transmit signal could be used to eliminate

the negative impact of the additive disturbance.

For the investigation of a control loop which is closed over power constrained channels with

additive noise, we applied the Linear Quadratic Gaussian (LQG) framework. There are several

reasons for this choice. First of all, it is possible to build on a well understood and well developed

basis for the design of an optimal controller which supports the investigation of the aspects related

to the consideration of communication channels. Second, and even more important, this framework

allows for a straightforward embedding of the communication system, i. e., the channel model and

the associated power constraints, in the overall system model of the NCS. Consequently, the analy-

sis and the design of the control and the communication system can be performed jointly and on the

same level of abstraction. This is an interesting property compared to, e. g., packet drop channels

where the complete communication system is reduced to the probability of a data loss and thus has

to be designed to minimize this probability irrespective of the control application. Nevertheless,

such channel models are of great importance if an existing communication infrastructure like the

Internet shall be used for a control task.

We started the consideration of additive noise communication channels and the associated

power constraints in Chapter 3, where both links which connect the dynamical system to be con-

trolled with the controller, i. e., for the transmission of observations and control signals, are mod-

eled as noisy channels. This represents a remote control scenario where the dynamical system and

the controller are spatially separated. For the situation investigated in Chapter 3, the controller is

the only degree of freedom to fulfill the transmit power constraints of both communication chan-

139
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nels. In this case, the constrained controller optimization is a convex problem which can be solved

relatively easy. Solution approaches date back to the 1980s [81, 96, 122] and are systematically

investigated in the context of convex optimization in [78]. Thus, the presented results are not new

and serve as the introduction of the basic problem to be solved. Note that we have chosen a refor-

mulation of the standard infinite horizon LQG control problem with average cost in terms of the

stationary covariance matrices of the system state and the control signal. Such a formulation has

recently been used by [88] and allows for a direct application of tools and software packages for

convex optimization like [92] and [93].

The results presented in Chapter 3 also demonstrated that it is problematic to use the controller

as the only degree of freedom to optimize a control specific performance criterion and at the same

time to fulfill the transmit power constraints. The reason is that these quantities, i. e., the LQG

cost and the transmit powers, are linked by the properties of the closed loop system and it is

thus not possible in general to use an increased amount of transmit power to improve the control

performance, i. e., decrease the value of the cost function.

In contrast to a considerable amount of the literature on NCSs which investigates the model

of additive noise channels, we restricted the available amount of transmit power while keeping

the variance of the channel noise fixed instead of limiting the Signal to Noise Ratio (SNR) of

the communication channels, i. e., the ratio of these two quantities. This emphasizes the point of

view that the channel noise is a physical quantity, e. g., thermal noise, which can not be changed.

However, in addition to the controller, there is the degree of freedom to design a transmitter and

a receiver at the input and the output of the communication channel in order to satisfy the power

constraints. This point of view has been made explicit in Chapter 4 with the introduction of scaling

factors at the input and the output of the dynamical system to be controlled as the most simple

instances of transmitters and receivers. Note that this extension of the system model represents

no loss of generality w.r.t. to comparable approaches, e. g., [35, 46], where no transmit or receive

scaling is taken into account but the variance of the channel noise is considered as a degree of

freedom. Additionally, the respective SNR constraints can be reformulated as power constraints.

The joint optimization of the LQG cost function w.r.t. the separated elements controller, trans-

mitter and receiver can be interpreted as a controller optimization with structural constraints. In

more detail, the controller is required to be split up into two gain factors which directly act on the

input and output signals of the dynamical system, and a general function which maps the output of

one communication channel to the input of the other channel. Thus, the investigation of the joint

optimization problem in Section 4.2.2 revealed a well known property of distributed controller de-

sign: the non-convexity of the associated optimization problem [39–41]. For example, it has been

shown that the set of pairs of the transmit and receive scaling factors which lead to a feasible power

constrained optimization problem is not necessarily connected. Even the unconstrained optimiza-

tion problem for the determination of Pareto optimal values of the transmit powers turned out to be

non-convex and to have several local optima. Consequently, such problems are not tractable using

standard methods for convex optimization.

Since fixed values of transmit and receive scaling factors result in a convex controller design

problem, only a small number of variables has to be determined in the non-convex setting. It is thus

possible to sample these variables. However, this approach allows for no statement about the global

optimality of an obtained result and the quality of a possibly suboptimal solution. Fortunately, al-

though non-convex, the considered optimization problems exhibit monotonicity properties which

can be used for the application of a branch and bound method in order to determine the global

optimum [102, 103]. The derivation of lower bounds for the minimal value of the optimization
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problems under consideration and the application of the branch and bound approach to the de-

termination of the optimizing transmit and receive scaling factors are main contributions of this

thesis.

Note that the branch and bound method which exploits the monotonicity properties of the opti-

mization problem can also be interpreted as a systematic way to sample its “non-convex” variables.

The required lower bounds are obtained by solving a relaxed convex LQG control problem with

fixed values of the transmit and receive scaling factors. The upper bounds are simply calculated

by solving the original convex LQG control problem for fixed transmitters and receivers. Since the

determination of these bounds thus has the same computational complexity as the evaluation of

the optimization problem in a conventional sampling of the “non-convex” variables, the applica-

tion of the branch and bound approach is not prohibitively complex, at least for a small number of

variables.

In Chapter 5, the joint optimization of the LQG controller and the scalar transmit and receive

scaling factors has been extended to transceivers which are represented by diagonal matrices. This

extension is straightforward for communication channels with diagonal noise covariance matrices.

For the general case of non-diagonal covariance matrices (Section 5.2.1) and linear channel dis-

turbances (Section 5.2.2), we proposed a modification of the transmitter and receiver such that the

resulting equivalent communication channels are reduced to the diagonal case. Consequently, this

step allows for the application of the branch and bound approach for the determination of optimiz-

ing diagonal transceiver matrices. However, the diagonalization of the communication channels is

performed independently of the controller design and thus can not be claimed to be optimal.

Finally, the results in Chapter 6 have been presented in order to apply the framework for the

analysis and design of power constrained control systems to scenarios which are commonly used

in the literature on NCSs. Some of the fundamental results which have been derived in the past for

Single-Input Single-Output (SISO) systems with only one communication channel in the control

loop have been reproduced.

The investigation of NCSs involves a variety of concepts which have been developed inde-

pendently for the analysis and the design of communication and control systems. Especially the

models of the communication channels which are used for the information exchange in a control

loop and the associated constraints determine to a large extent the approach to the joint design

of the controller and the components of the considered communication system. To name a few

examples, a structural separation of transceivers and the controller can be treated in the context

of distributed control systems, packet drop channels can be considered within the framework of

Markov Jump Linear Systems (see, e. g., [109] and references therein), and additive noise com-

munication channels with power constraints fit in the LQG framework. However, there are several

problems which prevent a direct application of results from the communication and information

theory to NCSs and render the joint treatment of control and communications a challenging task.

The first problem is that sophisticated coding and transmission schemes which can be applied to

a pure communication task often require the processing of data in large blocks and thus introduce a

considerable amount of delay which can not be tolerated in a control loop in general. The reduction

of this delay typically results in more distortion or transmission errors which degrades the quality of

the information which is available to the controller. Additionally, such distortions are also fed into

the dynamical system to be controlled which makes it even harder to determine a controller which

achieves a satisfactory performance. In the worst case, the controller is not able to combat the



142 7. Summary and Conclusions

distortions and errors with the limited amount of available information which renders the problem

of the joint design of the control and the communication system infeasible.

Such considerations are of course not relevant for the investigation of additive noise channels

in the LQG framework with the additional restriction to linear transmitters and receivers. However,

the second problem which is encountered in optimization problems for NCSs is still present. In a

pure communication setting, the information source can be treated independently of the transmit-

ters and receivers which are designed for the transmission of information over a communication

channel. For example, a correlated source can be whitened in order to remove redundancy or scaled

appropriately such that it has a desired variance. This separation is not possible for the transmit

signals in a closed control loop where the sources of information are the dynamical system (for

the transmission of system outputs to the controller) and the controller (for the transmission of

control signals to the system input). Since they are interconnected in a feedback loop, the choice of

a transmitter or a receiver has a direct impact on the properties of the signals to be transmitted or

received. Consequently, the communication system and the information which is exchanged using

this system are not independent any more. This fact has been observed for the minimization of

the LQG cost function under power constraints in Chapter 4 where the covariance matrices of the

signals to be transmitted are functions of the transmit and receive scaling factors. This is the main

reason for the difficulties which are encountered for the joint optimization of the LQG controller,

the transmitter and the receiver even for the case of a simple scaling of transmit and receive signals.

In this thesis, we proposed a numerical solution for the problem of a joint optimization of the

controller and the transmit and receive scaling factors in the LQG framework, where the control

loop is closed over power constrained additive noise channels. This approach has also been gen-

eralized to the optimization of diagonal transmitters and receivers. However, there remain open

questions. For the system model under consideration, we observed that the assignment of the indi-

vidual scalar components of the system input and output signals to the components (or subspaces)

of the available communication channels has a significant impact on the performance of the closed

loop control system. We have no satisfactory answer to the question how to choose this assignment,

i. e., how to jointly optimize (diagonal) transmitters and receivers and the respective permutation

of the input and output signals of the dynamical system to be controlled. A further question is of

more interest but also even more difficult to answer. What are the optimal linear transmitters and

receivers? For a communication (or estimation) setting, the answer to this question is known for

memoryless [110–112] and temporally correlated [115,116] sources. However, due to the coupling

of the sources of information and the transmitters and receivers which are used for the information

exchange, it is not obvious how these approaches can be extended to a closed loop scenario. For

a SISO system with one control channel in the control loop, the authors of [123] propose a joint

transceiver and controller design. They provide a reformulation of the problem which is not convex

but quasi-convex and thus a systematic approach for the determination of the global optimum is

possible.

As a final remark, the non-convexity of optimization problems for the joint design of control

and communication systems complicates the determination of their globally optimal solution but,

at least for some cases, does not prevent the possibility to determine it. An example is the joint de-

sign of transmitters and receivers for data transmission or estimation, respectively [115,116]. This

non-convex optimization problem can be reformulated as a problem which allows for an efficient

determination of the solution. Even if such a reformulation is not available, the problem may still

have properties which can be exploited by global optimization algorithms. The problems which

have been investigated in this thesis have such a property, i. e., monotonicity in the “non-convex”
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optimization variables, which is the basis for a branch and bound method for the determination of

the global optimum. This approach can be interpreted as a systematic sampling procedure which

additionally provides information about the accuracy of the obtained results. Consequently, at least

for low-dimensional problems, such non-convex optimization problems are feasible.
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A1. Sampling of Continuous-Time Linear Systems

Although physical (stochastic) processes are generally functions of a continuous time parameter,

estimators and controllers which are used for their observation and manipulation are often im-

plemented using digital computers. Consequently, those devices are represented by discrete-time

systems and thus it is necessary to sample the continuous-time processes to be estimated or con-

trolled. Note that in this thesis only linear systems are used which is also the focus of this section.

We start with a simple deterministic example. In the following, it will be extended towards

the case which is relevant for the derivation of the stochastic difference equations that are used to

describe discrete-time linear dynamical systems. Consider the following system of homogeneous

linear differential equations
d

dt
xt = Atxt, t ∈ R+,0, (A1)

where the coefficient matrix At ∈ RN×N is also a function of t. The initial value of the equation

above is x0 ∈ RN . The solution of Equation (A1) can be expressed as (cf. [4, p. 11], [124, p. 20])

xt = Φt,0x0, t ∈ R+,0, (A2)

where Φt,s ∈ RN×N with s, t ∈ R+,0 is the so-called transition matrix from the time s to t. It is

the solution of the matrix differential equation

d

dt
Φt,0 = AtΦt,0, t ∈ R+,0, (A3)

with initial value Φ0,0 = IN . Unfortunately, the transition matrix does not allow for a closed form

expression in general but can be determined by an infinite series (see, e. g., [125] and [124, pp.

20-21]). Nevertheless, it has the properties (cf. [4, p. 12])

Φt1,t0 = Φt1,sΦs,t0 , t0, t1, s ∈ R+,0, (A4)

Φt1,t0 = Φ−1
t0,t1

, t0, t1 ∈ R+,0, (A5)

where the inverse always exists since Φt1,t0 is non-singular [126, pp. 171.172], [124, p. 28]. For

the case of a constant coefficient matrix, i. e., when At = A for all t ≥ 0, the transition matrix can

be expressed using the matrix exponential (see, e. g., [4, p. 13]) and reads as

Φt1,t0 = eA(t1−t0), t1, t0 ∈ R+,0, (A6)

where the formal notation of a square matrix X in the exponent is defined as

eX =
∞
∑

k=0

1

k!
Xk. (A7)

The properties of the matrix exponential are exactly those of a transition matrix [126, p. 170].
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Having established the results for homogeneous systems, we now turn to inhomogeneous ones

(cf. [4, p. 12], [126, p. 173], [124, Section 1.6]),

d

dt
xt = Atxt +Btut, t ∈ R+,0, (A8)

with the initial value x0 ∈ RN . The equation is denoted analogous to linear systems using the

input matrix Bt which is in general a function of t. Note that ut is assumed to be deterministic at

this point. With the transition matrix, the solution of Equation (A8) is given by

xt = Φt,0x0 +

∫ t

0

Φt,τBτuτ dτ, t ∈ R+,0, (A9)

which can be verified by inserting the result in the differential equation from Equation (A8). It can

also be derived by computing

d

dt
(Φ−1

t,0xt) = −Φ−1
t,0

(

d

dt
Φt,0

)

Φ−1
t,0xt +Φ−1

t,0

d

dt
xt

= −Φ−1
t,0AtΦt,0Φ

−1
t,0xt +Φ−1

t,0 (Atxt +Btut)

= Φ−1
t,0Btut,

(A10)

where Equation (A3) is used for the derivative of Φt,0. Integrating both sides from 0 to t results in

Φ−1
t,0xt −Φ−1

0,0x0 =

∫ t

0

Φ−1
τ,0Bτuτ dτ. (A11)

Since Φ0,0 = IN (cf. Equation A3) and due to the properties given in Equations (A4) and (A5),

Equation (A11) is equivalent to Equation (A9).

When dealing with stochastic systems, one could simply consider the model above with a

stochastic disturbance, i. e.,

d

dt
xt = Atxt +wt, t ∈ R+,0, (A12)

where (wt : t ∈ R+,0) is a white noise stochastic process with Ewt
[wt] = 0N , t ≥ 0, and

Ews,wt

[

wsw
T
t

]

= Cwt
δ(s− t), where δ denotes the Dirac distribution. In this case, the solution

of Equation (A12) is (cf. Equation A9)

xt = Φt,0x0 +

∫ t

0

Φt,τwτ dτ, t ∈ R+,0. (A13)

The expected value of the second summand of this equation is zero due to the linearity of the

integration and its covariance matrix is given by1

Ew

[

∫ t

0

Φt,τ1wτ1 dτ1

(
∫ t

0

Φt,τ2wτ2 dτ2

)T
]

=

∫ t

0

∫ t

0

Φt,τ1 Ewτ1,τ2

[

wτ1w
T
τ2

]

ΦT
t,τ2

dτ1 dτ2

=

∫ t

0

∫ t

0

Φt,τ1Cwτ1
δ(τ1 − τ2)Φ

T
t,τ2

dτ1 dτ2

=

∫ t

0

Φt,τCwτ
ΦT

t,τ dτ.

(A14)

1The expected value in Equation (A14) is denoted with index w and not wτ with τ ∈ [0, t] since we deal with an

uncountable number of random variables at this point.



A1. Sampling of Continuous-Time Linear Systems 147

Using the abbreviation

Wt =

∫ t

0

Φt,τCwτ
ΦT

t,τ dτ, (A15)

the result of the equation above is determined by the matrix differential equation (cf. [124, pp.

60-61] and [3, p. 66])

d

dt
Wt = AtWt +WtA

T
t +Cwt

(A16)

with initial value W0 = 0N×N , which can be verified by inserting Equation (A15) in Equation

(A16).2

Although the result is correct (cf. [4, p. 470]), it is derived without taking into account the

stochastic nature of (wt : t ∈ R+,0), which makes it necessary to introduce stochastic differen-

tial equations and the concept of calculus for stochastic processes. The corresponding theory is

out of the scope of this section. A detailed description of the rigorous approach using stochastic

differential equations in the form of

dxt = Atxt dt+ dηt, (A17)

where (ηt : t ∈ R+,0) is a Wiener process with differential covariance matrix Cηt
dt can be found

in, e. g., [3, Chapter 3].

