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The most exciting phrase to hear in science, the one that heralds new discoveries, is not,

“Eureka!” (“I found it!”) but rather, “Hmm... that’s funny...”

Isaac Asimov





Abstract

The young field of optomechanics focuses on the interaction of the quantized modes

of a light field in an optical cavity with the vibrational modes of a mechanical oscillator.

This gives rise to a variety of interesting phenomena such as cooling and amplification

of mechanical motion. These effects are not limited to the purely optical domain, but

can be transferred to the microwave regime by combining superconducting microwave

resonators with nanometer-sized mechanical beams. In this way the new field of circuit

nano-electromechanics has been established, which allows to couple the quantized modes

of a microwave resonator to the vibrational modes of a mechanical system and thereby to

do quantum mechanics with mechanical systems.

In this thesis, we present a comprehensive study on a microwave-nanomechanical hy-

brid device at millikelvin temperatures. It consists of a niobium/silicon nitride low loss

nanobeam, capacitively coupled to the voltage node of a niobium microwave cavity estab-

lishing an on-chip all integrated electromechanical hybrid system.

A careful investigation of the mechanical degree of freedom shows that our system

allows for the study of the mechanical loss mechanisms in nanobeams. In particular, the

investigation of the nonlinear mechanical oscillation regime (Duffing regime) allows to ex-

tract the mechanical properties of nanobeams incorporating multiple material layers. The

complete pre-characterization of the sample further includes the microwave cavity and

the coupling mechanism between cavity and nanobeam establishing our electromechanical

hybrid system. By application of frequency noise calibration we determine the electrome-

chanical vacuum coupling including a calibration of the input wiring of the cryogenic setup.

The experimental and theoretical investigation of the basic electromechanical phenomena

including sideband cooling of the vibrational mode to an average occupation number of 13

confirms good control and detailed understanding of the system under study.

The extension of our experiments to two-tone spectroscopy allows for the detailed

analysis of interference effects between a weak probe field and a strong drive field. We in-

vestigate two of the most prominent interference phenomena: Electromechanically induced

transparency and absorption, leading to enhanced or reduced transmittance of the probe

tone, respectively. Our comprehensive study includes the mapping of nonlinear mechanical

motion into the microwave regime as well as the analysis of the impact of high mechanical

oscillation amplitudes on the cavity resonant frequency.

We also investigate the dynamic properties of the system in the time domain, where

the focus is on a direct measurement of the group delay and the switching dynamics of the

induced transparency effect. The strong dispersive phase shift in the case of electrome-

chanically induced transparency makes our device promising for the realization of group

delays of microwave pulses of several 10 ms. Exploiting this feature, we generate slow light

with group velocities in the pedestrian regime. The achieved control over the propaga-

tion of microwave fields is not limited to classical light fields and offers the perspective to

synchronize quantized microwave fields generated by spatially separated systems.

Time domain measurements of the ring up and ring down behavior of the nanobeam’s

amplitude reveal the counterintuitive fact that not the slowest dynamics in the device – the
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mechanical ring down – limits electromechanical switching of the transmitted probe field,

but the cavity’s ring down time. Hereby, we provide the basis for complete storage and

retrieval of a microwave quantum state in long-lived mechanical excitations, contributing

to the study of quantum decoherence in macroscopic mechanical systems.



Zusammenfassung

Die Optomechanik ist ein junges Gebiet in der Physik, welches sich mit der Wechsel-

wirkung zwischen den quantisierten Moden eines Lichtfeldes in einer optischen Kavität

und den Vibrationsmoden eines mechanischen Oszillators beschäftigt.

Diese Kopplung manifestiert sich in einer Vielzahl an interessanten Effekten wie die

Kühlung und die Verstärkung der Bewegung mechanischer Schwingungen. Dabei sind op-

tomechanische Phänomene nicht nur auf den sichtbaren Spektralbereich beschränkt, son-

dern können auch auf den Mikrowellenbereich übertragen werden, indem ein supraleiten-

der Mikrowellenresonator mit einer schwingenden mechanischen Saite auf nanometer Skala

kombiniert wird. Dies hat das neue Feld der circuit (Schaltkreis) nano-Elektromechanik

hervorgebracht, welches erlaubt die quantisierten Moden eines Mirkowellen-Resonators

und die Vibrationsmoden eines mechanischen Oszillators zu koppeln und dadurch Quan-

tenmechanik in mechanischen Systemen zu untersuchen.

In der vorliegenden Dissertation präsentieren wir eine umfassende Analyse eines solchen

Mikrowellen-Nanomechanik Hybrid Systems bei millikelvin Temperaturen. Es besteht aus

einer verlustarmen Niob/Silizium Nitrid Nanosaite, welche kapazitiv and den Spannungs-

bauch eines Niob Mikrowellenresonators gekoppelt ist, wodurch ein vollständig auf der

Probe intergriertes elektromechanisches Hybridsystem entsteht.

Eine Sorgfältige Analyse des mechanischen Freiheitsgrades zeigt, dass sich unser System

dazu eignet mechanische Verlustmechanismen in Nanosaiten zu untersuchen. Insbesondere

zeigt eine Untersuchung des nichtlinearen mechanischen Verhaltens (Duffing-Regime), dass

wir hiermit die mechanischen Eigenschaften von nano-Seiten bestimmen können, welche

aus mehreren Materialschichten bestehen. Die vollständige Vorcharakterisierung der Probe

schließt zusätzlich zum mechanischen Freiheitsgrad den Mikrowellenresonator und die Kop-

plungsmechanismen zwischen Resonantor und nano-Saite ein, woraus das elektromecha-

nische System entsteht. Eine Kalibration des Frequenzrauschspektrums (frequency noise

calibration) erlaubt es sowohl die elektromechanische Vakuumkopplung zu bestimmen, als

auch die Eingangsleitung des kryogenen Aufbaus zu kalibrieren. Experimentelle und theo-

retische Untersuchungen von grundlegenden optomechanischen Phänomenen, einschließlich

Seitenband-Kühlung des mechanischen Freiheitsgrades zu einer mittleren Besetzungzahl

von 13, bestätigen die gute Kontrolle und detailliertes Verständnis des untersuchten Sys-

tems.

Die Erweiterung auf Zwei-Ton Spektroskopie ermöglicht eine detailierte Analyse von

Inteferenzeffekten zwischen dem schwachen Mikrowellenfeld des Testtons und einem in-

tensiven Feld eines Antriebstons. In diesem Zusammenhang wurden die prominenten

Interferenz Phänomene der elektromechanisch induzierten Transparenz und Absorption

untersucht, welche jeweils zu einer verstärkten oder reduzierten Transmission des Testtons

führen. Unsere umfangreiche Untersuchung schließt das Abbilden von nichtlinearen mech-

anischen Effekten in den Mikrowellenbereich und den Einfluss von hohen mechanischen

Amplituden auf die Resonanzfrequenz des Mikrowellenresonators ein.

Zusätzlich wurden die dynamischen Eigenschaften der induzierten Mikrowellentrans-

parenz in der Zeitdomäne untersucht, wobei der Fokus auf dem direkten Nachweis von
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Gruppenverzögerungen und die Schaltdynamik des induzierten Tranparenzeffekts liegen.

Mit dem Transparenzeffekt geht ein stark dispersiver und über die Antriebsleistung ein-

stellbarer Phasenschub einher, was das System zu einer guten Plattform zur Erzeugung

von Gruppenlaufzeitverzögerungen von Mikrowellenpulsen im Bereich von mehreren 10 ms

macht. Wir nutzen diese Eigenschaft um langsames Licht zu erzeugen, wobei die Grup-

pengeschwindigkeiten im Bereich von Fußgängern liegen. Zu bemerken ist, dass die Kon-

trolle über die Ausbreitungsgeschwindigkeit von Mikrowellenfeldern, welche wir erreichen,

nicht auf klassische Felder beschränkt ist und die Aussicht quantisierte Mikrowellenfelder

zu synchronisieren, welche von räumlich getrennten Systemen erzeugt werden, eröffnet.

Zeitdomänen-Messungen des Auf- und Abschwingverhaltens des Transparenzeffektes,

verursacht durch die Amplitude der Nanosaite, zeigen die nicht erwartete Beobachtung,

dass nicht die langsamste Zeitkonstante des Systems – das mechanische Abschwingen –

elektromechanisches Schalten des Testfeldes begrenzt, sondern vielmehr das Abschwingver-

halten des Mikrowellenresonators für die Dynamik begrenzend ist. Mit diesen Messungen

legen wir den Grundsein für vollständiges Speichern und Wiederherstellen eines quan-

tisierten Zustandes im Mikrowellenbereich in einer langlebigen mechanischen Anregung,

was einen Beitrag zu Untersuchungen von Quanten Dekohärenz in makroskopischen mech-

anischen Systemen darstellt.
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Chapter1
Introduction

The nature of light has fascinated many generations of scientists. One of the most in-

triguing features of light is the transfer of momentum onto matter. The idea behind this

phenomenon dates back to the 17th century when Kepler noted that comet tails point away

from the sun1. Yet it took more than two centuries until Maxwell laid down the foundations

of the so-called radiation pressure within his framework of electrodynamics [1].

The first experimental demonstration of radiation pressure with a torsional balance

used as a light mill [2, 3] took place in 1901. With the advent of intensive coherent

light sources in form of masers and lasers, the focus soon shifted from demonstration to

utilization of radiation pressure. Hänsch and Shawlow [4] and almost at the same time

Wineland and Dehmelt [5] recognized the ability of light to cool the vibrational modes of

atoms and ions to the quantum ground state and proposed schemes to trap electromagnetic

particles exploiting radiation pressure.

Within quantum mechanics on the other hand, the study of interactions between light

and matter has developed to one of the most prominent fields in research called Quantum

Optics, awarded with the Nobel prize in 2012. In this field, quantized modes of electro-

magnetic waves (photons) interact with atoms or ions via both their electric and magnetic

dipole moment and thus a lot of effort is undertaken to prepare the atoms in states with

a large dipole moment – the Rydberg state.

Together with the implementation of so-called laser cooling of microscopic particles

mentioned above, the access to atomic systems with large dipole moments enabled the

investigation of these particles in their motional ground state in optical cavities. The

enhancement and storage of coherent light fields in cavities increased the probability of

interaction between photons and the object under study due to the reduced photonic loss

rate, allowing for repeated interactions before the photon leaves the cavity. In 1985, the

strong coupling of light to atoms in the optical regime [6] (in the microwave regime, a

Rabi splitting was observed in 1992 [7]) has been achieved, where the coupling rate is

exceeding both the loss rates of the cavity and the atoms. This was the starting point

of a successful new research direction in Quantum Optics called Cavity Quantum Elec-

trodynamics (CQED). For a review of experiments in this field see Refs. [8, 9]. Besides

the fundamental study of quantum mechanical properties of matter and light, quantum

1Although this effect inspired Kepler to think about the concept of radiation pressure, it is caused by

solar winds.
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optical setups are useful for applications in the field of quantum information. The long

coherence times of atoms and ions allows us to implement quantum two-level systems (so-

called quantum bits or qubits) and to use them for quantum information processing and

storage. Ref. [10] draws a comparison of different atomic systems in this domain. More-

over, Photons are ideal candidates for so-called flying qubits allowing for coherent transfer

of quantum information over a long distance.

The properties of atomic systems are predetermined by nature and cannot be tuned

and designed for specific applications. This triggered another field of research aiming for

the implementation of solid state circuits with discrete energy levels similar to the ones in

atoms but tunable by design; so-called artificial atoms. Different realizations of such sys-

tems include superconducting loops with one or more Josephson junction, semiconductor

quantum dots or defect states in solid state systems, reviewed and compared in Ref. [11].

With the advance in the realization of superconducting artificial atoms and microfabrica-

tion technology in mind, Blais et al. proposed to transfer the concepts already established

in cavity QED to all integrated solid state systems operating in the microwave regime [12]

using coplanar waveguide resonators as cavities and Cooper pair boxes as artificial atoms.

In 2004, Wallraff et al. [13] implemented the concept of CQED by engineered solid state

quantum circuits, starting a new research direction named circuit quantum electrodynam-

ics (cQED). Refs. [14,15] review the ideas behind and the development in circuit quantum

electrodynamics. Compared to the optical counterpart the coupling between qubit and

photonic excitations is much stronger due to the large dipole moments associated with the

much larger size of the artificial solid state atoms. Recently, even the ultra-strong coupling

regime has been reached, where the coupling rate becomes of the same order of magnitude

than the qubit and resonator transition frequencies [16]. Additionally, they offer more

design flexibility and tunability since the system parameters can be engineered and tuned

in-situ. On the other hand, on-chip superconducting qubits are not as well isolated from

the environment as atomic systems in an optical trap. A comparison of both systems in

terms of quantum computation is provided in Ref. [17].

Recently, more quantum systems have been coupled to microwave resonators, like quan-

tum dots [18–21] or the spins in solid state systems [22–29] providing a new class of

quantum hybrid systems. Of particular interest for quantum information processing is the

coupling of superconducting qubits to spin systems. Here, superconducting qubits are used

to implement a quantum processor due to their strong interaction with the environment

while the long coherence times of spin systems enable storage of quantum information.

Two proof of principle experiments couple a qubit directly to NV centers in diamond [30]

or use a frequency tunable microwave cavity as a bus [31].

Coupling a superconducting qubit to a mechanical drum oscillator operating in the GHz

regime allowed the first demonstration of quantized mechanical vibration [32], although in

this experiment the mechanical decoherence time underruns the qubit decoherence time.

Other experiments used a nanobeam to read out a qubit [33] and to parametrically amplify

and squeeze the mechanical vibration by exploiting the nanobeam-qubit coupling [34].

Etaki et al. [35] suspended one side of a dc SQUID to detect the mechanical vibration and

recently Pirkkalainen et al. [36] monitored the vibration of a mircobeam via a transmon

qubit capacitively coupled to it.

Yet, to transfer quantum information over long distances, photons at optical wave-

lengths are unprecedented. Thus, a particular focus of research is to exploit the advantages
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of systems working in different frequency regimes to bring quantum information processing

and quantum computers into reach. In this context, a key requirement is a transducer,

capable of (nearly) lossless, coherent transfer of quantum information between those sys-

tems. A good candidate is found within the relatively young field of optomechanics. Here,

the photons inside a cavity couple parametrically to the position of a mechanical oscillator,

allowing for coherent state transfer from the optical to the mechanical mode [37]. Thus,

coupling two different optical modes to one mechanical oscillator allows for coherent state

transfer between those modes [38–42]. In this thesis, we investigate optomechanics in a

device operating in the microwave regime – a so-called electromechanical system – in the

context of control over the propagation of microwave fields and the transfer of information

to the mechanical mode.

In Chapter 2, we provide a brief historical overview on how optomechanics evolved.

Hereby, we also review the zoo of realizations of optomechanical systems. The cryogenic

apparatus in which the experiments take place is described in Chapter 3. We present

our electromechanical system in Chapter 4, including a detailed pre-characterization of

the microwave cavity, the suspended nanobeam forming the mechanical oscillator and the

electromechanical coupling mechanisms. Basic optomechanical features are studied both

on the theoretical and experimental side in Chapter 5. We investigate electromechanical

linewidth broadening, the optical spring effect and cooling of the mechanical mode. We

also estimate the electromechanical coupling and the detection sensitivity of the mechanical

amplitude. In Chapter 6 we analyze interference effects called electromechanical induced

transparency (EMIT) and absorption (EMIA) for our device in a two-tone configuration,

where a strong drive field manipulates the transmission of a weak probe field. We further

use this configuration to demonstrate the mapping of mechanical nonlinearities into the mi-

crowave regime and to investigate the cavity sidebands and the Kerr-like cavity resonance

shift as a consequence of high amplitude mechanical motion. The discussion of a two-tone

configuration is shifted to time domain in Chapter 7. We exploit the strong dispersion

coming along with EMIT to control the propagation of probe pulses and demonstrate slow

light in the microwave regime in an electromechanical system. By switching the drive tone,

we further investigate the switching behavior in our electromechanical device and hereby

reveal the counterintuitive fact that the probe field’s switching dynamics is not limited by

the slow decay of the mechanical amplitude. A discussion of the results in context of the

progress in the field of opto-/electromechanics is given in Chapter 8.
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Chapter2
Optomechanics – An overview

In this Chapter, we summarize the history of experiments and accompanying theory de-

veloping optomechanics to an own field within physical research. To demonstrate the vast

of different devices obeying the optomechanical Hamiltonian, we present a few realizations

of optomechanical systems. Further, we give an overview over some of the most important

achievements of the last years, demonstrating the rapid progress within this field. Since

the mechanical oscillator in our device is a doubly clamped nanobeam, we end the Chap-

ter with a brief review of nanomechanics, the second field of research accessible with our

system geometry.

2.1 Historical overview

The foundations of optomechanics were developed by Braginsky in 1970 [43] observing the

influence of mechanical vibrations inside a microwave cavity onto the intra-cavity light field.

Later Braginsky and coworkers embedded this into a theory of quantum non-demolition

(QND) measurements in the context of gravitational wave detection [44], where a light

field inside a cavity exerts dynamical backaction on a suspended mirror (as depicted in

Figure 2.1):

The photons inside a cavity transfer momentum onto the suspended mirror. The move-

ment of the mirror periodically changes the length of the cavity, subsequently changing

its resonance frequency. For a fixed input field, this modulates the number of intra-cavity

photons. A parametric coupling between the photonic mode and the position of the mir-

ror is established. The vibration of the mirror can be observed by spectral analysis of the

response of the cavity, allowing for high precision readout of the mechanical mode [45–49].

Braginsky also recognized that the retarded nature of the force acting on the mirror

can be used to cool or amplify the mechanical motion. The photons inside the cavity

either lead to positive or negative damping of the vibration, what Braginsky demonstrated

experimentally in 1970 [43]. The influence of pondermotive quantum noise, ultimately

limiting the readout precision of the mechanical mode was theoretically addressed in 1981

by Caves [50].

Only some experiments studied this type of coupling [51–53] until in the 1990’s theo-

retical studies of optomechanical effects including QND measurements of the intra-cavity

photon number [54,55], the reduction of quantum noise [56,57], the generation of nonclas-

5



6 2.2 Overview of optomechanical systems

x(t)

κin

κex

Sin

Sout

me�

Figure 2.1: Schematic of an optomechanical system. A Fabry-Perot cavity with one vibrating

mirror (with effective mass meff) couples the number of photons inside the cavity to the mirror

position. An input field Sin populates the cavity. The emitted field Sout leaving the cavity due

to the finite coupling κex to the external light field carries information about the mechnical

position x(t). The internal dissipation of light into the environment is defined by κin.

sical states [58,59] and the cooling of the mechanical mode via feedback [60] impressively

demonstrated some of the various phenomena in optomechanics and triggered new exper-

iments.

Cohadon et al. demonstrated feedback cooling of the vibrations of an end-mirror

in in 1999 [61]. This effect was later transferred to low temperatures in the range of

several Kelvin [62, 63] with smaller mirrors, cooling the mechanical mode to an effective

temperature in the millikelvin regime. These experiments were the first in a series to cool

the vibration of a macroscopic object close to the quantum ground state.

Scientists started to study optomechanical interaction between radiation inside a cavity

and a mechanical degree of freedom in devices different from the standard Fabry-Perot

cavity, showing that optomechanical physics resides in a huge variety of systems. Here,

one aspect of optomechanics becomes obvious: The possibility to realize at first sight

completely different samples, working in different frequency regimes considering the optical

and mechanical frequencies but still obeying the same (optomechanical) Hamiltonian.

The optomechanical capabilities of microtoroids were demonstrated by investigation of

the parametric instability of the breathing mode in these devices in 2005 [64–66]. Coupling

a cantilever [67] and a nanobeam [68, 69] to an LC-resonator transferred optomechanics

to electronic systems in 2007, establishing cavity nano-electromechanics. The coupling

of the collective vibrational mode of a Bose-Einstein-Condensate (BEC) to the light field

of a cavity in 2008 [70, 71] triggered cavity optomechanics with ultracold atomic systems

offering the lowest effective mass of the mechanical mode.

2.2 Overview of optomechanical systems

We show some realizations of optomechanical systems with mechanical masses ranging

from the kilogram scale down to the zeptogram scale, a range of more than 20 orders of

magnitude. Although we cover most principal realizations, the list is far from complete.

For a recent, more detailed review of different sample geometries see Ref. [72].

Figure 2.2 shows different optomechanical systems. The colored boxes indicate one

specific system class.

Fabry-Perot cavity: The most generic optomechanical system is a single sided Fabry-

Perot cavity. The orange box in Figure 2.2 shows three mechanical oscillators used

in such a geometry though their masses are separated by ten orders of magnitude:
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Figure 2.2: Overview of different optomechanical systems. For more details see the main text.

Sources of the Figures: a) “http://www.sr.bham.ac.uk/gwgroup/sounds_of_space/press_

info/photos/”, b) Ref. [73], c) Ref. [74], d) Ref. [75], e) Ref. [76], f) “http://ultracold.

physics.berkeley.edu/pmwiki/Main/E3”, g) Ref. [77], h) Ref. [78], i) Ref. [79], j) Ref. [80],

k) Ref. [81], l) Ref. [82].

Figure 2.2a presents a photo of a suspended mirror with a mass of 40 kg used for

gravitational wave detection in the laser interferometer gravitational-wave observa-

tory (LIGO) [83]. In Figure 2.2b we show a micromechanical free-free suspended

mirror [73]. Figure 2.2c shows an optical cavity quartz micropillar, supported by a

membrane, forming the vibrating end of a Fabry-Perot cavity [74].

Whispering gallery mode cavity: A different type of optical cavity is shown in the red

box in Figure 2.2. Here, the light is stored in a closed loop by total internal reflection,

a so-called whispering gallery mode named after the effect in St. Pauls cathedral in

London. The whole cavity performs breathing-like mechanical oscillations, what ef-

fectively changes the length of the loop providing the parametric coupling between

http://www.sr.bham.ac.uk/gwgroup/sounds_of_space/press_info/photos/
http://www.sr.bham.ac.uk/gwgroup/sounds_of_space/press_info/photos/
http://ultracold.physics.berkeley.edu/pmwiki/Main/E3
http://ultracold.physics.berkeley.edu/pmwiki/Main/E3
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optical and mechanical mode. In Figure 2.2d we show a micro-toroid [75], in Fig-

ure 2.2e a microsphere [76]. These systems have a lower mode volume than free-space

cavities giving high optomechanical single photon couplings.

Atomic cloud inside a cavity: The vibrational mode of a BEC influences the light field

inside an optical cavity as well. One can show that this configuration forms an

optomechanical system. A photo of the optical cavity including the atom chip to

trap the cold atoms is shown in Figure 2.2f. The collective motion of the atomic

cloud forms the mechanical oscillator with the smallest mass of up to a million

atomic masses. Here the mechanical mode is already in the ground state, enabling

the observation of quantum backaction to the light [84].

Membrane in the middle: Placing a dielectric membrane as shown in Figure 2.2g (pur-

ple box) inside a Fabry-Perot cavity can generate an optomechanical coupling [85]

or a quadratic coupling [77] depending on whether the membrane is placed in a node

or antinode of the standing light field, respectively. Membranes are promising tools

to couple an optomechanical system working in the optical regime to a system in the

microwave regime [39].

Photonic crystal cavity: Manipulation of the refractive index in a material (typically

silicon) by periodic structures on a size smaller than the light field’s wavelength al-

lows to store light fields inside these structures, called photonic crystal cavities. A

suspended photonic crystal cavity changes its refraction index additionally due to

stress generated by the vibrations of the structure. Here a coupling to longitudinal

vibrations allows for analysis of high Q mechanical modes in the GHz regime. Fig-

ure 2.2h (blue box) shows such a system, including perforation of the supports to

suppress leakage of mechanical excitations into the substrate [86].

Phonon-cavity electromechanics: An optomechanical system without optical cavity

has been implemented by Mahboob et al. [79], see Figure 2.2i. Here, the optical mode

is replaced by a second vibrational mode. Tension due to the mechanical oscillation

couples both mechanical modes, proving that the physics of optomechanics is not

limited to cavities storing photonic excitations.

Optomechanics in the microwave regime – Circuit electromechanics: The light

blue box in Figure 2.2 shows systems working in the microwave regime. Here the

cavity is an electric LC-oscillator. Systems working in this regime are called elec-

tromechanical systems. The mechanical oscillator is coupled to the cavity by ma-

nipulating its overall capacitance. It is easy to show that these systems follow the

optomechanical Hamiltonian. Figure 2.2j shows an electromechanical system with

a mechanical oscillator provided by the vibrations of the top of a plate capacitance

of a lumped element microwave cavity [80]. The image in Figure 2.2k shows a sus-

pended silicon nitride nanobeam (green) modulating the capacitance between two

gold wires (yellow) due to changes of the dielectric constant inside the capacitor [81].

In contrast to most electromechanical systems, this structure does not require low

temperatures. The microwave cavity consists out of copper, giving a low quality

factor but allowing for measurements at room temperature. Figure 2.2l shows a

nanobeam made from a silicon nitride/niobium sandwich structure [82, 87], coupled
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to the center conductor of a coplanar waveguide microwave cavity. Together with

the ground plane, the nanobeam forms a capacitor modulating the cavity resonance

frequency.

2.3 Experimental achievements

The zoo of different opto- or electromechanical systems leads to a rapid progress in explor-

ing the physical phenomena. Reviews of optomechanics are found in Refs. [39, 72,88–92].

The first demonstration of microtoroids as optomechanical systems in 2005 explored

the regime of mechanical self oscillations [64–66]. A blue detuned drive tone reduced

the mechanical damping until the mechanical motion becomes undamped allowing for the

observation of phonon lasing [52,53,93–99].

In 2006 three groups demonstrated optomechanical cooling of the mechanical mode by

radiation pressure [100–102]. On the theoretical side, a quantum description of optome-

chanical cooling was derived and the limits were studied depending on system parame-

ters [103–105] and on technical limitations [106–108].

Although low occupation numbers of the mechanical mode were reported before [47,76,

109–111] and the strong coupling limit was reached showing normal mode splitting [80,112],

it took until 2011 before cooling of the mechanical motion close to the ground state (what

means an average mechanical occupation less than one) was reported independently in an

electromechanical system [113] and in an optomechanical photonic crystal structure [78].

The sideband asymmetry of Stokes and anti-Stokes scattered light due to the low mechan-

ical occupation is studied in [114].

Two-tone spectroscopy experiments successfully demonstrated optomechanically in-

duced transparency [80, 87, 115, 116], predicted by Agarwal and Sumei [117] and optome-

chanically induced absorption [82,116]. Here two excitation pathways from a pump and a

probe tone interfere inside the cavity resulting from the coupling to the mechanical mode.

As a consequence the transmission of the probe tone is either enhanced for a red detuned

pump tone (transparency effect) or reduced for a blue detuned pump tone (absorption ef-

fect), respectively. These effects are the optomechanical analogues to electromagnetically

induced transparency [118] and absorption [119] in atomic media. The effective interaction

Hamiltonian on the blue sideband allowed to generate a mechanical parametric amplifier

from an electromechanical system [120].

Inspired by the generation of slow light by induced transparency in atomic systems [121–

124], two teams generated group delays of light pulses in an optomechanical and an elec-

tromechanical system [87,116]. Optomechanical arrays are predicted to increase the delays,

eventually leading to stopping of light pulses [125].

Optomechanis with pulsed schemes attracted a growing interest recently. Principally,

pulsed schemes can be used to generate entanglement between optical and mechanical

states [126], optimize cooling [127] or to perform a state tomography and squeezing of

the mechanical state [128]. Vanner et al. [129] recently demonstrated tomography of a

vibrating mirror in the classical regime.

Pulsed multi-tone spectroscopy offers access to the dynamics of optomechanical sys-

tems. The study of the switching dynamics of a continuous probe tone for a pulsed drive

field reveals that the long mechanical coherence times impose no limit of the transmission

dynamics [87].
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Schemes with pulsed drive and probe fields induce the transfer of quantum informa-

tion between optical and mechanical mode, an effect of high interest in connection with

quantum decoherence in macroscopic systems [72]. On the other hand it offers practical

use in storing quantum information in mechanical systems due to their long coherence

times. Experiments have demonstrated the first necessary steps towards the transfer of a

quantum state to mechanical excitation [37,75,130,131].

As mentioned in the beginning, coupling a mechanical mode to two cavities operating

at different frequencies will allow coherent state transfer between the cavities [39–42]. First

proof of principle experiments show the transfer of classical, coherent light between two

modes of one optical cavity [132,133].

2.4 Nanomechanics

Besides contributing to the rapid progress in the domain of optomechanics, the electrome-

chanical system studied in this work (see Figure 2.2l) gives opportunity for research in

a second field; the behavior of nanomechanical oscillators, here in the form of a doubly

clamped nanobeam. For a review focusing on mechanical oscillators in different hybrid

structures see [134]. Further reviews of the advances in nanomechanics are provided by

Refs. [135–137].

One focus is the understanding of damping mechanisms in these devices [138–145],

identifying various mechanisms:

Viscous damping of mechanical vibrations in a gas or fluid environment [146, 147],

phonon-phonon interaction and so-called thermoelastic losses originate from redistribution

of phonons due to different thermal equilibria of the surfaces of bent materials [148–151].

Depending on the expansion coefficients of the nanobeam and the underlying substrate, the

eigenfrequency and Q-factor changes [69,152] with decreasing temperature. The anchoring

of mechanical oscillators provide the loss mechanism that fundamentally places a lower

bound to the dissipation by phonon tunneling into the clamps and the substrate [141,151,

153–159]. Strategies to minimize these losses include free-free clamping of the beam [160]

or structuring of the substrate to prohibit phonons with the beam’s resonance frequency

in these areas [78]. Another loss mechanism is the interaction of mechanical excitation

with intrinsic two level systems in the material [161–166].

Moreover, mechanical oscillators offer a platform to study the nonlinear regime of

mechanical vibrations. For example, the Duffing regime accessible in various systems [164,

167–173].

A light field in close vicinity to a nanobeam driving the mechanical motion gave insight

to phononic heat transport in solids [153, 174]. Intrinsic amplitude and frequency noise

attracted interest with the advance of high quality factor oscillators [175]. Here, doubly

clamped highly stressed silicon nitride nanobeams offer high Q-factors [176–178] up to

seven million at room temperature [144].

One team coupled two nanobeams to study chaotic behavior [179]. Noise squeezing

of mechanical modes, reviewed in [180,181] reduce the noise properties and are promising

building blocks for electronic clocks.

Multiple vibration modes are present in most nanomechanical structures. The em-

bedding of a dielectric nanobeam into a microwave cavity [182] or strong driving of one

mode [183] was found to generate coupling between two modes. As mentioned above,
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this coupling allows to build a purely electromechanical system where one vibration mode

replaces the optical cavity [79].

Coupling to other systems like the spin of a silicon nitrogen vacancy [184] provides a

new family of hybrid systems. Nanomechanical systems have also been used as platform

for implementations like the mechanical analogue of a laser [99, 185], mechanical bit [186]

or memory operations [187], thermometry [188] and audio mixing [189]. Scientists have

demonstrated a broad range of sensing applications with mechanical oscillators like ultra

sensitive mass sensing [190–193], detecting changes in magnetization [194], spin flips [195]

or mutations in RNA [196].
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Chapter3
Cryogenic setup

Systems incorporating on-chip high-Q microwave cavities require low temperatures. First,

these devices are usually made from superconducting materials like niobium or aluminum.

Second, the energies of photons in the microwave regime correspond to temperatures in

the millikelvin regime (a photon with a frequency of 1 GHz corresponds to approximately

50 mK). To avoid thermal population of the cavity, the experimental temperature needs

to be below the equivalent single photon temperature.

Although it is impossible to cool a mechanical oscillator working in the MHz regime

into its ground-state as achieved with a bulk dilatational resonator with GHz eigenfre-

quencies [32], low temperatures allow for a reduction of mechanical quanta to the range of

hundreds. An ideal experimental environment provides a temperature as low as possible

for arbitrarily high drive powers. Actual setups compromise between high input power

and low temperatures.

The experiments discussed in this thesis were performed at temperatures between 30

and 600 mK, far below the critical temperature of niobium (Tc = 9.2 K).

3.1 Cryostat No.1

Dilution fridge No.1 with an actual base temperature of 80 mK was completely designed

and constructed at the WMI, focussing initially on transport experiments at millikelvin

temperatures in magnetic fields. To allow for measurements in the frequency regime of

GHz, we modified the setup to increase the volume of the vacuum chamber at 4 K con-

taining the still and the mixing chamber. The additional space allows to include coaxial

high frequency cables, attenuators a bias-tee, a circulator and a low noise high electron

mobility transistor (HEMT) amplifier. Additionally a thermal shield anchored at the still

protect the mixing chamber from radiation. The temperature of the device is recorded by

an in-house calibrated temperature sensor.

Figure 3.1 shows photos of the microwave (MW) setup of the fridge and a schematic

wiring scheme. Three coaxial stainless steel cables guide signals in and out of the fridge.

The input line directs the microwaves to the device. To thermalize the center conductor

and to suppress thermal noise, it is attenuated by 20 dB at 4 K. The 10 dB attenuators

at the still and the mixing chamber further thermalize the inner conductor and reduce

the number of thermal photons applied to the sample. A bias-tee (UMTCC BT-S000-

13
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Figure 3.1: Schematic of the wiring of cryostat No.1. See the main text for further details.

HS) at the mixing chamber stage allows to combine the microwave input signals with a

low frequency tone of up to 2π × 200 MHz. In total we estimate an overall attenuation

of 59 dB, distributed over the attenuators (40 dB), the bias tee (10 dB) and the cables

(9 dB). This value is in agreement1 with the calibration obtained from the measurement

of the coupling constant g0 detailed in Section 5.2.2 together with the measurement of the

mechanical linewidth broadening in an EMIT configuration, discussed in Section 6.1.4.

For the DC-line, we estimate an overall attenuation of 70 dB at a frequency of 2π ×
1.45 MHz typically used to drive the nanobeam. Here the bias-tee contributes with an

attenuation of approximately 60 dB.

After transmission through the sample and a DC-block (minicircuits BLK-18-S+), a

circulator (QuinStar CTH0408KCS) with one output terminated with a 50 Ω connector

protects the experiment from noise stemming from the HEMT-amplifier. A 10 dB attenu-

ator at 4 K prevents the following amplifier from saturation. The HEMT amplifier (Low

Noise Factory LNF-LNC4 8A) is anchored at 4 K and amplifies the signal by 40 dB. a

low noise temperature of approximately 3 K. Not shown in Figure 3.1 is a second HEMT

amplifier at room temperature amplifying the signal again by 30 dB.

1Note, that the value stated in the discussion of the experimental calibration includes the room tem-

perature wiring.
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Figure 3.2: Schematic of the wiring of cryostat No.2. See the main text for further details

3.2 Cryostat No.2

The second dilution fridge used in this thesis is a commercial Oxford TRITON dilution

fridge with a base temperature of 30 mK. This cryostat is a so-called dry dilution fridge,

meaning that it works without the need of being supplied with cryogenic liquids [197].

Accompanied by the advantage of continuous operation without the need of refilling the

cryogenics, it offers an tremendously increased space on all temperature stages.

The wiring of the high frequency lines is similar to fridge No.1, but owing to the

increased space we implemented additional microwave components as schematically shown

in Figure 3.2.

Again, a DC-line is fed to a bias-tee (UMTCC BT-S000-HS) used to apply low fre-

quency signals and to thermalize the center conductor. The MW-input of the bias-tee is

terminated with 50 Ω.

The signal line (“MW-in” in Figure 3.2) consists of multiple connected coaxial ca-

bles spanning from one temperature stage to the next one. We use less attenuation than

compared to the first setup, but the built in connectors add additional 20 dB of attenua-

tion. To minimize the heat load on the mixing chamber when using high microwave drive

powers, the signal is fed into a directional coupler (MITEQ-Estonia CPL4000-8000-20-C)

transmitting most of the signal back to the 4 K stage where it is terminated. Attenuators

prevent thermal noise from reaching the mixing chamber. The fraction of −20 dB is fed

into the signal line coming from the bias-tee. A DC-block (minicircuits BLK-18-S+) after

the sample box again prevents a current from flowing when a DC-voltage is applied.

After transmission through the sample box, a second input line (“MW-ref” in Fig-
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ure 3.2), set-up completely analogous to the first one, feeds a reference tone with an

adjusted phase and power to annihilate the drive signal by destructive interference. How-

ever, all information from interaction with the sample is preserved. The electromechanical

interaction of microwave cavity and mechanical oscillator generates additional frequency

contributions to the drive tone that will not be annihilated by interference with the ref-

erence (for a more detailed discussion of the measurement, see Section 5.1). This part

of the setup is particulary important when operating with high drive powers to prevent

saturation of the amplifier.

To prevent the reference tone from interaction with the sample, a circulator (QuinStar

CTH0408KCS) is placed between sample and reference line.

Note, that no experiments presented in this thesis were performed at microwave power

levels sufficiently high to saturate the amplifier and thus we did not use the reference input.

Two additional circulators of the above type anchored at the mixing chamber and the

still further isolate the sample from thermal noise and backscattering of photons from

the amplifier. A bandpass filter (minicircuits MC-VBFZ-5500+) blocks low frequency

contributions that arise when driving the mechanical mode via the “DC” input.

At 4 K, a low noise HEMT amplifier (Low Noise Factory LNF-LNC4 8A) amplifies the

signal before it leaves the cryostat. Again, not shown in Figure 3.2 is a second HEMT

amplifier at room temperature amplifying the signal by 30 dB.



Chapter4
Sample fabrication and

pre-characterization

In Chapter 2 we have presented different realizations of opto- and electromechanical sys-

tems. Here, we first discuss the analogy between optomechanics and electromechanics.

We then present the system studied in this work, including the design, the production

steps and sample parameters. Further, we characterize in detail the microwave cavity,

give an approximation of the electromechanical coupling based on the sample geometry

and study the nanobeam. A study of its temperature dependence reveals that coupling

of phonons to two level systems (TLS) provide the most prominent loss mechanism, also

influencing the mechanical eigenfrequency. Driving of the mechanical resonator to high

amplitudes provides access to the so-called Duffing regime, helping to extract effective

material parameters of the nanobeam’s double layer structure.

4.1 From optomechanics to electromechanics

At first sight the capacitive coupling of a mechanical oscillator to a LC-circuit has no sim-

ilarities to a Fabry-Perot cavity with a vibrating mirror or other optomechanical systems.

Here, we discuss the analogy of the coupling between “optical” and mechanical degree

of freedom, albeit the fact that both cavities operate at different frequencies and employ

different concepts to enhance the intra-cavity field.

Essential for an opto-/electromechanical system is the parametric coupling between

“optical” and mechanical mode. Hereby, the intra-cavity photon number couples to the po-

sition of the mechanical oscillator, allowing for, among other effects, cooling/amplification

of the mechanical mode or precise monitoring of the vibration (see one of the reviews [39,

72, 88–92] for more details on the consequences of an opto-/electromechanical coupling).

