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Zusammenfassung

In dieser Arbeit werden verschiedene Aspekte der Produktion schwerer Teilchen in
Hadron-Hadron-Kollisionen beleuchtet. Speziell präsentieren wir Präzisionsvorhersagen
unter Einschluss von Korrekturen der starken und elektroschwachen Wechselwirkung
zur nächstführenden Ordnung der Störungsreihe.

Im ersten Teil dieser Arbeit wird die Ladungsasymmetrie des Top-Quarks unter-
sucht. Speziell stellen wir eine Rechnung der elektroschwachen Beiträge des asym-
metrischen Teils des Produktionswirkungsquerschnitts für Top-Quark-Paare zur Ord-
nung O(α2

sα) und O(α2) vor. Numerisch wird besonders der Einfluss auf Vorher-
sagen der gemessenen Asymmetrie am Tevatron hervorgehoben. Die untersuchten
elektroschwachen Beiträge können neben der QCD-induzierten Asymmetrie nicht ver-
nachlässigt werden. Sie haben das gleiche Vorzeichen und vergrößern die Vorhersagen
der Asymmetrie im Rahmen des Standard Models um etwa 20%. Dadurch wird die
beobachtete Abweichung zwischen Vorhersage und Messung verringert.

Im zweiten Teil wird die Produktion von Squarks, den supersymmetrischen Part-
nern der Quarks, am Large Hadron Collider (LHC) untersucht. Wir diskutieren dabei
die Berechnung von faktorisierbaren QCD-Korrekturen zur nächstführenden Ordnung
der Störungsreihe, wobei die Produktion von Squark–Squark Paaren vollständig dif-
ferenziell mit deren Zerfall kombiniert wird. Speziell wird die Kombination der Pro-
duktion mit zwei unterschiedlichen Zerfallsmöglichkeiten untersucht. Der Schwerpunkt
liegt dabei auf Präzisionsvorhersagen für zwei experimentelle Signaturen, die für die
Suche nach Supersymmetrie am LHC relevant sind. Bei der ersten Signatur konzen-
trieren wir uns auf den Einfluss von Strahlungskorrekturen in Produktion und Zerfall
auf physikalisch wichtige differenzielle Verteilungen und auf inklusive experimentelle
Suchen, wie sie von der ATLAS und der CMS Kollaboration durchgeführt werden. Bei
der zweiten Signatur analysieren wir die Effekte auf Verteilungen, die für zukünftige
Parameterbestimmung relevant werden können. Im Allgemeinen sollten die von uns
untersuchten faktorisierbaren QCD-Korrekturen für eine präzise phänomenologische
Vorhersage berücksichtigt werden. Insbesondere können diese Korrekturen nicht als im
Phasenraum flach angenommen werden, und ein einfaches Multiplizieren von Vorher-
sagen zur führenden Ordnung mit einem globalen Faktor ist oft keine ausreichende
Näherung.
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Abstract

In this thesis we study specific aspects of the production of heavy particles at hadron
colliders, with emphasis on precision predictions including next-to-leading order (NLO)
corrections from the strong and electroweak interactions.

In the first part of the thesis we consider the top quark charge asymmetry. In
particular, we discuss in detail the calculation of the electroweak contributions from
the asymmetric part of the top quark pair production cross section at O(α2

sα) and
O(α2) and their numerical impact on predictions for the asymmetry measurements at
the Tevatron. These electroweak contributions provide a non-negligible addition to
the QCD-induced asymmetry with the same overall sign and, in general, enlarge the
Standard Model predictions by a factor around 1.2, diminishing the deviations from
experimental measurements.

In the second part of the thesis we consider the production of squarks, the super-
symmetric partners of quarks, at the Large Hadron Collider (LHC). We discuss the
calculation of the contribution of factorizable NLO QCD corrections to the production
of squark–squark pairs combined at fully differential level with squark decays. Com-
bining the production process with two different configurations for the squark decays,
our calculation is used to provide precise phenomenological predictions for two differ-
ent experimental signatures that are important for the search of supersymmetry at the
LHC. We focus, for one signature, on the impact of our results on important physical
differential distributions and on cut-and-count searches performed by the ATLAS and
CMS collaborations. Considering the other signature, we analyze the effects from NLO
QCD corrections and from the combination of production and decays on distributions
relevant for parameter determination. In general, factorizable NLO QCD corrections
have to be taken into account to obtain precise phenomenological predictions for the
analyzed distributions and inclusive quantities. Moreover, these corrections cannot be
considered flat in phase space; rescaling leading-order predictions by a global correction
factor is in general not a viable approximation.
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Chapter 1

Introduction

The Standard Model (SM) describes the electroweak and strong interactions of ele-
mentary particles. On the one hand, the electroweak sector unifies the electromagnetic
and weak forces [1–4]. On the other hand, the strong sector provides, via Quantum
Chromodynamics (QCD) [5–7], an explanation for both the hadronic bound states and
the asymptotic freedom of strong interactions at high energies.

The predictions of the Standard Model are in very good agreement with almost
all the measurements performed during the last 50 years at experiments with particle
accelerators. Moreover, with the recent discovery [8,9] of a new particle in the searches
for the Higgs boson [10–15] at the Large Hadron Collider (LHC), finally, all the particle
content of the Standard Model has been experimentally detected. However, the SM
cannot be the “theory of everything”; it does not include gravity and cannot describe
the largest part of the matter and energy content in the Universe. New ingredients, the
dark matter and the dark energy, have to be introduced to explain the astrophysical
and cosmological data from the observable Universe. Thus, these phenomenological
problems and also other theoretical problems, as, e.g., the hierarchy problem, suggest
the presence of new physics “beyond the Standard Model” (BSM).

Although, until now, measurements at colliders have not shown any significant
evidence of new physics dynamics, the information provided by this kind of experiments
is a valuable input for the investigation of BSM models. At the LHC, colliding hadrons
with higher luminosity and at higher energies than ever before, the evidence for new
physics can be searched for, following two complementary strategies: testing Standard
Model predictions with high precision, or trying to detect the direct production of
non-standard particles.

From the theoretical side, the requirements are twofold. On the one hand, the
accuracy of the calculations has to be further improved in order to match the increased
experimental precision for the measurements of Standard Model processes. On the
other hand, theoretical predictions for the production of non-standard particles must
be extended from a theoretical to a realistic phenomenological level. As for the SM
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case, calculations have to be either performed taking directly into account the particular
experimental set-up or implemented consistently into event generators.

Both situations, improving the accuracy of SM predictions and providing realistic
predictions for the experimental signatures emerging from non-standard processes, are
treated in this thesis.

In the first part of the thesis we consider a SM process, the production of top quark
pairs at hadron colliders, and we analyze in detail the top quark charge asymmetry as
a specific quantity of high current interest.

The top quark, discovered in 1995 at the Tevatron [16,17], is the heaviest particle of
the Standard Model. Due to its large mass, it decays before hadronization, producing
a signature that is different from the signatures of the other quarks. At the Tevatron,
its mass has been measured with a relative error smaller than 1% and is consistent
with the value obtained from the analyses of electroweak precision observables for
SM processes. Also, the measurements of cross sections, distributions, and branching
ratios, performed at the Tevatron and now also at the LHC, are in very good agreement
with the corresponding SM predictions. The situation is, however, very different for
the top quark charge asymmetry.

At the Tevatron, due to the proton–antiproton initial state, this observable corre-
sponds to a forward-backward asymmetry and is one of the few quantities that show
a deviation around three standard deviations (3σ) from the SM predictions. Amongst
the precisely measured observables, only the muon anomalous magnetic moment [18]
and the LEP forward-backward asymmetry of bottom quarks at the Z resonance [19]
show deviations of comparable size. In the case of the top quark asymmetry, the size
of the deviation depends on the particular definition of this quantity; it was maximal
(3.5σ) in the CDF analyses in early 2011 [20] for the definition in the rest frame of the
top quark pairs and applying a cut Mtt̄ > 450 GeV on their invariant mass Mtt̄. Hence,
an accurate analysis of higher-order effects is necessary in order to correctly identify
possible effects from BSM physics.

In the second part we consider one of the theoretically most favored BSM sce-
narios, supersymmetry [21]. We present higher-order calculations and corresponding
phenomenological predictions for a specific class of processes predicted by the simplest
supersymmetric extension of the SM, namely the Minimal Supersymmetric Standard
Model (MSSM) [22, 23].

Supersymmetry, introducing a symmetry between fermions and bosons, naturally
and elegantly solves the hierarchy problem, stabilizes the electroweak vacuum and
leads to the unification of gauge couplings at higher energy scales. Moreover, assuming
conservation of R-parity, the lightest supersymmetric particle (LSP) of the MSSM is
stable and, if electrically uncharged, a promising candidate for dark matter.

In the MSSM, every SM particle has a supersymmetric partner and, in contrast
to the SM, two Higgs doublets are present. Amongst the production processes in-
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volving non-standard MSSM particles, those with the largest cross sections at hadron
colliders involve colored supersymmetric particles, i.e., squarks and gluinos, which are
respectively the superpartners of quarks and gluons. So far, these colored particles,
like the remaining non-standard particles in the MSSM, have not been found yet. On
the contrary, considering specific simplified MSSM scenarios, higher and higher lower
bounds on squark and gluino masses have been set by the ATLAS and CMS collabo-
rations [24–28]. With squarks and gluinos heavier than 1 TeV, as suggested by these
bounds, the squark–squark production process has the largest cross section and could
potentially give the most easily detectable signal. Thus, accurate and reliable predic-
tions are necessary especially for this process. For this reason, we present a study of
the effects from higher-order corrections to predictions for squark–squark production
at the LHC. Specifically, we analyze their impact on the searches for colored super-
symmetric particles performed by ATLAS and CMS collaborations and on possible
techniques used for parameter determination in case of a discovery.

The outline of the thesis is as follows. In the first part, after a brief description of
the theoretical basis and the open problems of the SM (chapter 2), and a review of
important features of top quark phenomenology (chapter 3), we discuss in detail the
top quark charge asymmetry (chapter 4). In particular, we focus on the calculation
of the electroweak contributions to the forward-backward asymmetry at the Tevatron
from O(α2

sα) and O(α2) terms in the cross section [29], which, increasing the QCD
prediction [30] by a factor ∼ 1.2, diminish in general the deviations from experimental
measurements. For example, in more recent CDF analyses with a larger data set [31],
the inclusion of electroweak corrections contributed to reduce the deviation, in the
region Mtt̄ > 450 GeV, to 2.5σ. First, we list and briefly describe the measurements
performed at the Tevatron and the LHC. Second, we explain in detail the calculation
of the electroweak contributions to the forward-backward asymmetry at the Tevatron.
Third, we present numerical results and compare them with the experimental mea-
surements. Finally, we briefly discuss the status of the charge asymmetry at the LHC,
where, in contrast to the Tevatron, no deviation has been found, and we comment on
the tension between these measurements and those at the Tevatron.

In the second part, after describing (chapter 5) basic phenomenological features of
the MSSM, the status of the searches for colored supersymmetric particles at the LHC
and the corresponding relevant higher-order calculations, we analyze squark–squark
production combined with two different decay configurations, providing phenomeno-
logical results for two different experimental signatures.

In chapter 6 we present the calculation of the contribution of factorizable NLO
QCD corrections to the on-shell production of squark–squark pairs, with squarks of
the first two families, combined with subsequent squark decays at the fully differential
level [32]. NLO QCD factorizable corrections can be seen as separate corrections to
the production and the decays. Although separate NLO QCD corrections to produc-
tion [33] and decay [34,35] have already been calculated, these results are not sufficient
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to obtain corrections to differential distributions for the complete processes (produc-
tion+decays). We have performed these calculations at fully differential level, treating
independently all the chiralities and flavor configurations and using a different infrared
and collinear regularization approach. We obtained predictions with the accuracy of
factorizable NLO QCD corrections for observable experimental signatures, by gener-
ating and combining events from production and decays into events for the complete
process and then clustering partons into jets, using the typical parameters and the
jet-algorithm chosen by ATLAS and CMS experiments.

The numerical results obtained from this calculation are presented in chapter 7.
In section 7.1, we consider both the squarks decaying into the lightest neutralino and
analyze the contribution to the signature including only two jets and missing trans-
verse energy. We show the size of NLO corrections for several differential distributions
and different MSSM spectra, and the impact on cut-and-count searches performed by
ATLAS and CMS on this signature [32].

In section 7.2 we consider one squark decaying directly into the lightest neutralino
and a squark decaying via a particular electroweak decay chain, the so called “golden
decay chain”. Here we analyze a different signature containing two jets, two leptons,
with opposite charge sign and same flavor (OS-SF), and missing transverse energy [36].
In this case, besides investigating the impact of NLO factorizable corrections on cut-
and-count searches, we analyze if and how these corrections and the combination with
squark–squark production can alter the efficiency of particular parameter determina-
tion techniques that have been proposed for the isolate “golden decay chain”.



Chapter 2

The Standard Model of elementary
particles

2.1 Theoretical description

The Standard Model of elementary particles is theoretically based on the general frame-
work of quantum field theory (QFT). The dynamics of the Standard Model is described
by a Lorentz invariant Lagrangian involving spin 1/2 fermions and spin 0 and 1 bosons.
The interactions among the different fields are obtained by requiring gauge invariance
under the group SU(3)C ⊗SU(2)L⊗U(1)Y and introducing Yukawa interaction terms.
Fermions represent the elementary constituents of matter; strong, weak and electromag-
netic interactions are mediated by the vector bosons and all the masses of the particles
originate from a non-vanishing vacuum expectation value (VEV) of one scalar field.

In the Standard Model the strong force, responsible for the formation and the
interactions of baryons and mesons, is described by Quantum Chromodynamics (QCD),
namely the SU(3)C gauge symmetry. The fermions of the Standard Model can be
divided into two categories: the quarks q, interacting via the strong force, and the
leptons l, which do not strongly interact. In QCD the color components of quarks
are organized according to the fundamental representation (triplet) of the SU(3)C
group. Interactions among quarks are mediated by gluons g, the gauge vector bosons
of the SU(3)C group, expressed in the adjoint representation (octet). QCD interactions
among quarks and gluons can be described by the following Lagrangian,

LQCD = −
1

4
F µν
A FA

µν +
∑

quarks

q̄a(iD/−mq)abqb , (2.1)

where
FA
µν = ∂µG

A
ν − ∂νG

A
µ + gsf

ABCGA
µG

B
ν (2.2)

and
(Dµ)ab = ∂µδab + igs(t

CGC
µ )ab . (2.3)
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In the previous equations, indices with small latin letters denote colors in the triplet
representation. Conversely, capital letters refer to the octet representation. The matri-
ces tA are the SU(3)C generators in the fundamental representation and fABC are the
structure constants of this group. Gµ is the gluon field and gs is the strong coupling.
The Lagrangian in eq. (2.1) is renormalizable and the strong interaction is asymp-
totically free at high energies. Thus, besides predicting bound states as baryons and
mesons, it can be used to perform perturbative calculations and obtain predictions for
particle phenomenology at high-energy colliders1.

The remaining part of the Standard Model gauge group, SU(2)L⊗U(1)Y , describes
and unifies the weak force, introduced to explain beta decays and the muon decay, and
the electromagnetic force, which is described in the QFT language by Quantum Elec-
trodynamics (QED). The Yang-Mills Lagrangian for this gauge group can be written
as

LSU(2)L⊗U(1)Y = −
1

4
W µν

i W i
µν −

1

4
BµνBµν , (2.4)

where
W i

µν = ∂µW
i
ν − ∂νW

i
µ + gW εijkW j

µW
k
ν (2.5)

and
Bµν = ∂µBν − ∂νBµ . (2.6)

The Levi-Civita symbol εijk represents the structures constants of SU(2)L, and the
gW coupling parametrizes the W interactions. The gauge bosons W i are an adjoint
representation of the SU(2)L group, so a triplet (i = 1, 2, 3). Non-abelian gauge
theories do not allow mass terms for the gauge bosons, hence the three W i vector
bosons have to be massless. Such a model would be unable to reproduce the observed
phenomenology of elementary particles; however, the SU(2)L⊗U(1)Y gauge symmetry
can be spontaneously broken via the Higgs mechanism, yielding three massive vectors.

A complex SU(2)L doublet of scalar fields φ = (φ+, φ0), the so called Higgs doublet,
is introduced and its dynamics is described by the Lagrangian

LHiggs = (Dµφ)†(Dµφ)− V (φ) , V (φ) = λ|φ|4 − µ2|φ|2 . (2.7)

The covariant derivative appearing in eq. (2.7),

Dµ
ij = δij∂

µ + igWTij ·W µ + iY δijg
′
WBµ , (2.8)

guarantees the gauge invariance for LHiggs and introduces the interactions of φ with W i

and B bosons.
The term g′W parametrizes the B interactions, W ·T := W 1T 1+W 2T 2+W 3T 3 and

TA
ij are SU(2)L matrices in the fundamental doublet representation. These matrices

represent the SU(2)L weak isospin algebra. The representation of U(1)Y is trivial

1Gauge-fixing terms and ghost interactions have to be included in order to perform calculations
including loop effects.
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and parametrized by Y , the weak hypercharge, which is equal to +1/2 for the Higgs
doublet.

Including in the Lagrangian the potential V (φ) of eq. (2.7), the configuration of
minimum energy 〈φ〉 satisfies the condition

|〈φ〉| =
√

µ2

2λ
:=

v√
2

(2.9)

and breaks the SU(2)L ⊗ U(1)Y gauge symmetry. Choosing a particular direction in
the complex plane, the minimum energy configuration reduces the SU(2)L ⊗ U(1)Y
symmetry into a U(1)em symmetry that will be identified as the QED gauge group.
With the choice 〈φ〉 := 1√

2
(0, v), the U(1)em is generated by the charge Q = T 3 + Y ,

which corresponds to the electrical charge.
With a non-vanishing VEV, it is useful to rewrite the Higgs doublet φ as

φ =
1√
2

(

0

H + v

)

, (2.10)

where H is a real scalar field2. Using this parametrization in eq. (2.7), the quadratic
terms for the vector boson fields can be written as

Lmass =
v2

8

[

(gWW 3
µ − g′WBµ)(gWW 3µ − g′WBµ) + 2g2WW−

µ W+µ
]

, (2.11)

with W µ
± = (W µ

1 ∓iW µ
2 )/

√
2. The mass terms in eq. (2.11) can be diagonalized defining

(W 3
µ , Bµ) := R(θW )(Zµ, Aµ), where R(θW ) is a SO(2) rotation matrix with the angle

θW given by the relation sin(θW ) = g′2W/(g′2W + g2W ). In this way, the mass terms of the
W and Z bosons are explicitly obtained,

Lmass =
g2Wv2

4
W+W− +

(g2W + g′2W )v2

8
Z2 , (2.12)

and the massless vector field A is identified as the photon field. The masses of the W
and Z bosons are related to the weak coupling and the the vacuum expectation value
v via the relations

mW = vgW/2, mZ = mW/ cos(θW ) . (2.13)

The remaining terms in LHiggs correspond to the kinetic and mass term for the Higgs
(mH =

√
2µ =

√
2λv), the cubic and quartic self-coupling terms −λvH3−λH4/4, and

the interaction terms between the Higgs field and the gauge bosons.

2In this step a particular gauge, called unitary gauge, has been implicitly chosen. The remaining
three degrees of freedom of φ, corresponding to the Goldstone bosons (G±, G0) originating from the
symmetry breaking, do not appear in the Higgs Lagrangian with this choice of gauge. However, these
three unphysical states are important for the consistency of the theory; they yield the longitudinal
components of W± and Z bosons, defined afterward in the text.
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Gauge bosons and the Higgs boson interact also with quarks and leptons. The
left-handed chiralities of these fermions are classified in weak isospin doublets, whereas
the right-handed chiralities are singlets under SU(2)L group. The hypercharges Y are
assigned in such a way that the correct electric charges Qf = T 3 + Y for the fermions
are obtained. Both for quarks and leptons there are three left-handed doublets

QL :=

(

uL

dL

)

,

(

cL
sL

)

,

(

tL
bL

)

, (2.14)

LL :=

(

νe
eL

)

,

(

νµ
µL

)

,

(

ντ
τL

)

, (2.15)

whereas the right component are present for all the quarks (uR,dR,cR,sR,tR,bR) but not
for all the leptons (eR, µR, τR). The three doublets naturally define three generations
(or families) of fermions. Each one of the three families contains a quark and a lepton
left-handed doublet and the corresponding right-handed components. Thus, all the
fields of the SM and their quantum numbers can be summarized in Table 2.1 and
Table 2.2.

The kinetic terms of the leptons and quarks, and their interactions with the four
gauge bosons are described by the Lagrangian

Lfermions =
∑

3 families

(iQ̄LD/QL + iL̄LD/LL) +
∑

right−handed
fermions

(iq̄RD/ qR) , (2.16)

where, using mass eigenstates for the gauge fields, the covariant derivative is given for
left-handed doublets as

Dµ = ∂µ − i
gW√
2
(W+

µ T+
µ +W−

µ T−
µ )− i

gW
cos(θW )

Zµ(T
3 − sin2(θW )Qf )− ieAµQf (2.17)

and for right-handed fermions as

Dµ = ∂µ − i
gW

cos(θW )
Zµ(− sin2(θW )Qf )− ieAµQf . (2.18)

In eq. (2.17) T± are defined as T± = T 1 ± T 2, and the QED coupling e is identified as
e = g sin(θW ).

Eq. (2.16) does not include Dirac mass terms mψ̄ψ = m(ψ̄LψR + ψ̄RψL). Indeed
these terms are not gauge invariant, since the left-handed components of fermions
belong to SU(2)L doublets, whereas the right-handed components are SU(2)L singlets.
However, for each family, gauge-invariant Yukawa interactions between fermions and
the Higgs boson can be introduced,

LYukawa = −
yd√
2
Q̄a

LφadR −
yu√
2
εabQ̄

a
Lφ

†
buR −

ye√
2
L̄a
LφaeR + h.c.

EWSB−−−−→

EWSB−−−−→ −muūu

(

1 +
H

v

)

−mdd̄d

(

1 +
H

v

)

−meēe

(

1 +
H

v

)

. (2.19)
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Names Spin 1/2 SU(3)C , SU(2)L, U(1)Y

quarks QL = (uL, dL) ( 3, 2 , +1
6)

(×3 families) uR ( 3, 1, +2
3)

dR ( 3, 1, −1
3)

leptons LL = (ν, eL) ( 1, 2 , −1
2)

(×3 families) eR ( 1, 1, −1)

Names Spin 0 SU(3)C , SU(2)L, U(1)Y

Higgs φ = (φ+,φ0) ( 1, 2 , +1
2)

Table 2.1: Spin 1/2 and spin 0 fields in the Standard Model.

Names Spin 1 SU(3)C , SU(2)L, U(1)Y

gluon g ( 8, 1 , 0)

W bosons W ( 1, 3 , 0)

B boson B ( 1, 1 , 0)

Table 2.2: Spin 1 fields in the Standard Model.

As shown in eq. (2.19) using the unitary gauge, the electroweak symmetry breaking
(EWSB) automatically generates mass terms for the fermions (mf = vyf/

√
2) and

interaction terms between the fermions and the Higgs field, parameterized by couplings
proportional to the fermion masses. In eq. (2.19) the index a indicates the components
of the Higgs doublet φ and εab is the Levi-Civita antisymmetric tensor.

Considering all the three families, the Yukawa terms can also introduce interac-
tions between fermions of different generations with same quantum numbers, without
spoiling gauge invariance. In this case, the Yukawa couplings yf are non-diagonal yijf
matrices, with the indices i and j referring to the three families. For quarks, this
generalization is equivalent to defining diagonal yiju and yijd matrices and rotating all
the left-handed down- and up-type quarks via two unitary matrices: ui

L → U ij
u uj

L and
diL → U ij

d djL. The interactions of quarks with the gluon, the photon and the Z boson
are unaltered by these rotations. Conversely, W boson interactions allow for changes of
generations that are parametrized by the unitary Cabibbo-Kobayashi-Maskawa (CKM)
matrix VCKM = U †

uUd. This matrix is complex and can be parametrized via three real
angles and one complex phase, which yields the only source of CP violation in the
Standard Model.

In the case of the leptons, the situation is different; in the original Standard Model
neutrinos are considered massless, so we can define arbitrarily Uν := Ue. Thus, leptons
do not present interactions with other leptons of a different generation.
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2.2 Open problems

The Standard Model, briefly described in the previous section, is a renormalizable
quantum field theory that depends on 18 parameters:

• 9 fermion masses (6 for quarks and 3 for leptons),

• 3 angles and 1 phase of the CKM matrix,

• 3 parameters for electroweak interactions,
e.g. : α = e2/(4π), gW and mZ ,

• the Higgs mass mH ,

• the strong coupling αs = g2s/(4π).

At present, almost all the measurements at experiments with particle accelerators
seem to be consistent with the predictions of the Standard Model. Thus, 18 parame-
ters are sufficient to explain thousands of experimental data and a plethora of different
phenomena. Only few deviations, not much larger than 3σ, between experimental
measurements and SM predictions have been observed: the muon anomalous magnetic
moment [18], the LEP forward-backward asymmetry of bottom quarks at the Z reso-
nance [19] an the forward backward asymmetry of top quark at the Tevatron, which is
discussed in detail in chapter 4.

However, besides these deviations, we already know that the Standard Model can-
not be the “theory of everything” and presents some theoretical and phenomenological
problems:

• First of all, the Standard Model does not include gravity and thus it cannot
explain all the phenomena in our universe. Gravity introduces a new scale, the
Planck scale ΛPlanck ∼ 1019 GeV, however, also assuming the validity of of the
Standard Model up to this scale seems to be “unnatural”. Indeed, in this way
no new physics dynamics would be present in the 103 − 1019 GeV energy scale
range. Moreover, the large difference between the electroweak and Planck scale,
known also as the “hierarchy problem”, is connected to another problem of the
Standard Model: the fine tuning of Higgs parameters. In the definition of Higgs
mass at one loop level, every fermion loop contributes with a term

∆m2
H = −

|yf |
8π

Λ2
Planck , (2.20)

where ΛPlanck is used as natural cut-off to regulate ultraviolet (UV) divergences.
Thus, due to the quadratic divergence, the UV counterterms should be fine tuned
at the O(10−30) accuracy in order to yield, after the cancellation of the diver-
gences, the right value of mH .
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• A necessary condition for the renormalizability of a Lagrangian in quantum field
theory is the absence of anomalies, i.e., symmetries that are valid in classical
field theory but not at the quantum level. Anomalies typically appear in chiral
gauge theories and the Standard Model, due to the SU(2)L group, belongs to this
class of theories. However, in the Standard Model the anomalies automatically
cancel, once all the leptons and quarks of one generation are taken into account.
Ignoring the mixing induced by VCKM , the Standard Model, with also only one
or two generations, is renormalizable. Conversely, excluding one particle in one
of the three generations, the renormalizability is lost. Thus, the particle content
of any generation is not only necessary to explain the observed phenomenology,
but also to guarantee the renormalizability of the theory. In the Standard Model,
however, the cancellation of the anomalies appears to be accidental and not mo-
tivated by other theoretical arguments.

• The value of the 18 parameters of the Standard Model are input quantities that
cannot be explained by the theory itself. Moreover, the values of the Yukawa cou-
plings, i.e. the masses of the fermions, are very different, ranging from ∼ 500 keV
for the electron up to ∼ 170 GeV for the top quark. Also the entries of the CKM
matrix are not all of the same order, e.g., they suppress transitions of the top
quark into a strange or down quark. Finally, also the gauge couplings do not
seem to unify to the same value at any high-energy scale, as expected in a Grand
Unified Theory (GUT).

• In principle also QCD interactions can introduce CP violation; indeed in the
Lagrangian of the Standard Model a term

Lstrong−CP =
θg2s
32π2

FαβF̃αβ , (2.21)

where Fαβ := 1
2εαβγδF

γδ, can be added without violating gauge invariance. The
term Lstrong−CP can be written as a total derivative and does not introduce modi-
fication in perturbative calculations. However, it induces non-perturbative effects
such as an electric dipole moment for the neutron. Measurements indicate that
this quantity is extremely small, constraining θ to unnaturally small values. This
is another parameter that must be fine-tuned in order to have a phenomenologi-
cally valid theory.

• Besides the previous pure theoretical problems, there are also important phenom-
ena that cannot be explained by the Standard Model. Various aspects of galaxy
dynamics, as e.g. the galaxy rotation curves, and the anisotropies of the cosmic
microwave background (CMB) indicate that our universe is not composed only
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by ordinary matter. This issue is known as the dark matter (DM) problem; a
new kind of matter, the dark matter, has to be introduced to explain these phe-
nomena. Dark matter is supposed to be electrically uncharged and only weakly
or gravitationally interacting. According to recent measurements [37], it consti-
tutes 84.5% of all the matter in the universe and 26.8% of the total energy. The
remaining part of the energy is given by the dark energy, which also cannot be
explained within the Standard Model and it is responsible for the accelerating
expansion of the universe. Moreover, even the larger amount of matter with re-
spect to antimatter in the observable universe cannot be explained by Standard
Model and General Relativity alone.

• Observing the flux of neutrinos coming from the sun and from the atmosphere,
oscillations amongst different flavors have been found. In order to explain these
oscillations, neutrinos have to be massive, but they are massless and purely left-
handed in the Standard Model. Still, right-handed neutrino components can be
added and the masses can be originated via the Yukawa interactions with the
Higgs, as for the other fermions. The Yukawa interactions would constitute also
the only interaction terms for the right-handed neutrino components, which are
singlets of the SU(3)C and SU(2)L groups and have hypercharges equal to zero.
In this way, despite the fact that no right-handed neutrino has been observed
yet, this model is not phenomenologically excluded, thanks to the extremely
small interactions of right-handed neutrinos with the other particles. The mass
terms, however, would introduce another hierarchy problem, since their values
(mν) have to be much smaller than the ones of all the other particles in the
Standard Model, mνi < 1 eV [37].



Chapter 3

The top quark

3.1 The top quark, a special quark

The top quark was discovered at the Tevatron in 1995 [16, 17], but particle physicists
had been searching for it for at least 20 years. Indeed, after the discoveries of the τ
lepton at SLAC-LBL in 1975 [38] and of the bottom quark at Fermilab in 1977 [39],
the necessity of a third new particle was clear.

Without the top quark, the new incomplete third generation including the bottom
quark and the τ lepton would have introduced anomalies and consequently spoiled the
renormalizability of the Lagrangian describing the dynamics of elementary particles.
Besides this pure theoretical argument, the existence of the top quark was also predicted
at a later stage from limits on Flavor-Changing Neutral Current (FCNC) decays of the
bottom and from the observation of B0

d and B̄0
d oscillation [40]. Furthermore, with

the measurements of the forward-backward asymmetry in e+e− → bb̄ production at
PETRA [41], it was also possible to determine the weak isospin of the bottom quark
(T 3 = −1/2) and thus infer the isospin of the top quark (T 3 = +1/2).

Hence, already before its discovery, the top quark was expected to be an up-type
quark and the part of the SM Lagrangian, after EWSB, describing its electroweak and
strong interaction was supposed to be:

Ltop = t̄(i∂/ −mt)t + gst̄T
aγµtGa

µ + eQtt̄γ
µtAµ+

gW√
2
V ti
CKM t̄γµPLdiWµ +

gW
2 cos θW

t̄γµ(Vt − Atγ
5)tZµ +

yt√
2
Ht̄t . (3.1)

In eq. (3.1) the first line contains the dynamic and mass term and the QCD and QED
interaction terms. The second line contains the chiral and flavor-changing charged
weak (W boson) interaction term with down-type quarks di, (i = d, s, b), the flavor-
conserving and parity violating neutral weak (Z boson) interaction term and the
Yukawa interaction term with the Higgs field. The parameters Vt and At are respec-
tively the vector and axial coupling of the Z boson with the top quark.
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Figure 3.1: Evolution of the range allowed by electroweak-precision-observable analyses
for the top quark mass value. Plot taken from [19].

Before the discovery of the top quark via direct production, new physical processes
involving the production of the other particles of the SM as, e.g. the W and Z bosons,
had been observed and the precision of the corresponding measurements increased
during the years. In order to compare theoretical predictions with experimental mea-
surements, leading-order (LO) approximations were not sufficiently precise anymore
and effects induced by loop corrections had to be included. Using eq. (3.1) and the
remaining part of the SM Lagrangian, it was possible, e.g. with production processes
at the Z resonance [19], to estimate the effect of the top quark in loop corrections and
so determine via electroweak precision observables (EWPO) the allowed region for the
value of its mass. In Figure 3.1 taken from [19] the blue band, around the central
value line in white, shows how the allowed region for mt, obtained from the analysis
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of EWPO, evolved during the years. The discovery of the top quark at the Tevatron,
with a measured mass (black dots with error bars) compatible with the predictions,
was a tremendous success of the SM and, in general, of quantum field theory.

With the previous colliders the expected discovery failed, because the top quark was
too heavy to be produced. Its mass, mt = 173.5± 0.6± 0.8 GeV according to the most
recent world average value [42], is much larger than the masses of the others particles
of the Standard Model and especially of the other quarks. The top quark has almost
the same mass of a Rhenium atom; the bottom quark, the second heaviest quark, is
∼ 40 times lighter and the up quark, the lightest quark, is ∼ 10000 times lighter.
Due to its large mass, the phenomenology of the top quark is completely different
from the other quarks in the SM. For example, the top quark does not produce a
single jet; it decays before hadronization, allowing to measure its properties as a “bare
quark”. Consequently, ad hoc experimental techniques have been developed to analyze
its signature at colliders. Also, theoretical calculations had to tackle new challenging
problems, in order to provide reliable predictions. For example, it was necessary to
calculate, for the first time, radiative QCD corrections to processes involving colored
massive particles.

Furthermore, the large value of mt gives a special role in the context of BSM theory
to the top quark. On the one hand, the tree-level coupling with the Standard Model
Higgs yt ∼

√
2mt/v ∼ 1 is large and hence the proximity of the top quark mass to v

suggests that the top quark is naturally related to the electroweak symmetry breaking
mechanism. Also, having the largest mass among the quarks, the term proportional
to m2

t is the dominant contribution to the quadratic divergences of eq. (2.20), which
emerge from the quark loop corrections to the Higgs mass. On the other hand, new
particles in BSM models could be massive but lighter than the top quark and thus
they could be directly produced in its decay. All these features of top quark physics
are summarized in the following introductory sections 3.2 and 3.3, which have been
written according to [42–48], where many more details can also be found.