Finally, we are in the position to derive the sampled version of the stochastic differential equa-

tion
d

dt
xt = Atxt +Btut +wt, t ∈ R+,0, (A18)

with initial condition3 x0 ∈ RN and where (wt : t ∈ R+,0) is zero mean4 white Gaussian noise,

i. e., wt ∼ N
(

0N ,Cwt

)

and Ews,wt

[

wsw
T
t

]

= Cwt
δ(s − t). We assume that Equation (A18) is

sampled at equidistant time indices t = kT , k ∈ N0, where T > 0 is the sampling period, and use

the notation

xk = xkT , k ∈ N0, (A19)

where the ambiguity that (xk : k ∈ N0) is a random sequence and (xt : t ∈ R+,0) is a random

process of a continuous parameter should be clear from the context. Additionally, it is assumed

that ut, t ∈ R+,0, which is interpreted as the control input of a dynamical system, is constant

within one sampling period, i. e.,

ut = uk, t ∈ [kT, (k + 1)T [ with k ∈ N0. (A20)

This is one possibility to perform the “discrete-to-continuous” conversion which is the counterpart

of the sampling and is commonly referred to as zero order hold. Using the results of Equations

2This result is of particular interest for constant matrices At = A and Cwt
= Cw for all t ∈ R+,0. In this case,

the differential equation has a close relation to the investigation of the stability of linear systems. For the equilibrium

solution with d
dtWt = 0N×N , Equation (A16) is called the continuous-time Lyapunov equation.

3The initial value can also be a random vector. This case can be incorporated in the derivations above without

difficulties, see, e. g., [3, Section 3.6].
4The assumption that the stochastic process has zero mean is not restrictive since a different expected value can be

considered by simply adding a constant vector.
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(A9) and (A13), we get for the time index (k + 1)T with k ∈ N0

xk+1 = Φ(k+1)T,0x0 +

∫ (k+1)T

0

Φ(k+1)T,τBτuτ dτ +

∫ (k+1)T

0

Φ(k+1)T,τwτ dτ

= Φ(k+1)T,kT

(

ΦkT,0x0 +

∫ kT

0

ΦkT,τBτuτ dτ +

∫ kT

0

ΦkT,τwτ dτ

)

+

∫ (k+1)T

kT

Φ(k+1)T,τBτuτ dτ +

∫ (k+1)T

kT

Φ(k+1)T,τwτ dτ

= Φ(k+1)T,kTxk +

∫ (k+1)T

kT

Φ(k+1)T,τBτ dτuk +

∫ (k+1)T

kT

Φ(k+1)T,τwτ dτ

= Âkxk + B̂kuk + ŵk,

(A21)

where we also applied the property of the transition matrix from Equation (A4). In the last line of

Equation (A21), one can identify the parameters of the discrete-time system which is obtained by

sampling the corresponding differential equation as

Âk = Φ(k+1)T,kT ,

B̂k =

∫ (k+1)T

kT

Φ(k+1)T,τBτ dτ, k ∈ N0,
(A22)

while the parameters of the discrete-time noise sequence (ŵk : k ∈ N0) are

ŵk ∼ N
(

0N ,Cŵk

)

, (A23)

Eŵm,ŵn

[

ŵmŵ
T
n

]

=

{

Cŵn
m = n,

0N×N otherwise,
(A24)

Cŵk
=

∫ (k+1)T

kT

Φ(k+1)T,τCwτ
ΦT

(k+1)T,τ dτ. (A25)

These properties follow directly from the fact that (wt : t ∈ R+,0) is a Gaussian white noise pro-

cess. The linear operation of integration does not change the type of distribution and the zero

mean (Equation A23). The intervals for the integration of the continuous-time noise which results

in ŵk =
∫ (k+1)T

kT
Φ(k+1)T,τwτ dτ are disjoint for different values of k ∈ N0. Consequently, the

discrete-time noise is an uncorrelated sequence of random variables (cf. Equation A24). Finally,

the covariance of the noise sequence is given by Equation (A25), which results from the derivations

in Equations (A12)-(A14).

A2. The Discrete Lyapunov Equation

Let A ∈ RN×N and Q ∈ RN×N be constant matrices and X ∈ RN×N be a matrix variable. The

discrete Lyapunov equation is defined as

X = AXAT +Q. (A26)

The main points associated with this equation are the conditions for the existence of a unique solu-

tion X and, if it exists, its properties. A detailed discussion about the discrete Lyapunov equation
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can be found in, e. g., [31, Appendix D]. There are several approaches for the determination of a

solution of the equation, cf. [127]. For the direct method, the Lyapunov equation (A26) is rewritten

as a system of linear equations, i. e.,

vec [X] = (A⊗A) vec [X] + vec [Q]

⇔ (IN2 − (A⊗A)) vec [X] = vec [Q] ,
(A27)

where vec is the operator which stacks the columns of X in a column vector of dimension N2,

and ⊗ denotes the Kronecker product (cf. [128]). Since the eigenvalues of A ⊗ A are λiλj ,

i, j ∈ {1, 2, . . . , N}, where λi, i ∈ {1, 2, . . . , N}, are the eigenvalues of A (cf. [126, pp. 234-

235]), we see that a unique solution only exists if λiλj 6= 1, ∀i, j. For the case when λiλj = 1 for

some i, j, there exists no solution if vec [Q] is not an element of the space spanned by the columns

of (IN2 − (A⊗A)), otherwise there exist infinitely many solutions.

The iterative method can be used if all eigenvalues of A have magnitude less than one. Note

that in this case, the solution is always unique since |λiλj| < 1, i, j ∈ {1, 2, . . . , N}. Then, the

solution of Equation (A26) is obtained by the iteration

Xk+1 = AXkA
T +Q, (A28)

which converges to (cf. [5, pp. 63-64])

X =

∞
∑

k=0

AkQAT,k. (A29)

From the result in Equation (A29) it can be seen that the unique solution X is symmetric if Q is

symmetric and that X is positive (semi)definite if Q is positive (semi)definite.5

Finally, although not the best approach from a numerical perspective, the unique solution of

the Lyapunov equation (A26) when all eigenvalues of A have magnitude less than one and Q is

positive semidefinite can be determined by the convex program

minimize
Y

tr [Y ] subject to

[

Y −Q AY

Y AT Y

]

≥ 02N×2N , (A30)

where the fact is used that in this case the linear matrix inequality6

Y ≥ AY AT +Q (A31)

can be rewritten as a positive semidefinite Schur complement7 which is equivalent to the constraint

of the above optimization problem. Additionally, any positive semidefinite matrix Y which fulfills

the inequality (A31) has the property8 Y ≥X , where X is the solution of Equation (A26).

5More generally, the solution X is positive definite if the pair (A,Q
1

2 ) is controllable, see [31, Appendix D].
6For a definition and detailed treatment of linear matrix inequalities, see, e. g., [129]. An important feature is that

linear matrix inequalities define convex sets which can be handled by numerical algorithms for the solution of convex

optimization problems.
7For properties of the Schur complement in terms of definiteness, see, e. g., [94, Appendix A.5.5].
8If Y ≥ AY AT +Q, it holds Y = AY AT +Q + Φ, where Φ is a positive semidefinite matrix of appropriate

dimensions. Thus, Y = Y1 + Y2, where Y1 = AY1A
T + Q and Y2 = AY2A

T + Φ are the positive semidefinite

solutions of two Lyapunov equations. Since the solutions are unique, we have Y1 = X , which shows that Y ≥X .



150 Appendix

A3. The Discrete Algebraic Riccati Equation

Let A ∈ RN×N , B ∈ RN×M , Q ∈ RN×N , R ∈ RM×M and S ∈ RN×M be constant matrices with

Q ≥ 0N×N , R > 0M×M ,

[

Q S

ST R

]

≥ 0(N+M)×(N+M). (A32)

Then, the associated Discrete Algebraic Riccati Equation (DARE) is given by

X = ATXA−
(

ATXB + S
) (

BTXB +R
)−1 (

BTXA+ ST
)

+Q, (A33)

with the matrix variable X ∈ RN×N . Note that with the substitution

Ã = A−BR−1ST, (A34)

the equation above can be rewritten as (cf. [130])

X = ÃTXÃ− ÃTXB
(

BTXB +R
)−1

BTXÃ+Q− SR−1ST. (A35)

Unlike the discrete Lyapunov equation (see Section A2), the DARE is a non-linear matrix equation

and it is more involved to discuss the conditions for the existence of a solution and of its properties.

Especially for the purposes of estimation and control, we are interested in positive semidefinite

and stabilizing solutions, i. e., positive semidefinite matrices X which fulfill Equation (A33) such

that the matrix

Acl = A+BL, (A36)

where

L = −
(

BTXB +R
)−1 (

BTXA+ ST
)

, (A37)

has all eigenvalues inside the complex unit disk, i. e., with magnitude less than one. An important

fact is that if a stabilizing solution exists, it is positive semidefinite and unique [31, p. 775]. There

are several results which state the existence of stabilizing solutions, positive definite solutions and

the uniqueness of these solutions. We will not discuss these results and the corresponding proofs

at this point but refer to the detailed treatment of the topic in [31, Appendix E and Chapter 14] and

also [6, Chapter 4].

In many cases, the following result is of most interest. Recall the substitution given in Equation

(A34) and additionally define

Q̃ = Q− SR−1ST, (A38)

where Q̃ ≥ 0N×N due to the assumptions of Equation (A32). The DARE (A33) has a unique

positive semidefinite solution if and only if the pair (A,B) is stabilizable and the pair (Ã, Q̃
1

2 ) is

detectable [31, Appendix E], in which case this solution is also stabilizing. This unique solution

can be obtained in several ways. The simplest one is using the iteration

Xk+1 = ATXkA−
(

ATXkB + S
) (

BTXkB +R
)−1 (

BTXkA+ ST
)

+Q (A39)

with an arbitrary positive semidefinite initialization X0 ≥ 0N×N . Under the conditions mentioned

above, this iteration converges to the positive semidefinite stabilizing solution

X = lim
k→∞

Xk, (A40)
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irrespective of the (positive semidefinite) initialization (cf. [6, Section 4.1] and [31, Chapter 14]).

A more efficient and numerically stable method for the computation of the stabilizing solution of

the DARE is the so-called Schur or invariant subspace method (cf. [130] and [31, Appendix E.7]).

Finally, the solution of Equation (A33) can also be determined by the convex program

maximize
Y

tr [Y ] subject to

[

ATY A− Y +Q ATY B + S

BTY A+ ST BTY B +R

]

≥ 0(N+M)×(N+M),

Y ≥ 0N×N ,

(A41)

because, under the stabilizability and detectability assumption, the stabilizing solution of the

DARE is also the maximal9 element (cf. [31, Appendix E.3] and [100]) of the set of positive

semidefinite matrices X which satisfy the Riccati inequality

X ≤ ATXA−
(

ATXB + S
) (

BTXB +R
)−1 (

BTXA+ ST
)

+Q. (A42)

Note that the condition R > 0M×M (cf. Equation A32) is not necessary for the existence of a

positive semidefinite and stabilizing solution of the DARE and can be relaxed to R ≥ 0M×M . The

only requirement to be fulfilled is that the matrix BTXB +R is invertible (cf. Equation A33). In

this case, the optimization-based solution approach given in Equation (A41) can still be applied,

and the Schur method can be modified to deal with singular matrices R. However, in this case

the stabilizability of (A,B) and, e. g., for S = 0N×M , detectability of (A,Q
1

2 ) do not guarantee

a unique positive definite solution which is also stabilizing. Consider the simple counterexample

with M = 1, Q = ccT and r = 0 (the matrix R reduces to a scalar here), where (A, b) is

stabilizable and (A, c) is detectable and with cTb 6= 0. The corresponding DARE reads as

X = ATXA−ATXb(bTXb)−1bTXA+ ccT, (A43)

and it is easy to verify that X = ccT is a positive semidefinite solution. Nevertheless, the closed

loop matrix (cf. Equations A36 and A37)

Acl = A− (bTc)−1bcTA (A44)

has in general eigenvalues with magnitude larger than one.10 A more detailed treatment of the case

when R is singular can be found in, e. g., [131]. One result is that if the corresponding DARE

has a stabilizing solution, it is unique. The authors of [131] also provide a necessary and sufficient

condition for the existence which is more involved than the stabilizability and detectability condi-

tions for the non-singular case and which is checked in the process of computing the stabilizing

solution. A further discussion of this topic and the analysis of more general Riccati equations and

inequalities is provided by [132].

As a final remark, note that for the special case of Q = 0N×N and S = 0N×M , the require-

ment of detectability of (A, Q̃) is obviously not fulfilled. Consequently, the existence of a unique

positive semidefinite stabilizing solution of the DARE is not guaranteed. Nevertheless, as long

as (A,B) is stabilizable, there exists at least one positive semidefinite solution which is semi-

stabilizing, i. e., the corresponding matrix Acl given by Equation (A36) has no eigenvalues with

magnitude larger than one (see [31, p. 775]).

9The maximal elementX+ which satisfies inequality (A42) has the property that X+ ≥X for all positive semidef-

inite matrices X which satisfy inequality (A42).
10The eigenvalues of Acl which is given in Equation (A44) can be identified as the zeros of the transfer function of

a linear dynamical system described by A, b and c, cf. [119].
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A4. Derivative of the Discrete Algebraic Riccati Equation

Let X be the stabilizing positive semidefinite solution of the DARE in Equation (A33) and let

the matrix L be given according to Equation (A37), i. e., the magnitude of all eigenvalues of

Acl = A+BL is less than one. Additionally, let the parameters Q and R be functions of a scalar

variable β. Then, the derivative of X w.r.t. β is given by

∂X

∂β
= AT∂X

∂β
A+AT∂X

∂β
BL +LTBT∂X

∂β
A+LT

(

BT∂X

∂β
B +

∂R

∂β

)

L+
∂Q

∂β

= AT
cl

∂X

∂β
Acl +LT∂R

∂β
L +

∂Q

∂β
,

(A45)

which is a discrete Lyapunov equation (see Appendix A2). Since the magnitude of all eigenvalues

of Acl is less than one, this equation has a unique solution. Note that the solution is symmetric if

LT ∂R
∂β

L + ∂Q

∂β
is a symmetric matrix.

Before computing the second derivative of X w.r.t. β, we determine the derivative

∂L

∂β
= −

(

BTXB +R
)−1
(

BT∂X

∂β
B +

∂R

∂β

)

L−
(

BTXB +R
)−1

BT ∂X

∂β
A

= −
(

BTXB +R
)−1
(

BT∂X

∂β
Acl +

∂R

∂β
L

)

.

(A46)

The second derivative of X w.r.t. β reads as

∂2X

∂β2
= AT

cl

∂2X

∂β2
Acl +

∂LT

∂β
B

∂X

∂β
Acl +AT

cl

∂X

∂β
B

∂L

∂β

+
∂LT

∂β

∂R

∂β
L+LT∂R

∂β

∂L

∂β
+LT∂

2R

∂β2
L +

∂2Q

∂β2

= AT
cl

∂2X

∂β2
Acl − 2

(

AT
cl

∂X

∂β
B+LT∂R

∂β

)

(

BTXB+R
)−1
(

BT∂X

∂β
Acl+

∂R

∂β
L

)

+LT∂
2R

∂β2
L +

∂2Q

∂β2
,

(A47)

where Equation (A46) has been used for the last line of the equation above. Like Equation (A45),

(A47) has a unique solution.

Note that if Q and R are affine functions of β, i. e., Q = Q1+βQ2 and R = R1+βR2 where

Q1, Q2, R1 and R2 are positive semidefinite and β ≥ 0, ∂X
∂β

is positive semidefinite whereas ∂2X
∂β2

is negative semidefinite. This is easy to verify because LT ∂R
∂β

L + ∂Q

∂β
= LTR2L +Q2 ≥ 0N×N ,

which implies the positive semidefiniteness of the first derivative. For the second derivative, note

that LT ∂2R
∂β2 L + ∂2Q

∂β2 = 0N×N and that
(

BTXB +R
)

> 0M×M , where N and M correspond

to the dimensions of Q and R shown in Equation (A32). Due to the negative sign, the second

derivative of X w.r.t. β is negative semidefinite.
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A5. Properties of Expected Values

A5.1 Expected Value of a Function of Random Variables

Let x be a random vector, g a measurable function and y = g(x) be the random vector which is

obtained by applying g to x. Then,

Ey [y] = Ex [g(x)] . (A48)

Proof. This is a standard result and can be found, e. g., in [34, pp. 142-143]. �

A5.2 Conditional Expected Value and Conditional Expectation

Although using the same notation, we distinguish between the conditional expected value and the

conditional expectation of a random variable. Let x, y be random vectors with a joint distribution.

Then, the conditional expected value of x given the event11 {y = η}, where η is a constant vector,

is a deterministic vector given by the expression (cf. [34, p. 231])

Ex|y [x|η] =
∫

xfx|y (x|η) dx. (A49)

Thus, the conditional expected value can be interpreted as the value of a function

ϕ(η) = Ex|y [x|η] (A50)

evaluated at η.