From the point of the cavity, such a coupling implies a linear change of the optical eigen-

frequency ω̃c with the mechanical amplitude x depending on the coupling constant G:

ωc(x) = ω̃c −
∂ω̃c

∂x
x ≡ ω̃c +Gx . (4.1)

The Hamiltonian describing the coupled system reads [198]:

Ĥ = ~ω̃c

(
n̂c +

1

2

)
+ ~Ωm

(
n̂m +

1

2

)
+ ~Gn̂cx̂ . (4.2)
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Figure 4.1: Schematic showing an optomechanical system as a single sided Fabry-Perot cavity

with one vibrating mirror (left) and a equivalent circuit scheme of an elecromechanical system

(right). The input and output fields are indicated by Sin and Sout, respectively. The losses

into the environment and into the feeds are indicated by κin and κex, respectively. Both

systems are described by the same Hamiltonian defined in equation 4.2.

Here, n̄c is the photon number operator, x̂ the mechanical position operator and Ωm the

mechanical resonance frequency. We discuss the Hamiltonian under different aspects in

the following chapters.

For a generic optomechanical system consisting of a Fabry-Perot cavity with one mov-

able mirror as shown on the left side in Figure 4.1, it is easy to see that the eigenfrequency

scales linearly with small displacements of the mirror. In contrast, for most other systems

it is typically more subtle to understand the mechanism and the functional dependence of

the optical frequency change induced by the mechanical amplitude.

In the following of this thesis, we will focus on a system consisting of a coplanar waveg-

uide microwave (CPW) cavity coupled to a vibrating nanobeam. An equivalent circuit

diagram is shown on the right side in Figure 4.1. The microwave cavity is represented as

a grounded LC-oscillator with overall inductance L and overall capacitance C, coupled to

a feedline via a coupling capacitance Cex. The nanobeam forms an additional capacitance

together with the opposite ground plane, coupled parallel to the circuit. Figure 4.2 shows

false colored images of the actual device studied in this work, showing a top view of the

microwave cavity (a), a top view of the nanobeam (b) and a tilted zoom to the nanobeam’s

clamping region (c). Considering that the eigenfrequency of the “optical” mode is propor-

tional to the 1/
√
C [199] and identifying the nanobeam as one side of a plate capacitance

Cg(x) according to the right side in Figure 4.1 allows to review the coupling in this system.

We write the eigenfrequency of the µ-wave cavity as follows:

ωc(x) =
1√

L(C + Cg(x))
= ω̃c

1√
1 + Cg(x)/C

, (4.3)

The resonance frequency of a bare microwave cavity without a nanobeam is called ω̃c in

this work. Further, we have ignored the contribution of Cex from coupling the cavity to

the feed line, as this capacitance is almost three orders of magnitude smaller than the

overall capacitance C. We find for a series expansion (valid as long as Cg/C � 1) of

Equation (4.3) to first order in the the displacement x

ωc(x) = ω̃c

(
1− 1

2C

∂Cg

∂x
x

)
= ω̃c(1− const ·x) . (4.4)

For small amplitudes, the cavity eigenfrequency changes linearly with the displacement.

Therefore, this is the electric counterpart of an optomechanical system; a so-called elec-

tromechanical system. The prefactor of x in Equation (4.4) multiplied with ω̃c defines the
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Figure 4.2: An optical micrograph of the µ-wave cavity is shown in a). b) shows a false colored

scanning electron microscope image of a zoom to the voltage antinode revealing the mechanical

resonator. The tilted view of the clamping section of the nanobeam in c) shows the undercut

and the nanobeam’s two layer structure. Yellow colored areas are niobium, green indicates

silicon nitride and grey the silicon substrate.

electromechanical coupling constant G. We will derive an expression for G in Section 4.4.

Before turning to the individual components of our electromechanial device, we present an

overview over relevant device parameters including the design and materials system:

The circuit nano-electromechanical device studied in our experiments is a hybrid sys-

tem, consisting of a superconducting CPW microwave resonator and a nanomechanical

beam, capacitively coupled to the center conductor of the microwave resonator at the volt-

age antinode (see Figure 4.2). Our nano-electromechanical system is similar to that studied

by Regal et al. [69]. However, in contrast to the purely metallic nanobeams (Al) in [69],

we use nanobeams consisting of Nb/Si3N4 bilayers to increase the resonant frequency and

the quality factor of the mechanical oscillator. Furthermore, the superconducting CPW

resonator is made of Nb with a high critical temperature of 9.2 K, resulting in a higher

internal quality and lager critical photon number of the microwave resonator. The latter is

fabricated by patterning a quarter-wave CPW structure into a 130 nm thick Nb film, which

has been deposited on a silicon substrate by sputter deposition [16, 200] (see Section 4.2

for more details). The resonator is capacitively coupled to a 50 Ω CPW feedline at one end

and shortened at the other (one-sided cavity, see Figure 4.2a and Figure 4.6). By choosing

the resonator length an eigenfrequency of ω̃c/2π = 6.07 GHz is obtained. We note that

the resonant frequency ω̃c also depends on the additional capacitances Cg and Cex due to

the capacitive coupling to the nanomechanical beam and the feedline, respectively. The

coupling to the feedline results in a coupling rate of κex/2π = 339 kHz. Comparing this

coupling rate to the measured cavity linewidth (total loss rate) of κ/2π = 759 kHz yields

a coupling rate ηc = κex/κ ' 0.45 close to the critical coupling ηc = 1/2 where the best

contrast is obtained. The corresponding quality factors are Q = 7910 and Qex = 17535

(see Section 4.3 for more details).

The nanomechanical resonator (NR) consists of a Nb/Si3N4 nanobeam which is clamped

on both ends (see Figure 4.2b). The Nb/Si3N4 bilayer shown in Figure 4.2c is fabricated

out of a 130 nm thick Nb film sputtered on top of a 70 nm thick layer of highly strained

(tensile) Si3N4 layer, grown by low pressure chemical vapor deposition on a silicon wafer.

The beam has a high aspect ratio with a length of 60µm and a width of 140 nm. The struc-

ture is patterned by electron beam lithography, followed by an anisotropic and an isotropic
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reactive ion etching process [87] (see Section 4.2 for more details). The high tensile strain

in the Si3N4 layer accounts for a high mechanical eigenfrequency of Ωm/2π = 1.45 MHz

and a narrow linewidth of down to Γm/2π = 2.59 Hz at a temperature of T = 32 mK,

corresponding to a quality factor of Qm = 5.60 × 105 [146, 176] at 32 mK. Unfortunately,

the compressive strain in the Nb film partly compensates the tensile strain in Si3N4. This

reduces the mechanical eigenfrequency below the value of 5 − 6 MHz expected for pure

Si3N4, depending on the detailed amount of the tensile strain [176]. Nevertheless, since

Ωm/2π is about twice the cavity linewidth κ/2π (Ωm/κ ' 1.91), the system is sufficiently

far in the resolved-sideband regime to be able to neglect the anti-Stokes field in the theoret-

ical modeling, what will become relevant when discussing the theory of electromechanics

in the remaining chapters. The finite coupling capacitance Cg gives rise to the electrome-

chanical coupling g0 = Gxzpf between the mechanical displacement and the microwave

mode inside the CPW resonator. For the coupling distance of this device of 200 nm, the

normalized vacuum coupling g0/2π = 1.26 Hz is determined experimentally by frequency

noise calibration in Section 5.2. With the zero point fluctuation amplitude of the beam,

xzpf =
√

~/2meffΩm ' 30 fm (meff ' 7 pg), the equivalent linear electromechanical inter-

action can be determined to G = g0/xzpf = 2π× 36.3 s−1/nm giving reasonable agreement

to a geometric estimate, discussed in Section 4.4. At a temperature of T = 32 mK, the

parameters above correspond to a low thermal decoherence rate of Γmn̄m ≈ 2π× 1.29 s−1,

with the mean thermal phonon number n̄m = kBT/~Ωm ≈ 497 of the mechanical mode.

We will show in Section 6.1 that the effective electromechanical coupling g = g0
√
n̄c scales

with the square root of the average number of drive photons n̄c in the cavity. This exceeds

the thermal decoherence rate about more than one order of magnitude, placing our sys-

tem in a regime where quantum coherent exchange of excitations between “optical” and

mechanical mode is possible [75].

All material parameters of the sample are given in table A.1.

4.2 Sample fabrication and preparation

In this Section we discuss the principle fabrication steps necessary to produce the device

displayed in Figure 4.2. For more details, in particular all the process parameters, we

refer to the PhD thesis of X. Zhou (EPFL Lausanne) [201], since this device stems from

a very fruitful collaboration with the group of Tobias Kippenberg located at the EPFL.

Parameters, used to pattern similar samples at the WMI are given in appendix A.4.

After cleaning, a highly tensile stressed silicon nitride film with a thickness of 100 nm

is deposited onto a 10 × 6 mm2 silicon substrate with low pressure chemical vapour de-

position (see Figure 4.3a and b). The silicon nitride layer allows to fabricate nanobeams

with high quality factors [146]. Unfortunately, we observed a strong absorption of mi-

crowaves in highly stressed silicon nitride, preventing the fabrication of high quality factor

superconducting microwave resonators directly on Si3N4 layers. This observation is cor-

roborated by Ref. [202] and results in the the necessity to remove the Si3N4 layer from the

wafer, except from the positions where the nanobeams will be structured eventually. For

this purpose, a negative electron-beam (ebeam) resist on the sample (see Figure 4.3c) is

patterned with rectangles by electron beam lithography at the later beam positions. After

development all resist except from the exposed positions is removed (see Figure 4.3d).

Using anisotropic reactive ion etch (RIE), the silicon nitride is selectively removed. The
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Figure 4.3: Schematic of the different fabrication steps to produce the electromechanical sample

studied in this work. Details are found in the main text. This figure is taken from the

supplementary information in Ref. [87].

next step is a cleaning process to remove the remaining resist. Further, the remainders

of couple of nanometers thick silicon nitride layer at the unpatterned areas is removed

with buffered hydgrogen fluoride (BHF). This ensures a smooth silicon surface, since the

selectivity between silicon nitride and silicon is orders of magnitude higher than in RIE

processes [203]. The remaining silicon nitride layer at the patches is hereby thinned to

approximately 70 nm and the edges are smoothed out (see Figure 4.3e). The rounded

edges of the silicon nitride patches prevent breaks in the 130 nm thick niobium layer, de-

posited onto the sample in the next step by DC-magnetron sputtering (see Figure 4.3f).

An additional electron beam lithography step followed by an anisotropic RIE defines the

feedline and the microwave cavities (seven per sample). Here, a positive resist protects

the Nb-layer at the non-exposed areas (see Figure 4.3g-i). The top view in Figure 4.3i

shows a connection between ground plane and center conductor of the µ-wave cavity. In

this region, the nanobeam is patterned in the next step using electron beam lithography
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Figure 4.4: Photo of the sample box without cover, including a sample of the same size as the

electromechanical one used in this work.

followed by two RIE steps; first an anisotropic one to pattern the beam, and second an

isotropic one to release it (see Figure 4.3j-l). These steps are the most critical; the negative

resist, acing as a protection mask must be very resistant to RIE processes, since the etch

process has to remove the niobium layer as well as the silicon nitride and the isotropic step

still attacks the Nb film.

As shown in Figure 4.4, the final sample is mounted in a gold plated copper box built

by the WMI workshop to exactly fit a sample of the given size. The pins of two SMA

adaptors screwed to the box are connected to the center conductor of the feedline with

silver paint. By mounting the adaptors to the coaxial lines of the cryostat, the sample

is wired to the experimental setup. The connection between the sample ground and the

box is provided by silver paint as well. To minimize additional unwanted resonances and

to electrically shield the sample, the box is closed with a fitting top, locked into position

with two screws.

4.3 Characterization of the microwave cavity

In the following we start with the first of the two fundamental building blocks of the

electromechanical device – the “optical” cavity – here operating in the microwave regime.

Superconducting on-chip cavities have become an important building block for a va-

riety of research fields in solid state based systems during the last decade. The use of

superconducting materials allows to build devices without Ohmic losses ( but require ex-

perimental temperatures below the critical temperature of the material), permitting high

Q-factors in the order of 105 [204,205]. Even Q-factors up to millions have been reported

in niobium structures [206], still not necessarily limited by internal dissipation [207]. This

corresponds to photon storage times in the microsecond regime. In combination with the

energy gap between Cooper pairs and single electrons, they serve as so-called lumped ele-
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Figure 4.5: Schematic of a λ/4 coplanar waveguide (CPW) resonator. Yellow represents niobium,

grey the silicon substrate. A feedline provides signal in- and output, the resonator consists out

of a center strip capacitively coupled to the feedline, open on one end and shorted to ground

on the other. The inset shows a cross-sectional view of the coplanar waveguide structure

including the significant values.

ment microwave kinetic inductance detectors. An incoming photon with energy exceeding

twice the gap energy breaks one Cooper pair, changing the kinetic inductance and thus the

resonance frequency [200]. Coupling these devices to superconducting qubits has spawned

circuit quantum electrodynamics [13]. The coupling of superconducting cavities to spin

systems [22–26] or ferrimagnetic materials [27] allow for coherent exchange of excitations

between both systems or can be exploited to test the dynamics of these systems [28].

Kubo et al. [31] use a microwave cavity as a bus to mediate quantum information between

a qubit and a spin system, creating new quantum hybrid systems and bringing quantum

computing into reach. In cavity electromechanics, the coupling of a microwave resonator

to a nanobeam or micromembrane have triggered many experiments. Prominent examples

are the ground state cooling of a mechanical oscillator [113], the building of a mechanical

parametric amplifier [120] or the generation of huge group delays of microwave pulses [87]

(see Section 7.1).

These on-chip cavities consist of distributed superconducting transmission lines, guid-

ing the electromagnetic field1. The mirrors of an optical cavity take hereby the form

of discontinuities in the waveguide impedance, i.e. a capacitance or a short, leading to

reflection of the electromagnetic field.

Characteristics of λ/4 coplanar waveguide cavities

Many realizations of on-chip µ-wave cavities exist. Lumped element cavities [205,208] offer

the highest coupling to a nanobeam in an electromechanical system [48, 80, 120], because

the ratio between overall capacitance C to the coupling capacitance Cg is highest in this

case. The drawback is that higher harmonics are not supported. In contrast, stripline

cavities suffer from lower quality factors. Moreover, the impedance depends more strongly

on the underlying substrate, leading to a worse scalability than CPW structures [199].

The electromechanical system we study in this work incorporates a coplanar waveguide

structure with one open and one shorted end similar to the one in Ref. [69], first introduced

by Day et al. [200].

1Any microwave cavity can be understood as an LC-circuit. We ignore Ohmic losses since the res-

onators in this work consist out of superconducting materials and dielectric losses dominate in the temper-

ature/frequency regime presented here.
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Figure 4.6: Optical micrograph of the microwave cavities on one sample. The box around the

pictures show the approximate sample size of 10 × 6 mm2. The red lines indicate the post

processing with a focused ion beam to increase the cavity lengths, the red crosses show the

intensionally broken cavities.

This implementation supports a standing waves with a voltage node on one side (defined

by the capacitance) and a voltage antinode on the other side (defined by the short) and

is called a λ/4 resonator (see Figure 4.5 for a schematic). These resonators have the

advantage of being short compared to other realizations like λ/2 resonators, since their

length is given by one quarter of the fundamental mode’s wavelength. Together with their

easy connection to a transmission line in an absorptive configuration the realization of

multiple resonators on one chip is simple.

We present the most important parameters and equations for superconducting µ-wave

cavities, more details and derivations of the presented formulas can be found in Refs. [199,

209,210].

Coplanar waveguides are two-dimensional coaxial cables consisting out of a center con-

ductor and ground planes, separated by a gap as schematically shown in the inset of

Figure 4.5. For sufficiently thin metallization layers (but still exceeding the London pene-

tration depth), its impedance is defined by the substrate material’s dielectric parameters

and the ratio of the width of the center conductor and the width of the gap. This allows

to operate CPW resonators for a wide range of parameters, e.g. their lateral dimensions

can range from micrometers up to centimeters.

The boundary conditions of one shorted and one open end (see Figure 4.5) lead to the

support of modes with multiples of a quarter wavelength λ = 4l/(2n+1), with n an integer.

The capacitive boundary condition corresponds to a voltage node (current antinode), the

shorted one to a voltage antinode (current node).

The particular sample discussed in this thesis contains seven cavities with different

frequencies placed on a 10× 6 mm2 silicon substrate as shown in Figure 4.6. The cavities
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Figure 4.7: Transmission spectra of the electromechanical sample. a) Spectrum from 5.8 to

6.2 GHz showing the characteristic absorption spectrum of three cavities between 6.0 GHz

and 6.1 GHz. A zoom around the only cavity not post processed is shown in b). The red line

is a fit to the data. The temperature is T ≈ 80 mK the probe power is Pp ≈ −110 dBm.

have lengths of approximately 5 mm, what is long compared to the center strip width of

12µm and a gap size of 6µm. One feedline capacitively couples to all cavities and carries

signals to and from each resonator. The impedances of the resonators and the feedline are

Z = 50 Ω.

The eigenfrequency of this type of microwave cavity is given by ω̃c = 2π/4
√
LC. The

overall inductance L and overall capacitance C are proportional to the length l of the

structure [199]. The relative transmission spectrum of each cavity corresponds to the one

of an absorptive harmonic oscillator and reads [210]:

t(ω) = 1− κex/2

κ/2 + i(ω − ω̃c)
=
κin/2 + i(ω − ω̃c)

κ/2 + i(ω − ω̃c)
. (4.5)

The total loss rate κ = κex + κin of the cavity includes the external losses κex due to

the loss of photons into the feedline and the internal losses κin in due to absorption and

radiation leaking into the environment (see the right of Figure 4.1). The loss rates allow

to calculate the quality factor Q, a value useful to compare the performance of cavities

with different eigenfrequencies. It is given by

Q =
ω̃c

κ
. (4.6)

The internal (external) quality factor is defined by Qint = ω̃c/κin (Qex = ω̃c/κex). Another

parameter allowing to quantify the relation between internal and external losses is ηc =

κex/κin. For ηc = 1/2 the cavity is critically coupled; we obtain the best contrast in this

case. The cavity is overcoupled (undercoupled) for ηc > 1/2 (ηc < 1/2), meaning that

the external (internal) loss rate dominates. Undercoupled systems have the drawback of

dissipating more information than transferred into the signal lines.

Experimental characterization of the µ-wave cavity

When producing the sample, a design flaw led to the same length l in all cavities. To

compensate for this, some of the cavities were post processed with a focused ion beam to

increase their lengths (red lines in Figure 4.6) or to render the cavity unusable (red crosses
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Figure 4.8: Equivalent circuit diagram of the electromechanical system. A vibrating capacitance

Cg is connected parallel to the microwave cavity represented by a LC equivalent circuit.

in Figure 4.6). The increased lengths result in lowered eigenfrequencies. The unchanged

cavity is thus easily recognized as the one with the highest resonance.

To characterize the sample, we measure the microwave transmission through the sample

with a vector network analyzer at a temperature of 80 mK. The probe power was increased

from approx. −120 dBm to approx. −50 dBm without showing any power dependency of

the recorded transmission. Changes of the sample temperature from 32 mK to more than

600 mK leave the measured quality factors and eigenfrequencies unchanged as well.

Figure 4.7a shows that three of the four cavities with resonances between 6.0 GHz and

6.1 GHz and different absorption depths, indicating varying external quality factors. Fig-

ure 4.7b shows a zoom of the spectrum belonging to the unmodified cavity with the highest

frequency. The red line is a fit to the absolute value of Equation (4.5), where we have taken

into account a small dispersive shift to account for the asymmetry of the spectrum (see

Appendix A.5). The spectrum in Figure 4.7b is obtained from the cavity coupled to the

most promising nanobeam, with a cavity eigenfrequency of ω̃c/2π = 6.070 GHz. We have

normalized the transmission to unity close to the absorbtion spectrum of this cavity, since

this is the regime that we calibrate in Section 5.2 and all frequencies that are used in the

following experiments are situated in this regime. The coupling to the feedline results in a

coupling rate of κex/2π = 339 kHz. Comparing this coupling rate to the measured cavity

linewidth of κ/2π = 759 kHz yields a coupling rate ηc = κex/κ ' 0.45. The corresponding

quality factors are Q = 7910 and Qex = 17535. The resonance at ω̃c/2π = 6.045 GHz

(ω̃c/2π = 6.024 GHz) shows Q = 5084 (Q = 3794). We attribute higher internal losses for

decreasing the quality factor as a result of the post processing with a focused ion beam.

For the rest of this work, we restrict ourselves to the analysis of the cavity centered around

ω̃c/2π = 6.070 GHz and the nanobeam coupled to this cavity building an electromechanical

system.

4.4 Electromechanical coupling between a CPW µ-wave cav-

ity and a nanobeam

Before studying the nanomechanical oscillator, we will calculate the expected coupling be-

tween the mechanical and optical modes in our electromechanical system. In Section 4.1 we

have already discussed that in a first order approximation the cavity resonance frequency
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changes linearly with the mechanical amplitude, ωc(x) = ωc− ∂ωc
∂x x. As already mentioned

in Section 4.2, we place the nanobeam in the voltage node of the µ-wave cavity. An equiv-

alent circuit diagram is shown in Figure 4.8. The nanomechanical beam together with

the ground plane of the resonator build a capacitance Cg(x(t)) between center conductor

and ground, which vibrates with the mechanical resonance frequency Ωm around its equi-

librium position Cg(0) ≡ Cg,0. We approximate this capacitance as a plate capacitance,

yielding

Cg(x(t)) ≈ ε0εrA
1

d− x(t)
≈ Cg,0 +

∂Cg

∂x
x(t) . (4.7)

Here, d is the gap between nanobeam and ground plane and εr is the effective dielectric

constant, which we will set to one since no dielectric is present in the volume between

ground and nanobeam. We have neglected any inhomogeneous contributions to the capac-

itance and evaluated Cg(x(t)) for small mechanical displacements. The derivative is given

by ∂Cg/∂x = Cg,0/d. The area A is defined by the length L and height hNb of the beam’s

superconducting layer, A = L ·hNb.

The plate capacitor is connected parallel to the overall capacitance of the microwave

cavity. Since the capacitance mediating the coupling to the feed line is small compared to

the overall capacitance in the CPW structure, we will neglect it in this discussion and ap-

proximate C+Cext ≈ C. For small displacements, we can approximate the eigenfrequency

of the microwave cavity to

ωc(x) =
2π

4
√
L(C + Cg(x))

≈ ωc

(
1− Cg(x)

2C

)
(4.8)

With this, we can estimate the electromechanical coupling to [69]

G = −∂ωc

∂x
=
ωc

2C

∂Cg

∂x
=

2Zω2
c

2π

∂Cg

∂x
, (4.9)

where we have used Z =
√
L/C. Equation (4.9) allows us to estimate the coupling using

the known impedance Z = 50 Ω and ωc/2π = 6.070 GHz. With a coupling distance of

d ≈ 200 nm and a niobium film thickness of hNb = 130 nm, we estimate Cg = 0.34 fF

and ∂Cg/∂x = 1.72 nF/m. With these values, we calculate G/2π = 6.36 kHz/nm, what

is a factor of six lower than the experimentally determined coupling in Section 5.2.2 of

G/2π = 36.3 kHz/nm. We account the difference to the fact, that we have simplified the

capacitance between beam and ground plane, neglecting the considerable stray capacitance

and ignoring losses due to the silicon nitride layer under the niobium. With Equation (4.9),

we calculate the coupling capacitance following from the experimental value of G to Cg =

1, 97 fF. We will use this value in further discussions, as it is more accurate than the

estimated one.

4.5 Characterization of the nanobeam

For the purpose of this thesis, we now review the nanomechanical oscillator coupled to the

microwave cavity. As we discuss in more detail in Section 5.1, any opto-/electromechanical

device allows to study of the mechanical mode without disturbing its dynamics due to back-

action effects. In this section, we thus ignore the parameters of the microwave resonator

and focus on the nanobeam’s intrinsic properties.
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Figure 4.9: Schematic of the nanobeam analyzed in this work. The niobium layer is shown in

yellow, the silicon nitride in green, the silicon substrate in grey. The oscillation in x direction

is shown schematically and highly exaggerated.

First, we present the equations to describe the mechanical vibration, showing that it is

sufficient to focus on the center of mass amplitude with an effective mass. Afterwards we

analyze the thermal behavior at low temperatures of the two main parameters defining the

mechanical motion; the mechanical eigenfrequency Ωm(T ) and the mechanical linewidth

Γm(T ). In the last part of this section we study mechanical motion beyond Hook’s regime,

where the effective potential is no longer parabolic but contains higher order terms. In

particular, we discuss the so-called Duffing regime. We show, that this regime is useful

to extract intrinsic mechanical parameters, otherwise not easily accessible in mechanical

oscillators built from combinations of different material systems.

4.5.1 Description of a tensile stressed doubly clamped beam

In the following, we briefly present the necessary equations to describe the vibration of

a mechanical doubly clamped beam. Here, we show that it is sufficient to restrict the

discussion of a vibrating nanobeam to its center of mass amplitude and we state the

connection between mechanical resonance frequency and the material parameters.

The derivation and solution of these equations is commonly found in textbooks about

continuous mechanics and Euler-Bernoulli beam theory, for example in Ref. [211]. Here, we

present only the main results of these considerations. For a discussion within the context

of nanomechanics see [212] and the references therein.

The dynamics of a one-dimensional, vibrating, undamped (nano-)beam extending along

the z-axis and vibrating in x-direction (see Figure 4.9) is covered by the Euler-Bernoulli

equation [211]
∂4x̃(t, z)

∂z4
= − ρA

EIx
· ∂

2x̃(t, z)

∂t2
, (4.10)

with the mass density ρ, the cross-section A = wt, the Young’s modulus E and the moment

of inertia in x-direction Ix = Aw2/12. Note, that the damping of the vibration is ignored

to keep the discussion as simple as possible. The nanobeam in this work has a high

aspect ratio between beam length and width or hight of more than 102. This justifies the
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approximation as an one-dimensional beam. To solve Equation (4.10), one separates the

spatial and time dependency x̃(t, z) = x(t) ·X(z). We get two differential equations, one

for the center of mass motion x(t) and one for the modal shape X(z),

ẍ(t) + Ω2
mx(t) =0 , (4.11)

∂4X(z)

∂z4
− Ω2

m

ct
X(z) =0 . (4.12)

Here, we have introduced ct = ρA/EIx = 12ρ/Ew2. Equation (4.11) shows that the center

of mass motion x(t) follows the equation of motion of an harmonic oscillator. In experi-

ments we will only analyze x(t), while the spatial mode shape is not directly accessible.

When solving Equation (4.12), the eigenfrequency follows from numerically solving a

transcendent equation, given by the boundary conditions of the structure and the system

parameters [211]. For a doubly clamped beam, the eigenfrequency of the fundamental

mode Ωm in x-direction is given by [212]:

Ωm = 2πC1
w

L2

√
Eρ . (4.13)

The constant C1 follows from solution of the transcendent equation, w is the beam width

and L its length. For highly tensile stressed beams, the eigenfrequency can be shown [176,

211] to modify to:

Ωm =
π2

L2

√
EI

ρ

(
1 +

σL2

EIxπ2

)
≈ π

L

√
σ

ρ
, (4.14)

Here, σ is the stress present in the structure, ρ its density. We expect the highly stressed

silicon nitride layer to dominate the resonance frequency of the nanobeam used in this

work. The stress of silicon nitride on a silicon layer is specified to σSiN ≈ 800 MPa at room

temperature. At lower temperatures, we expect this value to increase due to the higher

thermal expansion coefficient of silicon nitride compared to silicon (see table A.1). For

the density, we take the weighted average of the two layer’s density. The density of silicon

nitride is ρSiN = 3000 kg/m3 [213], the density of niobium is ρNb = 8570 kg/m3, resulting

in an effective density of ρeff = (ρSiNtSiN + ρNbtNb)/t = 6620.5 kg/m3. We estimate the

mechanical frequency to Ωcalc
m /2π ≈ 2.90 MHz. Experimentally, we observe a mechani-

cal resonance of Ωm/2π ≈ 1.45 MHz at temperatures around 200 mK. For details on the

measurement of the mechanical eigenfrequency, see Section 4.5.2, where the mechanical

eigenfrequency is studied as a function of temperature. The experimental value of Ωm

implies that the niobium layer is stressed compressively, reducing the overall stress present

in the nanobeam. Plugging the measured value of Ωm into Equation (4.14), we get an ef-

fective stress of σeff = 199 MPa. Comparing this to the initial value of the stressed silicon

nitride layer of σSiN ≈ 800 MPa, corroborates that the compressive stress of the niobium2

significantly reduces the strain. In Section 4.5.3, we additionally estimate the effective

Young’s modulus of the nanobeam, completing the set of relevant system parameters.

The center of mass motion is sufficient to capture the dynamical behavior of a beam’s

amplitude. To accurately describe further parameters, like the energy, one has to consider

that only a fraction of the whole beam mass contributes to the center of mass motion.

To account for this, an effective mass is introduced. It depends on the structure and

2The exact value is unknown, but the compressive stress in superconductive DC-sputtered Nb thin films

is well studied [214].
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boundary conditions of the beam [212]. For a doubly clamped beam, the effective mass is

given by meff = 0.73m, with m = ρAL. With the effective density, we estimate meff ≈
7× 10−15 kg = 7 pg.

4.5.2 Temperature dependence of the mechanical mode

Now, we turn the discussion to the characterization of the nanobeam’s thermal behavior

at low temperatures, giving insight in different loss mechanisms. The changes of Γm and

Ωm with temperature give another degree of freedom to tune the system under investiga-

tion for different applications. Additionally, having understood the different contributing

mechanisms, we can corroborate the the thermalization of the sample to mixing chamber

temperature and even use it as an additional thermometry device [188]. The µ-wave cav-

ity is robust against temperature changes below 1 K, we have not observed any changes in

eigenfrequency of dissipation within this temperature. So the signal strength as well as the

driving field’s frequency remain stable. Electromechanical back-action can be neglected,

since we perform all measurements with a weak drive tone at cavity resonance ωc. For

more details on this see Section 5.1

Due to the differently stressed layers of the nanobeam and its different mechanical

properties, it is difficult to distinguish their specific influence on the vibration of the beam.

Nevertheless, we will show that the overall thermal dissipation can be clearly associated

with interactions between phonons and two level systems (TLS) present in the nanobeam

proving that the combination of amorphous insulators and polycrystalline superconductors

in nanobeams show the same thermal behavior as a purely amorphous insulator beam.

We first explain the different loss mechanisms so far identified in nanobeams, discussing

their respective relevance in our observation. Then, we present the experimental details,

explaining the setup and measurement parameters. The experimental results are finally

analysed with respect to the presented theory and compared to the results achieved in

similar studies.

Dissipation and eigenfrequency behavior in a nanobeam

First, we add damping to the undamped harmonic oscillator described by Equation (4.11).

Damping in harmonic oscillators is treated as viscous damping, what implies the damping

force is proportional to the velocity with a damping constant Γm [211]. Taking a driving

force Fd(t) into account, Equation (4.11) modifies to

meff ẍ(t) +meffΓmẋ(t) +meffΩ2
mx(t) = Fd(t). (4.15)

The origin of dissipation in mechanical oscillators has inspired various studies during the

last decades. Multiple loss mechanisms have been identified and analyzed. We present the

most prominent ones and discuss their contribution to our analysis:

The finite viscosity of gases and fluids damp the vibration of mechanical oscillators

placed within [146,147]. All our measurements take place in ultrahigh vacuum, so we can

neglect this effect.

Phonon-phonon interaction and so-called thermoelastic losses originate from redis-

tribution of phonons due to different thermal equilibria of the surfaces of bent materi-

als [148–151]. The amplitudes of the vibrations studied here are in the range of nanometers

due to the high tensile stressed silicon nitride layer. This amplitude is small compared to
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the length and width of the nanobeam (see Section 4.1). The mechanical vibration does

not induce bending sufficiently strong to result in high stress gradients. Thus, we can also

exclude these effects. The high tensile stress in the nanobeam even reduces the dissipation

and leads to very high mechanical quality factors [176–178].

Depending on the thermal expansion of the nanobeam and the underlying substrate,

the eigenfrequency and Q-factor will change [69, 152] with decreasing temperature. On

a temperature scale below 1 K we can ignore this effect since the thermal expansion is

negligible in this regime.

The anchoring of the nanobeam is the loss mechanism fundamentally limiting the

dissipation; acoustic excitations tunnel into the clamps and the underlying substrate [141,

151,153–159]. Minimizing these losses include free-free clamping3 of the beam [160] or the

manipulation of the substrate at the clamps to prevent the propagation of phonons with

the beam’s resonance frequency in these areas [78]. Using highly stressed silicon nitride

these measures are not necessary, Q-factors up to seven million have been demonstrated

with this material at room temperature [144].

Interaction of acoustic excitations with defects in the material or surface due to re-

laxation processes is very prominent in amorphous and polycrystalline materials. The

energy states of these defects relax into the environment, giving these interactions a dissi-

pative nature. Mostly, the defects can be treated as two level systems (TLS) with a broad

distribution of the level splitting [143, 215, 216]. The microscopic nature of the TLS is

difficult to specify. The temperature dependence of the mechanical linewidth and eigen-

frequency is defined by the nature of the interaction between TLS and phonons present

in the nanobeam [161–166]. The coupling between acoustic excitations and two level sys-

tems is easy to understand. The potential of a TLS is given by an asymmetric double

well potential [216]. The periodically changing stress distribution following a mechanical

excitation shifts the two wells with respect to each other, bringing the TLS out of their

thermodynamic equilibrium; the two systems couple and the TLS relaxation transfers en-

ergy to the thermal bath, leading to dissipation. The derivation of the coupling details is

complicated. We only present the main results, without deriving the predictions and in-

stead focus on comparison to previous results with nanobeams. More detailed discussions

are found within the references [162,164–166,215–221].

Depending on the temperature regime, different processes dominate the state transi-

tion in the TLS. At temperatures below the transition temperature of a TLS, the state

occupation of the TLS is highly unbalanced and most TLS are found in their ground

state. Relaxation processes are negligible. In this regime, the most effective mechanism

for state transfer is (resonant) absorption of phonons [218]. This effect shows saturation

behavior [217].

For higher temperatures up to typically 1 Kelvin [215], the TLS are thermally excited

and Raman processes involving tunneling through the barrier of the double well potential

become the dominant relaxation processes.

For an even increased temperature, multi-phonon processes and thermally activated

relaxation are the most prominent effects.

In metals, the electron cloud couples to TLS as well, leading to relaxation. However,

Black et al. [219] have shown that this coupling is negligible in superconductors as well as

3Here, the clamps are placed at amplitude antinodes, respectively and thus ideally do not damp the

vibration.
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in polycrystalline metals [220].

We measure Γm(T ) and Ωm(T ) in a temperature window ranging from 30 mK up to

600 mK. The relevant relaxation process is thus given by tunneling relaxation.

All relaxation processes of TLS presented here show the same logarithmic temperature

dependence of the mechanical eigenfrequency [216]:

∆Ωm = Ωm(T )− Ωm(T0) = CΩm(T0) ln

(
T

T0

)
. (4.16)

The mechanical resonance frequency is compared to its value at a fixed reference tem-

perature T0. The dimensionless constant C is defined by C = Dnλ
2/E, where we have

introduced the density of states of the TLS Dn, an interaction constant λ and the Young’s

modulus E of the material. Extraction of Dn and λ is not possible from our measurements.

In Al nanobeams, typical values of C in are in the range of 10−4 to 10−5 at temperatures

in the millikelvin range [165,166].

In contrast to the eigenfrequency, the temperature dependence of the dissipation due to

TLS interaction strongly depends on the type of interaction. At low temperatures where

the TLS relaxation results from resonant absorption of an acoustic excitation, the dissi-

pation is monotonously decreasing for increasing temperature following the temperature

induced decrease of the TLS relaxation time [218]:

Γm,res(T ) ∝ tanh

(
~Ωm

2kBT

)
, (4.17)

As we can see in Figure 4.13 the dissipation increases with temperature. This indicates

that the relaxation process discussed above is of no relevance in the temperature window

of this work in agreement to our statement above.

In the temperature regime studied here, tunneling relaxation processes are dominant

in TLS. The TLS relaxation due to tunneling is induced by changes of the stress inside

the system, thus the relaxation depends on the phonon density of states [162,216]. Studies

of the damping of acoustic waves in bulk material [215] reveal a T 3 behavior for the

inverse Q-factor [221] and thus the acoustic dissipation (1/Q = Γm/Ωm). Seoánez et

al. [162] predict a square root dependence Q−1 ∝
√
T for doubly clamped nanobeams

in this temperature regime and Venkatesan et al. [164] experimentally corroborate this

in a study of Au nanobeams. They argue that transferring the phonon induced TLS

relaxation process from bulk material to nanobeams, one has to take into account that

the phonon density of states in the temperature regime below 1 K has to be considered

as one dimensional, since the minimum phonon wavelength is on the order of 100 nm

[222], corresponding to the nanobeam’s lateral dimensions. The phonon dispersion in a

nanobeam modifies to Ωm ∝ k2 [222], where we have introduced the wavevector k that is

inversely proportional to the wavelength.

However, for a highly stressed nanobeam, the mechanical eigenfrequency and thus the

phonon dispersion follow the inverse length 1/L as stated in equation (4.14). The phonon

spectrum becomes linear, Ωm ∝ k. The corresponding phonon density of states is constant

in this case and one can show that this results in a TLS relaxation with linear temperature

dependency [215].
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Figure 4.10: Schematic setup to measure the mechanical amplitude’s ring down. A drive tone is

applied to the blue sideband at ωd = ωc +Ωm and drives the mechanical mode by the resulting

beat between the drive and the probe field at cavity resonance ωc. The Stokes sideband of

the probe field is recorded with a spectrum analyzer in time domain, showing the mechanical

decay to amplitudes corresponding to the thermal Brownian motion.

Experimental details

To analyze the thermal dissipation of the mechanical mode in our electromechanical sys-

tem, we perform two sets of experiments:

First we measure the mechanical eigenfrequency as a function of temperature with the

same setup shown in Section 5.2. A weak drive tone at cavity resonance minimizes elec-

tromechanical back-action onto the nanobeam. As shown in Section 5.2 the mechanical

displacement spectrum translates into the phase and amplitude spectrum of the cavity. We

record the phase spectrum around the mechanical resonance with a homodyne detection

scheme, providing exact values of the mechanical resonance frequency. In contrast to the

frequency noise calibration in Section 5.2, the measurements are performed in cryostat

No.2, where we can precisely adjust the temperature. With the knowledge of the me-

chanical eigenfrequency, we perform a ring down measurement to extract the mechanical

linewidth Γm.

For this purpose, we drive the mechanical motion with a beating force, resulting from

interference between a blue detuned drive field at the mechancial sideband ωd ≈ ωc +

Ωm and a probe field at the cavity eigenfrequency ωp ≈ ωc as schematically shown in

Figure 4.10. When switching off the drive field, the electromechanical backaction drops

to zero; the mechanical high amplitude motion relaxes to its thermodynamic equilibrium

amplitude with a decay rate τ(T ) = 2/Γm(T ) (the theoretical details for this conclusion are

derived in Section 7.2). The probe field generates sidebands proportional to the mechanical

amplitude. The decay of the red sideband at frequencies of ωc − Ωm is recorded with a
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Figure 4.11: Complete time trace of the mechanical motion. The displacement amplitude rings

up due to the blue detuned driving field. Upon switching off the field the amplitude decays

to its thermal equilibrium amplitude. The inset shows the mechanical ring down including a

fit to the data.

spectrum analyzer in time domain after passing an amplifier chain. An arbitrary wave

form generator shapes the rectangular drive pulses and triggers the measurement.