3.2 Top quark properties

The top quark decays almost entirely into a positively charged W boson and a down-
type quark (t → W+q) via electroweak interactions. The measured value for the decay
width, Γt = 2.0+0.7

−0.6 GeV [42], is in agreement with the NLO QCD prediction

ΓNLO
t =

|V tq
CKM |2m3

t

16πv2
(1− r)2(1 + 2r)

[

1−
2αs

3π

(

2π2

3
−

5

2

)]

, r =
m2

W

m2
t

. (3.2)

Numerically, ΓNLO
t = 1.3− 1.4 and the exact value depends on the constants entering

eq. (3.2). NNLO QCD and NLO electroweak corrections and also effects from an off-
shell W boson have been calculated; they shift the value of Γt by only a few percent
[49–55]. The value of Γt, being larger than the QCD scale ΛQCD, determines important
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features of the phenomenology of the top quark. This quark does not form tq̄ or tqq′

bound states, since it electroweakly decays before hadronization. Thus, the top quark
does not appear as a single jet in detectors; its signatures involve jets and possibly
leptons and missing transverse energy. On the one hand, this kind of signature allows
to measure its mass and spin structure, on the other hand, it can mimic the same
signature emerging from decays of non-standard particles as, e.g., squarks of the third
generation.

As said before, the top quark decays almost entirely into a W boson and a down-
type quark. Since |V tb

CKM | is much larger than |V td
CKM | and |V ts

CKM |, the largest part of
Γ(t → W+q) originates from the t → W+b decay. According to [44], BR(t → W+b) =
0.998, BR(t → W+s) = 1.9 × 10−3 and BR(t → W+d) ∼ 10−4, where the value of
BR(t → W+b) is in agreement with recent measurements [56].

However, the classification of the different experimental signatures emerging from
top quarks is determined by the W boson decay products, which can be either a lepton
and a neutrino (W+ → l+ν) or a down-type and an up-type quark (W+ → q̄q′).
Neglecting the sub-leading decays t → Wq with q "= b, the SM predictions for the
branching ratios of the relevant decays [44], in agreement with the measured values,
are:

BR(t → bl+ν) = 0.108 (l = e, µ, τ) , BR(t → bq̄q′) = 0.337× |V qq′

CKM |2. (3.3)

Typically, neutrinos cannot be detected at colliders, but they appear as a missing
transverse energy ( "ET ) component in the total momentum of the final-state particles
produced in a process. Hence, according to eq. (3.3), ∼ 1/3 of the top quark decays
gives the signature b-jet+lepton+ "ET (+X) and ∼ 2/3 of them give the signature b-
jet+2 jets(+X).

In the top sector, the mass mt is the physical parameter known with the highest
precision. At the Tevatron and the LHC, it has been obtained comparing lepton and jet
template distributions for different values of mt with experimental results. Also more
advanced techniques have been developed, however based on kinematical distributions
for which the additional jets radiated in the production of the top quark lead always
to non-trivial problems for the reconstruction of the top quark kinematic. With these
methods, it has been possible to achieve an accuracy of the order of 1 GeV in the
measurements. It is difficult or maybe even impossible, due to a theoretical problem,
to substantially lower the accuracy of the measurement using these methods. The
mass, measured from kinematical distribution, is supposed to be the pole mass, a
quantity that, due to the non-perturbative nature of QCD at low energy, has an intrinsic
ambiguity of order ΛQCD in its definition. This problem can be avoided measuring

mMS
t (µ) for which this problem is not present1. The relation between mt and mMS

t (µ)

1The renormalization in the MS scheme consists in the following steps: regularize the UV diver-
gences via dimensional regularization, eliminate the terms proportional to ∆ = 2/ε − γE + log(4π)
and finally set the regularization scale equal to the renormalization scale.
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Figure 3.2: mW as function of mt for various values of mh. The blue circle delim-
its the area allowed by direct measurements of mW and mt, the red circle delim-
its the area allowed by EWPO. The yellow region represents the exclusions from
the LHC before the Higgs discovery. This plot is an updated version of the anal-
ogous one in [19], and it is provided by the LEP Electroweak Working Group at
http://lepewwg.web.cern.ch/LEPEWWG.

is known up to O(α3
s) and the difference between the two masses is ∼ 10 GeV. The

value of mMS
t (µ) can be extracted, e.g, from measurements of the total cross section of

top pair production. Studies in this direction have already been performed (see [42,57]
for a more detailed discussion and further references).

The precise determination of the top quark mass is an important input for SM tests.
The electroweak corrections involved in the prediction of many observables contain,
as the dominant contribution, terms depending on the mass of the top quark. The
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same electroweak global fits used to determine the expected value of the top quark
mass, before its discovery, have also been used to predict the mass of the Higgs. The
prediction for the Higgs mass value strongly depends on the values of mt ad mW ,
as shown in Figure 3.2, where this dependence has been plotted in the mt − mW

plane together with the value of mt and of mW obtained from direct measurements
(blue circle) and from EWPO analyses (red circle). Now that the Higgs boson has
eventually been discovered [8,9], it is possible to test the validity of the SM using also
the measured Higgs mass as input parameter in fits based on EWPO. As shown, e.g.,
in [58], a good consistency has been found in this kind of global fits.

Also, the precise knowledge of the top quark mass is important to determine the
energy scale up to which the SM Higgs potential is stable [59, 60], indeed this scale
strongly depends on the top quark mass. As can be seen in Figure 3.3 taken from [61],
an error of ∼ 1 GeV on mt implies an error of about one order of magnitude on the
instability scale of the Higgs potential.

Figure 3.3: Instability scale for the Higgs potential as function of the mass of the top
quark for two values of the Higgs mass. Plot taken from [61].
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The possibility of studying the top quark as a bare quark allows also to investigate
its spin structure, unaffected by hadronization effects. Actually, the top quark itself
analyzes its spin structure through the pure left-handed interactions with the W boson
and the bottom quark. Under the assumption mb = 0, the bottom quark emerging
from the top quark decay has always left-handed helicity. Due to angular momentum
conservation in the top quark center-of-mass system, the W boson can be longitudi-
nally or left-handed polarized but not right-handed polarized. Specifically, a fraction
F0 ∼ 70% of W bosons from top decays is longitudinally polarized and the remaining
part FL ∼ 30% is left-handed polarized. This picture is qualitatively unaltered by the
inclusion of radiative corrections, and a non-vanishing bottom quark mass induces only
effects O(m2

b/m
2
W ). In the SM, the longitudinal component of the W boson originates,

after EWSB, from the charged component of the Higgs doublet. Thus, the analysis
of the polarization of the W boson emerging from top quark decays can be used to
investigate the EWSB mechanism. However, the helicity of the W boson cannot be
directly measured, but, analyzing W boson decay products, the values of F0 and FL

can be extracted. The measured values are in good agreement with the SM theoretical
predictions [62]. Interesting information on the spin of the top quark can also be ob-
tained by studying directly the angular distributions of the decay products of the top
quark in respect to its polarization vector (see discussion in [44]).

Due to its large mass and the large uncertainty on the measured value of its total
decay width, the top quark can also accommodate new decay modes, with branching
ratios of the order of a few percent, involving new non-standard particles. In the
following we list some interesting cases.
Theories with an extended Higgs sector can present flavor-changing decays into charged
Higgs, t → H+b. The MSSM2, e.g., belongs to this class of models and includes, in
scenarios with mt > mt̃1 , also the flavor conserving decay t → t̃χ̃0.
In the SM, due to the Glashow-Iliopoulos-Maiani (GIM) mechanism [63], FCNC decays
are extremely suppressed (BR < 10−12) and not detectable at the LHC. In some BSM
models the branching ratios of this kind of decays can be increased to values possibly
measurable at the LHC.
Finally, BSM theories can affect the purely left-handed SM Wtb coupling also if new
particles are heavier than the top quark and do not appear as top quark decay products.
ATLAS and CMS have already investigated these possible deviations and set limits on
their size, see e.g. [64].

2The MSSM and its particle content are introduced and discussed in chapter 5, as introduction to
the calculation of squark–squark production and decay presented in chapter 6.
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3.3 Top quark production at hadron colliders

At hadron colliders, the top quark can be produced in association with a quark or a
W boson via electroweak interactions (single top production) and in pairs, together
with an antitop quark, via strong or electroweak interactions. The first top quark pair
production events were detected in 1995 at the Tevatron and led to the discovery of
the top quark. In contrast, the evidence for single top production was only established
in 2006 [65–67]. At the LHC, both processes have already been measured.

The theoretical predictions for top quark pair and single top quark production
are known at almost the same order of accuracy in perturbation theory. Conversely,
the experimental measurements of single top quark production cross sections are less
accurate than the ones of top quark pair production. Indeed, the separation between
signal and background is much more difficult for the former case.

The basic features of single top quark production are discussed in subsection 3.3.1,
whereas in subsection 3.3.2 we present the phenomenology of top quark pair production
at hadron colliders. In this second case, effects of radiative corrections, especially for
the electroweak case, are discussed in detail.

3.3.1 Single top quark production

In the SM, the top quark can be singly produced via three different partonic processes:

• s-channel: qq′ → W → b̄t, illustrated in Figure 3.4(a),

• t-channel: qb → q′, illustrated in Figure 3.4(b),

• Wt production: bg → Wt, illustrated in Figure 3.4(c).

(a) (b) (c)

Figure 3.4: Illustrative tree-level diagrams for: s-channel, t-channel and Wt produc-
tion.

As can be seen in Figure 3.4, the three process classes involve, in different ways, the
electroweak Wtb coupling. Thus, the cross section of single top production can be used
to test the structure of the Wtb coupling and directly measure the value of |V tb

CKM |. In
Table 3.1 the values, taken from [44], of the predictions for total cross sections of single
(anti)top production are listed for the Tevatron and the LHC at 14 TeV. These results
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cross section (pb) s-channel t-channel Wt production

Tevatron: σt + σt̄ 0.54± 0.04 1.15± 0.07 0.14± 0.03
LHC: σt 7.8± 0.7 150± 6 44± 5
LHC: σt̄ 4.3± 0.3 92± 4 44± 5

Table 3.1: Cross sections for single (anti)top production at the Tevatron and the LHC
at 14 TeV.

Figure 3.5: Real radiation of a b-quark.

include NLO QCD corrections [68,69] and partly corrections beyond NLO [70,71].3 As
can be seen in Table 3.1 the three channels have a different phenomenological impact
at the Tevatron and the LHC.

Here, we do not discuss in detail the phenomenology and the calculation of higher-
order corrections for single top quark production. However, we want to point out
that the calculation of NLO corrections to Wt production involves a technical problem
that is very common for supersymmetric processes and is present also in the calculation
discussed in chapter 6. The diagram in Figure 3.5 contributes to NLO QCD corrections
of Wt production, but part of its contribution is also included in the LO cross section
of top quark pair production (described in the next subsection). Indeed, the diagram
in Figure 3.5 represents the real radiation of a b-quark in Wt production, but it can
also be viewed as the production of a top quark pair with the antitop quark decaying
into a W boson and a b-quark. In order to avoid double counting of the same terms in
the two different processes, at least the contribution from phase-space configurations
with on-shell antitop must be subtracted in the single top calculation.

Different strategies can be used to perform this subtraction and many details can
be found in section 6.4.3 for the case of the calculation of quark radiation from squark–
squark production. This process contributes to NLO QCD corrections to squark–squark
production, but at the tree level, in analogy to the case of single top quark production,
some diagrams can be viewed as squark–gluino production with a gluino decaying into
a squark and a quark. Thus, also in this case at least the contribution from phase
space configurations with an on-shell gluino must be subtracted in the quark radiation
from squark-squark production.

3See [44] for more details about approximation used in the predictions.
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Considering BSM models, single top quark production is also a promising channel
for the identification of possible new physics effects. In theories containing a W ′ state4,
the cross section for the s-channel process is enhanced and the distribution of the
invariant mass for the top and bottom quark in the final state presents a resonance
peak around the W ′ mass (see [72] and references therein). Moreover, the top quark
could be produced in association with other particles, e.g., a charged Higgs boson in
theories with an extended Higgs sector [73]. FCNC interactions allow also tX final
states, where X can be a neutral Z or Higgs boson, a gluon or a photon [74]. Finally,
as in the case of the top quark decay, with this process possible deviations from the
SM Wtb coupling can be studied.

3.3.2 Top quark pair production

Top quark pair production consists in the inclusive production of a top and an antitop
quark. The corresponding experimental signatures are determined by the possible
configurations for the top and antitop quark decay modes. As said in section 3.2, the
decay modes of the top quark are characterized by the decay modes of the W boson.
Its branching ratio into a lepton and a neutrino is approximately 1/3 and its branching
ratio into jets is around 2/3. Consequently, three classes of signatures, as illustrated
in Figure 3.6, are possible for top quark pair production:

• all-hadronic, branching ratio ∼ 4/9,
signature: 2 b-jets + 4 jets (+X),

• semi-leptonic, branching ratio ∼ 4/9,
signature: 2 b-jets + 2 jets + 1 lepton+ "ET (+X),

• dileptons, branching ratio ∼ 1/9,
signature: 2 b-jets + 2 leptons + "ET (+X).

In the experimental analyses the contribution of tau leptons is typically discarded,
thus the semileptonic and dileptons branching ratios are reduced. The all-hadronic
channel gives the largest contribution, 46% of the top quark pair cross section, but its
background contains large QCD contributions from multijet production. The dilepton
channel has a very clean signature, but, excluding tau leptons, only 5% of the top quark
pair events present this signature. The semi-leptonic channel is a good compromise
between the clearness of the signal and the size of the branching ratio, BR ∼ 30%.
Thus, in the experimental analyses, this signature is generally preferred.

We now turn to the description of the partonic subprocesses that yield top quark
pair production and their contributions at different orders of perturbation theory. In
Figure 3.7, SM tree-level diagrams for the corresponding partonic subprocesses at

4W ′ are BSM gauge bosons arising from an additional SU(2) symmetry group.
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Figure 3.6: Different signatures emerging from top quark pair production. Figure taken
from [48].
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Figure 3.7: Electroweak and QCD Born diagrams for tt̄ production.

hadron colliders are shown. The first line of diagrams contribute to the qq̄ → tt̄
process, the second line to the gg → tt̄ process. The qq̄ initial state presents an O(αs)
diagram, qq̄ → g → tt̄, and two O(α) diagrams, qq̄ → γ → tt̄ and qq̄ → Z → tt̄.
The interference between O(αs) and O(α) diagrams is zero due to the different color
structure: the gluon in the propagator of qq̄ → g → tt̄ is a color octet, whereas the
photon or the Z boson in the propagator of qq̄ → γ, Z → tt̄ is a color singlet. Thus,
O(α) diagrams contribute only starting from O(α2) in the cross section. In principle
also an s-channel diagram with a Higgs boson and a t-channel diagram with a W boson
are possible. The interference of the W boson t-channel diagram with qq̄ → g → tt̄ is
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σtt̄ (pb) Tevatron LHC 7 TeV LHC 14 TeV

NLO 5.79+0.79+0.33
−0.80−0.22 133+21+7

−19−7 761+105+26
−101−27

NLO+NNLL 6.30+0.19+0.31
−0.19−0.23 149+7+8

−7−8 821+40+24
−42−31

Table 3.2: Cross sections at NLO and NLO+NNLL for top quark pair production at
the Tevatron and at the LHC.

non-vanishing, but suppressed either by |V qt
CKM | for q "= b or by the PDF luminosity

for q = b. The contribution of the Higgs s-channel diagram to O(α2) is suppressed by
the small coupling of the Higgs with the quarks in the initial state. Thus, the O(α2)
contributions can be safely neglected in predictions for cross sections and differential
distributions. This will appear clearer after the discussion of the size of QCD radiative
corrections and their associated theoretical errors.

Top quark pair production is, first of all, a “QCD process”. At LO, O(α2
s), tt̄

production originates via strong interactions from qq̄ → tt̄ and gg → tt̄ processes. The
contribution of these two processes are different at the Tevatron and the LHC. The qq̄
and gg initial states respectively yield circa 85% and 15% of the total cross section at
the Tevatron and, e.g., 10% and 90% at the LHC 14 TeV. This difference is due to
PDFs; increasing the energy in the hadronic center-of-mass system, their contributions
arise from smaller values of the variable x for the parton momentum. In this region
the gluon PDF is larger than the valence quark PDFs. In addition, pp̄ allows both the
quark and the antiquark in the initial state to be a valence quark, whereas with pp
there is no valence antiquark in the initial state. The qq̄ and gg initial states present
different distributions and top quark polarizations. Thus, these differences appear also
comparing LHC and Tevatron predictions at the hadronic level.

Also the dominant radiative corrections are, in general, generated by QCD inter-
actions. The NLO QCD corrections, O(α3

s), have to be taken into account to obtain a
realistic phenomenological description. The K-factor, i.e. the ratio between the cross-
section at NLO and LO, is ∼ 1.25(1.50) at the Tevatron(LHC 14 TeV). Moreover, the
NLO corrections, which include also a contribution from the qg and q̄g initial state,
reduce the errors due to the variation of the renormalization and factorization scale.

These errors, including Next-to-Next-to-Leading-Logarithm (NNLL) corrections,
can be further reduced. In Table 3.2 the NLO and NLO+NNLL results presented in [75]
are listed. The first error refers to scale uncertainties, the second comes from PDFs5.
As can be seen in Table 3.2, the error due to scale variation strongly decreases once
NNLL corrections are taken into account. Several groups have performed NLO+NNLL
calculations [76–80], using different technical approaches. In Figure 3.8, the predictions
obtained by these groups for the total cross section at NLO, NLO+NNLL and at
approximated Next-to-Next-to-Leading-Order (NNLO)6 accuracy are compared to the

5See [75] for more details on the procedure used to obtain the errors.
6See [77, 79, 82, 83] for the definitions of the approximate NNLO.
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Figure 3.8: Comparison between different predictions (NLO, NNLL and approximated
NNLO) and the values of the total cross section measured by ATLAS and CMS at the
LHC with

√
S = 7 TeV. Plot taken from [81].

values measured by ATLAS and CMS at 7 TeV. In the error band PDF errors are not
included, still, the different theoretical predictions and the experimental measurements
are in good agreement.

Also the total cross section at full NNLO accuracy [84–86], NLO factorizable correc-
tions7 including the decay in narrow-width approximation [87,88] and non-factorizable
corrections have been calculated [89]. Now, also the complete NLO corrections includ-
ing leptonic decays [90, 91] are known.

It is worth to note that, especially at LHC 14 TeV, the cross section of single top
quark production is smaller than the cross section of top quark pair production, but
not as much as one could expect from their different leading perturbative orders: O(α2)
for single top quark production and O(α2

s) for top quark pair production. Indeed, in
single top quark production a larger phase-space volume is available and thus the cross
section is enhanced.

Besides pure QCD effects, also electroweak interactions induce corrections to top
quark pair production [92–96]. The size of these corrections and their phenomenological
impact strongly depend on the particular physical observable under consideration. In
this section we discuss total cross sections and differential distributions, the charge
asymmetry is discussed in detail in section 4.2. The following paragraphs are taken

7A definition of the terms factorizable and non-factorizable will be given in the context of squark-
squark production and decay in section 6.2.2 and in appendix A. The same arguments apply also to
the case of top quark pair production and decays.
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from [97].

The weak O(α2
sα) corrections to the total cross section have been calculated for the

first time in [92] and later at differential level in [93] and including polarization and
spin correlations in [94]. Also, in a very recent publication [98], new numerical results,
based on calculations in [93], have been presented using updated PDFs and input
parameters, as e.g. the Higgs mass. At this order, the gg → tt̄(+X) process contributes
only via electroweak loop corrections. The qq̄ → tt̄(+X) process contributes with loop
corrections and also with real gluon radiation via the interference of qq̄ → Z → tt̄g
and qq̄ → g → tt̄g diagrams. With the Higgs mass of about 126 GeV, weak corrections
amount to −2% of the LO cross section, for the LHC at 14 TeV, and few permille for
the Tevatron. These effects are small, especially if compared with the aforementioned
theoretical errors from PDFs and the scale variation in QCD corrections.

As said before, the total cross section at the LHC gets the dominant contribution
from the gg initial state, whereas at the Tevatron the qq̄ initial-state contribution
is larger than in the gg case. Conversely, the tail of the distributions involving a
very hard top is dominated, for both the colliders, by the qq̄ initial state. Indeed,
very hard tops can be produced only with high partonic center-of-mass energies, for
which the qq̄ PDFs luminosity is larger than for gg. In this regime, especially for
the dominant qq̄ → tt̄(+X) process, Sudakov logarithms enhance the size of relative
electroweak corrections. These logarithms always arise in the calculation of electroweak
loop corrections and, at NLO, they correspond to terms O(α log2(M2/ŝ)), where ŝ is
the total energy of the partonic process in its center-of-mass frame and M = MW ,MZ .
In the pT distribution for the LHC at 14 TeV, e.g., O(α2

sα) weak corrections reach
−20% for pT around 2 TeV. This effect is larger than the PDF and scale variation
uncertainties. However, the absolute value of the differential cross section in the tail is
six orders of magnitude smaller than in the peak region, so a very high luminosity is
necessary to compare the effects of these corrections with experimental data. In [93]
a similar quantity is discussed: the relative weak corrections to the LO cross section
with a cut pT > pcutT applied. For pcutT < 2 TeV these corrections are larger than the
statistical uncertainty estimated for an integrated luminosity of 200 fb−1. It seems that
it will be possible to test experimentally the effects from the discussed weak radiative
corrections. The same arguments apply to the LHC at 7 and 8 TeV and the Tevatron,
but the luminosity accumulated in these runs is not enough for a comparison with
data [99].

The remaining part of the O(α2
sα) electroweak contribution, the QED correc-

tions [95], involves only diagrams with QED and QCD interactions. The gg → tt̄(+X)
process contributes, as in the weak case, only with loop corrections, the qq̄ → tt̄(+X)
process with loop corrections, real gluon radiation and also real photon radiation. In
qq̄ → tt̄(+X), boxes and the interference of the initial-state and final-state radiation
do not contribute to the inclusive total cross section. Oppositely, as we will see in
detail in section 4.2, the non vanishing terms do not contribute to the asymmetric
cross section. The QED O(α2

sα) of qq̄ → tt̄(+X) can be divided, on a diagrammatic
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basis, into corrections to the total cross section and corrections to the charge asymme-
try. Moreover, also the γg → tt̄ process is present at this order and, at the LHC 14
TeV, constitutes the dominant contribution to the QED corrections. Unfortunately,
MRST2004QED [100] is at the moment the only PDF set8 that provides a photon
distribution and allows in general to perform consistent calculations of electroweak
corrections at hadron colliders.

The QED corrections to the total cross section, as in the weak case, are small: -2%
for the Tevatron and 1% for the LHC at 14 TeV. Corrections to distributions, again,
are enhanced in regions involving a very hard top, but here they are reduced by the
positive contribution of γg → tt̄. As illustrative comparison, in the pT distribution
they sum up to -4% for pT = 2 TeV.

In [96] NLO QCD results are combined with both QED and weak O(α2
sα) correc-

tions and also with contributions from O(αsα), O(α2) and O(αsα2). In conclusion,
electroweak corrections are in general much smaller than QCD effects. They are larger
only in phase-space regions not easily accessible by experimental measurements. As it
will be discussed in section 4.2, the situation is very different for the charge asymmetry.

The top quark pair production is also a promising channel for the identification
of new physics effects. In the following we list some interesting BSM scenarios for
which this process has a relevant role. In this contest, the clearest evidence of a new
particle X can be obtained from its direct production and subsequent decay into a top
quark pair, X → tt̄. The particle X can be, e.g., a Z ′ boson9 or a Kaluza–Klein gluon
excitation. Unfortunately, the potential clear signal has led, until now, only to lower
bounds beyond 1 TeV for the mass of the resonant particle, see [102,103] and references
therein.

In some BSM theories, as, e.g., supersymmetric extension of the SM, a partner
T of the top quark with the same quantum numbers and possibly different spin is
present. In the case mT > mt, it can decay into a top quark and SM particles. The
production of T T̄ pairs at the LHC could result in a signature equal to tt̄ plus other
SM particles emerging from T decay. However, the additional particles emerging in the
T decays can also be stable undetectable particles appearing as "ET in the detector, as,
e.g., in the MSSM the lightest neutralino χ̃0

1 emerging from the decay of a top squark
(t̃ → tχ̃0

1). In this case, for values of mT close to mt, T T̄ and tt̄ are experimentally
undistinguishable. This is an example of how, in contrast to the scenarios discussed
before, tt̄ production can be background of BSM signatures. Jets, leptons and "ET

are the typical content of signatures, as it will be explained in section 5.3.1, emerging
from production of supersymmetric particles or, in general, BSM particles, and the tt̄
production can mimic this signature. Moreover for some channels, tt̄ production is a

8NNPDF collaboration announced (Rencontres de Moriond: QCD and High Energy Interactions
La Thuile, March 9-16, 2013) that soon a new set of PDFs including electroweak effects and the
photon distribution will be publicly available. See also [101].

9Z ′ are BSM gauge bosons arising from an additional U(1) symmetry group.
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background to Higgs production. Thus, both as background to new physics searches
or as signal for new physics effects, the prediction of top quark pair production have
to be known with high accuracy.



Chapter 4

The top quark forward-backward
asymmetry

As explained in the previous sections, many theoretical motivations suggest that BSM
effects could be naturally observed in top quark phenomenology. However, no hint
for new physics, i.e. significant deviations between SM theoretical predictions and
experimental results, has appeared for the physical observables discussed so far: decay
widths, branching ratios and cross sections for top quark pair and single top production.

In 2010, at the Tevatron, the CDF collaboration performed the measurement of the
top quark forward-backward asymmetry AFB, i.e., the relative difference between the
number of top quarks produced in the “forward direction” (the direction of the proton)
and the number of top quarks produced in the “backward direction” (the direction
of the antiproton). Given the CP-invariant pp̄ initial state, the forward-backward
asymmetry is equivalent to the charge asymmetry, i.e., the relative difference between
the number of top and antitop quarks produced in the “forward direction”.

Various definitions of the asymmetry are possible. They differ by just the precise
definition of “forward” and “backward”, but they can be in general written as

A =
σ+ − σ−

σ+ + σ−
, (4.1)

where the denominator is the total cross section and the numerator is the difference of
the two complementary forward σ+ and backward σ− cross sections. The directions are
typically determined via the rapidity of the top and antitop quark, yt and yt̄, defined
as

yt =
1

2
log

(

Et + pzt
Et − pzt

)

, yt̄ =
1

2
log

(

Et̄ + pzt̄
Et̄ − pzt̄

)

. (4.2)

In eq. (4.2), Et and Et̄ are respectively the energy of the top and the antitop quark
and pzt and pzt̄ are their three-momentum components parallel to the beam axis and
oriented in the direction of the proton beam.
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Figure 4.1: Comparison between predictions for Att̄
FB (see eq. (4.4)) at NLO QCD, in

the two regions Mtt̄ > 450 GeV and Mtt̄ < 450 GeV, and the corresponding values
measured by CDF with 5.3 fm−1 luminosity. Plot taken from [20].

Using the definitions σ+ = σ(∆y > 0) and σ− = σ(∆y < 0), where ∆y = yt − yt̄,
CDF found a 3.5σ deviation in the high-invariant-mass region Mtt̄ > 450 GeV between
the measured value and the corresponding theoretical prediction at NLO QCD accuracy
[20]. This deviation has triggered an intense theoretical activity into two different
directions.

On the one hand, the effects of SM radiative corrections beyond NLO QCD correc-
tions have been investigated, on the other hand, new BSM models have been created
and/or tested to explain this deviation. Both the DØ and CDF collaborations repeated
the analyses increasing the data set and studying the dependence of the asymmetry
on cuts or additional kinematic variables. The increment of the precision of the theo-
retical prediction and of the experimental measurements has decreased the size of the
deviation to 2.5σ; still, this anomaly remains at the moment one of the most promising
hints for possible BSM effects.

The LHC, colliding protons with protons, does not present a “forward” and “back-
ward” direction and the measurement of the same quantity would be zero due to the
symmetric initial state. Analogue central asymmetries, defined according to the general
form of eq. (4.1), have been used at the LHC, but no deviation from SM predictions
has been measured so far.

In section 4.1 the various measurements for the different definitions used at the
Tevatron and the LHC are listed. In section 4.2 the charge asymmetry is discussed from
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a theoretical point of view for the Tevatron case, where it corresponds to a forward-
backward asymmetry. The calculation of the electroweak contribution is explained
in details. The numerical results are presented in section 4.3 and compared to the
measured values. The differences between the charge asymmetry at the Tevatron and
the LHC are discussed in section 4.4. The general features of BSM models that might
eliminate the deviation between SM predictions and experimental measurements are
briefly described in section 4.5.

4.1 Measurements
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Figure 4.2: Distribution in rapidity for top and antitop quarks at the Tevatron and the
LHC. Plot taken from [104].

The qualitative behavior of the rapidity distributions of top and antitop quarks is
shown in Figure 4.2(a) for the Tevatron and in Figure 4.2(b) for the LHC. At the Teva-
tron, top quarks are preferably produced in the “forward” direction and antitop quarks
in the “backward” direction. At the LHC, the distributions are forward-backward sym-
metric, but the antitop quark distribution is more “central” than the top quark dis-
tribution. In order to measure these two different phenomenological behaviors, which
have the same physical origin, different asymmetry definitions have been used at the
Tevatron and the LHC. At the Tevatron the following charge asymmetry definitions,
equivalent to a forward-backward asymmetry, have been used:

App̄
FB =

σ(yt > 0)− σ(yt < 0)

σ(yt > 0) + σ(yt < 0)
=

σ(yt > 0)− σ(yt̄ > 0)

σ(yt > 0) + σ(yt̄ > 0)
(4.3)

and

Att̄
FB =

σ(∆y > 0)− σ(∆y < 0)

σ(∆y > 0) + σ(∆y < 0)
. (4.4)

As already said, ∆y is the difference between the rapidity yt and yt̄ of the top and
antitop quarks, where the direction of the beam axis is defined by the proton beam.
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∆y (not yt) is invariant under a boost along the beam axis, thus it has the same value
in the partonic and in the hadronic rest frame. Conversely, at the LHC a central charge
asymmetry is used

Att̄
C =

σ(∆|y| > 0)− σ(∆|y| < 0)

σ(∆|y| > 0) + σ(∆|y| < 0)
, (4.5)

where ∆|y| = |yt|− |yt̄|.
In order to measure these quantities, the (anti)top momentum must be recon-

structed. This can be avoided measuring similar asymmetries that do not involve the
top quark momenta in their definitions, but the momenta of the leptons emerging in
the decays:

Al
FB =

σ(qlyl > 0)− σ(qlyl < 0)

σ(qlyl > 0) + σ(qlyl < 0)
, (4.6)

All
FB =

σ(∆η > 0)− σ(∆η < 0)

σ(∆η > 0) + σ(∆η < 0)
, (4.7)

All
C =

σ(∆|η| > 0)− σ(∆|η| < 0)

σ(∆|η| > 0) + σ(∆|η| < 0)
. (4.8)

Al
FB is used at the Tevatron with the semi-leptonic signature. yl is the rapidity of the

lepton, defined in analogy with eq. (4.2) for the case of the lepton, and ql is its charge.
All

FB and All
C are respectively used at the Tevatron and the LHC with the dileptonic

signature and depend on ∆η = ηl+ − ηl− and ∆|η| = |ηl+| − |ηl−|. The variables ηl+
and ηl− are the pseudorapidity of the positive and negative lepton, defined as

ηl+ =
1

2
log

(

|0pl+ |+ pzl+
|0pl+ |− pzl+

)

, ηl− =
1

2
log

(

|0pl−|+ pzl−
|0pl−|− pzl−

)

. (4.9)

In eq. (4.9), 0pl+ and 0pl− are respectively the three-momenta of l+ and l−; pzl+ and pzl−
are their components parallel to the beam axis and oriented in the direction of the
proton beam.

Practically, in the experiments, the number of events from the phase-space regions
defined by σ+ and σ− are simply counted. However, asymmetries are dimensionless
quantities; if experimental cuts are consistently taken into account, the definitions
listed before are equal to definitions in which cross sections are replaced by the number
of events. We list in Table 4.1 and Table 4.2. the values measured at the Tevatron and
the LHC for the asymmetries defined above. The values are taken from [31,105]; a list
of the previous measurements and their deviations from theoretical predictions can be
found in [106]. The measurements of App̄

FB was performed by CDF only in the 5.3 fm−1

analysis, in the new analyses this quantity has not been measured anymore. However,
some theoretical arguments can be easily explained using this particular definition and
thus we include it.
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asymmetry value (%) signature L (fb−1) experiment

App̄
FB 15.5± 5.5 lepton+jets 5.3 CDF

Att̄
FB 16.4± 4.5 lepton+jets 9.4 CDF

Att̄
FB 19.6± 6.5 lepton+jets 5.4 DØ

Att̄
FB 42± 16 dilepton 8.7 CDF

Att̄
FB(|∆y| < 1) 10.1± 4.7 lepton+jets 9.4 CDF

Att̄
FB(|∆y| > 1) 39.2± 10.2 lepton+jets 9.4 CDF

Att̄
FB(Mtt̄ < 450 GeV) 8.4± 5.3 lepton+jets 9.4 CDF

Att̄
FB(Mtt̄ > 450 GeV) 29.5± 6.6 lepton+jets 9.4 CDF

Al
FB 6.6± 2.5 lepton+jets 8.7 CDF

Al
FB 5.8± 5.3 dilepton 5.4 DØ

All
FB 5.3± 8.4 dilepton 5.4 DØ

Table 4.1: Forward-backward asymmetries and lepton asymmetries measurements at
the Tevatron.

asymmetry value (%) signature L (fb−1) experiment

AC −1.9± 3.7 lepton+jets 1.04 ATLAS

AC 0.4± 1.5 lepton+jets 5.0 CMS

AC 5.7± 2.8 dilepton 4.7 ATLAS

AC 2.9± 2.8 combined 5.0 & 1.04 ATLAS

All
C 2.3± 1.4 dilepton 4.7 ATLAS

Table 4.2: Charge asymmetries measurements at the LHC 7 TeV.