In contrast, the conditional expectation is itself a random variable. A straightforward definition

of this random variable is obtained by replacing the realization η in Equation (A50) by the random

vector y, i. e., the random vector z which is given by

z = Ex|y [x|y] = ϕ(y) (A51)

is the conditional expectation of x given y.

The rigorous definition (cf., e. g., [33, p. 347]) of the conditional expectation is as follows:

Let (Ω,F, P ) be a probability space and x a random variable12 on this space. Additionally, let

G ⊂ F be a sub σ-algebra of F. Then, a random variable z which is measurable w.r.t. G is called

conditional expectation of x given G if

∫

B

x(ω) dP (ω) =

∫

B

z(ω) dP (ω), ∀B ∈ G. (A52)

Using the indicator function13
IB(ω), this equation can be rewritten in terms of expected values14:

E [x IB] = E [z IB] , ∀B ∈ G. (A53)

11The distinction between y and η should emphasize the fact that y is a random vector while η is a realization.
12The definition of the conditional expectation can be extended to random vectors if the components are treated

separately and the σ-algebra which represents the condition is generated jointly by all random variables that are the

components of the given random vector.
13IB(ω) = 1 if ω ∈ B and 0 otherwise.
14The subscripts of the expectation operators have been dropped to emphasize that x and z are defined on the same

probability space and that the expected value is determined using the same probability measure P , cf. Equation (A52).
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The random variable z is denoted by z = Ex|G [x|G]. In order to be consistent with the notation

introduced in Equation (A51), let G be the σ-algebra generated by the random variable y which

maps (Ω,F) to (Ω′,F′), i. e.,

G = {B|B = y−1(A), A ∈ F
′}. (A54)

Keeping this in mind, we obtain

Ex|y [x| y] = Ex|G [x|G] . (A55)

An important property of the conditional expectation is the following: let x and y be two random

vectors with a joint distribution. Then,

Ey

[

Ex|y [x|y]
]

= Ex [x] . (A56)

Proof. Equation (A56) is a direct result of Equation (A53) by setting B = Ω. Another proof uses

the definition of the conditional expectation as ϕ(y) (cf. Equations A49-A51). Thus, we obtain

Ey

[

Ex|y [x|y]
]

=

∫

Ex|y [x|η] fy (η) dη =

∫∫

xfx|y (x|η) dxfy (η) dη

=

∫∫

xfx,y (x,η) dx dη =

∫

xfx (x) dx

= Ex [x] .

(A57)

�

A5.3 Pointwise Minimization

Let x : Ω → RNx and y : Ω → RNy be random vectors with a joint distribution, h : RNy → RM

be a measurable function of y and g : RNx × RM → R+,0 a non-negative, measurable function

of x and h(y). Assuming its existence, the determination of the function h∗ which minimizes

Ex,y [g(x, h(y))] can be determined pointwise, i. e.,

h∗(η) = argmin
z∈RM

Ex|y [g(x, z)|η] , η ∈ R
Ny . (A58)

Proof.

min
h

Ex,y [g(x, h(y))] = min
h

∫∫

fx,y (ξ,η) g(ξ, h(η)) dξ dη

= min
h

∫

fy (η)

∫

fx|y (ξ|η) g(ξ, h(η)) dξ dη

= min
h

∫

fy (η) Ex|y [g(x, h(η))|η] dη.

(A59)

Note that all Probability Density Functions (PDFs) and the function g are non-negative. Thus,

the minimum of the expression above is attained by using the function h which, evaluated at

each given value η, minimizes Ex|y [g(x, h(η))|η], i. e., the problem is to determine the value

z = h(η) ∈ RM which minimizes the conditional expected value at a given point η. Consequently,

min
h

Ex,y [g(x, h(y))] =

∫

fy (η) min
z∈RM

Ex|y [g(x, z)|η] dη, (A60)

where the minimizer is z∗ = h∗(η), i. e., is the value of the optimal function h∗ evaluated at η. �
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Remark: A different approach of proving the above result can be found in, e. g., [3, pp. 260-261].

There, it is argued that

min
z∈RM

Ex|y [g(x, z)|η] ≤ Ex|y [g(x, h(η))|η] (A61)

for every function h. Consequently, taking the expected value w.r.t. y on both sides, we obtain

Ey

[

min
z∈RM

Ex|y [g(x, z)|y]
]

≤ Ex,y [g(x, h(y))] . (A62)

Since this inequality holds for every function h, it is also true that

Ey

[

min
z∈RM

Ex|y [g(x, z)|y]
]

≤ min
h

Ex,y [g(x, h(y))] . (A63)

On the other hand, the minimum of the expected value w.r.t. h must be smaller than its value using

an arbitrary function, e. g., h∗ which is given in Equation (A58). This results in

min
h

Ex,y [g(x, h(y))] ≤ Ex,y [g(x, h
∗(y))] = Ey

[

min
z∈RM

Ex|y [g(x, z)|y]
]

. (A64)

Putting both inequalities (A63) and (A64) together leads finally to the result

min
h

Ex,y [g(x, h(y))] = Ey

[

min
z∈RM

Ex|y [g(x, z)|y]
]

. (A65)

A6. LQG Control

The term Linear Quadratic Gaussian (LQG) describes scenarios where the associated control prob-

lems deal with linear dynamical systems, quadratic cost functions and a Gaussian model for the

stochastic driving processes. For the dynamical system to be controlled, we adopt the system model

introduced in Section 1.5, i. e.,

xk+1 = Akxk +Bkuk +wk,

yk = Ckxk + vk, k ∈ {0, 1, . . . , N − 1}, (A66)

where xk ∈ RNx is the system state at time index k, uk ∈ RNu is the control input

and yk ∈ RNy is the output of the system. The system matrix at time index k is given

by Ak, the system input matrix is Bk and the output matrix is Ck, where all dimensions

are according to the state, input and output vectors, respectively. The driving noise sequence

(wk : k ∈ {0, 1, . . . , N − 1}) is assumed to be independent but not necessarily identically Gaus-

sian distributed, i. e., wk ∼ N
(

0Nx
,Cwk

)

. The same holds for the measurement noise sequence

(vk : k ∈ {0, 1, . . . , N − 1}), i. e., vk ∼ N
(

0Ny
,Cvk

)

. The initial state is x0 ∼ N
(

µx0
,Cx0

)

.

Additionally, the process noise sequence, the observation noise sequence and the initial state are

assumed to be mutually independent.15 The number N ∈ N is the so-called horizon, i. e., it deter-

mines the number of steps which are considered for the LQG problem.

15The independence assumption can be relaxed if (wk : k ∈ {0, 1, . . . , N − 1}) is a Gauss-Markov sequence, i. e.,

admits for a state space representation which is driven by white noise. Thus, by augmenting the state equation (A66)

(cf. [38, p. 38]), the problem of correlated noise can be reduced to the white (independent) noise case. The same holds

for the observation noise (vk : k ∈ {0, 1, . . . , N − 1}) and if the different noise sequences are mutually correlated

(cf. [37, Section 11.2] and [133, Sections 5.9 and 5.10]).
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The last part for the description of the LQG control problem is the quadratic cost function

which is used to determine the control sequence (uk : k ∈ {0, . . . , N − 1}). It reflects the goal to

keep the deviation of the system state from the origin small without an excessively large control

effort. The criterion for the quantification of the terms “small” and “large” is the expected value of

the squared and weighted Euclidean norm of the state and the control input vector, respectively. The

expected value is applied because the state as well as the control are in general random variables

due to the process and the measurement noise. Since the dynamical system is considered over a

horizon of N steps, the overall cost function is chosen to be the sum of the cost of the individual

steps. Thus, the cost function of the LQG control problem reads as

J = Ex0,w0,...,wN−1,v0,...,vN−1

[

xT
NQNxN +

N−1
∑

n=0

[

xn

un

]T [
Qn Sn

ST
n Rn

] [

xn

un

]

]

, (A67)

where the weight matrices Qn ∈ RNx×Nx , Rn ∈ RNu×Nu and Sn ∈ RNx×Nu fulfill the conditions

Qn ≥ 0Nx×Nx
, Rn > 0Nu×Nu

,

[

Qn Sn

ST
n Rn

]

≥ 0(Nx+Nu)×(Nx+Nu), (A68)

for n ∈ {0, 1, . . . , N} or n ∈ {0, 1, . . . , N − 1}, respectively, in order to obtain a convex cost

function which is bounded below by zero.16 These weight matrices are not given a priori but have

to be chosen by the system designer to reflect the objectives of the specific control problem. As

an example, for Sn = 0Nx×Nu
, n ∈ {0, 1, . . . , N − 1}, a scaling of Qn while keeping Rn fixed

can be used to trade the goal of keeping the system state small against the goal of a small control

effort.17 Additionally, the weight matrices can be used to emphasize subspaces of the state and

control space, respectively, where large deviations are more severe than in other subspaces. Note

that the expected value in Equation (A67) is taken w.r.t. all random variables which are involved

in the description of the dynamical system to be controlled and the measurements of the system

output (cf. Equation A66) over the horizon N .18

For the determination of the optimal control input for the dynamical system given by Equation

(A66), it is typically assumed in the LQG framework that at time index k the controller has access

to all measurements of the system output up to this time and all preceding (self-generated) control

inputs. The information state at time index k thus reads as the set

Ik =
{

{y0}, k = 0,

{y0,y1, . . . ,yk,u0,u1, . . . ,uk−1}, k ∈ {1, 2, . . . , N − 1}. (A69)

Note that this assumption results in a recursive description of the information state, i. e.,

Ik+1 = {Ik,yk+1,uk}, k ∈ {0, 1, . . . , N − 2}, with the initial set I0 = {y0}.
16The condition Rn > 0 can be relaxed to Rn ≥ 0 (cf. Section A3), but care must be taken w.r.t. the stability of

the optimal control (cf. [101]). Note that the minimization of the cost function given in Equation (A67) may still be a

well-posed problem for indefinite weight matrices, see, e. g., [97, 98].
17This is a typical case for a multicriterion optimization problem, see, e. g., [94, Section 4.7].
18The expected value in Equation (A67) represents some abuse of notation because xn, n ∈ {0, 1, . . . , N}, and un,

n ∈ {0, 1, . . . , N − 1}, are random vectors which are taken into account for the computation of the expected value.

Nevertheless, since they can be represented as functions of the fundamental random vectors x0,w0,w1, . . . ,wN−1,

v0,v1, . . . ,vN−1, they are not explicitly listed in the index of the expectation operator.
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Now we are in the position to formulate the LQG control problem. The goal is to determine a

sequence of measurable 19 functions µk, k ∈ {0, 1, . . . , N − 1}, of the information state Ik, i. e.,

uk = µk(Ik), k ∈ {0, 1, . . . , N − 1}, (A70)

such that the cost function given by Equation (A67) is minimized for the dynamical system given

by Equation (A66). Formally, the control problem reads as

minimize
µ0,µ1,...,µN−1

Ex0,w0,...,wN−1,v0,...,vN−1

[

xT
NQNxN +

N−1
∑

n=0

[

xn

un

]T [
Qn Sn

ST
n Rn

] [

xn

un

]

]

, (A71)

subject to xk+1 = Akxk +Bkuk +wk, k ∈ {0, 1, . . . , N − 1},
yk = Ckxk + vk, k ∈ {0, 1, . . . , N − 1},
uk = µk(Ik), k ∈ {0, 1, . . . , N − 1},

where Ik is the information set given by Equation (A69).

Note that the above optimization problem can not only be used to express the desire to keep the

system state close to the origin. It is also possible to minimize the deviation from a given non-zero

point or a trajectory which can be deterministic or stochastic. In order to explain this modification,

assume that the control objective is to follow a trajectory generated by the dynamical system

ξk+1 = A
(R)
k ξk + ωk, k ∈ {0, 1, . . . , N − 1}, (A72)

where ξk ∈ RM is the state of the reference system and (ωk : k ∈ {0, 1, . . . , N − 1}) with

ωk ∼ N
(

0M ,Cωk

)

, k ∈ {0, 1, . . . , N − 1}, is the independent driving noise process which is

also assumed to be independent of all other random variables. The behavior of the reference sys-

tem is determined by the system matrix A
(R)
k ∈ RM×M and the parameters of noise distribution.

For the sake of simplicity, let Nx = M . Using this assumption, the squared Euclidean norm of the

deviation of the system state from the state of the reference can be expressed as

‖xk − ξk‖22 =
[

xk

ξk

]T [
INx

−INx

−INx
INx

] [

xk

ξk

]

, (A73)

where the vector zT
k =

[

xT
k , ξ

T
k

]T
can be interpreted as the state of a dynamical system described

by the difference equation

zk+1 =

[

Ak

A
(R)
k

]

zk +

[

Bk

0M×Nu

]

uk +

[

wk

ωk

]

, k ∈ {0, 1, . . . , N − 1}, (A74)

Thus, by choosing the weight matrices Qn according to Equation (A73), the tracking problem can

be recast to fit in the formulation of the optimization problem given by Equation (A71).

A6.1 Dynamic Programming

The LQG control problem which has been introduced above fits into the more general framework of

dynamic programming. It considers the problem of the optimal choice of a sequence of decisions,

19Precisely, the function µk at time index k is measurable w.r.t. the σ-algebra generated by the random variables

x0,w0,w1, . . . ,wk−1, v0,v1, . . . ,vk.
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where the decision in one step changes the basis for the decisions of subsequent steps. Examples

for such situations are shortest path problems, inventory control or games like chess [6]. A key

property of these problems is the necessity to trade the minimal cost of a single, local decision

against the possibility that this step will lead to a higher cost of future decisions.

According to [6, pp. 2-3], two features characterize the considered model. The first one is a

discrete-time dynamical system

xk+1 = fk(xk,uk,wk), k ∈ {0, 1, . . . , N − 1}, (A75)

where xk is the system state, uk is the control input and wk is a random disturbance with properties

given below. The initial state x0 is assumed to be a random variable. Additionally, the function fk
maps the system state, control input and disturbance at time index k to the state at the subsequent

time index. The number of considered steps is given by the horizon N . The sets from which

all variables are taken and the underlying probability space are not explicitly given at this point

because they do not provide much insight into the description of the generic problem.

The goal of dynamic programming is to chose a sequence (uk : k ∈ {0, 1, . . . , N − 1}) of

control inputs such that the dynamical system given by Equation (A75) behaves in an optimal way,

where the optimality criterion is defined below. Thus, for the determination of uk, information

about the system state at time index k is necessary. Since we adopt the model of [6, pp. 218-219],

it is assumed that this information is provided by observations (or measurements) yk according to

yk =

{

h0(x0, v0), k = 0,

hk(xk,uk−1, vk), k ∈ {1, 2, . . . , N − 1}, (A76)

where vk represents a random measurement disturbance and hk are functions which map the sys-

tem state, the control input and the measurement disturbance to the actual observations. For the

sake of simplicity, we assume that (wk : k ∈ {0, 1, . . . , N − 1}) and (vk : k ∈ {0, 1, . . . , N − 1})
are independent random sequences which are also mutually independent and do not depend on the

initial state x0.
20

The second feature of the model for dynamic programming concerns the cost which is incurred

at each step and which provides the optimality criterion for the determination of the control input. It

is given by the functions gk, k ∈ {0, 1, . . . , N −1}, which depend on the state, the disturbance and

the control variable uk to be determined, i. e., the decision to be made, and since these quantities

are not deterministic due to the system and observation model, the expected value of the cost is

considered. An important assumption is that the overall cost over the horizon N is additive, i. e.,

JN = Ex0,w0,...,wN−1,v0,...,vN−1

[

gN(xN) +

N−1
∑

n=0

gn(xn,un,wn)

]

, (A77)

where gN(xN) is the cost incurred by the terminal state xN alone. Finally, it is assumed that for the

determination of the control input at time index k, all observations up to time k and all preceding

inputs can be used. Thus, the available information set is given by

Ik =
{

{y0}, k = 0,

{y0,y1, . . . ,yk,u0,u1, . . . ,uk−1}, k ∈ {1, 2, . . . , N − 1}. (A78)

20This assumption can be relaxed, e. g., if the dependencies of the noise sequences can be described by a state space

model which is driven by independent noise. In that case, the original and the noise model can be combined to an

augmented state space model with independent driving noise. Additionally, dependencies of the noise distributions on

the state and control inputs may be considered, cf. [6, Chapter 5.1].
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In order to minimize the cumulative cost of the individual steps over the horizon N (cf. Equa-

tion A77), functions have to be determined which map the available information about the system

state (cf. Equation A78) to an appropriate input for the dynamical system (cf. Equation A75), i. e.,

uk = µk(Ik), k ∈ {0, 1, . . . , N − 1}, (A79)

where µk is a measurable function of Ik. The optimization problem to be solved thus reads as

minimize
µ0,µ1,...,µN−1

Ex0,w0,...,wN−1,v0,...,vN−1

[

gN(xN) +

N−1
∑

n=0

gn(xn,un,wn)

]

, (A80)

subject to xk+1 = fk(xk,uk,wk), k ∈ {0, 1, . . . , N − 1},

yk =

{

h0(x0, v0),
hk(xk,uk−1, vk),

k = 0,
k ∈ {1, 2, . . . , N − 1},

uk = µk(Ik), k ∈ {0, 1, . . . , N − 1},

where Ik is given by Equation (A78).