Figure 4.11 shows a typical time trace including the ring up of the mechanical ampli-

tude. The inset shows the decay of the sideband amplitude including an exponential fit to

the data (orange curve).

Experimental study of Γm and Ωm with temperature

Figure 4.12 shows the recorded change of eigenfrequency extracted from the homodyne

temperature sweep. The red line is a fit to equation 4.16 with a reference temperature

T0 = 32 mK4. From the fit we extract C ≈ 3 × 10−6, which is more than one magnitude

smaller than reported in Al nanobeams [165, 166]. We attribute the smaller value to the

higher tensile stress in our nanobeams. The Young’s modulus E in the definition of C has

to be replaced by the stress modulus σ, similar to the modification of the eigenfrequency

in highly stressed beams (see equation (4.14) ). Sulkko et al. [166] report on changes

in C when changing a DC gate voltage, stressing their Al nanobeams but attribute this

to a change in the materials dielectric constant. Further experiments are necessary to

clarify the stress dependence of C and to give insight into the TLS density of states and

λ, possibly clarifying the microscopic nature of the TLS. The good agreement between

theory and results show that the nanobeam and thus the sample thermalizes well with the

mixing chamber in the cryostat even down to temperatures of 30 mK.

From the ring down measurements we extract a linear temperature dependence of

mechanical dissipation, Γm = AT + Γ0 with A ≈ 2π × 37 Hz/K as shown in Figure 4.13.

Our observations corroborate the findings of Hoehne et al. [165] and Sulkko et al. [166].

The constant A extracted from our measurements is indeed one order of magnitude smaller

than reported by Sulkko et al.. Again, we attribute this outcome to the higher tensile

stress in our nanobeam, leading to a weaker TLS-phonon coupling (the stress in the Al

beams studied by Sulkko et al. originates solely from the different thermal expansion

4Changing the reference temperature T0 and Ωm(T0) accordingly gives similar results.



4 Sample fabrication and pre-characterization 35

(Ω
m

(T
)−

Ω
m

(3
5 

m
K)

)/(
2π

) (
H

z)

0

4

8

12

0 100 200 300 400 500
Temperature (mK)

Figure 4.12: Mechanical eigenfrequency change plotted against temperature. The eigenfre-

quency at a temperature of T = 32 mK is chosen as reference point. The red line is a fit of

Equation (4.16) to the data showing the logarithmic temperature dependence and proving
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Figure 4.13: The extracted mechanical linewidth as function of temperature. The red line is a

linear fit to the data.

coefficients, while the nanobeam studied here is highly stressed even at room temperature).

At the lowest temperature of 32 mK, we extract Γm = 2π × 2.59 Hz corresponding to

Qm = 5.60 × 105. The data at the lowest temperatures indicate the onset of saturation

of the mechanical dissipation. This cannot be clarified here, since measurements at even

lower temperatures are difficult to realize.

Concluding, we understand the mechanisms of thermal behavior of mechanical eigen-

frequency and dissipation. The data agree to previous considerations and measurements

when adjusting the underlying theory to a highly stressed beam and the following phonon

density of states. This corroborates that the main dissipation mechanism in our system

at millikelvin temperatures originates from coupling of phonons two TLS. Although the

nanobeam has a double layer structure consisting out of an amorphous insulator and a

polycrystalline superconducting layer the temperature dependence of Ωm and Γm is covered

by the theory of amorphous insulators. This dramatically simplifies the study of double-

layered nanobeams by assuming one amorphous insulator layer with effective stress, density

and Young’s modulus following from both layers’ material parameters.

The good agreement between the data and theory of the mechanical eigenfrequency
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as a function of temperature that is supposed to be valid over an even wider temperature

range presents an onchip thermometry device [188]. We can thus identify temperature

changes due to high driving fields or bad thermalization of the sample.

One way to reduce the dissipation is to reduce the number of TLS. Thermal anneal-

ing of the sample before measurement is one way to achieve this [220]. Optimization

of the mechanical mode in an optomechanical/electromechanical system is still a crucial

task. Recently, several groups started to explore this systematically, taking the known loss

channels into account [73,78,111,223].

Finally, we want to mention the coupling of TLS to other solid state base circuitries

has been reported and analyzed. In microwave resonators, TLS lead to additional 1/f -

noise due to dipole coupling to the electric field [224]. The dipole coupling between TLS

in the insulating tunnel barrier and qubits leads to dephasing and decoherence [225, 226].

In these systems, the coupling between qubit and TLS can be so strong, that single TLS

even have served as a memory for qubit states [227] or become entangled to a qubit [228].

4.5.3 Duffing nonlinearity of a doubly clamped nanobeam

One of the most prominent nonlinear oscillation regime in doubly clamped nanobeams is

the Duffing regime [212]. For amplitudes exceeding a system dependent critical amplitude,

the model of an damped harmonic oscillator defined in Equation (4.15) is not sufficient to

cover the physical phenomena. To extend the model, one includes higher order terms of

the restoring force, leading to anharmonic effects. In the case of a doubly clamped beam

the physical background is that the stiffness of the material as function of the amplitude

exceeding the critical one cannot be described by a harmonic potential anymore. Thus the

approximation of a linear restoring force (Hooks law) does not cover the dynamics [211].

We have to deal with a nonlinear system resulting in much richer nonlinear dynamics.

The most prominent feature of a Duffing oscillator is the establishment of bifurcation

for amplitudes beyond the critical one. This phenomenon can be exploited as a detector

sensitive to very weak system disturbance. Qualitative and quantitative data of the on-

set of the Duffing regime offers ultimately improved control over the system under duty.

For future applications, aiming for operation within this regime or for operation in the

harmonic regime at high amplitudes, this is of essential interest.

In the following paragraphs, we briefly review the most important aspects of a Duffing

oscillator and extract the effective Young’s modulus of our sandwich structured nanobeam

from the analysis of it’s operation in the Duffing regime.

The harmonically driven Duffing oscillator

To account for the nonlinear behavior of the oscillator, the potential has to be extended

by terms going beyond the quadratic term meffΩ2
mx

2/2. In an expansion of a symmetric

potential (as is the case for doubly clamped nanobeams) around its minimum all terms with

odd parity are zero. This implies that the next relevant term is proportional to x4, leading

to the additional restoring force term αx3 in the differential equation of the oscillator.

The constantα is the so-called Duffing parameter and characterizes the nonlinear force

dependence on the mechanical displacement. The full differential equation of a Duffing
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oscillator thus reads

meff ẍ(t) +meffΓmẋ(t) +meffΩ2
mx(t) + αx3(t) = K cos(ωt) . (4.18)

We have here assumed a harmonic driving force with frequency ω and amplitude K. In

electromechanical systems equation (4.18) is valid for a weak probe at the microwave cav-

ity’s resonance (ωp = ωc), a configuration without back-action on the mechanical mode as

derived in Section 5.1. An overview of the most relevant phenomena of a Duffing oscillator

are presented in Ref. [229]. Our aim is to determine the effective Young’s modulus of the

nanobeam. For this purpose, it is sufficient to analyze the amplitude of the mechanical

oscillation as a function of drive frequency, including the shift in eigenfrequency, as dis-

cussed further below. We focus on the experimental extraction of the Duffing parameter

α and the onset of nonlinear behavior, i.e. the critical amplitude xcrit.

The left side of Figure 4.14 shows a typical amplitude spectrum of a Duffing oscillator

with a drive sufficiently strong to generate amplitudes exceeding xcrit. We see that the

frequency spectrum becomes tilted. If α > 0 (α < 0), the nonlinearity hardens (weakens)

the beam, the eigenfrequency shifts to higher (lower) frequency values. For tensile stressed

doubly clamped nanobeams the increase in tension for large displacements usually leads

to hardening of the beam in contrast to nanocantilevers [152]. Therefore, we restrict the

discussion to the case α > 0 as shown in Figure 4.14. The red curve of the left side of

Figure 4.14 shows the amplitude spectrum of a frequency upsweep. At the point Bup a

jump in the amplitude is clearly visible. This is the upper branch of the Duffing oscillator.

The lower branch can be observed with a frequency downsweep, with a jump in amplitude

at Bdown, where the amplitude spectrum has a vertical slope. These two points indicate a

hysteretic amplitude behavior what implies that the observed amplitude depends on the

history of the drive. The hysteretic behavior mathematically occures from the existence of

three amplitude solutions within a frequency window defined by Bup and Bdown. The blue

line in the left part of Figure 4.14 indicates the third, metastable amplitude solution, which

is not experimentally accessible and always lies between the low and the high amplitude

solution [152]. The eigenfrequency Ωmax(x0,max) can only be accessed by a frequency

upsweep.

Equation (4.18) cannot be solved analytically, usually the Duffing oscillator is treated

by numerical or by approximative methods. Using secular pertubation theory one can

show that the amplitude response of the system follows [229]

x2
0 =

(K/2)2

(meffΩm(Ω− Ωm)− 3
8αx

2
0)2 + (1

2meffΓmΩ2
m)2

, (4.19)

under the assumption that the mechanical displacement can be approximated as an har-

monic oscillation plus higher order terms (which we will neglect in our discussion) x(t) ≈
x0 cos(ωt+ φ) +O(ω2). Substitution of x0 with the dimensionless amplitude

a =
√
α/(meffΓmΩm)x0, Ω with the dimensionless drive frequency Ω̃ = (Ω−Ωm)/Ωm and

K with the dimensionless force amplitude k = K
√
α/m3

eff/Γ
3
m, Equation (4.19) reduces to

a2 =
k2

(2Ω̃− 3
4a

2)2 + 1
, (4.20)

We calculate the maximum by differentiating this equation and solving dΩ̃/da2 = 0 and

find that the dimensionless resonance frequency Ω̃max = (Ωmax−Ωm)/Ωm (see Figure 4.14)
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Figure 4.14: On the left hand side, a simulated amplitude spectrum of a Duffing oscillator with

α > 0 (blue curve), showing the hysteresis of the amplitude when performing an up (red curve)

or down sweep (green curve) of the drive frequency, respectively. The inflection points Bup

and Bdown, at which the corresponding curve makes a jump, show the bifurcation between up-

and down-sweep. The blue line shows the metastable branch, not accessible in experiments.

The shifted eigenfrequency Ωmax(x0,max) can be estimated in an up-sweep. Right hand side:

The behavior of the Duffing oscillator for increasing drive powers, showing the increase of the

bistable region with increasing drive (from blue to red).

depends quadratically on the peak amplitude amax, Ω̃max = 3/8a2
max, or in terms of the

original parameters

Ωmax = Ωm +
3α

8meffΩm
x2

0max . (4.21)

This relation is called the backbone of the Duffing resonator connecting the resonance

peaks for different driving amplitudes.

The critical amplitude is the amplitude where the two bifurcation points Bup and

Bdown, defining the hysteresis between frequency up and down sweep, merge to a single

inflection point. This requires both dΩ̃/da2 = 0 and d2Ω̃/(da2)2 = 0. Solving these two

equations gives

a2
crit = (4/3)3/2 . (4.22)

The knowledge of the critical dimensionless amplitude acrit and the possibility to extract

α enables us to calculate the critical amplitude xcrit, according to our previous definition

of the dimensionless amplitude a,

xcrit =

√
a2

critmeffΓmΩm

α
. (4.23)

Experimentally this implies, that we can calculate α from Equation (4.21) if we know

the displacement spectral density. Equation (4.23) allows then to extract the critical

amplitude.

Unterreithmeier et al. presented a relation between Duffing parameter, eigenfrequency

and material properties of a nanobeam [170], which allows to estimate the effective Young’s

modulus of the nanobeam, the last relevant system parameter to characterize the mechan-

ical oscillation. One obtains

Ωm =
π

L

√
σ

ρ
, (4.24)

α = meffπ
4E + 3

2σ

4L4ρ
. (4.25)



4 Sample fabrication and pre-characterization 39

µ-wave source
out

ZVA
inout

 
sample 

  

ωd

HEMT 

µw-
amp

 
 

400 mK 

Bias Tee 

0.7 K

4.2 K

Phase

freq.
mod

Figure 4.15: Schematic of the setup used to estimate the Duffing parameter. We use the same

homodyne setup as before for the determination of the electromechanical coupling constant.

The pump field’s frequency corresponds to the µ-wave cavity eigenfrequency, to not disturb

the mechanical motion. Additionally an AC driving field is combined with the pump field

employing a ZVA network analyzer.

where E is Young’s modulus, σ the tensile stress, ρ the density and L is the length of the

beam structure. The derivation of these equations is achieved by exploiting Euler’s beam

theory. To estimate the effective Young’s modulus, we define an effective density of the

beam and use the stress estimated in our system in Section 4.5.1.

Accessing the Duffing parameter

The measurement of the critical amplitude to estimate the Duffing parameter was per-

formed in the dilution fridge No.1 at a temperature of approximately 400 mK. A schemtatic

of the setup is shown in Figure 4.15. The setup is the identical homodyne setup with cal-

ibrated cable lengths as in Section 5.2, but the spectrum analyzer is replaced by a ZVA

vector network analyzer to drive the mechanical motion of the beam. This is accomplished

by combining the AC output of the network analyzer with the probe tone generated by

the microwave source at the mixing chamber using a cold bias tee. The probe tone is

set to the cavity eigenfrequency ωp = ωc and is fixed to a power of −83 dBm to min-

imize electromechanical back-action on the nanobeam. It is frequency modulated with

(Ωmod−Ωm)/2π = −50 Hz using a modulation depth of 100 kHz to calibrate the mechani-

cal amplitude. After transmission through the sample, followed by an amplifier chain, the

tone is down converted to a DC-signal using an IQ-mixer and part of the probe tone as

reference. The phase quadrature is fed into the input of the network analyzer. Hereby

the frequency modulation experiences the same transduction as the mechanical motion

(see Section 5.2 and Ref. [230] for more details) allowing for calibration of the mechanical
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Figure 4.16: The spectrum of the nanobeam including the calibration peak for a probe power

of −91 dBm. The orange curve is a Lorentzian fit to the spectrum. On the right we zoom

to the mechanical response. The spectrum does not agree to a Lorentzian lineshape, clearly

indicating the onset of the Duffing response.

displacement spectrum.

A typical power spectrum as function of the drive frequency Ωac including the calibra-

tion peak resulting from the frequency modulation is shown in Figure 4.16 and a zoom of

the mechanical resonance including a Lorentzian fit to emphasize the onset of nonlinearity

is shown on the right. Increasing the AC drive power of the network analyzer, we clearly

observe nonlinear behavior of the nanobeam. Figure 4.17 shows the detected mechanical

displacement spectrum for different AC drive powers of a frequency up sweep (due to

technical reasons we cannot perform down sweeps). The lowest, blue curve, correspond-

ing to a drive power of −100 dBm shows Lorentzian behavior. The remaining curves are

recorded with increasing drive power in 1 dB steps, starting at drive a power of −95 dBm

and clearly show the expected evolution of a Duffing resonator. The dotted light blue line

is a fit of the backbone curve following Equation (4.21). It yields a Duffing parameter

of α = 1.99 × 1011 N/m3. Note, that Equation (4.21) does not require knowledge on the

driving force used in the experiment. The resulting critical amplitude is xcrit = 2.57 nm.

Using Equation (4.25) and σeff = 199 MPa, we obtain for our structure an effective

Young’s modulus of Eeff = 140 GPa. This value is in good agreement to the estimated

Young’s modulus Ecalc = (ESiNASiN + ENbANb)/Atot = 173 GPa, where ESiN = 300 GPa

and ENb = 105 GPa are the Young’s moduli of silicon nitride and Nb respectively. ASiN,

ANb and Atot are the profiles of the single layers and the total profile of the beam re-

spectively. The difference between Eeff and Ecalc can be attributed to the change of the

Young’s modulus while processing the single layers. Unterreithmeier et al. [170] observed

a reduction of the Young’s modulus in silicon nitride thin films from 300 GPa to 100 GPa.

We assume Eeff to represent the more accurate value, since we cannot estimate the dif-

ference of the initial Young’s moduli for the processed sample compared to the original

ones.

We have shown, that the nanomechanical resonator of our electromechanical system

exhibits a Duffing like behavior for high direct driving amplitudes, a feature well known

and studied in NEMS and MEMS systems. The analysis of the backbone curve allows

to extract the Duffing parameter α = 1.99 × 1011 N/m3 and the critical displacement

amplitude xcrit = 2.57 nm of the nanobeam. Thereby we determine the effective Young’s
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Figure 4.17: The mechanical displacement spectrum of the nanobeam for increasing driving

powers. The blue curve corresponds to the lowest driving power of −100 dBm, the second

blue curve to a drive power of −95 dBm. The drive power increases in 1 dB steps up to the

orange curve with a driving power of −84 dBm. The dotted light blue line is the backbone

curve of the system obtained by fitting equation 4.21 to the maximum amplitudes.

modulus of the sandwich structure.

4.6 Summary and discussion

In this chapter we present the most important sample parameters and discussed the pro-

duction steps used to fabricate the sample consisting of a niobium CPW λ/4 microwave

cavity capacitively coupled to a Nb/Si3N4 bilayer nanobeam, placed in the cavities voltage

antinode.

The microwave cavity is shows a resonance frequency of ωc/2π = 6.070 GHz, an exter-

nal decay rate of κex/2π = 339 kHz and an overall cavity linewidth of κ/2π = 759 kHz.

We calculate the electromechanical coupling to G/2π = 6.36 kHz/nm from the sample

geometry. This is a factor of six lower than the experimentally determined coupling (see

Section 5.2.2). We attribute the difference to the simplification of treating the coupling

capacitance as a plate capacitance, neglecting all inhomogeneities contributing to the ca-

pacitance.

The sandwich structured nanobeam, made out of a highly stress silicon nitride film

and a niobium thin film shows an eigenfrequency of Ωm/2π = 1.45 MHz and a mechanical

decay rate of Γm/2π = 2.59 Hz at 32 mK, estimated by ring down measurements and

corresponding to a Q-factor of Qm = 5.60× 105. By comparing the mechanical resonance

frequency to theory we estimate the stress in our structure to σeff = 199 MPa. Our

observations show that the damping is temperature dependent and can be attributed to

the coupling of acoustic excitations to two level systems, a phenomenon observed in most

amorphous solid state systems. We furthermore find that the double layer structure,

consisting of an amorphous insulator and a polycrystalline superconductor, behaves as an

effective amorphous single layer structure, corroborating the temperature dependence of

the damping.

The well-defined behavior of the mechanical resonance frequency enables the use of

the mechanical oscillator as a thermometer. Precise measurement of the mechanical res-

onance frequency allows thus for testing the thermalization of the mechanical mode with
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temperature. We observe a good thermalization of the sample down to 30 mK.

Further analysis of the damping under the influence of artificial white noise could clarify

the origin of the two level systems allowing to minimize their influence. White noise does

not heat the structure but drives the mechanical motion as well as TLS transitions. This

could shed new light onto the physical background of the TLS.

In this chapter we also present a detailed analysis of the nonlinear response of the

nanobeam in the Duffing regime. We determine in this context the Duffing parameter

to α = 1.99 × 1011 N/m3 and a critical displacement amplitude of xcrit = 2.57 nm. This

allows to calculate the effective Young’s modulus of the structure to Eeff = 140 GPa, in

good agreement to theoretical estimation based on the individual material components.

The spectroscopic analysis of the mechanical eigenfrequency and the Duffing parameter

are thus an important tool to characterize the system parameters of mechanical oscillators

fabricated from more than one layer. These systems open the avenue to exploit the favor-

able parameters of each material system or to study the influence of more complex layers,

like ferro- or ferrimagnetic systems. In Section 6.3 we show that we can even map the Duff-

ing nonlinearity into the microwave regime, bringing applications like an electromechanical

detector of qubit states into reach.
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Single tone experiments

Systems employing a parametric coupling between an optical and a mechanical mode

have been studies intensively over the last years. Here, the holy grail of was to cool

the mechanical mode into the ground-state and still be able to resolve its motion, what

was achieved only recently [78, 113]. Limitations, imposed by system parameters or the

measurement setup were studied extensively theoretically [103, 105–108, 231–234] and ex-

perimentally in various systems, where we have to distinguish precise position measure-

ment [46, 48, 235, 236], active feedback cooling (cold damping) [45, 62, 63, 237, 238] and

radiation pressure cooling [47, 76, 100–102, 109, 110, 239–241]. The latter lead to observa-

tions of low mechanical excitation numbers [32, 75, 78, 111, 113]. Limitations include the

necessity to operate in the resolved sideband regime where the mechanical frequency ex-

ceeds the optical decay rate, amplitude and phase noise of the light sources and noise from

amplifying the signal. Schemes to study these limitations and to achieve ground-state

cooling of the mechanical oscillator involve one drive tone used to manipulate and to read

out the system.

We review these basic features of opto/electromechancial systems in this section to get

insight in the underlying physical phenomena. For illustration purpose, we discuss optome-

chanical features on a Fabry-Perot cavity with one moveable mirror (see Figure 5.1). All

results achieved are perfectly valid for other opto-/electromechanical systems, as for the

electromechanical system we study in this work. We present the optomechancial Hamilto-

nian and derive the most prominent features including linewidth broadening/narrowing,

the optical spring effect and sideband cooling/amplification of the mechanical mode. We

also show how to extract the optomechanical vacuum coupling and hereby calibrate the

attenuation of the microwave input lines of the experimental setup. We estimate the

optomechanical vacuum coupling to g0/2π = 1.26 Hz and experimentally validate the op-

tomechanical influence on the mechanical linewidth and the optical spring effect. Further,

we show cooling of the mechanical mode to an average occupation of n̄m ≈ 13. Analysis

of our measurement reveals a position measurement uncertainty a factor 100 away from

the Heisenberg limit of
√

2~ for an optimally red detuned drive tone.
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Figure 5.1: Scheme of a generic optomechanical system, showing a Fabry-Perot cavity with one

mirror free to vibrate.

5.1 Electromechanical features

5.1.1 Electromechanical interaction

In our discussion of the fundamental electromechanical features, we partly follow the more

detailed derivation given by Schliesser [242].

Considering a Fabry-Perot cavity in which one mirror is free to move, the cavity reso-

nance condition is a function of the displacement x(t) with the frequency of the mechanical

motion Ωm. For small mechanical amplitudes, the coupling between cavity resonance fre-

quency and mechancical displacement is linear with the coupling constant G = ∂ω̃c/∂x.

The coupling between the two modes G = −ω̃c/L, is defined by the geometric boundary

conditions, in the case of a Fabry-Perot cavity with length L and resonance frequency

ω̃c. For the electromechanical system we study in this work (see Chapter 4 for details),

the coupling follows from change of the overall capacitance C due to the mechanical mo-

tion. That is, G = (∂Cg/∂x)2Zω̃2
c/2π as discussed in more detail in Section 4.4, for a

schematic of the system we point the reader to Figure 4.8. To compare different opto-

/electromechanical systems, it is advantageous to define the electromechanical vacuum

coupling g0 = G/xzpf , where xzpf =
√

~/2meffΩm is the root-mean-square amplitude of

the mechanical zero point fluctuations. The vacuum coupling g0 allows for comparison

of opto- and electromechanical systems working in different frequency regimes. A second

advantage of this definition for the vacuum coupling lies in the freedom to define or rescale

the displacement x, without affecting g0 [230].

Neglecting the back-action on the mechanical mode, the mechanical motion leads to

the formation of Stokes and anti-Stokes sidebands around a monochromatic drive tone

driving the cavity. As discussed in more detail in Section 6.4, even higher order sidebands

become observable for sufficiently high mechanical amplitudes due to the modulation of

the intra-cavity field.

Classical analysis

To get insight into the effects in optomechanical systems we consider the mutual coupling

of optical and mechanical degrees of freedom. The optical mode influences the motion

of the mechanical oscillator by radiation pressure. The back-action force Frp acting on

the vibrating mirror is proportional to the average number of intra-cavity photons n̄c,

transferring their momentum onto the movable mirror. In total

Frp =
n̄c~ω̃c

L
= −~Gn̄c . (5.1)
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For a cavity with linewidth κ and a mechanical mode with linewidth Γm, eigenfrequency

Ωm and effective mass meff , the following equation of motion describes the physics of the

complete system. Note, that the differential equations are written in a frame rotating with

the laser frequency ωd as derived with coupled mode theory [243],

ȧ(t) =
(
i(∆̄−Gx(t))− κ/2

)
a(t) +

√
κex

2
sin(t) , (5.2)

ẍ(t) + Γmẋ(t) + Ω2
mx(t) =

Frp

meff
= −~G |a(t)|2

meff
. (5.3)

These two coupled equations describe a driven optical cavity, parametrically coupled to

the mechanical displacement via −Gx(t) and a mechanical harmonic oscillator coupled to

the photons inside the cavity via the radiation pressure force Frp. We have introduced

the field amplitude a(t) and normalize it to the photon flux in the cavity, |a(t)|2 = nc(t).

Furthermore, ∆̄ = ωd − ω̃c is the detuning of the driving field from cavity resonance.

To analyze these coupled linear differential equations we look for static solutions ā, x̄

and dynamical ones δa(t), δx(t). The full solution is given by a superposition of both,

a(t) = ā + δa(t) and x(t) = x̄ + δx(t), where we demand the dynamical part to be small

compared to the static one. For a constant drive amplitude s̄in the static solution where

all time derivatives vanish is given by

ā =

√
κex/2

−i(∆̄−Gx̄) + κ
2

s̄in and (5.4)

x̄ = − ~Gā2

meffΩ2
m

. (5.5)

Here, we have assumed the phase of the drive field to be adjusted in a way that ā becomes

real, what is easily achieved in experiments. The dynamic response modulates both degrees

of freedom around this set of static solutions. We restrict ourselves to a small fluctuating

force δF (t) arising from various noise contributions, acting on the dynamic parts of the

mechanical mode. Entering the full expressions a(t) = ā+ δa(t) and x(t) = x̄+ δx(t) into

equations (5.2) and (5.3), introducing the equilibrium detuning ∆ = ωd − (ω̃c + Gx̄) ≡
ωd − ωc

1 and neglecting higher order terms in δa(t) and δx(t), these equations modify to

δ̇a(t) = (i∆− κ/2)δa(t)− iGāδx(t) and (5.6)

δ̈x(t) + Γm
˙δx(t) + Ω2

mδx(t) = −~Gā
meff

(δa(t) + δa∗(t)) + δF (t) . (5.7)

This set of equations is most easily accessed in frequency domain. Performing a Fourier

transformation with f(Ω) =
∫∞
−∞ dtf(t) exp(iΩt) and exploiting δa∗(Ω) = (δa(−Ω))∗, we

find:

(−i(∆ + Ω) + κ/2)δa(Ω) = −iGāδx(Ω) , (5.8)

(+i(∆− Ω) + κ/2)δa∗(Ω) = +iGāδx(Ω) , (5.9)

(Ω2
m − Ω2 − iΓmΩ)δx(Ω) = −~Gā

meff
(δa(Ω) + δa∗(Ω)) +

δF (Ω)

meff
. (5.10)

1The term Gx̄ is very small in our system, so ωc ≈ ω̃c.
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Here, Equations (5.8) and (5.9) correspond to the Stokes and anti-Stokes sideband for a

non-zero displacement δx(Ω) at frequency Ω:

δa(Ω) =
−iGā

−i(∆ + Ω) + κ/2
δx(Ω) , (5.11)

δa∗(Ω) =
+iGā

+i(∆− Ω) + κ/2
δx(Ω) . (5.12)

Since the mechanical amplitude is maximal at Ω = Ωm, the sidebands are centered around

ωc ± Ωm. The modulation of the intra-cavity field gives rise to an oscillating force that

acts on the mechanical mode

δFrp(Ω) =− ~Gā(δa(Ω) + δa∗(Ω))

=− ~G2n̄c

(
∆ + Ω

(∆ + Ω)2 + (κ/2)2
+

∆− Ω

(∆− Ω)2 + (κ/2)2

)
δx(Ω)

+ i~G2n̄c

(
κ/2

(∆ + Ω)2 + (κ/2)2
− κ/2

(∆− Ω)2 + (κ/2)2

)
δx(Ω) . (5.13)

The additional force due to radiation pressure shows dynamical back-action [244] on the

mechanical degree of freedom. The coupling to the radiation field also modifies the response

of the mechanical mode to an external force δF (Ω). Substituting the expression (5.13) into

(5.10) and sorting the real and complex terms, we can write

δx(Ω) = χeff(Ω)δF (Ω) . (5.14)

The effective susceptibility χeff(Ω) accounts for the dynamical back-action by modifying

the mechanical damping and spring constant:

χeff(Ω)−1 = meff

(
−Ω2 +

(
Ω2

m +
kba(Ω)

meff

)
− i[Γm + Γba(Ω)]Ω

)
(5.15)

compared to the undisturbed mechanical susceptibility

χm(Ω)−1 = meff

(
−Ω2 + Ω2

m − iΓmΩ
)
, (5.16)

the effect of the dynamical back-action is clearly visible. Both the mechanical damping and

the spring constant are modified by a term Γba(Ω) and kba(Ω)/meff , respectively, arising

from the fluctuating contribution to the radiation pressure. Explicitly, the modification of

the mechanical damping and spring constant are given by:

Γba =
~G2n̄c

meffΩ

(
κ/2

(∆ + Ω)2 + (κ/2)2
− κ/2

(∆− Ω)2 + (κ/2)2

)
, (5.17)

kba =~G2n̄c

(
∆ + Ω

(∆ + Ω)2 + (κ/2)2
+

∆− Ω

(∆− Ω)2 + (κ/2)2

)
. (5.18)

The change of the eigenfrequency by photons is known as optical spring effect, to our

knowledge first observed in a massive 1.5 t niobium antenna used for gravitational wave

detection [53]. Importantly, the mechanical mode still follows the dynamics of a damped

harmonic oscillator, with the natural damping and eigenfrequency replaced by effective
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ones [62,100,102]. For frequencies close to the mechanical resonance, we can approximate

Ω ≈ Ωm. Under these conditions

Γeff ≈Γm + 2g2
0n̄c

(
κ/2

(∆ + Ωm)2 + (κ/2)2
− κ/2

(∆− Ωm)2 + (κ/2)2

)
, (5.19)

Ωeff ≈Ωm + g2
0n̄c

(
∆ + Ωm

(∆ + Ωm)2 + (κ/2)2
+

∆− Ωm

(∆− Ωm)2 + (κ/2)2

)
, (5.20)

where we have used that the effect of the optical spring is small compared to Ωm. The

mechanical linewidth experiences the strongest changes for ∆ = ±Ωm. For a red detuned

drive tone with respect to the cavity resonance the mechanical linewidth increases. Further

below, we show that this corresponds to cooling of the mechanical mode. In contrast, for

a blue detuned drive tone the effective linewidth can become zero. In this regime, the

mechanical oscillator starts performing self-sustaining oscillations [52, 53, 65, 94]. For a

drive field with ωd = ωc, the mechanical properties are not disturbed. This configuration

can be used to study the intrinsic parameters of the mechanical vibration and provides

easy access to the opto-/electromechanical coupling.

Quantum cavity electromechanics

The identical system can be analyzed within the framework of quantum mechanics. For

this purpose, we write down the corresponding Hamiltonian introduced by Law [198] and

further studied in Refs. [103,104],

Ĥ = ~ω̃c

(
n̂c +

1

2

)
+ ~Ωm

(
n̂m +

1

2

)
+ ~Gn̂cx̂+ Ĥd . (5.21)

Here, n̂c = â†â and n̂m = b̂†b̂ = 1
2 [meffΩm

~ x̂2 + p̂2

meffΩm~ ] are the intra-cavity (photon)

and mechanical (phonon) excitation number operators. The photon and phonon creation

(annihilation) operators are given by â† (â) and b̂† (b̂), respectively. The operator x̂ =

xzpf(b̂
† + b̂) is the mechanical displacement operator and p̂ the corresponding mechanical

momentum. The term

Ĥd = i~
√
κex

2

(
s̄inâ

†e−iωdt − s̄inâe
+iωdt

)
(5.22)

represents the external drive fields. The drive amplitude s̄in is normalized to the phonon

flux resulting from the drive field’s intensity |s̄in|2 = Pd/~ωd. The interaction Hamiltonian

Ĥint = ~Gn̂cx̂ is a consequence of the integration of −Frpdx̂.

By introducing damping for the optical and mechanical degrees of freedom and noise

terms due to fluctuations, we derive the Quantum Langevin equations in a frame rotating

with ωd first presented in Ref. [245].

d

dt
â(t) =

(
+i∆̄− κ

2

)
â(t)− iGx̂(t)â(t) +

√
κex

2
(s̄in + δŝin(t)) +

√
κ

2
δŝvac(t) , (5.23)

d

dt
x̂(t) =

p̂(t)

meff
, (5.24)

d

dt
p̂(t) = −meffΩ2

mx̂(t)− ~Gâ†(t)â(t)− Γmp̂(t) + δF̂th(t) . (5.25)

The noise term δŝin(t) accounts for fluctuations of the drive field, while δŝvac(t) contains

the non vanishing vacuum noise contributions (and can be extended to include all other
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non vanishing noise contributions as well). To account for the Brownian motion of the

mechanical oscillator, we introduced thermal fluctuations δF̂th(t). We also assume that

the cavity has zero thermal excitations, which is justified since the temperature regime we

consider is sufficiently low, ~ωd < kBT . Ref. [246] shows that the following commutation

relation applies [
δsi(t), δs

†
i (t
′)
]

= δ(t− t′) (5.26)

with the following correlator

〈δsi(t)δs†i (t
′)〉 = δ(t− t′) . (5.27)

The thermal correlator accounting for Brownian motion of the mechanical mode is [245]

〈δF̂th(t)δF̂th(t′)〉 = ~meffΓm

∫
dΩ

2π

(
coth

(
~Ω

2kBT

)
+ 1

)
e−iΩ(t−t′) . (5.28)

Solving the Langevin equations (5.23)–(5.24) is performed as in the classical case; a static

solution ā and x̄ is split from the dynamical part δâ(t) and δx̂(t). The static solutions are

again given by equations (5.4) and (5.5). For a strong coherent drive field ā� 1, we can

derive a linearized version of the initial differential equations, which we then transform

into Fourier space. This gives analogous to the derivation before:

(−i(∆ + Ω) + κ/2)δâ(Ω) = −iGāδx̂(Ω) +

√
κex

2
δŝin(Ω) +

√
κ

2
δŝvac(Ω) , (5.29)

(+i(∆− Ω) + κ/2)δâ†(Ω) = +iGāδx̂(Ω) +

√
κex

2
δŝ†in(Ω) +

√
κ

2
δŝ†vac(Ω) , (5.30)

(Ω2
m − Ω2 − iΓmΩ)δx̂(Ω) = −~Gā

meff
(δâ(Ω) + δâ†(Ω)) +

δF̂th(Ω)

meff
. (5.31)

According to the the Wiener-Khinchin [232] theorem the Fourier transformation of the

noise correlators define the corresponding spectral noise densities2

Sss ≡ 〈δsi(Ω)δs†i (Ω
′)〉 = 2πδ(Ω− Ω′) (5.32)

and the thermal noise contribution gives

Sth
FF ≡ 〈δF̂th(Ω)δF̂th(Ω′)〉 = δ(Ω− Ω′)~meffΓm

[
coth

(
~Ω

2kBT

)
+ 1

]
≈ 4kBTmeffΓm . (5.33)

To derive the last term we have approximated ~Ωm � kBT and used the first order

approximation cot(x+ 1) ≈ 1/x. In an actual measurement, one wants to extract physical

information from within the cavity resulting from interaction with an input field. This is

realized by analysis of the field leaking out of the system. The connection between the

fluctuations entering the cavity and the fluctuations leaving it can be derived by standard

input-output theory [232,246] to

δsout(Ω) = δsin(Ω)−
√
κex

2
δâ(Ω) (5.34)

2We mark a spectral density by Sii(Ω), where ”i” is the observable, the units are [(unit of i)2/Hz]. The

square root of Sii is denoted by Si.
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These equations cover most phenomena in opto-/electromechanical systems. The intro-

duction of static and dynamic solution leads to another interesting observation. We can

factorize Ĥint by replacing â = ā+δâ and obtain a linearized interaction Hamiltonian [106]

Ĥint ≈~g0ā(δâ+ δâ†)(b̂+ b̂†)

=~g0ā(δâb̂+ δâ†b̂†) + ~g0ā(δâb̂† + δâ†b̂) , (5.35)

where we have neglected higher order terms. The shift of the cavity resonance due to the

static mechanical displacement has been already taken into account here.

The first term is a two mode squeezer type interaction Hamiltonian (or parametric

amplifer Hamiltonian) [247] and describes the transfer of energy from the optical to the

mechanical mode or vice versa and joint excitations of both degrees of freedom. This

term dominates for a drive tone blue detuned with respect to the cavity ∆ > 0. In this

configuration generation of entanglement is possible or alternatively, the system operates

as an parametric amplifier, as demonstrated recently in an electromechanical system [120].

The second term is a beam splitter type Hamiltonian, describing the transfer of excita-

tions. This term dominates for a drive tone red detuned with respect to the cavity ∆ < 0.

In this configuration quantum state transfer between optical and mechanical mode can be

achieved [37]. This was in the focus during the last years as it attracted the possibility of

cooling of the mechanical mode as we discuss in more detail in the next section.

Furthermore, a drive tone at cavity resonance ∆ = 0 has the same contribution of

both terms leading to a quantum non-demolition (QND) type interaction Hamiltonian [44]

commuting with the optical amplitude quadrature. Here, the mechanical mode is probed

without being disturbed by the measurement. This agrees with the conclusion from semi-

classical considerations stated in equations (5.19) and (5.20), that this configuration leaves

Γm and Ωm unchanged; i.e. no dynamical back-action is present.

Cooling and amplification of the mechanical mode

As discussed above, a red or blue detuned driving field leads to cooling or amplification

of the mechanical mode. To discuss these effect we first define the mode temperature

of an oscillation. The fluctuation dissipation theorem [232] allows to approximate the

displacement spectral density of mechanical fluctuations for a vibrational mode in contact

with a thermal bath at temperature T for high mechanical occupation n̄m ≈ kBT/~Ωm � 1

as3 [248]:

Sxx(Ω) = |χm(Ω)|2 Sth
FF(Ω) ≈ 1

2meff
· 2ΓmkBT

(Ω2 − Ω2
m)2 + Γ2

mΩ2
, (5.36)

with the Boltzmann constant kB, intrinsic mechanical linewidth Γm, the mechanical eigen-

frequency Ωm and the effective mass of the mechanical mode meff . For high Q oscillators,

we can simplify this to a Lorentzian:

Sxx(Ω) ≈ kBT

2meffΩ2
m

· Γm

(Ω− Ωm)2 +
(

Γm
2

)2 , (5.37)

The mean squared amplitude of the resonator can be calculated from the mechanical

displacement spectrum to

〈δx2〉 =

∫ +∞

0

dΩ

2π
2Sxx(Ω) ≈ kBT

meffΩ2
m

. (5.38)

3Here we use single sided spectra.
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Figure 5.2: Schematic of the sideband distribution in an electromechanical system for different

detunings of the drive tone with respect to the cavity resonance. The Stokes sideband is

suppressed when the drive is red detuned (red box). This leads to a transfer of energy from the

mechanical mode to the optical one to account for the higher energy of the photons scattered

into the anti-Stokes sideband. For a blue detuned drive tone (blue box), the situation is

reverse, the suppression of the anti-Stokes sideband leads to energy transfer to the mechanics.