4.2 Calculation of AFB

At leading order, as we said in section 3.3.2, the production of tt̄ pairs in pp̄ collisions
originates from the partonic processes qq̄ → tt̄ and gg → tt̄ via the strong interaction.
The denominator in the r.h.s. of eq. (4.1), i.e., the integrated cross section, receives a
contribution from LO, at O(α2

s), whereas the numerator is equal to zero at this order.
The asymmetric cross section, the numerator of A, starts to contribute at O(α3

s).
The arguments explained in this section apply to the charge asymmetry definitions
used at the Tevatron, i.e. the forward-backward asymmetries defined in eq. (4.3) and
eq. (4.4). In general they can be extended also to the charge asymmetry used at the
LHC, eq. (4.5), the few differences are explained in section 4.4.

The numerator of AFB starts at O(α3
s), however it gets contributions only from

partonic subprocesses qq̄ → tt̄(g), qg → tt̄q and q̄g → tt̄q̄ with q = u, d. Indeed, in
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order to give a contribution to the top quark forward-backward asymmetry, a partonic
subprocess must satisfy two conditions [107]:

• The partonic subprocess p1p2 → tt̄(+X) is asymmetric in its reference frame.

• The parton luminosity of the initial state p1p2, from the two hadrons h1 and h2,
does not cancel the asymmetric contribution at the parton level.

The first condition depends on results obtained via a perturbative calculation for the
hard process. The second condition depends on how the non-perturbative structure of
the proton is described, i.e. the assumptions used for the determination of the PDFs.

The gg → tt̄(g) process cannot satisfy the first condition. With two gluons in
the initial state no “forward” or “backward” direction is defined in the partonic rest
frame. The qq̄ → tt̄(g) process, with two different particles in the initial state, exhibits
a direction and can be asymmetric. However, not all the qq̄ initial states satisfy the
second condition.

We show now what the second condition implies. The partonic subprocesses p1p2 →
tt̄(+X) can be generated with p1(p2) coming from the first(second) hadron h1(h2)
or from h2(h1). Considering the case of App̄

FB, if a partonic p1p2 → tt̄(+X) event
in a given kinematic configuration contributes to σ(yt > 0) in the h1(h2) case, it
contributes with the same partonic weight also to σ(yt < 0) in the h2(h1) case. Thus,
the total contribution to App̄

FB is non-vanishing only if the weight coming from the
parton distributions in the two cases is different, i.e., if

fp1,h1(x1)fp2,h2(x2) "= fp1,h2(x1)fp2,h1(x2) , (4.10)

where fpi,hj(xi) is the parton distribution of the parton pi in the hadron hj. The same
discussion applies also to different definitions of the forward-backward asymmetry like,
e.g., Att̄

FB, but cannot be extended to the charge asymmetry definitions used at the
LHC.

Equation (4.10) tells us that at the Tevatron, where h1 = p and h2 = p̄, only
initial states with at least one of the two partons p1 and p2 equal to (anti)quark up
or (anti)quark down can produce an asymmetric contribution. Indeed, only valence
quarks have different PDFs in protons and antiprotons. Again, we want to stress that
this last statement is completely independent of the assumptions made for the partonic
calculation, it relies only on the way the proton structure is described by PDFs. For
instance, a very small but non-vanishing contribution from the ss̄ initial state can be
generated with PDF sets, as e.g. MSTW08 [108] and NNPDF [109], in which fs "= fs̄.
Looking at eq. (4.10), it is also clear that at the LHC, where h1 = h2, the second
condition, as expected, is never satisfied.

Before describing the structure of the O(α3
s) contribution to the asymmetric part of

AFB, we analyze the perturbative expansion of AFB in order to identify which are the
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leading terms. If we start considering only QCD interactions, writing the numerator
and the denominator of AFB in powers of αs, we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·
α2
sD0 + α3

sD1 + · · ·
= (4.11)

=
αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · .

The terms up to one-loop (D0, D1, N1) have been respectively calculated in [110–115],
[87, 116–118] and [30], whereas only some parts of N2 are currently known [119–121].
The inclusion of the term N1D1/D0 without the term N2 is questionable, indeed it
would decrease by ∼ 30% the predicted value, when N2 could in principle be of the
same order or even bigger than N1D1/D0. Moreover, according to [119], an approxi-
mate calculation suggests that the inclusion of both terms should not sensitively change
our result. We chose to use only the lowest order cross section in the denominator and
the O(α3

s) term in the numerator for the numerical evaluation presented in section 4.3.
Besides the strong interaction, the electroweak interaction gives rise to further contri-
butions to the tt̄ forward-backward asymmetry, through photon and Z exchange at the
tree level as well as through interference between QCD and electroweak amplitudes
at one-loop order (including real radiation corrections) in both interactions. Although
smaller in size, they are not negligible, and a careful investigation is an essential ingre-
dient for an improved theoretical prediction.

Taking into account electroweak interactions and expanding N and D in powers of
αs and α, AFB yields the following expression,

AFB =
N

D
=

α2Ñ0 + α3
sN1 + α2

sαÑ1 + α4
sN2 + · · ·

α2D̃0 + α2
sD0 + α3

sD1 + α2
sαD̃1 + · · ·

=

= αs
N1

D0
+ α

Ñ1

D0
+

α2

α2
s

Ñ0

D0
+ · · · . (4.12)

In the second line of eq. (4.12) the three leading terms, excluding the incomplete O(α2
s)

of AFB, are explicitly shown. In the following we discuss the evaluation of these three
terms as presented in [29]. The term D0 is simply the total LO cross section divided
by α2

s. The first term involving N1 was calculated in [30], conversely the second and
the third terms, of electroweak origin, had been treated only marginally before [29].
Whereas the third term ∼ Ñ0 had not been considered at all, the contribution from
the second term ∼ Ñ1 had been obtained in [30], in an approximate way, by a rescaling
of the leading QCD contribution with coupling constants and group factors.

The relevant tree-level diagrams for the partonic subprocesses qq̄ → tt̄ and gg → tt̄
have already been shown in Figure 3.7. The squared terms |Mqq̄→g→tt̄|2 and |Mgg→tt̄|2
yield the term D0 from the LO cross section; the O(α2) terms arise from |Mqq̄→γ→tt̄ +
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Figure 4.4: Real emission of gluons at O(α3
s).

Mqq̄→Z→tt̄|2, which generate a purely electroweak asymmetric differential cross section,
in the partonic center-of-mass system given by

dσasym

d cos θ
= 2πα2 cos θ

(

1−
4m2

t

s

)[

κ
QqQtAqAt

(s−M2
Z)

+ 2κ2AqAtVqVt
s

(s−M2
Z)

2

]

, (4.13)

κ =
1

4 sin2(θW ) cos2(θW )
, Vq = T 3

q − 2Qq sin
2(θW ), Aq = T 3

q ,

where s is the squared center-of-mass energy in the parton reference frame, θ is the
top quark scattering angle, also in the partonic center-of-mass system. Qq and Qt are
the charges of the parton q and of the top quark and Aq, At and Vq, Vt are their axial
and vectorial couplings to the Z boson. In AFB this leads to the term Ñ0 of eq. (4.12).
The complementary symmetric cross section provides the D̃0 term in the denominator,
which does not contribute in the order under consideration. As mentioned before, the
interference of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because of the color structure,
so O(αsα) terms appear neither in the numerator nor in the denominator.

The O(α3
s) terms that contribute to N arise from four classes of partonic processes:

qq̄ → tt̄, qq̄ → tt̄g, qg → tt̄q and q̄g → tt̄q̄. In the first case the origin is the interference
of QCD one-loop and Born amplitudes; the other processes correspond to real particle
emissions. All one-loop vertex corrections and self-energies do not generate any asym-
metric term, hence, among the virtual corrections, only the box diagrams (Figure 4.3)
are relevant. These box integrals are free of ultraviolet and collinear divergences, but
they involve infrared (IR) singularities which are cancelled after adding the integrated
real gluon emission contribution qq̄ → tt̄g, shown in Figure 4.4. For the corresponding
relevant gluon-radiation part only the interference of initial- and final-state gluon ra-
diation, yielding another asymmetric cross section, has to be taken into account. The
processes of real quark radiation qg → tt̄q and q̄g → tt̄q̄ yield contributions to AFB,
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Figure 4.5: Different ways of QED–QCD interference at O(α2
sα).

which are numerically negligible for AFB at the Tevatron [30].

In order to analyze the electroweak O(α2
sα) terms, it is useful to separate the

QED contributions involving photons from the weak contributions with Z bosons.
In the QED sector we obtain the O(α2

sα) contributions to N from three classes of
partonic processes: qq̄ → tt̄, qq̄ → tt̄g and qq̄ → tt̄γ. The first case is the virtual-
photon contribution, which can be obtained from the QCD analogue, namely the O(α3

s)
interference of box and tree-level amplitudes, by substituting successively each one of
the three internal gluons by a photon, as displayed in Figure 4.5.

The essential differences between the calculation of the O(α3
s) and of QED O(α2

sα)
terms are the coupling constants and the appearance of the SU(3)C generators in the
strong vertices. Summing over color in the final state and averaging in the initial state
we find for the virtual contributions to the asymmetric cross section the following ratio,

|Mtt̄|
2

O(α2
sα),asym

|Mtt̄|
2

O(α3
s),asym

=
2Re

(

Mtt̄
O(α)Mtt̄ ∗

O(α2
s)

)

asym
+ 2Re

(

Mtt̄
O(αs)

Mtt̄ ∗
O(αsα)

)

asym

2Re
(

Mtt̄
O(αs)

Mtt̄ ∗
O(α2

s)

)

asym

=

=
F tt̄
QED(αs,α, Qt, Qq)

F tt̄
QCD(αs)

, (4.14)

that can be expressed in terms of two factors F tt̄
QED and F tt̄

QCD, depending only on
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coupling constants and color traces,

F tt̄
QCD =

g6s
9
δADδBF δECTr(t

AtBtC)
[1

2
Tr
(

tDtEtF
)

+
1

2
Tr
(

tDtF tE
)

]

=

=
g6s

16 · 9
d2 , (4.15a)

F tt̄
QED = ntt̄

[g4se
2QqQt

9
δACδBDTr(t

AtB)Tr(tCtD)
]

=

=
6g4se

2

9
QtQq . (4.15b)

F tt̄
QCD contains two different color structures and the result depends on d2 = dABCdABC =

40
3 , which arises from Tr(tAtBtC) = 1

4(if
ABC + dABC). F tt̄

QED instead depends on the
charges of the incoming quarks (Qq) and of the top quark (Qt), together with ntt̄ = 3
corresponding to the three photon insertions illustrated in Figure 4.5.

In a similar way, also the real radiation processes qq̄ → tt̄g and qq̄ → tt̄γ (Figures 4.6
and 4.7) can be evaluated starting from the result obtained for qq̄ → tt̄g in the QCD
case and substituting successively each gluon by a photon, yielding the ratios

|Mtt̄g|
2

O(α2
sα),asym

|Mtt̄g|
2

O(α3
s),asym

=
2Re

(

Mtt̄g
O(α

√
αs)

Mtt̄g ∗
O(αs

√
αs)

)

asym

∣

∣Mtt̄g
O(αs

√
αs)

∣

∣

2

asym

=
F tt̄g
QED(αs,α, Qt, Qq)

F tt̄g
QCD(αs)

, (4.16)

|Mtt̄γ |
2

O(α2
sα),asym

|Mtt̄g|
2

O(α3
s),asym

=

∣

∣Mtt̄γ
O(αs

√
α)

∣

∣

2

asym

∣

∣Mtt̄g
O(αs

√
αs)

∣

∣

2

asym

=
F tt̄γ
QED(αs,α, Qt, Qq)

F tt̄g
QCD(αs)

. (4.17)

F tt̄g
QCD, F

tt̄g
QED and F tt̄γ

QED are related to F tt̄
QCD, F

tt̄
QED in the following way,

F tt̄g
QCD = F tt̄

QCD, F tt̄g
QED =

2

3
F tt̄
QED , (4.18)

F tt̄γ
QED =

1

3
F tt̄
QED, F tt̄

QED = F tt̄g
QED + F tt̄γ

QED .

This guarantees the cancellation of the IR singularities stemming from the virtual
contributions.

The O(α2
sα) asymmetric term from qq̄ → tt̄g comes from the interference of qq̄ →

g → tt̄g (Figure 4.4) and qq̄ → γ → tt̄g (Figure 4.6). It can be obtained from the
corresponding QCD result with the replacement of one gluon by a photon and inserting
the right couplings, as done in the case of qq̄ → tt̄. The only difference is the number
of gluons to be replaced: in the qq̄ → tt̄g case they are only two instead of three as for
the virtual photon contributions.

The O(α2
sα) asymmetric term from qq̄ → tt̄γ comes from the qq̄ → g → tt̄γ

diagrams in Figure 4.7, and again it can be obtained from the corresponding QCD
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Figure 4.7: Real photon emission from gluon-exchange diagrams.

result for the gluon-radiation process qq̄ → tt̄g. Here we have a one-to-one relation
between the QED and QCD diagrams.

Finally, we can relate the QED contribution to the asymmetric term Ñ1 in eq. (4.12)
to the O(α3

s) QCD term N1 for a given quark species qq̄ → tt̄+X in the following way,

RQED(Qq) =
αÑQED

1

αsN1
=

F tt̄
QED

F tt̄
QCD

= QqQt
36

5

α

αs
. (4.19)

Now we consider the weak contribution to Ñ1. It can be depicted by the same
diagrams as for qq̄ → tt̄g and qq̄ → tt̄ in the QED case, but with the photon now
substituted by a Z boson (Figure 4.8 and Figure 4.9), involving massive box diagrams.

The result cannot be expressed immediately in a simple factorized way. We per-
formed the explicit calculation including also the contribution from real gluon radiation
with numerical integration over the hard gluon part.

Basically also Z boson radiation, qq̄ → tt̄Z, can contribute at the same order. As
our calculation has shown, it yields only a tiny effect of 10−5 in AFB and thus may be
safely neglected. The same applies to ud̄ → tt̄W+ as well as to Higgs boson radiation.
For these processes with an additional heavy particle in the final state, the phase-space
volume is reduced, thus the contribution is much smaller.

Weak one-loop contributions to the qq̄g and tt̄g vertices induce also axial vector form

Figure 4.8: Real gluon emission from Z-exchange diagrams.
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Figure 4.9: Different ways of weak–QCD interference at O(α2
sα).

factors, which, however, yield vanishing interference terms with the Born amplitude
for the asymmetric cross section at O(α2

sα) and are thus irrelevant. Indeed, the two
vertices can be written as

iΛa
µ = −igst

a α

4π

[

γµFV + γµγ5GA +
(p− p′)µ
2mq

FM + (p+ p′)µγ5GE

]

, (4.20)

where p and p′ are the momenta of q and q̄ (t and t̄). In the interference with tree-level
diagrams, the contributions from terms proportional to GE and GA vanish since the
trace of one γ5 and four(three) γ matrixes is imaginary(zero). The γµFV term does
not contribute to AFB, otherwise also O(α2

s) cross section would be asymmetric. In
the calculation presented in [92] it can be seen that also the term proportional to FM

vanishes in the AFB calculation.

4.3 Numerical results

The following numerical analysis is based on the analytical evaluation of the required
symmetric and asymmetric parts of the partonic cross sections and semi-numerical
phase-space integration for the radiation processes applying phase-space slicing1, with
support of FeynArts [122] and FormCalc [123].

1More details on the phase-space slicing approach can be found in section 6.4.2. The calculation
discussed there involves also the other possible divergences arising in the calculation of NLO correc-
tions for the production of heavy particle, i.e., the initial-state collinear divergences. Moreover, also
renormalization of UV divergences is necessary. Thus, the calculation performed here is technically
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In order to obtain results at the hadronic level, we convolute the partonic con-
tributions, discussed in detail in the previous section, with the corresponding parton
luminosities. For any subprocess ij → tt̄(+X), we express the contribution dσij→tt̄(+X)

to the hadronic production cross section as

dσij→tt̄(+X) =

∫ 1

τ0

dτ Lij(τ) dσ̂ij→tt̄(+X)(τ) . (4.21)

In eq. (4.21), dσ̂ij→tt̄(+X) is the partonic cross section and the term Lij(τ) is the parton
luminosity defined as

Lij(τ) =
1

1 + δij

∫ 1

τ

dx

x

[

fi,p(x, µF ) fj,p̄
(τ

x
, µF

)

+ fj,p(x, µF ) fi,p̄
(τ

x
, µF

)]

, (4.22)

where fi,p(x, µF ) and fi,p̄(x, µF ) are respectively the PDFs of the parton i inside the pro-
ton and the antiproton at the scale µF and with momentum fraction x. τ denotes the ra-
tio between the squared center-of-mass energies of the partonic and hadronic processes,
τ = s/S, and the kinematical production threshold corresponds to τ0 = (2mt)2/S.

For the O(α3
s) and O(α2

sα) contributions to the numerator of AFB, the soft part
of the gluon and photon real radiation (Eg, Eγ < ∆E) is calculated analytically, the
hard part (Eg, Eγ > ∆E) numerically. The soft emission of a gluon in the asymmetric
contribution originating from O(αs) corrections, α3

sN1, is evaluated by multiplying the
LO contribution with a soft-gluon factor Csoft

QCD dependent on the kinematics of the top
and antitop quark,

Csoft
QCD = −

5

6

αs

π

[

2 log

(

2∆E

λ

)

log

(

m2
t − u

m2
t − u

)

+Li2

(

1−
s(1 + β)

2(m2
t − t)

)

+ Li2

(

1−
s(1− β)

2(m2
t − t)

)

−Li2

(

1−
s(1 + β)

2(m2
t − u)

)

− Li2

(

1−
s(1− β)

2(m2
t − u)

)

]

. (4.23)

In eq. (4.23) β =
√

1− 4m2
t/s and s, t and u are the usual Mandelstam variables for

the partonic subprocesses. Infrared divergences are regulated by a finite gluon mass λ.
Equation (4.23) has been obtained using the soft photon factor formulae listed in [124]
and introducing the correct color factor and couplings. Combining this contribution
with the loop corrections, the dependence on λ is analytically canceled. The remaining
dependence on the phase-space slicing parameter ∆E is canceled combining also the
contribution from real radiation of gluons Eg > ∆E. In Figure 4.10 a numerical test
of the independence on ∆E for the O(α3

s) hadronic contribution of uū to N of Att̄
FB is

shown as illustration.

easier: only soft divergences need to be regularized and only soft and hard region have to be divided
with the phase-space slicing.
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Figure 4.10: O(α3
s) contribution of uū to N of Att̄

FB, µ = 2mt. In the simulations we
used the soft phase-space slicing parameter ∆E = δsŝ, in the plot the results under
the variation of δs are shown.

The antisymmetric contribution originating fromO(α2
sα)QED corrections, α2

sαÑ
QED
1 ,

is calculated multiplying the O(α3
s) result, α3

sN1, by the RQED(Qq) factor defined in
eq. (4.19). In addition, we checked the results repeating the calculation with the phase-
space slicing approach, starting from the tt̄, tt̄g and tt̄γ diagrams. The soft emission of
a photon or a gluon contributing to the asymmetric O(α2

sα)QED can again be expressed
as the LO contribution multiplied by a soft factor Csoft

QED depending on the kinematics
of the top and antitop quark. According to eq. (4.18), Csoft

QED = RQED(Qq)Csoft
QCD. We

found perfect compatibility between the two approaches.
The calculation of the O(α2

sα)weak contribution to the numerator of the asymmetry
is also performed with the phase-space slicing method. In this case we have four
contributions:

• interference of qq̄ → Z → tt̄ with gluon–gluon boxes Vgg (first line of Figure 4.9),

• interference of qq̄ → g → tt̄ with gluon–Z boxes VgZ (second and third line of
Figure 4.9),

• real emission of a hard gluon Hg (interference of the diagrams in Figure 4.4 and
Figure 4.8),

• soft emission of a gluon Sg (interference of the diagrams in Figure 4.4 and Fig-
ure 4.8).
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Figure 4.11: O(α2
sα)weak contributions of uū to N of Att̄

FB, µ = 2mt. In the simulations
we used the soft phase-space slicing parameter ∆E = δsŝ, in the plot results under the
variation of δs are shown.

We expect to express the soft-gluon radiation as a soft-gluon factor multiplying the
cross section originating from the same diagrams without gluon emission, as for O(α3

s)
and O(α2

sαs). However, due to the color structure, 2Re(M∗
qq̄→Z→tt̄Mqq̄→g→tt̄) is zero.

In order to use the FormCalc environment, we express Sg via a similar process that
presents the same kinematic structure for the matrix elements, but different couplings
and color factors. If we consider qq̄ → tt̄γ, the O(α3) interference of initial- and final-
state radiation of a photon from respectively a Z- and photon- mediated diagram has
exactly the same kinematic structure of the process we want to calculate. Moreover,
it can be expressed in the soft limit (Sγ) with 2Re(M∗

qq̄→Z→tt̄Mqq̄→γ→tt̄) and a soft
photon factor that again can be calculated using formulae in [124]. The ratio between
the contribution from the interference of diagrams in Figure 4.4 and Figure 4.8 and this
O(α3) term just discussed is Rg−γ = 2

9(
αs

αQqQt
)2. Thus, the contribution of Sg to the

numerator of the asymmetry can be calculated using Sγ and multiplying the results by
Rg−γ. In Figure 4.11, a numerical test of the independence of ∆E for the O(α2

sα)weak
contribution of uū to N of Att̄

FB is shown as an illustration.

In the numerical analyses, we chose MRST2004QED parton distributions [100] for
NLO calculations and MRST2001LO for LO [125], using thereby αs(µ) provided by
MRST2004QED also for the evaluation of the cross sections at LO (a similar strategy
was employed in [96]). As said in section 3.3.2, this PDF set is, at the moment, the
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σ(pb) µ = mt/2 µ = mt µ = 2mt

uū 6.245 4.454 3.355

dd̄ 1.112 0.777 0.575

ss̄ 1.37× 10−2 9.60× 10−3 0.706× 10−2

cc̄ 2.24× 10−3 1.69× 10−3 1.32× 10−3

gg 0.617 0.378 0.248

pp̄ 7.990 5.621 4.187

Table 4.3: Integrated cross sections at O(α2
s) from the various partonic channels.

only one including the QED effects for the DGLAP2 evolution. The same value µ is
used also for the factorization scale. The numerical results are presented with three
different choices for the scale: µ = mt/2, mt, 2mt. The other input parameters are
taken from [126].

The results for the cross sections from the individual partonic channels and their
sum, yielding the denominator of AFB, are listed in Table 4.3. The various asymmetric
terms entering the numerator of either of the two variants Att̄

FB and App̄
FB are collected

in Table 4.4, and the corresponding contributions to the asymmetry in Table 4.5.
As already mentioned, the QED part was obtained in two different ways, based on

a diagrammatic calculation and on the use of eq. (4.19). Specifically, the O(α2
sα)QED

contributions have been obtained multiplying O(α3
s) terms by the following numbers

Ruū
QED(Qu) = (0.192, 0.214, 0.237) ,

Rdd̄
QED(Qd) = (−0.096,−0.107,−0.119) . (4.24)

The results for the weak part are obtained exclusively from the diagrammatic calcula-
tion.

The ratio REW of the total O(α2
sα)+O(α2) and O(α3

s) contributions to the numera-
tor N of the asymmetry eq. (4.12) gives an illustration of the impact of the electroweak
induced asymmetry relative to the QCD asymmetry. The values obtained numerically
for µ = (mt/2, mt, 2mt) for the two definitions of AFB are

Rtt̄
EW =

N tt̄
O(α2

sα)+O(α2)

N tt̄
O(α3

s)

= (0.190, 0.220, 0.254),

Rpp̄
EW =

Npp̄
O(α2

sα)+O(α2)

Npp̄
O(α3

s)

= (0.186, 0.218, 0.243). (4.25)

This shows that the electroweak contribution provides a non-negligible additional part
to the QCD-based asymmetric cross section with the same overall sign, thus enlarging

2The Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) differential equations describe the de-
pendence of the parton distribution functions on the factorization scale.
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(a) Att̄
FB

N(pb) µ = mt/2 µ = mt µ = 2mt

O(α3
s) uū 0.560 0.354 0.234

O(α3
s) dd̄ 9.25× 10−2 5.76× 10−2 3.76× 10−2

O(α2
sα)QED uū 0.108 0.0759 0.0554

O(α2
sα)QED dd̄ −8.9× 10−3 −6.2× 10−3 −4.5× 10−3

O(α2
sα)weak uū 1.25× 10−2 0.89× 10−2 0.66× 10−2

O(α2
sα)weak dd̄ −3.6× 10−3 −2.5× 10−3 −1.8× 10−3

O(α2) uū 1.47× 10−2 1.30× 10−2 1.17× 10−2

O(α2) dd̄ 1.8× 10−3 1.6× 10−3 1.4× 10−3

(b) App̄
FB

N(pb) µ = mt/2 µ = mt µ = 2mt

O(α3
s) uū 0.373 0.236 0.155

O(α3
s) dd̄ 5.97× 10−2 3.72× 10−2 2.42× 10−2

O(α2
sα)QED uū 7.15× 10−2 5.06× 10−2 3.67× 10−2

O(α2
sα)QED dd̄ −5.7× 10−3 −4.0× 10−3 −2.9× 10−3

O(α2
sα)weak uū 8.2× 10−3 5.8× 10−3 4.2× 10−3

O(α2
sα)weak dd̄ −2.3× 10−3 −1.6× 10−3 −1.1× 10−3

O(α2) uū 9.1× 10−3 8.0× 10−3 7.1× 10−3

O(α2) dd̄ 1.1× 10−3 1.0× 10−3 0.9× 10−3

Table 4.4: The various contributions to the asymmetric cross section N of Att̄
FB and

App̄
FB.

the Standard Model prediction for the asymmetry The electroweak O(α2
sα) contri-

bution of uū → tt̄ to the asymmetry is even bigger than the O(α3
s) contribution of

dd̄ → tt̄.
The results in eq. (4.25) are larger than the previous estimate of 0.09 given in [30].

Afterwards, the authors of [30] have reevaluated the mixed EW–QCD contribution
to AFB and found it in agreement with our results [127]. We have also estimated the
influence of the choice of parton distributions. Turning off the QED evolution leads only
to marginal modification. Indeed, the difference between the calculation of the QCD
part in the numerator of Att̄

FB using MRST2004QED and MRST20043 [128] is smaller
than 1% of the result obtained with MRST2004QED. It is interesting to note that the
O(α2

sα) contributions to the numerator of the asymmetry (Table 4.4) depend on the
scale µ, but, once the results are divided byD (Table 4.5), they seem to be independent.
Both the weak and QED part of αÑ1/D0 clearly do not depend on the renormalization

3This set of PDFs comes from the same input data of MRST2004QED, but it does not include the
QED evolution.
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(a) Att̄
FB

Att̄
FB µ = mt/2 µ = mt µ = 2mt

O(α3
s) uū 7.01% 6.29% 5.71%

O(α3
s) dd̄ 1.16% 1.03% 0.92%

O(α2
sα)QED uū 1.35% 1.35% 1.35%

O(α2
sα)QED dd̄ -0.11% -0.11% -0.11%

O(α2
sα)weak uū 0.16% 0.16% 0.16%

O(α2
sα)weak dd̄ -0.04% -0.04% -0.04%

O(α2) uū 0.18% 0.23% 0.28%

O(α2) dd̄ 0.02% 0.03% 0.03%

tot pp̄ 9.72% 8.93% 8.31%

(b) App̄
FB

App̄
FB µ = mt/2 µ = mt µ = 2mt

O(α3
s) uū 4.66% 4.19% 3.78%

O(α3
s) dd̄ 0.75% 0.66% 0.59%

O(α2
sα)QED uū 0.90% 0.90% 0.90%

O(α2
sα)QED dd̄ -0.07% -0.07% -0.07%

O(α2
sα)weak uū 0.10% 0.10% 0.10%

O(α2
sα)weak dd̄ -0.03% -0.03% -0.03%

O(α2) uū 0.11% 0.14% 0.17%

O(α2) dd̄ 0.01% 0.02% 0.02%

tot pp̄ 6.42% 5.92% 5.43%

Table 4.5: Individual and total contributions to Att̄
FB and App̄

FB.

scale, so the independence on µ would mean independence of the factorization scale.
Even using two different sets of PDFs, it seems that the dependences of N and D on
µf cancel in the ratio N/D.

The final result for the two definitions of AFB can be summarized as follows,

Att̄
FB = (9.7, 8.9, 8.3)% ,

App̄
FB = (6.4, 5.9, 5.4)% . (4.26)

Figure 4.12 displays the theoretical prediction versus the experimental measurement
of CDF in the lepton+jets signature listed in Table 4.1. The prediction is inside the
2σ range for both Att̄

FB and App̄
FB. Also for the DØ measurement in the lepton+jets

signature, the deviation is smaller than 2σ. However, the CDF measurement in the
dilepton channel shows a 2σ deviation from the predicted value.

It is important to note that in Figure 4.12 the blue bands indicating the depen-
dence of the prediction on the scale variation do not account for all the theoretical
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Figure 4.12: Theory (blue) and experimental data (black: central value, green: 1σ,
yellow: 2σ).

uncertainties. For example, the O(α4
s) term in N is missing and we did not include

the O(α3
s) part in D. Including this O(α3

s) term for the cross section in D, as said in
the previous section, would decrease the asymmetry by about 30%, which indicates the
size of the NLO terms in the asymmetry. In a conservative spirit one can consider this
as an uncertainty from the incomplete NLO calculation for the asymmetry (see also
the discussion in [30]).

We have performed our analysis also for applying two different types of cuts, one
on the tt̄ invariant mass Mtt̄ and the other one on the rapidity: Mtt̄ > 450 GeV and
|∆y| > 1. The cross section values for these cuts at LO are given in Table 4.6. The
various terms of the asymmetric cross section contributing to N , as discussed above
in the case without cuts, are now calculated for Att̄

FB for both cases Mtt̄ > 450 GeV
and |∆y| > 1. The corresponding contributions to the asymmetry Att̄

FB are the entries
of Table 4.7. Here, we see that O(α2

sα) contributions show a small dependence on µf

that in the cases without cuts applied (Table 4.5) was smaller than the numerical error
and thus completely hidden.

σ(pb) µ = mt/2 µ = mt µ = 2mt

pp̄(Mtt̄ > 450 GeV) 3.113 2.148 1.573

pp̄(|∆y| > 1) 1.846 1.276 0.937

Table 4.6: Cross sections with cuts at O(α2
s).
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(a) Att̄
FB(Mtt̄ > 450 GeV)

Att̄
FB µ = mt/2 µ = mt µ = 2mt

O(α3
s) uū 10.13% 9.10% 8.27%

O(α3
s) dd̄ 1.44% 1.27% 1.14%

O(α2
sα)QED uū 1.94% 1.95% 1.96%

O(α2
sα)QED dd̄ -0.14% -0.14% -0.14%

O(α2
sα)weak uū 0.28% 0.28% 0.28%

O(α2
sα)weak dd̄ -0.05% -0.05% -0.05%

O(α2) uū 0.26% 0.33% 0.41%

O(α2) dd̄ 0.03% 0.03% 0.04%

tot pp̄ 13.90% 12.77% 11.91%

(b) Att̄
FB(|∆y| > 1)

Att̄
FB µ = mt/2 µ = mt µ = 2mt

O(α3
s) uū 15.11% 13.72% 12.41%

O(α3
s) dd̄ 2.28% 2.02% 1.84%

O(α2
sα)QED uū 2.90% 2.94% 2.94%

O(α2
sα)QED dd̄ -0.22% -0.22% -0.22%

O(α2
sα)weak uū 0.25% 0.25% 0.26%

O(α2
sα)weak dd̄ -0.09% -0.09% -0.08%

O(α2) uū 0.35% 0.45% 0.55%

O(α2) dd̄ 0.04% 0.05% 0.06%

tot pp̄ 20.70% 19.12% 17.75%

Table 4.7: Individual and total contributions to the asymmetries applying cuts:
Att̄

FB(Mtt̄ > 450 GeV) and Att̄
FB(|∆y| > 1).

The asymmetry with cuts is the total result,

Att̄
FB(Mtt̄ > 450 GeV) = (13.9, 12.8, 11.9)% , (4.27)

Att̄
FB(|∆y| > 1) = (20.7, 19.1, 17.5)% .

Figure 4.13 displays the theoretical prediction versus data for Att̄
FB with cuts. The

Standard Model prediction is at 2σ for the |∆y| > 1 cut and it is at 2.5σ for the
invariant mass cut Mtt̄ > 450 GeV.

With higher invariant masses, and thus PDFs sampled at higher Bjorken x values,
the relative differences between uū and dd̄ luminosities increase. Indeed, a comparison
between Table 4.7(a) and Table 4.5(a) shows that the ratio of the QCD contribution
to the uū → tt̄ and dd̄ → tt̄ subprocesses is larger with the Mtt̄ > 450 GeV cut. Thus,
the relative impact of negative O(α2

sα) corrections from dd̄ is reduced, leading to a
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Figure 4.13: Theory (blue) and experimental data (black: central value, green: 1σ,
yellow: 2σ).

slight increase of Rtt̄
EW :

Rtt̄
EW (Mtt̄ > 450 GeV) = (0.200, 0.232, 0.266) , (4.28)

Rtt̄
EW (|∆y| > 1) = (0.191, 0.216, 0.246) .

We want to stress again that, in contrast to REW , RQED does not depend on the precise
definition of the asymmetry and on the applied cuts. It depends only on the charge
of the initial-state partons and the renormalization scale used in the calculation. In
the publications based also on [29], eq. (4.19) has been widely used to evaluate the
electroweak contribution to AFB.

In order to compare the other measurements listed in Table 4.1 with the SM theo-
retical predictions, we will refer to the values listed in [129]. Although different sets of
PDFs have been used in the numerical evaluation, the theoretical framework in [129]
is exactly the same of [29] and, as stated by the authors, the results for the individual
contributions are in very good agreement with our values in Table 4.4(a).

The theoretical prediction for Att̄
FB in the phase-space regions Mtt̄ ≤ 450 GeV and

|∆y| ≤ 1 are:

Att̄
FB(Mtt̄ ≤ 450 GeV) = (5.9, 6.2, 6.6)%, (4.29)

Att̄
FB(|∆y| ≤ 1) = (5.8, 6.1, 6.5)% .