The main idea for the solution of the optimization problem (A80) is the principle of optimality

(cf. [134, p. 83] or [6, p. 18]). In order to understand this principle, consider the following “sub-

problem” of (A80):

minimize
µm,µm+1,...,µN−1

Exm,wm,...,wN−1,vm,...,vN−1|Im

[

gN(xN) +

N−1
∑

n=m

gn(xn,un,wn)

∣

∣

∣

∣

∣

Im
]

, (A81)

subject to xk+1 = fk(xk,uk,wk), k ∈ {m,m+ 1, . . . , N − 1},
yk = hk(xk,uk−1, vk), k ∈ {m,m+ 1, . . . , N − 1},
uk = µk(Ik), k ∈ {m,m+ 1, . . . , N − 1},

with m > 0. This problem considers only the tail of the optimization problem given by (A80).

The first m steps are assumed to be given and described by the information set Im which con-

tains the measurements up to time index m and the control inputs which are functions of these

measurements. The objective of (A81) is to determine the optimal control input for the remaining

steps when the first m steps have already been made and are fixed. Loosely speaking, if we came

to some point after an arbitrary choice for the first m steps, the question to be answered is what is

the optimal way to finish the optimization problem to the terminal point at time index N . This is

the reason why the cost function of the optimization problem (A81) is called the cost-to-go. The

solution of the minimization of this cost subject to the state and observation equations results in

the optimal sequence of control inputs for the remaining part of the horizon which now depends

on the choice of control inputs for the first m steps and the resulting measurements, i. e., on Im.

The principle of optimality states the following: assume that an optimal sequence of functions

µ∗
k, k ∈ {0, 1, . . . , N − 1}, for the computation of the control input has been determined for the

original problem (A80) and is used for the first m steps of the control problem, which results in

the information set Im at time index m. Then, given this information set, the remaining part of

the optimal functions µ∗
k, k ∈ {m,m + 1, . . . , N − 1}, also minimizes the cost-to-go, i. e., is

the solution of the optimization problem (A81). Thus, the solution of the optimization over the

complete horizon is also the solution of all tail problems.
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The solution of the optimization problem (A80) can now be obtained by recursively solving the

tail problems described by (A81). In order to derive the recursive representation of the problem,

let J∗ be the optimal value of the problem (A80), i. e.,

J∗ = min
µ0,µ1,...,µN−1

Ex0,w0,...,wN−1,v0,...,vN−1

[

gN(xN) +
N−1
∑

n=0

gn(xn, µn(In),wn),

]

(A82)

subject to the corresponding constraints. Since the control input u0 must be determined as a func-

tion µ0 of I0, recall Section A5.3 and use the result of Section A5.2 to introduce the conditional

expected value given I0. Additionally, due to the fact that the cost function is additive, J∗ can be

rewritten as

J∗ = min
µ0,µ1,...,µN−1

Ex0,v0

[

Ex0,w0,...,wN−1,v0,...,vN−1|I0

[

g0(x0, µ0(I0),w0)

+ gN(xN) +
N−1
∑

n=1

gn(xn, µn(In),wn)

∣

∣

∣

∣

∣

I0
]]

,

(A83)

where I0 = {y0} (cf. Equation A78) and the distribution of y0 is completely described by the

joint distribution of x0 and v0 (cf. Equation A76). Following the arguments of Section A5.3, the

functions µk, k ∈ {0, 1, . . . , N − 1}, which minimize J can be determined pointwise for each

given value of I0. Thus, the minimization can be carried out inside the outer expected value and

we get21

J∗ =Ex0,v0

[

min
u0

(

Ex0,w0|I0 [g0(x0,u0,w0)| I0]

+ min
µ1,...,µN−1

Ex1,w1,...,wN−1,v1,...,vN−1|I0

[

gN(xN)+

N−1
∑

n=1

gn(xn, µn(In),wn)

∣

∣

∣

∣

∣

I0
])]

,

(A84)

where the random variables that are considered for the individual expected values have been

adapted to the respective arguments. The principle of optimality ensures that the functions µk,

k ∈ {1, 2, . . . , N − 1}, which are obtained by the minimization of the second summand of Equa-

tion (A84) alone are also optimal for the overall problem of minimizing J∗.22 Comparing this

minimization problem with Equation (A82), we identify an essentially equivalent problem which

starts at k = 1 and is conditioned on the information I0. Consequently, the same steps which led

to Equation (A84) can be repeated to obtain

min
µ1,...,µN−1

Ex1,w1,...,wN−1,v1,...,vN−1|I0

[

gN(xN)+

N−1
∑

n=1

gn(xn, µn(In),wn)

∣

∣

∣

∣

∣

I0
]

= Ex1,v1|I0

[

min
µ1,...,µN−1

Ex1,w1,...,wN−1,v1,...,vN−1|I1

[

gN(xN)+
N−1
∑

n=1

gn(xn, µn(In),wn)

∣

∣

∣

∣

∣

I0,y1,u0

]
∣

∣

∣

∣

∣

I0
]

,

(A85)

21The notation of Equation (A84) is potentially misleading because the inner conditional expectation is a ran-

dom variable due to the fact that the condition I0 is a random variable. Thus, the minimization w.r.t. u0 and µk,

k ∈ {1, 2, . . . , N − 1}, has to be understood in the sense of Section A5.3, i. e., pointwise.
22A detailed derivation of this argument can be found in [6, Chapter 1.5].
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where the equivalence I1 = {I0,y1,u0} (cf. Equation A78) and the fact that u0 is a deterministic

function of I0 have been used. Denote the solution of the optimization problem (A81) as Jm(Im),
i. e.,

Jm(Im) = min
µm,...,µN−1

Exm,wm,...,wN−1,vm,...,vN−1|Im

[

gN(xN)+

N−1
∑

n=m

gn(xn, µn(In),wn)

∣

∣

∣

∣

∣

Im
]

, (A86)

subject to the corresponding constraints. Using this notation, Equation (A84) can be rewritten as

J∗ = Ex0,v0
[J0(I0)] , (A87)

and the expression inside the expected value becomes (cf. Equations A84 and A85)

J0(I0) = min
u0

(

Ex0,w0|I0 [g0(x0,u0,w0)| I0] + Ex1,v1|I0 [J1(I1)| I0]
)

= min
u0

Ex0,w0,v1|I0 [g0(x0,u0,w0) + J1(I0,y1,u0)| I0] .
(A88)

A further repetition of the above steps finally results in the recursive determination of the optimal

control inputs and the associated costs:

Jm(Im) =



























min
um

Exm,wm,vm+1|Im [gm(xm,um,wm) + Jm+1(Im,ym+1,um)| Im] ,
m ∈ {0, . . . , N−2},

min
uN−1

ExN−1,wN−1|IN−1
[gN−1(xN−1,uN−1,wN−1)

+gN(fN−1(xN−1,uN−1,wN−1))|IN−1], m = N−1.
(A89)

This result provides the following interpretation of the optimization problem: formally, the

minimization of the cost function J can be split in two parts. First, assuming that the inputs for the

first m steps of the problem which lead to the information Im are given, optimize the remaining

steps based on this history, i. e., minimize Jm(Im). Second, with the knowledge about the minimal

cost-to-go, determine the first m control inputs such that the sum of the cost which is associated

with these steps and the optimal cost-to-go is minimal. Equation (A89) shows that this can be

performed one step after another going backwards in time and starting with m = N−1. At this time

index, the terminal stage of the optimization problem is considered and the cost-to-go is simply

determined by gN and gN−1. Subsequently, a sequence of optimization problems is solved by going

one step back and minimizing the sum of the cost associated with this step and the previously

determined minimal cost-to-go. Depending on the actual structure of the dynamic system and the

cost function, this dynamic programming algorithm can lead to an efficient solution method.

As an example for the application of the dynamic programming algorithm, consider the prob-

lem of finding the shortest path through a directed graph which is depicted in Figure A1a. The

goal is to traverse the graph from the left to the right. The nodes of the graph correspond to the

states of the system and a state transition to the move from one node to a neighboring node along

the edge which connects both. The cost of such a transition is denoted by the weight of the edge

and the cost of a path from the left to the right is the sum of the weights of the edges which make

up the path. Note that the control input corresponds to the choice of the specific neighboring node

to move to. Although this is an informal description of the problem, it should be clear that it fits

in the framework of dynamic programming, i. e., the propagation of the system state can be de-

scribed according to Equation (A75) and the overall cost accumulates the cost of the individual
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steps of the problem (cf. Equation A77). In order to keep things simple, the problem is assumed to

be deterministic, i. e., the state transitions as well as the associated costs are deterministic, and it is

assumed that the system state is known perfectly.

1

1 1

1

1

2

2

2
3 3 3

3 3

3 3

3

(a) Original graph.

1

1

2

2
2

3

3

3 3

4

4

(b) Shortest paths for the last two steps.

1

2
3

3 5

7

(c) Shortest paths for the last three steps.

5

(d) Shortest path through the graph.

Figure A1: Shortest path problem solved by dynamic programming.

Since exactly four state transitions are necessary to move from the left to the right of the

graph and it is not allowed to stay at a specific node, we have N = 4.23 The determination of

the minimal cost-to-go for the last transition is trivial (there is only one edge connecting the right

node with each preceding one). Thus, we start with the determination of the minimal cost-to-go

for m = N − 2 = 2. The result is shown in Figure A1b. Starting from the top node, the shortest

path to the destination has weight 4, from the center note 2 and from the bottom note we obtain

the cost 4. Now the optimal cost of the tail of the path (the optimal cost-to-go) is known depending

on the state this tail is starting from and irrespective of the path that led to this state. Thus, for the

determination of the optimal cost-to-go for m = N − 3 = 1, it is only necessary to determine

the minimal sum of the cost of a state transition from any state to the neighboring top, center

or bottom node and the remaining cost-to-go from that node which has been optimized one step

earlier. Figure A1c shows the result which gives a cost of 3 from the top node, 5 from the center

node and 7 from the bottom node to the destination. For the calculation of the minimal overall cost,

i. e., the shortest path from the left to the right, this step has to be repeated which is again simple

due to the fact that the starting node has only one edge which connects it to each of the neighboring

nodes. The shortest path, which has a weight of 5, is shown in Figure A1d.

Having a closer look on the above example, the reader with a background in communication

and information theory might recognize the Viterbi algorithm [135]. This algorithm is an instance

of the dynamic programming principle which is commonly executed forward in time. This is not

a contradiction to the description that has been chosen here since for deterministic shortest path

problems, a path from the starting point to the destination has the same length as from the destina-

tion to the starting point. Thus, the graph can be equivalently traversed backward or forward.

23An equivalent problem is to allow to stay at a node and associate an arbitrary positive cost with the stay. In that

case, the optimal choice is to directly move to the next node because the cost of any path with a stay is always larger

than without one.
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A6.2 Solution of the LQG Control Problem

The LQG control problem can be solved by applying the dynamic programming approach which

has been introduced in the last section. To this end, we identify that the function which describes

the evolution of the system state (cf. Equation A75) is given by Equation (A66), i, e.,

fk(xk,uk,wk) = Akxk +Bkuk +wk, k ∈ {0, 1, . . . , N − 1}, (A90)

and the observation equation (cf. Equation A76)24 is

hk(xk, vk) = Ckxk + vk, k ∈ {0, 1, . . . , N − 1}. (A91)

Finally, comparing the cost functions of Equation (A77) and Equation (A67), we observe that

gN(xN) = xT
NQNxN (A92)

and

gk(xk,uk,wk) = xT
kQkxk + uT

kRkuk + 2uT
kS

T
k xk, k ∈ {0, 1, . . . , N − 1}. (A93)

Using these functions, the optimization problem (A80) leads to the LQG problem (A71). It is

solved by recursively minimizing backwards in time the cost-to-go, i. e., the cost for the remaining

steps of the optimization problem when the first m steps have already been made and provided the

information (cf. Equation A69)

Im =

{

{y0}, m = 0,

{y0,y1, . . . ,ym,u0,u1, . . . ,um−1}, m ∈ {1, 2, . . . , N − 1}, (A94)

starting with m = N−1. Thus, it is assumed that the optimal control inputs u0,u1, . . . ,uN−2 have

already been applied and the observations y0,y1, . . . ,yN−1 are known. The minimal cost-to-go for

the last step of the control problem is then given by (cf. Equation A89)

JN−1(IN−1) = min
uN−1

ExN−1,wN−1|IN−1

[

xT
N−1QN−1xN−1+uT

N−1RN−1uN−1+2uT
N−1S

T
N−1xN−1

+(AN−1xN−1+BN−1uN−1+wN−1)
T
QN(AN−1xN−1+BN−1uN−1+wN−1)

∣

∣

∣
IN−1

]

= min
uN−1

ExN−1,wN−1|IN−1

[

xT
N−1

(

AT
N−1QNAN−1 +QN−1

)

xN−1

+ uT
N−1

(

BT
N−1QNBN−1 +RN−1

)

uN−1

+ 2uT
N−1

(

BT
N−1QNAN−1 + ST

N−1

)

xN−1 +wT
N−1QNwN−1

∣

∣

∣
IN−1

]

.

(A95)

Note that due to the assumption that the process noise wN−1 has zero mean and is independent of

all other random variables, i. e., independent of IN−1, the terms of Equation (A95) which depend

linearly on wN−1 are zero and have been dropped. In order to determine the minimal cost-to-go

24Note that Equation (A76) allows for yk to be a function of uk−1. Since the linear system given in Equation (A66)

is assumed to provide observations which are not directly influenced by the control input, the argument uk−1 of hk is

omitted.
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JN−1(IN−1), the derivative w.r.t. uN−1 of the function to be minimized is determined and set to

zero. This leads to the equation

2
(

BT
N−1QNBN−1 +RN−1

)

uN−1

+ 2
(

BT
N−1QNAN−1 + ST

N−1

)

ExN−1|IN−1

[

xN−1

∣

∣IN−1

]

= 0Nu
.

(A96)

Thus, the optimal control input which minimizes the cost-to-go for the last step of the control

problem reads as

uN−1 = −
(

BT
N−1QNBN−1+RN−1

)−1(
BT

N−1QNAN−1+ST
N−1

)

ExN−1|IN−1
[xN−1| IN−1] , (A97)

where the inverse always exists by the assumption Rk > 0Nu×Nu
, k ∈ {0, 1, . . . , N − 1}, and

Qk ≥ 0Nx×Nx
, k ∈ {0, 1, . . . , N −1} (cf. Equation A68). In order to simplify the notation, we use

the abbreviation

x̂k = Exk|Ik [xk| Ik] , k ∈ {0, 1, . . . , N − 1}, (A98)

for the conditional mean of the system state xk given the information Ik at time index k. Addition-

ally, the deviation of the system state from the conditional mean is denoted by

x̃k = xk − x̂k, k ∈ {0, 1, . . . , N − 1}. (A99)

Inserting the result from Equation (A97) in Equation (A95) and using the notation from Equations

(A98) and (A99), the minimal cost-to-go reads as

JN−1(IN−1) = ExN−1,wN−1|IN−1

[

xT
N−1

(

AT
N−1QNAN−1 +QN−1

)

xN−1

− x̂N−1

(

AT
N−1QNBN−1 + SN−1

)(

BT
N−1QNBN−1 +RN−1

)−1

×
(

BT
N−1QNAN−1 + ST

N−1

)

x̂N−1 +wT
N−1QNwN−1

∣

∣

∣
IN−1

]

,

(A100)

where it has also been used that

Ex̃k |Ik [ x̃k| Ik] = Exk|Ik [xk − x̂k| Ik] = 0Nx
, k ∈ {0, 1, . . . , N − 1}. (A101)

Finally, due to this property, Equation (A100) can be rewritten in terms of xN−1 and x̃N−1:

JN−1(IN−1)=ExN−1,wN−1|IN−1

[

xT
N−1KN−1xN−1+x̃T

N−1PN−1x̃N−1+wT
N−1QNwN−1

∣

∣IN−1

]

, (A102)

where

PN−1 =
(

AT
N−1QNBN−1 + SN−1

) (

BT
N−1QNBN−1 +RN−1

)−1(
BT

N−1QNAN−1 + ST
N−1

)

(A103)

and

KN−1 = AT
N−1QNAN−1 +QN−1 − PN−1. (A104)

Before we proceed with the next step of the minimization of the overall cost function given by

Equation (A67), note that the last term of JN−1(IN−1) (cf. Equation A102) does not depend on

any control input or observation due to the independence assumption. Thus,

ExN−1,wN−1|IN−1

[

wT
N−1QNwN−1

∣

∣ IN−1

]

= EwN−1

[

wT
N−1QNwN−1

]

, (A105)
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which is a constant. The same holds for the second term, i. e., the quadratic form in x̃N−1, w.r.t.

the control inputs, which is not as obvious and proved in [6, pp. 231-232]. In order to show this

independence, note that the state equation (cf. Equation A66) is a linear function of the system

state, the control input and the driving noise. Thus, the system state at time index k + 1 can be

expressed as a linear function of the initial state x0, the driving noise sequence and the control

input sequence up to time index k. Formally, this means that

xk+1 = Φkξk + Ψkγk, k ∈ {0, 1, . . . , N − 1}, (A106)

where Φk ∈ RNx×(k+2)Nx and Ψk ∈ RNx×(k+1)Nu are constructed from the system matrices An

and the input matrices Bn, n ∈ {0, 1, . . . , k}, and

ξk =
[

xT
0 ,w

T
0 ,w

T
1 , . . . ,w

T
k

]T
,

γk =
[

uT
0 ,u

T
1 , . . . ,u

T
k

]T
, k ∈ {0, 1, . . . , N − 1}.