The sidebands are symmetric in the case of zero detuning (as long as ~Ωm � kBT ), the

mechanical motion experiences no back-action from the photons inside the cavity (pink box).

With this result, we can assign a temperature to the mechanical mode

Tm =
meffΩ2

m

kB
〈δx2〉 . (5.39)

If the mechanical resonator is thermalized with the environment the mode temperature

corresponds to the bath temperature, Tm = T . Applying a drive field changes the mechan-

ical properties according to Equation (5.15) due to dynamical back-action. The thermal

Langevin force resulting from the coupling to the thermal bath remains unchanged. We

get

〈δx2〉 =

∫ +∞

0

dΩ

2π
2 |χeff(Ω)|2 Sth

FF(Ω) ≈ kBT

meffΩ2
m

· Γm

Γeff
. (5.40)

The mode temperature changes due to the dynamical back-action

Tm =
Γm

Γm + Γba
T . (5.41)
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We identify Γba as the cooling or amplification rate depending on the sign of the detuning

∆. The change of the mode temperature is a consequence of coupling the mechanical

oscillator not only to a thermal bath but to a photonic field disturbing the initial equi-

librium position. The laser field either introduces additional dissipation leading to a new

thermodynamic equilibrium with a lower temperature or drives the mechanical motion

by constantly transferring energy leading to a higher mode temperature. The heating

effect is not to be confused with thermal effects like photothermal pressure resulting from

bolometric absorption of a photon studied in Ref. [249].

Figure 5.2 gives a second intuitive approach to understand cooling, heating and mon-

itoring of the mechanical mode. As mentioned before, the coupling of the lightfield to a

mechanical oscillator inside a cavity generates sidebands. Depending on the detuning of

the drive field with respect to the cavity resonance, the relative weight of the Stokes and

anti-Stokes scattered photons changes; the cavity acts as a filter. For a drive frequency on

the red sideband (∆ < 0), the Stokes sideband is suppressed (red box in Figure 5.2). To

upconvert photons to the anti-Stokes sideband phonons are extracted from the mechanical

resonator. This transfer of energy from the mechanical to the optical mode leads to cool-

ing of the former. A drive tone on the blue sideband (∆ > 0) reversed this effect. Here,

the anti-Stokes sideband is suppressed by the cavity, the photons are down-converted into

a photon with the anti-Stokes frequency and a phonon each, effectively amplifying the

mechanical motion (blue box in Figure 5.2). A drive tone at the cavity resonance (∆ = 0)

populates both sidebands equally, leaving the mechanical mode unchanged, even in the

case of quantized mechanical motion. This quantum non-demolition configuration allows

for high sensitive monitoring of the mechanical vibration (pink box in Figure 5.2). The

schematics in Figure 5.2 already show that the suppression of one sideband is the most

effective for a system in the resolved sideband regime.

Electromechanical cooling in the limit of resolved sidebands

So far we have not imposed any additional assumptions on the electromechanical system.

Here, we discuss the situation for a system in the resolved sideband regime, meaning the

mechanical frequency is higher than the optical decoherence rate, Ωm > κ) [239]. This

requirement is fulfilled in most present opto- and electromechanical systems. Up till now

we have also neglected the noise contributions introduced in Equation (5.23). Even if we

eliminate all technical noise contributions, the always present quantum noise of a coherent

drive source limits the electromechanical cooling. This quantum shot noise provides a fluc-

tuating force competing the dynamical back-action [103,104]. We analyze the fundamental

cooling limits for an opto-/electromechanical system in the resolved sideband regime.

Sideband cooling in electromechanical systems in this respect is similar to laser cooling

of atoms or ions [250]. In these systems, mechanical vibrations occur from traps forming

an harmonic potential, that also defines the frequency of the vibrations. An additional

laser drives electronic transitions. A Doppler shift due to the movement of the atom

induces a coupling between the electric and the mechanical degree of freedom. Absorbed

and emitted photons change in turn the momentum of the atom. A properly detuned

laser with respect to the optical transition favors absorption of photons that counter the

mechanical movement and thus infers cooling of the mechanical mode. The photon emitted

after such a process absorbs energy from the mechanical mode, reducing the number of
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Figure 5.3: Schematic level scheme of electromechanical cooling (left, red box) and amplification

(right, blue box). The electromechanical states are product states of mechanical and optical

excitations. For a drive tone tuned to the red sideband (∆ = −Ωm), the red Stokes scattered

sideband (red arrow) is suppressed since it is highly off resonant. The anti-Stokes sideband

(blue arrow) is driven by absorption of a mechanical excitation. For a blue detuned drive field,

the situation is opposite; the Stokes sideband is driven by down conversion into a photon and

a phonon, while the anti-Stokes sideband is suppressed.

acoustic excitations. Cooling down to the mechanical quantum ground-state with energy

~Ωm/2 is possible in this configuration, provided Ωm � κ [251, 252]. A transfer of this

scheme to opto-/electromechanical systems helps to understand cooling in the resolved

sideband regime as shown in Figure 5.3.

In this scheme the electromechanical states are simplified as product states |nc, nm〉,
characterized by nc cavity excitations and nm mechanical excitations. The electromechan-

ical coupling is neglected. Here, a pure cavity excitation is represented by the vertical

grey arrow in the left of Figure 5.3. In contrast, if the drive field is set to ωd ' ωc − Ωm

(optimal red detuning, red box in Figure 5.3), it is represented by the diagonal blue arrow,

indicating a resonant driving from up-conversion by absorbtion of a phonon. Here, only

the transition from |nc, nm〉 to |nc + 1, nm − 1〉 is driven resonantly. In this picture, the

blue vertical oscillating arrow symbolizes the anti-Stokes sideband and the red vertical

oscillating arrow the Stokes sideband. The latter is not resonant, it is suppressed due to

the absence of fund states in this configuration. The number of phonons is thus reduced

in this configuration, the mechanical mode is cooled. In the case of blue detuning (blue

box in Figure 5.3), the situation is reversed. By down-converting the drive field into a me-

chanical excitation and a photon with frequency ωc, the Stokes line is driven resonantly,

dominating all transitions. The mechanical mode gains phonons and is thus amplified.

This scheme gives indeed no insight to the fundamental limit on the minimum occu-

pation when cooling a mechanical resonator in an opto-/electromechanical system. From

the quantum Langevin equations (5.23)–(5.25), we can derive the radiation pressure force

including the various noise terms:

δFrp =− i~G2n̄cδx̂(Ω)

(
1

−i(∆ + Ω) + κ/2
− 1

+i(∆− Ω) + κ/2

)
− ~G

√
n̄c

√
κex
2 δŝin(Ω)) +

√
κ
2 δŝvac(Ω)

−i(∆ + Ω) + κ/2

− ~G
√
n̄c

√
κex
2 δŝ†in(Ω)) +

√
κ
2 δŝ
†
vac(Ω)

+i(∆− Ω) + κ/2
. (5.42)

The first line corresponds to the dynamical back-action (see Equation (5.13) ) we already

obtained in the semiclassical discussion. It is covered by replacing the mechanical suscepti-
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bility with χeff , see Equation (5.15). The second and third line cover quantum back-action

due to fluctuations of the intra cavity photon number. The spectrum of the force re-

sulting from quantum fluctuations can be calculated using the known fluctuation spectra

(Equation (5.32) ) to

Sqba
FF =

~2

2x2
zpf

(
g2

0n̄cκ

(∆ + Ω)2 + (κ/2)2
+

g2
0n̄cκ

(∆− Ω)2 + (κ/2)2

)
. (5.43)

Further, we introduce the rates A+ and A−, corresponding to the rate of Stokes and anti-

Stokes scattering events, respectively. They describe the annihilation (A−) and creation

(A+) of a phonon, in analogy to the definition of rates in laser cooling and read

A± =
g2

0n̄cκ

(∆∓ Ω)2 + (κ/2)2
. (5.44)

As before we can calculate the effective phonon population by integrating the mechanical

displacement fluctuations (Equation (5.38) ). Here, we assume G � κ to prevent normal

mode splitting leading to hybridization of mechanical and optical mode [105, 112]. Genes

et al. [106] have shown that the following holds

〈δx2〉 =

∫
dΩ

2π
2 |χeff(Ω)|2

(
Sth

FF(Ω) + Sqba
FF (Ω)

)
=

1

Γeff

(
kBTΓm

meffΩ2
m

+
~

meffΩm
(A− +A+)

)
. (5.45)

Using Γeff(Ω = Ωm) = A− − A+ [106] and assuming a significant cooling rate where the

Stokes and anti-Stokes rates differ strongly (see Figure 5.2), i.e. A− � A+ � Γm, the

mean mechanical occupation is

n̄m = 〈nm〉 ≈
Γm

Γeff
· kBT

~Ωm
+

A+

A− −A+
≈ Γm

Γeff
· kBT

~Ωm
+
A+

A−
. (5.46)

Even for high cooling powers where Γeff � Γm, the average phonon number has a well

defined minimum. The connection between mechanical excitation number and temperature

allows to revisit the thermal force fluctuations acting on the mechanical oscillator defined in

Equation (5.33). We ignore the small contributionA+/A− and obtain the generalized result

for the complete thermal force spectrum leading to the reduced mechanical excitation [111]:

Sba
FF = 4~ΩmmeffΓeff(n̄m + 1/2) . (5.47)

The factor 1/2 arises from the vacuum phonon energy. This result shows that it is sufficient

to know the energy of the mechanical excitation number and the broadened linewidth to

estimate the back-action force spectral density.

Two limits of the minimum phonon occupation following from Equation (5.46) are of

interest:

In the unresolved sideband regime (Ωm � κ), we get

n̄min
m ≈ κ

4Ωm
� 1 . (5.48)

In the resolved sideband regime (Ωm � κ), we get

n̄min
m ≈ κ2

16Ω2
m

� 1 . (5.49)
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Figure 5.4: Schematic of a mechanical oscillator’s displacement spectrum indicating the different

noise contributions. The red colored area indicates the displacement due to coupling to

the internal bath including back-action effects. Fluctuating forces acting on the mechanical

resonator result in the orange shaped area effectively increasing the mechanical occupation.

The purple background attributes additional noise contributions limiting the signal to noise

ratio.

To reach the mechanical groundstate n̄m ≈ 0, being in the resolved sideband regime is a

necessary condition. This theoretical limit is the lower bound for the number of mechanical

excitations when cooling the mechanical mode of an opto-/electromechanical system. In

an actual experiment several technical conditions limit the achievable phonon occupation

to a higher number.

5.1.2 Limits in cooling and displacement sensing

Cooling of the mechanical motion into the ground state requires a temperature below

T = ~Ωm/kB. For mechanical resonance frequencies in the MHz-regime this corresponds

to temperatures far below the millikelvin regime, not accessible with conventional dilution

refrigerator systems with a base temperature of typically 10 mK.

The phonon occupation in thermal equilibrium is n̄th
m ≈ kBT/~Ωm � 0. For optome-

chanical cooling, Marquardt et al. [103] have shown the more stringent condition for high

initial occupation that the mechanical eigenfrequency has to exceed the thermal decoher-

ence rate Ωm > Γmn̄
th
m while Dobrinth et al. [105] have shown that this is true for the

cavity decay rate as well, κ > Γmn̄
th
m . The latter implies that the photon flux into and

out of the cavity has to exceed the mechanical thermal repopulation rate. This ensures

that we can extract energy from the vibrational mode sufficiently fast to prevent thermal

repopulation.

An actual measurement of Smeas
xx (Ω) contains contributions from different noise sources.

Gernerally we can write [232]

Smeas
xx (Ω) = Sxx(Ω) + Simp

xx (ω) . (5.50)

The measurements imprecision Simp
xx (ω) is a direct measure of the detection efficiency, influ-

encing the visibility of the position measurement (purple area in Figure 5.4). It limits also

the detectable minimum phonon occupation. Contributions to the background noise arise
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from different effects. In our setup (as in most setups in the microwave regime) the limiting

contribution to the imprecision noise is the HEMT amplifier (see Section 3) adding noise to

any amplified signal resulting from its finite noise temperature [69, 110]. The imprecision

noise is inversely proportional to the drive power, Simp
xx ∝ 1/Pd; the amplifier adds a con-

stant, power independent noise contribution to the signal. This limit can be overcome in

the microwave regime with Josephson parametric amplifiers [48]. They parametrically am-

plify one quadrature with an efficiency close to the quantum limit [253]. The imprecision

background can also be associated with an imprecision in phonon occupation [113]

n̄imp
m =

meffΩmΓeff

4~
Simp

xx . (5.51)

Fluctuations also dynamically interact with the mechanical mode, thus modifying the

displacement spectrum Sxx = Sth
xx + Sba

xx (orange area in Figure 5.4)4. As we have seen

above, photon shot noise of a coherent light source limits the thermal occupation [47]. Only

recently direct observation of quantum shot noise was reported in the optical domain in a

Fabry-Perot cavity incorporating a vibrating membrane [241]. In the microwave regime, a

second limit is amplitude and phase noise of the microwave source, leading to a finite pho-

ton occupancy [105]. Additional photons in the cavity present an additional back-action

force dynamically interacting with the mechanical mode, leading to an increased phonon

population. Rocheleau et. al even observe an out of phase coupling between mechanical

mode and phase noise generated phonons leading to effects like noise squashing [110].

For experiments in the optical domain photons have a much higher energy compared

to the microwave regime. Thus it is easier to suppress (thermal) noise from the light

source [107], while single photon detectors allow for nearly noiseless amplification. The

fluctuations in the source become relevant for experiments aiming for phononic occupa-

tions near the ground state, where high drive powers increase the noise whereas the low

mechanical occupation allows for direct observation of additional phonons [110,113].

The observation of the mechanical motion discussed so far is a weak measurement,

implying that the signal is integrated over time in contrast to an instantaneous, strong,

projective measurement [232]. This results from the weak coupling between optical and

mechanical mode and has the advantage that the vibrational state is not affected by the

measurement itself. To quantify a weak position measurement, it is useful to compare the

imprecision Simp
xx , defining the measurement background and thus the resolution to the

standard quantum limit (SQL) of the mechanical mode, given by [46]

SSQL
xx (Ωm) =

~
meffΩmΓm

. (5.52)

For the mechanical excitation number approaching zero, the displacement spectrum ap-

proaches SSQL
xx corresponding to half of the quantum mechanical zero point fluctuation

amplitude xzpf of the mechanical oscillator [49, 50, 244]. The SQL should not be confused

with the Heisenberg uncertainty principle. Any position measurement is limited by the

SQL, but the imprecision noise Simp
xx can become smaller than SSQL

xx [48, 49]. The limit of

a weak position measurement is easy to understand in terms of the measurement: As long

as no single quadrature measurement squeezes the state of the mechanical motion, a mea-

surement introduces at least one half quantum of noise by back-action on the mechanical

4Note, that here Sth
xx also contains effects due to dynamical back-action
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oscillator [232,244]. The uncertainty principle reads√
Simp

xx Sba
FF ≥ ~ . (5.53)

The equality is valid for a quantum limited measurement. We can use Equation (5.53) to

estimate how far the actual measurement is away from a quantum limited measurement.

Note, that the Heisenberg uncertainty principle has been expressed in terms of single

sided spectra, thus the factor 1/2 usually expected on the right hand side is missing in

Equation (5.53). The back-action force spectral density Sba
FF responsible for the additional

mechanical back-action can be expressed in terms of a mechanical displacement spectrum,

Sba
xx = |χeff |2 Sba

FF. Thus, above formulation of the uncertainty principle is only valid in

for a drive tone at the cavity’s resonance. A tone with zero detuning ∆ = 0 allows for

highest measurement precision, while for a red detuned drive, it weakens to
√
Simp

xx Sba
FF ≥√

2~ [47, 232].

The limit of position measurements imposed by the SQL is only valid in weak posi-

tion measurements. Schemes only measuring one mechanical quadrature by stroboscopic

measurements or amplitude modulation of the drive tone circumvent this limit [254]. A

first step towards this kind of position measurement is presented in [255] in a system sim-

ilar to ours. Instead of performing a weak, continuous position measurement with long

averaging times of a moderate drive tone, Vanner et al. propose [128] and experimentally

validate [129] a measurement scheme involving high intensity pulses much shorter than

one mechanical oscillation period, capable to reconstruct the mechanical Wigner density.

This scheme operates in the unresolved sideband regime (Ωm � κ).

5.1.3 Connection between different spectra

In this section, we discuss the relation between the experimentally accessible parameters

like microwave voltage or power spectra to the displacement and force spectral densities.

These values depend strongly on technical parameters, like the exact wiring of the ex-

periment or the amplitude of the drive power. To calculate the mechanical displacement

spectrum Sxx(Ω) we have to estimate the transduction of mechanical motion into intra

cavity phase (Sφφ(Ω)) or frequency fluctuations (Sωω(Ω)).

A mechanical displacement x changes the cavity resonance frequency ω̃c in first order

linearly to ωc = ω̃c − Gx. This leads to a connection of displacement spectrum and

resonance frequency spectrum:

Sωω(Ω) = G2Sxx(Ω) ≈ g2
0

kBT

~Ωm
· Γm

(Ω− Ωm)2 +
(

Γm
2

)2 , (5.54)

where we have used Equation (5.37) in the second part of the expression. Integrating over

the frequency fluctuations spectral density gives

〈
δω2

c

〉
=

∫ ∞
0

2Sωω(Ω)
dΩ

2π
=

1

2
Sωω(Ωm)Γm = 2g2

0n̄m . (5.55)

From Equation (5.55) we see, that to estimate the vacuum coupling g0, it is sufficient to

know the average frequency displacement and the number of acoustic excitations of the
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vibrational mode. A fluctuation of the cavity resonance frequency also implies a fluctuation

of the intra-cavity phase φ according to

Sφφ(Ω) =
1

Ω2
Sωω(Ω) , (5.56)

for small frequency fluctuations. Therefore it is synonymous to measure the phase fluc-

tuations or the resonance frequency fluctuations of the cavity. Both eventually allow to

calculate the displacement spectrum via Equation (5.54).

In this work, we use a homodyne detection scheme to record the phase spectrum as a

function of frequency. The recorded signal is detected by a spectrum analyzer, recording

the power spectral density SPP. Thus, we have to connect the power spectrum at the

detector to the phase or frequency fluctuations of the cavity:

SPP(Ω) = K(Ω)Sφφ(Ω) =
K(Ω)

Ω2
Sωω(Ω) ≈ K(Ω)

Ω2
m

Sωω(Ω) . (5.57)

To exploit this relation we need absolute knowledge of the transfer function K(Ω). The

calculation of the transfer function takes into account the actual detection scheme and the

exact wiring including attenuation and amplification in the current system. The function

K(Ω) can be determined experimentally by applying a known frequency of phase modu-

lation at all frequencies of interest creating a reference for the signal and repeating the

measurement for all relevant frequencies. On the theoretical side one can calculate the

transfer function by considering the measurement conditions, i.e. the attenuation (Att),

the amplification (Amp) and the transduction of the signal (for example, in the case of

homodyne detection, we have to consider the down conversion of the signal).

For a quantitative understanding of K(Ω), we present two special cases assuming ho-

modyne detection (the complete expression for homodyne and direct amplitude detection

is found in reference [230]). For this approach, we have to know the signal power at the

mixer PSig and the power applied to the local oscillator PLO. In an experiment, the input

lines leading to the sample are heavily attenuated (Att) to suppress thermal noise and the

output lines are amplified (Amp). To get a correct expression for the transfer function K,

it is mandatory to know these two parameters precisely to calculate PSig = Att×Amp×Pd

from the drive power Pd. Note, that we ignore the influence on the signal by the cavity

and include this into the rest of the expression below.

Considering a drive tone at zero detuning, ∆ = ωc − ωd = 0, we find

K(Ω) =
16Ω2κ2

ex/κ
2

Ω2 + (κ/2)2
PSigPLO . (5.58)

Second, we consider a pump tone at optimum detuning, i.e. at the red or blue mechanical

sideband of the cavity (∆ = ±Ωm), for a system in the resolved sideband regime Ωm > κ.

Here,

K(±Ωm) ≈ 4
κ2

ex

κ2

(
1 +

κ2(16κex/κ− 13)

16Ω2
m

)
PSigPLO . (5.59)

In many experimental situations the mechanical spectral density is recorded in close

vincinity to Ωm, the transduction function K(Ω) is almost constant over the range of

frequencies considered in such an experiment, K(Ω) ≈ K(Ωm) ≈ K(Ωmod). Importantly,

to access the mechanical linewidth or eigenfrequency, it is sufficient to record SPP(Ω)

without transforming the outcome into a displacement spectrum, since all translations are

linear.
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5.2 Frequency noise calibration

Different methods exist to determine the electromechanical coupling: In electromechani-

cal systems where temperature is an experimental degree of freedom, one can make use

of Equation (5.55) and analyze the mechanical displacement spectrum as a function of

temperature [69,255–257]. This has also been demonstrated in the optical domain [78]. A

precise knowledge of the transfer function K(Ω) is also sufficient to experimentally esti-

mate the vacuum coupling. This results from the fact that the effective electromechanical

coupling g = g0
√
n̄c is easily accessible in experiments (see the measurement of the elec-

tromechanical linewidth broadening in Section 6.1) and that knowledge of the transfer

function implies a calibrated setup. The calibration of the damping and thus the power

reaching the sample is very demanding in experiments involving dilution fridges and the

same is true for the exact amplification of the output lines, since one cannot separate the

attenuation and amplification by experimental means. The measurement of g0 is thus a

very effective method to calibrate the attenuation in an experimental setup, also providing

a value for the transfer function at the particular frequency of the measurement.

The idea behind frequency noise calibration is to send a well defined signal to the

sample. The signal undergoes the same phase shift inside the µ-wave cavity as phase

fluctuation due to the mechanical motion. As shown below, this allows to cancel the

cavity response function and to calculate the electromechanical vacuum coupling [230].

An experimental realization is to apply a well defined frequency modulation to the mi-

crowave source tone used as reference and test signal of the homodyne detection. Gorodet-

sky et al. [230] show that for this detection type, as well as for direct amplitude detection,

the applied phase modulation undergoes the same transduction. It follows

SPP(Ω) = K(Ω)Sϕϕ(Ω) . (5.60)

The spectral phase density Sϕϕ(Ω) of the frequency modulated tone obeys exactly the

same transformation rules as the phase spectral density Sφφ(Ω) of the electromechanical

system when converted into a power spectral density SPP(Ω) at the detector.

A monochromatic phase modulation of the input field (E ∝ exp (iϕ0 cos(Ωmodt)) ) is

in the ideal case a superposition of two δ-peaks in frequency domain. Taking into account

that most analyzers only show single sided spectra and the signal is convoluted with the

inverse detection bandwidth (called ENBW in the following), the detected spectrum can

be approximated by [230]

Smeas
PP (Ωmod) ≈ ϕ2

0

2
· K(Ωmod)

ENBW
, (5.61)

where we know all parameters except K(Ωmod). Around the mechanical resonance, the

transfer function only varies slowly [230]. A frequency modulation close to the mechanical

resonance frequency (Ωmod ≈ Ωm) undergoes almost the same transformation, it is justified

to assume K(Ω) ≈ K(Ωm) ≈ K(Ωmod). This allows to replace K(Ω) in Equation (5.57) by

using (5.61). Plugging Equation (5.54) into (5.57) evaluates the electromechanical vacuum

coupling to

g2
0 ≈

1

2n̄m
·
ϕ2

0Ω2
mod

2
·

Smeas
PP (Ωm) Γm/4

Smeas
PP (Ωmod) ENBW

. (5.62)

For a known g0, we can express the mechanical displacement spectral density in terms of

Smeas
PP :
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Figure 5.5: Schematic of the setup to estimate the Duffing parameter. We use a homodyne

setup to detect the mechanical motion. The pump field’s frequency is set to the µ-wave cavity

eigenfrequency, to minimize back-action on the mechanical motion. The frequency modulation

is applied before splitting up the signal for the homodyne detection. This is necessary to cancel

contributions from the modulation when the signal is not affected by transduction through a

cavity.

Smeas
xx (Ω) ≈

ϕ2
0Ω2

mod

2g2
0/x

2
zpf

·
Smeas

PP (Ω)

Smeas
PP (Ωmod) ENBW

. (5.63)

5.2.1 Setup

To determine the electromechanical vacuum coupling, we operate the sample in fridge No.1

at a temperature of approximately 200 mK. We measure in a homodyne detection scheme

with a drive at the cavity eigenfrequency ωc.

A schematic of the setup is presented in Figure 5.5. A Rhode&Schwarz SMF microwave

source provides the drive and reference tone by splitting its output with a power divider.

The drive tone is attenuated and fed to the sample. After passing an amplifier chain, an IQ-

mixer in homodyne configuration downconverts the microwave signal to DC. This signal is

analyzed with a Rhode&Schwarz FSV9 spectrum analyzer which records the power spectral

density around the mechanical resonance frequency Ωm. We apply frequency modulation

with a frequency Ωmod/2π = Ωm/2π− 50 Hz and a modulation depth of Ωmod/2π = 80 Hz

(equivalent to a phase modulation with a modulation index ϕ0 = Ωmd/Ωmod ≈ 5.5×10−5).

Note, that the frequency modulation is applied before splitting up the microwave tone into

drive tone and reference tone for the homodyne detection.

The frequency modulation spectrum undergoes the same transduction as the mechan-

ical displacement spectral density. For the measurement, only these components are of

relevance as discussed above. On the other hand, the drive tone carries the frequency
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Figure 5.6: Mechanical displacement spectrum to determine g0 for a drive power of Pd =

−73.5 dBm. The left peak results from the frequency modulation of the input source. The

zoomed part shows the mechanical peak including a fit of a Lorentzian to the data (orange

line).

modulation as well to the spectrum analyzer, thus creating an additional signal at the

modulation frequency. To neutralize these contributions, we adjust the cable length of the

reference signal line. We optimize the electric length of the reference line by replacing the

IQ-mixer with a power divider to combine both arms and then sweeping the frequency of

the microwave source while monitoring the resulting interference signal with a microwave

diode and an oscilloscope. When the electrical lengths of both arms are equal, the re-

sulting signal shows no frequency dependence and the microwave drive tone is completely

eliminated including the contributions from frequency modulation by adjustment of the

reference phase. We verify this by performing a homodyne detection at frequencies away

from the cavity eigenfrequency. At a detuning of ωc±2π×10 MHz, the frequency modula-

tion signal is suppressed by more than 30 dB. This ensures that the reference peak visible

in Figure 5.6 stems from transduction through the cavity. All measurements are performed

with the sample characterized in Section 3.

5.2.2 Measurement of the electromechanical vacuum coupling

To determine g0, we measure the mechanical displacement spectrum with three different

drive powers (Pd = −69.5, −73.5 and −79.5 dBm) at cavity resonance, ωd = ωc. We

can exclude back-action of the light field onto the mechanical mode and thus monitor the

Brownian motion of the nanobeam.

Figure 5.6 shows a measured spectrum, obtained with the drive at the cavity eigenfre-

quency. We show the spectrum in terms of a displacement spectrum according to Equa-

tion 5.63. The mechanical Brownian motion centered around Ωac−Ωm = 0 is clearly distin-

guishable from the calibration peak. The zoom shows the mechanical displacement. From

these measurements we obtain g0/2π = 1.26 Hz, giving G = g0/xzp/2π = 36.3 kHz/nm.

This value is approximately a factor of six higher than G/2π = 6.36 kHz/nm extracted in

Section 4.4 by geometric considerations, where we have simplified the electric field between

ground and nanobeam and ignored inhomogeneities contributing to the capacitance. By

measuring the linewidth broadening in electromechanically induced transparency we ob-

tain g = g0
√
n̄c as a function of drive power (see Section 6.1 for details). Together with
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Figure 5.7: Schematic setup to record the mechanical displacement as a function of drive fre-

quency and power. Two microwave sources provide local oscillator and signal line of the

homodyne detection, respectively. The signal is fed into the cryostat via heavily attenuated

coaxial cables, passes the sample and is combined at an IQ-mixer with the phase adjusted

local oscillator signal after passing an amplifier chain. The resulting signal is collected in a

frequency window centered around Ωm.

the measured g0, we then calculate the mean intra-cavity photon number n̄c as function

of applied drive power. This allows to extract the damping in our system to 65.5± 0.5 dB.

A similar measurement in fridge No.2, reproduces the known value of g0 and allows to

estimate a damping of 62± 0.5 dB.

5.3 Experimental demonstration of electromechanical fea-

tures

With the determination of the electromechanical vacuum coupling and the accompanying

calibration of the attenuation of the input line, we experimentally examine the predictions

made in Section 5.1.

5.3.1 Homodyne setup to manipulate drive power

A drawback of the setup presented in Section 5.2, is the inability to tune the drive power

with high accuracy. The measurements presented in this section are performed in dilution

fridge No.2 at a temperature of 35 mK. The mechanical displacement is recorded with a

homodyne detection scheme as schematically shown in Figure 5.7. To adjust the drive

power precisely, we use two phase locked Rhode&Schwarz SMF microwave sources. One

source serves as local oscillator with a fixed output power of 10 dBm. The second source

provides the drive field, which is fed into the cryostat and combined with the local oscillator
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field at an IQ-Mixer after successively passing the sample and an amplifier chain. A phase

shifter in the local oscillator line is used to nullify the phase shift between signal and local

oscillator. Similar to the setup presented in Section 5.2, the length of the cable guiding

the local oscillator signal is adjusted to have the same electrical length as the signal line,

including the fridge wiring. The downconverted signal is amplified by 10 dB and recorded

with a Rhode&Schwarz FSV spectrum analyzer in a narrow frequency window, centered

around the mechanical resonance frequency. All measurements are performed with the

sample characterized in Section 3.

5.3.2 Linewidth broadening and optical spring effect

First we study the electromechanical linewidth broadening and and the shift of the me-

chanical eigenfrequency due to the mechanical spring effect. The drive tone’s frequency is

swept from ∆/2π = −3 MHz to ∆/2π = 2.4 MHz. The local oscillator’s frequency is swept

correspondingly. To keep the intra-cavity photon number constant, we change the drive

power with every frequency step. The drive power follows the condition

Pd =

(
1

~ωd
· κex/2

(κ/2)2 + ∆2

)−1

n̄c . (5.64)

Figure 5.8 shows the mechanical linewidth Γeff(∆) (top) and eigenfrequency shift ∆Ωm(∆) =

Ωm(∆)−Ωm(0) (bottom) extracted from the recorded corresponding displacement spectra

as a function of the drive detuning ∆. This allows to compare the experimental values to

the theory, given in Equations (5.19) and (5.20). Hereby, we set the average intra-cavity

photon number to n̄c ≈ 9.24×105. The orange line in the top of Figure 5.8 is a fit of Equa-

tion (5.19) to the data (purple points). The only fit parameters are the initial mechanical

linewidth Γm and the cavity resonance frequency ωd. As expected, the electromechanical

linewidth broadening peaks around ∆ = −Ωm, corroborating that the optimum detuning

corresponds to the mechanical resonance frequency. For a blue detuned drive tone, Γeff dips

at ∆ = Ωm, approaching 0. This implies that the mechanical mode becomes undamped

and enters the self-oscillation regime [93]. As easily verified from Equation (5.19), the

parametric oscillation regime broadens with increasing drive power. Thus self-oscillation

is observable even for detunings in a frequency window centered around Ωm.

Comparing the fitted initial linewidth of Γm/2π = 5 Hz, with the linewidth extracted

from ring down measurements at the same temperature (see Section 4.5.2), we see that

the initial mechanical linewidth has twice the expected value. Comparing the linewidth fit

of Equation (5.19) with the experimentally extracted linewidths in this measurement we

see they overlap well, even at ∆ = 0. This is the case, because we chose the intra-cavity

photon number sufficiently low to exclude back-action. So we attribute the difference

in the homodyne detected linewidth to a systematic measurement error, resulting from

slow frequency fluctuations present in the system at low temperatures. The measurement

time for every single sweep of approximately 5 min due to the average count of 150 in

combination with these fluctuation lead to a broadened observed linewidth. The origin

of the fluctuations remains unclear and is presently object of further research. Different

groups observe similar yet unidentified fluctuations at temperatures below 150 mK [69,

110]. Regal et al. [69] attribute the resulting fluctuating beam temperature to a loss of

the coupling between the nanobeam and the thermal bath, what we exclude from the
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Figure 5.8: Electromechanical linewidth broadening (top) and shift of the mechanical eigenfre-

quency (bottom) as a function of detuning. The purple points are obtained by Lorentzian fits

to the recorded power spectra monitoring the mechanical displacement. The orange curves

are fits to the data.

measurements in Section 4.5.2. Teufel et al. [113] show that these fluctuations are not

due to phase noise of the microwave source. Recently, Fong et al. [175] have studied

the frequency and amplitude noise in high Q silicon nitride beams, proposing that the

fluctuations origin are thermally activated defect states with a broad spectrum of elastic

dipole reorientation time. They suggest that this mostly influences high Q devices. Their

study provides the starting point for further research.

The optical spring effect observed in this work is small compared to the mechanical

resonance frequency, ∆Ωm(∆)/Ωm(0) < 1.4× 10−6 as shown at the bottom of Figure 5.8.

The orange line is a plot of Equation (5.20), using the fit parameters obtained from the

linewidth fit. Data and theory agree well. At optimum red and blue detuning ∆ = ±Ωm

no frequency shift is observed. This allows for precise alignment of the optimum detuning

when the cavity resonance ωc is exactly known. The lack of points in a region around

∆ = Ωm stems from the strong frequency shift (several kHz) of the mechanical mode

entering the parametric oscillation regime. Our data agrees well with measurements of a

similar system made by Teufel et al. [240].

We repeated the measurement shown here for a higher intra-cavity photon number of

n̄c ≈ 1.46× 106, showing the same behavior and corroborating above fit parameters.

5.3.3 Electromechanical cooling

Next we tune the drive tone to the red sideband (∆ = −Ωm) and measure the mechanical

displacement spectrum as a function n̄c, still at a temperature of 35 mK. In Figure 5.9a

we have plotted the power spectral density SPP(Ω) recorded around the mechanical reso-

nance frequency for four different intra-cavity photon numbers n̄c ≈ 0.15× 106 (red data),

0.41×106 (pink data), 1.30×106 (purple data) and 4.11×106 (blue data). The solid lines

are Lorentzian fits to the data. To quantify the cooling we transform the data into dis-

placement spectra using Smeas
xx (Ω) =

Ω2
mg

2
0

x2
zpfK(Ωm)

SPP(Ω) with K(Ωm) from Equation (5.59).

Hereby, we can translate the experimentally obtained spectra displayed in Figure 5.9a to

the displacement spectra shown in panel b. For this calculation we need in addition to the

attenuation of the input the net amplification of the output line. Here, we take advantage
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Figure 5.9: Measurement of the electromechanical linewidth broadening. a) shows four recorded

power spectra for increasing drive power from red to blue. The corresponding displacement

spectra are plotted in b) on a logarithmic scale. Note, that no offsets are used to seperate

the data. The solid lines are Lorentzian fits to the data. The imprecision noise Simp
xx for the

blue curve is indicated by the blue arrow The extracted effective mechanical linewidths are

plotted in c), where the colored arrows indicate the corresponding curve in a) and b). The

solid black line is a fit to the data.

from the fact that the power spectral density allows to measure the effective linewidth Γeff

of the mechanical displacement as a function of average intra-cavity photon number as

shown in Figure 5.9c (light blue dots). We use this to extract the effective temperature

Teff = T ·Γm/Γeff for low photon numbers where we can ignore fluctuations. Then we es-

timate the natural linewidth to Γm/2π ≈ 3.8 Hz by fitting the mechanical linewidth to the

photon number using Γeff = Γm + 4g2
0n̄c/κ (black curve in Figure 5.9c ). This expression

results from Equation (5.19) at optimum detuning. Now, we compare the amplitude of one

of the recorded peaks (red curve in Figure 5.9a) with the expected peak amplitude of the

mechanical displacement Smeas
xx (Ωm,Γeff) = kBTeff/meffΩ2

m following from Equation (5.36)

and replacement of χm with χeff . Knowing all factors except the amplification, we can

calculate the amplification to 34 dB, where we have assumed PLO = 10 dB. This agrees

well with the expected amplification taking cable losses into account5.

When transforming the data into displacement spectra, we noticed an unexpected

additional absorption in the output line showing a weak power dependence proportional

to (Pd)0.2 (see appendix A.3 for more details and discussion), that we had to correct

5The microwave amplifiers add a total amplification of 70 dB, the output cabling has a higher damping

of approx. 30 dB, resulting from the additional components compared to the input wiring and the IQ-mixer

has a conversion loss of approx. 6 dB.
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Figure 5.10: Mechanical excitation number n̄m plotted versus a) the intra-cavity photon number

and b) the extracted mechancial linewidth Γeff . The red dots are the experimental data, the

blue line is a fit to the data. The light red line in a) connects the data for better visibility.

the data for. Its precise origin is unknown, we attribute this effect to either one of the

amplifiers, the IQ-mixer or the circulator chain.

The calibrated displacement spectrum Smeas
xx (Ω) is plotted on a logarithmic scale in

Figure 5.9b for the same intra-cavity photon number as the power spectral density in

Figure 5.9a. The solid lines are Lorentzian fits to the data according to Equation 5.36.

Note that we have not artificially offset the data. Using this representation, it is clearly

visible, that the area under the Lorentzian is decreasing with increasing drive photon

number.

To quantify the decrease we calculate the area 〈δx2〉 under every recorded displacement

spectrum excluding the background Simp
xx , shown in Figure 5.4. We can transform the area

under the curve (colored areas in Figure 5.9c) into a mean mechanical excitation number

n̄m according to n̄m = 〈δx2〉meffΩm/~. Plotting the extracted phonon number against

n̄c and against the extracted effective linewidth Γeff (Figure 5.10a and b, respectively)

shows a clear decrease of the mechanical occupation up to an intra-cavity photon number

n̄c ≈ 1 × 107 and the corresponding linewidth of Γeff/2π ≈ 100 Hz. Here, the initial

mechanical linewidth is the only fit parameter, giving Γm/2π ≈ 2.2 Hz for the fitting n̄m

versus n̄c and Γm/2π ≈ 3.3 Hz versus Γeff . We attribute the difference to measurement

noise leading to scattering of the extracted values of Γeff .

The initial occupation is given by the thermal equilibrium with the environment, n̄m =

kBT/~Ωm ≈ 497. As we can see from Figure 5.10, the electromechanical back action

changes the occupation at the lowest photon number n̄c ≈ 0.15 × 106 to n̄m ≈ 314,

yielding an effective mode temperature of Teff ≈ 22 mK. The lowest occupation we record

before the values of n̄m become unreliable is n̄m ≈ 13 (Teff ≈ 0.9 mK) for n̄c ≈ 1.16× 107.