These predictions are within 1σ deviations of the experimental results. Thus, the
different deviations for low and high invariant mass and rapidity regions suggested to
analyze the dependence of the asymmetry on Mtt̄ and |∆y|.
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Figure 4.14: Comparison between measured values and SM theoretical predictions for
Att̄

FB(|∆y|) and Att̄
FB(Mtt̄). Plot taken from [31].

The theoretical prediction for

Att̄
FB(|∆y|) =

dσ(∆y > 0)/d|∆y|− dσ(∆y < 0)/d|∆y|
dσ(∆y > 0)/d|∆y|+ dσ(∆y < 0)/d|∆y|

(4.30)

and

Att̄
FB(Mtt̄) =

dσ(∆y > 0)/dMtt̄ − dσ(∆y < 0)/dMtt̄

dσ(∆y > 0)/dMtt̄ + dσ(∆y < 0)/dMtt̄
(4.31)

can be safely approximated as a linear dependence respectively in |∆y| and Mtt̄ with
slopes α∆y and αMtt̄

.
In [31] the CDF collaboration compared, as shown in Figure 4.14, the measured

value and the SM predictions, including EW contributions, for these two parameters,
α∆y and αMtt̄

. The measured values are extracted, in both cases, by fitting four points
obtained binning the phase space. The theoretical values are also obtained from the fit
of the corresponding SM predictions for the four bins, where the errors are estimated
again by varying the renormalization scale. As can be seen from Figure 4.14(a) and
Figure 4.14(b), the measured and predicted slopes differ by slightly more than 2σ.

In conclusion, the deviation of 3.5σ for Att̄
FB(Mtt̄ > 450 GeV), found by CDF in

the first analysis [20], has decreased to 2.5σ taking also into account the effect of
electroweak corrections and increasing the data set. Still, as just mentioned, a 2σ
deviation between the predicted and measured dependence of AFB on Mtt̄ remains.

4.4 The charge asymmetry at the LHC

As said in section 4.2, most of the theoretical arguments described for the case of AFB

are valid also for the charge asymmetry at the LHC, called also central asymmetry,
AC , due its definition in eq. (4.5). However, the two conditions that, as explained
in section 4.2, a partonic subprocess must satisfy in order to generate an asymmetric
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contribution, cannot be extended to the case of AC . First of all, in order to generate
a central asymmetry, the differential distributions in yt and yt̄ must be different at the
partonic level in the partonic rest frame. Without this condition, summing over the
two configurations (first parton from the first proton or first parton from the second
proton) or boosting to the laboratory frame clearly cannot induce a central asymmetry.
If the two distributions are asymmetric, dσ̂/dyt "= dσ̂/dyt̄, a central asymmetry is not
automatically generated. Indeed, if they are antisymmetric, i.e. dσ̂/dyt = dσ̂/d(−yt̄),
the sum over the two configurations (first parton from the first proton or first parton
from the second proton) can in principle lead to the condition dσ/dyt = dσ/dyt̄ at
the hadronic level. If the distributions are antisymmetric, it is necessary that the
PDFs in the proton for the two partons in the initial state are different (fp1 "= fp2),
thereby boosting in different ways the top and the antitop quark. Since the partonic
contributions that we discussed in section 4.1 are indeed antisymmetric, the condition
fp1 "= fp2 must be true and again the qq̄ initial state contribute to eq. (4.5) only if
q = u, d.

Besides the different definitions for the charge asymmetry, AFB and AC , the main
difference between the Tevatron and the LHC is the total energy in the center of mass
and thus the luminosities for the various partonic subprocesses. At the LHC with 7
TeV, 85% of the cross section originates from the gg initial state, which is symmetric.
This subprocess contributes to the denominator of AC but not to the numerator, so it
suppresses the value of AC . This effect is further enhanced at 8 TeV and even more
at 14 TeV. With the increment of the gluon PDF value, also the contribution of the
qg and q̄g initial states becomes non-negligible; it can be of the order of 10% of the qq̄
contribution. The precise value depends on the total energy and, possibly, on applied
Mtt̄ cuts.

A detailed study of the SM predictions, including electroweak contributions, for
AC at the LHC has been presented in [129]. There, in addition to the contributions
discussed in the previous section, the O(α3

s) and O(α2
sα)QED contribution from qg and

q̄g initial states are also taken into account. In analogy to the qq̄ initial state, the
O(α2

sα)QED contribution from the qg and q̄g initial states can be obtained multiplying
the O(α3

s) results by a factor Rqg
QED(Qq),

Rqg
QED(Qq) = QqQt

24

5

α

αs
. (4.32)

In the case of AC the ratios REW of the central values of QCD and QCD+EW
predictions are between 1.15 and 1.20, depending on the total energy and on the applied
cuts, and thus they are smaller than in the case of AFB. The measurements of AC listed
in Table 4.2 are in agreement with the QCD+EW predictions for the LHC at 7 TeV
presented in [129], Att̄

C = 1.23 (5) %.
We want to stress here that, especially at the Tevatron, the impact of the elec-

troweak corrections on the asymmetry is much larger than in the case of the cross
section. The first obvious reason is the different leading perturbative order for the
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two cases: O(α2
s) for the total cross section and O(α3

s) for the antisymmetric cross
section. The second reason is more subtle. Excluding the trigluon interactions, the
diagrams that contribute to the total cross section at the O(α3

s) (vertex corrections
and self energies) are in one-to-one relation with the diagrams that contribute to the
O(α2

sα)QED. In the antisymmetric contribution the situation is different. Here, the
diagrams in O(α2

sα)QED are three times the diagrams of O(α3
s). This is reflected by

the parameter ntt̄ = 3 used in section 4.2 and illustrated in Figure 4.5.

At present, no deviation larger than 3σ is visible both for the AFB measured at
the Tevatron and AC measured at the LHC. However, all the measured values for
AFB are larger than the SM predictions, whereas the AC measurements are, at least
for the lepton+jets signatures, a bit lower than the SM predictions and in very good
agreement with them (1σ deviations). In [130, 131] it has been proposed and shown
that the forward-backward and central asymmetry can be written as

AFB = AuFu + AdFd ,

AC = A′
uF

′
uDu + A′

dF
′
dDd , (4.33)

where Au ∼ A′
u and Ad ∼ A′

d, when AFB and AC are measured in fixed bins for Mtt̄

and for the longitudinal velocity of the tt̄ system. The terms A(′)
u and A(′)

d are the
contributions to the asymmetry from uū and dd̄ initial states, considering only uū or
dd̄ in the calculation of the asymmetry. F (′)

u and F (′)
d are the relative fractions of uū

and dd̄ initial-state events, and they weight the A(′)
u and A(′)

d contributions. Du and Dd

are “dilution” factors that correct, at the LHC, the contribution from the rest frame
of the partonic center of mass to the laboratory frame. For AFB, defined with the
boost invariant quantity ∆y, these factors are clearly not necessary. Thus, according
to eq. (4.33), in principle it is possible to compare measurements at the Tevatron and
at the LHC.

For completeness we report also the SM predictions for Al
FB, A

ll
FB and All

C of [129],
where all the factorizable QCD corrections to production and decay of top quark pairs
and EW corrections to the production have been calculated. The predicted values at
QCD+EW accuracy are, without including experimental cuts,

Al
FB = 3.6 (2) % , All

FB = 4.8 (4) % , All
C = −0.25 (1) % . (4.34)

These values are, in general, in good agreement with the corresponding experimental
measurements listed in Table 4.1 and Table 4.2.

4.5 Asymmetries and BSM theories

In this section we briefly discuss the general features of BSM models that might explain
the deviations between SM theoretical predictions and experimental measurements of
the asymmetries.
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Figure 4.15: Fit of σNP
F and σNP

B . The dashed contours correspond to 1σ, 2σ and 3σ
regions. Figure taken from [132].

We want to remind that, at the moment, only the measurements of the forward-
backward asymmetry at the Tevatron present deviations from SM predictions and,
anyway, they are smaller than 3σ. In addition, a large error is associated to the
experimental values and the theoretical predictions are, for the asymmetry, at LO
accuracy for QCD. Thus, improvements in the precision of SM theoretical predictions
and in the experimental analyses4 could solve this tension.

However, apart from the measurement of Att̄
FB in the high-invariant-mass region,

these deviations did not decrease with larger data sets, so it is worth to check possible
explanations from new physics effects. The SM is in good agreement with the measure-
ments of the total and differential cross sections of top quark pair production. Thus,
the new models, that are candidates to explain the deviations for the asymmetry, must
not spoil this agreement between theory and experiment.

We can in general denote the contribution from new physics (NP) to the forward
cross section of top quark pair production as σNP

F and the contribution to the backward
cross section as σNP

B [132]. Figure 4.15 shows the results of the fit of these two quantites
from Att̄

FB measurements, taking into account the constraints from the inclusive cross
section measurements. It is important to note that σNP

F and σNP
B can originate from NP

amplitudes squared or interfering with the SM amplitudes. However, only the latter

4The Tevatron has been shut down, so only more sophisticated analyses can be performed for AFB,
but new data cannot be taken.
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case allows negative contributions. Thus, Figure 4.15 suggests that the interference
between SM and NP diagrams should be non-vanishing.

According to [132], where many more details can be found, two main categories of
models, can be classified via the structure of the Feynman diagrams contributing to
top quark pair production:

• models originating vector octet s-channel diagrams,

• models originating t-channel diagrams.

In the first class of models the propagator in the s-channel diagram must be colored
otherwise the interference with the SM s-channel qq̄ → g → tt̄ colored diagrams would
be zero. Moreover, both the interactions with the top quark pair and the qq̄ initial state
must have an axial component in order to generate an asymmetric term. Conversely,
in the second class of models, particles in the t-channel propagator do not need to
be colored. The new interactions can violate or conserve the flavor structure. In
addition, new invisible particles could be generated. In [134] it has been shown that
NP models giving positive contribution to AFB can be consistent with LHC results
for AC . However, it is important that the uū and dd̄ contributions are of different
sign, so that the different ratios at the Tevatron and the LHC between the uū and dd̄
luminosities can produce total contributions with different sign in the two cases.

     
















 













Figure 4.16: Correlation between AFB and AC obtained estimating higher-order correc-
tions. The bands around central values, in the experimental measurements, correspond
to 1σ deviations. Plot taken from [133].
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In [133] it is shown that many of these models and their parameter regions are
excluded, once also the compatibility with measurements of the total cross section,
the tail in the Mtt̄ distribution at the LHC, and the top quark polarization are taken
into account. It has been argued [133] that the calculation of N2 in eq. (4.11), giving
a prediction at NLO QCD accuracy for AFB and AC , could be not sufficient for a
complete explanation of the values measured at the Tevatron and the LHC. Figure
4.16, from [133], shows in green the prediction for AFB and AC obtained from eq. (4.33)

rescaling the A(′)
u and A(′)

d NLO QCD predictions by a common factor. Indeed, NNLO
QCD contributions to the asymmetry, as NLO, do not depend at parton level on the
flavor of the initial state. It seems that SM predictions could be compatible with
measurements within 1σ deviation, but they cannot cross their central values.

In conclusion, the top quark charge asymmetry remains an interesting anomaly in
collider physics at the moment and further studies will be performed both from the
experimental and theoretical side.
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Chapter 5

The Minimal Supersymmetric
Standard Model (MSSM)

5.1 Supersymmetry and the Standard Model

Supersymmetry (SUSY) [21] is a symmetry that, relating fermions and bosons, com-
bines in the only possible non-trivial way the Poincaré space-time symmetry and in-
ternal symmetries of Lagrangians in QFT [135]. According to the Coleman-Mandula
theorem [136], it is impossible to combine the Poincaré algebra and an internal symme-
try algebra into a larger algebra different from the trivial direct product of the previous
two; non-trivial combinations would lead to the non-analyticity of the S-matrix.

Supersymmetry in some sense eludes this theorem, by introducing anti-commutation
relations for the spinorial generators Qi, i = 1 . . .N , for the transformations of bosons
into fermions and fermions into bosons,

Qi|boson〉 = |fermion〉 , Qi|fermion〉 = |boson〉 . (5.1)

In the simplest case, N = 1, the general structure of the superalgebra is determined
by the following relations1,

{Q,Q†} = P µσµ ,

{Q,Q} = {Q†, Q†} = 0 ,

[P,Q] = [P,Q†] = 0 ,

[Mµν , Q] = iσµνQ , (5.2)

and by the usual relations among the generators of the Poincaré algebra.
In eq. (5.2) P µ are the generators of translations in space-time and Mµν are the

Lorentz generators of boosts and spatial rotations; σµ are the Pauli matrices, with

1For an easier reading, in eq. (5.2) we dropped the spinorial indices of Q, σµ and σµν .
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Names spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

(s)quarks Q̃L = (ũL, d̃L) QL = (uL, dL) ( 3, 2 , +1
6)

(×3 families) ũR uR ( 3, 1, +2
3)

d̃R dR ( 3, 1, −1
3)

(s)leptons L̃L = (ν̃ ẽL) LL = (ν, eL) ( 1, 2 , −1
2)

(×3 families) ẽR eR ( 1, 1, −1)

Higgs(inos) Hu = (H+
u , H

0
u) H̃u = (H̃+

u , H̃
0
u) ( 1, 2 , +1

2)

Hd = (H0
d , H

−
d ) H̃d = (H̃0

d , H̃
−
d ) ( 1, 2 , −1

2)

Table 5.1: Field content of the chiral supermultiplets of the MSSM.

Names spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y

gluino, gluon g̃ g ( 8, 1 , 0)

winos, W bosons W̃± W̃ 0 W± W 0 ( 1, 3 , 0)

bino, B boson B̃ B ( 1, 1 , 0)

Table 5.2: Field content of the vector supermultiplets of the MSSM.

σ0 equal to the unity matrix, and σµν = (σµσν − σνσµ)/2. Also, the supersymmetry
generators Qi commute with the generators of any internal symmetry.

The representations of the supersymmetry algebra are called supermultiplets and
contain both fermions and bosons. The members of a multiplet share the same quantum
numbers of the gauge groups and, since P 2 is a Casimir operator, have the same
mass. Moreover, every supermultiplet contains the same number of fermionic and
bosonic degrees of freedom. As said, several generators Qi, i = 1 . . .N , can in general
be introduced in the superalgebra. However, for N > 1, chiral fermions and parity
violation are not allowed in four dimensions. Thus, such models cannot easily reproduce
the phenomenology of the Standard Model.

The two simplest representations of N = 1 supersymmetry are called chiral multi-
plets and vector multiplets. The chiral multiplet consists in a spin 1/2 chiral fermion
with two degrees of freedom and two real scalars, whereas the vector multiplet con-
tains a massless spin-1 real vector and a massless Majorana spin 1/2 fermion with two
degrees of freedom.

The minimal supersymmetric extension of the Standard Model is given by the so
called Minimal Supersymmetric Standard Model (MSSM) [22, 23]. In this model the
field content of the Standard Model is embedded in chiral and vector supermultiplets.
The chiral multiplets, also called scalar or matter multiplets, include the fermions

of the Standard Model and the Higgs complex doublets, as shown in Table 5.1. The
vector multiplets, also called gauge multiplets, include the gauge bosons of the Standard
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Model, as shown in Table 5.2.
Every left- and right-handed component of a fermion of the Standard Model forms

a chiral multiplet with its scalar superpartner, which is named, in obvious notation,
sfermion, squark, slepton, etc. Each gauge boson forms a vector multiplet with its
fermionic superpartner, which is generically called gaugino. In particular, the super-
partners of W and B gauge bosons, and gluons are respectively called wino, bino and
gluino.

An important new feature of the MSSM is the presence of two Higgs complex
doublets, whereas the Standard Model has only one doublet. Supersymmetry relations
impose constraints on the possible terms appearing in the Lagrangian, e.g., they do not
allow to generate, with only a single Higgs doublet, the masses for both up- and down-
type quarks. Moreover, the presence of only one doublet (Y = +1/2 or Y = −1/2)
would lead to anomalies and, consequently, to a non-renormalizable theory. In addition,
each one of the complex scalar Higgs components forms a chiral multiplet with a
complex chiral fermion, called Higgsino.

If supersymmetry is realized in nature, however, it must be a broken symmetry.
Without supersymmetry breaking, particles and their superpartners would have equal
masses. Thus, also most of the non-standard MSSM particles should have already been
experimentally detected. On the other hand, supersymmetry solves naturally the fine-
tuning problem of Higgs parameters. For instance, loop corrections to the Higgs mass
involving squarks cancel exactly the quadratic divergences of eq. (2.20) originating
from quark loops. Thus, a possible supersymmetry breaking mechanism should not
spoil this property.

The solution to this problem is provided by the so called soft supersymmetry break-
ing terms. The general Lagrangian of the MSSM can be written as

LMSSM = LSUSY + Lsoft , (5.3)

where Lsoft represents the soft supersymmetry breaking terms and LSUSY includes the
kinetic and the supersymmetry-invariant interaction terms of the fields in the chiral
and gauge multiplets. The soft supersymmetry breaking terms do not reintroduce
quadratic divergences in loop corrections to the Higgs mass; they generate only loga-
rithmic UV divergences at most proportional to m2

soft, where msoft is the largest mass
term introduced by Lsoft. In this way, if msoft is of the order of 1 TeV, no fine tuning
is necessary to obtain the correct Higgs masses. However, the insertion of Lsoft is not
enough to reproduce the phenomenology of the Standard Model. The most general
LMSSM allows for interaction terms that violate the baryon number B and the leptonic
number L. This kind of interactions leads to proton decay and, unless their couplings
are extremely suppressed, are not consistent with experimental data. The problem
can be avoided imposing R-parity conservation on the LMSSM Lagrangian, where the
R-parity is defined for every field as

PR = (−1)3(B-L)+2s , (5.4)
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with s equal to the spin of the field. In this way, LMSSM cannot contain renormalizable
terms that violate B or L.

All the particles already present in the Standard Model and the two Higgs doublets
have PR = +1; their superpartners have PR = −1 and are generally called sparticles.
R-parity conserving interactions have important phenomenological consequences. The
lightest supersymmetric particle (LSP) is stable and, if it is electrically neutral, it is a
promising candidate for dark matter. Moreover, at colliders, sparticles can be produced
only in even numbers and each of their possible complete decay chains ends with an
odd number of LSPs. From here on in the thesis, R-parity is always implicitly assumed
to be conserved.

A list of all the supersymmetric interaction terms of the MSSM is presented e.g.,
in [137, 138], where it is also explained how they can be derived simply requiring
supersymmetry invariance. In the following subsections, we briefly address the basic
phenomenological aspects of the MSSM and specify the mass spectrum emerging after
supersymmetry breaking.

5.2 The mass eigenstates of the MSSM

The soft supersymmetry breaking terms in the MSSM generate differences between the
mass terms of particles in the same supermultiplet and can be written as follows,

Lsoft = −
1

2

(

M3
¯̃gg̃ +M2

¯̃WW̃ +M1
¯̃BB̃ + c.c.

)

−
(

ũ∗
R au Q̃LHu − d̃∗R ad Q̃LHd − ẽ∗R ae L̃LHd + c.c.

)

−Q̃∗
L m

2
Q Q̃L − L̃∗

L m
2
L L̃L − ũ∗

R m2
u ũR − d̃∗R m2

d d̃R − ẽ∗R m2
e ẽR

−m2
Hu

H∗
uHu −m2

Hd
H∗

dHd − (bHuHd + c.c.) , (5.5)

using the notation introduced in Tables 5.1 and 5.2. The first line of eq. (5.5) contains
gaugino mass terms, which, in contrast to gauge vector boson mass terms, do not break
gauge invariance. The second line consists of trilinear interactions of left- and right-
handed sfermions with the Higgs doublets. In the third line the mass terms for the
sfermions are listed; the fourth line presents mass terms for the two Higgs doublets.

In eq. (5.5) the parameters in bold are 3×3 hermitian matrices yielding non-diagonal
interactions among squarks or leptons of different families. However, non-diagonal
entries in these matrices induce FCNC interactions, which, e.g., lead to phenomeno-
logically inconsistent contributions, in the case of the sleptons, to the decay µ → eγ
and, in the case of squarks, to the kaon mixing between K0 and K̄0. This can be
avoided assuming flavor-blind diagonal squared mass matrices for squarks and leptons,
i.e., m2

i = m2
i . Moreover, in order to avoid large scalar couplings for the light-flavor

families, the ai matrices can be assumed proportional to the diagonal Yukawian yi

matrices, i.e., ai = Aiyi.



5.2 The mass eigenstates of the MSSM 61

Supersymmetry breaking parameters can be defined at some high scale Q, where su-
persymmetry is supposed to be broken, or, in a a more practical and phenomenological
approach, directly at the TeV scale, ignoring the supersymmetry breaking mechanism
that could generate them. In the first approach, the scale Q is indicated by an ad-
ditional property that suggests SUSY as one of the best candidate models for BSM
physics: the unification of strong, weak and electric couplings. The particle content
of the MSSM is different than in the Standard Model and so also the β-functions
entering the renormalization group equations (RGE) are different. In the MSSM, at
Q ∼ 1016 GeV, the three couplings seem to converge to the same value [139–142]. Thus,
Q can be meant as a Grand Unified Theory (GUT) scale at which the couplings unify,
and, in general, parameters of the Lagrangian in eq. (5.5) might show universal prop-
erties. However, in order to perform calculations for collider physics, it is necessary
to run the soft breaking parameters from the scale Q to the TeV scale. Consequently,
even separately setting the mi, ai and Mi parameters to the same value at the GUT
scale, a non degenerate mass spectrum emerges after the RGE running. In the second
approach, provided that msoft is not too large, the different soft breaking parameters
can be set to any value that is not in conflict with the observed phenomenology.

We now examine the mass spectrum of the new particles predicted by the MSSM.
First, we analyze the Higgs sector. The scalar potential responsible for EWSB in LMSSM

is

V = (|µ|2 +m2
Hu

)(|H0
u|2 + |H+

u |2) + (|µ|2 +m2
Hd
)(|H0

d |2 + |H−
d |

2)

+ [b (H+
u H

−
d −H0

uH
0
d) + c.c.]

+
1

8
(g2W + g′2W )(|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−
d |

2)2

+
1

2
g2W |H+

u H
0∗
d +H0

uH
−∗
d |2. (5.6)

The terms proportional to |µ|2 and to the electroweak couplings gW and g′W belong to
LSUSY, the terms proportional to b, m2

Hu
and m2

Hd
belong to Lsoft. Since the quartic

terms are proportional to the squared gauge couplings, in the MSSM the Higgs potential
is bounded from below and the Higgs vacuum is stable. Exploiting gauge invariance,
it can be proved that the VEV is determined by the conditions 〈H+

u 〉 = 〈H+
d 〉 = 0

and 〈H0
u〉 := vu and 〈H0

d〉 := vd, where vu and vd are real values. The two VEVs are
conventionally indicated by tan(β) = vu/vd and v2 = v2u + v2d, which is related to mZ

and mW via the Standard Model relations in eq. (2.13).
In the MSSM the two complex Higgs doublets have eight degrees of freedom. EWSB

yields five mass eigenstates: two CP-even neutral scalars h0, H0, one CP-odd neutral
pseudoscalar A0, and the charged H+ with its conjugate H−. The remaining three
degrees of freedom are the Goldstone bosons G±, G0. The masses of the five physical
mass eigenstates have at tree level the following values,

m2
A0 = 2b/ sin(2β) = 2|µ|2 +m2

Hu
+m2

Hd
, (5.7)
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m2
h0,H0 =

1

2

(

m2
A0 +m2

Z ∓
√

(m2
A0 −m2

Z)
2 + 4m2

Zm
2
A0 sin2(2β)

)

, (5.8)

m2
H± = m2

A0 +m2
W . (5.9)

According to eq. (5.8) mh0 is restricted to mh0 < mZ cos(2β), conversely the masses
of H0, A0 and H± do not have an upper bound. This condition for mh0 would imply
that the MSSM could have already been ruled out by LEP bounds. However, relation
(5.8) receives large corrections from loop effects, which substantially increase this up-
per bound (mh0 < 135 GeV).2 Thus, the Higgs discovery at the LHC is consistent with
the prediction of mh0 in the MSSM.

Second, the neutral fermionic superpartners of the neutral components of the two
Higgs doublets, the Higgsinos H̃0

u and H̃0
d , are not mass eigenstates and they mix

with the neutral gauginos B̃ and W̃ 0. The mass matrix (mψ)ij in the basis ψi =
(B̃, W̃ 0, H̃0

u, H̃
0
d) can be diagonalized,

(mχ̃0)ij = N∗
ik(mψ)klN

−1
lj , (5.10)

via an unitary matrix Nij . The mass eigenstates Nijψj = (χ̃0
1, χ̃

0
2, χ̃

0
3, χ̃

0
4) are called

neutralinos and are conventionally ordered starting from the lightest to the heaviest
one. In the limit mZ , |µ±M1|, |µ±M2|, the lightest neutralino is bino-like χ̃0

1 ∼ B̃;
analogously, the second lightest neutralino is wino-like χ̃0

2 ∼ W̃ 0 and χ̃0
3 and χ̃0

4 originate
mostly from mixing of Higgsinos only.

Also the remaining charged electroweak gauginos, the winos W̃+ and W̃−, are
not mass eigenstates. As in the neutral case, they respectively mix with the charged
Higgsinos H̃+

u and H̃−
d , yielding the mass eigenstates χ̃±

1 and χ̃±
2 , called charginos. It is

worth to note that the mixing matrices for positively (Vij) and negatively (Uij) charged
charginos are different:

(

χ̃+
1

χ̃+
2

)

= V

(

W̃+

H̃+
u

)

,

(

χ̃−
1

χ̃−
2

)

= U

(

W̃−

H̃−
d

)

. (5.11)

The QCD gaugino, the gluino g̃, is the only colored octet fermion, hence it is a
mass eigenstate and its mass is given by mg̃ = M3

Third, assuming diagonal m2
i and ai matrices, sfermion mass eigenstates originate

from mixings of same-flavor left- and right-handed sfermions. The tree-level mass

2This bound is obtained assuming large masses for the remaining Higgs fields and masses below
2 TeV for sparticles entering in loop corrections. Adding further scalars and relaxing the bounds on
the masses, the upper bound for mh0 can be increased to mh0 < 150 GeV. See [137] and references
therein for more details.
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matrix M2
ui

for the left- and right-handed squarks (ũiL, ũiR) of an up-type flavor ui is

M2
ui

=

(

m2
Q +m2

ui
+∆ũL v yui (A

∗
u sin(β)− µ cos(β))

v yui (Au sin(β)− µ∗ cos(β)) m2
ũi
+∆ũR

)

, (5.12)

whereas the tree-level mass matrix M2
di

for the left- and right-handed squark (d̃iL, d̃iR)
of a down-type flavor di is

M2
di

=

(

m2
Q +m2

di
+∆d̃L

v ydi (A
∗
d cos(β)− µ sin(β))

v ydi (Ad cos(β)− µ∗ sin(β)) m2
d̃i
+∆d̃R

)

, (5.13)

and the mass matrices for sleptons M2
li
are defined analogously to M2

di
in eq. (5.13).

In eq. (5.12) and eq. (5.13), mui and mdi are the masses of the superpartner quarks
and mũi and md̃i

are the supersymmetry breaking mass terms for right-handed squarks.
The term ∆φ, defined as ∆φ = (T 3

φ−Qφs2W ) cos(2β)m2
Z for every sfermion φ, originates,

after EWSB, from interactions between sfermions and neutral Higgs scalars.
The off-diagonal terms in the sfermion mass matrices M2

i are proportional to the
Yukawa couplings and thus to the masses of the superpartner quarks. Consequently,
the mixings in the light-flavor generations are suppressed and, typically, the left- and
right-handed squarks can be considered as mass eigenstates. Conversely, in the third
generation the mixing can be sizable, especially between t̃L and t̃R. Thus, the mass
eigenstates (t̃1, t̃2), (b̃1, b̃2) and (τ̃1, τ̃2) are superpositions of left and right squarks.

In general, the hierarchy in the mass spectrum of the MSSM is not fixed. How-
ever, with viable supersymmetry breaking mechanisms, as, e.g., minimal supergravity
or gauge mediated models, some general relations can be identified in the mass spec-
trum. The gluino is expected to be heavier than the lightest neutralinos and charginos,
moreover the lightest neutralino3 is typically the LSP. The gluino mass and the squark
masses of the first two generations are usually of the same order; left-handed squarks
are, as in the case of the sleptons, heavier than right-handed squarks.

In particular, every sfermion presents a different RGE for its mass. Squark masses,
in contrast to slepton masses, are influenced by QCD effects in the running. In addi-
tion, the electroweak contribution to the RGEs is different for every sfermion. Only
left-handed sfermions interact with W bosons and winos and also interactions are,
e.g., different for up-type and down-type squarks. Moreover, the weak hypercharge is
obviously different for every sfermion. Except for Higgs and Higgsino (negligible) cor-
rections, proportional to the very small masses of the superpartner quarks, the RGEs
for the mass of a squark in the first family and for the mass of its counterpart in the

3Promoting supersymmetry from a global to a local symmetry, also the graviton superpartner, the
spin 3/2 gravitino G̃, is present and couples via gravitational interaction to another particle and its
superpartner. The gravitino can be the LSP and, e.g., the lightest neutralino can decay into a photon
and a gravitino.
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second family are the same. Thus, even setting at the GUT scale all the masses of the
scalars to the same value, 7 almost degenerate pairs of mass eigenstates are present in
the first two families: (ũL, c̃L), (ũR, c̃R), (d̃L, s̃L), (d̃R, s̃R), (ẽL, µ̃L), (ẽR, µ̃R), (ν̃e, ν̃µ).
In the third family, Higgs and Higgsino interactions are not negligible and, as said
before, introduce non-diagonal mass terms for squarks with the same flavor and dif-
ferent chirality. Due to the mixing, the masses of the third-generation sfermions are
in general different, and t̃1 (or b̃1) and τ̃1 are respectively expected to be the lightest
squark and the lightest slepton. Last but not least, the lightest Higgs mass mh0 , as
previously mentioned, should be lighter than 135 GeV and can be much lighter than
the other Higgs mass eigenstates.

5.3 Colored sparticles at the LHC

The search for supersymmetry at the TeV scale is one of the priorities in the current
and future analyses of the ATLAS and CMS experiments, at the LHC. The luminosity
and the total energy, higher than in all the previous colliders, should allow, after the 14
TeV run, to check if supersymmetry is realized in nature and broken at the TeV scale.
With high luminosity, it is possible to verify if there are deviations between predic-
tions from precise calculations for SM processes and the correspondent experimental
measurements. These possible deviations can be interpreted as effects of sparticles in
the intermediate state or in loop corrections. On the other hand, the compatibility of
measurements with SM predictions can be used to exclude regions in the parameter
space of the MSSM.

If sparticles are light enough, the high energy at the LHC allows to directly produce
them. However, until now, the analyses performed on the data collected during the 7
and 8 TeV runs have only led to the exclusion of large regions of the parameter space
of the MSSM.

In this section, we discuss in 5.3.1 the experimental signatures, emerging from
the production of a pair of sparticles, and the procedures used in the experimental
analyses to isolate a possible signal from the SM background. Here, we focus on selected
illustrative cases that are relevant also for the calculations discussed in chapter 6 and
the results presented in chapter 7. In 5.3.2 we address the theoretical calculations in
the literature, with a particular emphasize on the production and decays of colored
sparticles.

5.3.1 Signatures, exclusion limits, parameter determination

As for the SM case, cross sections for the production of colored sparticles are, unsur-
prisingly, larger than cross sections for the production of uncolored sparticles. Unless
colored sparticles are much heavier than the uncolored sparticles, processes involving
QCD interactions are favored at hadron colliders, due to the large value of the strong
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Figure 5.1: Total cross sections σ (left plot) and relative contributions σ/σtot for the
four colored production processes as function of the common mass m of squarks and
gluinos (m = mq̃ = mg̃), at the LHC with

√
s = 8. The cross sections are at NLO+NLL

accuracy.

coupling. The possible processes with colored sparticle pairs in the final state are:
(anti)squark–(anti)squark (q̃q̃′ or q̃∗q̃∗′), squark–antisquark (q̃q̃′∗), gluino–(anti)squark
(g̃q̃ or g̃q̃∗) and gluino–gluino (g̃g̃) production.

In Figure 5.1(a) we show, for the LHC with
√
s = 8, the NLO+NLL production

cross sections of the individual four colored production processes4 as function of the
common mass m for squark and gluino (m = mq̃ = mg̃). In Figure 5.1(b) we plot
the corresponding ratios of the the individual cross sections over their sum σtot. These
plots have been produced with the help of the numerical code NLL-FAST [143], using
the grid obtained with the PDF set CTEQ6.6 [144].

One can see that the size of the cross sections and of the relative weights of the
four processes strongly depend on the values of the masses of squarks and gluinos. The
dependence of the ratios in Figure 5.1(b) on m is mainly due to the different PDFs
for the possible initial states of the four processes: qq′ for q̃q̃′ or q∗q∗′ for q̃∗q̃∗′ pro-
duction, qq̄′ for q̃q̃′∗ production and gg if q̃ = q̃′, gq for g̃q̃ or gq̄ for g̃q̃∗ production
and gg or qq̄ for g̃g̃ production. At small x (light sparticles), the gluon PDF has the
largest values, whereas for large x (massive particles) PDFs for valence quark dominate.

The values of squark and gluino masses influence also the possible decay modes. If
the gluino is heavier than squarks5, mg̃ > mq̃, the dominant gluino decay modes are into
a quark q and a squark q̃ of the same flavor, g̃ → qq̃. Analogously, if squarks are heavier
than the gluino, mq̃ > mg̃, the dominant squark decay modes are q̃ → qg̃. Conversely,
if mg̃ > mq̃, the dominant squark decay channels are into neutralinos q̃ → χ̃0

i q and
charginos q̃ → χ̃±

i q
′. However, the branching ratios of these decay modes strongly

4Top squarks have not been included in the final states.
5Here, we assume for simplicity that all the squarks have the same masses.
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depend on the particular parameter point. For instance, in the case mentioned in the
previous section, where χ̃0

1 is bino-like and χ̃0
2 is wino-like, the decays of right-handed

squarks into χ̃0
2 and the decays of left-handed squarks into χ̃0

1 are suppressed. Moreover,
the branching ratios for heavy neutralinos and charginos are, in general, smaller due to
the smaller available phase space in the decay. Finally, if mq̃ > mg̃ no two-body decay
is possible for the gluino. Thus, the gluino decays via an off-shell squark into a quark
and a chargino or a neutralino.