(A107)

This means that the system state can be separated in an uncontrolled part which exclusively de-

pends on the initial state and the process noise, and a controlled part which is a function of the

control inputs alone. Note that at time index k, the vector [uT
0 ,u

T
1 , . . . ,u

T
k−1]

T is contained in the

information set Ik, see Equation (A69). It follows that

x̃k = xk − x̂k = xk − Exk |Ik [xk| Ik]
= Φk−1

(

ξk−1 − Eξk−1|Ik [ξk−1| Ik]
)

+ Ψk−1γk−1 − Ψk−1γk−1,
(A108)

i. e., the summand of x̃k containing the vector [uT
0 ,u

T
1 , . . . ,u

T
k−1]

T cancels out. Thus, a potential

dependence of this expression on the control input is only due to the information Ik when comput-

ing the conditional expected value of ξk−1. In order to show that this is not the case, it is convenient

to express Ik in terms of ξk−1 and γk−1. Using Equations (A66) and (A106), we get

yk =

{

C0x0 + v0, k = 0,

CkΦk−1ξk−1 +CkΨk−1γk−1 + vk, k ∈ {1, 2, . . . , N − 1}. (A109)

Since the vector γk−1, represented by the sequence (un : n ∈ {0, 1, . . . , k − 1}), is part of Ik, the

information provided by the set Ik and the set

Īk =
{

{y0}, k = 0,

{y0, ȳ1, . . . , ȳk,u0,u1, . . . ,uk−1}, k ∈ {1, 2, . . . , N − 1}, (A110)

where

ȳk = yk −CkΨk−1γk−1, k ∈ {1, 2, . . . , N − 1}, (A111)

is equivalent since Ik and Īk are mapped to each other by an invertible and deterministic function.

Finally, a reasonable assumption is that ξk−1, which determines the uncontrolled part of the system

state xk, is conditionally independent of the control input given y0, ȳ1, . . . , ȳk. This assumption

is justified if it is not known how the control inputs are computed and only the numerical values

are given. In that case one can model the control inputs as stochastically independent of ξk−1. It

is also justified for the setting of the LQG problem where the control inputs uk are computed as

deterministic functions of the available information Ik, k ∈ {0, 1, . . . , N − 1}. Here, it is easy to
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show that uk can be expressed as a deterministic function of y0, ȳ1, . . . , ȳk. Thus, the knowledge

of the control inputs does not provide additional information about ξk−1, compared to the observa-

tions of the uncontrolled part of the system state (cf. Equation A111). Putting everything together,

we observe that

x̃k = Φk−1

(

ξk−1 − Eξk−1|Ik [ξk−1| Ik]
)

= Φk−1

(

ξk−1 − Eξk−1|y0,ȳ1,...,ȳk
[ξk−1|y0, ȳ1, . . . , ȳk]

)

,
(A112)

i. e., x̃k is not a function of the control inputs.

Having shown that the choice of the control input has no effect on x̃N−1, the minimal cost-to-go

at time index N − 1 can be written as

JN−1(IN−1) = ExN−1|IN−1

[

xT
N−1KN−1xN−1

∣

∣ IN−1

]

+ Ex̃N−1|IN−1

[

x̃T
N−1PN−1x̃N−1

∣

∣ IN−1

]

+ EwN−1

[

wT
N−1QNwN−1

]

,
(A113)

where the last two summands do not depend on the control input. Following the dynamic program-

ming approach (cf. Equation A89), the minimal cost-to-go for the time index N − 2 is determined

by minimizing the sum of the cost associated with the isolated step at this time index and the

remaining cost-to-go, given by JN−1(IN−1), i. e.,

JN−2(IN−2) = min
uN−2

ExN−2,wN−2,vN−1|IN−2

[

xT
N−2QN−2xN−2

+ uT
N−2RN−2uN−2 + 2uT

N−2S
T
N−2xN−2

+ ExN−1|IN−1

[

xT
N−1KN−1xN−1

∣

∣ IN−1

]

+ Ex̃N−1|IN−1

[

x̃T
N−1PN−1x̃N−1

∣

∣ IN−1

]

+EwN−1

[

wT
N−1QNwN−1

]

∣

∣

∣
IN−2

]

= min
uN−2

ExN−2,wN−2|IN−2

[

xT
N−2QN−2xN−2

+ uT
N−2RN−2uN−2 + 2uT

N−2S
T
N−2xN−2

+ (AN−2xN−2+BN−2uN−2+wN−2)
T
KN−1(AN−2xN−2+BN−2uN−2+wN−2)

∣

∣

∣
IN−2

]

+ Ex̃N−1|IN−2

[

x̃T
N−1PN−1x̃N−1

∣

∣ IN−2

]

+ EwN−1

[

wT
N−1QNwN−1

]

,

(A114)

where the minimization is not carried out for the last two terms because they do not depend on

uN−2. In order to obtain this expression for JN−2(IN−2), note that

IN−1 = {IN−2,yN−1,uN−2}
= {IN−2,CN−1 (AN−2xN−2 +BN−2uN−2 +wN−2) + vN−1,uN−2}.

(A115)

Using this equivalence, we get

ExN−2,wN−2,vN−1|IN−2

[

ExN−1|IN−1

[

xT
N−1KN−1xN−1

∣

∣IN−1

]
∣

∣IN−2

]

= ExN−2,wN−2,yN−1|IN−2

[

ExN−2,wN−2|IN−1

[

(AN−2xN−2+BN−2uN−2+wN−2)
T
KN−1

× (AN−2xN−2+BN−2uN−2+wN−2)
∣

∣IN−2,yN−1,uN−2

]
∣

∣IN−2

]

= ExN−2,wN−2|IN−2

[

(AN−2xN−2 +BN−2uN−2 +wN−2)
T
KN−1

× (AN−2xN−2 +BN−2uN−2 +wN−2)
∣

∣

∣
IN−2

]

,

(A116)
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since uN−2 is not considered to be a random vector due to the minimization (cf. Equation A114),

and

ExN−2,wN−2,vN−1|IN−2

[

Ex̃N−1|IN−1

[

x̃T
N−1PN−1x̃N−1

∣

∣IN−1

]
∣

∣IN−2

]

= ExN−1,yN−1|IN−2

[

ExN−1|IN−1

[

(xN−1−x̂N−1)
T
PN−1(xN−1−x̂N−1)

∣

∣

∣
IN−2,yN−1,uN−2

]
∣

∣

∣
IN−2

]

= Ex̃N−1|IN−2

[

x̃T
N−1PN−1x̃N−1

∣

∣ IN−2

]

,

(A117)

where we used the result from Section A5.2 and the fact that x̃k, k ∈ {0, 1, . . . , N}, does not

depend on the control input.

The solution of the minimization problem given by Equation (A114) becomes obvious by com-

paring it with Equation (A95). The two optimization problems are principally identical except for

the different time index, weighting matrices and additive constants, which has no effect on the

structure of the solution. Thus, we conclude that (cf. Equation A97)

uN−2=−
(

BT
N−2KN−1BN−2+RN−2

)−1(
BT

N−2KN−1AN−2+ST
N−2

)

ExN−2|IN−2
[xN−2| IN−2], (A118)

and that the optimal cost-to-go JN−2(IN−2) can be expressed by a quadratic form in xN−2 and

additional constants described by x̃N−2 and wN−2 (cf. Equation A113). Using these results, we

can proceed with the minimization of the overall cost function going backwards in time and get

uk = −
(

BT
k Kk+1Bk +Rk

)−1 (
BT

k Kk+1Ak + ST
k

)

Exk |Ik [xk| Ik] , (A119)

where25

Kk = AT
kKk+1Ak +Qk −Pk, (A120)

Pk =
(

AT
kKk+1Bk + Sk

) (

BT
k Kk+1Bk +Rk

)−1 (
BT

k Kk+1Ak + ST
k

)

, (A121)

for k ∈ {0, 1, . . . , N − 1} and KN = QN , and

Jk(Ik) = Exk |Ik

[

xT
kKkxk

∣

∣ Ik
]

+

N−1
∑

i=k

Ex̃i|Ik

[

x̃T
i Pix̃i

∣

∣ Ik
]

+

N−1
∑

i=k

Ewi

[

wT
i Ki+1wi

]

. (A122)

Finally, noting that J∗ = Ex0,v0
[J0(I0)] (cf. Equation A87) and that I0 = {y0} = {C0x0 + v0},

we get the optimal cost of the LQG control problem:

J∗ = Ex0

[

xT
0K0x0

]

+
N−1
∑

k=0

Ex̃k

[

x̃T
kPkx̃k

]

+
N−1
∑

k=0

Ewk

[

wT
k Kk+1wk

]

= µT
x0
K0µx0

+ tr
[

K0Cx0

]

+

N−1
∑

k=0

tr
[

PkCx̃k

]

+

N−1
∑

k=0

tr
[

Kk+1Cwk

]

.

(A123)

It can be seen that the optimal cost consists of three contributions. The first one is due to the

initial state and is given by its mean value and the associated uncertainty which is described by its

25It is shown in [6, pp. 149-150] that Kk, and consequently Pk, are positive semidefinite matrices for

k ∈ {0, 1, . . . , N − 1}.
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covariance matrix. The second contribution is due to the fact that the system state is not known

exactly but has to be estimated by computing its conditional mean given the available information

Ik at time index k, i. e., x̂k = Exk|Ik [xk| Ik]. The associated cost is given by the covariance

matrix of the estimation error x̃k = xk − x̂k. The third contribution is due to the noise process

(wk : k ∈ {0, 1, . . . , N − 1}) which drives the system state away from zero.

What is still missing is the description of the computation of the conditional mean

Exk|Ik [xk| Ik], k ∈ {0, 1, . . . , N − 1}, which is not simple in general if arbitrary distributions of

the contributing random variables are considered. Nevertheless, due to the assumption of Gaussian

random variables and a linear system, which leads to the fact that the evolution of the system state

and the associated observations are described by a Gauss-Markov process, the computationally

efficient Kalman filter algorithm can be used to determine the conditional expectations and the

associated error covariance matrices. This algorithm is introduced in Appendix A7.

The following summary presents the results of this section in compact form. The weighting

matrices are assumed to fulfill Equation (A68) and the sequences (wk : k ∈ {0, 1, . . . , N − 1})
and (vk : k ∈ {0, 1, . . . , N − 1}) of independent random vectors have zero mean, are mutually

independent and additionally independent of the initial state x0.

Summary A6.1 The optimization problem

minimize
µ0,µ1,...,µN−1

Ex0,w0,...,wN−1,v0,...,vN−1

[

xT
NQNxN +

N−1
∑

n=0

[

xn

un

]T [
Qn Sn

ST
n Rn

] [

xn

un

]

]

,

subject to xk+1 = Akxk +Bkuk +wk, k ∈ {0, 1, . . . , N − 1},
yk = Ckxk + vk, k ∈ {0, 1, . . . , N − 1},
uk = µk(Ik), k ∈ {0, 1, . . . , N − 1},

where

Ik =
{

{y0}, k = 0,

{y0,y1, . . . ,yk,u0,u1, . . . ,uk−1}, k ∈ {1, 2, . . . , N − 1},
is solved by

uk = −
(

BT
k Kk+1Bk +Rk

)−1 (
BT

k Kk+1Ak + ST
k

)

Exk |Ik [xk| Ik] ,

where

Kk = AT
kKk+1Ak +Qk − Pk,

Pk =
(

AT
kKk+1Bk + Sk

) (

BT
k Kk+1Bk +Rk

)−1 (
BT

k Kk+1Ak + ST
k

)

,

for k ∈ {0, 1, . . . , N − 1}, and KN = QN . The optimal value of the cost function is

J∗ = Ex0

[

xT
0K0x0

]

+
N−1
∑

k=0

Ex̃k

[

x̃T
kPkx̃k

]

+
N−1
∑

k=0

Ewk

[

wT
k Kk+1wk

]

.



A6. LQG Control 169

A6.3 Infinite Horizon LQG Control with Average Cost

In practice, control systems can operate over a very long time. For the LQG control problem,

this means that the horizon N becomes large and, in the limit, grows to infinity. Having a look

at Equation (A123), it becomes clear that in this case the optimal cost J∗ grows without a bound

and thus does not allow for an evaluation of the actual control performance. One approach to the

solution of this problem is not to consider J∗, but the average cost per stage of the control problem,

i. e.,

J∞ = lim
N→∞

1

N
J, (A124)

where J is the LQG cost function given by Equation (A67). Note that while J is always finite for

finite values of N if xk and uk have bounded second order moments, this is not necessarily the

case for J∞.

Of special interest is the investigation of time-invariant systems with stationary process and ob-

servation noise sequences and constant weighting matrices for the LQG cost function. The reason

is that for this scenario, it turns out that the optimal controller is also time-invariant and can be de-

termined with low computational and memory requirements. For the stationary and time-invariant

scenario, assume that

xk+1 = Axk +Buk +wk,

yk = Cxk + vk, k ∈ N0,
(A125)

i. e., a Linear Time-Invariant (LTI) system is considered. Additionally, (wk : k ∈ N0) and

(vk : k ∈ N0) are identically and independently distributed (i.i.d.) sequences which are addition-

ally mutually independent and independent of the initial system state x0 ∼ N
(

µx0
,Cx0

)

. Since

the noise sequences are assumed to be i.i.d., i. e., they are also stationary, and Gaussian, we have

wk ∼ N (0Nx
,Cw) and v ∼ N

(

0Ny
,Cv

)

, k ∈ N0. Finally, the cost function is given by (cf.

Equations A67 and A68)

J = Ex0,w0,...,wN−1,v0,...,vN−1

[

xT
NQxN +

N−1
∑

n=0

[

xn

un

]T [
Q S

ST R

] [

xn

un

]

]

, (A126)

with

Q ≥ 0Nx×Nx
, R > 0Nu×Nu

,

[

Q S

ST R

]

≥ 0(Nx+Nu)×(Nx+Nu). (A127)

For this scenario, the average optimal cost per stage can be obtained using the results from Section

A6.2 and is given by (cf. Equation A123)

1

N
J∗ =

1

N

(

µT
x0
K0µx0

+ tr
[

K0Cx0

])

+
1

N

N−1
∑

k=0

(

tr
[

PkCx̃k

]

+ tr [Kk+1Cw]
)

, (A128)

where Kk and Pk, k ∈ {0, 1, . . . , N − 1}, are determined by the iteration (cf. Equations A120 and

A121)

Kk = ATKk+1A−
(

ATKk+1B + S
) (

BTKk+1B +R
)−1(

BTKk+1A+ ST
)

+Q, (A129)

Pk = ATKk+1A−Kk +Q, (A130)
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with initial condition KN = Q. The covariance matrix Cx̃k
, k ∈ {0, 1, . . . , N − 1}, of the state

estimation error is obtained by the Kalman filter iterations (cf. Equations A182 and A198) and

reads as

CP
x̃k+1

= A
(

CP
x̃k
−CP

x̃k
CT

(

CCP
x̃k
CT +Cv

)−1
CCP

x̃k

)

AT +Cw, (A131)

Cx̃k
= CP

x̃k
−CP

x̃k
CT

(

CCP
x̃C

T +Cv

)−1
CCP

x̃k
, (A132)

with initial condition CP
x̃0

= Cx0
. Before the minimization of J∞ is discussed, we analyze the

behavior of the average optimal cost, i. e., 1
N
J∗, in the limit for N → ∞. In this case and under

the assumptions from Section A3, the iterations in Equations (A129) and (A131) converge to their

respective unique positive semidefinite steady state solutions given by the DAREs

K = ATKA−
(

ATKB + S
) (

BTKB +R
)−1 (

BTKA+ ST
)

+Q (A133)

and

CP
x̃ = A

(

CP
x̃ −CP

x̃C
T
(

CCP
x̃C

T +Cv

)−1
CCP

x̃

)

AT +Cw, (A134)

irrespective of the initial conditions. Consequently, the matrix Pk converges to P and the error

covariance matrix Cx̃k
to Cx̃. Using this result for Equation (A128), it can be seen that the constant

term depending on µx0
and Cx0

vanishes in the limit for N → ∞, whereas the remaining terms

converge to constant values. Thus, we obtain

lim
N→∞

1

N
J∗ = tr [PCx̃] + tr [KCw] . (A135)

The optimal controller becomes the LTI system

uk = Lx̂k, k ∈ N0, (A136)

where

L = −
(

BTKB +R
)−1 (

BTKA+ ST
)

, (A137)

and the state estimate x̂k determined by the steady state Kalman filter (see Section A7), i. e.,

x̂P
k+1 = Ax̂k +Buk,

x̂k = x̂P
k +G

(

yk −Cx̂P
k

)

, k ∈ N0,
(A138)

with

G = CP
x̃C

T
(

CCP
x̃C

T +Cv

)−1
. (A139)

It is an appealing property of this solution that it can be computed offline and implemented as an

LTI filter. Additionally, it can be used as an approximate solution for the finite horizon control

problem when N is sufficiently large.