Fitting the data to the model prediction given by Equation (5.46) (blue lines in Fig-

ure 5.10) reveals excellent agreement between experiment and theory up to an intra-cavity

photon number n̄c ≈ 7 × 106 and the corresponding linewidth of Γeff/2π ≈ 100 Hz. For

higher drives, the cooling rate starts to saturate until the measured phonon number be-

comes unreliable. The latter has technical reasons as exemplary shown in Figure 5.11

displaying the recorded mechanical displacement spectrum for a drive photon number of

n̄c ≈ 3.67 × 107: The effective linewidth approaches the measurement window and the
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Figure 5.11: Mechanical displacement spectrum (light blue points) and the fit of a Lorentzian

to the data for a high drive photon number of n̄c ≈ 3.67× 107. The decrease of the signal to

noise ratio compared to Figure 5.9 and the mechanical linewidth approaching the detection

window is clearly visible.

signal to noise ratio approaches one. To overcome these limitations we have to increase

the detection window and increase the number of averages. Still, we expect saturation to

set in before cooling to a mechanical occupation below one. Phase noise of the microwave

source increases with increasing drive power. Thus, with increasing drive power, the cavity

is populated with photons generated by noise as shown in Ref. [110]. Here, the authors

show that a finite population n̄′c of the cavity due to noise or thermal excitation leads to an

increased measured phonon number of n̄eff = n̄m +2n̄′c and eventually to noise squashing.

Additional microwave filters help to suppress the noise [202,255]. For the microwave power

regime of the measurements presented here, we do not attribute heating of the sample to

increase the mechanical population. All measured temperatures were below 200 mK, the

effective temperature of a single photon with the cavity frequency. Quantum back-action

is also negligible in the regime discussed here, since the microwave source is not quantum

limited and thus other noise contributions dominate.

To benchmark our measurement it is instructive to compare the measurement impre-

cision with the SQL. Figure 5.12 shows that Simp
xx is proportional to 1/n̄c (orange line).

Here, we have ignored the values where n̄c ≥ 2 × 107, since we approach the experi-

mental noise level in this case. The imprecision noise shows a weaker power dependency

already at a moderate drive photon numbers of n̄c ≥ 4 × 106, in agreement to the fact

that the fundamental noise limit is given by the HEMT amplifier. The decrease of the

imprecision noise with increasing intra-cavity photon number agrees with the above con-

clusion that quantum back-action is not relevant but other mechanisms like phase noise

of the microwave source dominate. As shown recently in Ref [241] quantum backaction

noise increases with the drive power. We record a measurement imprecision of down to

Simp
xx ≈ 3.8 × 10−27 m2/Hz, corresponding to n̄imp

m ≈ 260. Increasing the number of av-

erages should improve this result. Comparing the minimal value of the imprecision noise

with the SQL, we find Simp
xx ≈ 35 ·SSQL

xx , showing that we are not able to resolve single

phonon occupation.

To assess the measurement precision in terms of the Heisenberg uncertainty principle,

we have to estimate the force fluctuations Sba
FF acting on the nanobeam. A conservative

approach is to assume that the measurement outcome is purely due to dynamical back-

action noise, implying that we assume Sba
FF = Sth

FF. From Equation (5.47), we obtain
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Sth
FF = 4~ΩmmeffΓeff(n̄m + 1/2) ≈ 1.6 × 10−37 N2/Hz for n̄m ≈ 13. The measurement

uncertainty achieved in this measurement is thus
√
Simp

xx Sba
FF ≈ 234~ placing us a factor

of 165 above the minimum uncertainty of
√

2~ as discussed in Section 5.1.2. We empha-

size that this value mainly results from the high imprecision noise present in our system,

which we can easily minimize in future experiments by integrating a high-Q microwave

filter (for example a sapphire filter [258]) into the setup. A less conservative approxi-

mation excludes the Langevin force spectral density arising from the thermal bath [111],

i.e. we take into account the low temperature of the sample in the experiment and set

Sba
FF = Sth

FF − Scryo
FF . Following Equation (5.33), the cryogenic environment contributes

with Scryo
FF = 4meffkBTcryoΓm(Tcryo) ≈ 1.0 × 10−37 N2/Hz. The resulting uncertainty is√

Simp
xx (Sth

FF − S
cryo
FF ) ≈ 100

√
2~.

5.3.4 Discussion

In this chapter we have presented the theoretical framework to describe most of the basic

electromechanical phenomena. We have discussed electromechanical linewidth broadening

and the optical spring effect as well as electromechanical cooling of the mechanical mode.

The interpretation of measurement results in terms of mechanical displacement spectra and

the necessary calibration of the measurement have been explained including a simple way

to calibrate the input attenuation while simultaneously assigning the electromechanical

vacuum coupling g0. Frequency noise calibration reveals for our specific device g0/2π =

1.26 Hz, completing the system characterization. The analysis of the linewidth broadening

in two-tone experiments (see Section 6.1) allows together with the estimated value of

g0 to quantify the attenuation in fridge No.1 (No.2) to 65.5 dB (62 dB). Changing the

fabrication technique to minimize the gap between nanobeam and ground, for example by

involving a focused ion beam [166] can easily increase the coupling by about one order

of magnitude [120]. Our device geometry thus combines sufficiently strong coupling to

demonstrate ground state cooling with access to higher modes of the microwave cavity.

This is a clear advantage over electromechanical systems with a lumped element microwave

resonator [80,120].
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With measurements of the mechanical displacement spectrum as a function of drive

tone detuning we demonstrate the before discussed electromechanical linewidth broadening

and the optical spring effect.

By applying an optimally red detuned driving tone, we observe cooling of the mechan-

ical mode to a mean occupation of n̄m ≈ 13 mechanical quanta in excellent agreement to

theory, corroborating that the vacuum coupling is sufficiently high to enable ground-state

cooling as demonstrated in the microwave regime [113] and in the optical domain with

photonic crystal structures [78]. To reach a mechanical occupation below one, we need to

suppress noise in the microwave sources by integrating a microwave filter and to include

a Josephson parametric amplifier in our setup [48, 253]. This will also improve the mea-

surement imprecision of currently Simp
xx ≈ 35 ·SSQL

xx ≈ 3.8 × 10−27 m2/Hz to a value close

to the SQL. We estimate the measurement uncertainty to
√
Simp

xx (Sba
FF − Sth

FF) ≈ 100
√

2~,

much higher than achieved in a setup using a parametric amplifier [113].



Chapter6
Two-tone experiments

Spectroscopy of cavity electromechanical systems incorporating multiple “optical” fields

offers access to a new class of phenomena. Recently, studies of (static) two-tone config-

urations have been in the focus of research [80, 82, 87, 115, 116, 120, 241]. One effect of a

two-tone configuration is electromechanically induced transparency (EMIT)1, incorporat-

ing a red detuned drive field and a probe field around the cavity’s resonance. Here, the

drive and the probe tone destructively interfere inside a photonic cavity due to electrome-

chanical interaction with a mechanical oscillator, leading to a transmission window whose

width can be varied by the drive’s intensity. Moreover, normal mode splitting occurs for

a coupling rate exceeding the decay rate of the cavity due to hybridization of “optical”

and mechanical modes. This is a prerequisite for state transfer between cavity photons

and mechanical excitations. EMIT presents the route to introduce group delays in pulsed

radiation in the GHz regime, as well as being a milestone towards storing information in

the mechanical mode of such a system. Practical applications include tunable bandpass

filters and electromechanical switching as discussed in Section 7.2. The analogue of EMIT

for a blue detuned drive tone is electromechanically induced absorption (EMIA) [82,116].

The interference effect in this case leads to an increased absorption in a narrow frequency

band defined by the (electromechanically narrowed) mechanical loss rate.

Both EMIT and EMIA are key requirements for protocols to manipulate and control

electromagnetic signals [80,115,116,120]. These, in turn, are prerequisites for the realiza-

tion of tools e.g. for the conditioning of microwave signals working on the quantum level.

To this end, experiments on the red-detuned sideband can become limited by the linewidth

of the mechanical resonator, which is broadened by the opto- or electromechanical damp-

ing. On the other hand, experiments on the blue-detuned sideband are not restricted by

this effect. Here, the filter function can become even sharper due to electromechanical

linewidth narrowing.

In this Chapter we analyze configurations employing two-tone spectroscopy. A strong

drive tone is applied to the system while the transmission is monitored with a weak probe

tone centered in close vicinity to the Stokes or anti-Stokes sideband of the drive. After a

phenomenological explanation of these findings, we derive a theoretical framework neces-

sary to discuss both interference effects, EMIT and EMIA. We present a detailed study of

EMIT, showing the amplitude dependence and transparency window behavior as a function

1For experiments in the optical domain, this effect is also-called “OMIT”.
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of the drive power at optimum detuning and in the situation where the latter restriction

is relaxed. We present a comparison between the model and the data, showing where the

approximations lead to significant changes between prediction and measurement.

A detailed analysis of EMIA is presented in the following. In particular, we focus on

the depth of the absorption feature and its linewidth. We demonstrate that for increasing

drive power the effect changes from an absorption window in the probe transmission to a

window where additional probe photons leak out of the cavity and discuss the agreement

of this feature to the model. Further, we show that as a consequence double dip structures

manifest themselves as a function of drive detuning for sufficiently high drive powers.

Turning back to EMIT configuration, we extend the theoretical model to include non-

linear mechanical oscillations and corroborate the predictions by mapping the nanobeam’s

Duffing nonlinearity, studied in Section 4.5.3 into the microwave regime [87].

We close this chapter by focusing on the cavity transmission for a system in EMIA

configuration. We operate the system in a regime, where the electromechanical linewidth

narrowing leads to phonon lasing (phasing) of the mechanical mode [93]. The high am-

plitude mechanical motion generates sidebands in the cavity transmission spectrum and

gives rise to a shift of the cavity’s resonance frequency. We extend the coupling between

optical and mechanical mode beyond the linearized model of electromechanical coupling

to explain the Kerr like shift.

6.1 Electromechanically induced transparency

6.1.1 Qualitative discussion

Cavity electromechanical systems incorporating a parametrical coupling which links the

position of a mechanical oscillator to the photon number of an electromagnetic resonator

can be described by the Hamiltonian defined in Equation (5.21):

Ĥ = ~ω̃c

(
n̂c +

1

2

)
+ ~Ωm

(
n̂m +

1

2

)
+ ~Gn̂cx̂+ Ĥd . (6.1)

To access the interference effect EMIT, the system is exposed to a strong drive tone on

the red sideband with drive tone detuning ∆ = ωd − ωc ' −Ωm. A second, weaker

tone is injected into the system to probe the modified cavity resonance at the frequency

ωp = ωd + Ω (Figure 6.1). The simultaneous presence of the drive and the probe tone

result in a radiation pressure force oscillating at Ω = ωp−ωd. If this difference frequency,

referred to as probe detuning, matches the mechanical resonance frequency, Ω ' Ωm, a

coherent oscillation of the mechanical system is induced. Consequently, Stokes and anti-

Stokes fields (blue-shaded areas in Figure 6.1) build up at ωd ± Ωm around the strong

driving field. The microwave resonator acts as a narrow-band filter for these fields. If the

system is in the resolved-sideband regime, Ωm > κ, the Stokes line at ωd − Ωm < ωc is

strongly suppressed because it is off-resonant with the cavity (ωd−Ωm ≈ ωc− 2Ωm � κ),

whereas the anti-Stokes line at ωd + Ωm ' ωc is enhanced (see Section 5.1.1 for more

details). Moreover, since the anti-Stokes scattered field is degenerate with the probe field

sent to the cavity, it allows for destructive interference of the two fields supressing the

build-up of the intra-cavity probe field. This can be viewed as a self-interference between

two different excitation pathways. The resulting decreased feeding (“transparency”) of
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Figure 6.1: Schematic diagram explaining the various frequencies: driving tone frequency ωd

(red line), probe tone frequency ωp (green line), cavity resonant frequency ωc (black line),

drive tone detuning ∆ = ωd − ωc, probe tone detuning Ω = ωp − ωd. Varying ∆ shifts the

drive tone with respect to the cavity resonance (grey-shaded area). Since the anti-Stokes line

(blue shaded area) is fixed to the drive tone at ωd + Ωm, the variation of ∆ also shifts the

anti-Stokes line with respect to the cavity resonance. Varying Ω at constant ∆ shifts the

probe tone with respect to the cavity resonance and the anti-Stokes line.

probe photons into the cavity manifests itself as a enhanced cavity transmission up to

unity compared to the feed line. Depending on the frequency of the electromagnetic field,

this effect is referred to as electromechanically or optomechanically induced transparency

(EMIT or OMIT) [115, 116], the electromechanical analog of electromagnetically induced

transmission (EIT) [118,259]. For a detailed comparison between OMIT and EIT we point

the reader to Weis et al. [115].

Another way of visualizing the effect of EMIT is the use of the level scheme shown in

Figure 6.2. In this scheme the electromechanical states are simplified by product states

|nc, nm〉 characterized by nc cavity excitations (photons) and nm mechanical excitations

(phonons). Here, a pure cavity excitation would be represented by a vertical arrow in-

creasing only the number photons in the cavity. In contrast, if the drive field is set to

ωd ' ωc − Ωm (optimal red detuning), it increases the photon number but decreases the

phonon number by one and hence is represented by a diagonal red arrow. The photons of

the drive field are up-converted by consumption of a mechanical phonon and scatter into

the anti-Stokes line at ωd + Ωm, matching approximately the cavity resonant frequency

ωc. Since probe and drive tone are coherent with respect to each other2, the up-converted

drive field can interfere with the weak probe field, indicated by the vertical green ar-

row. In the case that the drive field is not optimally detuned from the cavity resonance

(∆ = ωd − ωc 6= −Ωm), virtual levels are involved which are represented by the dashed

lines in Fig. 6.2. Also in this situation the up-conversion of the drive field photons gener-

ates photons of frequency ωd + Ωm = ωp 6= ωc, that is, photons of the same frequency as

the probe field, again allowing for destructive interference with the probe field sent to the

cavity. Depending on the relative power of the probe and the drive field, the interference

can lead to a partial or full extinction of the probe field inside the cavity, what is detected

as enhanced cavity transmission in experiments.

2Note that for EMIT the mutual coherence of probe and drive needs to be reciprocal of the transmission

window.
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Figure 6.2: Level diagram describing the physics of the electromechanical system: The red

detuned drive tone at frequency ωd (red arrow) induces a transition from a state |nc, nm + 1〉
characterized by nc cavity excitations (photons) and nm +1 mechanical excitations (phonons)

to a state |nc+1, nm〉, that is, it adds one excitation to the cavity and decreases one mechanical

oscillator exitation. The cavity photons generated in this up-conversion process are degenerate

with the near-resonant probe field at frequency ωp = ωd + Ωm (green arrow), resulting in a

constructive interference effect. The dashed lines indicate virtual levels, indicating that the

drive field is not optimally red-detuned from the cavity resonance (Ω = Ωm 6= ∆).

6.1.2 Quantitative analysis

To analyze the effect of EMIT quantitatively as a function of drive power and the detunings

∆ and Ω, we have to solve the full Hamiltonian (6.1). We will see, that the probe power

transmission spectrum in the resolved sideband regime is given by

|t|2 =

∣∣∣∣∣∣1− κex/2

−i(∆ + Ω) + κ/2 +
g2
0 n̄c

−i(Ω−Ωm)+Γm/2

∣∣∣∣∣∣
2

. (6.2)

Following the derivation in reference [115] and [87], we can rewrite the Hamiltonian in a

way first described by Law [198]:

Ĥ = Ĥµw + Ĥmech + Ĥint + Ĥd, (6.3)

Ĥµw = ~ω̃c

(
â†â+

1

2

)
, (6.4)

Ĥmech =
p̂2

2meff
+

1

2
meffΩ2

mx̂
2 , (6.5)

Ĥint = ~Gx̂â†â , (6.6)

Ĥd = i~
√
κex

2
(sin(t)â† − s∗in(t)â) . (6.7)

We have introduced the momentum operator of the mechanical mode p̂, the external loss

rate κex/2π of the µ-wave cavity into the feed line and the complex driving amplitude

sin(t), normalized to |sin(t)|2 is the photon flux at the cavity input. We will now derive

the linearized Langevin Equations [56], where we define the driving amplitude as sin(t) =

(s̄in + δsin(t))e−iωdt. We identify s̄in as the driving field and here δsin(t) = spe
−i(ωp−ωd)t

as the probe field (we will neglect noise contributions in this discussion). By introducing

the total electromagnetic loss rate as the sum of external loss rate and intrinsic dissipation

rate, κ/2π = (κex + κin)/2π and the mechanical loss rate Γm/2π we obtain in a frame
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rotating with ∆̄ = ωd − ω̃c, where ω̃c indicates the undisturbed cavity eigenfrequency.

d

dt
â(t) =

(
+i∆̄− κ

2

)
â(t)− iGx̂(t)â(t) +

√
κex

2
sin(t), (6.8)

d

dt
x̂(t) =

p̂(t)

meff
, (6.9)

d

dt
p̂(t) = −meffΩ2

mx̂(t)− ~Gâ†(t)â(t)− Γmp̂(t). (6.10)

We first define steady state solutions, whose time derivatives are all zero. The self consis-

tent steady state solutions for the intra-cavity field ā and the mechanical displacement x̄

read

ā =

√
κex/2

−i(∆̄−Gx̄) + κ
2

s̄in , (6.11)

x̄ = − ~Gā2

meffΩ2
m

. (6.12)

The solution of the Langevin Equations (6.8)-(6.10) is the sum of the steady state solution

and a dynamic part, â(t) = ā+δâ(t), x̂(t) = x̄+δx̂(t). Here, δx̂(t) is hermitian. Implicitly

we have chosen the phase of the cavity as a reference, thus ā has a real and positive value

and ā2 represents the average intra-cavity photon number ā2 = n̄c = 〈n̂c〉 ∝ s̄2
in ·κex/2.

Finally we define ∆ = ∆̄ − Gx̄ as the corrected detuning, due to the static shift of the

microwave cavity ωc = ω̃c +Gx̄. Replacing those values we get

d

dt
δâ(t) =

(
i∆− κ

2

)
δâ(t)− iG(ā+δâ(t))δx̂(t) +

√
κex

2
δsin(t), (6.13)

d2

dt2
δx̂(t) + Γm

d

dt
δx̂(t) + Ω2

mδx̂(t) =− ~G
meff

ā(δâ(t) + δâ†(t)). (6.14)

For the interference effects, the drive field is much stronger than the probe field (ā� δâ),

what allows us to neglect higher order terms in δâ and δâ† in the derivation of above

equations. Both drive and probe field are classical coherent fields, thus we can identify all

operators ŷ(t) with their expectation values y(t) ≡ 〈ŷ(t)〉. This also implies 〈ŷ†(t)〉 ≡ y∗(t).
To solve the Equations (6.13) and (6.14), we switch to a frame rotating with Ω = ωp − ωd

and employ the following ansatz

δa(t) = A−e−iΩt +A+e+iΩt, (6.15)

δa∗(t) = (A+)∗e−iΩt + (A−)∗e+iΩt, (6.16)

δx(t) = Xe−iΩt +X∗e+iΩt. (6.17)

These equations can be separated according to their rotation terms. We are interested

in the the probe field’s transmission at ωp = ωd + Ω, so we have to look for a solution

rotating with e−iΩt. This implies that we need a solution of A− to describe δa(t) and thus

the probe tone transmission. Three equations contribute:(
−i(Ω + ∆) +

κ

2

)
A− = −iGāX +

√
κex

2
sp, (6.18)(

i(Ω−∆) +
κ

2

)
A+ = −iGāX∗, (6.19)

(Ω2
m − Ω2 − iΓmΩ)X = −~Gā

meff
(A− + (A+)∗). (6.20)
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The solution of A− reads

A− =
1 + if(Ω)

−i(∆ + Ω) + κ/2 + 2∆f(Ω)

√
κex

2
sp, (6.21)

with

f(Ω) = ~G2n̄c
χm(Ω)

i(∆− Ω) + κ/2
. (6.22)

Here, we have introduced the susceptibility χm(Ω) of the mechanical mode according to

Equation (5.16),

χm(Ω)−1 = meff(Ω2
m − Ω2 − iΩΓm) . (6.23)

Please note that this solution describes EMIT as well as EMIA. In the case of EMIA, when

making an ansatz according to Equations (6.15)-(6.17) we only have to consider that the

rotating wave approximation changes sign, since the drive field is on the blue sideband and

the solution of interest is A+ that has the same frequency as sp. This leads to the same

ansatz as in Equations (6.15)-(6.17) and to the same Equations of motion (6.18)-(6.20),

but with the roles of A− and A+ exchanged. So this equation is valid for ∆ < 0 and Ω > 0

(what is the setting for EMIT), as well as for ∆ > 0 and Ω < 0, putting the system in an

EMIA configuration. We use input-output theory [117,246] to obtain the output fields:

sout(t) = sin(t)−
√
κex

2
a(t)

=

(
s̄in −

√
κex

2
ā

)
e−iωdt +

(
sp −

√
κex

2
A−
)
e−i(ωd+Ω)t −

√
κex

2
A+e−i(ωd−Ω)t.

(6.24)

The transmission of the probe field collects the terms rotating with ωp = ωd + Ω. The

transmission, normalized to the input thus reads t = (sp−
√

κex
2 A−)/sp. The transmitted

power spectrum, normalized to the input is given by

|t|2 =

∣∣∣∣1− κex

2

1 + if(Ω)

−i(∆ + Ω) + κ/2 + 2∆f(Ω)

∣∣∣∣2 . (6.25)

Most opto- and electromechanical systems operate in the resolved sideband regime, where

the mechanical frequency exceeds the cavity linewidth (Ωm > κ). Figure 6.1 shows

schematically such a configuration. The Stokes sideband is far off the cavity resonance

(anti-Stokes for EMIA configuration) and will be strongly suppressed due to the cavity

filter function. So we can neglect the off resonant sideband in our calculation, i.e. A+ = 0.

Additionally, we linearize the mechanical susceptibility for a drive field on the red

sideband (∆ < 0) and a probe tone not too far from optimum detuning3,

χm(Ω)−1 ≈ meffΩm(2(Ω− Ωm)− iΓm) . (6.26)

Plugging these assumptions into Equation (6.21) and replacing G = g0/xzpf with xzpf =√
~/2meffΩm, the intra-cavity field simplifies to

A− =

√
κex/2 sp

−i(∆ + Ω) + κ/2 +
g2
0 n̄c

−i(Ω−Ωm)+Γm/2

, (6.27)

3in the case of EMIA, the approximation of χm looks different. This is the origin of the difference in the

formulas (6.2) and (6.37) describing the transmission spectra of EMIT and EMIA in the resolved sideband

regime, respectively.
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Figure 6.3: Feedback diagramm of EMIT and EMIA. a) shows the simplified diagram if the

system is in the resolved sideband regime described by Equation (6.32). A probe field sent to

the cavity receives a feedback gain from the mechanical mode due to the electromechanical

coupling. The frequency degeneracy of probe field and scattered drive field physically realize

the summing nodes. b) shows the full spectrum according to Equation (6.32), taking the

feedback between mechanical mode and off-resonant sideband into account.

and the transmitted power spectrum behaves according to Equation (6.2), as stated above.

A different interpretation for the intra-cavity field is achieved by introducing the bare

cavity susceptibilities and redefining the mechanical susceptibility in Equations (6.13)-

(6.14) [87]. The linearity of these differential equations allows to define a term – the

susceptibility χyy – describing the modification of the corresponding mode y to a force

F acting on it. The equation of motion takes then the form y = χyyF , analogous to

Equation (5.14). We identify the susceptibilities in Equations (6.13)-(6.14) to

χaa(Ω)−1 =
κ

2
− i(Ω + ∆) , (6.28)

χcc(Ω)−1 = χ∗aa(−Ω) =
κ

2
− i(Ω−∆) , (6.29)

χxx(Ω)−1 =
Γm

2
− i(Ω− Ωm) . (6.30)

Here,χaa(Ω) describes the response of a simple µ-wave resonator to a probe field, χcc(Ω)

the response of the complex conjugate field and χxx(Ω) describes the linearized response

of a high Q mechanical oscillator. In contrast to the previous definition of χm(Ω), we

have renormalized the mechanical susceptibility, χxx(Ω) = meffΩmχm(Ω), accounting to

the fact that we write the solution in terms of g0, containing these quantities. Rewriting

Equation (6.21) with those susceptibilities gives

A− =
χaa(1− g2

0n̄cχxxχcc)

1 + g2
0n̄cχxx(χaa − χcc)

√
κex

2
sp . (6.31)

In the resolved sideband regime (Ωm > κ), the intra-cavity field simplifies from Equa-

tion (6.27) to

A− =
χaa

1 + g2
0n̄cχxxχaa

√
κex

2
sp . (6.32)
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Figure 6.4: Schematic setup to experimentally investigate EMIT and EMIA. A µ-wave source

provides the driving field and is combined at roomtemperature with the output of a vector

network analyzer, providing the probe field. The combined fields are fed to the sample and

analyzed with the vector network analyzer after passing the sample and an amplifier chain.

By introducing susceptibilities for the cavity and mechanical mode respectively, we can

interpret EMIT/EMIA in terms of a feedback diagram, shown in Figure 6.3. In the

resolved sideband regime (Figure 6.3a), the probe field
√

κex
2 sp entering the cavity adds

up at the summing node with the intra-cavity field, which is multiplied with the feedback

gain from the mechanical mode. The electromechanical coupling rate defines the feedback

gain (−ig0ā)χxx(−ig0ā). The sum of those two fields interacts again with the cavity (via

χaa) and result in A− at the diagram output. The frequency degeneracy of probe field and

scattered drive field physically realizes the summing nodes. For the full diagram, taking

both sidebands into account (Figure 6.3b), we consider the interaction of the mechanical

mode with the off-resonant sideband, visualized by the additional feedback node.

6.1.3 Setup

As depicted in Figure 6.4, the experiments are performed in dilution refrigerator No.1 at

a temperature of T ≈ 200 mK, far below the critical temperature of Nb (Tc = 9.2 K). The

microwave excitation and detection circuitry consists of a Rohde&Schwarz SMF microwave

source, used to generate the strong red- or blue-detuned drive tone at ωd = ωc + ∆, while

the weak probe field centered around ωd±Ωm stems from a Rohde&Schwarz ZVA network

analyzer. The latter allows for phase sensitive detection of the the microwave signal after

interacting with the device under investigation. For the two-tone experiments, the two

microwave signals are combined at room temperature and then sent to the electromechan-

ical hybrid via coaxial cables. Several attenuators at the various temperature stages are

used for the reduction of thermal noise and thermalization of the microwave cables. After

passing the device under test, the transmitted signal is amplified using a cryogenic low-

noise HEMT amplifier anchored at 4.2 K and a room-temperature microwave amplifier.

The HEMT amplifier is isolated from the sample output by a circulator anchored at 0.7 K.
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Figure 6.5: Full spectrum of the eletromechanical sample in EMIT configuration. Inside of the

µ-wave resonance, two mechanical resonances are visible. We identify them with in-plane

(“M1”) and out-of-plane mode (“M2”) of the nanobeam. The spectrum was recorded with

an optimally red detuned drive tone with respect to peak M1 and a power of Pd = 891 pW.

The probe tone is swept over the cavity resonance with a probe power of 28 fW. A zoom of

the two mechanical peaks, separated by 38.9 kHz is shown in the lower window.

To compensate the effect of the attenuators and amplifiers, we normalize the transmitted

signal with respect to the transmitted signal away from the cavity resonance. For details

of the cryogenic wiring we refer to Chapter 3.

6.1.4 Experimental results

We start our analysis by sweeping the probe frequency over the full µ-wave cavity and

simultaneously applying a driving tone around optimum detuning ∆ = −Ωm. The probe

power is kept constant in all EMIT experiments to Pp = 28 fW (−105.5 dBm), the drive

power here is Pd = 891 pW (−60.5 dBm). We observe two peaks in the cavity resonance,

showing two induced transmission features (“M1” and “M2” in Figure 6.5), separated by

∆Ω/2π = 38.9 kHz. The two resonances are more than one thousand mechanical linewidths

apart and we do not observe any interaction or overlapping in all our experiments, since

the optical spring effect in our system is only on a scale of Hz (see Section 5.3.2). We

tried as well frequency tuning by applying an additional DC voltage up to 5 V, without

showing any observable effect on the eigenfrequencies. We assume the left peak (“M1”)

in Figure 6.5 to be the in-plane mode of our nanobeam and the right peak to be the out-

of-plane mode (“M2”)4. All numbers we have given so far refer to the left peak (“M1”).

This is the resonance that we usually analyze except differently mentioned.

Analyzing both peaks at optimum detuning, we see that with increasing probe power

the obsereved mechanical linewidths Γeff,i broaden (see Figure 6.6a). This is caused by the

fact that we have to consider the mechanical mode as dressed mechanical state due to the

electromechanical coupling. The resulting state is effectively a phonon-photon polariton.

4We cannot fully exclude that these two modes are indeed coupled resonances or different superpositions

of a more complex modal distribution, including for example torsional modes occurring due to the double

layer structure of the nanobeam. To exclude this, further investigation of the higher harmonics is ongoing.
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The nonvanishing photonic nature results in a finite coupling of the mechanical mode to the

photonic loss channel at a rate CΓm [116], where we have introduced the electromechanical

cooperativity C = 4g2/κΓm = 4g2
0n̄c/κΓm [112]. The effective electromechanical coupling

scales linearly with the average number of intra-cavity photons which is related to the

applied driving power by

n̄c =
Pd

~ωd

κex/2

(κ/2)2 + ∆2
. (6.33)

The effective broadening of the mechanical linewidth due to electromechanical interaction

with an optical mode is captured by Equation (5.19) as discussed in Section 5.1. At

optimum detuning Γeff becomes maximal and Equation (5.19) reduces to

Γeff = Γm(1 + C) = Γm +
4g2

κ
, (6.34)

agreeing with what we expect from the above discussion. The electromechanical manipula-

tion of the mechanical mode results from the strong drive field. Since The influence of the

probe tone is negligible, the effective linewidth follows Equation (5.19) for all detunings ∆.

First we turn to the in-plane mode “M1”. An analysis in terms of the effective linewidth

extracted from the data displayed in Figure 6.6a by a Lorentzian fit leads to the data

shown in panel b (red filled circles). We extract the intrinsic mechanical linewidth Γm and

the effective coupling rate g from a linear fit of Equation (6.34). We find Γm/2π = 7.7 Hz

in agreement to the measured value around 200 mK by ring down experiments as discussed

in Section 4.5.2. We extract a maximum electromechanical coupling of gmax/2π = 20.6 kHz

for a mean drive photon number of n̄c = 2.7 × 108 resulting in a maximum cooperativ-

ity of C = 294. The maximum coupling exceeds the thermal decoherence rate of the

phonons at 30 mK of n̄mΓm/2π ≈ 1.18 kHz. Thus we overcome the main obstacle in reach-

ing the regime of quantum coherent manipulation (g � {n̄mΓm, κ}) [75]. Together with

the electromechanical vacuum coupling of g0/2π = 1.26 Hz measured by frequency noise

calibration (see Section 5.2.2), we can access the attenuation of the input microwave line

connecting the sample with the measurement apparatus. We estimate the damping of the

feedline to 65.5 dB.

Now, we turn the discussion to the out-of-plane mode “M2”. Extraction of the effective

linewidth results in the blue filled circles displayed in Figure 6.6b. The same procedure as

above gives an intrinsic linewidth of Γm,op/2π = 13.4 Hz and a maximum cooperativity of

Cop = 16. With the known mean intra-cavity photon number n̄c, calculated from Equa-

tion (6.33) using the attenuation of the input line, we determine the electromechanical

vacuum coupling to g0,op/2π = 0.39 Hz using Equation (6.34). The out-of-plane mode

couples a factor of three weaker to the light field than “M1”. This becomes clear, when

considering that an ideal out-of-plane motion of the nanobeam changes the capacitance at

2Ωm,op due to symmetry arguments. However, the double layer structure of the nanobeam

leads to an asymmetric amplitude distribution. Thus, we expect the periodic change in

capacitance to have a contribution at the eigenfrequency Ωm,op, coupling weaker than the

in-plane mode. To quantify the asymmetry of the out-of-plane motion, optical measure-

ments of this mode are ongoing. In the following we will focus on the in-plane mode “M1”,

as its higher coupling allows for an easier implementation of the experimental requirements

needed for the study of theoretical predictions based on high cooperativity. Next, we dis-

cuss the amplitude of the transparency peak for increasing number of drive photons. We
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Figure 6.6: a) Probe power transmission spectra of the two resonances for different driving

powers. The upper curves correspond to the in-plane mode “M1” (pink: n̄c ≈ 4.24 × 106,

purple: n̄c ≈ 2.68 × 107, blue: n̄c ≈ 8.47 × 107) the lower to the out-of-plane mode “M2”

(orange: n̄c ≈ 3.37×107, red: n̄c ≈ 1.07×108). The solid lines are Lorentzian fits to the data.

b) The effective linewidths Γeff of the two mechanical modes plotted against the number of

drive photons. The solid lines are linear fits to Equation (6.34). The differently colored points

correspond to the linewidths of the curves with the same color in a).

have to mention, that we do not detect a transmission window of unity. This becomes

most evident, when looking the transmission curve shown in Figure 6.5. We see that the

microwave cavity has a dispersive shift, resulting from interference with waves traveling

along the ground plane and is a well known feature. This shift of the phase reference is

well understood and incorporated in our fitting routines as discussed in Appendix A.5.

Yet, the maximum transmission in the narrow transparency window is obtained by the

line connecting the left and right background of the cavity spectrum, taken at cavity res-

onance. This gives a maximum power transmission of |t0|2 ≈ 0.9. In Figure 6.7 the height

of the transmission peak is plotted against the average number of drive photons n̄c. For

a low number of drive photons (n̄c < 5× 106), we see that the transparency window still

approaches its maximum value until it saturates at an approximate photon number of

n̄c = 2× 107. For optimum detuning, the power transmission defined in Equation (6.2) at

the mechanical resonance simplifies to

|t0|2 =

∣∣∣∣1− κex/κ+ C

1 + C

∣∣∣∣2 . (6.35)

The solid line in Figure 6.7 is a plot of this equation using the parameters as discussed

above. Evidently, there is good agreement between experiment and theory.

To validate the full linewidth model on the red sideband, stated in Equation (5.19), we

determine Γeff for various detunings ∆, while keeping the drive power Pd constant. Fig-

ure 6.8 shows three sweeps with different drive powers (Pd = 890 pW, 2.8 nW and 4.5 nW,

respectively). The probe power was fixed at Pp = 28 fW. The detuning ∆/2π is swept

over a range from −2.5 MHz to 0 Hz. As expected we observe the strongest linewidth

broadening for high drive powers and the maximum broadening occurs at optimum de-

tuning. The reduction of the effective linewidth towards its intrinsic value for a detuning

away from the mechanical resonance (∆/2π → −2.5 MHz and ∆/2π → 0 Hz) comes from
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Figure 6.7: Transmission of the in plane mode plotted versus the number of drive photons. The

solid line is a plot of Equation (6.35) using the measured parameters of κ, κex, g0 and Γm.

Only the fact that the amplitude of the transmission does not reach unity was used as a fit

parameter. See the text for more details.

the reduced electromechanical coupling efficiency due to the reduction of the ratio be-

tween anti-Stokes and Stokes sideband. The saddle point results from the varying average

intra-cavity photon number n̄c for different detunings ∆: A smaller detuning implies that

the drive tone is closer to the cavity resonance, allowing more drive photons to enter the

cavity. This results in a higher effective electromechanical coupling g = g0
√
n̄c. The re-

sulting effective linewidth Γeff is higher than for a sweep with constant photon number n̄c

and modulated by the filter function of the µ-wave cavity. The orange lines in Figure 6.8

are fits to Equation (5.19), taking the varying photon number n̄c(∆) into account using

Equation (6.33). The data show good agreement with theory, corroborating the above

discussion that the linewidth broadening occurs from electromechanical interaction of the

mechanical mode with the driving field and is described by assuming a single tone config-

uration neglecting the probe tone. To conclude the discussion of EMIT we take a look at

the two models we have derived so far: The full model, predicting the transmission accord-

ing to Equation (6.25) and the model for a system in the resolved sideband regime given

in Equation (6.2). In above discussion we have already shown that both models predict

the same results at optimum detuning for a system in the resolved sideband limit. An

interesting question is how long the approximations made in those two models lead to an

adequate description of the observed physical phenomena. We briefly recall the assump-

tions we made, when we evaluated the theoretical model. First, we treat the Hamiltionian

in a frame rotating with ∆. This assumption does not reduce the accuracy of the descrip-

tion, there is no evidence that counter-rotating terms with a frequency of −∆ will occur.

Second, we analyze the system in terms of a steady state and time dependent solution.

This is a valid assumption, the Langevin equations are linear, the superposition principle

we implicitly assume is valid. Third, we apply a rotating wave equation in Ω, only counting

the terms directly contributing to the interference with the probe tone. This assumption

is only valid, as long as we can ignore a contribution of the off resonant sideband, because

it is strongly suppressed by the cavity filter function. When the drive tone is closer to

the microwave resonance than the cavity linewidth, |∆| ≈ κ, this is no longer the case.

If the drive tone moves closer to the microwave resonance, |∆| < κ, we expect that the
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Figure 6.8: Effective linewidth plotted versus the detuning for three different drive powers.

The solid lines are fits to the expected effected linewidth behavior given in Equation (5.19),

taking into account the varying drive photon number n̄c (pink: Pd = 890 pW, dark blue:

Pd = 2.8 nW, light blue: Pd = 4.5 pW).

contribution of the counter rotating terms can no longer be neglected and we expect to

see a difference between theory and experiment. This is shown in Figure 6.9. The plots

show color-coded representations of the probe power transmission |t|2 as a function of the

normalized drive detuning ∆/Ωm and the probe tone detuning Ω − Ωm away from the

anti-Stokes line. In Figure 6.9a we have plotted the theoretical prediction, given by the

full EMIT theory in Equation (6.25). The corresponding experimental data are shown

in Figure 6.9b. The resolved sideband limit defined by Equation (6.2) is shown in Fig-

ure 6.9c and is discussed further below. For the simulations, we assume the same sample

parameters as given in the experiment. We use a constant drive power of Pd = 4.5 nW

taking the varying intra-cavity photon number n̄c into account (see Equation (6.33)). For

relative detunings outside the cavity linewidth (with the parameters used in Figure 6.9:

∆/Ωm > 0.5, since κ ≈ 0.5 Ωm), we see that the full model and the experiment agree well

(curves a and b in Figure 6.9). But for ∆/Ωm approaching 0, significant discrepancies

between data and theory prediction are observed. The dispersive shift in the experiment

towards lower mechanical frequency (the blue colored area in panel b shifts “downwards”

for ∆/Ωm → 0) is not captured by Equation (6.25). The difference between theory and

experiment is even worse if we compare the experiment with the resolved sideband theory

(see Equation (6.2)). The latter ignores even on-resonant contributions from the complex

conjugate of the Stokes sideband. For large relative detunings, this assumption gives good

results. However, as expected the approximation breaks down earlier than the full model,

namely for ∆/Ωm < 0.75. We see that both descriptions of EMIT give good results for a

broad range around optimum detuning. But as soon as we cannot ignore the off-resonant

sideband, the theory shows flaws. This becomes important, when extending two-tone ex-

periments to samples incorporating two or more cavities, where by design, both sidebands

could be amplified.