Experimental signatures

Since squarks and gluinos produce quarks and gluons via their decays, jets are always
present in the signatures emerging from production of colored sparticles at colliders.
Also leptons, however, can appear in these signatures. A neutralino, e.g., can decay
into a lepton and a slepton, χ̃0

i → ll̃, and the slepton can subsequently decay into a
lighter neutralino and a lepton, l̃ → χ̃0

j l, with j < i. But also, e.g., the neutralino
can decay directly into a lighter neutralino and a Z boson or one of the Higgs bosons
(h0, H0, A0) subsequently decaying into a pair of leptons or quarks.

Moreover, assuming R-parity conservation, squark and gluino decays always pro-
duce an odd number of LSPs. In many viable scenarios, the LSP is the lightest neu-
tralino, which, like neutrinos, is undetectable at colliders, since it interacts only via the
weak force. However, at hadron colliders, it appears as a violation of the conservation
of the total transverse momentum, when the kinematics of all the other particles in an
event are taken into account.

The typical signature emerging from the production of a pair of colored sparticles
thus can contain:

• missing transverse energy ( "ET ),

• jets,

• leptons.

In general, jets, leptons, and missing transverse energy represent the typical content
of the signature emerging from any sparticle production process. Roughly speaking,
the signatures emerging from the production of uncolored sparticles are expected to
contain more leptons than jets. Conversely, colored sparticles yield always jets and
possibly leptons. Additionally, also hard photons can appear in the signatures, e.g., via
χ̃0
2 → χ̃0

1γ. In the MSSM, however, the rates and the distributions of the possible decay
modes, especially for uncolored particles, strongly depend on the particular parameter
point.

With χ̃0
1 as LSP, the missing transverse energy is present in any signature emerging

from sparticle production processes and is exploited to separate the signal from the SM
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background6, since in the SM the missing transverse energy originates from neutrinos,
which, in contrast to the lightest neutralino, are massless and are produced at hadron
colliders in association with a lepton or another neutrino.

The cuts, used by ATLAS to isolate the signal of colored sparticle production from
the SM background, typically require the presence of hard jets and a large missing
transverse energy component that has to be not aligned to the hardest jet. In super-
symmetry search analyses performed on signatures containing leptons, also additional
cuts requiring the presence of hard leptons are imposed. These cuts define a signal
region for cut-and-count searches, which consist in counting the number of events in
the signal region and compare it with the corresponding SM prediction.

Special kinematical variables have also been introduced to define signal regions in
cut-and-count searches. We show here, as illustration, a variable applied in some of
the CMS analyses for signatures with jets, missing transverse energy and no lepton. It
will be used also in the numerical evaluation presented in section 7.1.

At hadron colliders, the contribution from the SM to multijet production is large. In
the analyses of full-hadronic signatures, CMS used the variable αT for the definition of
the signal region for production of colored sparticles [28,145]. This variable is inspired
by the analogue variable α discussed in [146], and it is defined, for a dijet system,
according to [145, 147], as the ratio:

αT =
Ej2

T

MT
. (5.14)

In eq. (5.14), Ej2
T is the transverse energy of the second hardest jet and MT is the

transverse mass of the two jets. The maximum possible value for αT in a dijet system
is 0.5. When the number of jets is larger than two, jets are recombined in a system
of two pseudo-jets that are obtained choosing the combination of jets that minimizes
the difference between the ET of the two pseudo-jets7. With multijet signatures, αT

can possibly be larger than 0.5, due to missing transverse energy components arising,
e.g., from experimental problems in the jet energy resolution. However, defining the
signal region via αT > 0.5, most of the SM multijet contribution is excluded, whereas
the jets from squark and gluino decays can easily pass this cut. Indeed the presence
of missing transverse energy due to the lightest neutralinos allows jets to be in the
αT > 0.5 region. Other variables, e.g. the razor [148–150] or MT2 [151–153], have
also been used by CMS for the full-hadronic final states, but they are not used in the
analyses presented in chapter 7.

6Signatures including leptons, quarks, and missing transverse energy can be produced via processes
like, e.g., top quark pair production, single top quark production, W + jets, Z + jets and vector boson
pair production (WW , WZ, ZZ).

7The ET of each one of the two pseudo-jets is calculated as the scalar sum of the ET of the jets
forming the pseudo-jet.
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Figure 5.2: Exclusion limits in the mg̃ −mq̃ plane for mχ̃0
1
= 0 (left plot) and mχ̃0

1
=

395 GeV from ATLAS, at the LHC with
√
s = 7 TeV and an integrated luminosity of

4.7 fm−1. Red lines (solid line: central value, dotted lines: ±1σ) indicate the observed
limits, the yellow band indicates the expected limit. The violet area shows the exclusion
limits from the previous analyses with an integrated luminosity of 1.04 fm−1. Plots
taken from [24].

Supersymmetry searches: exclusion limits

Until now no signal from supersymmetry has been detected at the LHC. Thus, analyses
performed on the data collected during the 7 and 8 TeV runs have led to the exclusion
of large regions of the parameter space. Often, these analyses are based on simplified
models, in which two, or few more parameters, are free and the rest of the MSSM
parameters are fixed. Thus, the exclusion limits always depend on the assumptions
made for setting all the remaining parameters. Still, with reasonable assumptions,
exclusion limits at the order of 1 TeV and even beyond have already been set for
squarks and gluino masses.

For instance, a common squark mass and the gluino mass can be chosen as the only
two free parameters. Also, squarks from the third generation can be decoupled and
squarks of the first two generations can be assumed to decay directly into the lightest
neutralino with branching ratio (BR) equal to 1. Figure 5.2(a) shows exclusion limits
from ATLAS [24], based on these assumptions, in themg̃−mq̃ plane, formχ̃0

1
= 0. These

analyses considered signatures containing only jets and missing transverse energy, and
no hard lepton. Assuming squarks or gluinos lighter than 2 TeV, gluino masses below
860 GeV and squarks masses below 1410 GeV are excluded at 95% confidence level.
However, such a simplified model might overestimate the signal and more realistic
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Figure 5.3: Red lines (solid line: central value, dotted lines: ±1σ) indicate the ob-
served limits from ATLAS at LHC with

√
s = 7 TeV and an integrated luminosity of

4.7 fm−1, the yellow band indicates the expected limit. Left Plot: exclusion limits in
the ∆(mg̃, mχ̃0

1
)−mg̃ plane. The letters in the plot indicate the signal regions specified

in [24]. Right Plot: exclusion limits in the m1/2 −m0 plane. The violet area shows the
exclusion limits from the previous analyses with an integrated luminosity of 1.04 fm−1.
Plots taken from [24].

bounds could be weaker. For instance, if χ̃0
1 is bino-like and χ̃0

2 is wino-like and heavier
than the squarks, only a negligible fraction of left-handed squarks would decay directly
into the LSP, in contrast to the assumptions of these analyses.

Figure 5.2(b) shows the same plot of Figure 5.2(a), but assuming mχ̃0
1
= 395 GeV.

A comparison between Figure 5.2(a) and Figure 5.2(b) shows that exclusion limits
depend moderately on the value of the mass of χ̃0

1. However, in both plots, the mass
of χ̃0

1 is much smaller than the gluino and squark masses. In the limits mχ̃0
1
→ mg̃ or

mχ̃0
1
→ mq̃, i.e. for the so called compressed spectra, the jets emerging from the decays

q̃ → qχ̃0
1 and g̃ → qq̄χ̃0

1 are soft and typically rejected by experimental cuts [154–156].
The plot in Figure 5.3(a) shows the exclusion limits in the ∆(mg̃, mχ̃0

1
)−mg̃ plane, for

the same simplified model used for the plots in Figure 5.2, but with mq̃ = 0.96 mg̃ and
mχ̃0

1
considered as free parameter. Exclusion limits on mg̃ strongly depend on the mass

difference ∆(mg̃, mχ̃0
1
) between the gluino and the χ̃0

1; they decrease for small values of
∆(mg̃, mχ̃0

1
) and they do not cover the region ∆(mg̃, mχ̃0

1
) < 100 GeV.

The results shown in Figure 5.2(a) have also been interpreted as bounds on the
values of the soft supersymmetry breaking parameters of the Constrained MSSM
(CMSSM). In the CMSSM all the soft supersymmetry breaking parameters depend
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on five parameters defined at the GUT scale,

m0 , m1/2 , tan(β) , A0 , sign(µ) , (5.15)

and the low energy MSSM spectrum is obtained via RGEs. Thus, due to the small num-
ber of independent parameters, this model has been extensively used in experimental
analyses and also in theoretical and phenomenological studies.

Within the CMSSM, in eq. (5.5) the gaugino masses (M1,M2,M3) are all set equal
to m1/2 and the scalar masses to m0, i.e., m2

i = m2
0 and mHu = mHd

= m0. Similarly,
all the parameters Ai entering the trilinear couplings are set equal to A0, i.e., Au =
Ad = Ae = A0. The value of |µ|, from the supersymmetric invariant part of the
Lagrangian Lsusy, and b are specified by only tan(β) and the requirement of a correct
VEV. Once the sign of µ is given, the value of µ, entering, e.g., in the neutralino
diagonalizing matrix N is completely specified.

Specifically, the results showed in Figure 5.2(a) are translated in Figure 5.3(b) into
the CMSSM m1/2 −m0 plane with tan(β) = 0, A0 = 0 and µ > 0. Similar results have
also been presented by CMS in [27].

Searches for squark and gluino production have been performed also considering
experimental signatures containing leptons. Furthermore, with signatures containing
b-jets and/or top quarks, also exclusion limits for the third generation sfermions have
been set (see [26, 157–164]). Also a possible signal from the production of sleptons
or electroweak gauginos has been searched in leptonic signatures [165–171]. Again no
evidence for these sparticles has been found and new bounds for their masses have been
set.

Parameter determination

If a clear signal for physics beyond the Standard Model will be established, the char-
acter and parameters of the underlying model will have to be determined. Indeed,
only a precise and non-ambiguous determination of TeV scale parameters allows for
the identification of the underlying theory [172,173] and, in case of SUSY, the investi-
gation of different breaking scenarios. Moreover, different BSM models result in similar
signatures at the LHC, so even the determination of the general class of models would
be a major challenge [174]. In recent years various techniques tackling these chal-
lenges have been developed and many of those rely on the occurrence of cascade decay

Figure 5.4: Illustration of the “golden decay chain”.
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Figure 5.5: Shapes of the normalized mjll, mjl(high) and mjl(low) distributions for SPS1a
and 10.1.6 at LO.

chains. Several mass determination techniques have been proposed and are reviewed,
e.g., in [175].

The “qll-chain” is one of the most interesting and promising decay chains for pa-
rameter determination and, for this reason, is also known as “golden decay chain”. As
shown in Figure 5.4, it corresponds to

q̃L → q χ̃0
2 → q l± l̃∓L/R → q l± l∓ χ̃0

1 , (5.16)

where a left-handed squark decays into a quark and a second lightest neutralino χ̃0
2,

subsequently decaying, via an intermediate slepton, into a pair of opposite-sign same-
flavor (OS-SF) leptons and a lightest neutralino χ̃0

1.
The “golden decay chain” (5.16) was introduced in [176, 177] and studied in many

subsequent works [35,178–194]. These analyses showed that measurements of resulting
invariant-mass-distribution endpoints and shapes can be exploited to determine the
masses of the intermediate SUSY particles. For instance, with the kinematic endpoints
of the mjll, mjl(high) and mjl(low) distributions8, it is possible, in principle, to recon-
struct the masses of the sparticles involved in the decay chain. However, the same
kinematic endpoints can originate from very different mass values. The shapes of the
distributions, calculated analytically at LO in [181], might be important to resolve
these ambiguities in mass measurements from kinematic endpoints [195].

In Figure 5.5 we show invariant mass distributions in mjll, mjl(high) and mjl(low),
calculated analytically, for two CMSSM benchmark points9: SPS1a and CMSSM 10.1.6.
As can be seen in Figure 5.5, such shapes are very sensitive to the model parameters.
Mass values do not determine only the kinematic endpoints, but also the qualitative
behavior of the distributions.

8mjll is the invariant mass of the jet, i.e., at LO the quark, and the two leptons. mjl(high) and
mjl(low) are respectively the higher and smaller invariant mass between one of the leptons and the jet.

9In section 7.2 these two benchmark points will be properly defined and numerical evaluations for
these three distributions will be presented at NLO QCD.
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Besides parameter determination, these invariant mass distributions, due to corre-
lations between particles in the decay chain, can also be used for spin measurements of
the intermediate sparticles [196]. Thus, since the ql+l− "ET signature can emerge also in
other BSM theories, these distributions can be used to determine the general model.
For instance, a SUSY model can be discriminated from an Universal Extra Dimension
(UED) model, see e.g., [197, 198] and [199–209].

5.3.2 Theoretical calculations: production and decay

As for SM processes, the calculation of higher-order effects is essential for obtaining
reliable phenomenological predictions. In particular, for squark and gluino productions,
precise theoretical calculations are necessary for the following reasons:

• correctly identifying the signal or setting accurate exclusion limits,

• refining experimental search strategies in problematic parameter regions,

• determining, in case of discovery, the parameters of the underlying model.

First LO cross section predictions, O(α2
s), for squark and gluino production pro-

cesses were calculated many years ago [210–214] and a list of explicit formulae can be
found in [126]. Also the calculation of NLO corrections in perturbative QCD has been
performed quite some time ago [33, 215–217], assuming completely degenerate squark
masses for the light-flavor generations. These corrections, can be very large; the ra-
tios between LO and NLO cross sections, the so called K-factors, of the four different
channels for the production of colored sparticles10 are typically in the range between
1 and 2, i.e., NLO QCD corrections can even be as large as the LO cross section.
Also, differential NLO corrections for the produced squarks and gluinos look rather
flat in phase space. The calculation of [33] is implemented in the public computer code
Prospino 2 [218], which, however, can provide only total cross sections. Moreover, as
already mentioned, the NLO corrections were calculated in [33] with the assumptions
that squarks of all the different flavors and chiralities have the same mass. The first
completely differential NLO calculation, treating independently the squarks with differ-
ent flavors and chiralities, appeared for squark–squark production, as an intermediate
step of the full calculation, in [32] and afterwards for all the four processes in [219].

NLO QCD corrections have to be included in any viable phenomenological study
also because of the enormous scale uncertainties at LO. Including NLO corrections,
the scale uncertainty on inclusive cross sections, obtained varying the factorization
(µf) and renormalization (µr) scales between the half and the double of the average
mass of the produced particles, is typically reduced to an order of 20%− 30%. Besides

10From now on, we label q̃q̃′ and q̃∗q̃∗′ productions in common as “squark–squark production”
and q̃g̃ and q̃∗g̃ as “squark–gluino production”. The charge-conjugated process is always taken into
account, if not specified otherwise.



5.3 Colored sparticles at the LHC 73

the scale uncertainty, PDF uncertainties dominate the error of theoretical predictions
for sparticle production processes. A discussion on the systematic treatment of PDFs
for colored sparticle production can be found, e.g., in [220].

Recently, also results beyond NLO in QCD, based on resummation techniques,
have been calculated [221–229]. These corrections increase the inclusive cross section
by about 2%−10% and further reduce the scale uncertainty. Furthermore, in [230,231]
production of sparticles was studied at the tree level matched to a parton shower sim-
ulation including additional hard jets. In these works large deviations from the LO
prediction with or without showering were found particularly in the high-pT tail for
scenarios with the compressed spectra mentioned in the previous subsection. Very re-
cently, the calculation of NLO QCD corrections to squark–squark production, treating
independently flavor and chirality configurations, has been matched to parton shower
emissions in an event generator [232], using the POWHEG method [233–235].

Moreover, also electroweak contributions can give sizable corrections. They were
first calculated atO(α2) in [236,237] and at NLO, O(α2

sα), in [238–244]. In detail, those
corrections depend strongly on the model parameters and on flavors and chiralities of
the squarks. Also, in contrast to NLO QCD corrections, they cannot be considered
flat in phase space. For instance, corrections in pT distributions for squark–squark
production can vary from ∼ 25% to ∼ −10% over the pT range up to 1.5 TeV [243].
However, sign and magnitude of the corrections change for different chirality and flavor
configurations of the squarks.

Several calculations have also been performed to investigate the impact of higher-
order corrections on integrated decay widths and branching ratios of colored sparti-
cles. NLO QCD corrections to the decay of light-flavor squarks into neutralinos and
charginos were first calculated in [34, 245] and to heavy-flavor squarks also in [34] and
in [246]. Corrections to the total decay width of light squarks are in general moderate
(below 10 %) and can change sign, depending on the involved mass ratios.

As an illustration, Figure 5.6 shows the percentage NLO QCD corrections to the
decay width11 for q̃ → qχ̃0

i as function of κ = m2
χ̃0
i
/m2

q̃ . The three lines correspond

to three different values of the ratio γ = m2
g̃/m

2
q̃ . Corrections, as said, are moderate,

but, for very small mass splittings between the decaying squark and the neutralinos
(κ ∼ 1), these corrections increase significantly. In contrast, higher-order corrections
to the decay of top-squarks are in general sizable [34]. Moreover, they depend strongly
on the mixing in the heavy squark sector. Related to this mixing also decays into weak
gauge bosons or Higgs bosons can become relevant [247, 248], receiving large higher-
order corrections [249–251]. Decays of a gluino into a light squark and a quark at
NLO QCD together with the decay of a light squark into a gluino and a quark have
been calculated in [252]. Corresponding decays involving top squarks were presented

11The calculation of this quantity is performed in section 6.7.2 and, as explained there, it applies
also to the decay of a squark into a chargino and a quark with different flavor.
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in [253]. All these decays including their NLO QCD corrections have been implemented
in the public code SDECAY [254] linked in the program package SUSY-HIT [255],
which calculates the particle spectrum and the decay widths and branching ratios of
supersymmetric particles and Higgs bosons.

Besides NLO QCD, also NLO electroweak corrections to squark decays into neu-
tralinos and charginos have been investigated in the literature [256, 257] and can give
sizable contributions. These corrections often compensate those from QCD, however,
they depend strongly on the model parameters. Corresponding NLO electroweak cor-
rections for third generation squark decays have been studied in [258–261]. Few studies
were also performed investigating invariant mass distributions of SM particles emitted
from cascade chains including various higher-order corrections [35, 262]. In [35] the
“golden decay chain” was investigated at NLO QCD in the squark rest frame. There,
real gluon radiation contributions are given in a fully analytical form and leading soft-
and collinear gluon contributions are resummed. Furthermore, a study of predictions
for the LHC, using LO production cross sections is presented. In their numerical anal-
yses, the authors of [35] concentrate on the effect on distributions sensitive to spin
correlations, as the ones mentioned in the previous subsection. Similar results are pre-
sented in section 7.2, where we (re)performed and extended the calculation of [35] to
a more general case, as explained in chapter 6.



Chapter 6

Squark–squark production and
decay: calculation

6.1 Motivations for the calculations

Most of the studies of higher-order calculations, mentioned in section 5.3.2, focussed
on inclusive observables (total cross sections and total decay widths). Some of them
analyzed differential distributions for the production processes, however, these distribu-
tions are in terms of sparticles, i.e., unstable particles that cannot be directly detected.
Although these quantities are of fundamental interest, they are in practice not directly
observable in high-energy collider experiments. On the one hand, with total cross sec-
tions or even cross sections differential with respect to sparticle momenta, it is not
possible to take into account phase-space cuts that, in any experimental analysis, are
applied to signatures emerging from sparticle decays. Thus, the identification of a
signal or the extraction of exclusion limits based on these quantities could in principle
miss important effects due to the dependence of higher-order corrections on experimen-
tal cuts. On the other hand, higher-order corrections could distort shapes and thus
affect the accuracy of, e.g., endpoint determination techniques as those mentioned in
5.3.1 for the case of the “golden decay chain”. Precise knowledge of distributions of
the decay products could be necessary to determine the fundamental parameters of the
model. Moreover, higher-order corrections could be important for the determination of
the spin of the new particles, which helps to discriminate SUSY models from possible
other extensions of the SM with similar signatures [174, 263].

Typically, in the experimental analyses of a certain signature, the simulation of the
signal is performed according to the following general steps. Firstly, specific MSSM
models for the interpretation of the possible signal are chosen, and the sparticle pro-
duction processes contributing to the signature are selected. Secondly, these processes
are simulated producing events via a LO parton shower event generator, as e.g. Her-
wig [264, 265] or Pythia [266, 267], that takes into account the radiation of partons at
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LL accuracy and includes the decays of the produced sparticles. Thirdly, after simu-
lating the hadronization of partons and the effects from the detector, a jet clustering
algorithm is applied on the generated events. Finally, the experimental cuts that de-
fine the signal region are applied and the weights of the events are rescaled by a flat
NLO (or NLO+NLL) QCD K-factor for the corresponding production processes, not
including the decays.

This procedure is, at the moment, the best way to simulate the signal from colored
sparticles, using public codes and including detector simulation. However, some of the
steps of this procedure correspond to using approximations that might be, in general,
not valid. We can summarize them in the following list,

• NLO QCD corrections to the decays are neglected:
NLO corrections to the decays are not taken into account. However, for some
parameter points or some phase-space regions, they can be non-negligible.

• K-factors are considered flat in phase space:
Event weights are rescaled by K-factors, calculated for total cross sections of the
production of sparticles without including decays. Although these K-factors are
in general rather flat in the sparticle phase space, they cannot correctly take into
account the possible effects from experimental cuts on particles emerging from
sparticle decays.

• The dependence of K-factors on squark flavors and chiralities is ne-
glected:
Typically, the K-factors are calculated including all the possible chirality and
flavor configurations of the squarks. However, different chirality and flavor con-
figurations can have different K-factors. Moreover, they contribute in a very
different way to a given signature, since the branching ratios of the different
squark decay modes strongly depend on flavors and chiralities.

• Sparticle decay products do not interact with partons in the initial
state and with particles emerging from another sparticle decay:
Even including both NLO corrections to the production and to the decays, not
all the possible NLO corrections to the full processes (production combined with
decays) are considered. Additional corrections arise, e.g, from interactions be-
tween partons emerging from a sparticle decay and partons in the initial state or
from another sparticle decay.

• Effects from off-shell sparticles are neglected:
Although the ratio Γ/m is in general small for colored sparticles, there are pa-
rameter points with larger widths, yielding off-shell contributions that might be
non-negligible.

It is also important to note that, multiplying weights of events from parton shower gen-
erators by NLO QCD K-factors is generally a procedure not completely consistent from
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a theoretical point of view.1 Furthermore, besides QCD corrections, also electroweak
corrections can in principle add non-negligible contributions, especially applying cuts.

Ideally, given a final-state signature, precise and theoretically well defined predic-
tions would be provided by a parton shower event generator, that includes all the
contributing MSSM processes, at full NLO QCD accuracy properly matched to the
parton shower with possibly also off-shell effects and electroweak corrections.

Also without the inclusion of electroweak corrections, the realization of such an
ideal event generator is well beyond the status of the art and would involve several
technical difficulties. Anyway, in order to investigate the size of the differences be-
tween the procedure used in the experimental analyses and the results that would be
obtained using this ideal generator, different intermediate steps can be performed.

Here, we start the investigation of the size of these differences for one of the four
processes yielding the production of colored sparticles, analyzing the contribution of
squark–squark production to two different experimental signatures, obtained via two
different configurations for the squarks decays. The choice of squark–squark production
is also of practical importance. From recent searches at the LHC, mass bounds for
squarks and gluinos are generically shifted to higher values and, for heavy squarks
and gluinos, squark–squark production is, as can be seen in Figure 5.1, the dominant
channel (see also [268]). Specifically we study:

• the contribution from pp → q̃q̃′ → qχ̃0
1q

′χ̃0
1 to the experimental signature con-

taining two jets and missing transverse energy: 2j + "ET (+X),

• the contribution from pp → q̃Lq̃
′
R → qχ̃0

1q
′l±l∓χ̃0

1 to the experimental signature
containing two jets, two OS-SF leptons and missing transverse energy: 2j +
l+l−(OS-SF) + "ET (+X).

The first case corresponds to squark–squark production with both the squarks de-
caying into the lightest neutralino, q̃ → qχ̃0

1. With this process we investigate observ-
able differential distributions and the impact on cut-and-count searches performed at
the LHC.

The second case corresponds to the production of a left-handed squark and a right-
handed squark, where the right-handed squark decays as in the first case into the
lightest neutralino, q̃ → qχ̃0

1, and the left-handed squark decays via the “golden decay
chain”, q̃L → q χ̃0

2 → q l± l̃∓L/R → q l± l∓ χ̃0
1. Combining the production of squark

pairs and their subsequent decays in a consistent way at the NLO level, we present an
analysis of higher-order corrections for the “golden decay chain”. Thus, in this case,

1Parton showers take into account and resum corrections of order αn
sL

n, where L indicates the
typical leading logarithms that involve the different scales of the process. The first of these logarithms,
αsL, is already included in the NLO QCD corrections. Thus, multiplying the event weights by
NLO QCD K-factors, a double-counting of the order αsL contribution is introduced. NLO and LL
corrections must be matched in order to achieve a theoretically well defined prediction.
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besides analyzing inclusive event rates involved in the cut-and-count searches as those
in e.g. [269,270], we focus on effects, from NLO corrections and from the combination
with the production process, on relevant distributions for mass determination.

In both cases the calculation is performed including, at fully differential level, the
factorizable NLO QCD corrections to the full process (production combined with de-
cays) and treating independently flavor and chirality configurations of the intermedi-
ate squarks. Thereby, the Narrow-Width Approximation (NWA) for the intermediate
squarks is applied. These approximations are motivated and explained in sections 6.2,
6.3 and in appendix A. Recently, a very similar calculation was performed for the
production of a pair of scalar BSM top quark partners, like e.g. the top squark, which
produce with their decays a pair of top quarks and particles appearing as missing
transverse energy [271].

In principle, our calculation does not depend on mass relations among the squarks
and the gluino. However, in our numerical evaluation we only consider benchmark
points where the mass mq̃ of all light-flavor squarks is smaller than the gluino mass
(mg̃ > mq̃); otherwise the decay of a squark into a gluino and a quark would be
dominant, leading to a different final-state signature.

We want to anticipate that, with our calculation, it will be possible to give a quan-
titative estimate of effects due to the approximations indicated by the first three points
of the list on page 76. The possible effects due to the approximation indicated by the
fourth and fifth point will not be analyzed quantitatively, however, theoretical problems
connected to a well defined treatment of off-shell effects and effects from interactions
between initial and final-state partons will be discussed in sections 6.2.2 and 6.4.3 and
in appendix A.

6.2 Theoretical framework

In this section we introduce and explain the approximation used for the calculation of
production and decays of squark–squark pairs. In the discussion we refer to the case
in which squarks decay directly into the lightest neutralino, pp → q̃q̃′ → qχ̃0

1q
′χ̃0

1.
Since we want to select the particles in the intermediate state, i.e., the resonating

squarks, the complete NLO QCD corrections to the full process pp → q̃q̃′ → qχ̃0
1q

′χ̃0
1,

illustrated in Figure 6.1, can lead to to some ambiguities. Indeed O(αs) corrections
involve also diagrams as the one in Figure 6.2. This diagram exhibit squarks that can
be resonant, but it can be more naturally categorized as part of LO squark–gluino
production, where the gluino decays into a quark and a squark subsequently decaying
into a quark and a neutralino. Already without including the decays of the squarks, the
calculation of NLO corrections to squark–squark production carries problems of double
counting. Parts of NLO corrections to squark–squark production can be identified as
LO of squark–gluino production, where the decay of the gluino is already included. This
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Figure 6.1: Structure of the complete NLO corrections to pp → q̃q̃′ → χ̃0
1qχ̃

0
1q

′.

Figure 6.2: Real quark radiation diagram contributing to NLO QCD corrections.

problem is well known in the literature, but the standard solution [33], used to avoid
this double counting problem, cannot be straightforwardly extended to the calculation
including squark decays, especially with off-shell configurations of squarks.

Also, besides the double counting problem, the calculation of the complete NLO
QCD corrections to a 2 → 4 process is in general technically highly involved. In view
of the required level of accuracy of a few percent, it is sufficient to use an approxima-
tion that neglects O(Γq̃/mq̃) corrections from off-shell effects and contains the bulk of
the NLO effects. Thus, as a first step towards the calculation of the complete NLO
QCD corrections, we choose to consider the contributions from on-shell squarks only,
neglecting O(Γq̃/mq̃) corrections from off-shell effects.

6.2.1 LO in Narrow-Width Approximation

At LO, the only partonic subprocess that contributes to a given intermediate configu-
ration q̃q̃′ arises from a quark pair qq′, where these quarks have the same flavors of the
squarks. The corresponding diagram is depicted in Figure 6.3.2 The on-shell configura-
tion of the squarks can be obtained at LO applying the Narrow-Width Approximation
(NWA): Γq̃/mq̃ → 0. In this limit, the resonating contributions of the squarks in the

2If q̃ and q̃′ have the same flavor, also a u-channel diagram for qq → q̃q̃ is possible. Moreover the
quarks q can emerge from the first or second squark q̃.
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Figure 6.3: Born diagram for the process qq′ → q̃q̃′ → qχ̃0
1q

′χ̃0
1. The momenta of the

particles are in brackets.

squared amplitude can be approximated via the replacement

1

(p2 −m2
q̃)

2 +m2
q̃ Γ

2
q̃

→
π

mq̃ Γq̃
δ(p2 −m2

q̃) , (6.1)

for each squark with momentum p.
In NWA, the phase-space integration of the squared amplitude for the total cross

section of the 2 → 4 processes factorizes into a production and a decay part. At the
partonic level, since squarks are scalar particles, the LO cross section gets the following
form,

σ̂(0)

NWA(qq′ → q̃q̃′ → qχ̃0
1q

′χ̃0
1) = σ̂(0)

qq′→q̃q̃′ · BR
(0)
q̃→qχ̃0

1
· BR(0)

q̃′→q′χ̃0
1
, (6.2)

with the LO partonic production cross section σ̂(0)
qq′→q̃q̃′ and the LO branching ratios

BR(0) for the squark decays into the lightest neutralino.
A direct generalization of eq. (6.2) yields the cross section in a fully differential

form, which can be written at the hadronic level as follows,

dσ(0)

NWA(pp → q̃q̃′ → qχ̃0
1q

′χ̃0
1) = dσ(0)

pp→q̃q̃′
1

Γ(0)
q̃

dΓ(0)
q̃→qχ̃0

1

1

Γ(0)
q̃′

dΓ(0)
q̃′→q′χ̃0

1
. (6.3)

Therein, Γ(0)
q̃ and Γ(0)

q̃′ denote the LO total widths of the two squarks; dΓ(0)
q̃→qχ̃0

1
and

dΓ(0)
q̃′→q′χ̃0

1
are the respective differential decay distributions boosted to the moving

frames of q̃ and q̃′. The other basic ingredient, dσ(0)
pp→q̃q̃′, is the hadronic differen-

tial production cross section, expressed in terms of the partonic cross section dσ̂(0)
qq′→q̃q̃′

as a convolution

dσ(0)
pp→q̃q̃′ =

∫ 1

τ0

dτ Lqq′(τ) dσ̂
(0)
qq′→q̃q̃′(τ) , (6.4)
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with the parton luminosity

Lqq′(τ) =
1

1 + δqq′

∫ 1

τ

dx

x

[

fq(x, µF ) fq′
(τ

x
, µF

)

+ (q ↔ q′)
]

, (6.5)

where fi(x, µF ) is the PDF, at the scale µF , of the quark i with momentum fraction x
inside the proton. τ denotes the ratio between the squared center-of-mass energies of
the partonic and hadronic processes, τ = s/S, and the kinematical production thresh-
old corresponds to τ0 = (mq̃ +mq̃′)2/S.

6.2.2 NLO in Narrow-Width Approximation: Problems

One may expect to extend this treatment to the full set of NLO corrections. Unfor-
tunately this is in general not possible. Even in a pole expansion, considering only
diagrams with squarks that can be resonant, the NWA cannot always be applied.

The necessary condition for applying the NWA is the presence of Breit-Wigner
distributions, which allow the replacement indicated in (6.1). The interference, e.g., of
the two resonating diagrams in Figure 6.4 does not contain a Breit-Wigner distribution
for the squark from which the quark with momentum p3 and the χ̃0

1 with momentum
p4 emerge.3

Also, unless the momentum q of the gluon is equal to zero, this squark cannot be
on-shell. For given external momenta, a squark on-shell in Figure 6.4(a) is off-shell in
Figure 6.4(b) and vice versa. The same arguments also apply to the interference of the
loop diagram in Figure 6.5 with the Born diagram of Figure 6.3.

Both the separately squared diagrams of Figure 6.4, however, contain a Breit-
Wigner distribution for each of the two resonating squarks. Thus, in this case, the two
squarks can be consistently set on-shell via (6.1), independently of the value of the
momentum q of the gluon. In general, the on-shell condition can be set in all the real
and loop corrections that can be illustrated as in Figure 6.6, i.e., as corrections to just
the production or the decays. This kind of corrections, called factorizable corrections,
contain Breit-Wigner distributions and can be calculated in NWA. The contributions
where squarks cannot be set on-shell, as the interference of the diagrams in Figure 6.4
or of the loop diagrams in Figure 6.5 and the tree-level diagram in Figure 6.3, are
called non-factorizable corrections and cannot be evaluated in NWA.

From the previous considerations, we expect that the leading contributions to the
differential cross section for production of squark–squark pairs and subsequent decays

3The momentum k1 of the squark in the upper part of the first diagram is equal to the sum of the
momentum p3 of the quark and the momentum p4 of the χ̃0

1, emerging from its decay. Conversely, the
momentum of the squark in the upper part of the second diagram is equal to k1 + q, i.e., it includes
also the momentum q of the gluon. Thus, since the momentum of this squark is different in the two
diagrams, their interference cannot produce a Breit-Wigner distribution.
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(a) Initial-state radiation.

(b) Final-state radiation.

Figure 6.4: Initial- and final-state real gluon radiation (illustrative diagrams).