Now we turn to the minimization of J∞ given by Equation (A124) because so far the limit of the

optimal LQG cost has been considered and not the minimum of the infinite horizon average cost.

In general, the treatment of infinite horizon average cost problems, especially for problems with

infinite state or control spaces, needs advanced mathematical tools which will not be discussed

here. An introduction to these problems and associated solution methods can be found in, e. g.,

[6, Chapter 7] while a more detailed discussion is presented in [136, Chapter 4]. The methods
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introduced there are applied to the infinite horizon LQG problem with average cost in [136, Section

4.6.5] when the system state is perfectly known, i. e., when yk = xk, k ∈ N0, and it is shown

that the solution according to Equations (A135) and (A136) (with x̂k replaced by xk and Cx̃ by

0Nx×Nx
) is indeed optimal.

A different approach to the solution of the infinite horizon LQG problem with average cost is

the so-called H2 minimization [137–139]. The basis for this approach is the fact that the second

moment of a stationary random sequence can be calculated using its power spectral density, see,

e. g., [4, pp. 468-469], [31, pp. 194-195 and 203-204] or [34, pp. 420-421]. Thus, assuming that

(ξk : k ∈ N0) is a K-dimensional stationary26 random sequence, we get

Eξk

[

‖ξk‖22
]

= tr

[

1

2π

∫ π

−π

Sξ(e
jω) dω

]

, k ∈ N0, (A140)

where Sξ: C→ CK×K , is the element-wise z-transform of the correlation (matrix) sequence

Rξ(k) = Eξn,ξn+k

[

ξnξ
T
n+k

]

, n ∈ N0, k + n ∈ N0, (A141)

cf. [4, p. 468]. Assume further that (ξk : k ∈ N0) is the output of an LTI system with transfer

matrix A: C → CK×L, L ∈ N, which is driven by a white noise sequence (nk : k ∈ N0) with

Sn(e
jω) = σ2

nIL×L, ω ∈ {−π, π}. Then, the second moment of the output sequence is given by

(cf. [4, p. 469])

Eξk

[

‖ξk‖22
]

= tr

[

1

2π

∫ π

−π

A(ejω)AH(ejω) dω

]

σ2
n = ‖A‖22σ2

n, (A142)

i. e., by the squaredH2 norm of the system transfer matrix (see, e. g., [138, p. 85] or [139, p. 23]).

Consequently, the minimization of Eξk [‖ξk‖22] is equivalent to the minimization of theH2 norm of

the corresponding system transfer matrix.

TheH2 minimization problem can be identified as an LQG control problem with infinite hori-

zon and average cost. First, we have to assume that a time-invariant controller exists which leads to

asymptotically and jointly stationary state and control sequences (xk : k ∈ N0) and (uk : k ∈ N0),
respectively. Second, define

ξk = Exk + Fuk, k ∈ N0, (A143)

where E and F are constant matrices of appropriate dimensions. Since the state and control se-

quences are asymptotically stationary, we consider

lim
k→∞

Eξk

[

‖ξk‖22
]

= lim
k→∞

Exk,uk

[

xT
kE

TExk + uT
kF

TFuk + 2uT
kF

TExk

]

, (A144)

which can be identified to be the cost function J∞ (cf. Equation A124) by setting Q = ETE,

R = F TF and S = ETF and using the fact that due to the convergence of the second order

moments of the state and control sequence to their stationary values, the limit of the average in

Equation (A124) and the limit in Equation (A144) have the same value. Finally, [137] and [138,

Chapter 6.5] show that the solutions of the H2 optimization and of the stationary LQG control

problem are the same, i. e., they are obtained by the solution of the two DAREs given in Equations

(A133) and (A134) which are used to compute a linear function of the optimal state estimate. The

26This implies that the components of ξk are jointly stationary.
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optimal value of the cost function is the sum of the contributions due to the process noise and

the state estimation error (cf. Equation A135). We conclude that the solution given in Equations

(A136)-(A139) is the optimal linear time-invariant controller which minimizes J∞.

Summary A6.2 For the LTI system given in Equation (A125), the optimal linear time-invariant

controller which minimizes the infinite horizon average cost function

J∞ = lim
N→∞

1

N
J,

where J is given by Equation (A126), reads as

uk = −
(

BTKB +R
)−1 (

BTKA+ ST
)

x̂k, k ∈ N0,

where the optimal state estimate x̂k = Exk |Ik [xk| Ik], with Ik given by Equation (A94), is

determined by the steady state Kalman filter (cf. Section A7), i. e.,

x̂P
k+1 = Ax̂k +Buk,

x̂k = x̂P
k +CP

x̃C
T
(

CCP
x̃C

T +Cv

)−1 (
yk −Cx̂P

k

)

, k ∈ N0.

The result requires the stabilizing solutions of the two DAREs

K = ATKA−
(

ATKB + S
) (

BTKB +R
)−1 (

BTKA+ ST
)

+Q

and

CP
x̃ = A

(

CP
x̃ −CP

x̃C
T
(

CCP
x̃C

T +Cv

)−1
CCP

x̃

)

AT +Cw.

The optimal value of the cost function is given by

J∗
∞ = tr [PCx̃] + tr [KCw] ,

with

P = ATKA−K +Q

and

Cx̃ = CP
x̃ −CP

x̃C
T
(

CCP
x̃C

T +Cv

)−1
CCP

x̃.
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A7. The Kalman Filter

The Kalman filter [140] is a very popular method for the optimal estimation of a random sequence

which is described by a Markov model using incomplete and noisy observations. For the case

of Gauss-Markov sequences, it is the optimal estimator in the mean square sense, without the

Gaussianity the best linear estimator in that sense [37, Section 3.2]. By introducing a state space

model for the sequence to be estimated, it allows for an efficient sequential estimation procedure

which can be performed on-line when new observations become available. In the following, we

present the basic idea of sequential estimation for general Markov sequences, while in Section

A7.2 the Kalman filter algorithm is derived using a state space description of the Gauss-Markov

sequence to be estimated.

Let (xk : k ∈ N0) and (yk : k ∈ N0) be two random sequences which are described by their

joint distribution functions. The problem is to infer from the observation sequence (yk : k ∈ N0)
on the sequence of interest, (xk : k ∈ N0), which cannot be observed directly.

Given a set of observed random vectors yk, k ∈ {i1, i2, . . . , iN} ⊂ N0, all information about a

set of random vectors xℓ, ℓ ∈ {j1, j2, . . . , jM} ⊂ N0, is provided by the conditional PDF

fxj1
,...,xjM

|yi1
,...,yiN

(xj1, . . . ,xjM |yi1, . . . ,yiN ) , (A145)

where we assume that the PDF exists and is well defined. Of special interest is the filtering problem,

i. e., the determination of the conditional PDFs

fxk |y0,...,yk
(xk|y0, . . . ,yk) , k ∈ N0. (A146)

This can be interpreted as making inference about an unknown quantity, described by the random

vector xk, at a time index k from measurements or observations yi, i ∈ {0, 1, . . . , k}, which are

obtained sequentially from an initial time 0 up to k. For a certain class of stochastic models,

the determination of the conditional PDF can be performed sequentially when a new observation

becomes available, which allows for the development of on-line estimation algorithms that rely on

the knowledge of this PDF.

A7.1 Sequential Estimation for Markov Models

Assume that the joint PDFs of (xk : k ∈ N0) and (yk : k ∈ N0) can be written as

fx0,x1,...,xN ,y0,y1,...,yN
(x0,x1, . . . ,xN ,y0,y1, . . . ,yN)

= fx0
(x0)

N
∏

k=1

fxk |xk−1
(xk|xk−1)

N
∏

k=0

fyk |xk
(yk|xk) , (A147)

for all N ∈ N0.27 This is possible if (xk : k ∈ N0) is a Markov sequence, i. e.,

fx0,x1,...,xN
(x0,x1, . . . ,xN) = fx0

(x0)

N
∏

k=1

fxk |xk−1
(xk|xk−1) (A148)

for all N ∈ N0, where fx0
(x0) is the PDF of the initial random vector and fxk+1|xk

(xk+1|xk),
k ∈ N0, is the transition density of the sequence. Additionally, Equation (A147) implies that the

27We assume that the PDF exists and is well defined, which will also be the case in the remainder of this section.
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conditional PDF of the observation sequence given the state sequence factorizes as

fy0,y1,...,yN |x0,x1,...,xN
(y0,y1, . . . ,yN |x0,x1, . . . ,xN) =

N
∏

k=0

fyk|xk
(yk|xk) , (A149)

for all N ∈ N0. Loosely speaking, this requires that the observation yk, k ∈ N0, only depends on

the state xk at time index k. Formally, Equation (A149) holds if yk is conditionally independent

of all states (xi : i ∈ N0, i 6= k) and observations (yi : i ∈ N0, i 6= k) given the state xk for all

k ∈ N0. Consequently, the stochastic model of the state and observation sequence is fully deter-

mined by the transition densities fxk+1|xk
(xk+1|xk) and the observation densities fyk|xk

(yk|xk)
for k ∈ N0 as well as the PDF of the initial state fx0

(x0).
In the following, it will be useful to note that the model assumptions which lead to Equation

(A147) determine the conditional independence of yk and (yi : i ∈ {0, 1, . . . , k − 1}) given xk,

i. e.,

fy0,...,yk−1,yk|xk
(y0, . . . ,yk−1,yk|xk) = fyk|xk

(yk|xk) fy0,...,yk−1|xk
(y0, . . . ,yk−1|xk) , (A150)

which follows directly from the assumption of the conditional independence above. Additionally,

the state xk+1 is conditionally independent of (yi : i ∈ {0, . . . , k}) given xk, which results from

fxk+1,y0,...,yk|xk
(xk+1,y0, . . . ,yk|xk) =

1

fxk
(xk)

fxk ,xk+1,y0,...,yk
(xk,xk+1,y0, . . . ,yk)

=
1

fxk
(xk)

∫

· · ·
∫∫

fx0
(x0)

k+1
∏

i=1

fxi|xi−1
(xi|xi−1)

k+1
∏

i=0

fyi|xi
(yi|xi) dx0 . . .dxk−1 dyk+1

=
fxk+1|xk

(xk+1|xk)

fxk
(xk)

∫

· · ·
∫

fx0
(x0)

k
∏

i=1

fxi|xi−1
(xi|xi−1)

k
∏

i=0

fyi|xi
(yi|xi) dx0 . . .dxk−1 (A151)

=
fxk+1|xk

(xk+1|xk)

fxk
(xk)

fxk ,y0,...yk
(xk,y0, . . .yk)

= fxk+1|xk
(xk+1|xk) fy0,...yk|xk

(y0, . . .yk|xk) .

In the following, it will be shown how to determine the PDFs given in Equation (A146) sequen-

tially. The result relies on the the application of Bayes’ theorem for PDFs [34, p. 224]. We start by

noting that

fx0|y0
(x0|y0) =

fy0|x0
(y0|x0) fx0

(x0)

fy0
(y0)

, (A152)

where fy0
(y0) =

∫

fy0|x0
(y0|x0) fx0

(x0) dx0. This expression is determined by the given

stochastic model. Assume now that the PDF fxk−1|y0,...,yk−1
(xk−1|y0, . . . ,yk−1) is known for the

index (k − 1) ∈ N0. Then, the marginalization w.r.t. xk−1 and the application of the model as-

sumption (cf. Equation A147) provides the density

fxk|y0,...,yk−1
(xk|y0, . . . ,yk−1) =

∫

fxk ,xk−1|y0,...,yk−1
(xk,xk−1|y0, . . . ,yk−1) dxk−1

=

∫

fxk |xk−1,y0,...,yk−1
(xk|xk−1,y0, . . . ,yk−1) fxk−1|y0,...,yk−1

(xk−1|y0, . . . ,yk−1) dxk−1

(∗)
=

∫

fxk |xk−1
(xk|xk−1) fxk−1|y0,...,yk−1

(xk−1|y0, . . . ,yk−1) dxk−1.

(A153)
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Note that the equation (∗) holds due to the conditional independence of (xk : k ∈ N0) and

(yk : k ∈ N0). Analogously, we get

fyk|y0,...,yk−1
(yk|y0, . . . ,yk−1) =

∫

fyk,xk|y0,...,yk−1
(yk,xk|y0, . . . ,yk−1) dxk

=

∫

fyk|xk,y0,...,yk−1
(yk|xk,y0, . . . ,yk−1) fxk |y0,...,yk−1

(xk|y0, . . . ,yk−1) dxk

=

∫

fyk|xk
(yk|xk) fxk|y0,...,yk−1

(xk|y0, . . . ,yk−1) dxk.

(A154)

Having computed the two PDFs in Equations (A153) and (A154), the same reasoning without the

marginalization step is applied to get the desired density (cf. Equation A146) at time index k ∈ N0:

fxk |y0,...,yk
(xk|y0, . . . ,yk) =

fy0,...,yk−1,yk|xk
(y0, . . . ,yk−1,yk|xk) fxk

(xk)

fy0,...,yk
(y0, . . . ,yk)

=
fy0,...,yk−1|xk

(y0, . . . ,yk−1|xk) fxk
(xk) fyk|xk

(yk|xk)

fy0,...,yk
(y0, . . . ,yk)

=
fxk |y0,...,yk−1

(xk|y0, . . . ,yk−1) fyk|xk
(yk|xk)

fyk |y0,...,yk−1
(yk|y0, . . . ,yk−1)

.

(A155)

Thus, using Equations (A153), (A154) and (A155) together with the initial condition given by

Equation (A152), the conditional PDFs for the filtering problem can be calculated sequentially.

Equations (A153) and (A154) are often called prediction and Equation (A155) update (or cor-

rection) steps of the solution of the filtering problem. This follows from the fact that Equations

(A153) and (A154) describe the distribution of the quantity of interest, xk, or the observation yk,

respectively, conditioned only on past observations up to time index k − 1, i. e., the distribution

of quantities that lie in the future w.r.t. the available observations. When a new observation yk

becomes available, this information can be used to update the conditional PDF of xk given all

available observations up to time k (see Equation A155).

Summary A7.1 Let (xk : k ∈ N0) and (yk : k ∈ N0) be two random sequences with a joint

distribution described by Equation (A147). Then, given the conditional PDF

fxk−1|y0,...,yk−1
(xk−1|y0, . . . ,yk−1) , k ∈ N,

the corresponding PDF for time index k can be computed sequentially by

fxk|y0,...,yk
(xk|y0, . . . ,yk) =

fxk|y0,...,yk−1
(xk|y0, . . . ,yk−1) fyk|xk

(yk|xk)

fyk|y0,...,yk−1
(yk|y0, . . . ,yk−1)

,

where

fxk |y0,...,yk−1
(xk|y0, . . . ,yk−1) =

∫

fxk|xk−1
(xk|xk−1) fxk−1|y0,...,yk−1

(xk−1|y0, . . . ,yk−1) dxk−1

and

fyk |y0,...,yk−1
(yk|y0, . . . ,yk−1) =

∫

fyk|xk
(yk|xk) fxk|y0,...,yk−1

(xk|y0, . . . ,yk−1) dxk.
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A7.2 Sequential Estimation for Gauss-Markov Models

Although the results of the preceding section are very general and can be applied to any stochastic

model which satisfies Equation (A147), it may be difficult or even not possible to evaluate the

integrals in Equations (A153) and (A154). On the other hand, the determination of the conditional

PDFs for the filtering problem can be tremendously simplified for the case that (xk : k ∈ N0) and

(yk : k ∈ N0) are jointly Gaussian random sequences. For such sequences, it is well known that

all subsets of random vectors are jointly [34, p. 386], [37, p. 322] as well as conditionally [31, pp.