82 6.2 Electromechanically induced absorption

∆/Ωm

(Ω
−Ω

m
)/2

π 
(H

z)

-35

 -32.5

-30

tr
an

sm
is

si
on

 |t
|² 

(d
B)

0-0.5-1.0-1.5-2.0

0

-250

-125

125

250
experimentfull theory resolved theory

0-0.5-1.0-1.5-2.00-0.5-1.0-1.5-2.0

a) b) c)

Figure 6.9: Comparison of full EMIT theory and resolved sideband theory with experimental

data. The plots are color-coded represantations of the probe power transmission |t|2 as a

function of the normalized drive detuning ∆/Ωm and the probe tone detuning Ω− Ωm away

from the anti-Stokes line. a) shows the results of a simulation incorporating the sample

parameters of the full EMIT theory, b) the experimentally obtained data, c) shows the same

as a) but calculated with the resolved sideband theory.

6.1.5 Conclusion

In this section we have presented a detailed analysis of EMIT. We have developed the

theoretic model to describe induced transparency effects and discussed the agreement to the

experimental data. Two mechanical modes were analysed, the more prominent one shows

a broadened linewidth of Γeff/2π = 2.16 kHz for an average drive photon number of n̄c =

2.7× 108, compared to the intrinsic linewidth of Γm/2π = 7.7 Hz. The former corresponds

to a cooperativity of C = 294 (electromechanical coupling of g/2π = 20.6 kHz). Thus,

the coupling exceeds the mechanical thermal decoherence rate at 30 mK of n̄mΓm/2π ≈
1.18 kHz, overcoming the main obstacle in reaching the strong coupling regime, where

quantum coherent manipulations become possible (g � {n̄mΓm, κ}) [75]. The fit of the

electromechanical linewidth broadening allows for estimation of the damping of the input

microwave line, giving an attenuation of 65.5 dB. The second mode has a twice as large

linewidth Γm,op/2π = 13.4 Hz and a weaker coupling g0,op/2π = 0.39 Hz. The linewidth

behavior is in excellent agreement with theory as a function of the drive power as well as

the drive frequency. We do not observe normal mode splitting [80], since the relatively low

vacuum coupling requires even higher drive photon numbers. This is a technical problem,

the Nb µ-wave cavity allows for sufficiently high photon numbers.

We also have analyzed EMIT as a function of the detuning of the drive field with

respect to the cavity, corroborating that the effective mechanical linewidth is determined

by electromechanical linewidth broadening due to the strong drive field. We have compared

the derived expressions with the data, showing that the approximations lead to significant

changes between prediction and measurement for a ∆ > κ.

The strong dispersion due to EMIT allows for generating group delays at frequencies of

the mechanical transmission feature, the highest delays are predicted at optimum detuning.

We will analyse this effect in the next chapter. Observation of EMIT is also a prerequisite

for electromechanical state swapping between electromagnetic and mechanical mode.
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Figure 6.10: Schematic diagram explaining the various frequencies: driving tone frequency ωd

(blue line), probe tone frequency ωp (green line), cavity resonant frequency ωc (black line),

drive tone detuning ∆ = ωd − ωc, probe tone detuning Ω = ωp − ωd. Varying ∆ shifts the

drive tone with respect to the cavity resonance (grey-shaded area). Since the Stokes line (red

shaded area) is fixed to the drive tone at ωd − Ωm, the variation of ∆ also shifts the Stokes

line with respect to the cavity resonance. Varying Ω at constant ∆ shifts the probe tone with

respect to the cavity resonance and the Stokes line. Figure from Ref. [82].

6.2 Electromechanically induced absorption

6.2.1 Qualitative discussion

In the following, we discuss the case of blue-detuning (∆ ' +Ωm). As discussed in the

following, this situation leads to an interference effect similar to EMIT, but with two dif-

ferences: First, the interference effect between drive and probe field is phase shifted by

about π, leading to constructive instead of destructive interference as in the case of EMIT.

Second, the frequency window decreases with increasing drive power due to electrome-

chanical linewidth narrowing resulting from the blue detuned driving field, in contrast to

the increasing transparency window in case of EMIT.

Similar to EMIT, a strong drive tone at ωd is applied to the system, but here, it is

close to the upper motional sideband of the cavity, while a second, much weaker tone

probes the modified cavity resonance at frequency ωp = ωd + Ω schematically shown in

Figure 6.10. The simultaneous presence of the drive and the probe tone result again

in a radiation pressure force oscillating at Ω = ωp − ωd. If this difference frequency

is close to the mechanical resonance frequency, Ω ' −Ωm, a coherent oscillation of the

mechanical system is induced. As a consequence of this oscillation, Stokes and anti-

Stokes fields (red-shaded areas in Figure 6.10) build up at ωd ± Ωm around the strong

driving field. And again, the microwave resonator acts as a narrow-band filter for these

fields. If the system is in the resolved-sideband regime, Ωm > κ, the anti-Stokes line at

ωd + Ωm > ωc is strongly suppressed because it is off-resonant with the cavity, whereas

the Stokes line at ωd −Ωm ' ωc is enhanced. Moreover, since the Stokes scattered field is

degenerate with the probe field sent to the cavity, it allows for constructive interference of

the two fields enhancing the build-up of the intra-cavity probe field. This can be viewed

as a self-interference between two different excitation pathways. The resulting increased

feeding (“absorption”) of probe photons into the cavity manifests itself as a reduced cavity

transmission. Depending on the frequency of the electromagnetic field, this effect is referred

to as electromechanically or optomechanically induced absorption (EMIA or OMIA) [116],

the electromechanical analog of electromagnetically induced absorption (EIA) [119]. At

even higher drive field power, the system switches from EMIA to parametric amplification
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Figure 6.11: Level diagram describing the physics of the electromechanical system: The blue

detuned drive tone at frequency ωd (blue arrow) induces a transition from a state |nc, nm〉
characterized by nc cavity excitations (photons) and nm mechanical excitations (phonons) to

a state |nc + 1, nm + 1〉, that is, it adds one excitation both to the cavity and the mechani-

cal oscillator. The cavity photons generated in this down-conversion process are degenerate

with the near-resonant probe field at frequency ωp = ωd − Ωm (green arrow), resulting in a

constructive interference effect. The dashed lines indicate virtual levels, indicating that the

drive field is not optimally blue-detuned from the cavity resonance (Ω = Ωm 6= ∆). Figure

from Ref. [82].

[120], resulting in electromagnetic signal amplification, and eventually phonon-lasing. In

the picture of parametric amplification, the electromechanical system can be viewed as a

parametric amplifier strongly pumped at ωd and amplifying the weak input signal at ωp.

This amplification is detected as an enhanced cavity transmission.

The effect of EMIA can also be visualized in the same level scheme describing EMIT,

see Figure 6.11. Here, a pure cavity excitation would be represented by a vertical arrow

increasing only the number photons in the cavity. In contrast to EMIT, we consider the

case where the drive field is set to ωd ' ωc + Ωm (optimal blue detuning), so it increases

both the photon and the phonon number by one and hence is represented by a diagonal

arrow with opposite direction compared to the EMIT case in Figure 6.2. The photons of

the drive field are down-converted and scatter into the Stokes line at ωd − Ωm, matching

approximately the cavity resonant frequency ωc. Since probe and drive tone are coherent

with respect to each other5, they can interfere with the weak probe field, indicated by the

vertical green arrow. Virtual levels, involved when the drive tone is not optimally detuned

(∆ = ωd − ωc 6= Ωm) are again represented by the dashed lines in Fig. 6.11. In this

situation the down-conversion of the drive field photons generates photons of frequency

ωd − Ωm = ωp 6= ωc, corresponding to the probe field’s frequency. Again, the resulting

field interferes constructively with the probe field sent to the cavity. Depending on the

relative power of the probe and the drive field, the interference can lead to a partial or

full extinction of the probe field outside the cavity, what is detected as a reduced cavity

transmission (enhanced absorption) in experiments.

6.2.2 Quantitative analysis

For a quantitative analysis of the absorption as a function of the drive power and the

detunings ∆ and Ω, we follow the same derivation presented in the case of EMIT. As

5Note that also for EMIA the mutual coherence of probe and drive needs to be reciprocal of the

absorption window. Due to the small absorption linewidth this is a stronger condition than in the case of

EMIT
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already discussed in the derivation of EMIT, Equation (6.25) remains valid in the case of

blue detuning. When considering an electromechanical system in the resolved sideband

regime (Ωm > κ)for blue detuning, Equation (6.26) modifies to

χm(Ω)−1 ≈ meffΩm(2(Ω + Ωm) + iΓm) , (6.36)

since the probe detuning is negative, Ω ≈ −Ωm in contrast to EMIT, where Ω ≈ Ωm.

For convenience, we briefly summarize the steps, leading to the transmission spectrum

in the resolved sideband regime: Again, we include both the drive and probe fields as well

as the losses in the electromagnetic and mechanical resonator. The weak probe field allows

for a linearization of the system’s dynamics around the steady-state values n̄c = 〈n̂c〉 and

x̄ = 〈x̂〉, where the former is the average number of photons inside the cavity and the latter

the average displacement of the mechanical mode. Solving the resulting Langevin equations

for the intra-cavity field in a frame rotating with ∆ and calculating the transmission

spectrum of the probe field using input-output theory [115–117, 246], yields the following

expression for the probe power transmission for a system in the resolved sideband regime,

|t|2 =

∣∣∣∣∣∣1− κex/2

−i(∆ + Ω) + κ/2 +
g2
0 n̄c

i(Ω+Ωm)−Γm/2

∣∣∣∣∣∣
2

. (6.37)

Here, g = g0
√
n̄c is the field-enhanced electromechanical coupling rate, Γm/2π the loss rate

of the mechanical oscillator, and κ/2π = (κex + κin)/2π the total loss rate of the cavity

taking into account both internal losses due to dissipative effects and external losses due

to the finite coupling to the feedline. In deriving Equation (6.37), the strong suppression

of the anti-Stokes field due to the filter function of the electromagnetic resonator has been

taken into account. We also note that the transmission spectrum is completely analogous

to that obtained for EIA. However, in contrast to atomic systems the coupling strength

between the electromagnetic and mechanical mode can be easily varied over a wide range

by changing the average photon number n̄c inside the cavity.

6.2.3 Experimental results

The setup used to analyze EMIA is exactly the same as presented above, the only difference

is a slightly increased temperature of T ≈ 280 mK.

In the following, we discuss the experimental results of the two-tone spectroscopy

experiments performed of our electromechanical system. Figure 6.12 shows two typical

probe power transmission spectra obtained by plotting |t|2 versus the probe tone detuning

Ω + Ωm for a constant drive power of Pd = 264 pW (purple) and Pd = 365 pW (pink)

applied at ωd = ωc + Ωm, that is at optimum drive tone detuning ∆ = Ωm. The spectra

have been recorded for a probe tone power of 2.4 fW (−116.5 dBm), one order of magnitude

lower than in the case of EMIT to avoid nonlinear effects due to the reduced linewidth

Γeff (see Figure 6.17). At Ω = −Ωm, a narrow absorption dip (peak) is observed in

addition to the bare cavity absorption. Note that the much broader absorption curve

of the cavity as shown in Figure 6.5 is not seen due to the small frequency window of

the spectrum. Evidently, the very narrow absorption dip (peak) has a reduced mechanical

linewidth of Γeff/2π = 5.1 Hz (2.1 Hz), which is significantly less than the intrinsic linewidth

Γm/2π = 11 Hz of the mechanical oscillator at a temperature of 280 mK. The reason is that
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Figure 6.12: In a, the probe power transmission |t|2 is plotted versus the probe tone detuning

Ω + Ωm for a constant drive power of 264 pW, showing the typical EMIA dip at Ω = −Ωm.

In b, the probe power transmission |t|2 is plotted versus the probe tone detuning Ω + Ωm

for a constant drive power of 356 pW, showing the typical EMIA peak at Ω = −Ωm. The

symbols represent the measured data, the solid line is obtained by fitting the data by a damped

harmonic oscillator spectrum. The fitting process yields |t0|2 at Ω = −Ωm for a particular

drive power. These values represent the data points in the |t0|2 versus Pd dependence (see

Figures 6.14 and 6.13). Figure from Ref. [82].

due to electromechanical coupling the dressed mechanical mode, which is now effectively

a phonon-photon polariton, has acquired a finite photonic nature, thereby coupling the

mechanical mode to the photonic loss channels at a rate CΓm. The additional photonic

loss channel causes an electromechanical linewidth narrowing which scales linearly with

the average number of drive photons given in Equation (6.33) and hence with the drive

power Pd. Since part of the losses of the mechanical system now occur via the photonic

channel – in contrast to the electromechancial linewidth broadening in EMIT – a reduced

mechanical linewidth is obtained [115, 240]. For arbitrary detunings and given photon

number, the mechanical linewidth is given by Equation (5.19), for optimum blue detuning

where Γeff becomes minimal it reduces to

Γeff = Γm(1− C). (6.38)

Note that as expected, the dependence of the effective linewidth on the cooperativity has

opposite sign compared to EMIT (see Equation (6.34). The cooperativity can easily be

accessed in experiments, since it is directly proportional to the drive power. In Figures 6.14

and 6.13, the drive power and cooperativity are shown on the bottom and top scale, re-

spectively. The reduction of the linewidth at optimum detuning is shown in Figure 6.13.

The data are obtained by extracting the linewidth by a Lorentzian fit of the EMIA fea-

ture. The purple and pink point represents the linewidth of the datasets, presented in

Figure 6.12.

In Figure 6.14, the peak probe power transmission |t0|2 is plotted versus the drive

power. It is given by the extremum of the mechanical dip feature shown in Figure 6.12,

which is determined by fitting the data by a damped harmonic oscillator spectrum, corre-

sponding to a Lorentzian. The peak probe power transmission decreases with increasing

drive power from about 0.3 for the bare cavity minimum (Pd = 0) to a minimum value

of |t0|2 = 0.0046 for a drive power of Pd = 270 pW. This corresponds to an additional

absorption of 18.3 dB with respect to the bare microwave cavity background and 23.4 dB

with respect to unity transmission. Increasing the drive power further, |t0|2 increases again
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Figure 6.13: Measured linewidth Γeff at optimum drive tone detuning ∆ = Ωm as a function of

the drive power Pd. The red line is a fit of the data to Equation (6.38).

and exceeds the initial value of the bare cavity, |t0|2 (Pd = 0) ' 0.3, at higher drive powers.

In other words, the transmission reduction (“absorption”) turns into a transmission en-

hancement (“emission”). At drive powers above 380 fW, |t0|2 > 1, i.e. it even exceeds the

undisturbed transmission of the feedline. At this power level we are entering the regime of

parametric amplification, which has been studied recently by Massel et al. [120]. Finally,

when the drive power is increased even further, the beam starts to perform self-oscillations

at Pd ' 390 pW. Here, the electromechanical linewidth narrowing induced by the driv-

ing field cancels the internal losses of the mechanical system, leading to a regime of zero

damping (i.e. parametric instability) and resulting in self-oscillations of the system. This

nonlinear regime is beyond the scope of this work and warrants a more detailed study.

An important feature of EMIA is the fact that without additional adjustments the

variation of the drive power by a factor of about two leads to a variation of the probe

power transmission of almost three orders of magnitude. Qualitatively, the functional

dependence of |t0|2 on the drive power can be understood in terms of the interference of

the probe tone and the part of the drive tone, which is down-converted and coherently

scattered into the cavity due to phonon generation. If the drive power is low enough, the

number of down-converted drive photons is smaller than the number of probe photons

sent to the cavity. Therefore, the stimulated absorption of probe photons by the cavity

caused by constructive interference with the scattered drive photons is only partial. Note

that the physics is completely analogous to EMIT, where destructive interference of the

probe and drive tone results in stimulated emission of the cavity, causing an enhanced

probe power transmission. With increasing drive power, the absorption dip deepens and

minimum transmission is obtained if the number of down-converted drive photons becomes

equal to the number of probe photons. With further increasing drive power the number

of down-converted drive photons exceeds the number of probe photons, resulting in an

increase of the probe power transmission above the level of the bare cavity. That is, the

absorption dip in the transmission spectrum changes sign and turns into a transmission

peak. We point to the fact that the appearance of a peak in the transmission signal should

not be mistaken for an induced transparency effect in the sense of EMIT. At even larger

drive power, the power transmission exceeds unity due to parametric amplification of the

probe tone by the electromechanical system, which can be considered as a heavily pumped

parametric amplifier.
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Figure 6.14: Measured peak probe power transmission |t0|2 at optimum drive tone detuning ∆ =

Ωm as a function of the drive power Pd. The green data point shows the power transmission

of the bare cavity without a drive tone. The red line is a fit of the data to Equation (6.39).

Figure from Ref. [82].

A quantitative analysis of the measured probe power transmission shown in Figure 6.14

can be made by Equation (6.37), which can be rewritten for optimal drive tone detuning

∆ = Ωm and Ω = −Ωm as

|t0|2 =

∣∣∣∣1− (κex/κ)− C
1− C

∣∣∣∣2 . (6.39)

The red solid line in Figure 6.14 shows a fit of this expression to the data. Evidently,

the measured data can be well described in a quantitative way. We replace n̄c in C =

4g2
0n̄c/κΓm by Equation (6.33) and use g0 as a fit parameter to test the model. The

fit yields g0/2π = 1.22 Hz, close to the expected value of g0/2π = 1.26 Hz obtained in

Section 5.2.2, showing good agreement between data and the derived model. The data

analysis in terms of Equation (6.39) is valuable in two respects. On the one hand, it allows

for a quantitative explanation of the drive power dependence of the probe transmission.

On the other hand, fitting the data by Equation (6.39) yields the cooperativity C, which

ranges from 0.38 to 0.80 for the studied drive power range. These values show that the

studied system is on the edge to the strong coupling regime. However, self-oscillation sets

in before reaching this regime.

Up to now, we have only discussed the case of optimal drive tone detuning ∆ =

Ωm. In the following this analysis is extended to the case of arbitrary detunings ∆ 6=
Ωm. Figure 6.15a shows a two-dimensional color-coded representation of the probe power

transmission |t|2 around the Stokes line as a function of the drive detuning ∆ = ωp − ωc,

while keeping the probe tone window centered around ωp = ωd − Ωm (equivalent to Ω =

−Ωm). That is, the frequency window of the probe tone has a constant detuning from

the drive tone, thereby probing the same frequency window around the Stokes line (see

red-shaded area in Figure 6.10). The variation of the drive tone detuning ∆ means that

the Stokes line and the related probe frequency window are shifted with respect to the
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Figure 6.15: a)-e) Color-coded representation of the probe power transmission |t|2 as a function

of the normalized drive tone detuning ∆/Ωm and the probe tone detuning Ω + Ωm away from

the Stokes line. The constant drive field power, which is increasing from a) to e), is indicated

in the upper right corner of each experimental dataset. f)-j) Model fits to the data. k) Vertical

line scans along the probe tone frequency axis for various fixed values of the drive detuning

∆/Ωm at a constant drive power of 282 pW. The symbols represent the data, the solid lines

are model fits to the data according to Equation (6.37). Figure from Ref. [82].

cavity resonance (see grey-shaded area in Figure 6.10). The probe and drive powers are

adjusted to 2.4 fW and 224 pW, respectively. By the two-dimensional spectroscopy shown

in Figure 6.15a, we obtain complete information on the probe power transmission. We

first discuss the variation of |t|2 along the drive tone detuning ∆/Ωm (horizontal axis) at

Ω + Ωm = 0. At a relative drive tone detuning ∆/Ωm = 1 (optimal detuning), we find

the absorption feature already discussed above. When the drive detuning is not optimal,

∆/Ωm 6= 1, we observe that the absorption feature decreases and becomes vanishingly

small when moving away from optimal drive detuning. This is obvious, since we are

shifting the Stokes line out of the resonance window of the microwave cavity, which acts

as a narrow-band filter of width κ schematically shown in Figure 6.10. Outside this

window the absorption feature is strongly suppressed. We note that κ/Ωm ' 0.5, in good

agreement with the width of the absorption feature along the ∆/Ωm axis. The panels in

Figure 6.15a–e show the transmission feature for increasing drive power. The absorption

at optimal detuning increases until it reaches the largest value at a drive power of 252 pW

(see Figure 6.15c). For even higher drive power, the transmission at optimal detuning

increases again, as already discussed in the context of Figure 6.14.

We next discuss the structure of the absorption feature along the probe tone detuning

Ω + Ωm (vertical axis). For optimal drive tone detuning, ∆/Ωm = 1, the same probe

power transmission curve as already shown in Figure 6.12 is obtained. However, when

moving away from optimal drive tone detuning, ∆/Ωm 6= 1, we observe that the absorption

feature changes its shape. This becomes most obvious in Figure 6.15k, where we have

plotted the probe power transmission as a function of the probe tone detuning (vertical
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Figure 6.16: Schematic diagram showing the variation of the average cavity photon number n̄c

(blue) and the resulting probe power transmission |t|2 (olive) as a function of the drive tone

detuning ∆/Ωm at constant applied drive tone power. The photon number n̄c is assumed

to vary as the cavity transmission. Minima in the probe power transmission are obtained

for n̄c(∆/Ωm) = n̄c,min, resulting in the characteristic double dip structure observed in the

experiment. Figure from Ref. [82].

line scans) for several fixed values of the drive detuning ∆/Ωm marked by the vertical lines

in Figures 6.15d and i. The observed behavior can be attributed to the CPW resonator,

whose envelope can be considered as a dispersive background. For ∆/Ωm = 1.06, the Stokes

line and probe frequency window is positioned close to the center of the cavity resonance.

In this case the phase shift between the probe and cavity field is about π/2, whereas it

changes towards 0 and π upon moving away from optimal drive detuning ∆/Ωm = 1,

i.e. when shifting the Stokes line and the probe window out of the center of the cavity

resonance. This results in transmission curves resembling the imaginary and real part

of the susceptibility of a damped harmonic oscillator for the probe frequency window

positioned close to and left/right from the resonance, respectively. The data shown in

Figure 6.15k can be well approximated by a Lorentzian in a dispersive environment.

We also observe that the single transmission dip around ∆/Ωm = 1 and Ω + Ωm = 0

splits into two along the drive frequency detuning on increasing the drive power. This

behavior is not a signature of the normal mode splitting [105, 260], setting in when the

coupling strength g = g0
√
n̄c becomes comparable to the cavity loss rate κ. However, for

our system, g � κ even for the largest driving powers. The double dip feature results

from the effect that the number of down-converted drive photons varies with the drive

tone detuning ∆/Ωm due to the filtering function of the cavity as sketched in Figure 6.16.

Since the minimum transmission is achieved for a specific cavity photon number n̄c,min

and increases both for smaller and larger values, two dips in the probe power transmission

are obtained at those drive detunings where n̄c(∆/Ωm) = n̄c,min. Finally, for the highest

drive power of 356 pW (see Figure 6.15e) we find additional sharp features forming a line

of very narrow dips. They can be attributed to the transition to the nonlinear Duffing

regime [87].

To analyze the absorption more quantitatively, one has to compare the experimental

results with Equation (6.37). Figures 6.15f–j show the probe power transmission |t|2 ob-

tained according to this equation. Evidently, the results of the model calculation agree

well with the experimental data, apart from the onset of nonlinear features for high driv-

ing power. Additionally, Figure 6.15k displays vertical line scans along the probe tone

frequency axis for a drive power of 141 pW. Fitting the data yields Ωm,fit/2π = 1.45 MHz

and g0,fit/2π = 1.29 Hz, corroborating the values given above.

By fitting the data obtained in Figure 6.15 to a Lorentzian in a dispersive environment,
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Figure 6.17: Measured linewidth Γeff at a fixed drive power of Pd = −282 pW for varying

detuning ∆. The orange line is a fit of the data to eq. (5.19), where we have taken the

variation of the average intra-cavity photon number with the detuning into account.

we obtain the effective mechanical linewidth Γeff as a function of the detuning frequency

∆. The data shown in Figure 6.17 shows the outcome of Γeff(∆) for a detuning sweep

with a constant drive power of Pd = 282 pW. The orange line is a fit of the data to

Equation (5.19) including the variation of n̄c. Evidently, there is excellent agreement

between experiment and theory. The linewidth behavior is exactly what one would expect

with no exact knowledge of the formula. At optimum detuning Γeff is expected to have a

minimum and to increase towards the undisturbed mechanical linewidth Γm when ∆→ 0

or ∆� Ωm. The increasing intra-cavity number n̄c when ∆ is swept from Ωm to 0 leads to

a smaller effective linewidth since the electromechanical coupling g constantly increases.

6.2.4 Conclusion

In conclusion, we have performed a detailed two-tone spectroscopy analysis of electrome-

chanically induced absorption (EMIA) in a hybrid system consisting of a superconducting

microwave resonator coupled to a nanomechanical beam as function of the drive power.

In two-dimensional spectroscopy experiments the probe power transmission has been mea-

sured both as a function of the drive and probe tone detuning for a wide range of drive

tone powers. We find good quantitative agreement between the measured transmission

spectra and model calculations based on the Hamiltonian formulation of a generic elec-

tromechanical system. For optimal drive tone detuning we show that the absorption of

microwave signals at cavity resonance can be adjusted by more than 25 dB on varying the

power of the drive tone by a factor of two. A minimum normalized power transmission

of 0.0046 has been demonstrated in a very narrow absorption window of ∆ω/2π = 5 Hz

at ω = 6 GHz, resulting from line narrowing in the dressed mechanical system. Even nar-

rower band pass filters have be achieved at larger drive powers, however with increased

probe power transmission. Our results clearly demonstrate that the studied electrome-

chanical system can be applied to filter out extreme narrow frequency bands (∼Hz) of the

much wider frequency band (∼MHz) defined by the linewidth of the microwave cavity.

The amount of absorption as well as the filtering frequency is tunable around the cavity

resonance over about 1 MHz by adjusting the power and frequency of the drive field.
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Another possible application of the nanomechanical system is the nonlinear manipula-

tion of light fields down to the quantum level by introducing a group advance or delay to

weak microwave pulses centered around the cavity resonance [87]. This capability results,

similar to the case of EMIT, from the rapid phase dispersion originating from EMIA. In

contrast to EMIT, for EMIA the change from absorptive to transmissive behavior allows

both for advancing and delaying microwave signals.

At high drive power we observed parametric amplification of the weak probe tone,

that is, microwave amplification with a nanomechanical resonator. However, due to the

low mechanical loss rate of the nanomechanical beam (Γm/2π = 11 Hz) the drive power

range for parametric amplification is very narrow, since the beam rapidly starts to perform

self-oscillations and eventually shows phonon lasing. Experiments exploring this regime

are in progress.

6.3 Mapping the Duffing nonlinearity into microwave regime

In section 4.5.3, we have studied the Duffing nonlinearity of the nanomechanical displace-

ment and used the Duffing parameter to characterize the effective material parameters of

the double layer sandwich structure of the nanobeam. Here, we show that the nonlinear

displacement spectrum can directly be mapped into the microwave regime by exploiting

electromechanically induced transparency (EMIT). Implementing a nonlinearity in a µ-

wave resonator allows to create an bifurcation amplifier or detector. Recently, this has

been realized electrically by placing a Josephson junction in a µ-wave resonator [261]. As

we will see, the nonlinearity occurs not only for direct drive of the mechanical mode but

also from the beating force resulting from the simultaneous presence of a drive and a probe

field.

The linear Langevin Equations (6.8)–(6.10) describing EMIT defined in Section 6.1 do

not capture the nonlinear oscillation of the mechanical mode. To grasp the full wealth of the

system we introduce the Duffing parameter α, defined in Section 4.5.3 to Equation (6.10).

The remaining two Langevin equations stay unchanged. The set of equations modifies to

d

dt
â(t) =

(
+i∆̄− κ

2

)
â(t)− iGx̂(t)â(t) +

√
κex

2
sin(t), (6.40)

d

dt
x̂(t) =

p̂(t)

meff
, (6.41)

d

dt
p̂(t) = −meffΩ2

mx̂(t)− ~Gâ†(t)â(t)− Γmp̂(t)− αx̂3(t). (6.42)

As before, we can first determine the steady state solutions, whose time derivatives are all

zero. The self-consistent steady state solutions for the intra-cavity field and the mechanical

displacement read

ā =

√
κex/2

−i(∆̄−Gx̄) + κ
2

s̄in, (6.43)

meffΩ2
mx̄+ αx̄3 + ~Gā2 = 0. (6.44)

Again, the solution of the modified Langevin Equations (6.40)–(6.42) is the sum of the

steady state solution and a dynamic part, â(t) = ā + δâ(t), x̂(t) = x̄ + δx̂(t), where

δx̂(t) is hermitian. The presence of drive and probe fields is captured by sin(t) = (s̄in +
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δsin(t))e−iωdt, where the latter term in the brackets represents the probe field. Implicitly

we have chosen the phase of the cavity as a reference, thus ā has a real and positive value

and ā2 represents the average intra cavity photon number n̄c ∝ κex/2s̄
2
in. Finally we define

∆ = ∆̄−Gx̄ as the corrected detuning. Replacing those values we get

d

dt
δâ(t) =

(
i(∆− κ

2

)
δâ(t)− iG(ā+δâ(t))δx̂(t) +

√
κex

2
δsin(t), (6.45)

d2

dt2
δx̂(t) + Γm

d

dt
δx̂(t) + Ω2

mδx̂(t) =− ~G
meff

ā(δâ(t) + δâ†(t))

− α

meff
(x̄3 + δx̂3(t) + 3x̄2δx̂(t) + 3x̄δx̂2(t)). (6.46)

The drive field is to be much stronger than the probe field (δâ � ā), what allows us to

neglect higher order terms in δâ and δâ†. We use the same rotating frame Ω = ωp − ωd

and the same ansatz to solve the linear Langevin equations as before in Equations (6.15)–

(6.15) and sort the relevant terms ∝ e−iΩt, where we have replaced δsin(t) = spe
−iΩt.

Under these modifications, Equations (6.15)–(6.17) modify to

A−
(
−i(Ω + ∆) +

κ

2

)
= −iGāX +

√
κex

2
sp, (6.47)

A+
(
i(Ω−∆) +

κ

2

)
= −iGāX∗, (6.48)

(Ω2
m − Ω2 − iΓmΩ)X = − ~G

meff
(A− + (A+)∗)− 3α(x̄2X + |X|2X). (6.49)

As highlighted in Section 6.1, A+ is negligible in the resolved sideband regime (Ωm � κ),

which we will assume here. We define A ≡ A− and set A+ = 0. Further, we require a large

mechanical quality factor Ωm/Γm � ā/A. This assumption ensures that the dynamical

resonant response of the mechanical oscillator X ∝ āA exceeds the static displacement

x̄ ∝ ā2, what agrees with our findings. With these requirements, we can neglect x̄2X in

Equation (6.49). With G = g0/xzpf , we end up with the following set of coupled mode

equations:

A
(
−i(Ω + ∆) +

κ

2

)
= −i g0ā

xzpf
X +

√
κex

2
sp, (6.50)

(Ω2
m − Ω2 − iΓmΩ)X + 3α |X|2X = − ~g0A

meffxzpf
. (6.51)

This set of differential equations in no longer analytically solvable. But comparison of

Equation (6.51) with Equation (6.20) reveals, that the Duffing nonlinearity is mapped

into the probe field’s response. Note that we have not introduced susceptibilities as in the

discussion of EMIT due to the nonlinear response of the mechanical oscillator.

For a simple harmonically driven damped Duffing oscillator, as treated in Section 4.5.3,

the nonlinearity becomes more pronounced for increasing driving field. In the case of

EMIT, there exists no direct drive. Still the drive and probe field both contribute linearly

via ā and A respectively to the driving force term on the right hand side of Equation (6.51).

Physically, this contribution results from the beat frequency due to the interference of

those two fields. Naively, one could expect to observe nonlinear mechanical motion when

ramping up the drive power. This is not the case, since the linewidth broadening depends

quadratically on the driving field (Γeff = Γm(1 + C) ∝ 1 + Pd ∝ 1 + s̄2) showing a
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Figure 6.18: Transmission of the probe tone versus probe detuning. a) shows the mapping

of the Duffing nonlinearity of the nanobeam into the microwave regime for different probe

powers. The drive tone is kept constant at optimum red detuning, the probe power increases

from black over purple and green to red. The nonlinear behavior is first visible for a probe

power of −100 dBm (light purple curve). The curve was adapted from reference [87]. b) For

a given constant probe power, the Duffing nonlinearity can be overcome by increasing the

drive power, still at optimum detuning. As a consequence the electromechanical linewidth

broadening dominates the nonlinear terms.

stronger drive field dependence than the force driving the mechanical amplitude (Frp ∝ s̄).
To induce nonlinear behavior it is crucial for the resulting driving force to overcome the

damping, what can easily be understood by looking at the denominator of Equation (4.19):

x2
0 =

(K/2)2

(meffΩm(Ω− Ωm)− 3
8αx

2
0)2 + (1

2meffΓmΩ2
m)2

(6.52)

Thus only for increasing probe power one can overcome the transition from linear to

nonlinear behavior with an electromechanical system in EMIT configuration. However,

finding a closed expression relating the onset of bifurcation to the ratio of damping versus

nonlinearity remains challenging and was not realized within the scope of this work.

The increasing bifurcation behavior is shown in Figure 6.18a for optimum detuning

(∆ = −Ωm), where the probe power is increased from −99 dBm (black curve) to -79 dBm

(red curve) in 2 dB steps. The drive power is −64 dBm. Still, for any given probe power one

can increase the drive power to a point, where the nonlinearity is fully suppressed, due to

the electromechanical linewidth broadening as shown in Figure 6.18b for a constant probe

power of −79 dBm and drive powers of −73 (blue),−68 (purple),−61 (pink),−53 (red)

and −48 dBm (orange), respectively. The electromechanical damping starts to dominate

at −61 dBm. Note, that although we clearly observe the bifurcation in amplitude, the

Duffing parameter cannot be extracted by these measurements since we do not access

information about the mechanical amplitude in this measurement.

In summary, in this section we presented the mapping of a Duffing type nonlinearity

as discussed in Section 4.5.3 into the µ-wave regime exploiting the nonlinearity of the

mechanical mode of an electromechanical system. The theoretical analysis supports our

findings concerning the influence of probe and drive field, respectively.
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6.4 Cavity sideband generation detected with two-tone spec-

troscopy

In this section we discuss the effect of high amplitude mechanical motion on the cavity. We

exploit the linewidth narrowing of a system in EMIA configuration to access the phonon

lasing regime. The mechanical motion is undamped and driven by the beat between drive

and probe tone.

The occurrence of sidebands was mentioned already earlier in Section 5.1. Yet, direct

observation remains challenging for a mechanical oscillator undergoing Brownian motion.

In contrast, if the nanobeam is exited to high amplitude motion, the sidebands become

accessible. This effect was to our knowledge first observed in optical microtorroids [64,

239]. We derive the theoretical model showing the connection between depth of the cavity

sidebands and mechanical amplitude.

Fitting the model to the data reveals mechanical amplitudes exceeding 50 nm. Ad-

ditionally we observe a Kerr like shift of the cavity eigenfrequency up to κ/2 to lower

frequencies, not covered by the theoretical treatment, where linear electromechanical cou-

pling was assumed. Considering different orders of approximation of the full coupling

between “optical” and mechanical mode fails to explain this shift. We consider the full ex-

pression of the coupling and show that the resulting frequency shift (using the parameters

derived in Section 4.4) agrees to the data. This provides clear evidence that the shift of

the microwave resonance results indeed from the high mechanical oscillation amplitude.

6.4.1 Theory

Following the derivation presented in Ref. [239], we show in the following that the nor-

malized power transmission spectrum of a tone swept over the cavity resonance is given

by

|t|2 = 1− κex

2
(κ− κex

2
)
∞∑

n=−∞

Jn(Gx0/Ωm)2

(κ/2)2 + (∆ + nΩm)2
, (6.53)

where Jn are Bessels functions of order n and ∆ is the detuning between cavity resonance

and probe tone ∆ = ωp − ωc.

To describe the sidebands occurring due to the high mechanical amplitude, we will

neglect the backaction of the electromagnetic mode onto the mechanical oscillator. We

assume that the oscillator motion can be approximated by a harmonic oscillation as

x(t) ≈ x0 sin(Ωmt) . (6.54)

We are not interested in the interference effect responsible for EMIA, so we ignore the

strong driving field and only analyze the response of the probing field sin(t) = sine
iωpt.

The modified Langevin Equation (6.8) reads

d

dt
â(t) =

(
−iωc −

κ

2

)
â(t)− iGx̂(t)â(t) +

√
κex

2
sine

−iωpt . (6.55)

To solve this equation, we need a solution ah(t) to the homogenous part and a particular

solution ap(t) to the full equation. The general solution is the sum of those two, a(t) =

ah(t) + ap(t). The solution to the homogenous part follows from integration and reads

ah(t) = A0 exp

((
−iωc −

κ

2

)
t− iGx0

Ωm
cos(Ωmt)

)
. (6.56)
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The amplitude A0 depends on the boundary conditions of the system. A particular solution

can be found by trying ap(t) = A(t)ah(t). A(t) has then to fulfill

d

dt
A(t) =

√
κex

2
sin exp

((
i(ωc − ωp) +

κ

2

)
t+ i

Gx0

Ωm
cos(Ωmt)

)
. (6.57)

We further define the modulation index

β ≡ Gx0

Ωm
, (6.58)

what simplifies the expansion of the cosine into Bessel functions to

exp(iβ cos(Ωmt)) =
∞∑

n=−∞
inJn(β) exp(−inΩmt) . (6.59)

Now, we can integrate Equation (6.57). The result for the particular solution is (replacing

ωp − ωc = ∆):

ap(t) =

√
κex

2
sin

∞∑
n=−∞

inJn(β)

κ/2− i(∆ + nΩm)
exp(−i(ωp + nΩm)t− iβ cos(Ωmt)) . (6.60)

For times t > 2/κ, ah(t) becomes negligible, the steady state solution is a(t) = ap(t).

Using input-output theory (stated in Equation (6.24) ), the transmission amplitude reads

t(t) = sin(t)−
√

κex
2 a(t). Looking at the power spectrum, we can use the following relation

to simplify the expression as described by Schliesser et al in Ref. [239]:

|x− y|2 = |x|2 − 2Re(x∗y) + |y|2 , (6.61)

for two complex numbers x and y. The second term on the right hand side reads in our

case

− 2Re

(
s∗in exp(iωpt)

√
κex

2
ap(t)

)
= −2|sin|2

κex

2
Re

(∑
n,m

in−mJn(β)Jm(β)e−i(n−m)Ωmt

κ/2− i(∆ + nΩm)

)
.