Figure 6.5: Loop diagram connecting quarks in the initial and final state.

can be written in the following form,

dσ(0+1)(pp → q̃q̃′ →qχ̃0
1q

′χ̃0
1(+X)) =

1

Γ(0+1)
q̃ Γ(0+1)

q̃′

[

dσ(0)
pp→q̃q̃′ dΓ

(0)
q̃→qχ̃0

1
dΓ(0)

q̃′→q′χ̃0
1

+ dσ(0)
pp→q̃q̃′ dΓ

(1)
q̃→qχ̃0

1
dΓ(0)

q̃′→q′χ̃0
1
+ dσ(0)

pp→q̃q̃′ dΓ
(0)
q̃→qχ̃0

1
dΓ(1)

q̃′→q′χ̃0
1

+ dσ(1)
pp→q̃q̃′(X) dΓ

(0)
q̃→qχ̃0

1
dΓ(0)

q̃′→q′χ̃0
1

]

+NF , (6.6)
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Figure 6.6: General structure of factorizable corrections.

where the term NF represents the non-factorizable corrections. All the other terms in
eq. (6.6) consist in the factorizable corrections in NWA, which, as their name suggests,
can be factorized into corrections to the production and corrections to the decay. The
first line of eq. (6.6) is the LO contribution, already expressed in eq. (6.3), but with the

NLO corrections to the total decay widths included in Γ(0+1)
q̃ and Γ(0+1)

q̃′ . The second

and third line involve the NLO corrections to the decay distributions dΓ(1) and the
production cross section dσ(1), respectively.

In the explicit calculations and numerical results presented in this thesis, the contri-
bution from NF has not been considered. This contribution is expected to be smaller
than the contribution from factorizable corrections, since the non-factorizable correc-
tions result from squarks that are in general off-shell. However, also in non-factorizable
corrections squarks can go on shell in the soft gluon limit. The resulting contributions
are O(αs) corrections to eq. (6.3), which do not vanish also in the limit Γq̃/mq̃ → 0.
However, they are substantially smaller than the factorizable corrections in NWA, since
large cancellations between different classes of diagrams occur.

More details about the definition and the classification of factorizable and non-
factorizable contributions can be found in appendix A. There, we also show that these
two classes of contributions are independently gauge invariant. This allows us to omit
non-factorizable corrections and include them later in a second step using an approxi-
mation different from the NWA. We have already evaluated non-factorizable corrections
for particular mass configurations, mχ̃0

1
∼ 0, using the theoretical framework and the

calculation techniques discussed in appendix A. With mχ̃0
1
∼ 0, non-factorizable cor-

rections are, even at differential level, smaller than 1% of the LO cross section and thus
negligible.
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6.3 Calculation method

6.3.1 Process classes pp → q̃q̃′ → qχ̃0
1q

′χ̃0
1

Since we are interested in the experimental signature 2j + "ET (+X), we include all
contributions from light-flavor squarks. The squarks of the third generations are not
included, because, via their decays, they produce bottom and top quarks, which can
be distinguished from jets generated by the other colored particles. Hence, the cross
section is given by the sum over all flavor and chirality configurations,

dσ =
∑

q̃iaq̃jb

[

dσ(pp → q̃iaq̃jb → qiχ̃
0
1qjχ̃

0
1(+X)) (6.7)

+dσ(pp → q̃∗iaq̃
∗
jb → q̄iχ̃

0
1q̄jχ̃

0
1(+X))

]

,

which, as we said, we treat independently in the calculation. Indices i, j denote the
flavors of the (s)quarks of the first two generations and a, b their chiralities.

At LO, as already said in section 6.2.1, the only partonic subprocess that contributes
to a given intermediate configuration q̃iaq̃jb (or q̃∗iaq̃

∗
jb) arises from quark and anti-quark

pairs with the same flavor configurations of the squarks, i.e, qiqj → q̃iaq̃jb → qiχ̃0
1qjχ̃

0
1

(or q̄iq̄j → q̃∗iaq̃
∗
jb → q̄iχ̃0

1q̄jχ̃
0
1). For simplifying the notation, we will write qq′ → q̃q̃′ →

qχ̃0
1q

′χ̃0
1 whenever the specification of flavor and chiralities is not required4. Moreover,

we will perform the discussion without the charge-conjugate subprocesses; they are,
however, included in the final results. The differential cross sections entering eq. (6.7)
correspond, at LO, to eq. (6.3).

At NLO, we include the factorizable corrections in NWA, so the differential cross
sections entering eq. (6.7) can be written as,

dσ(0+1)

NWA(pp → q̃q̃′ →qχ̃0
1q

′χ̃0
1(+X)) =

=
1

Γ(0)
q̃ Γ(0)

q̃′

[

dσ(0)
pp→q̃q̃′ dΓ

(0)
q̃→qχ̃0

1
dΓ(0)

q̃′→q′χ̃0
1

(

1−
Γ(1)
q̃

Γ(0)
q̃

−
Γ(1)
q̃′

Γ(0)
q̃′

)

+ dσ(0)
pp→q̃q̃′ dΓ

(1)
q̃→qχ̃0

1
dΓ(0)

q̃′→q′χ̃0
1
+ dσ(0)

pp→q̃q̃′ dΓ
(0)
q̃→qχ̃0

1
dΓ(1)

q̃′→q′χ̃0
1

+ dσ(1)
pp→q̃q̃′(X) dΓ

(0)
q̃→qχ̃0

1
dΓ(0)

q̃′→q′χ̃0
1

]

, (6.8)

which corresponds to the factorizable contributions of eq. (6.6), formally expanded in
αs.5

4In this notation q̃ = q̃′ implies q = q′, but not vice versa.
5An analogous treatment has been used, e.g., for the calculation of NLO corrections of top pair

production and decay [87, 88].
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In order to evaluate the terms contained in eq. (6.8), we produce, for all different
combinations of light flavors and chiralities, weighted events for squark–squark pro-
duction and squark decays. Production events for pp → q̃q̃′(X) are generated in the
laboratory frame. Decay events for q̃ → qχ̃0

1(g) and q̃′ → q′χ̃0
1(g) are generated in the

respective squark rest frame. Finally, pp → qq′χ̃0
1χ̃

0
1(+X) events are obtained by boost-

ing the decay events from the squark rest frames, defined by the production events,
into the laboratory frame. The weights of the pp → qq′χ̃0

1χ̃
0
1(+X) events are obtained

combining the different LO and NLO weights of production and decays according to
eq. (6.8).

The calculations of the weights for production and decays, i.e., the LO and NLO cal-
culation of production cross section (dσ(0)

pp→q̃q̃′, dσ
(1)
pp→q̃q̃′), decay distributions (dΓ(0)

q̃→qχ̃0
0
,

dΓ(0)
q̃→qχ̃0

1
) and total decay widths (Γ(0)

q̃ ,Γ(1)
q̃ ), entering eq. (6.8), are respectively dis-

cussed in sections 6.4, 6.5 and 6.7. After the description of these intermediate calcula-
tions, it will be clear that NLO corrections to the production or to the decay cannot
be simulated with only one set of events. Real radiation and virtual corrections, e.g,
have different final states and belong to different phase spaces. Thus, the boosting
and combining procedure described before is technically more involved. Each of the
subsets of events yielding the NLO corrections to the production or to the decays is
respectively combined with events for the decays or for the production at LO.

6.3.2 Process classes pp → q̃Lq̃′
R → q′χ̃0

1ql
±l∓χ̃0

1

In our analysis we assume χ̃0
1 and χ̃0

2 to be mainly bino- and wino-like, as they appear
in large parameter regions of models with unified gaugino masses at the GUT scale. In
such scenarios the decays, q̃L → χ̃0

1q and q̃R → χ̃0
2q, as said in section 5.3.1, are highly

suppressed for squarks of the first and second generation. For this reason, we consider
only intermediate chirality configurations q̃Lq̃′R (q̃∗Lq̃

′∗
R), where the right-handed squark

directly decays into the lightest neutralino χ̃0
1 and the left-handed one into a χ̃0

2 and
subsequently into l+l−χ̃0

1 via an intermediate left- or right-handed slepton l̃±L/R.

At LO, the only partonic subprocess that contributes to a given intermediate q̃Lq̃′R
(q̃∗Lq̃

′∗
R) configuration arises, also in this case, from a quark (anti-quark) pair qq′ (q̄q̄′)

with the same flavor configuration of the squark pair. Since we are interested in the
contribution to the experimental signature 2 jets + 2 leptons + missing transverse
energy with the two leptons of opposite sign and same flavor, 2j + l+l−(OS-SF) +
"ET (+X), we include all flavor configurations with (s)quarks of the first two generations.
Also with this process, we will perform in general the discussion without referring to the
charge-conjugate subprocesses (q̃∗Lq̃

′∗
R); in the final results, however, they are included.
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Figure 6.7: General structure of factorizable NLO QCD corrections to pp → q̃Lq̃′R →
q′χ̃0

1ql
±l∓χ̃0

1.

Hence the cross section is given by

dσ =
∑

i,j

[

dσ(pp → q̃iLq̃jR → qjχ̃
0
1qil

±l∓χ̃0
1(+X))+

dσ(pp → q̃∗iLq̃
∗
jR → q̄jχ̃

0
1q̄il

±l∓χ̃0
1(+X))

]

. (6.9)

At LO, in NWA, the differential cross sections entering eq. (6.9) can be calculated,
in analogy to eq. (6.3), as

dσ(0)

NWA(pp → q̃Lq̃
′
R → qχ̃0

1q
′l+l−χ̃0

1(+X)) =

dσ(0)
pp→q̃Lq̃′R

1

Γ(0)
q̃L

dΓ(0)
q̃L→qχ̃0

1l
+l−

1

Γ(0)
q̃′R

dΓ(0)
q̃′→q′χ̃0

1
. (6.10)

The quantity dΓ(0)
q̃L→qχ̃0

1l
+l−

indicates the LO decay distribution, at fully differential level,

for the “golden decay chain”. The remaining quantities have already been explained
in the discussion for the pp → q̃q̃′ → qχ̃0

1q
′χ̃0

1 process. Again, when it is not important
to specify the flavor structure, we will indicate the squark pair as qLq′R.

Also at NLO, we use the same approximation adopted for the calculation of squark–
squark production and direct decays into lightest neutralinos, i.e., we include the NLO
factorizable corrections in NWA, illustrated for this process in Figure 6.7.

For any flavor configuration, the systematic expansion of the differential cross sec-
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tion in the strong coupling αs yields

dσ(0+1)

NWA(pp → q̃Lq̃
′
R → qχ̃0

1q
′l+l−χ̃0

1(+X)) =
1

Γ(0)
q̃L

Γ(0)
q̃′R

×

[

dσ(0)
pp→q̃Lq̃′R

dΓ(0)
q̃L→qχ̃0

1l
+l−

dΓ(0)
q̃′R→q′χ̃0

1



1−
Γ(1)
q̃L

Γ(0)
q̃L

−
Γ(1)
q̃′R

Γ(0)
q̃′R





+ dσ(0)
pp→q̃Lq̃′R

dΓ(1)
q̃L→qχ̃0

1l
+l−

dΓ(0)
q̃′R→q′χ̃0

1
+ dσ(0)

pp→q̃Lq̃′R
dΓ(0)

q̃L→qχ̃0
1l

+l−
dΓ(1)

q̃′R→q′χ̃0
1

+ dσ(1)
pp→q̃Lq̃′R

dΓ(0)
q̃L→qχ̃0

1l
+l−

dΓ(0)
q̃′R→q′χ̃0

1

]

. (6.11)

In order to evaluate the factorizable corrections we combine squark–squark produc-
tion events and squark decay events. Moreover, due to chirality-dependent interactions,
we treat the decay chain of an antisquark independently from the corresponding one
from the squark decay. The quantities entering eq. (6.11) are the same as those in

eq. (6.8), with the exception of dΓ(0)
q̃L→qχ̃0

1l
+l−

and dΓ(1)
q̃L→qχ̃0

1l
+l−

, i.e., the LO decay dis-

tribution for the “golden decay chain” and the corresponding NLO corrections. The
calculations of these two quantities are described in section 6.6.

6.4 Squark–squark production

6.4.1 Squark–squark production at LO

The structure of the hadronic differential cross section at LO has already been shown
in eq. (6.4), so we need to specify only the expression of the possible partonic cross

sections (dσ̂(0)
qq′→q̃q̃′). In the calculation of the partonic cross sections, we treat the quarks

as massless. On the one hand this choice is motivated by theoretical consistency in
the convolution with PDFs. DGLAP equations and, in general, all the formalism used
in the extraction of PDFs from experimental data, are based on the assumption of
massless partons. On the other hand, in our calculation we consider only squarks of
the first two generations, thus the corresponding quarks have masses that are negligible
at the typical energy scale of these processes.

Amplitudes and cross sections for squark production depend on the flavors (indices
i, j) and on the chiralities (indices a, b) of the squarks. If the two produced squarks are
of the same flavor, the contributing Feynman diagrams correspond to t- and u-channel
gluino exchange (Figure 6.8). For squarks of the same chirality, the partonic cross
section reads as follows,

dσ̂(0)
qiqi→q̃iaq̃ia

dt
=

πα2
s

9s2
m2

g̃s

(

1

(t−m2
g̃)

2
+

1

(u−m2
g̃)

2
+

2/3

(u−m2
g̃)(t−m2

g̃)

)

, (6.12)
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qi

qj

q̃ia

q̃jb
g̃

qi

qi

q̃ia

q̃ib
g̃

Figure 6.8: Tree-level Feynman diagrams for squark–squark production.

where s, t and u are the usual Mandelstam variables for 2 → 2 processes. For dif-
ferent chiralities, mq = 0 implies vanishing interference between the t- and u-channel
diagrams, yielding

dσ̂(0)
qiqi→q̃iaq̃ib

dt
=

2πα2
s

9s2

(−st− (t−m2
q̃ia)(t−m2

q̃ib
)

(t−m2
g̃)

2
+

−su − (u−m2
q̃ia)(u−m2

q̃ib
)

(u−m2
g̃)

2

)

.

(6.13)

If the two squarks are of different flavors, there is no u-channel exchange diagram; the
partonic cross section for equal chiralities is hence given by

dσ̂(0)
qiqj→q̃iaq̃ja

dt
=

2πα2
s

9s2
m2

g̃s

(t−m2
g̃)

2
, (6.14)

and for different chiralities by

dσ̂(0)
qiqj→q̃iaq̃jb

dt
=

2πα2
s

9s2
(−t +m2

q̃ia)(t−m2
q̃ib
)− st

(t−m2
g̃)

2
. (6.15)

Besides the dominating QCD contributions, there are also tree-level electroweak pro-
duction channels [236, 243] with chargino and neutralino exchange, which can con-
tribute to the cross section at O(α2) and, interfering with the QCD amplitude, at
O(ααs). In principle these terms can be numerically of similar importance as the NLO
QCD, O(α3

s), corrections we are investigating. For the present study, the electroweak
contributions are neglected.

6.4.2 Squark–squark production at NLO

The NLO QCD corrections to squark–squark production, as mentioned in section 5.3.2,
have been known for many years [33] and an efficient public code (Prospino 2 ) is avail-
able for the calculation of total cross sections at NLO. However, in order to study
systematically the 2j+ "ET (+X) signature emerging from production of squark–squark
pairs and subsequent decays into the lightest neutralino, we need the fully differential
cross section. To this purpose, we perform an independent (re)calculation of the NLO
QCD corrections. Moreover, we treat the masses of q̃L, q̃R and all chirality and flavor
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configurations independently. In this way, we can investigate the quality of the ap-
proximation indicated by the third point of the list on page 76.

Besides UV divergences, which are eliminated via the renormalization of the bare
quantities, NLO corrections involve infrared/soft and collinear divergences in the in-
termediate steps of the calculation. In QCD corrections, infrared divergences arise
when gluons, in real emissions from external particles or in loop corrections, are soft.
Collinear divergences arise when gluons, in real emission from external particles or in
loop corrections, are collinear to the massless particle from which they originate.

First of all, in order to perform a calculation, divergences must be regularized.
For example, for the regularization of soft divergences a fictitious gluon mass λ can
be introduced. The purpose of the fictitious gluon mass can be understood analyzing
the specific terms containing this kind of divergences. If p = (Ep, 0p ) is the four-
momentum of an external particle, interacting with a gluon with momentum k =
(Ek,0k ), a propagator

1

(p− k)2 −m2
p

=
1

λ2 − 2pk
=

1

λ2 − 2EkEp[1− βpβk cos(θpk)]
(6.16)

appears in the amplitude, and, if λ = 0, it is divergent for Ek → 0; a non vanishing
value of λ regularizes this divergence. In eq. (6.16), θpk is the angle between 0p and 0k,

βp =
√

1−m2
p/E

2
p and βk =

√

1− λ2/E2
k .

Typically, in QCD calculations, soft divergences are regulated, as in the case of
UV divergences, via dimensional regularization. Indeed, a mass term for a non-abelian
gauge boson, in general, violates gauge invariance. However, our calculation does not
involve any soft divergence due to non-Abelian vertices. Thus, these singularities can
be safely regularized by a gluon mass (λ), as usually done in QED corrections, where
infrared divergences from soft photons are regularized by a small λ photon mass.

The term in eq. (6.16) contains also collinear singularities. With λ = 0, if the
particle with momentum p is massless, the propagator in eq. (6.16) diverges for θpk → 0,
i.e., in the collinear configuration. This divergence does not appear if mp "= 0, so it
can be regularized by a fictitious mass mp, which is kept at zero everywhere else in
the calculation. In our calculation these massless particles are the quarks in the initial
states, and collinear divergences are regularized by the non-physical parameter mq.

Soft and collinear divergences appear both in real gluon emissions and in loop cor-
rections. The cancellation of these two kinds of singularities is obtained by summing
the virtual loop contributions and the real gluon bremsstrahlung part and removing
the remaining initial-state collinear divergences via mass factorization and the corre-
sponding PDF subtraction terms.

Here, we use the phase-space slicing method for the evaluation of real gluon emis-
sion, as done in chapter 4. The phase space for the real emission of gluons is sliced
into four regions via the phase-space parameters ∆E and ∆θ, which are assumed to be
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much smaller than the other scales involved in the process. Given an external particle
and naming θ the angle between it and the radiated gluon with energy Eg, the four
regions correspond to:

• hard non-collinear gluons: (Eg > ∆E), (θ > ∆θ)

• hard collinear gluons: (Eg > ∆E), (θ < ∆θ)

• soft non-collinear gluons: (Eg < ∆E), (θ > ∆θ)

• soft and collinear gluons: (Eg < ∆E), (θ < ∆θ)

From now on in the text, if it is not explicitly specified, with the term hard gluons we
will refer to the first region, with the term collinear gluons to the second region and
with the term soft gluons to the third and fourth region combined. Only the emission
of hard gluons is evaluated via numerical integration, the soft and collinear emission of
gluons are calculated analytically. Indeed, the analytic integration is easier for soft and
collinear gluon radiation, since the structure of the amplitudes simplifies in these re-
gions, while the real radiation can be numerically integrated in the hard region without
encountering instabilities. Moreover, producing events during the numerical integra-
tion of hard gluon emission, we can achieve a fully differential calculations. Gluons,
soft or collinear to the proton–proton axis, are anyway experimentally undetectable,
thus with analytic integration we do not loose predictive power.

The only drawback in this procedure is the introduction of two new unphysical
parameters, in addition to the infrared and collinear regulators λ and mq, i.e., the
slicing parameters ∆E and ∆θ. The complete NLO corrections to the differential cross
section can be written symbolically in the following way,

dσ(1)
pp→q̃q̃′(X) = dσvirtual+soft

pp→q̃q̃′(g) (mq,∆E) + dσcoll
pp→q̃q̃′(g)(mq,∆E,∆θ) + dσhard

pp→q̃q̃′g(∆E,∆θ)

+ dσreal-quark
pp→q̃q̃′q̄(′)

. (6.17)

With dσvirtual+soft
pp→q̃q̃′(g) we denote the summed contributions from the renormalized virtual

corrections and soft gluon emission; dσcoll
pp→q̃q̃′(g) corresponds to the initial-state collinear

gluon radiation including the proper subtraction term for the collinear divergences;
dσhard

pp→q̃q̃′g denotes the remaining hard gluon emission outside the soft and collinear
phase-space regions. Any term shows, in brackets, the slicing and regulator parameters
on which it depends.

The term dσreal-quark
pp→q̃q̃′q̄(′)

is the contribution from real quark emission from additional
quark–gluon initial states, contributing at NLO. It includes also the proper subtraction
term for the collinear divergences. Indeed, as it will be explained in section 6.4.3, also
an emission of a massless quark gives rise to collinear divergences that are absorbed in
the PDFs. Thus, the intermediate steps of the calculation of dσreal-quark

pp→q̃q̃′ q̄(′)
depend on un-

physical parameters. However the entire term dσreal-quark
pp→q̃q̃′q̄(′)

in eq. (6.17) does not depend
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on unphysical parameters and can be calculated independently from the remaining
terms of eq. (6.17).

The calculation of dσreal-quark
pp→q̃q̃′ q̄(′)

is explained in the separate section 6.4.3, because
it involves contributions from squark–gluino production that have to be subtracted.
There, we discuss different approaches to perform the subtraction, showing problems
in defining, at NLO, the different channels of production and decays of colored sparti-
cles.

Technically, the calculation of the loop corrections and real radiation contributions
of eq. (6.17) is performed with the help of FeynArts [122] and FormCalc [123, 272].
Loop integrals are numerically evaluated with the library LoopTools [123]. Thereby,
every flavor and chirality combination, qiqj → q̃iaq̃jb, is independently evaluated.

Virtual corrections and real soft gluon radiation

In the term dσvirtual+soft
pp→q̃q̃′(g) the virtual and soft contributions are summed at the parton

level, according to

dσvirtual+soft
pp→q̃q̃′(g) =

∫ 1

τ0

dτ Lqq′(τ) dσ̂
virtual+soft
qq′→q̃q̃′(g) (τ) ,

dσ̂virtual+soft
qq′→q̃q̃′(g) (τ) = dσ̂virtual

qq′→q̃q̃′(mq,λ) + dσ̂soft
qq′→q̃q̃′(g)(mq,λ,∆E) , (6.18)

where Lqq′(τ) has been defined in eq. (6.5). Both the virtual, dσ̂virtual
qq′→q̃q̃′ , and soft,

dσ̂soft
qq′→q̃q̃′(g), contributions are infrared divergent and thus depend on λ. In their sum,

dσ̂virtual+soft
qq′→q̃q̃′(g) , the dependence on λ is analytically canceled.

The virtual contribution originates from the interference of tree-level diagrams of
Figure 6.8 and loop and counterterm diagrams shown in appendix B. Here, we used
for the calculation of the counterterms the results presented in [239]. In the following
we discuss only the renormalization of the strong coupling, which deserves a particu-
lar attention. All the other mass and field renormalization constants are determined
according to the on-shell scheme and are discussed in appendix C.

Since partonic cross sections are convoluted with PDFs, the renormalization of the
QCD coupling constant has to be done in accordance with the scheme for αs in the
PDFs, i.e., the MS scheme with five flavors. As shown in [33], this corresponds to
defining the gs coupling renormalization constant δZgs (see eq. (C.2)) as

δZgs = −
αs

4π

[

∆
β0

2
+

1

3
log

m2
t

µ2
R

+ log
m2

g̃

µ2
R

+
1

12

∑

q̃

log
m2

q̃

µ2
R

]

, (6.19)

where the UV divergences are included in ∆ = 2/ε − γE + log(4π) and µR is the
renormalization scale. The quantity β0 = 3 is the leading term of the β function for
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the QCD coupling in the MSSM, whereas the other terms in the r.h.s. of eq. (6.19)
are added in order to remove from the running of αs(µR) = g2s(µR)/(4π) the effects
induced by the top quark, the squarks and the gluino.

Typically, the regularization of UV divergences in NLO corrections for MSSM pro-
cesses are performed via dimensional reduction, which preserves supersymmetry also
in d dimensions with d "= 4. However, the MS scheme is based on the intermediate
regularization of UV divergences in dimensional regularization, which, in contrast to di-
mensional reduction, violates supersymmetry in d "= 4 dimension. Thus, it also breaks
the supersymmetric Slavnov-Taylor identity that relates the qqg vertex function and
the qq̃g̃ vertex function at one-loop order. This identity can be restored (see [33,273])
by an extra finite shift of the ĝs coupling in the qq̃g̃ vertex with respect to gs in the
qqg vertex,

ĝs = gs(1 + δZĝs) , δZĝs = δZgs +
αs

3π
. (6.20)

Thus, in our calculations we regularize UV divergences with dimensional regularization
and we perform the shift indicated in eq. (6.20).

The second term dσ̂soft
qq′→q̃q̃′(g) in eq. (6.18) contains the contributions from real gluon

emission integrated over the soft-gluon phase space with Eg < ∆E. It is similar to the
case of soft-photon emission [124,274], yielding a multiplicative correction factor to the
LO cross section. In the case of gluons, however, the color structures are different for
emission from t and u channel diagrams and hence the various bremsstrahlung integrals
enter the cross section with different weights. Accordingly, we decompose the partonic
LO cross section for qq′ → q̃q̃′, in obvious notation, in the following way,

dσ̂(0)
qq′→q̃q̃′ = dσ̂(tt)

q̃q̃′ + dσ̂(ut)
q̃q̃′ + dσ̂(uu)

q̃q̃′ =
[

C(tt)
q̃q̃′ + C(ut)

q̃q̃′ + C(uu)
q̃q̃′

]

dσ̂(0)
qq′→q̃q̃′ , (6.21)

where the coefficients C(tt)
q̃q̃′ , C

(ut)
q̃q̃′ and C(uu)

q̃q̃′ for the individual channels can be easily
read off from the LO cross sections in eqs. (6.12)–(6.15). Defining εi = 1 for incoming
and εi = −1 for outgoing particles, the soft-gluon contribution at the partonic level
can be written as follows, using the label assignment {q, q′, q̃, q̃′} ↔ {1, 2, 3, 4},

dσ̂soft
qq′→q̃q̃′(g) = −

αs

2π

{

4
∑

i,j=1;i≤j

εiεj Iij

}

dσ̂(0)
qq′→q̃q̃′ . (6.22)

The Iij terms involve the bremsstrahlung integrals and the weight factors C(tt)
q̃q̃′ , C

(ut)
q̃q̃′

and C(uu)
q̃q̃′ from (6.21) and phase-space integrals [124,243]. Keeping a finite quark mass

mq only in the mass-singular terms, the following expressions Iij for the production
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process qq′ → q̃q̃′ are obtained:

for i = {1, 2} : (6.23)

Iii =
4

3

[

ln

(

4(∆E)2

λ2

)

+ ln

(

m2
i

s12

)]

,

for i = {3, 4} : (6.24)

Iii =
4

3

[

ln

(

4(∆E)2

λ2

)

+
1

βi
ln

(

1− βi
1 + βi

)]

,

for i = 1 and j = 2 : (6.25)

I12 =
(

−
1

3
C(tt)
q̃q̃′ −

1

3
C(uu)
q̃q̃′ −

5

3
C(ut)
q̃q̃′

)

∑

i=1,2

[

ln

(

s12
m2

i

)

ln

(

4(∆E)2

λ2

)

−
1

2
ln2
(

s12
m2

i

)

−
π2

3

]

,

for i = 3 and j = 4 : (6.26)

I34 =
(

−
1

3
C(tt)
q̃q̃′ −

1

3
C(uu)
q̃q̃′ −

5

3
C(ut)
q̃q̃′

)

1

v34

∑

i=3,4

[

ln

(

1 + βi
1− βi

)

ln

(

4(∆E)2

λ2

)

− 2Li2

(

2βi
1 + βi

)

−
1

2
ln2
(

1− βi
1 + βi

)

]

,

for i+ j = 5 : (6.27)

Iij =
(

7

6
C(tt)
q̃q̃′ −

1

6
C(uu)
q̃q̃′ −

1

6
C(ut)
q̃q̃′

)

[

ln

(

s2ij
m2

im
2
j

)

ln

(

4(∆E)2

λ2

)

−
1

2
ln2
(

s12
m2

i

)

−
1

2
ln2
(

1− βj
1 + βj

)

−
π2

3
− 2Li2

(

1−
2p0i p

0
j

sij
(1 + βj)

)

− 2Li2

(

1−
2p0i p

0
j

sij
(1− βj)

)

]

,

for i+ j = 4 or i+ j = 6 : (6.28)

Iij =
(

−
1

6
C(tt)
q̃q̃′ +

7

6
C(uu)
q̃q̃′ −

1

6
C(ut)
q̃q̃′

)

[

ln

(

s2ij
m2

im
2
j

)

ln

(

4(∆E)2

λ2

)

−
1

2
ln2
(

s12
m2

i

)

−
1

2
ln2
(

1− βj
1 + βj

)

−
π2

3
− 2Li2

(

1−
2p0i p

0
j

sij
(1 + βj)

)

− 2Li2

(

1−
2p0i p

0
j

sij
(1− βj)

)

]

.

In these equations the notation sij = 2 pi ·pj, βi = |0pi|/p0i and vij =
√

1− 4m2
im

2
j/s

2
ij

has been used.

Initial-state collinear real gluon radiation and PDFs subtraction terms

dσvirtual+soft
pp→q̃q̃′(g) still depends on the quark mass (mq) owing to the initial-state collinear

singularities. This dependence cancels by adding the term dσcoll
pp→q̃q̃′(g) which includes

the contribution from gluon emission into the hard collinear region and the subtraction
term for initial state divergences, already absorbed in the definition of the PDFs,

dσcoll
pp→q̃q̃′(g) = dσcoll-cone

pp→q̃q̃′(g) + dσsub-pdf
pp→q̃q̃′ . (6.29)
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The collinear gluon emission into a narrow cone around the emitting particle (θ < ∆θ)
and energy larger than ∆E is given by

dσcoll-cone
pp→q̃q̃′(g) =

∫ 1

τ0

dτ

∫ 1

τ

dx

x

∫ 1−δs

x

dz

z
Lcoll

qq′ (τ, x, z) dσ̂
coll-cone
qq′→q̃q̃′(g)(τ, z) , (6.30)

where δs = 2∆E/
√
s and the parton luminosity Lcoll

qq′ is defined as

Lcoll
qq′ (τ, x, z) =

1

1 + δqq′

[

fq
(x

z
, µF

)

fq′
(τ

x
, µF

)

+ fq(
τ

x
, µF ) fq′

(x

z
, µF

)]

. (6.31)

The partonic cross section dσcoll-cone
pp→q̃q̃′(g) for the collinear emission of a gluon into the cones

with opening angle ∆θ around the two quarks in the initial state can be written as

dσ̂coll-cone
qq′→q̃q̃′(g)(τ, z) = dσ̂(0)

qq′→q̃q̃′(τ)
4

3π
αs

[

1 + z2

1− z
log

(

s δθ
2m2

qz

)

−
2z

1− z

]

, (6.32)

where δθ = 1− cos (∆θ) / ∆θ2/2 and the variable z is the ratio between the momenta
of the emitter parton after and before the emission. Eq. (6.32) corresponds to the
results of [275] with the replacement αQ2

q → (4/3)αs.

The subtraction term, in the MS scheme, can be written for the phase-space slicing
in the following way,

dσsub-pdf
pp→q̃q̃′ =− 2

∫ 1

τ0

dτ

∫ 1

τ

dx

x

∫ 1−δs

x

dz

z
Lcoll

qq′ (τ, x, z) dσ̂
sub1
qq′→q̃q̃′(τ, z)

− 2

∫ 1

τ0

dτ Lqq′(τ) dσ̂
sub2
qq′→q̃q̃′(τ) , (6.33)

The z-dependent part dσ̂sub1
qq′→q̃q̃′(τ, z) of the subtraction term for one quark PDF is

given by

dσ̂sub1
qq′→q̃q̃′(τ, z) = dσ̂(0)

qq′→q̃q̃′(τ)
2

3π
αs

[

1 + z2

1− z
log

(

µ2
F

(1− z)2m2
q

)

−
1 + z2

1− z

]

, (6.34)

where µF is the factorization scale. dσ̂sub1
qq′→q̃q̃′(τ, z) enters eq. (6.33) via the convolution

with Lcoll
qq′ (τ, x, z) of eq. (6.31).

The term dσ̂sub2
qq′→q̃q̃′(τ) is given by

dσ̂sub2
qq′→q̃q̃′(τ) = dσ̂(0)

qq′→q̃q̃′(τ)
4

3π
αs

[

1− log(δs)− log2(δs) +

(

log(δs) +
3

4

)

log

(

µ2
F

m2
q

)]

(6.35)

and corresponds to the z-independent part of the subtraction term for one quark PDF.
dσ̂sub2

qq′→q̃q̃′(τ) depends also on the soft-gluon phase space cut via δs = 2∆E/
√
s.
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Figure 6.9: Real gluon radiation diagrams contributing only for equal flavor squarks.
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Figure 6.10: Real gluon radiation diagrams contributing to all flavor and chirality
configurations.

Often, in the literature, these formulae used for the calculation of the collinear
contribution are parametrized in a different, but equivalent, way. In this alternative
parametrization, the partonic formulae in eq. (6.32) and eq. (6.34) include the LO cross

section dσ̂(0)
qq′→q̃q̃′(τ), where s = τS is equal to the squared sum of the momenta of the

final-state particles excluding the gluon, i.e., for our process, the squark–squark pair.
Instead, in our calculation, s is the usual squared sum of the momenta of the parton
in the initial state, i.e., the squared total energy in the partonic center-of-mass frame.
Obviously, with a different definition of s, the z-dependence changes in eq. (6.32),
eq. (6.34) and also in the partonic luminosity eq. (6.31).

With this alternative parametrization, a special treatment would be necessary for
the generation of the events. Partonic events generated via dσ̂(0)

qq′→q̃q̃′(τ) in eq. (6.32)
could not be boosted to the laboratory frame as the events for all the other contributions
(LO, virtual+soft, hard); it would be necessary to include the value of z in the definition
of the boost. Conversely, in the formulae of this section, the LO cross section in
eq. (6.32) and eq. (6.34) is expressed in term of the total energy in the center-of-mass

frame of the partonic process. Thus, events generated via dσ̂(0)
qq′→q̃q̃′(τ) can be boosted

as in the other cases.