116-117] Gaussian distributed and thus the corresponding distributions are completely determined

by the mean vector and the covariance matrix. Consequently, for the sequential determination of

the conditional PDFs, it suffices to determine the corresponding means and covariances.

For the remainder of this section, the following result will be useful:

Theorem A7.1 Let x and y be two jointly Gaussian distributed random vectors. Then, the mean

vector and the covariance matrix of the conditional distribution of x given y are

µx|y = µx +Cx,yC
−1
y (y − µy) and (A156)

Cx|y = Cx −Cx,yC
−1
y CT

x,y, (A157)

respectively, where it is assumed that the inverse exists.

Proof. This is a standard result and can be found, e. g., in [31, pp. 116-117] or [70, p. 300]. �

Thus, for the Markov model introduced by Equation (A147), the restriction to Gauss-Markov se-

quences results in the conditional PDFs

fxk+1|xk
(xk+1|xk) = N

(

µxk+1|xk
,Cxk+1|xk

)

, k ∈ N0, (A158)

with (cf. Theorem A7.1)

µxk+1|xk
= µxk+1

+Cxk+1,xk
C−1

xk
(xk − µxk

) and

Cxk+1|xk
= Cxk+1

−Cxk+1,xk
C−1

xk
CT

xk+1,xk
.

(A159)

Analogously,

fyk|xk
(yk|xk) = N

(

µyk|xk
,Cyk |xk

)

, k ∈ N0 (A160)

with

µyk|xk
= µyk

+Cyk ,xk
C−1

xk
(xk − µxk

) and

Cyk|xk
= Cyk

−Cyk,xk
C−1

xk
CT

yk ,xk
.

(A161)

For the derivation of the Kalman filter, it is convenient to use a state space model for the sequences

(xk : k ∈ N0) and (yk : k ∈ N0). This represents no loss of generality since Gauss-Markov se-

quences with the properties from Equation (A147) can always28 be constructed with an appropriate

linear state space model.29

28Of course we assume that all inverses which are used for the description of the model parameters exist. A state

space model covering the singular case can also be constructed but will not be discussed here.
29For the case of two jointly Gaussian distributed random vectors, see, e. g., [70, Section 7.5].
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Theorem A7.2 Let (xk : k ∈ N0) be a Gauss-Markov sequence which, together with

(yk : k ∈ N0), satisfies Equation (A147). Then, the random sequences (xk : k ∈ N0) and

(yk : k ∈ N0) with given conditional PDFs (cf. Equations A158 and A160) can be constructed

using the state space model

xk+1 = Akxk +wk,

yk = Ckxk + vk, k ∈ N0,
(A162)

where (wk : k ∈ N0) and (vk : k ∈ N0) are mutually independent sequences of independently

distributed random vectors with wk ∼ N
(

µwk
,Cwk

)

and vk ∼ N
(

µvk
,Cvk

)

, k ∈ N0. Addition-

ally, the initial value x0 ∼ N
(

µx0
,Cx0

)

is independent of (wk : k ∈ N0) and (vk : k ∈ N0). The

parameters of the state space model are

Ak = Cxk+1,xk
C−1

xk
, Ck = Cyk ,xk

C−1
xk

, (A163)

µwk
= µxk+1

−Cxk+1,xk
C−1

xk
µxk

, µvk
= µyk

−Cyk,xk
C−1

xk
µxk

, (A164)

Cwk
= Cxk+1|xk

, Cvk
= Cyk |xk

, (A165)

which are completely determined by the Gaussian transition densities fxk+1|xk
(xk+1|xk) and

fyk|xk
(yk|xk), k ∈ N0, and fx0

(x0).

Proof. The stochastic description of the Gauss-Markov sequence requires the knowledge of the

transition densities fxk+1|xk
(xk+1|xk) and fyk|xk

(yk|xk), k ∈ N0, as well as the distribution of

the initial random vector fx0
(x0). Since all random vectors are jointly Gaussian distributed, it can

be seen with the results of Theorem A7.1 that this knowledge is equivalent to the knowledge of

a sequence of affine functions which describe the conditional expected values of the distributions

and a sequence of constant covariance matrices which describe the conditional covariances (cf.

Equations A159 and A161). These sequences can be constructed using the state space model in

Equation (A162). First, consider the conditional expected value of xk+1 given xk,

µxk+1|xk
= Exk+1|xk

[xk+1|xk]

= Exk,wk|xk
[Akxk +wk|xk] = Akxk + µwk

, k ∈ N0,
(A166)

where the fact has been used that (wk : k ∈ N0) is a sequence of independently distributed random

vectors and thus wk is independent of xk. Comparing this function which is affine in xk with

Equation (A159), we find that

Ak = Cxk+1,xk
C−1

xk
, k ∈ N0, (A167)

and

µwk
= µxk+1|xk

−Akxk

= µxk+1
−Cxk+1,xk

C−1
xk

µxk
, k ∈ N0.

(A168)

With the independence of xk and wk, the state space model generates the sequence of covariance

matrices

Cxk+1
= AkCxk

AT
k +Cwk

, k ∈ N0, (A169)
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with initial value Cx0
as well as the sequence of cross-covariance matrices

Cxk+1,xk
= AkCxk

, k ∈ N0. (A170)

This result provides the correct choice of the covariance matrix of wk which is (cf. Equation A159)

Cxk+1|xk
= AkCxk

AT
k +Cwk

−AkCxk
C−1

xk
Cxk

AT
k

= Cwk
,

(A171)

for k ∈ N0. The presented steps can be repeated for the sequence of observations (yk : k ∈ N0) to

obtain the results for the parameters Ck, µvk
and Cvk

, k ∈ N0. Finally, due to the independence

assumptions of the noise sequences (wk : k ∈ N0) and (vk : k ∈ N0), it is easy to verify that the

conditional independence of the state and the observation sequences which lead to Equation (A147)

holds for the linear state space model. �

In the following, we will use the state space model of Equation (A162) to derive the Kalman filter.

At this point, we change the introduced notation to one which is more common in the existing liter-

ature on optimal estimation. As already mentioned, the conditional PDF of xk given the available

observations, i. e., fxk|y0,y1,...,yk
(xk|y0,y1, . . . ,yk), is fully described by (cf. Theorem A7.1) the

conditional mean

x̂k = Exk|y0,y1,...,yk
[xk|y0,y1, . . . ,yk] = µxk|y0,y1,...,yk

(A172)

and the conditional covariance matrix

Cx̃k
= Exk |y0,y1,...,yk

[

(xk − x̂k) (xk − x̂k)
T
∣

∣

∣
y0,y1, . . . ,yk

]

= Cxk |y0,y1,...,yk
(A173)

for all k ∈ N0. Note that we introduce the vector

x̃k = xk − x̂k, k ∈ N0, (A174)

which represents the estimation error between the quantity of interest, xk, and its conditional mean

estimate, x̂k = Exk|y0,y1,...,yk
[xk|y0,y1, . . . ,yk]. As we have already seen in Section A7.1 (cf.

Equation A153), the procedure of sequential estimation includes a prediction step, represented by

the determination of the PDF fxk|y0,y1,...,yk−1
(xk|y0,y1, . . . ,yk−1). The parameters of this density

are given by

x̂P
k = Exk |y0,y1,...,yk−1

[xk|y0,y1, . . . ,yk−1] = µxk|y0,y1,...,yk−1
(A175)

and

CP
x̃k

= Exk |y0,y1,...,yk−1

[

(

xk − x̂P
k

) (

xk − x̂P
k

)T
∣

∣

∣
y0,y1, . . . ,yk−1

]

= Cxk |y0,y1,...,yk−1
(A176)

for k ∈ N, where

x̃P
k = xk − x̂P

k, k ∈ N0. (A177)

The superscript P indicates the prediction of xk at time index k given all observations up to time

index k − 1. Note that for k = 0, we have x̃P
0 = µx0

and consequently CP
x̃0

= Cx0
.
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An important property of the conditional mean x̂k and the deviation x̃k of the random vector xk

from its conditional mean is that these random vectors are uncorrelated [70, pp. 300-301], i. e.,30

Ex̃k ,y0,y1,...,yk

[

(x̂k − µxk
)x̃T

k

]

= 0Nx×Nx
, k ∈ N0. (A178)

Additionally, x̃k is uncorrelated with the random vectors it is conditioned on, i. e.,

Ex̃k,yi

[

(yi − µyi
) x̃T

k

]

= 0Ny×Nx
, i ∈ {0, 1, . . . , k}. (A179)

These results hold analogously for the random vectors x̂P
k and x̃P

k.

Now we are in the position to derive the well known Kalman filter equations. To this end, we

use the state space model introduced in Equation (A162), i. e.,

xk+1 = Akxk +wk

yk = Ckxk + vk, k ∈ N0,
(A180)

where the initial state x0 and the random sequences (wk : k ∈ N0) and (vk : k ∈ N0) are indepen-

dently (not necessary identically) jointly Gaussian distributed and mutually independent. Analo-

gously to the prediction and correction steps shown in Section A7.1, the parameters of the corre-

sponding PDFs, i. e., the conditional mean and covariance, will be determined sequentially in the

following. Assume that these parameters x̂k−1 and Cx̃k−1
are known for some (k−1) ∈ N0. Then,

for the prediction step, we get31

x̂P
k = Exk |y0,y1,...,yk−1

[xk|y0,y1, . . . ,yk−1]

= Exk−1,wk−1|y0,y1,...,yk−1
[Ak−1xk−1 +wk−1|y0,y1, . . . ,yk−1]

(∗)
= Ak−1Exk−1|y0,y1,...,yk−1

[xk−1|y0,y1, . . . ,yk−1] + Ewk−1
[wk−1]

= Ak−1x̂k−1 + µwk−1
.

(A181)

Equation (∗) holds because, due to the model assumptions,wk−1 is independent of the observations

yi, i ∈ {0, 1, . . . , k − 1}. For the corresponding covariance matrix we get

CP
x̃k

= Exk |y0,y1,...,yk−1

[

(

xk − x̂P
k

) (

xk − x̂P
k

)T
∣

∣

∣
y0,y1, . . . ,yk−1

]

= Exk−1,wk−1|y0,...,yk−1

[

(

Ak−1 (xk−1 − x̂k−1) +
(

wk−1 − µwk−1

))

×
(

Ak−1 (xk−1 − x̂k−1) +
(

wk−1 − µwk−1

))T
∣

∣

∣
y0, . . . ,yk−1

]

= Ak−1Exk−1|y0,...,yk−1

[

(xk−1 − x̂k−1) (xk−1 − x̂k−1)
T
∣

∣

∣
y0, . . . ,yk−1

]

AT
k−1

+ Ewk−1

[

(

wk−1 − µwk−1

) (

wk−1 − µwk−1

)T
]

= Ak−1Cx̃k−1
AT

k−1 +Cwk−1
.

(A182)

30The subtraction of µxk
can be omitted without changing the result because x̃k is a zero mean random vector.

31Equation (A181) shows how to deal with linear dynamical systems which are additionally driven by a known

input sequence, e. g., a controlled system. In this case, the input sequence can be interpreted as a different value of

the mean vector µwk−1
of the process noise and thus, for the case of linear systems, can simply be added to Equation

(A181). This is of importance for the LQG control approach, see Section A6.
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The derivation of the correction step needs more work but offers a different view on the repre-

sentation of random sequences. For a compact notation, define the vector γk which collects all

observations up to time index k, i. e.,

γk =











y0

y1
...

yk











, k ∈ N0. (A183)

Since the conditional distribution of xk given γk is Gaussian, its mean value for k ∈ N is given by

(cf. Theorem A7.1)

x̂k = Exk |γk
[xk|γk] = µxk

+Cxk ,γk
C−1

γk
(γk − µγk

)

= µxk
+
[

Cxk,γk−1
Cxk ,yk

]

[

Cγk−1
Cγk−1,yk

CT
γk−1,yk

Cyk

]−1 [
γk−1 − µγk−1

yk − µyk

]

.
(A184)

For a sequential computation of x̂k it would be comfortable to have uncorrelated observations,

i. e., that Cγk−1,yk
= 0kNy×Ny

, k ∈ N. In this case, the inverse in Equation (A184) would be block

diagonal and the conditional mean could be written as a sum (cf. [6, p. 490]) where one summand

is already known (cf. Equation A181):

x̂P
k = Exk|γk−1

[xk|γk−1] = µxk
+Cxk ,γk−1

C−1
γk−1

(

γk−1 − µγk−1

)

. (A185)

Of course the desired cross covariance matrix is not zero because the observation sequence

(yk : k ∈ N0) is in general not a sequence of uncorrelated random vectors. But we have the de-

gree of freedom to apply an invertible affine function to the collection of observations γk which

does not change the mean vector and covariance matrix of the conditional distribution of xk given

the (transformed) observations. Define

ηk = Tkγk + sk, k ∈ N0, (A186)

where T−1
k exists and sk is a constant vector of appropriate dimension. It is easy to verify that

Exk |ηk
[xk|ηk] = µxk

+Cxk,ηk
C−1

ηk
(ηk − µηk

)

= µxk
+Cxk,γk

T T
k T

−1,T
k C−1

γk
T−1
k (Tkγk + sk − Tkµγk

− sk)

= Exk|γk
[xk|γk] .

(A187)

Analogously, the equality of the conditional covariance matrices can be shown. For the Kalman

filter, we use an affine function with

Tk =

[

IkNy
0kNy×Ny

−Cyk ,γk−1
C−1

γk−1
INy

]

(A188)

and

sk =

[

0kNy

−µyk
+Cyk ,γk−1

C−1
γk−1

µγk−1

]

(A189)

for k ∈ N, while for k = 0 the mapping with T0 = INy
and s0 = −µy0

is applied. The matrix Tk

is clearly invertible since it is lower triangular with ones on the main diagonal. Additionally, note
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that Tk and sk only depend on mean vectors and covariance matrices up to time index k. Having a

closer look on Tk and sk, it can be seen that the vector ηk of the transformed observations reads as

ηk =

[

γk−1

ek

]

, k ∈ N, (A190)

and η0 = e0, where we introduced the vector ek, k ∈ N0. Using Equations (A183), (A186), (A188)

and (A189), we identify

ek = yk − µyk
−Cyk ,γk−1

C−1
γk−1

(

γk−1 − µγk−1

)

= yk − Eyk|y0,y1,...,yk−1
[yk|y0,y1, . . . ,yk−1] , k ∈ N,

(A191)

and e0 = y0−µy0
. It can be seen that ek is the deviation of the observation yk from its conditional

mean given the past observations yi, i ∈ {0, 1, . . . , k − 1}, and thus it is uncorrelated with these

observations (cf. Equation A179). Consequently, using the transformed observations ηk, we get

with Equations (A184) and (A187) the conditional mean

x̂k = µxk
+
[

Cxk ,γk−1
Cxk ,ek

]

[

Cγk−1
0kNy×Ny

0Ny×kNy
Cek

]−1 [
γk−1 − µγk−1

ek − µek

]

= µxk
+Cxk ,γk−1

C−1
γk−1

(

γk−1 − µγk−1

)

+Cxk ,ek
C−1

ek
(ek − µek)

= x̂P
k +Cxk ,ek

C−1
ek

ek

(A192)

for k ∈ N0. The last step is valid due to Equation (A185) and the fact that ek has zero mean.

It remains to determine the covariance matrices Cxk ,ek
and Cek

for k ∈ N0. We start with the

latter one and get by simple calculations32

Cek
= Eγk

[

(yk−Eyk|y0,...,yk−1
[yk|y0, . . . ,yk−1])(yk−Eyk|y0,...,yk−1

[yk|y0, . . . ,yk−1])
T
]

= Exk ,vk,γk−1

[

(

Ck

(

xk − Exk |γk−1
[xk|γk−1]

)

+ (vk − µvk
)
)

×
(

Ck

(

xk − Exk |γk−1
[xk|γk−1]

)

+ (vk − µvk
)
)T
]

= Exk ,vk,γk−1

[

(

Ck

(

xk − x̂P
k

)

+ (vk − µvk
)
) (

Ck

(

xk − x̂P
k

)

+ (vk − µvk
)
)T
]

= CkC
P
x̃k
CT

k +Cvk
,

(A193)

where we used Equations (A162), (A176), (A183) and the fact that vk is independent of xk and

γk−1. For the cross covariance matrix, together with Equation (A177) and the fact that x̂P
k and x̃P

k

are uncorrelated (cf. Equation A178), we get

Cxk ,ek
= Exk,y0,y1,...,yk

[

xk(yk − Eyk|y0,y1,...,yk−1
[yk|y0,y1, . . . ,yk−1])

T
]

= Exk,vk,y0,y1,...,yk−1

[

(

x̂P
k + x̃P

k

) (

Ck

(

xk − x̂P
k

)

+ (vk − µvk
)
)T
]

= CP
x̃k
CT

k .