(6.62)

The sum over n and m results from replacing the last term exp(−iβ cos(Ωmt)) in ap(t) by

Bessel functions. The term reads∣∣∣∣√κex

2
ap(t)

∣∣∣∣2 = |sin|2
(κex

2

)2
∣∣∣∣∣∑
n,m

in−mJn(β)Jm(β)e−i(n−m)Ωmt

(κ/2− i(∆ + nΩm))(κ/2 + i(∆ +mΩm))

∣∣∣∣∣
2

. (6.63)

Only the components with m = n in Equation (6.62) and Equation (6.63) contribute to the

signal we detect with a network analyzer. Considering this, the normalized transmitted

power spectrum reduces to Equation (6.53). Sweeping the probe frequency, we observe

sidebands at frequencies n ·Ωm away from the cavity resonance. Their width is determined

by the cavity linewidth κ. For a given optomechanical coupling rate G, the mechanical

amplitude x0 determines the shape of the dips. The higher the mechanical amplitude, the

deeper the sidebands become and the more sidebands can be distinguished.
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Figure 6.19: Transmitted power spectrum of the probe tone around the resonant frequency

of the microwave cavity for three different optimally blue detuned drive tones. The power

increases from top to bottom. The corresponding mean intra-cavity photon numbers from top

to bottom are n̄c ≈ 0.50 × 106, 1.06 × 106 and 1.97 × 106 respectively. Sidebands at integer

multiples of Ωm occur from the high amplitude mechanical motion. The eigenfrequency shift

of the main mode is not understood yet.

6.4.2 Observation of high amplitude mechanical motion

The measurements were performed with the same setup as the EMIT/EMIA measure-

ments discussed before (see Figure 6.4) at a temperature of T ≈ 100 mK. Figure 6.19

shows a probe frequency sweep for three increasing drive powers from top to bottom at

a detuning ∆ ≈ Ωm from the initial cavity resonance. The solid lines are fits to the

data using Equation (6.53). For relatively low drive photon numbers, the cavity shows

the undisturbed absorption spectrum as in the case of EMIA. Please note, that the mea-

surement bandwidth is set to 100 Hz, too high to observe the EMIA dip properly. For

increasing drive photon number, we observe two sidebands at ±Ωm with respect to the

cavity resonance (Figure 6.19b). These dips become more pronounced if we increase the

drive photon number even further, and we even observe weak sidebands at ±2Ωm. The

decrease of the main peak follows Equation (6.53). Qualitatively speaking, it occurs due

to scattering of photons into the sidebands, leading to a reduced number of photons at

optimum resonance.

By fitting the data we can extract the mechanical amplitude x0 as shown in the top

part of Figure 6.20a. The purple points show a sweep from high to low drive power, the

light blue ones a sweep in the opposite direction. As expected, for low photon numbers

n̄c < 0.64× 106 the mechanical amplitude is low, the mechanical damping still dominates
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Figure 6.20: a) shows the mechanical oscillation amplitude (top) and eigenfrequency shift (bot-

tom) of the µ-wave cavity plotted against the average intra-cavity drive photon number. The

orange lines are a square root (top) and a linear fit (bottom) to the data. The light blue

points in the top Figure show a sweep for increasing photon number, the purple points for a

decreasing one. The hysteresis of the threshold for self-oscillation is clearly visible (indicated

by the purple and light blue arrows). b) shows the parabolic dependence of the cavity shift

on the mechanical displacement amplitude. The blue curve is a quadratic fit to the data.

the electromechanical linewidth reduction stated in Equation (6.38). When ramping up the

drive power, we observe a sudden jump of the mechanical amplitude at n̄c ≈ 0.89 × 106.

This is the threshold to self-oscillations of the mechanical mode, where the mechanical

motion becomes undamped due to the electromechanical linewidth narrowing resulting

from the blue detunded drive field. Comparing the data for increasing and decreasing drive

power, we observe hysteretic behavior in the sense that the large mechanical amplitude

prevails for decreasing drive power. This behavior indicates that the nanobeam is in a

coherent state, an effect called phasing (phonon amplification by stimulated emission of

radiation) due to the analog behavior of optical lasers and is a well known phenomenon in

opto/-electromechanical systems [52, 260]. The amplitude follows the force acting on the

mechanical mode, showing a square root dependence to the average drive photons number.

The orange curve is a fit of a square root function to the down-sweep, the black dashed

curve is a fit to the up-sweep ignoring the low amplitude data. Both curves describe the

data (except from the threshold) very well and have reasonable overlap. We can drive

the mechanical motion to amplitudes above 50 nm, corresponding to one fourth of the gap

between nanobeam and ground without damaging the beam.

Coming back to the microwave spectrum, we observe a shift of the center frequency

towards lower frequencies, an observation that is not covered by the presented theory. The

bottom of Figure 6.20a plots the difference ∆ωc = ωmeasured−ωc against the drive photon

number n̄c, including a linear fit to the data. We observe a shift up to 500 kHz, more than

κ/2. Up to n̄c ≈ 0.64× 106, no shift is visible, strongly suggesting that it results from the

electromechanical coupling to the mechanical mode and the high amplitude mechanical

oscillation. We find that the cavity eigenfrequency depends linearly on the drive photon

number. This can be interpreted as a mechanically mediated Kerr nonlinearity, since the

average intra-cavity photon number n̄c is proportional to Pd. Additionally to the fact that

the frequency shift follows the mechanical amplitude, we do not see a shift of the cavity

resonance for a drive tone applied to the red sideband as done in Section 6.1, corroborating
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that the observed shift is mediated by the mechanical motion. Plotting ∆ωc against x0

reveals a parabolic dependency, as shown in Figure 6.20b.

The static shift of ωc = ω̃c + Gx̄ stated in Section 5.1 is not responsible for this

behavior. Even for high amplitudes, the shift of the steady state equilibrium position is

only dependent on the intra-cavity photon number. On the red sideband, we do not observe

a shift of ωc even for photon numbers exceeding 108, what is two orders of magnitude higher

than the maximum photonic excitation number in this measurement.

In the modeling of the mechanical sidebands, we have approximated the coupling to be

linear in the mechanical amplitude. However, for high mechanical amplitudes, this approx-

imation is no longer valid. The sinusoidal mechanical vibration introduces a pondermotive

force effectively shifting the mechanical resonance. To cover this behavior, in a first step

we take the full square-root into account (in contrast to Section 4.4, where we consider a

first order approximation). The cavity resonance, expressed as a function of mechanical

amplitude x0 then reads

ωc(x0) =

〈
ωc(x0 ≈ 0)√

1 + 1
C

(
Cg,0 +

∂Cg

∂x x0 sin(Ωmt)
)
〉
. (6.64)

Here, the brackets denote the time average over one mechanical oscillation. Note, that

we still have evaluated the coupling capacitance to first order. Furthermore, we keep

the approximation of a plate capacitor and describe the mechanical motion by its center

of mass motion and which is assumed to be sinusoidal. Evaluation of above expression

reveals a shift of ωc to higher values for increasing amplitudes, clearly in contrast to our

observations.

In the next step, we include the complete (but still simplified) expression of the coupling

capacitance. The approximation(
Cg,0 +

∂Cg

∂x
x0 sin(Ωmt)

)
(6.65)

is replaced by
Cg · d

d+ x0 sin(Ωmt)
(6.66)

according to Equation (4.7) and Equation (6.64) modifies to

ωc(x0) =

〈
ωc(x0 ≈ 0)√

1 + 1
C

Cg · d
d+x0 sin(Ωmt)

〉
. (6.67)

We numerically calculate the time average over this expression using Ωm/2π = 1.45 MHz,

d = 200 nm, C = 2π/4Zωc = 830 fF and the coupling capacitance extracted from the mea-

sured G, Cg = 1, 97 fF (see Section 4.4 for more details). The values reproduce the Kerr

like shift of the cavity resonance observed in the experiment. The square-root dependence

on the mechanical amplitude and the linear shift of the cavity resonance as a function of

drive photons n̄c (see Figure 6.20a) implies that the resonance frequency changes quadrat-

ically with amplitude. We assume an effective coupling g̃ between the cavity resonance

frequency and the mechanical amplitude. Then, fitting the function ωc = ωc(0) − g̃x2
0 to

the numerically extracted eigenfrequency shift gives g̃/2π = 88 Hz/nm2. This corroborates
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the value obtained by fitting the experimental data to a parabolic dependence, yielding

g̃/2π = 146 Hz/nm2. This is the only case in which the linear approximation of the cou-

pling between “optical” and mechanical mode does not describe the experiment in the

scope of the thesis. The mechanical amplitudes we extract from the data with the sim-

plified model describe the cavity shift properly, suggesting that the linear approximation

is valid to describe the sideband behavior. Within this thesis, only the shift of the cavity

resonant frequency is not covered by electromechanical theory.

In conclusion, we succeeded to drive the mechanical motion to high mechanical am-

plitudes using the force from the beat between drive and probe. The mechanical motion

leads to sidebands in the cavity transmission with a spacing of the mechanical resonance

frequency. We extract the mechanical amplitude by fitting the derived model to the data

showing values above 50 nm. The high amplitude mechanical motion leads to a Kerr like

shift of the cavity resonance to lower frequencies by more than half its linewidth. This

observation is not covered by the approximation of linear coupling assumed within the

model of electromechanics. Considering the full expression in Equation (6.67), connecting

the cavity eigenfrequency and mechanical amplitude explains the observed behavior. This

demonstrated, that even for high mechanical amplitudes, electromechanical theory covers

most of the observed phenomena correctly, corroborating the validity of this theoretical

approach.

6.5 Summary and discussion

In this chapter we have studied an electromechanical system in a two-tone configuration.

We have presented the theory to understand two-tone experiments with a strong drive tone

and a weak probe tone in close vicinity to the drive’s Stokes and anti-Stokes sideband.

We have in detail studied EMIT. In particular, we developed the theoretical model

to describe induced transparency effects and corroborated the theory with experimental

data. In our experiment, two mechanical modes were analyzed. For the one with stronger

coupling we observed a maximum linewidth broadening of Γeff/2π = 2.16 kHz for an av-

erage drive photon number of n̄c = 2.7 × 108, compared to the intrinsic linewidth of

Γm/2π = 7.7 Hz at a temperature of approximately 200 mK. The former corresponds to

an effective electromechanical coupling of g/2π = 20.6 kHz, implying a cooperativity of

C = 294. Hence, we overcome a critical obstacle in reaching the quantum coherent cou-

pling regime (g � {n̄mΓm, κ}) [75] by exceeding the mechanical decoherence rate at 30 mK

of n̄mΓm/2π ≈ 1.18 kHz. To observe normal mode splitting [80, 112], we have to modify

the setup to allow for higher powers or increase the electromechanical coupling by about

a factor of 10, what can be achieved with current fabrication technology [120]. Together

with the low thermal decoherence rate of Γmn̄m/2π ≈ 1.29 kHz observed at temperatures

of 32 mK (see Section 4.5.2), an increased coupling promises access to the quantum coher-

ent coupling regime [75] thus allowing for coherent state transfer from the “optical” to the

mechanical mode.

With the measurement of g0 in Section 5.2.2, the electromechanical linewidth broad-

ening allows to estimate the damping of the input microwave line, giving an attenuation

of 65.5 dB.

Characterization of the second mode reveals a broader linewidth of Γm,op/2π = 13.4 Hz

and a weaker coupling to the microwave cavity, g0,op/2π = 0.39 Hz.
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We also have performed a systematic study of the mechanical linewidth as function

of the detuning of the drive field with respect to the cavity. Our results show that the

electromechanical linewidth broadening depends on both power and frequency of the drive

field. We have compared the derived expressions describing the EMIT feature with the

data for a drive frequency sweep up to ∆ = 0. Our results clearly show that the approxi-

mations made in the theoretical modelling lead to significant changes between prediction

and measurement for a ∆ > κ.

The strong dispersion due to EMIT allows for generating group delays at frequencies of

the mechanical transmission feature, the highest delays are predicted at optimum detuning.

We will analyse this effect in the next chapter. Observation of EMIT is also a prerequisite

for electromechanical state swapping between electromagnetic and mechanical mode.

Further, we have analyzed the counterpart of EMIT for a blue detuned drive tone,

EMIA. In two-dimensional spectroscopy experiments we have measured the probe power

transmission as a function of the drive and probe tone detuning for a wide range of drive

tone powers. For optimal detuning of the drive tone we show that the absorption of

microwave signals at cavity resonance can be varied by more than 25 dB on adjusting the

power of the drive tone by a factor of two. We demonstrate a minimum normalized power

transmission of 0.0046 in a very narrow absorption window of ∆ω/2π = 5 Hz at ω/2π =

6 GHz, resulting from line narrowing in the dressed mechanical system. Even narrower

band pass filters have been achieved at larger drive powers, however with increased probe

power transmission. Our results clearly demonstrate that the studied electromechanical

system can be applied to filter out extreme narrow frequency bands (∼Hz) of the much

wider frequency band (∼MHz) defined by the linewidth of the microwave cavity. The

amount of absorption as well as the filtering frequency are tunable around the cavity

resonance over about 1 MHz by adjusting the power and frequency of the drive field.

At high drive power we observed parametric amplification of the weak probe tone.

However, due to the low mechanical loss rate of the nanomechanical beam (Γm/2π = 11 Hz)

the drive power range for parametric amplification is very narrow, the beam rapidly starts

to perform self-oscillations and eventually shows phonon lasing. Experiments exploring

this regime are in progress.

The increase of the probe power in an EMIT configuration leads to nonlinear oscillations

of the nanobeam. In contrast to an increase of the drive power, no additional linewidth

broadening compensates the increasing force from the beat between drive and probe tone

driving the mechanical motion. We have used this effect to experimentally demonstrate

mapping of a Duffing type nonlinearity into the µ-wave regime exploiting the nonlinearity

of the mechanical oscillator.

To demonstrate the effect of high amplitude mechanical motion on the microwave

cavity, we have exploited an EMIA configuration to bring the mechanical oscillator into

the phonon “lasing” (phasing) regime, where it performs undamped self-oscillations. We

observe sidebands in the cavity transmission separated by the mechanical resonance fre-

quency. We show that we can extract the mechanical amplitude from the depth of the

sidebands. The data show amplitude values above 50 nm. Additionally, the high amplitude

mechanical motion shifts the cavity resonance to lower frequencies by more than half its

linewidth. This is essentially a mechanical Kerr effect. The mechanical amplitude follows

the square root of the drive power leading to a shift linearly depending on the number

of drive photons. This effect is not covered by the approximation of linear coupling as-
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sumed within the model of electromechanics. We consider the full connection between

cavity resonance and mechanical amplitude to calculate the observed behavior, showing

good agreement to the data. The extracted mechanical amplitude is based on the theory

of electromechanics, which does not to include higher order terms. This provides evidence

that even for high mechanical amplitudes, electromechanical theory covers most of the

observed phenomena correctly.



Chapter7
Electromechanics in the time domain

After having presented a systematic spectroscopic analysis of the electromechanical sys-

tem, we now switch to experiments in the time domain. Doing so, we focus on electrome-

chanical systems in the EMIT configuration. The dynamics of multi-tone excitation in

electromechanics offer applications ranging from the generation of slow light [87,116] over

(quantum) state transfer between microwave cavity and mechanical oscillator [37,130,131]

to the connection of systems residing in arbitrary frequency regimes [39–42,132,133].

The strong phase shift at the transparency peak in EMIT suggests the generation of

slow light, similar to its analog EIT [121–123]. Here, we analyze in detail the delay of

probe pulses at the cavity resonance as a function of detuning and drive power for a fixed

continuous drive tone at optimum red detuning.

We change the configuration to a continuous probe tone and a pulsed drive tone to

analyze the ring up and -down behavior of the mechanical oscillator. We find that the

mechanical amplitude rings up according to its electromechanically broadened linewidth

for a present pump tone. When switching off the drive, the mechanical amplitude decays

to its thermal equilibrium amplitude with its intrinsic linewidth.

We use the fact, that the mechanical oscillation prevails to study the switching dy-

namics of the probe tone. Counterintuitively the transparency effect’s switching dynamics

is dominated by the fastest timescale of the system, the cavity decay time and not the

slowest one defined by the nanobeam’s decay time.

7.1 Slow light in electromechanical systems

The strong phase shift in the frequency domain coming with electromagnetically induced

absorbtion (EIT) in atomic clouds [118] gives rise to a decreased group velocity of light

passing through the medium [121–123], so-called slow light. For a review of EIT see

Ref. [259] and for a comparison of different realizations of slow light see Ref. [262]. Even

stopping the light and storing it inside the medium has been demonstrated [263].

The analogy between EIT and EMIT [115] can be extended to the concept of slow

light. In this section we derive and experimentally demonstrate the delay of probe pulses

in an EMIT configuration with an optimally red detuned drive tone. By analyzing the

drive power dependency we show a maximum delay of more than 16 ms close to the pre-

dicted maximum value of 19.4 ms for a probe pulse centered exactly around the anti-Stokes

103
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Figure 7.1: Schematic of a group delay. A probe wavepacket travels through a measurement

setup, passing the sample under investigation. If additionally a control field (or driving field

in terms of EMIT) is applied, the envelop of the wavepacket is delayed, i.e. the group velocity

vg is reduced. The phase velocity vp of a wavefront remains unchanged.

sideband. For detunings of the probe pulse the achievable maximum delay monotonously

decreases while the cooperativity (and thus the drive power) to achieve this delay in-

creases. Advancing of pulses, i.e. negative group delays are observed for small deviations

of the probe pulse center from the ideal configuration. To take the dispersive shift of the

microwave cavity into account we modify the group delay function and achieve excellent

agreement with theory.

7.1.1 Theoretical details

The group delay of a wavepacket with central frequency Ω0 is given by [264]

τg = −dφ(ω)

dω

∣∣∣∣
Ω0

, (7.1)

where φ(ω) is the phase of a transmission spectrum at frequency ω. The relation between

delay and phase is easy to see. Suppose an arbitrary wavepacket at a given coordinate z0
1,

A(ω, t) = Ã(ω) exp(−i(ωt+ k(ω)z0)) ≡ Ã(ω) exp(−i(ωt+ φ(ω)) . (7.2)

Here, Ã(ω) is the envelope function and k(ω) = ω n(ω)/c the k-vector defined by the

dispersion relation with the frequency dependent refractive index n(ω) and the speed of

light c. The wavepacket is now assumed to travel through a medium from z = 0 to z = z0

where its group velocity experiences a reduction vp = dω/dk < c. The delay compared to

passing the distance in free space reads

τg =
z0

vp
− z0

c
=

d

dω

(z0

c
(ω n(ω)− 1)

)
=
dk

dω
z0 =

dφ

dω
. (7.3)

The constant factor z0/c defines a global phase that can be adjusted experimentally. The

sharp transparency window in EMIT goes along with a steep phase shift along the peak

induced by the mechanical displacement. Figure 7.2 shows the phase for an optimally

1without loss of generality, it is sufficient to restrict the discussion to one spatial dimension
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Figure 7.2: Phase spectrum at the transparency window, measured at 35 mK with a drive

power of −49.5 dBm. The orange line is a fit to Equation 7.4. The inset shows the full phase

spectrum of the cavity in EMIT configuration.

red detuned drive tone with a power of Pd ≈ −49.5 dBm at cavity resonance (purple

points), measured in fridge No.2 at 35 mK. The orange curve is a fit to the phase using

the approximation given in Equation (7.4), agreeing well with the data. The only fit

parameters used are the drive power and a constant phase offset. The inset shows the

complete phase spectrum of the mechanical resonance.

To calculate the group delay in the case of EMIT, we expect the group delay to be most

prominent at optimum detuning (∆ = −Ωm). We will restrict ourselves to this case and

allow the probe signal’s center frequency to vary slightly from the anti-Stokes sideband

(Ω ≈ Ωm). This allows to simplify the transmitted field for a system in the resolved

sideband as discussed in Section 6.1 (see Equation (6.2)) to

t(Ω) = 1− κex/2

i(∆ + Ω) + κ/2 +
g2
0 n̄c

i(Ω−Ωm)+Γm/2

≈ 1− κex/2

κ/2 +
g2
0 n̄c

i(Ω−Ωm)+Γm/2

. (7.4)

The approximation is based on the fact, that the phase of the microwave cavity is almost

constant in a wide range around the mechanical resonance. Figure 7.3 shows a comparison

of the power and corresponding phase spectrum of the full transmission theory (black) and

above approximation (red dotted) for a drive photon number of 1.5 × 107 (cooperativity

of C = 1.1). The remaining parameters are similar to those of the studied sample. Up to

a probe frequency detuning δ/2π ≈ ±1 kHz, the curves overlap very well. The phase of

the transmitted field is given by

φ(Ω) = arctan

(
Im (t(Ω))

Re (t(Ω))

)
. (7.5)

The group delay is then given by

τg = − 1

1 + [Im (t(Ω))/ Re (t(Ω))]2
d

dΩ

(
Im (t(Ω))

Re (t(Ω))

)
. (7.6)

After some basic algebra and using the abbreviations C = 4g2n̄c/(κΓm), δ = Ω− Ωm and

ηc = κex/κ, the group delay is obtained without any further assumptions to [87]

τg = −
2ηc

1−ηc ·
C

Γm(
2δ
Γm

)2
+ (1 + C)2

·

(
2δ
Γm

)2
− λ(1 + C)(

2δ
Γm

)2
+ λ2

, (7.7)
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Figure 7.3: Comparison of the full transmission spectrum (black) and the approximation accord-

ing to Equation 7.4 (red dotted) at optimum detuning for a drive photon number of 1.5× 107

(cooperativity of C = 1.1). The other parameters are comparable to those of the studied

sample. a) shows the power spectrum, b) the corresponding phase spectrum.

with λ = 1 + C
1−ηc

. For values |δ| > Γm/2, the group delay can become negative. This

implies, that for an appropriately chosen cooperativity, EMIT can delay wavepackets as

well as advance them by changing the wavepackets centerfrequency on a small scale.

The group delay according to Equation (7.7) is maximal for δ = 0. It is instructive to

analyze the group delay at this point. For δ = 0, Equation (7.7) simplifies to

τg =
2ηcC

(1 + C − ηc)(1 + C)
Γ−1

m . (7.8)

A useful value to quantify group delays is the delay-bandwidth product [265], where the

bandwidth is defined as the bandwidth a pulse can have without being distorted by the

system introducing the group delay. This implies that the pulse viewed in frequency space

completely fits into the frequency window where the system under investigation has the

steep phase dispersion. In the case of EMIT, the bandwidth is given by the electromechan-

ically broadened transmission window, ∆Ωg = Γm(C + 1). The delay-bandwidth product

can be written as

τg ·∆Ωg =
2ηcC

1− ηc + C
. (7.9)

To increase the product a high cooperativity is favorable, we then can approximate τg ·∆Ωg ≈
2ηc [116]. For κex ≈ κ, meaning that all internal losses are negligible, the product reaches

a value of 2. For δ = 0, the group delay reaches its maximum for Copt =
√

1− ηc when

dτg/dC = 0,

τmax
g =

2(1−
√

1− ηc)
2

ηcΓm
, (7.10)

To tune the maximum delay, the cavity needs negligible internal losses and the mechanical

mode needs very low dissipation. The coupling to the feedline or detection circuitry is not

a critical parameter, as long as the external losses are dominating the system, κex ≥ κin.

For increasing detuning the group delay approaches zero.
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Figure 7.4: Schematic setup to experimentally investigate the group delay in an electromechan-

ical system. A µ-wave source provides the driving field and is combined at room temperature

with the output of a second source, providing the probe pulses. The combined fields are fed

into the dilution fridge and analyzed with a spectrum analyzer in time domain centered at

the probe frequency after passing the sample and an amplifier chain. An arbitrary waveform

generator shapes the Gaussian pulses by amplitude modulation and triggers the measurement.

7.1.2 Setup

To demonstrate the group delay in an electromechanical system, we will show data from

both dilution fridges. We acquired the data in fridge No.1 at temperature of approximately

200 mK, in fridge No.2 at a temperature of 32 mK. As long as not noted differently, we

show data from fridge No.1. The internal and external wiring are similar in both setups,

the amplifiers, sources and analyzers are the same, only the damping varies, what is

compensated for by postprocessing of the data.

Figure 7.4 shows a schematic of the setup. We use a Rhode&Schwarz SMF microwave

source to provide the driving field at the optimum red detuning. A second SMF source

generates the probe signal with a centerfrequency close to the µ-wave cavity, i.e. at the anti-

Stokes sideband. Both signals are combined with a power splitter and fed to the sample via

heavily attenuated coaxial line. After passing a cold HEMT amplifier, a Rhode&Schwarz

FSV9 spectrum analyzer in time domain modus detects the signal at the probe frequency.

To generate the Gaussian pulses an arbitrary waveform generator (LeCroy ArbStudio

1104D) modulates the amplitude of the probe signal. It also triggers the signal detection.

The sample is the same nanoelectromechanical sample as presented in Section 4.1,

consisting of a Nb quarterwave cavity centered at ωc/2π = 6.07 GHz with an external

coupling rate of κex = 339 kHz and a total loss rate of κ/2π = 759 kHz. A nanomechanical

double layered nanobeam with an eigenfrequency of Ωm/2π ≈ 1.45 MHz and a linewidth

of Γm/2π = 12 Hz at 200 mK (Γm/2π = 2.5 Hz at 32 mK) is capacitively coupled to the

voltage antinode of the cavity. The electromechanical coupling rate is g0/2π = 1.26 Hz.
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Figure 7.5: Color-coded representation of the Gaussian shaped probe pulses as a function of

power on a dB scale and detection time. The group delay is clearly visible at a power of

approximately −65 dBm. The drive field is optimally red detuned, the frequency detuning of

the drive field away from cavity resonance is |δ|/2π = 1.2 Hz at a power of Pd = −104.5 dBm.

The inset shows a detected non delayed gaussian pulse. The curve was adapted from Ref. [87].

With these parameters, the optimum cooperativity at zero detuning is Copt(δ = 0) ≈ 0.74.

7.1.3 Experimental demonstration of group delay

To demonstrate the group delay we apply a driving tone with fixed frequency of ∆ ≈ −Ωm

and Gaussian shaped probe pulses centered close to the cavity resonance with a fixed

weak probe power of Pd = −104.5 dBm. To avoid pulse distortion occurring for pulses

with a spectral width exceeding the electromechanically broadened transparency peak with

Γeff = Γm(1 +C), we chose the full width half maximum duration to ∆t ≈ 83 ms > 1/Γm

at 200 mK (∆t ≈ 417 ms > 1/Γm at 32 mK). 1/Γm is the lower limit for a pulse width

in time domain to fit into the transparency window for all pump powers. To define the

zero delay time τ = 0, a calibration probe pulse propagates through the setup for a pump

power weak enough not to create EMIT. Figure 7.5 shows the surface plot of a pump power

sweep from −85.5 to −45.6 dBm. The transmitted pulse is plotted as a function of power

on a dB scale and detection time. The probe pulse’s center frequency is slightly detuned

from the anti-Stokes sideband due to small temperature variations, |δ|/2π = 1.2 Hz. The

group delay is clearly visible and peaks at a power of approximately −65 dBm. The inset

shows the pulse envelope in time domain.

To estimate the group delay, we fit a Gaussian to the pulse in the time domain, analyze

the time the peak value is detected and subtract the time at which the calibration peak

is detected. In Figure 7.6a, the curve labeled with “1” shows such a fit of the data
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Figure 7.6: a)Fitted group delays versus drive power for a detuning of |δ|/2π = 1.2 Hz (set 1),

|δ|/2π = 5.4 Hz (set 2), |δ|/2π = 10 Hz (set 3), |δ|/2π = 44 Hz (set 4), respectively. The

black curves are fits to the full model given in Equation 7.7. b) Maximum group delay for a

given detuning |δ| (red curve) and the optimum cooperativity Copt (blue curve) the value is

achieved for. The curves were adapted from Ref. [87].

presented in Figure 7.5. The remaining datasets show the group delay for a detuning of

|δ|/2π = 5.4 Hz (set 2), |δ|/2π = 10 Hz (set 3), |δ|/2π = 44 Hz (set 4), respectively, plotted

against the drive power. The black curves are fits of Equation (7.7). The dataset 3 and 4

show clearly a negative group delay as predicted. Curve 1 shows the highest group delay

of τg ≈ 3.9 ms, close to the maximally expected value of τmax
g = 4.0 ms.

Figure 7.6a shows that for increasing detuning, the maximum group delay monotoni-

cally decreases. In Figure 7.6b these values are extracted from Equation (7.7) (red curve).

The optimum cooperativity to reach this value is included as well (blue curve). For in-

creasing detuning the cooperativity to reach the maximum delay increases as well. The

accompanying linewidth broadening corrects the strongest phase change towards the cen-

ter of the pulse. This comes at the cost of a lower maximum delay, since a broadened

transparency window has a weaker phase slope in frequency domain.

Studying the group delay as a function of detuning is difficult in cryostat No.1 since

we observe temperature fluctuations, leading to frequency fluctuations of the setup on

the scale of several Hz. We explored the relation between group delay and detuning δ in

fridge No.2 at a temperature of 32 mK. This also reduces the mechanical linewidth (cf.

Section 4.5.2) to a value of Γm/2π ≈ 2.5 Hz. Therefore, we expect to observe an increased

group delay. Figure 7.7 shows the group delay as a function of detuning at two different

pump powers of Pd = −68 dBm in a) and Pd = −72 dBm in b). These drive powers result

in higher cooperativities than Copt(δ = 0), Ca ≈ 3.25 and Cb ≈ 1.29, respectively, so we

do not expect to detect the maximally achievable group delay.

The maximum group delay observed is τg ≈ 16 ms, a factor of 4 higher than in the

measurements at higher temperatures and close to the expected maximum delay of τmax
g =

19.4 ms. This corresponds to a group velocity vg = 0.3 m/s, when we assume the pulse

passes the length of the microwave cavity. The delay corresponds to a cable length of

approximately 2000 km.

The group delay decreases for increasing detuning |δ| 6= 0 until it reaches negative values
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Figure 7.7: Group delay as a function of detuning for two different drive powers measured in

fridge No.2 at a temperature of 32 mK. The red lines are fits of function (7.7). The orange

lines represent numerical fits of the phase dispersion of EMIT, where the dispersive shape of

the microwave cavity has been taken into account. The data in a) were acquired with an drive

power of Pd = −68 dBm, the data in b) with drive power of Pd = −72 dBm.

of down to −5 ms. On a scale of |δ|/2π ∝ 5 Hz, we can tune the group delay over more

than 20 ms. The red line in Figure 7.7 is a fit to Equation (7.7). The phenomenological

behavior of the group delay is captured by this fit and reproduces the mechanical linewidth

and drive power, we used as fit parameters. Still we see that the fit does not account for

the asymmetry of the wings. The asymmetric behavior originates from the dispersive

shape of the microwave cavity as shown in Figure 6.5. In amplitude-phase space this shift

corresponds to a rotation of a small angle. This effect results from interference of the

detected signal with traveling waves on the ground plane and is commonly observed. We

introduce a small complex term as approximation to a small rotation in Equation (7.4), see

Appendix A.5 for more details. In this case, the outcome cannot be simplified to a simple

expression as before. Fitting the resulting phase dispersion to the data in Figure 7.7 gives

the orange curves. Evidently, the resulting fit parameters agree very well with the ones

from fitting Equation (7.7). The good agreement between data and theory corroborates the

assumption that the dispersive microwave cavity spectrum causes the asymmetric wings.

In summary, we have evaluated the theoretical background supporting slow light in

electromechanical systems. The data agrees excellently with the theory for both variation

in drive power and detuning. At points where this is not the case, we are able to modify

the theory to adapt additional features. We demonstrate a group delay of up to 16 ms

corresponding to a cable delay of about 2000 km. The theoretical evaluation is valid for

EMIA as well, only Equation (7.4) has to be modified. For cooperativities C ≥ 1− ηc, the

group delay switches sign at δ = 0 and becomes positive for all values of δ. Due to the

electromechanical linewidth narrowing group delays up to 300 ms should be observable (see

Figure 7.8), still the maximum delay-bandwidth product remains 2. The bandwidth de-

creases proportional to the mechanical linewidth, the huge delays do not give a qualitative

improvement.

One approach to increase the delay-bandwidth product is to use arrays of systems [266].

This has successfully been realized with photonic crystal cavities, combining up to 500

cavities [267]. Chang et al. [125] have proposed a similar scheme using optomechanical

arrays, leading to a group delay that scales with ∆Ω · τ = min{
√

2Nκexκ, (6πN
2)1/3},
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Figure 7.8: Group delay of an electromechanical system in EMIA configuration. a) shows the

group delay as a function of detuning for a cooperativity of C = 0.1 (purple), C = 0.5 (red)

and C = 11 (orange). The group delay is plotted as a function of cooperativity in b) for

various detunings of δ/2π = 1 Hz (pink), δ/2π = 2 Hz (blue) and δ/2π = 4 Hz (light blue).

The parameters used in this simulation are the one of the sample under investigation at a

temperature of 200 mK. For a cooperativity higher than 1, the mechanical mode starts lasing,

not captured by the theory of EMIA.

where N is the number of optomechanical systems. With arrays of this type even storage

of light should be possible. Altogether, electromechanical systems are promising elements

to delay and even store pulses even in the quantum regime.

7.2 Pulse control

We now turn the discussion to the modulation of the drive field. The effective electrome-

chanical coupling g depends on the average intra-cavity photon number n̄c, g = g0
√
n̄c, a

pulsed drive field modulates the coupling between optical mode and mechanical oscillator.

In this section we analyze an electromechanical system in EMIT configuration incor-

porating a pulsed drive field optimally detuned from cavity resonance and a continuous

probe tone. We theoretically and experimentally study the ring up and ring down of the

mechanical amplitude in presence and absence of the drive tone, respectively. We find that

the enhanced electromechanical coupling due to the drive tone leads to a mechanical ring

up time scaling with the electromechanically broadened linewidth tru = 2/Γeff , while on

switching off the drive field the mechanical amplitude decays on a much slower timescale

with its initial linewidth trd = 2/Γm.

Further, we demonstrate switching of a transmitted continuous probe tone as function

of the power of an optimally red detuned drive tone. We show that the asymmetry of ring

up and -down of the mechanical amplitude leads to a switching behavior that is limited

by the cavity decay time 1/κ in contrast to most physical systems that are limited by the

system’s slowest dynamics, here 1/Γm.

The experiments presented in this section are prerequisites for more complex protocols

like the transfer into, storage in and retrieval of mechanical states [37, 131]. A second

promising application is the swapping or entanglement of states between otherwise incom-

patible systems [39–42].
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Figure 7.9: Schematic of the pulse scheme to study electromechanical switching. A driving

field at optimum red detuning is switched to induce mechanical motion. When switched on, a

probing field monitors the ring up of the EMIT feature. Additionally the anti-Stokes sideband

of the probing field is detected to analyze the mechanical ring down. The figure is adapted

from Ref. [87].

7.2.1 Electromechanical switching

An EMIT configuration is ideal to analyze the switching behavior of electromechanical

systems (cf. Figure 7.9). To observe the dynamics of the system, a driving field, tuned to

the red sideband induces a resonant force on the mechanical mode due to the beat between

drive and probe field described in Section 6.1. Additionally, it induces electromechanical

interaction like mechanical linewidth broadening. By pulsing the driving field, dynami-

cal behavior is induced when switching. A probe tone at cavity resonance monitors the

dynamical interaction, say the ring up of EMIT. To observe the mechanical motion for a

switched off driving field where no induced transparency effect is visible, we also monitor

the evolution of the anti-Stokes scattered field of the probe tone.

To understand the switching in an optimally detuned EMIT configuration, we first

analyze its dynamics. For this purpose, we start with equations (6.15)–(6.17). To capture

the time dependence we allow the amplitudes to become time dependent:

δa(t) = A−(t)e−iΩt +A+(t)e+iΩt , (7.11)

δa∗(t) =
(
A+(t)

)∗
e−iΩt +

(
A−(t)

)∗
+ e+iΩt , (7.12)

δx(t) = X(t)e−iΩt +X(t)∗e+iΩt . (7.13)

The intra-cavity phonon number n̄c is assumed to be at a constant value, either n̄on

or n̄off ≈ 0 for switched on or switched off driving field, respectively. The same is true

for the corresponding field ā with ā2 = n̄c. We plug the above ansatz in Equation (6.13)

and (6.14), ignore nonlinear higher order terms and sort after the rotating terms. As in

Section 6.1, only the terms with exp(−iΩt) contribute:

d

dt
A−(t) +

(
−i(Ω + ∆) +

κ

2

)
A−(t) = −iGāX(t) +

√
κex

2
sp , (7.14)

d

dt
A+(t) +

(
i(Ω−∆) +

κ

2

)
A+(t) = −iGāX(t)∗ , (7.15)

d2

dt2
X(t) +

d

dt
X(t)(Γm − 2iΩ) + (Ω2

m − Ω2 − iΓmΩ)X(t) = −~Gā
meff

(
A−(t) +

(
A+(t)

)∗)
.

(7.16)
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Assuming the resolved sideband regime, we can neglect the Stokes field A+(t) = 0. The

low mechanical damping allows to assume a slowly varying mechanical amplitude, on scales

much smaller than the mechanical resonance frequency Γm � Ωm. We can neglect Γm in

the first time derivative for the probe field close to the anti-Stokes field, Ω ≈ Ωm. We can

further ignore Ω2
m − Ω2. For a close but off resonant probe tone, the latter leads to an

oscillatory term in the complete solution with the frequency difference exp(−i(Ω− Ωm)).

The slow mechanical modulation function allows to neglect the second order derivative,

d2X(t)/dt2 � Ω · dX(t)/dt. The above set of equations then reduces to

d

dt
A−(t) +

(
−i(Ω + ∆) +

κ

2

)
A−(t) = −iGāX(t) +

√
κex

2
sp , (7.17)

−2iΩ
d

dt
X(t)− iΓmΩX(t) = −~Gā

meff
A−(t) . (7.18)

The first equation has two solutions, one for switching on the drive field, one for switching

it off. The solution for the former reads (for switching on at t = 0):

A−(t) = −
√
κex

2

sp

i(Ω + ∆)− κ
2

+
iGX(t)āon

i(Ω + ∆)− κ
2

(
1− ei(Ω+∆)t−κ

2
t
)
, (7.19)

and the switching-off dynamics reads for negligible āoff (for switching off at t = 0).

A−(t) = −
√
κex

2

sp

i(Ω + ∆)− κ
2

+
iGX(t)āon

i(Ω + ∆)− κ
2

ei(Ω+∆)t−κ
2
t , (7.20)

Working at optimum detuning with a probe tone on the anti-Stokes sideband (∆ = −Ωm

and Ω = Ωm), the complex term in the exponential function is zero. Note, that in this

configuration the field rings up/down on a timescale 2/κ. For times exceeding this value

the dynamics of the intra-cavity field amplitude is only determined by the dynamics of the

mechanical mode (depending on switching on or off, ā = āon or ā = āoff),

A−(t) =
−iGX(t)ā+

√
κex
2 sp

κ/2
. (7.21)

This solution modifies Equation (7.18) to

d

dt
X(t) = −Γm

2

(
1 + Con/off

)
X(t)−

ig0āxzpf

κ/2

√
κex

2
sp , (7.22)

where we have replaced Gxzpf = g0 and 4g2
0n̄on/off/(Γmκ) = Con/off .