Hard real gluon radiation

The sum dσvirtual+soft
pp→q̃q̃′(g) (mq,∆E) + dσcoll

pp→q̃q̃′(g)(mq,∆E,∆θ) does not depend on the reg-
ulator parameters λ and mq. The remaining dependence on the slicing parameters ∆θ
and ∆E is canceled adding dσhard

pp→q̃q̃′(g). This contribution is calculated numerically,
integrating the squared matrix elements obtained from diagrams shown in Figure 6.9
and Figure 6.10.
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6.4.3 Real quark radiation

The O(αs) corrections to pp → q̃iaq̃jb(X) get also a contribution from the gluon-
initiated subprocesses qig → q̃iaq̃jbq̄j and qjg → q̃iaq̃jbq̄i, which also have to be included
for a consistent treatment of NLO PDFs. Diagrams for these two subprocesses can be
divided into resonant (Figure 6.11(a) and 6.12(a)) and non-resonant (Figure 6.11(b)
and 6.12(b)) diagrams, where in the resonant diagrams the intermediate gluino can
be on-shell. This resonant production channel, when gluinos are on-shell, corresponds
basically to LO production of a squark–gluino pair (with subsequent gluino decay).
Such contributions are generally classified as squark–gluino production and have to be
removed in order to avoid double-counting.6 Our NLO calculation of the production
of squark–squark pairs, however, is meant as a necessary ingredient of eq. (6.8) and
eq. (6.11) for NLO factorizable corrections to squark–squark production and decays.
Thus, our primary goal is the consistency of the calculation at NLO of the full process
with decays included and not only of the production of squarks.

In a general context, combining production and decays for all colored SUSY particles
(q̃, q̃∗ and g̃), also off-shell configurations from resonant diagrams appear. For the case
of quark radiation, they correspond to the contribution from diagrams where gluinos,
but also squarks, can be in principle off-shell, e.g., Figure 6.2. Thus, combining produc-
tion and decays, the off-shell contributions from resonant diagrams in Figure 6.11(a)
and 6.12(a) can, in the same way, be classified as part of the contribution from the
production and decays of squark–gluino pairs with the squark on-shell and the gluino
off-shell. Conversely, in the context of a calculation of production of all colored SUSY
particles (q̃, q̃∗ and g̃) without decays, as e.g. in [33,219], such configuration cannot be
present, since final-state colored sparticles are treated on-shell.

The most important difference in calculations with and without including decays is,
indeed, the role of the colored supersymmetric particles. In one case they belong to the
final state, in the other one they are intermediate states. Thus, due to the quark radi-
ation at NLO, a separation of squark–gluino and squark–squark channel contributions
to pp → 2j+ "ET (+X) or to pp → 2j+ l+l−(OS-SF)+ "ET (+X) is only an intermediate
organizational instrument.

In the following, we address the structure of the various terms contributing to the
real quark radiation and describe three different approaches to perform the subtrac-
tion of the contributions corresponding to squark–gluino production (with subsequent
gluino decay). Afterwards, we describe the technical steps involved in the calculation
with the phase-space slicing method, as discussed so far.

6The same type of problem is present in the calculation of NLO corrections to Wt production chan-
nel for single top quark production [276], where quark radiation creates configurations corresponding
to top quark pair production with one on-shell top quark that decays.
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Figure 6.11: Resonant (a) and non-resonant (b) diagrams contributing to qig →
q̃iaq̃jbq̄j.
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Figure 6.12: Resonant (a) and non-resonant (b) diagrams contributing to qjg →
q̃iaq̃jbq̄i.

Resonant and non-resonant contributions

In the case of different flavors i "= j, there are two parton processes which provide NLO
differential cross sections for real quark emission, given by

dσ̂qig→q̃iaq̃jbq̄j ∼ dΠ(2→3)

[

∣

∣Mnonres,i

∣

∣

2
+ 2Re

(

Mnonres,iM∗
res,i

)

+
∣

∣Mres,i

∣

∣

2
]

, (6.36)

dσ̂qjg→q̃iaq̃jbq̄i ∼ dΠ(2→3)

[

∣

∣Mnonres,j

∣

∣

2
+ 2Re

(

Mnonres,jM∗
res,j

)

+
∣

∣Mres,j

∣

∣

2
]

,

where overline represents the usual summing and averaging of external helicities and
colors and dΠ(2→3) is the usual phase-space element for three particles in the final state.
Mres,i and Mnonres,i correspond to the diagrams of Figure 6.11(a) and Figure 6.11(b),
respectively, and Mres,j and Mnonres,j to those of Figure 6.12(a) and Figure 6.12(b).

For the case of equal flavors i = j, we have

dσ̂qig→q̃iaq̃ibq̄i ∼ dΠ(2→3)

[

|Mnonres|
2 + 2Re(MnonresM∗

res) + |Mres|
2
]

, (6.37)

with Mres from the diagrams of Figure 6.11(a) and Figure 6.12(a), which we will call in
this case Mres,1 and Mres,2; Mnonres is the part from the diagrams of Figure 6.11(b) and

Figure 6.12(b). The term 2Re
(

Mres,1M∗
res,2

)

appears only for equal chiralities (a = b)
and flavors (i = j) of the squarks.

We describe, only for the case with equal flavor, how the terms contained also in the
calculation of the squark–gluino channel are subtracted; analogous arguments apply to
the different-flavor case. We refer to three different strategies,
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• DS: Diagram Subtraction,

• CR: Channel Removal,

• DR: Diagram Removal,

where the DR and DS schemes defined here are almost equal to the approaches exten-
sively studied in [276]. The few differences are described in the following and, for the
DS case, also in appendix D in more detail.

DS scheme

In the DS scheme the contribution from the LO on-shell production of a squark–gluino
pair with the gluino decaying into a squark is removed:

dσ̂DS
qig→q̃iaq̃ibq̄i

∼
[

|Mnonres|
2 + 2Re(MnonresM∗

res) + |Mres|
2
]

dΠ(2→3)

−
[

∣

∣Mres,1

∣

∣

2
+
∣

∣Mres,2

∣

∣

2
]

dΠ(2→2)×(1→2) . (6.38)

In eq. (6.38), dΠ(2→2)×(1→2) is the phase space with three particles in the final state
applying consistently the on-shell condition (pq̃ + pq)2 = m2

g̃ for the two different
resonant cases. Eq. (6.38) is conceptually equal to the DS scheme explained in [276]
and the “Prospino scheme” in [33, 277]; in practice there is a difference with respect
to our approach. We subtract at global level exactly what we would obtain from LO
on-shell production of a squark–gluino pair with the gluino decaying into a squark.
This is done by producing two different sets of events corresponding to the two lines of
eq. (6.38), respectively. In [33,276,277] a local subtraction of the on-shell contribution
involving a mapping or reshuffling of momenta from the general dΠ2→3 phase space
into an equivalent on-shell configuration is performed. These two implementations of
the DS scheme give slightly different results even in the limit Γg̃ → 0. The threshold

conditions p2g̃ > m2
q̃ and

√
s >

(√

p2g̃ +mq̃

)

in the local subtraction, together with the

convolution of the PDFs and the precise on-shell mapping, produce small differences
from numerical results of the global subtraction. More details can be found in appendix
D, where the origin of these differences are explained.

The DS scheme, both in the local approach discussed in [276] and in the global
approach, defined in eq. (6.38), is gauge invariant in the limit Γg̃ → 0. The decay
width of the gluino is used thereby as a numerical regulator and not as a physical
parameter.

CR scheme

In an extreme approach, the quark radiation calculation could even be completely ex-
cluded from the NLO corrections in the squark–squark channel. Then, all diagrams,
resonant and non-resonant, constituting a gauge-invariant subset, have to be included
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in the squark–gluino production and decay channel. This is possible because, due to
the quark radiation at NLO, a separation of squark–gluino and squark–squark chan-
nel contributions to pp → qχ̃0

1q
′χ̃0

1 is only an intermediate organizational instrument.
Moving all the quark radiation contribution in the squark–gluino channel calculation,
we just alter the organizational separation of squark/gluino channels.

Since the term |Mnonres|2 contains initial-state collinear singularities, also the sub-
traction term of the PDFs has to be excluded and computed within the squark–gluino
channel. However, quark NLO PDFs include in their DGLAP evolution equation con-
tribution from quark radiation. Thus, in the CR scheme, every single channel is not in-
dependently consistent with PDF evolutions. Only when all the different squark/gluino
channels are taken into account, the consistency with PDF evolutions is achieved.

DR scheme

The DR scheme represents, in a certain sense, an intermediate step between the DS
and CR schemes. Here, one removes, from a diagrammatic perspective, the minimal
set of contributions in the squared amplitude that contain a resonant gluino. In our
calculation this results in

dσ̂DR
qig→q̃iaq̃ibq̄i

∼ dΠ(2→3)

[

|Mnonres|
2 + 2Re(MnonresM∗

res) + δab 2Re
(

Mres,1M∗
res,2

)

]

.

(6.39)

In the different-flavor cases the third term in eq. (6.39) does not appear. Comparing

eq. (6.39) with eq. (6.37), it is clear that the removed terms are |Mres,1|2 and |Mres,2|2.
In the definition of DR given in [276] also the interference term 2Re(MnonresM∗

res) is
removed (with a study of the impact of the inclusion of this contribution), whereas we
keep this interference term. In both definitions, the DR scheme is not gauge invariant.
Indeed, Mres and Mnonres are separately gauge invariant only when the gluino is on-
shell, as in the subtraction term in the DS scheme.

Although the DR scheme formally violates gauge invariance, a consistent descrip-
tion is achieved when the procedure presented here is combined with the squark–

gluino channel contributions that include |Mres,1|2 and |Mres,2|2 terms, with gluinos
also off-shell. Again, we just altered with this scheme the organizational separation of
squark/gluino channels.

Comparison among different schemes

The narrow-width approximation, in the DR, CR and DS scheme, is not an exact
description; as an approximation it has a natural uncertainty arising from missing off-
shell contributions and non-factorizable NLO corrections. Numerical differences among
different schemes do not represent the dominant uncertainty, e.g., as shown in section
7.1.4, the dependence of cross sections on the scale variation is larger.
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In our numerical results we basically employ the DR scheme, however, we com-
pare it with results in the DS scheme, both for inclusive K-factors and for differential
distributions.

The three schemes seem to be equally acceptable; however, from a pure theoreti-
cal point of view, they all present some flaws. In the calculation of just production of
colored sparticle, the DS scheme, especially in the global approach7, seems to be prefer-
able. Including decays of the squarks in NWA, the choice of the DS scheme does not
represent the best option anymore. If we include in all production and decay channels
only on-shell configurations for the resonant intermediate supersymmetric particles (as
performed here for the squark–squark channel), quark radiation in the NLO correc-
tions introduces unavoidably off-shell contributions. The DS scheme includes, in the
squark–squark channel, off-shell gluino effects from squark–gluino production, thus we
are not strictly in NWA for all the different intermediate particles. The NWA can be
obtained removing in the individual channels also the off-shell effects. This procedure
corresponds to the DR scheme. In this way, one obtains the NWA, but the single
channels separately violate gauge invariance. Reorganizing the contributions from the
different channels as in the CR scheme, yields gauge invariant contributions from each
channel. However, single channels are not consistent with PDFs at NLO. In conclu-
sion, in all the three schemes, the NLO QCD calculation of the production of colored
sparticles, including their decays, does not satisfy at the same time the following three
conditions:

• NWA is consistently applied to all the intermediate colored sparticles,

• Every squark/gluino channel contribution is gauge-invariant,

• Every squark/gluino channel contribution is consistent with PDFs evolution.

Calculation with the phase-space slicing method

Finally, for the practical calculation of the real quark radiation contributions, in all
the three schemes one has to perform the phase-space integration over the final-state
quark. The squared non-resonant terms lead, as mentioned before, to initial-state
collinear singularities. Again, these singular terms have to be subtracted since they
are factorized and absorbed into the PDFs. The formulae shown in the following are,
again, obtained from [275] and [278] with the replacement αQ2

q → (4/3)αs. As in the
case of the gluon radiation, we divide the emission of a quark into a collinear and a
non-collinear region (since no IR singularities occur, a separation into soft and hard

7In the local approach some spurious terms, indicated in eq. (D.6) of appendix D, are also included.
These terms, however, do not belong to squark–gluino production combined with gluino decay in
NWA. Thus, the contribution from g̃ → q̃q, implicitly included in LO squark–gluino production, is
not exactly subtracted from quark radiation correction to squark–squark production.
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quark emission is not required),

dσreal-quark
pp→q̃iaq̃jbq̄(′)

=
∑

k=i,j

1

1 + δi,j

[

dσcoll-quark
pp→q̃iaq̃jbq̄k

(∆θ) + dσnoncoll-quark
pp→q̃iaq̃jb q̄k

(∆θ)
]

. (6.40)

The non-collinear contribution

dσnoncoll-quark
pp→q̃iaq̃jb q̄j/i

=

∫ 1

τ0

dτ Lnoncoll-quark
i/j (τ) dσ̂qi/jg→q̃iaq̃jbq̄j/i(τ) , (6.41)

contains Lnoncoll−quark
i (τ) as given by

Li(τ)
noncoll-quark = 2

∫ 1

τ

dx

x
g(x, µF )fi

(τ

x
, µF

)

, (6.42)

where g(x, µF ) indicates the PDF of the gluon.
The collinear emission, expressed in this case together with the subtraction terms

for the PDFs, instead can be written as follows,

dσcoll-quark
pp→q̃iaq̃jbq̄j/i

=

∫ 1

τ0

dτ

∫ 1

τ

dx

x

∫ 1

x

dz

z
Lcoll-quark

i/j (τ, x, z) dσ̂coll-quark
qi/jg→q̃iaq̃jb q̄j/i

(τ, z) ,

(6.43)

with Lcoll-quark
i (τ, x, z) given by

Li(τ, x, z)
coll-quark = 2 g

(x

z
, µF

)

fi
(τ

x
, µF

)

. (6.44)

The partonic cross section entering eq. (6.43) is given by

dσ̂coll-quark
qi/jg→q̃iaq̃jbq̄j/i

(τ, z) = dσ̂(0)
qiqj→q̃iaq̃jb

· (6.45)

·
αs

2π
Pqg(z)

[

log
(s(1− z)2 δθ

2m2
qz

)

+ 2z(1− z)− log
(µ2

F

m2
q

)]

.

The last term in the brackets of eq. (6.45) is the PDF subtraction term; the remaining
terms originate from the collinear emission of a quark into a cone of angle ∆θ related
to δθ via δθ = 1 − cos (∆θ) / ∆θ2/2. It is easy to see in eq. (6.45) the analytical
cancellation of mq from the collinear emission of a quark and the subtraction term for
the PDFs. The remaining dependence on ∆θ cancels at the hadronic level in eq. (6.40),
adding the contribution from non-collinear radiation.
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6.5 Distributions for the squark decay q̃ → qχ̃0
j

6.5.1 Distributions at LO

The LO partial decay width for a squark decaying into a neutralino and a quark,
q̃ia → qiχ̃0

j , depends on the flavor and chirality of the squark. Also here, consistently
with the calculation of the production of squark–squark pairs, we set mq = 0. With
this assumption, the width can be written as follows,

Γ(0)
q̃ia→qiχ̃0

j
=

α

4
mq̃ia

(

1−
m2

χ̃0
j

m2
q̃ia

)

f 2
a , (6.46)

where mχ̃0
j
indicates the neutralino mass. The coupling constants fa can be expressed

in terms of the isospin T 3
qi and the charge Qqi of the quark, and the neutralino mixing

matrix Njk, defined in eq. (5.10). Denoting the electroweak mixing angle by sW =
sin(θW ) and cW = cos(θW ), one has

fL =
√
2
[

QqiN
′
j1 + (T 3

qi −Qqis
2
W )

1

cW sW
N ′

j2

]

, (6.47)

fR =−
√
2
[

QqiN
′
j1 −Qqi

sW
cW

N ′
j2

]

, (6.48)

N ′
j1 =cWNj1 + sWNj2, N ′

j2 = −sWNj1 + cWNj2 . (6.49)

For a scalar particle decaying in its rest frame there is no preferred direction, and
hence the differential decay distribution is isotropic. Consequently, for squark decays
into neutralino and quark, the decay distribution is simply given by

dΓ(0)
q̃→qχ̃0

j
=

1

4π
Γ(0)
q̃→qχ̃0

j
dcosθ dφ , (6.50)

with polar angle θ and azimuth φ referring to the quark momentum.

6.5.2 Distributions at NLO

The differential decay width for q̃ → qχ̃0
j at NLO is obtained in analogy to the steps

in section 6.4.2. We regulate also here infrared divergences with the gluon mass λ
and collinear singularities with the fictitious quark mass mq. The evaluation of the
real radiation is performed, again, with the phase-space slicing method. Thus, the
differential decay can be written as follows,

dΓ(1)
q̃→qχ̃0

j
= dΓvirtual

q̃→qχ̃0
j
(mq,λ) + dΓsoft

q̃→qχ̃0
j (g)

(mq,λ,∆E) + dΓcoll
q̃→qχ̃0

j (g)
(mq,∆E,∆θ)

+ dΓhard
q̃→qχ̃0

jg
(∆E,∆θ) . (6.51)
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Figure 6.13: Loop and counterterm diagrams (a) and gluon radiation diagrams (b) for
squark decays.

As in the discussion for the calculation of NLO corrections to squark–squark produc-
tion, in eq. (6.51) we explicitly show for each term the dependence on regulating and
slicing parameters. Summing dΓvirtual

q̃→qχ̃0
j
(mq,λ) and dΓsoft

q̃→qχ̃0
j (g)

(mq,λ,∆E), the depen-

dence on λ analytically cancels, adding also dΓcoll
q̃→qχ̃0

j(g)
(mq,∆E,∆θ) the dependence

on mq is eliminated, again, analytically. The remaining dependence on the slicing pa-
rameters ∆E and ∆θ is removed adding the term dΓhard

q̃→qχ̃0
jg
(∆E,∆θ).

Virtual corrections

The virtual corrections dΓvirtual
q̃→qχ̃0

j
, for mq = 0, correspond to the interference of the tree-

level diagram (the q̃ → qχ̃0
j vertex) with the two vertex-loop diagrams in Figure 6.13(a)

and the vertex counterterm (indicated by the cross in Figure 6.13(a)), which consists
of the wave-function renormalization constants of the external quark and squark line.
We do not need loop diagrams with self-energy corrections on external lines, because,
as for the production amplitudes, the renormalization constants are determined in the
on-shell renormalization scheme and are discussed in appendix C. Here, in contrast to
the calculation for squark–squark production, we do not need to renormalize αs, so we
regularize UV divergences via dimensional reduction, directly preserving supersymme-
try and the related Slavnov-Taylor identities. Details on the vertex counterterm can
be found in [239], and the analytical expression is also explicitly given afterwards in
eq. (6.63).

Real soft gluon radiation

The term dΓsoft
q̃→qχ̃0

j (g)
can be calculated in analogy to dσ̂soft

qq′→q̃q̃′(g) in the production case,

yielding

dΓsoft
q̃→qχ̃0

j (g)
= −

2αs

3π

{

2
∑

i,k=1;i<k

εiεk Iik

}

dΓ(0)
q̃→qχ̃0

j
. (6.52)

The color factor, in contrast to the case of dσ̂soft
qq′→q̃q̃′(g), is the same for the different

contributions. Thus, it is included directly in eq. (6.52).
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Here, the corresponding expressions for Iij, with the label assignment q̃ → 1, q → 2
(and χ̃0

j → 3), read as follows,

I11 = ln

(

4(∆E)2

λ2

)

− 2 ,

I12 = ln

(

4(p02)
2

m2
q

)

ln

(

4(∆E)2

λ2

)

−
1

2
ln2

(

4(p02)
2

m2
q

)

−
π2

3
,

I22 = ln

(

4(∆E)2

λ2

)

+ ln

(

m2
q

4(p02)2

)

.

(6.53)

Final-state collinear real gluon radiation

Here, collinear divergences are of different nature respect to the calculation of the
production case. They emerge from the final state, whereas in the production they
originate from the initial state. In the production case, the collinear remnants are
absorbed into PDF definitions. Here they cancel at parton level, summing real and
virtual contributions.

Making again use of the results of [275], the collinear emission of gluons with energy
larger than ∆E into a cone with opening angle ∆θ yields the contribution

dΓcoll
q̃→qχ̃0

j(g)
= dΓ(0)

q̃→qχ̃0
j

(6.54)

·
2αs

3π

[

9

2
−

2

3
π2 −

3

2
log

(

2E2
q,max δθ
m2

q

)

+ 2 log (δs)

(

1− log

(

2E2
q,max δθ
m2

q

))]

,

where δs = 2∆E/mq̃, δθ = 1 − cos (∆θ) / ∆θ2/2, and Eq,max =
m2

q̃−m2
χ̃0
j

2mχ̃0
j

, the max-

imum energy available for the quark in the squark rest frame. In this way, gluons
with θ < ∆θ are recombined with the emitter quark into a quark with momentum
precomb = pq + pg. Thus, before recombining partons into jets, differential distributions
in the quark momenta depend on the slicing parameter ∆θ. However, this dependence
disappears when a jet clustering algorithm is applied to obtain predictions that are
collinear and infrared safe. Indeed, in any experimental analysis, parameters of jet
clustering algorithms are much more inclusive than the values of the regulator ∆θ used
in our numerical evaluation.

Hard real gluon radiation

The contribution dΓhard
q̃→qχ̃0

j
from real emission of hard gluons is evaluated by numer-

ical integration of the squared matrix elements, obtained from the diagrams in Fig-
ure 6.13(b), in the phase-space region Eg > ∆E and θ > ∆θ.
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(a) (b)

(c) (d)

Figure 6.14: The four Feynman diagrams contributing to the tree-level amplitude for
the “golden decay chain”.

6.6 Distributions for the squark decay chain

6.6.1 Distributions at LO

The structure of the “golden decay chain” has already been discussed in section 5.3.1
and illustrated in Figure 5.4. Here, in Figure 6.14 we show explicitly the four Feynman
diagrams contributing to the tree-level amplitude for this process. According to Fig-
ure 6.14, either of the leptons can emerge from the χ̃0

2 decay or from the decay of the
slepton l̃L and the slepton l̃R. Thus, for calculation purposes, it is useful to introduce
the concept of near lepton and far lepton.

With near lepton we indicate the lepton l±n emerging from the χ̃0
2 decay, whereas

with far lepton we indicate the lepton l∓f emerging from the slepton decay. However,
the near and far lepton cannot be distinguished experimentally.

For non-degenerate left- and right-handed sleptons, as in the scenarios investigated
in section 7.2, in NWA the structure of the squared amplitude of this decay chain
becomes much simpler. Indeed, the dependence of the momenta of the slepton and the
χ̃0
2 on the external momenta is different in each of the four diagrams; consequentially,

after fixing external momenta, only one diagram can have both the intermediate slepton
and χ̃0

2 on-shell. Thus, at LO, in the limit Γ
m → 0 for the sleptons and for χ̃0

2, the
contribution from interferences between different diagrams vanishes. Naming M the
tree-level amplitude for this process, at LO, the squared amplitude for this process
corresponds to

|M|2 = |Ma +Mb +Mc +Md|2
Γ/m→0−−−−→ |Ma|2 + |Mb|2 + |Mc|2 + |Md|2 , (6.55)

where the various Mi terms are the individual contributions from the four different
Feynman diagrams in Figure 6.14. As usual for NWA, the intermediate particles can
be treated on-shell and thus they induce different invariant-mass conditions on external
particles for each |Mi|2 term.
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Figure 6.15: Structure of the decay chain. NLO QCD corrections involve only the first
step q̃L → qχ̃0

2.

6.6.2 Distributions at NLO

The NLO corrections include virtual corrections, originating from the interference of
tree-level and one-loop amplitudes, and real-gluon-emission corrections, originating
from the squared real-gluon-emission amplitude.

The one-loop amplitudes can be illustrated as in Figure 6.15. This figure is not
a Feynman diagram, however, it represents, in a compact notation, the NLO correc-
tions to the four Feynman diagrams contributing to the tree-level amplitude for the
decay, i.e., q̃L → ql+n l

−
f χ̃

0
1 and q̃L → ql−n l

+
f χ̃

0
1 with a left- or right-handed intermediate

(anti)slepton. The NLO corrections do not involve the electroweak decay chain of the
χ̃0
2. Thus, the NWA can also be applied in this case, leading to similar consequences

to the ones indicated in eq. (6.55). Specifically, one obtains for the virtual part

2Re(M∗Mloop)
Γ/m→0−−−−→ 2Re(M∗

aMloop
a ) + 2Re(M∗

bM
loop
b )+

2Re(M∗
cMloop

c ) + 2Re(M∗
dM

loop
d ) , (6.56)

where Mloop indicates the one-loop amplitude and Mloop
i are the one-loop corrections

to Mi in Figure 6.14.
Also the real-emission corrections affect only the squark and the quark, so all the

discussion for the LO and virtual contributions applies also in this case. Thus, the
calculation of the decay distribution for the “golden decay chain”, at LO or NLO QCD
with intermediate on-shell particles, can be technically divided into two steps: the
calculation at LO or NLO QCD of q̃L → qχ̃0

2, and the tree-level electroweak decay
chain of χ̃0

2. In this way LO and NLO contributions can be written as follows,

dΓ(0,1)
q̃L→ql+l−χ̃0

1
=

∑

σ=±1/2

dΓ(0,1)
q̃L→qχ̃0

2,σ

Γχ̃0
2

[dΓχ̃0
2,σ→l+n l−f χ̃0

1
+ dΓχ̃0

2,σ→l−n l+f χ̃0
1
] , (6.57)

where the index σ represents the helicity of χ̃0
2, on which the terms entering eq. (6.57)

depend. The two terms contained in the square brackets of eq. (6.57) correspond to the
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two different charge configurations for near and far leptons in the decay of χ̃0
2, where

both configurations get contributions from the left- and the right-handed slepton.
Technically, we use, both at LO and at NLO, the matrix elements for the entire

chain and set consistently the different on-shell conditions according to the intermedi-
ate states for the various contributions. In this way, the sum over the helicity states
is automatically performed and off-shell effects can be straightforwardly switched on
for a further possible study. The calculation method discussed in section 6.5 can be
applied also for this decay process, since it does not depend on the specification of the
helicity of χ̃0

2 and on its subsequent decay.

For the concrete evaluation in specific cases, we concentrate on scenarios where the
χ̃0
2 is dominantly wino-like. Thus, in the considered decay chain the coupling to a right-

handed slepton, l̃R, is heavily suppressed compared to the corresponding decay chain via
a left-handed l̃L. Only if the decay into a left-handed slepton is kinematically forbidden,
ml̃L

> mχ̃0
2
> ml̃R

, the decay via a l̃R can substantially contribute. Moreover, the l+

and l− distributions are in general different in the decay chain from anti-squarks q̃∗L,
thus we generate separate events for squarks and anti-squarks “golden decay chains”.

Basically, also the decay of the χ̃0
2 into a OS-SF lepton pair via a Z boson contributes

when kinematically allowed; these effects are, however, numerically not significant for
the benchmark points considered in section 7.2.

6.7 Squark total decay widths

6.7.1 Decay widths at LO

The total squark decay width Γ(0)
q̃ at LO, assuming mg̃ > mq̃, is obtained by summing

the partial decay widths of the six different possible decay channels into neutralinos
(four channels) and charginos (two channels). The partial decay widths into neutralinos

are directly given by eq. (6.46). For charginos, the partial decay widths Γ(0)

q̃→q′χ̃±
j
are

also described by the formula (6.46), with the specification fR = 0 and

fL =
Vj1

sW
for q̃ = ũ, c̃, fL =

Uj1

sW
for q̃ = d̃, s̃, (6.58)

for the coupling constants. Here, U and V are the mixing matrices in the chargino
sector defined in eq. (5.11).

6.7.2 Decay widths at NLO

For the total decay width at NLO, one has to calculate the NLO QCD corrections for
each of the six channels. We can calculate analytically both the contributions from loop
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corrections and real gluon radiation. The second contribution is obtained performing
the full phase-space integration over the three-particle final state.

The calculation can be done once for all the six partial decay widths contributing
to Γ(0+1)

q̃ . At NLO, each partial width can be expressed in terms of their respective LO
result and a NLO form factor FQCD,

Γ(0+1)

q̃→qχ̃0
j/q

′χ̃±
j

= Γ(0)

q̃→qχ̃0
j/q

′χ̃±
j

[

1 +
4

3

αs

π
FQCD

(mχ̃0
j/χ̃

±
j

mq̃
,
mq̃

mg̃

)]

. (6.59)

The factor FQCD depends only on two independent ratios involving the masses of the
neutralino/chargino, the squark and the gluino, e.g.,

κ =

(mχ̃0
j/χ̃

±
j

mq̃

)2

, γ =

(

mg̃

mq̃

)2

. (6.60)

Here, we perform the derivation of the form factor FQCD, following the steps of the
former calculation [34], but keeping explicitly the dependence on the masses mq for the
collinear singularities and λ for the IR singularities. The form factor FQCD receives
four contributions,

FQCD = Fg + Fg̃ + Fct + Fr , (6.61)

namely loop corrections involving gluons (Fg) and gluinos (Fg̃), the counterterm con-
tribution (Fct), and the contribution from real gluon emission (Fr) .

Keeping mq and λ as independent mass parameters for the singular terms, in di-
mensional reduction Fg and Fct can be written as follows,

Fg =
∆

2
−

1

2
log

(

m2
q̃

µ2

)

+ 1− log

(

m2
q

m2
q̃

)

+
1

4
log2

(

m2
q

m2
q̃

)

−
1

2
log

(

λ2

m2
q̃

)

log

(

m2
q

m2
q̃

)

+ log

(

λ2

m2
q̃

)

log(1− κ)− log2(1− κ) + log(1− κ)− Li2 (κ) , (6.62)

Fct = −
∆

2
+

1

2
log

(

m2
q̃

µ2

)

− log

(

λ2

m2
q̃

)

+
3

4
log

(

m2
q

m2
q̃

)

+
γ

4 (1− γ)
−

γ

2
−

15

8

−
1

2
(γ2 − 1) log

(

γ − 1

γ

)

+
1

4

[

2 γ − 1

(1− γ)2
+ 3

]

log(γ) , (6.63)

where ∆ denotes the UV divergence, cf. eq. (6.19), and κ and γ are defined in eq. (6.60).
Fg̃ is free of soft, collinear, and UV singularities, hence it is not affected by the

choice of regulators,

Fg̃ =
√
κγ

[

1

κ
ln(1− κ) +

1

1− κ
[γ ln γ − (γ − 1) ln(γ − 1)] +

κ+ γ − 2

(1− κ)2
Ig̃

]

. (6.64)
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The function Ig̃ is given, for κγ < 1, by

Ig̃ = Li2

(

γ − 1

γκ− 1

)

− Li2

(

κ
γ − 1

γκ− 1

)

− Li2

(

γ + κ− 2

γκ− 1

)

+ Li2

(

κ
γ + κ− 2

γκ− 1

)

,

and for κγ > 1 by

Ig̃ = −Li2

(

γκ− 1

γ − 1

)

+ Li2

(

γκ− 1

γ + κ− 2

)

+ Li2

(

γκ− 1

κ(γ − 1)

)

− Li2

(

γκ− 1

κ(γ + κ− 2)

)

− log(κ) log
γ + κ− 2

γ − 1
.

The part from real gluon emission, integrated over the full phase space, can be
expressed with the help of the bremsstrahlung integrals given in [124], evaluated in the
limit mq = 0 except for the mass-singular terms. The fully integrated decay width for
q̃ → (qχ̃0

j/q
′χ̃±

j )g can be written as follows,

Γq̃→(qχ̃0
j/q

′χ̃±
j )g = Γ(0)

q̃→qχ̃0
j/q

′χ̃±
j
·
4

3

αs

π
Fr , (6.65)

Fr =
2

m2
q̃ −m2

χ̃

[

2(m2
χ̃ −m2

q̃) (m
2
q̃ I00 +m2

q I11 + I0 + I1)− 2(m2
χ̃ −m2

q̃)
2 I01 − I − I01

]

with Γ(0)

q̃→qχ̃0
j/q

′χ̃±
j
from eq. (6.46) and (6.58). The phase-space integrals I ≡ I(mq̃, mq, mχ̃)

are given by

I00 =
1

4m4
q̃

[

m2
χ̃ −m2

q̃ +m2
q̃ log

[m2
q̃ −m2

χ̃

λmq̃

]

+m2
χ̃ log

[ λm2
χ̃

m3
q̃ −mq̃m2

χ̃

]

]

,

I11 =
1

4m2
q m

2
q̃

(m2
q̃ −m2

χ̃)
[

log
(mq

λ

)

− 1
]

,

I01 =
1

4m2
q̃

[

π2

2
+ log2

(mq

λ

)

− log2
(

m2
q̃ −m2

χ̃

λmq̃

)

− Li2

(

1−
m2

χ̃

m2
q̃

)]

,

I =
1

8m2
q̃

[

m4
q̃ −m4

χ̃ + 4m2
χ̃m

2
q̃ log

(

mχ̃

mq̃
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,

I0 =
1

4m2
q̃

[

m2
χ̃ −m2

q̃ − 2m2
χ̃ log

(

mχ̃

mq̃
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,

I1 =
1

4m2
q̃

[

m2
χ̃ −m2

q̃ + 2m2
χ̃ log

(

mqmχ̃

m2
q̃ −m2

χ̃

)

− 2m2
q̃ log

(

mqmq̃

m2
q̃ −m2

χ̃0
j

)

]

,

I01 =
1

16m2
q̃

[

5m4
χ̃ − 8m2

χ̃m
2
q̃ + 3m4

q̃ + 4(m4
χ̃ − 2m2

χ̃m
2
q̃) log

(

mqmχ̃

m2
q̃ −m2

χ̃

)

+ 4m4
q̃ log

(

mqmq̃

m2
q̃ −m2

χ̃

)]

. (6.66)
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With these expressions, eq. (6.65) yields Fr for the real-gluon part of FQCD in eq. (6.61),

Fr =
−5 + 8κ− 3κ2 − 8κ log(κ) + 6κ2 log(κ)

8(1− κ)2
(6.67)

+ 4−
π2

2
−

5

2
log(1− κ) + log(1− κ)2 − log2

(mq

λ

)

+ 2 log
(mq̃

λ

)

+
1

2
log

(

mq

mq̃

)

+ 2 log(1− κ) log
(mq̃

λ

)

+ log2
(mq̃

λ

)

+ Li2 (1− κ) .