(A194)

Finally, inserting Equation (A194), Equation (A193) and Equation (A191) in Equation (A192) and

using the identity

Eyk|y0,y1,...,yk−1
[yk|y0,y1, . . . ,yk−1] = Exk,vk|y0,y1,...,yk−1

[Ckxk+vk|y0,y1, . . . ,yk−1]

= Ckx̂
P
k + µvk

,
(A195)

32For k = 0, we have e0 = y0−µy0
as well as CP

x̃0
= Cx0

, which directly provides the result of Equations (A193)

and (A194) using the state space model (cf. Equation A180).
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we get the desired result

x̂k = x̂P
k +CP

x̃k
CT

k

(

CkC
P
x̃k
CT

k +Cvk

)−1 (
yk −Ckx̂

P
k − µvk

)

, (A196)

which can be computed from the known quantities x̂k−1 and Cx̃k−1
for k ∈ N.

Finally, we determine the covariance matrix Cx̃k
of the distribution in the correction step. To

this end, note that (cf. Equations A191, A195 and A162),

ek = yk −Ckx̂
P
k − µvk

= Ckx̃
P
k + (vk − µvk

).
(A197)

Keeping that in mind and using Equations (A192), (A193) and (A194), the desired covariance

matrix reads as33

Cx̃k
= Exk ,y0,...,yk

[

(xk − x̂k)(xk − x̂k)
T
]

= Exk ,y0,...,yk

[

(

xk − x̂P
k −Cxk ,ek

C−1
ek

ek

) (

xk − x̂P
k −Cxk ,ek

C−1
ek

ek

)T
]

= Exk ,y0,...,yk

[

x̃P
kx̃

P,T
k

]

− Exk,y0,...,yk

[

x̃P
ke

T
k

]

C−1
ek

CT
xk ,ek

−Cxk ,ek
C−1

ek
Exk,y0,...,yk

[

ekx̃
P,T
k

]

+Cxk ,ek
C−1

ek
Ey0,...,yk

[

eke
T
k

]

C−1
ek

CT
xk,ek

= CP
x̃k
−CP

x̃k
CT

k

(

CkC
P
x̃k
CT

k +Cvk

)−1
CkC

P
x̃k
.

(A198)

An important step for the derivation of the Kalman filter is the mapping of the observations

using an affine function:














y0

y1
...

yk−1

yk















Tk(•)+sk−→















y0

y1
...

yk−1

yk − Eyk|y0,y1,...,yk−1
[yk|y0,y1, . . . ,yk−1]















=















γk−1

ek















. (A199)

This step decomposes the available observations into γk−1, which is used to compute x̂k−1, and ek,

which represents all information about the new observation yk that is not contained in γk−1. This

is the reason why ek is commonly called innovation. In other words, ek is the part of yk which lies

in the space of random variables which are orthogonal to the space of random variables spanned

by the observations yi, i ∈ {0, 1, . . . , k − 1}. Thus, γk−1 and ek are orthogonal (and uncorrelated

since ek is a zero mean random vector).

In Equation (A199), an invertible affine function has been used to decorrelate the observation

yk and the set of earlier observations, given by the vector γk−1. Of course, such a function can be

applied for every k ∈ N0, i. e.,

ek = yk − Eyk|y0,y1,...,yk−1
[yk|y0,y1, . . . ,yk−1]

= yk −Ckx̂
P
k − µvk

(A200)

33Note that the covariance matrix Cx̃k
has been defined differently in Equation (A173), i. e., using the condi-

tional distribution of xk given the observations y0,y1, . . . ,yk, while Equation (A198) uses their joint distribu-

tion. This is not a contradiction since the estimation error x̃k is uncorrelated with the observations (cf. Equa-

tion A179) and thus also stochastically independent due to Gaussianity. Consequently, Cx̃k
= C

xk|y0,y1,...,yk
=

Exk|y0,y1,...,yk

[

(xk−x̂k)(xk−x̂k)
T
∣

∣y0,y1, . . . ,yk

]

= Ex̃k|y0,y1,...,yk

[

x̃kx̃
T
k

∣

∣y0,y1, . . . ,yk

]

= Ex̃k

[

x̃kx̃
T
k

]

=

Exk,y0,y1,...,yk

[

(xk − x̂k)(xk − x̂k)
T
]

.
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for k ∈ N, and e0 = y0 − µy0
. In this case, the sequence (ek : k ∈ N0) is called the innovation

sequence. It has the property that it is an orthogonal (and uncorrelated since it is zero mean)

sequence. Consequently, the covariance matrices which describe the joint densities of all subsets

of random vectors from the sequence (ek : k ∈ N0) are block diagonal. This allows for a simple

sequential computation of the parameters of the conditional densities fxk|e0,...,ek (xk|e0, . . . , ek)
which is equivalent (not identical) to the density fxk |y0,...,yk

(xk|y0, . . . ,yk) because observations

are mapped to innovations by invertible affine functions.

The idea of a decorrelation of observations enables a sequential computation of the mean

vector and covariance matrix of the distribution of the state vector xk given the observations

y0,y1, . . . ,yk. It is worth noting that it is not necessary to store all these observations, i. e., the

Kalman filter algorithm has finite memory requirements. Equation (A200) shows that the compu-

tation of the innovation at time index k just needs the current observation yk and the predicted

system state x̂P
k. Since the latter one can be calculated sequentially (cf. Equations A181, A196,

A182 and A198), it is only necessary to keep the current state estimate, estimation error covari-

ance matrix and observation in the memory.

The innovation sequence is an equivalent representation of the original observation sequence

since the mapping from the latter to the former is invertible. The motivation for this mapping is the

fact that the elements of the innovation sequence are uncorrelated and thus orthogonal because they

have zero mean. This orthogonalization is performed sequentially, i. e., each new observation yk+1,

k ∈ N0, is orthogonalized against all previous observations (yi : i ∈ {0, . . . , k}) or, equivalently,

innovations (ei : i ∈ {0, . . . , k}). In the context of sequential orthogonalization, the transformation

of the observations to the innovation sequence is also called the Gram-Schmidt method (see, e. g.,

[34, pp. 270-272].

Summary A7.2 Let (xk : k ∈ N0) and (yk : k ∈ N0) be two random sequences generated by

the state space model

xk+1 = Akxk +wk,

yk = Ckxk + vk, k ∈ N0,

where (wk : k ∈ N0) and (vk : k ∈ N0) are independently (not necessarily identically) dis-

tributed random sequences with wk ∼ N
(

µwk
,Cwk

)

and vk ∼ N
(

µvk
,Cvk

)

, k ∈ N0. Addi-

tionally, the initial value x0 ∼ N
(

µx0
,Cx0

)

, the sequence (wk : k ∈ N0) and (vk : k ∈ N0) are

mutually independent. Then, the parameters of the PDF fxk|y0,y1,...,yk
(xk|y0,y1, . . . ,yk) can be

calculated sequentially by

x̂k = x̂P
k +CP

x̃k
CT

k

(

CkC
P
x̃k
CT

k +Cvk

)−1 (
yk −Ckx̂

P
k − µvk

)

,

Cx̃k
= CP

x̃k
−CP

x̃k
CT

k

(

CkC
P
x̃k
CT

k +Cvk

)−1
CkC

P
x̃k
, k ∈ N0,

and

x̂P
k = Ak−1x̂k−1 + µwk−1

,

CP
x̃k

= Ak−1Cx̃k−1
AT

k−1 +Cwk−1
, k ∈ N.

The initial values are x̂P
0 = µx0

and CP
x̃0

= Cx0
.
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A8. Convexity of the Trade-off Curve of Pareto Optimal Values

Let f1 : RN → R+,0 and f2 : RN → R+,0 be two convex functions and consider the joint

minimization of f1 and f2 w.r.t. x ∈ RN . By convexity, it holds (cf., e. g., [94, Section 3.1.1])

f1(αx1 + (1− α)x2) ≤ αf1(x1) + (1− α)f1(x2), and

f2(αx1 + (1− α)x2) ≤ αf2(x1) + (1− α)f2(x2),
(A201)

for all x1,x2 ∈ RN and α ∈ [0, 1]. This is equivalent to
[

f1(αx1 + (1−α)x2)
f2(αx1 + (1−α)x2)

]

≤
[

αf1(x1) + (1−α)f1(x2)
αf2(x1) + (1−α)f2(x2)

]

= α

[

f1(x1)
f2(x1)

]

+(1−α)
[

f1(x2)
f2(x2)

]

, (A202)

where the inequality has to be understood component-wise.

Now, let z
∗,T
1 = [f1(x

∗
1), f2(x

∗
1)]

T and z
∗,T
2 = [f1(x

∗
2), f2(x

∗
2)]

T be two Pareto optimal values,

i. e., x∗
1 and x∗

2 are Pareto optimal points (for a definition of Pareto optimal values and points see,

e. g., [94, Section 4.7.3]). Then, Equation (A202) tells us that the curve in R2
+,0 which connects

z∗
1 and z∗

2 when f1 and f2 are evaluated at x = αx∗
1 + (1 − α)x∗

2, α ∈ [0, 1], lies below the

straight line which connects z∗
1 and z∗

2 . Thus, there must exist at least one more Pareto optimal

value along this curve. The same argumentation can be repeated with an arbitrary pair of Pareto

optimal values. This implies that the set of all these values, which describes the trade-off curve

for the two objectives represented by f1 and f2, is convex. Otherwise, we obtain a contradiction

because for a non-convex trade-off curve there exist triples of Pareto optimal values such that one

of them lies above the straight line which connects the other two.

The argumentation above is not a rigorous proof but provides the basic ideas to understand the

convexity of the optimal trade-off curve which is obtained by the determination of Pareto optimal

values of two convex functions.

A9. Consistency of a Lower Bound for Convex-Monotonic Optimization

Problems

With reference to [103], a convex-monotonic optimization problem exhibits convexity w.r.t. to

a subset of optimization variables for fixed values of all other variables and monotonicity in

those other variables for fixed values of the “convex” ones. In Chapters 4 and 5, several convex-

monotonic minimization problems are solved using a branch and bound approach to determine the

optimizing values of the “non-convex” variables.

With the assumption that strong duality holds, the solution of the convex part of the constrained

minimization problem is obtained by maximizing the corresponding dual function (see, e. g., [94,

Chapter 5] or [95, Chapter 6]). In order to generalize the notation presented in Chapters 4 and 5,

i. e., Equations (4.52), (4.59) and (5.14), let the dual function be L∗(α, λ1, λ2), where the vector α

contains the positive valued, “non-convex” variables, and λ1 ≥ 0 and λ2 ≥ 0 are the dual variables

for two dualized inequality constraints.34 Thus, the solution of the considered optimization problem

is given by

I(α) = sup
λ1≥0
λ2≥0

L∗(α, λ1, λ2). (A203)

34Comparing with Chapters 4 and 5, the components of α represent the (ratio of the) transmit and receive scaling

factors t and g, respectively, or the diagonal entries of the diagonal matrices T and G, respectively. If only one

inequality (power) constraint is considered, λ1 or λ2, respectively, has to be set to zero.
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For the cases considered in Chapters 4 and 5, i. e., for channel noise covariances and weighting

matricesR for the control input with full rank, the dual functionL∗ is continuous w.r.t.α (see [104]

for a discussion of the continuity of stabilizing solutions of a DARE). It is also continuous35 and

concave w.r.t. λ1 and λ2. For continuity, we refer again to [104], whereas the concavity always

holds for dual functions [94, Section 5.1.2].

In order to obtain a lower bound for the minimal value of I(α) w.r.t. α when these parameters

can be chosen from a set A, the monotonicity of the dual function L∗ has been used in Chapters 4

and 5 to obtain a lower bound

L∗
A(λ1, λ2) ≤ L∗(α, λ1, λ2), α ∈ A, (A204)

which holds for all λ1 ≥ 0 and λ2 ≥ 0. Consequently, the inequality also holds for the supremum,

i. e.,

IA = sup
λ1≥0
λ2≥0

L∗
A(λ1, λ2) ≤ sup

λ1≥0
λ2≥0

L∗(α, λ1, λ2) = I(α), α ∈ A. (A205)

The lower bound for the dual function shown in Equation (A204) is itself the dual function of

a relaxed version of the original minimization problem, see Equations (4.52), (4.59) and (5.14).

Thus, it is also concave in λ1 and λ2 and its supremum IA is the optimal value of the relaxed

problem.

For the guarantee that the branch and bound algorithm described in [103] finds the global

minimum of I(α) over all possible parameter vectors α, the bound derived in Equation (A205)

must be consistent, i. e., it has to be shown that if the set A collapses to a single point α, the value

of the lower bound converges to the optimal value I(α) of the original optimization problem. To

this end, let the set A be parametrized by the two vectors α and α with positive entries according

to

A = {α |α ≤ α ≤ α} , (A206)

where the inequalities have to be understood component-wise. Using such sets, the lower bound

for the dual function given by Equation (A204) has the property that if B ⊂ A, it follows that

L∗
A(λ1, λ2) ≤ L∗

B(λ1, λ2) for all λ1 ≥ 0 and λ2 ≥ 0, which is due to the monotonicity of the

original optimization problem w.r.t. the parameter vector α. Thus, L∗
A(λ1, λ2) is monotonically

increasing w.r.t. α and decreasing w.r.t. α. Note further that for the specific problems investigated

in Chapters 4 and 5, L∗
A(λ1, λ2) is also continuous w.r.t. α and α, which is a result of the continuity

of the stabilizing solutions of the respective DAREs w.r.t. to the parameter vectors (see [104]).

Additionally, taking into account Equation (A206), it holds

L∗
A(λ1, λ2) = L∗(α, λ1, λ2) for α = α = α, (A207)

i. e., the lower bound for the dual function is tight if the set A collapses to a single point. Having

stated this property, which can be verified with Equations (4.52), (4.59), and (5.14), it will be

shown that this is also true for the supremum. To this end, we discuss the feasible and infeasible

case separately.

35Regarding the results of [104], the solution of the DARE in Equation (4.47) might not be continuous at λ = 0.

Nevertheless, since the dual function is concave w.r.t. the dual variable, λ = 0 can not be the maximizer of the dual

function when it is not continuous at this point.
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Case 1: The optimization problem is feasible using the parameters α, i. e., I(α) is finite.

Since I(α) is the supremum of the dual function w.r.t. λ1 and λ2, there exist λ′
1 ≥ 0 and λ′

2 ≥ 0
such that

I(α)− L∗(α, λ′
1, λ

′
2) < ε1 (A208)

for each ε1 > 0. Additionally, due to the continuity and monotonicity of the lower bound

L∗
A(λ1, λ2) and with Equation (A207), there exist α ≤ α and α ≥ α such that

L∗(α, λ′
1, λ

′
2)− L∗

A(λ
′
1, λ

′
2) < ε2 (A209)

for each ε2 > 0. Note that this inequality holds for every set B ⊂ A which is parametrized

according to Equation (A206). Adding Equation (A208) and (A209), we get the inequality

I(α)− L∗
A(λ

′
1, λ

′
2) < ε1 + ε2 (A210)

for each ε1 + ε2 > 0. Since the supremum of L∗
A is larger than or equal to L∗

A(λ
′
1, λ

′
2), it can be

seen that for a set A which is sufficiently small, it holds

I(α)− IA < ε (A211)

for each ε = ε1 + ε2 > 0, i. e., the optimal value IA of the lower bound converges to the optimal

value I(α) of the original optimization problem if the set A collapses to the point α.

Case 2: The optimization problem is infeasible using the parameters α, i. e., I(α) =∞.

It will be shown by contradiction that in this case also the lower bound IA for the optimal value

I(α) is not bounded from above and thus IA → ∞ when the set A collapses to the point α.

Assume that IA converges to the finite value c > 0 for α→ α and α→ α. Since L∗(α, λ1, λ2) is

unbounded from above, there exist λ′
1 and λ′

2 such that

L∗(α, λ′
1, λ

′
2)− c > ε1 (A212)

for each ε1 > 0. Now, let ε2 > 0 and δ > 0 with ε1 = ε2 + δ. Then, with Equation (A209), there

exist α ≤ α and α ≥ α such that

L∗
A(λ

′
1, λ

′
2)− L∗(α, λ′

1, λ
′
2) > δ − ε1. (A213)

Adding Equation (A212) and (A213), we get

L∗
A(λ

′
1, λ

′
2)− c > δ. (A214)

Since IA is the supremum of L∗
A and thus larger than or equal to L∗

A(λ
′
1, λ

′
2), it can be seen that IA

does not converge to the finite value c and thus growths without an upper bound.

The two cases show that under the assumption that strong duality holds for the considered

optimization problems, the lower bound IA for the optimal value I(α) is consistent.
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