Switching-on dynamics of the electromechanical system

We assume the driving field to be switched on at t = 0. The initial mechanical displacement

results from the Brownian motion of the beam, X(0) ≈ 0. Equation (7.22) then has the

solution

X(t) = Xss

(
1− e−

Γeff
2
t
)
, (7.23)

with the steady state amplitude

Xss = −
i4g0āonxzpf

Γmκ

1

1 + Con

√
κex

2
sp . (7.24)
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The mechanical mode rings up to its steady state amplitude at the rate Γeff/2 = (1 +

C)Γm/2. Stepping back to Equation (7.21) and using the solution of X(t), we get

A−(t) =
−i Con

1+Con

(
1− e−

Γeff
2
t
)

+
√

κex
2 sp

κ/2
. (7.25)

We see that the intra-cavity field decays from an initial amplitude, given by the probe field

A−(0) =

√
κex/2

κ/2 sp to a steady state amplitude Ass = −iCon/(1 + Con) +

√
κex/2

κ/2 sp with

a rate Γeff/2. By observing the intra-cavity ring down, which results in the transparency

window we have access to the mechanical ring up time. The result of Γeff is what one

would naively expect:

When switching on the driving field, the intra-cavity field n̄c saturates quickly com-

pared to the mechanical timescales. The mechanical mode experiences electromechanical

linewidth broadening before ringing up due to the driving force.

Switching-off dynamics of the electromechanical system

As mentioned above, when switching off the drive field, the intra-cavity photon number n̄off

decays to zero at a rate of κ/2 in the same way as the corresponding electromechanical

coupling g = g0
√
n̄c. As a result, the mechanical loss rate relaxes to its initial value,

Γeff = Γm on the same timescale. However, the mechanical oscillation prevails. With the

driving tone switched off, the intracavity field increases to a constant value, given by the

present probe field, A−(t) ≈
√
κex/2

κ/2 sp, modifying the differential Equation (7.22) to

d

dt
X(t) = −Γm

2
X(t)−

ig0āxzpf

κ/2

√
κex

2
sp . (7.26)

The constant intra-cavity field amplitude at the probe-frequency does not allow to monitor

the mechanical decay. For this purpose, we monitor the anti-Stokes sideband of the probe

tone at the frequency ωc + Ωm. The ring down of the mechanical displacement amplitude

leads to a proportionally decreasing sideband amplitude. This is due to the parametric

coupling; the number of anti-Stokes scattered photons is proportional to the mechanical

amplitude multiplied by the cavity filter function at the frequency ωp + Ωm. In principle

the proportionality between scattered photons and mechanical displacement amplitude also

modifies the probe field at cavity resonance. Yet, the number of scattered photons is very

small. For a rough estimate one can compare the depth of the dip in the cavity resonance

in Equation (6.53)2 for x0 ≈ 0 and x0 ≈ 1 nm (what is already highly exaggerated). The

result is of the order of 10−4 and can be neglected in our calculations. The assumption of a

constant probe field with negligible backation from the mechanical mode in our calculations

is justified. Detection of this change is in general possible, however observing the anti-

Stokes field (or the Stokes field) gives a higher contrast.

7.2.2 Setup

We study the switching behavior of an electromechanical system in cryostat No.1. We

measure a temperature of approximately 100 mK inside the mixing chamber. The sample

2To recall, this equation gives the transmission spectrum of a microwave cavity being subject to elec-

tromechanical coupling to a sinusoidal, mechanical mode.
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Figure 7.10: Schematic setup to study switching in an electromechanical system. A µ-wave

source provides the pulsed driving field and is combined at room temperature with a second

source, providing the probe tone. The combined fields are fed into the dilution fridge, passing

the sample and an amplifier chain and analyzed with a spectrum analyzer in time domain

centered at the probe frequency or the blue sideband of the probe at ω = ωc + Ωm to study

the ring up and ring down behavior, respectively. An arbitrary waveform generator generates

rectangular pulses by pulse modulation and triggers the measurement.

is the same one, presented in Section 4.1. Unfortunately, the sample is not well thermalized

at this temperature; the mechanical linewidth drifts between Γm/2π ≈ 5 Hz and 8 Hz. The

latter corresponds to a temperature of 200 mK (see Figure 4.13). We assume a mechanical

linewidth of Γm/2π ≈ 8 Hz in the first data set. Due to technical reasons the second

set of experiments demonstrating the switching speed are performed at approximately

300 mK. This leads to an increase of the mechanical linewidth from Γm/2π ≈ 8 Hz to

Γm/2π ≈ 13 Hz.

A Rhode&Schwarz SMF microwave source provides the pulsed driving field at optimum

red detuning, ∆ = −Ωm. A second source of the same type creates the continuous probe

signal at cavity resonance Ω = Ωm. A power divider combines both signals at room tem-

perature. Heavily attenuated coaxial lines guide the tones to the sample. After passing the

sample, a circulator at still temperature (0.7 K) and an amplifier chain, a Rhode&Schwarz

FSV9 spectrum analyzer in time domain configuration detects the signal. To study the

ring up, it is centered at the cavity resonance ωc. To analyze the ring down, the center fre-

quency is set to the anti-Stokes sideband of the probe tone ωc + Ωm. A LeCroy ArbStudio

1104D arbitrary waveform generator shapes rectangular drive pulses via pulse modulation

and triggers the measurement.
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Figure 7.11: a) shows the transmitted probe field amplitude on a voltage scale of a typical

ring up measurement, the orange line is an exponential fit to the data. A typical ring down

measurement of the transmitted amplitude of the probe tone’s blue sideband is shown in b).

The solid orange line is a fit to the data. The peak at t ≈ 10 ms is an artefact from switching

off the driving field. The drive power in both curves is Pd = −65.5 dBm. Note the different

scales of the voltage axis.

7.2.3 Experimental demonstration of mechanical ring up and ring down

We apply drive pulses with 150 ms length to ensure the mechanical mode and thus the

intra-cavity field saturates. The driving fields power is swept from Pd = −75.5 dBm to

−55.5 dBm. The probe tone is continuous at a drive power Pp = −95.5 dBm. A dataset

acquired at Pd = −65.5 dBm is shown in Figure 7.11. From the ring up measurement of the

probe tone shown in Figure 7.11a, we extract the rise time of the mechanical displacement

amplitude tru = 1
Γeff/2

by fitting Equation (7.25) to the data (orange line). By fitting an

exponential decay to the ring down of the blue sideband shown in Figure 7.11b (orange

line), we extract the undisturbed mechanical decay time trd = Γm
2 .

The extracted, characteristic rise and decay times are plotted in Figure 7.12. For in-

creasing drive power, the rise time (light blue dots) remains constant and starts decreasing

at a Pd ≈ −69 dBm, down to less than 5 ms. However, this timescale is still long com-

pared to the rise and decay time of the µ-wave cavity, tµw = 2/κ ≈ 2µs. We see, that

the assumption made in the underlying theory are justified. The orange line is a plot

of tru = ((1 + C)Γm/2)−1 with an initial mechanical linewidth of Γm/2π = 8.5 Hz. This

corroborates our assumption that the effect occurs due to the electromechanical linewidth

broadening. The difference between data and plot occurs due to temperature fluctuations

of the sample. On switching off the probe field, no electromechanical coupling to this tone

is present. The mechanical mode decays with its natural linewidth. The ring down time

(hollow purple dots) stays constant around 2/Γm ≈ 38 ms for the whole drive power range.

7.2.4 Demonstration of electromechanical switching

Basing on the ring up and ring down dynamics, we analyze the system under the influence

of a pulsed drive tone. A long drive pulse with simultaneously switched on probe field

prepares the electromechanical system in its steady state. A series of rectangular shaped

drive field pulses with Ton = Toff is then sent to the sample while recording the probe

tone’s transmission. The probe field’s amplitude follows the drive pulses modulation on a

timescale of the cavity decay rate (see Figure 7.13 for switching times of 10 ms, 1 ms and

100µs). This counterintuitive result proves that switching in an electromechanical system
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Figure 7.12: Ring up/down time constant versus drive power. The purple dots show the decay

time of the anti-Stokes scattered photons of the probe field, when switching off the drive tone.

The ring up (light blue dots) time decreases as expected with increasing drive power. The

orange line is a plot of the model with an intrinsic mechanical linewidth of Γm/2π = 8.5 Hz.

is not limited by it’s longest timescale, the mechanical ring down time 2/Γm.

When switching off the drive tone, the mechanical oscillation relaxes to its equilibrium

position on this timescale. The black lines in Figure 7.13 show an exponential decay with a

linewidth Γm/2π ≈ 12.7 Hz with different initial amplitudes. The transmission of the probe

field drops on the cavity’s characteristic timescale 2/κ. In the on state, the force acting

on the mechanical mode results from the beat between drive field and probe field drives it

again towards it’s steady state value on a faster timescale 2/Γeff . The transmitted probe

signal follows the mechanical amplitude (see Equation 7.21). We achieve high contrast,

even for multiple pulse series for a switch off time fulfilling (κ/2)−1 < Toff < (1 + C)Ton.

The minimum time window for switching off scales linearly with the drive power and its

absolute minimum is defined by the cavity linewidth. The contrast also increases with

increasing drive power resulting from a higher mechanical amplitude, whereas the probe

power defines the level of the off state. Fluctuations due to the mechanical motion are

negligible as discussed above.

Using probe pulses instead of a continuous probe field will allow for storage of photonic

states by converting them into a coherent excitation of the mechanical mode [37, 42, 131].

Another application is the generation of Einstein-Podolsky-Rosen entangled states [126]

and the swapping of photonic states from one cavity mode into a second, distinct mode

as proposed in Refs. [39–42] and recently demonstrated in two proof of principle experi-

ments [132,133].

With the low thermal decoherence rate of Γmn̄m/2π ≈ 1.29 kHz at 32 mK and the

highest measured coupling of g/2π = 20.6 kHz, the system analyzed in this work should

allow for the demonstration of these protocols. Improvements of the measurements setup

to compensate for the necessary high drive powers are in progress.

7.3 Summary and discussion

In this chapter we have analyzed two dynamical effects in an electromechanical system in

an optimally detuned EMIT configuration, namely slow light and switching.
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Figure 7.13: Demonstration of the switching dynamics in an electromechanical system for dif-

ferent pulse lengths. From top to bottom, the pulse lengths are 10 ms, 1 ms and 100µs. The

drive powers increases from blue to red, the drive power is Pd = −73.5 dBm, −73.5 dBm,

−69.5 dBm, −65.5 dBm, −61.5 dBm and −55.5 dBm, respectively. The black lines are expo-

nential decays, describing the mechanical ring down for a linewidth of Γm/2π = 12.7 Hz for

the different initial amplitudes.

Slow light in an photonic crystal type optomechanical system was recently demon-

strated phenomenologically [116]. In our work, we demonstrate a true delay of probe

pulses [87].

We have derived a description of the delay of the group velocity of probe pulses centered

close to the cavity resonance as a function of detuning δ = Ω−Ωm of the probe pulse and

drive power for a continuous drive at ωd = ωc −Ωm. We have demonstrated group delays

of up to 16 ms showing that the delay decreases for increasing |δ|. The cooperativity and

thus the drive power to achieve maximum delay for a given detuning δ increases as well.

The maximum achieved delay corresponds to that of a cable of approximately 2000 km

or a group velocity of vg = 0.3 m/s. We show further that the delay bandwidth product,

characterizing the delay in terms of how many pulses fit into a given delay, does not exceed

2 in electromechanical systems.

By careful analysis of slow light as a function of detuning, we show that a detuning

exceeding the mechanical linewidth |δ| > Γm/2 allows for negative group delays, effectively

increasing the group velocity above the speed of light. Note, that this does not violate

causality. No information transfer faster than the speed of light takes place, since this
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implies discontinuities in the pulse shape in contrast to the smooth pulses studied here.

Integrating the dispersive shift of the cavity into the theory gives excellent agreement

to the experimental data, showing that we can tune the group delay over more than 20 ms

on variation of the detuning δ about 2π × 5 Hz.

Similar measurements in an EMIA configuration are expected to allow for observation

of delays higher than 300 ms. The electromechanical narrowing of the mechanical linewidth

is responsible for the strong dispersion. The experimental study of this huge delay requires

much longer pulses, as the delay bandwidth product remains 2.

To qualitatively increase the group delay, i.e. to increase the delay bandwidth product

Chang et al. [125] propose the use of optomechanical arrays, similar to other realizations

of slow light [266, 267]. With a sufficient large number of optomechanical arrays even the

storage of light will be possible, making these systems a good candidate to delay and even

store pulses in the quantum regime.

To demonstrate the switching of the transparency effect, we have analyzed the ring

up and ring down behavior of the mechanical mode in an EMIT configuration under the

presence and absence of the drive field. We show the timescale of the ring up is set by

the inverse electromechanically broadened mechanical linewidht 2/Γeff and thus depends

on the intensity of the drive field. On switching off the drive field, the driving force due

to the beat between drive and probe field vanishes and the mechanical amplitude decays

with its intrinsic linewidth to its thermal equilibrium amplitude.

In the next step we have used slow decay of the mechanical excitation to switch the

transparency effect on a timescale (κ/2)−1 < Toff < (1+C)Ton. We show that the dynamics

of the system is not defined by its slowest dynamics, the mechanical decay time 2/Γm but

by the much faster cavity decay time 2/κ.

The temporal control demonstrated in this work is a first step towards more complex

protocols to manipulate the state of the mechanical oscillator.

Besides the effects presented in this chapter different dynamical effects have been an-

alyzed in opto-/electromechanical systems employing pulsed schemes. Vanner et al. [128,

129] have studied the reconstruction and manipulation of the Wigner density of a me-

chanical oscillator. First steps towards coherent state transfer between the optical and

the mechanical oscillator have been shown in the optical domain [75, 131] and in the mi-

crowave domain [37]. These protocols will in turn allow to transfer states between two

cavities operating in different frequency regimes but sharing the mechanical mode pro-

posed in Refs. [39–42] and recently demonstrated in two proof of principle experiments

swapping light states between to modes of the same optical cavity [132,133].

The low thermal decoherence rate of the sample studied in this work of Γmn̄m/2π ≈
1.29 kHz at 32 mK combined with the highest measured coupling rate of g/2π = 20.6 kHz is

one order of magnitude below the quantum coherent coupling regime [75]. Improvements

of the measurement setup to allow for the necessary high drive powers are in progress.

On the technological side, increasing the electromechanical coupling by about one order of

magnitude is feasible with our production process. So far only classical coherent states have

been stored in the mechnical oscillator. Integration of a superconducting qubit into the

sample will allow the storage of quantized photonic states in the mechanical mode similar

to the work of O’Connell et al. [32], but with higher coherence times. The quantum drum

used in their work was limited by a higher decoherence than the qubit, what is no issue in

opto-/electromechanically cooled low-frequency mechanical devices.
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Chapter8
Summary and outlook

In this thesis we present the systematic study of a circuit nano-electromechanical hybrid

systems consisting of a superconducting microwave resonator and a nanomechanical beam.

The study was performed in close collaboration with the group of T. J. Kippenberg at the

École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland.

On the experimental side we have set up two low temperature (mK) systems allowing

for very sensitive microwave experiments. We demonstrate a high measurement precision,

only a factor 100 away from the Heisenberg limit with an imprecision noise of a factor

35 above the standard quantum limit of our device. This is comparable to similar setups

without Josephson parametric amplifier used to study electromechanical devices [69, 110,

120,255].

The particular sample studied in this work is a hybrid system incorporating a nio-

bium CPW microwave cavity, capacitively coupled to a Si3N4/Nb double layer nanobeam

operating in the resolved sideband regime (Ωm > κ). The nanobeam presents the first im-

plementation of this material system combining the advantages of highly stressed silicon

nitride and niobium. This allowed for a high mechanical quality factor of Qm = 5.60× 105

and a high mechanical frequency of Ωm/2π ≈ 1.45 MHz and a temperature of T = 32 mK.

The realization of the nanobeam from the same metallization layer used for the µ-wave

cavity reduces losses due to the absence of stray capacitances, which are unavoidable for

nanobeams structured by employing an additional superconducting layer [202]. In addition

to the ability to access the Duffing regime spectroscopically by driving the nanobeam, the

study of the intrinsic mechanical loss channels demonstrates that the electromechanical

hybrid systems provide an excellent platform to analyze intrinsic properties of (nano-)

mechanical oscillators.

A key parameter of the hybrid system is the electromechanical vacuum coupling. In our

quantitative analysis it has been determined to g0/2π = 1.26 Hz [87] using frequency noise

calibration [230], a technique which is applied for the first time to a system operating in

the microwave regime. This technique is complementary to temperature sweeps typically

used to calibrate devices and the input wiring. Using it for the study of nanomechanical

systems shifts the technological requirements from a variable temperature to the phase (or

frequency) modulation of the input field.

To understand the system parameters and to demonstrate the electromechanical behav-

ior, we carefully pre-characterize the electromechanical device and experimentally verify
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the most fundamental optomechanical features resulting from dynamical back-action. Us-

ing back-action cooling of the mechanical mode from an average occupation of n̄m(T =

30 mK) ≈ 500 to n̄m = 13, we find excellent agreement of the observed behavior with the

theory and establish the limits of mechanical displacement sensing in the current setup.

We find that the limiting contributions stem from noise in the microwave source source at

high drive power and from noise in the amplifier chain.

The electromechanical hybrid system was systematically studied by spectroscopy ex-

periments in a two-tone configuration. This does not only open the avenue towards the

analysis of dynamical effects in electromechanics but also allows for the study of interfer-

ence effects between a strong driving field and a weak probe field like electromechanically

induced transparency (EMIT) and absorption (EMIA) [82]. For the latter, we show that

the absorption of microwave signals at cavity resonance can be increased by more than

25 dB on increasing the power of the drive tone by a factor of two. Our results clearly

demonstrate that the studied electromechanical system can be used as a tunable notch fil-

ter to eliminate extreme narrow frequency bands (∼Hz) within the much wider frequency

band (∼MHz) defined by the linewidth of the microwave cavity. The analysis of our device

in an EMIA configuration at high drive fields explores the limits of the electromechanical

theory at high mechanical amplitudes. By comparing the cavity frequency pull towards

lower frequencies to the predictions derived based on the assumption of a linearized elec-

tromechanical coupling, we find that the mechanically induced Kerr effect is not covered by

theory. To understand this effect we extend the model beyond the linear approximation.

Regarding the study of the cavity behavior for high mechanical amplitudes, the analysis of

the self-oscillation of the mechanical mode is the next logical step. Experiments to study

the origins of the hysteresis in the amplitude versus cavity photon number dependence are

in preparation.

The study of EMIT as function of detuning and power of a drive field reveals strong

dispersion around the transparency window of a probe tone, demonstrating the feasibility

of our device to delay and advance the group velocity of a pulsed probe field. This is in close

analogy to the generation of slow light in atomic media with EIT [121–123]. Additionally,

we overcome the main challenge in the quantum manipulation by achieving a maximum

effective electromechanical coupling that exceeds the mechanical thermal decoherence rate

at a temperature of 30 mK, gmax/2π = 20.6 kHz � n̄mΓm/2π ≈ 1.18 kHz. Going beyond

EMIT, we extend the theory to include nonlinear mechanical contributions and corroborate

the model predictions by experimentally mapping the mechanical Duffing regime into the

microwave regime. This is a first step towards sensitive electromechanical bifurcation

sensors.

The good control of our system in a two-tone configuration, demonstrated by the in-

vestigation of EMIT, enables us to demonstrate a true delay of probe pulses [87] up to

16 ms (and an advancement of up to 5 ms), corresponding to the delay induced by an about

2000 km long coaxial cable or an on-chip group velocity of vg = 0.3 m/s. This is the first

demonstration of slow light in the microwave regime in a circuit electromechanical system.

The experimental data agrees excellently with theory derived from the phase dispersion of

the transparency window in an EMIT configuration in the resolved sideband regime. From

a technical point of view, nano-electromechanical systems offer a promising extension to

the quantum tool-box in the microwave regime. Although we only demonstrate the delay

of classical pulses, in principal the concepts can be extended to quantized fields. A sample
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geometry with improved g0 to reach the quantum coherent coupling regime [75] together

with the powerful progress in generation and detection of single microwave photons [268]

may allow the control of the propagation of quantized microwave fields. Thus circuit elec-

tromechanical systems offer a promising perspective to synchronize quantized microwave

pulses generated by spatially separated systems.

Our time domain measurements of the ring up and ring down behavior of the nanobeam’s

amplitude in an EMIT configuration reveal that on switching off the drive field the me-

chanical amplitude decays on a timescale corresponding to its intrinsic linewidth, while

the ring up time is correlated to the electromechanical drive power dependent linewidth

broadening, reflecting the dynamical electromechanical back-action. We use this asym-

metric behavior to demonstrate the counterintuitive fact that electromechanical switching

of the transmitted probe field is not limited by the longest timescales in the device – the

mechanical ring down – but is limited by the cavity’s ring down time [87]. This proof of

concept experiment provides the basis for complete storage and retrieval of a microwave

quantum state in long-lived mechanical excitations, as recently demonstrated with classical

microwave fields [37].

Altogether, the results achieved within the scope of this thesis provide the basis for ex-

periments to test decoherence in macroscopic objects like a nanobeam and to map quantum

states between different microwave frequencies, while at the same time offering propagation

control over quantized fields.

Beyond the scope of this thesis, the next steps in the direction of a study of decoherence

in macroscopic mechanical oscillators is the swapping of a quantum state from a photon

to the vibrational mode. Here, three requirements have to be met: First, the mechanical

mode needs an occupation close to the quantum mechanical ground state that also needs

to be detected efficiently. Second, the system has to operate in the quantum coherent

regime, to allow for (nearly) lossless conversion of excitations. Third, a source has to gen-

erate microwave quantum states. The first two requirements are met by using a sufficiently

strong drive field and samples with improved electromechanical vacuum coupling. Reduc-

tion of the gap between nanobeam and ground plane by focused ion beam milling [166] can

increase g0 by about a factor of ten, implying that we can reach the quantum coherent cou-

pling regime with all other parameters within the range of those given in this thesis. First

fabrication steps in this direction with our material system look promising1. Regarding the

experimental techniques, the next modifications of the setup include the integration of a

high-Q microwave filter to purify the input microwave fields [202,258] and the integration

of a Josephson parametric amplifier [253] or of a Josephson ring amplifier [269] for (nearly)

quantum limited amplification [232]. This will enhance the measurement sensitivity to al-

low for the detection of a mechanical occupation close to zero due to a highly reduced

noise level. At the same time it allows for higher cooling rates and lower mechanical occu-

pations. To meet the third requirement, a superconducting qubit coupled to a microwave

cavity may provide a single photon source [268].

Although not studied within this work, CPW microwave cavities support higher modes,

all coupling to the displacement of the nanobeam as long as a voltage antinode exists at

the nanobeam’s position. With the above requirements met, two distinct harmonics of the

same microwave cavity in an EMIT configuration may be used to map or frequency convert

1private communication with M. Pernpeintner
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the state of single microwave photons from one of the modes to the second one, providing

a (nerly) lossless quantum transducer. This has recently been demonstrated with classical

states in the optical domain [132,133].

The perspectives outlined above and the progress documented in this thesis show that

cavity electromechanical hybrid systems as studied here are of great wealth within the field

of opto-/electromechanics due to their scalability and the possibility to combine them with

other solid state quantum systems operating in the microwave regime.
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A.1 Table of material parameters

Symbol Definition Value and Unit

L length of the nanobeam 60µm

w width of the nanobeam 140 nm

hSiN thickness of the Si3N4 layer 70 nm

hNb thickness of the Nb layer 130 nm

ρSiN density of Si3N4 3000 kg/m3

ρNb density of Nb 8570 kg/m3

ρeff effective density of the nanobeam 6620.5 kg/m3

meff effective mechanical mass 7 pg

ESiN Young’s modulus of Si3N4 300 GPa

ENb Young’s modulus of Nb 105 GPa

Ecalc calculated effective Young’s modulus of the nanobeam 173 GPa

Eeff measured effective Young’s modulus of the nanobeam 140 GPa

σSiN tensile stress of the Si3N4 layer 800 MPa

σeff estimated tensile stress in the nanobeam 199 MPa

αSi thermal expansion coefficient of Si 3.0× 10−6/◦C

αSiN thermal expansion coefficient of Si3N4 3.3× 10−6/◦C

Tc critical temperature of Nb 9.2 K
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A.2 Table of parameters

Symbol Definition Value and Unit

ω̃c µ-wave cavity resonance frequency 2π × 6.07 GHz

ωc µ-wave cavity resonance frequency with static shift 2π × 6.07 GHz

κ full cavity linewidth 2π × 759 kHz

κex external cavity linewidth 2π × 339 kHz

κin internal cavity linewidth 2π × 420 kHz

n̄c mean intra-cavity photon number up to 109

Ωm mechanical resonance frequency 2π × 1.45 MHz

Γm mechanical linewidth 2π × 2.59 Hz

Γeff electromech. broadened linewidth Hz

xzpf mechanical zero point motion 30 fm

n̄m mean mechanical phonon occupation down to 13

G electromechanical coupling rate 2π × 36.3 kHz/nm

g0 electromechanical vacuum coupling 2π × 1.26 Hz

ωd drive field frequency GHz

ωp probe field frequency GHz

∆ detuning of probe from cavity resonance mostly ∝ ±Ωm

Tc critical temperature of niobium 9.2 K

Teff effective mode temperature 10−4 − 10−2 K

χm mechanical susceptibility (kg Hz2)−1

χeff effective mechanical susceptibility (kg Hz2)−1

Sxx mechanical displacement spectral density m2/Hz

Sϕϕ cavity phase spectral density rad2/Hz

Sωω cavity frequency spectral density Hz2/Hz

SPP detector power spectral density W/Hz

SSQL
xx standard quantum limit of mechanical displacement ~/meffΩmΓm

α Duffing parameter of the nanobeam 1.99× 1011 N/m3

A.3 Power dependent absorption of cryostat No.2

In Section 5.3.3 we demonstrate the cooling of the mechanical occupation to n̄m ≈ 13.

In the raw data we observed a faster decrease of the mechanical occupation and the

imprecision noise than theory predicts. Figure A.1 shows the raw data of the mechanical

occupation in a double logarithmic plot as a function of the intra-cavity photon number

and extracted mechanical linewidth. Additionally, we show the imprecision noise as a

function of the intra-cavity photon number. The solid lines in purple are plots of the

theory according to Equation (5.46):

n̄m =
1

1 +
4g2

0 n̄c

Γmκ

· kBT

~Ωm
+

κ2

16Ω2
m

=
Γm

Γeff
· kBT

~Ωm
+

κ2

16Ω2
m

. (A.1)

This implies both curves decrease with Pd, since both n̄c and Γeff are proportional to

Pd. The orange line for Simp
xx line is proportional to 1/Pd as discussed in Section 5.1.2.

Clearly, the data decreases faster than expected. To plot the dotted lines, we introduce

an additional power dependency of (Pd)0.2, meaning that instead of being decrease with
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Figure A.1: Raw data of the curves presented in Figure 5.10 and Figure 5.12. A decrease faster

than the theory pediction (red line) is clearly visible. Analysis of the data shows an additional

decrease proportional (Pd)0.2.

Pd as expected, the three data sets decrease with (Pd)1.2 = Pd · (Pd)0.2. The curves show

good agreement to the data.

We attribute this additional, higher power dependency to a power dependent loss of

the cryostat wiring, whose origin is currently unknown and we correct the data to this

loss, yielding the curves in Section 5.1.1. Currently we are testing the components of our

setup to find the origin of the additional damping.

Above conclusion is based on the following considerations: The increase of Γeff is ex-

tracted from the data and follows the intra-cavity photon number and thus Pd as expected

as shown in Figure 5.9c. Thus, the amplitudes obtained by measuring the mechanical

displacement decrease faster for increasing drive power than expected, since only the am-

plitude and the linewidth of a Lorentzian contribute to its area, needed to exract 〈δx2〉
and thus n̄m.

One option leading to a deviation in the recorded mechanical occupation is a drive

tone not optimally detuned from the cavity resonance (either due to a misalignment or a

shift of the cavity resonance). This results in a linewidth broadening that is weaker than

at optimum detuning, what is easily verified in Figure 5.8 and Equation (5.19). Thus the

expected decrease of the mechanical occupation is weaker as a function of drive power, in

contradiction to our results.

A second option is additional photonic population of the cavity due to phase noise of

the microwave source or heating of the structure. However, this causes an increase of the

effective phonon number [110] and agrees to the observations discussed in the main text

at high drive powers, but cannot cause above observations.

Further, we can exclude the input wiring. In all experiments performed with this

cryostat, the predicted input power agrees well with the measured one. This only leaves

the option of an power dependent loss channel in the cryostat output wiring. Note, that

due to the results obtained in this thesis, we assume the sample to obey the optomechanical

Hamiltonian in above considerations.
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Figure A.2: Schematic of the different fabrication steps of the sample production at the WMI.

For details, see the main text.

A.4 Sample production at WMI

The measurements presented in this theses are performed using a sample produced in the

group of T. J. Kippenberg at the EPFL in Lausanne (Switzerland). Samples, similar to
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the device analyzed in this thesis, were produced as well at the WMI. The main difference

is that we produced three layer nanobeams incorporating one additional aluminum layer

used as etch mask. Due to the better coupling parameters of the former samples, we

preferred those.

For completeness, we present here the production steps of the samples made at the

WMI, referring to Figure A.2:

a) A 10×6 mm2 silicon substrate coated with a 100 nm thick highly tensile stressed silicon

nitride layer (deposited by low pressure chemical vapour deposition) is cleaned with

aceton and isopropanol.

b) Photoresist AZ 5214E (Microchemicals GmbH) is spincoated onto the sample with

8000 rpm resulting in a thickness of approximately 1µm and baked on a hotplate at

a temperature of 110 ◦C for 70 s.

c) With optical lithography using a MJB3 Photomask Aligner from Süss MicroTec and a

chrome mask, we remove all resist except at rectangles at the coordinates where the

nanobeams will be patterned later:

We expose the resist with UV light outside the rectangulars using an lithography

mask (exposure dose: 50− 60 mJ/cm2). The structures are patterned by developing

the resist in AZ726 MIF (Microchemicals GmbH) for 60 s followed by a rinse in

destilled water, washing away the exposed areas.

d) A physical plasma etch in a Oxford 2000 reactive ion etching (RIE) chamber (RF

power: 100 W, ICP power: 50 W, process pressure: 15 mTorr, ignited at 30 mTorr,

ratio SF6:Ar:O2=50:10:0, duration: 60 s) removes most of the silicon nitride down to

a thickness of approx 10 nm. Hereby, the remaining photoresist protects the Si3N4

layer at the later nanobeam position. The removal of the silicon nitride is necessary

due to its high absorption of GHz radiation.

After removal of the photoresist with hot acetone followed by an isopropanol rinse,

the sample is placed in a buffered oxide etch with AF 87.5/12.5 (NH4F:HF=87.5:12.5)

for 20 min to remove the remaining silicon nitride. This ensures a smooth silicon

surface and thins the rectangles to approximately 70 nm, while smoothing the corners

to prevent edge desintegration in of the niobium layer. The etch process is stopped

with destilled water followed by an isopropanol rinse.

e) An approx. 100 nm thick niobium layer is DC sputtered onto the sample in a high

vacuum chamber (background pressure approx. 3× 10−9 mbar).

f) The same photoresist as before is spincoated with 8000 rpm onto the sample and baked

out at 110 ◦C for 70 s on a hotplate.

g) First we remove the resist edge bead to minimize the distance between sample and the

chrome mask with the structure in the next step: The edge bead is exposed with a

high dose of UV light (approx. 200 mJ/cm2) and developed for 60 s in AZ726 MIF).

Then, the microwave resonators and the feedline are patterned into the photoresist

by optical lithography (exposure dose: 50 − 60 mJ/cm2) followed by development

in AZ726 MIF for 2 min followed by a rinse in destilled water. Note, that we leave
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a connection between ground and center conductor above the silicon nitride pads

to later structure the nanobeams. This is not the case for microwave cavities for

precharacterization without a mechanical oscillator.

h) The pattern is transferred into the niobium with a physical RIE process (same param-

eters as above, duration 90 s. After the transfer, the sample is thoroughly cleaned in

hot acetone followed by cleaning in isopropanol.

i) A double layer electron beam (ebeam) resist is spincoated to the sample:

First PMMA 459K A6 (MicroChem) is spincoated with 8000 rpm (thickness approxi-

mately 300 nm) and baked out on a hotplate at 175 ◦C for 10 min, then PMMA 950K

A4 (MicroChem) is brought onto the sample with the same parameters (thickness

approximately 200 nm). The double layer resist creates an undercut when developed

after exposure to allow for lift-off processes.

j) Using ebeam lithography, the nanobeams including the clamps and rectangular pads to-

gether forming the coupling capacitances are patterened into the resist (acceleration

voltage: 30 kV, dose: 100−250µC/cm2). The clamps overlap with center conductor

and the rectangular with the ground plane. The latter is necessary to account for

not perfectly reproducible edges of gaps in the CPW structures produced by optical

lithography. After development in AR-P 600-56 (Allresist) for 120 s followed by a

rinse in isopropanol, an aluminum layer with a thickness of 25 nm serving as etch

mask is deposited onto the sample by electron beam evaporation.

k) A lift-off in acetone at a temperature of 70 ◦C removes all resist and aluminum except

at the nanobeam/pad position.

l) To pattern the nanobeams followed by their release, both in one RIE process, the sur-

rounding niobium layer has to be protected. For this purpose we cover the whole

sample with photoresist and open windows above the nanobeams in an optical lithog-

raphy image reversal process (electron lithography would increase the aligment ac-

curacy but the resists are not sufficiently resistant to RIE processes):

Again, the sample is spincoated with AZ 5214E at 8000 rpm and baked for only 50 s

at 110 ◦C on a hotplate. After careful alignment using the same mask as in step c),

we expose the resist with UV light outside the rectangulars (exposure dose: approx.

25 mJ/cm2), then we bake the sample at 130 ◦C for 2 min. Here the temperature

is crucial, for older resists a temperature of 120 ◦C and the same time gives better

results. A flat exposure (exposure dose: 350 mJ/cm2) of the full sample reverses

the resist from a positive to a negative resist. We develop the structures by placing

the sample in a mixture of AZ developer:H2O=1:1 for 160 s (AZ developer does not

attack aluminum as most others do) followed by a rinse in destilled water.

m) A physical RIE process (same parameters as above, duration: 150 s) transfers the

structure of the Al layer into the niobium and the silicon nitride below. An isotropic

low power RIE process (RF power: 5 W, ICP power: 0 W, chamber pressure: 93 mTorr

regulated by the hold valve position funciont, ignited at a RF power of 7 W for 30 s,

SF6:Ar:O2=50:0:0, duration: 30 min) releases the beam. A false colored scanning
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Figure A.3: False colored scanning electron microscope picture of the coupling region of a trilayer

nanobeam. Grey represents silicon, pink represents aluminum, yellow represents niobium,

green represents silicon nitride and blue represents photoresist to protect the microwave cavity.

electron microscope picture is shown in Figure A.3. Hereby the niobium layer of the

nanobeam is slightly attacked as shown in Figure A.3.

n) The remaining photoresist is removed in hot acetone. This is the most critical step,

since the nanobeam can stick to the bottom of the opposite patch due to capillary

effects.

A false colored scanning electron microscope picture of a beam in a microwave cavity is

shown in Figure A.3. The beam has a width of 250 nm, a length of 50 nm and a thickness

of approximately 200 nm (70 nm silicon nitride, 100 nm niobium and 30 nm aluminum).

The photoresist (indicated in blue) protects the rest of the niobium layer from the reactive

ion etch process. The coupling distance between nanobeam and the pad connected to the

ground plane is approximately 500 nm wide.

Unfortunately no nanobeams incorporating this three layer structure were precharac-

terized within the scope of this thesis.

Due to the critical removal of the photoresist in step n), we changed some processing

parameters for future structures:

First, we use a 300 nm thick silicon oxide sacrificial layer between silicon substrate and

silicon nitride layer. This demands to remove the unwanted silicon nitride completely by

a RIE process in step d), since BHF removes silicon oxide with a high etch rate. All steps

until m) remain the same. Step m) does not include the isotropic RIE process, only the

nanobeam pattern is transferred into the niobium and the silicon nitride. Since the etch

time is shorter, a sufficiently thick ebeam resist could replace the photoresist in step l),

tests of this are currently performed. After the physical RIE process, the resist is removed

with hot acetone. A treatment of the sample in Piranha for 2 min removes the Al mask.

To suspend the nanobeam, the sample is placed in BHF for 2 min, removing the silicon

oxide under the nanobeam. A further advantage is, that BHF does not affect the niobium.

After the release, no additional cleaning steps are necessary, minimizing risks of breaking

the beam.
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Figure A.4: Microscope pictures of a sample with seven µ-wave cavities, including a zoom to

one cavity and its coupling region is shown on the left. The right side shows a relative power

transmission spectrum of a multiplexed cavity at a temperature of 1.5 K. The inset shows a

zoom to the second cavity spectrum, the red dotted line is a fit to the data.

A.4.1 Multiplexed microwave resonators

We precharacterized multiplexed λ/4 microwave cavities made by optical lithography with

above parameters (see the left side of Figure A.4 for microscope pictures of one sample)

using an inset placed in pumped liquid helium at temperatures of approximately 1.5 K.

The relative power transmission was recorded with a vector network analyzer. A typical

spectrum for an input power of approximately −27 dBm is shown on the right side of

Figure A.4. The eigenfrequencies are between 2π × 5.5 and 2π × 6.2 GHz. The data is

normalized to the background of the cavity. A fit of Equation 4.5 to the second cavity with

a resonance frequency of ω̃c ≈ 2π × 5.609 GHz is shown in the inset of this Figure. We

measured quality factors up to 75000 at this temperature, making these structures well

suited to operate in an electromechanical configuration.

A.5 Fitting of a dispersive cavity response

In the transmission spectrum of the microwave cavity we observe a dispersive shift as

shown in Figure 4.7 and 6.5. We attribute this shift to interference with microwaves

traveling along the ground plane of the sample due to imperfect connection to ground.

This implies that the physical description of all phenomena is still valid, no extension of

the electromechanical system takes place. Technically, the interference is to first order

approximated by addition of a small, complex value iθ to the transmission spectrum,

t→ At+ iθ . (A.2)

The factor A corresponds to an amplitude renormalization with A2 < 1, since we measure

the transmission amplitude normalized to the input power. For example, Equation (4.5)

modifies to:

t(ω) = A
κin/2 + i(ω − ω̃c)

κ/2 + i(ω − ω̃c)
+ iθ . (A.3)
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We estimate A by noting that at frequencies ωoff far outside the cavity (|ωoff − ωc| � κ

the transmission amplitude is unity. This is true for the non dispersive transmission as

well (the transmission spectrum is real far away from cavity resonance), we get |t|2 =

Re(t)2 + Im(t)2 = A2 + θ2.

The dispersive shift is the reason why we do not observe the amplitude of the transmis-

sion peak for EMIT to reach unity. When fitting the data according to Equation (6.35),

we have to take into account the renormalization A. Note, that fitting the unmodified

model to the data gives approximately the same outcome for all fit parameters, showing

that it covers the physical phenomena correctly. However, the fit does not agree to the

data as well as the modified one (see for example Figure 7.7, where both models are fitted

to the data).
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433–458 (1901).

[3] Nichols, E. F. & Hull, G. F. A Preliminary Communication on the Pressure of Heat

and Light Radiation. Phys. Rev. (Series I) 13, 307–320 (1901).
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[111] Rivière, R., Deléglise, S., Weis, S., Gavartin, E., Arcizet, O., Schliesser, A. & Kip-

penberg, T. J. Optomechanical sideband cooling of a micromechanical oscillator

close to the quantum ground state. Phys. Rev. A 83, 063835–9 (2011).
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