Combining all four contributions in eq. (6.61) we obtain a compact analytical expression
for the form factor FQCD, which agrees with the result in [34],

FQCD = Fg + Fg̃ + Fct + Fr = (6.68)

−
1

8

(

4 γ2 − 27 γ + 25

γ − 1
+

3 κ− 5

κ− 1

)

−
π2

3
− 2 Li2(κ)−

1

2
(γ2 − 1) log

(

γ − 1

γ

)

+
3 γ2 − 4 γ + 2

4 (1− γ)2
log (γ)−

3

2
log(1− κ) +

1

4
·
3 κ2 − 4 κ

(κ− 1)2
log (κ)− log (κ) log(1− κ)

+
√
κγ

[

1

κ
log(1− κ) +

1

1− κ
[γ log(γ)− (γ − 1) log(γ − 1)] +

κ+ γ − 2

(1− κ)2
Ig̃

]

,

In the threshold limit mχ̃0
j/χ̃

±
j

→ mq̃ the correction in eq. (6.68) becomes very

large, as already shown in Figure 5.6, and the fixed-order calculation is not reliable
(relative corrections remain finite only after proper resummation, see for example [35]).
However, for all parameter points considered in the numerical evaluation in chapter 7
the corrections are still sufficiently small and threshold problems are negligible.



Chapter 7

Squark–squark production and
decay: numerical results

In this chapter we show, in section 7.1, numerical results for the pp → q̃q̃′ → qχ̃0
1q

′χ̃0
1

contribution to the experimental signature 2j+ "ET (+X) and, in section 7.2, numerical
results for the pp → q̃Lq̃

′
R → qχ̃0

1q
′l±l∓χ̃0

1 contribution to the experimental signature
2j + l+l−(OS-SF) + "ET (+X).

7.1 The signature 2j + "ET(+X)

In this section, we first specify in 7.1.1 the input parameters and benchmark scenarios
considered in our numerical evaluation and we introduce in 7.1.2 all considered dis-
tributions and observables. Then, we present our numerical results focusing on three
different kinds of quantities:

• inclusive cross sections,

• differential distributions,

• event rates in cut-and-count searches.

Firstly, in 7.1.3, we compare our results for inclusive production of squark–squark
pairs with results of Prospino 2 , which, as already said, is used in most of the ex-
perimental analyses for calculating inclusive K-factors, and we investigate how these
inclusive K-factors vary for different chirality and flavor configurations. Secondly, in
7.1.4, we present several differential distributions for various benchmark scenarios and
center-of-mass energies, comparing our results in our approximation and at LO rescaled
by a flat K-factor. Thirdly, using again these two different approximations, in 7.1.5
we investigate the impact of higher-order corrections on total event rates and thus on
cut-and-count searches for supersymmetry at the LHC.
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7.1.1 Input parameters

Standard Model input parameters are chosen according to [126],

MZ = 91.1876 GeV , MW = 80.399 GeV , GF = 1.16637 · 10−5 GeV ,

mMS
b (mb) = 4.2 GeV , mt = 173.3 GeV , mτ = 1.777 GeV . (7.1)

We use the PDF sets CTEQ6.6 [144] via the Les Houches Accord PDF Interface
(LHAPDF) package [279] both for LO and NLO contributions. The strong cou-
pling constant αMS

s (µR) is also taken from this set of PDFs. Factorization scale µF

and renormalization scale µR are, if not stated otherwise, set to a common value,
µ = µF = µR = mq̃, with mq̃ corresponding to the average mass of all light-flavor
squarks of a given benchmark point. The same αs value has been used in the numeri-
cal evaluation of corrections to the decays and of LO and NLO production, as it would
be naturally done in the complete NLO corrections to the full process.

For SUSY parameters, we refer to three different benchmark scenarios. First, we in-
vestigate the well studied Constrained MSSM (CMSSM) parameter point SPS1a [280].
Although it is excluded by recent searches at the LHC [281–283], this point still serves as
a valuable benchmark for comparisons with numerous numerical results available in the
literature. Second, we study the benchmark point CMSSM10.1.5 introduced in [284].
Due to its larger m1/2 parameter, compared to SPS1a, squark and gluino masses are
considerably larger, resulting in a generally reduced production cross section at the
LHC. The overall spectrum is very similar to the one of SPS1a, but shifted to larger
masses. Third, we consider a phenomenological benchmark point defined at the scale
Q = 1 TeV. We follow the definitions of [284], where such a point sits on a line called
p19MSSM1, which can be parametrized by essentially one parameter, the gaugino mass
parameterM1. On this line, a unified parameter for the gluino and the light-generations
sfermion soft masses M3 = m

f̃
1st/2nd gen
L/R

is fixed to M3 = m
f̃
1st/2nd gen
L/R

= 1.2 M1. For our

benchmark scenario p19MSSM1A we choose M1 = 300 GeV. All other masses and
parameters as well as the soft masses for right-handed sleptons of the first two genera-
tions are at a higher scale and irrelevant for our analysis. This scenario belongs to the
class of the compressed spectra discussed in section 5.3.1. It has been chosen to study
a particular parameter region with rather light squarks, which is difficult to exclude
experimentally, since the mass difference between squarks and the lightest neutralino
∆(mq̃, mχ̃0

1
) is small and thus resulting jets tend to be very soft, escaping the experi-

mental analyses. Particularly in such parameter regions precise theoretical predictions
of the resulting SUSY signal including higher orders on the level of distributions seem
to be necessary for a conclusive study.

Parameters of the CMSSM benchmark scenarios are defined universally at the GUT
scale and are shown in Table 7.1. They act as boundary conditions for the renormal-
ization group running of the soft-breaking parameters down to the scale msoft. This
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benchmarkpoint m0 m1/2 A0 tan sign(µ)

SPS1a 100 GeV 250 GeV −100 GeV 10 +

10.1.5 175 GeV 700 GeV 0 10 +

Table 7.1: High-energy input parameters for the two considered CMSSM scenarios.

benchmarkpoint M1 M2 M3 Ai tan sign(µ)

p19MSSM1A 300 GeV 2500 GeV 360 GeV 0 10 +

Table 7.2: Low-energy input parameters for the p19MSSM1A scenario. The first two
generation sfermion soft-masses (apart from the right handed sleptons) equal the gluino
mass m

f̃1st/2nd gen
L/R

= M3. All other parameters are at a higher scale mf̃3rd gen
L/R

= mẽR,µ̃R =

µ = MA = M2.

benchmarkpoint ũL ũR d̃L d̃R g̃ χ̃0
1

SPS1a 563.6 546.7 569.0 546.6 608.5 97.0

10.1.5 1437.7 1382.3 1439.7 1376.9 1568.6 291.3

p19MSSM1A 339.6 394.8 348.3 392.7 414.7 299.1

Table 7.3: On-shell masses of the squarks, the gluino, and the lightest neutralino within
the different SUSY scenarios considered. All masses are given in GeV.

running has been evaluated with the program SOFTSUSY [285], which also calculates
physical on-shell parameters for all SUSY mass eigenstates to be used directly as inputs
for our calculation. Low-scale soft input parameters for the p19MSSM1A benchmark
scenario are given in Table 7.2. The physical spectrum is equivalently calculated with
SOFTSUSY . For all considered benchmark scenarios we summarize relevant low energy
physical masses in Table 7.3. Due to non-vanishing Yukawa corrections implemented
in SOFTSUSY , the physical on-shell masses for second-generation squarks are slightly
different from their first-generation counterparts. To simplify our numerical evaluation
we set all second-generation squark masses to their first-generation counterparts. How-
ever, the general setup of our calculation is independent of this choice. We checked
that in the results this adjustment is numerically negligible.

For all considered benchmark scenarios the gluino is heavier than all light-flavor
squarks, mg̃ > mq̃. Thus, squarks decay only into electroweak gauginos and quarks.
For SPS1a and 10.1.5, right-handed squarks dominantly decay directly into the lightest
neutralino χ̃0

1 (due to its bino nature). On the contrary, left-handed squarks decay
dominantly into heavier (wino-like) neutralinos and charginos. Consequently, left-
handed squarks suppress the contribution to the experimental signature investigated
in this section. However, for point p19MSSM1A, all neutralinos and charginos, but the
lightest one, are heavier than any light-flavor squark. Thus, only the direct decay is
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benchmarkpoint ũL ũR d̃L d̃R g̃

SPS1a Γ(0) 5.361 1.148 5.253 0.287 6.849

Γ(0+1) 5.357 1.131 5.255 0.283

10.1.5 Γ(0) 12.47 2.854 12.46 0.710 10.04

Γ(0+1) 12.31 2.821 12.30 0.702

p19MSSM1A Γ(0) 2.414 · 10−3 0.1625 3.411 · 10−3 3.917 · 10−2 3.441

Γ(0+1) 2.497 · 10−3 0.1621 3.503 · 10−3 3.912 · 10−2

Table 7.4: Leading order Γ(0) and next-to-leading order Γ(0+1) total widths of light
squarks and gluinos for the considered SUSY scenarios. All widths are given in GeV.

allowed and all channels equally contribute to the signature under consideration.

In Table 7.4 we list, at LO and NLO, all the total decay widths of the squarks,
calculated as explained in section 6.5 and entering eq. (6.8) for the different flavor and
chirality configurations. NLO corrections in the total decay widths are of the order
of a few percent for all three benchmark scenarios. In the numerical evaluation of
these corrections we observed a disagreement with the partial decay widths at NLO for
p19MSSM1A obtained from SDECAY , which includes as NLO contributions exactly
the analytical results calculated in [34] and in section 6.7.2. After corresponding with
the authors, this problem was solved by correcting a typo in SDECAY .

In Table 7.4 we list also the total decay width of the gluino, calculated with SDE-
CAY at LO. In the calculation presented here this width is not used explicitly. Instead,
we numerically employ the limit Γg̃ → 0. However, we checked that, using the physical
widths, all the results showed in the following present negligible differences.

Besides physical quantities, in our calculation phase-space-slicing and regulator pa-
rameters enter as inputs in the calculation of virtual and real NLO contributions, as
explained in sections 6.4 and 6.5. In the results of this section, we set δs = 2∆E/

√
s =

2 · 10−4, δθ = ∆θ2/2 = 10−4 and mq = 10−1.5 GeV, both for production and decay. Nu-
merically we checked carefully that varying their values our results remain unchanged
on the level of individual distributions once jets are recombined using a clustering al-
gorithm, as explained below. We made sure that this holds for all terms of eq. (6.8)
individually.

As illustration, we show in Figure 7.1 the dependence on the slicing parameters of
the contributions to the NLO QCD corrections to the inclusive σpp→ũ1ũ1 (top plots) and
Γũ2→uχ̃0

1
(bottom plots). In the plots on the left we show the dependence on ∆θ, via δθ,

for a fixed value of δs. In the plots on the right we show the dependence on ∆E, via
δs, for a fixed value of δθ. All the plots are for SPS1a at the LHC with

√
S = 14 TeV.
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Figure 7.1: Dependence of contributions to NLO corrections on slicing parameters.
Top plots: ũ1ũ1 production channel, dependence on ∆θ (left) and dependence on ∆E
(right). Bottom plots: ũ2 decay, dependence on ∆θ (left) and dependence on ∆E
(right).

7.1.2 Observables and kinematical cuts

In order to arrive at an experimentally well defined two-jet-signature we always employ
the anti-kT jet clustering algorithm [286] implemented in FastJet 3.0.2 [287]. Thus,
we provide a realistic prediction on the level of partonic jets, i.e., jet clustering algo-
rithm is applied to events produced from our calculation, but no QCD showering or
hadronization is included in the simulation.

In general we use a jet radius1 of R = 0.4, as in the SUSY searches performed by the
ATLAS collaboration [282]. CMS instead uses a radius of R = 0.5 [281]. We employ
R = 0.5 in the distributions and signal regions used by CMS (i.e. particularly the αT

1In the anti-kT jet clustering algorithm, the definition of the measure of the distance between two
jets involves the parameter R =

√

(η1 − η2)2 + (φ1 − φ2)2, where η1(η2) and φ1(φ2) are respectively
the pseudorapidity and the azimuthal angle of the first(second) jet.
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distribution as described below). Our results seem to be independent of the choice
between R = 0.4 and R = 0.5, however, we did not perform a systematic study. After
performing the jet clustering we sort the partonic jets by their transverse momentum
pT and we keep only jets with

pTj1/2 > 20 GeV, |ηj| < 2.8, (7.2)

pTji > 50 GeV, |ηj| < 3.0 (for CMS observables) . (7.3)

Cuts of eq. (7.2) are used for all the differential distributions, but in the observables
used specifically by CMS (αT and HT ), where we apply cuts of eq. (7.3).

In section 7.1.4 we investigate the effect of NLO corrections, for the different bench-
mark points, on the differential distributions listed in the following:

• the transverse momentum of the two hardest jets pT1 and pT2 ,

• the pseudorapidity of the two hardest jets η1 and η2,

• the missing transverse energy "ET ,

• the effective mass meff =
∑

i=1,2
pTi + "ET ,

• the scalar sum of the pT of all jets (visible after cuts of eq. (7.3)), HT =
∑

i=1,2(,3)

pTi ,

• the invariant mass of the two hardest jets minv(jj),

• the cosine of the angle between the two hardest jets cosΘjj, which depends on
the spin of the produced particles and therefore might help to distinguish SUSY
from other BSM models [263],

• cos Θ̂ = tanh
(

∆ηjj
2

)

, ∆ηjj = η1− η2, introduced in [288] as a possible observable

for early spin determination at the LHC,

• the αT variable described in section 5.3.1. In all αT distributions we require
HT > 350 GeV as in [145].

Searches for sparticle production performed by ATLAS are based on pT, "ET andmeff

cuts; CMS instead uses αT to reduce SM backgrounds. In section 7.1.5 we examine
NLO corrections in the resulting event rates after cuts. Explicitly we employ the
following cuts used by ATLAS,

pTj1 > 130 GeV, pTj2 > 40 GeV, |ηj1/2| < 2.8, ∆φ(j1/2, 0"ET ) > 0.4, (7.4)

meff > 1 TeV, "ET/meff > 0.3,
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in their two-jet analysis [282]. Here, ∆φ(j1/2, 0"ET ) denotes, for the two hardest jets, the
angular separation with the direction of the missing transverse energy. Instead, the
CMS signal region [145] is defined as

pTj1/2 > 100 GeV, |ηj1| < 2.5, |ηj2| < 3.0, (7.5)

HT > 350 GeV, "HT/ "ET < 1.25, αT > 0.55,

where "HT is calculated from the vectorial sum 0HT of the pT of the jets.

7.1.3 Inclusive cross sections

In Table 7.5 we list inclusive LO cross sections and corresponding NLO K-factors for
the three benchmark scenarios SPS1a, 10.1.5, p19MSSM1A, varying the LHC center-of-
mass energy

√
S = 7, 8, 14 TeV. K-factors, here and in the following, are always defined

as ratios between NLO and LO predictions, where both are calculated using the same
NLO PDFs and associated αs. On the one hand, we list inclusive cross sections, σ(0)

pp→q̃q̃′,
and K-factors for just the production of squark–squark pairs summed over all flavor
and chirality configuration. These K-factors are calculated in the DR scheme defined
in section 6.4.3, which is always used in this chapter, if not stated otherwise. On the
other hand, we list cross section predictions for combined production and decay at LO
σ(0)
2j+E/T (+X) and the corresponding NLO K-factorsK2j+E/T (+X) calculated using eq. (6.8),

summed over all flavor and chirality configurations. Here, cuts defined in eq. (7.2) are
also applied and cross sections are strongly decreased due to the branching ratios for
the lightest neutralino. In this way we investigate at the same time the approximations
indicated in the first and second point of the list on page 76.

All K-factors of the combined process are bigger than the corresponding K-factors
of inclusive production. For point 10.1.5 (and thus rather heavy squarks) these incre-
ments are less than 0.05. For the other two benchmark points (and thus smaller squark
masses) increments in the K-factors can be of the order of 0.1 and increase with higher
center-of-mass energies. In general, however, K-factors decrease with higher center-of-
mass energies and increase with higher masses, both for inclusive production and for
combined production and decay.

In Table 7.6 we compare the inclusive production with the combined production
and decay for benchmark point 10.1.5 at a center-of-mass energy of

√
S = 14 TeV.

Here, we list results for individual flavor and chirality configurations. In general, our
calculation is set up to treat all 36 + c.c possible flavor and chirality combinations
independently. However, for simplicity and to save computing time, we always sum
combinations with identical masses and matrix elements, obtaining 16 channels for the
production and thus for the combination. This categorization depends on the four pos-
sible LO cross sections discussed in section 6.4.1. For example, the channel ũLũL also
includes c̃Lc̃L (and as everywhere else in this study, the charge-conjugate processes).
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benchmark
√
S [TeV] σ

(0)
pp→q̃q̃′ KDR

pp→q̃q̃′ σ
(0)
2j+E/T (+X) K2j+E/T (+X)

7 1.02 pb 1.37 0.37 pb 1.41

SPS1a 8 1.49 pb 1.35 0.53 pb 1.40

14 5.31 pb 1.28 1.74 pb 1.36

7 0.90 fb 1.57 0.45 fb 1.61

10.1.5 8 2.62 fb 1.52 1.24 fb 1.56

14 50.04 fb 1.40 20.41 fb 1.44

7 7.90 pb 1.40 6.31 pb 1.50

p19MSSM1A 8 10.48 pb 1.39 8.35 pb 1.50

14 29.01 pb 1.34 22.60 pb 1.47

Table 7.5: LO cross sections σ(0)
pp→q̃q̃′ and NLO K-factors for inclusive squark–squark

production, KDR
pp→q̃q̃′, LO cross sections of inclusive combined squark–squark production

and decay σ(0)
2j+E/T (+X) and corresponding K-factor K2j+E/T (+X), for the three benchmark

scenarios SPS1a, 10.1.5, p19MSSM1A and center-of-mass energies
√
S = 7, 8, 14 TeV.

In the combined predictions cuts of eq. (7.2) are applied.

Similarly, the channel ũLd̃L also includes c̃Ls̃L, ũLs̃L and c̃Ld̃L; and the channel ũLc̃R
also includes ũRc̃L. K-factors, both, in just the production and in the combined re-
sult, vary by up to 0.15 between different channels2. Moreover, already at LO, the
contributions to σ(0)

pp→q̃q̃′ and σ(0)
2j+E/T (+X) are very different for every channel. At the

level of just squark–squark production, σ(0)
pp→q̃q̃′, besides a dependence on the chirality

configuration, the main differences originate from the flavor configurations, i.e., from
the contribution from PDFs in the initial states. At the level of experimental signature,
σ(0)
2j+E/T (+X), the main differences are due to the chirality configurations. This can easily

be seen from the very different order of magnitude of the various values of σ(0)
2j+E/T (+X) in

Table 7.6. For a given flavor configuration in Table 7.6, the contribution to σ2j+E/T (+X)

from the right–right configuration is typically 2 orders of magnitude larger than the
one from the left–right configuration and 4 orders of magnitudes larger than the one
from the left–left configuration. The suppression from left-handed squarks depends on
the branching ratio of the q̃L → qχ̃0

1 decay, which is very small for CMSSM 10.1.5.
This is different, e.g., for the point p19MSSM1A, where q̃ → χ̃0

1q is the only decay
kinematically allowed and thus its branching ratio is equal to one, independently from
the chirality of the squark. Thus, an independent treatment of any flavor and chiral-
ity configuration is, in general, preferable and consequently results from experimental
analyses might be altered without using the approximation indicated in the third point

2In the very recent paper [232], the authors state that they have found very good agreement with

our values of σ(0)pp→q̃q̃′ and σ
(0+1)
pp→q̃q̃′ for the individual channels in Table 7.6.
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channel σ
(0)
pp→q̃q̃′ σ

(0+1)
pp→q̃q̃′ KDR

pp→q̃q̃′ σ
(0)
2j+E/T (+X) σ

(0+1)
2j+E/T (+X) K2j+E/T (+X)

[fb] [fb] [fb] [fb]

ũLũL 7.08 9.44 1.33 1.22 · 10−3 1.68 · 10−3 1.38

ũRũR 8.64 11.5 1.33 8.25 11.36 1.38

d̃Ld̃L 1.07 1.44 1.36 2.82 · 10−4 3.96 · 10−4 1.40

d̃Rd̃R 1.39 1.88 1.35 1.33 1.84 1.39

ũLũR 6.00 8.49 1.42 7.78 · 10−2 11.33 · 10−2 1.45

d̃Ld̃R 8.20 · 10−1 1.19 1.45 1.32 · 10−2 1.96 · 10−5 1.49

ũLd̃L 8.25 11.9 1.44 1.76 · 10−3 2.62 · 10−3 1.49

ũRd̃R 10.5 15.1 1.44 10.00 14.92 1.49

ũLc̃L 3.28 · 10−1 4.33 · 10−1 1.32 5.65 · 10−5 7.73 · 10−5 1.37

ũRc̃R 4.29 · 10−1 5.74 · 10−1 1.34 4.09 · 10−1 5.68 · 10−1 1.39

d̃Ls̃L 1.95 · 10−1 2.75 · 10−1 1.41 5.16 · 10−5 7.5097 · 10−5 1.46

d̃Rs̃R 2.71 · 10−1 3.87 · 10−1 1.42 2.59 · 10−1 3.82 1.48

ũLd̃R 2.44 3.50 1.44 3.16 · 10−2 4.67 · 10−2 1.48

ũRd̃L 2.40 3.46 1.44 3.87 · 10−2 5.70 · 10−2 1.48

ũLc̃R 1.69 · 10−1 2.39 · 10−1 1.41 2.19 · 10−3 3.18 · 10−3 1.46

d̃Ls̃R 9.51 · 10−2 1.39 · 10−1 1.46 1.52 · 10−3 2.29 · 10−3 1.50

sum 50.04 69.86 1.40 20.41 29.32 1.44

Table 7.6: For the benchmark point 10.1.5 at a center-of-mass energy of
√
S = 14 TeV

inclusive production cross sections at LO σ(0)
pp→q̃q̃′ and NLO σ(0+1)

pp→q̃q̃′ together with the
corresponding K-factors Kpp→q̃q̃′ are listed for all different flavor and chirality channels

(as explained in the text). Also listed for all channels are LO σ(0)
2j+E/T (+X) and NLO

σ(0+1)
2j+E/T (+X) predictions of combined production and decay and the corresponding K-

factor K2j+E/T (+X), where the cuts of eq. (7.2) are applied. All cross sections are given
in fb.

of the list on page 76. Furthermore, as already seen in Table 7.5, K-factors increase
from inclusive production to the combined result (where the cuts given in eq. (7.2) are
applied).

In Table 7.7 we compare the results from the different subtraction schemes defined
in section 6.4.3. In order to also consistently compare them with the results from
Prospino 2 , we set, just here, the mass of all squarks to the average mass mq̃ for all
benchmark points. In Table 7.7 we show LO cross sections and NLO K-factors from our
calculation in the DR scheme, KDR

pp→q̃q̃′ , and in the DS scheme in the global approach
as described by eq. (6.38), KDS

pp→q̃q̃′. We also list K-factors obtained from Prospino 2 ,

KProspino
pp→q̃q̃′ , where we adjusted Prospino 2 , employing the DS scheme in the local ap-

proach, to use the same set of PDFs and the same definition of the strong coupling
αs(µR) as in our calculation. The use of a common average mass results in a small
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benchmark
√
S [TeV] σ

(0)
pp→q̃q̃′ KDR

pp→q̃q̃′ KDS
pp→q̃q̃′ KProspino

pp→q̃q̃′

7 1.01 pb 1.37 1.39 1.41

SPS1a 8 1.48 pb 1.35 1.38 1.40

14 5.31 pb 1.28 1.34 1.38

7 0.89 fb 1.58 1.58 1.59

10.1.5 8 2.59 fb 1.53 1.53 1.54

14 49.87 fb 1.39 1.40 1.41

7 7.65 pb 1.39 1.41 1.37

p19MSSM1A 8 10.17 pb 1.37 1.41 1.37

14 28.34 pb 1.31 1.39 1.38

Table 7.7: LO cross sections σ(0)
pp→q̃q̃′ and NLO K-factors for inclusive squark–squark

production from our computation in the DR scheme, KDR
pp→q̃q̃′, in the DS scheme KDS

pp→q̃q̃′

and also from Prospino 2 , KProspino
pp→q̃q̃′ . All squark masses taken to the average squark

mass mq̃.

shift in the LO cross section and also in the NLO K-factor KDR
pp→q̃q̃′ between Table 7.5

and Table 7.7. Numerical differences between K-factors in the DR scheme and the
DS scheme are of the order of a few percent for SPS1a and p19MSSM1A and negligi-
ble for 10.1.5, since, for a heavier spectrum the contribution from the gluon PDF in
eq. (6.42) and eq. (6.44) is suppressed. Differences between KDS

pp→q̃q̃′ and KProspino
pp→q̃q̃′ orig-

inate from the different approaches, global in our calculation and local in Prospino 2 ,
for the DS scheme. We checked numerically, excluding real quark radiation, i.e. us-
ing the CR scheme, that inclusive NLO corrections from our calculation and results3

from Prospino 2 are in perfect agreement. The differences appearing with the inclusion
of quark radiation are of the order expected from eq. (D.6), as discussed in appendix D.

7.1.4 Differential distributions

Now we turn to the investigation of differential distributions in various observables.
First, we compare the differential scale dependence between our LO and NLO predic-
tion. We do this by varying at the same time renormalization and factorization scale
between µ/2 and 2µ, with µ = mq̃. For SPS1a and an energy of

√
S = 14 TeV, the

resulting LO and NLO bands are shown in blue and red in Figure 7.2 for differential
distributions in pT1 , p

T
2 , η1, η2, "ET and HT . As can be seen in Figure 7.2, in all consid-

ered distributions the scale dependence and thus the theoretical uncertainty is sizably

3The CR scheme can be very easily adapted in Prospino 2 for squark–squark production. It is
sufficient to set the gluon PDF equal to zero.
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reduced by our NLO calculation. At the same time, one finds that large parts of the
NLO bands are outside the LO bands. Still, for example in the pT distributions, in the
high-pT tail the NLO bands move entirely inside the LO bands.

Second, in Figure 7.3 we illustrate the difference between the subtraction schemes
introduced in section 6.4.3 for the benchmark point SPS1a at a center-of-mass energy√
S = 14 TeV. In Figure 7.3 we show distributions in "ET and HT , where we observe

the largest deviations between the DS and DR schemes. The upper part of these plots
show the same bands as already displayed at the bottom of 7.2, however in a loga-
rithmic scale. In the lower part we show, for the DR scheme, the band between the
NLO results at µ = 2mq̃ and µ = mq̃/2 divided by the LO result at µ = mq̃. We
also display the ratio between the NLO result in the DS scheme and the LO result,
both at the central scale µ = mq̃. In these two distributions the difference between the
two schemes increases in the tail of the distributions. However the DS scheme remains
within the theoretical uncertainty of the DR scheme. The distributions for "ET and HT

show the largest differences; in general, the differences between the schemes are smaller.

Third, we investigate the change in the shape of distributions relevant for searches
for supersymmetry at the LHC induced by NLO corrections. Here, we present dis-
tributions for a center-of-mass energy

√
S = 14 TeV. Lower center-of-mass energies

show qualitatively the same behavior. For benchmark point SPS1a plots are shown in
Figure 7.4, for 10.1.5 in Figure 7.5, and for p19MSSM1A in Figure 7.6. We present dis-
tributions in pT1 , p

T
2 , meff, "ET (all in fb/GeV), where the ATLAS jet choice R = 0.4 and

cuts of eq. (7.2) are applied. Also distributions in HT (in fb/GeV) and in αT (in pb)
are displayed, where the CMS jet choice R = 0.5 and corresponding cuts of eq. (7.2)
are applied. In the αT distribution, events are reclustered into two pseudo-jets, as
explained in section 5.3.1, and a cut of HT > 350 GeV is applied. In the upper part
of any plot we show each distribution at LO in black, NLO in red, and in blue the LO
prediction rescaled by the ratio, KNLO, between the integrated NLO and LO result.
In the lower part of any plot we show the NLO divided by the rescaled LO · KNLO

distribution. In this way we present corrections purely in the shape and not in the
normalization of the distributions. For SPS1a and 10.1.5 corrections are qualitatively
very similar and rather flat for pT1 , p

T
2 and "ET , as expected from [33]. Corrections in

the HT distribution grow for larger HT and can be sizable. This can be explained
from the high-pT behavior of the contribution from hard real gluon radiation to this
observable. HT is the scalar sum of the pT of the jets and clearly this variable strongly
depends on kinematic effects from gluon radiation. Thus, as verified by our calculation,
differential corrections in HT are expected to be not flat. Corrections to the shape of
the αT observable change sign at αT = 0.5 and fall off continuously in the signal region
αT > 0.55. As explained in section 5.3.1, the value αT = 0.5 is a physical boundary,
since the SM multijet signature belongs to the region αT < 0.5.

Looking at the distributions of p19MSSM1A in Figure 7.6 a completely different
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behavior of the NLO corrections cannot be missed. The tail of the pT1 , p
T
2 , meff and

"ET distributions completely departs from the LO predictions. This can be understood
from the following considerations. Due to the small mass difference between squarks
and the χ̃0

1 for benchmark point p19MSSM1A, jets from squark decays tend to be
soft. Now, the pT of an additional jet (which cannot be distinguished from the decay
jets) from hard gluon radiation in the production can easily be of the same order as
the ones from squark decays and result in the given distortions. Such a behavior for
compressed spectra was already partly discussed in [231], where sparticle production
and decay including additional hard jets matched to a parton shower was investigated.
We verified our findings by comparing LO predictions plus real hard gluon radiation
in the production stage with a corresponding calculation performed with MadGraph 5
[289]. The tail of the considered distributions can adequately be described only by
additional gluon radiation, which should thus be seen, from the numerical impact and
not the order of expansion in αs, as the LO prediction for these phase-space regions.
Turning to the αT distribution, the shapes of LO and NLO predictions are clearly
different and, here, we refrain from showing explicitly corrections in the shape or a
rescaled LO prediction.

Next to the distributions shown in Figures 7.4, 7.5 and 7.6, we also investigated
pseudorapidity distributions of the two hardest jets η1/2. Here, in the relevant re-
gion |η1/2| < 3.0, corrections in the shapes are always smaller than about 5% for all
benchmark scenarios and energies.

In Figure 7.7 we present plots for angular distributions between the two hardest
jets. On the left, we show distributions in the invariant mass of the two hardest jets
minv(jj), on the right distributions in the cosine of the angle between the two hardest
jets cosΘjj. Again, results are given for all three benchmark points and a center-of-
mass energy

√
S = 14 TeV. Corrections in these distributions can be quite large. In

general, in the NLO results one observes larger corrections for small angles between the
two hardest jets (up to 20% in the cosΘjj distributions). In the high-invariant-mass
tail for SPS1a and 10.1.5 corrections are negative and grow to 40% in the considered
invariant mass range. Such corrections could potentially be absorbed into a dynamical
renormalization/factorization scale definition as, e.g., µ = HT . In the invariant mass
distribution of p19MSSM1A we observe the same deviation of the NLO result from the
LO shape as already discussed above.

Finally, in Figure 7.8 we investigate NLO corrections to the cos Θ̂ distribution for
the benchmark points SPS1a (top left), 10.1.5 (top right) and p19MSSM1A (bottom)
at a center-of-mass energy of

√
S = 14 TeV. Corrections can reach the value of 15%;

still, the general shapes and thus the potential for extraction of spin information about
the intermediate squarks seem to be robust under higher-order corrections.
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Figure 7.2: Differential distributions in pT1 , p
T
2 (in fb/GeV), η1, η2 (in pb/GeV), "ET and

HT (in fb/GeV) for SPS1a and
√
S = 14 TeV, where for, both, LO (blue) and NLO

(red) the common renormalization and factorization scale is varied between µ/2 and
2µ, with µ = mq̃.
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Figure 7.3: Differential distributions in "ET and HT (in fb/GeV) for SPS1a and
√
S =

14 TeV. In the upper part the common renormalization and factorization scale is varied
between µ/2 and 2µ, with µ = mq̃ for LO (blue) and NLODR (red). In the lower part
we show in red the ratio of the NLODR uncertainty band and the LO result (at scale
µ = mq̃). We also show in black the ratio of the NLO result in the DS scheme and the
central LO result.



The signature 2j+ "ET(+X) 125
 [f

b/
G

eV
]

1T
/d

p
σd

-110

1

10
SPS1a; 14 TeV 

T
miss 2j + E→’ q~ q~ →pp 

LO
NLOLO x K

NLO

 [GeV]
1
Tp

0 200 400 600 800 1000 1200

co
rr.

0.8
1

1.2
1.4

 [f
b/

G
eV

]
2T

/d
p

σd

-310

-210

-110

1

10 SPS1a; 14 TeV 
T
miss 2j + E→’ q~ q~ →pp 

LO
NLOLO x K

NLO

 [GeV]
2
Tp

0 200 400 600 800 1000 1200

co
rr.

0.8
1

1.2
1.4

 [f
b/

G
eV

]
ef

f
/d

m
σd

-210

-110

1

10
SPS1a; 14 TeV 

T
miss 2j + E→’ q~ q~ →pp 

LO
NLOLO x K

NLO

 [GeV]effm
0 500 1000 1500 2000 2500 3000

co
rr.

0.8
1

1.2
1.4

 [f
b/

G
eV

]
Tm

is
s

/d
E

σd

-310

-210

-110

1

10

210 SPS1a; 14 TeV 
T
miss 2j + E→’ q~ q~ →pp 

LO
NLOLO x K

NLO

 [GeV]T
missE

0 200 400 600 800 1000 1200

co
rr.

0.8
1

1.2
1.4

 [f
b/

G
eV

]
T

/d
H

σd

-310

-210

-110

1

10

210
SPS1a; 14 TeV 

T
miss 2j + E→’ q~ q~ →pp 

LO
NLOLO x K

NLO

 [GeV]TH
0 500 1000 1500 2000 2500

co
rr.

1

1.5

2

 [p
b]

T
α

/d
σd

-110

1

SPS1a; 14 TeV 
T
miss 2j + E→’ q~ q~ →pp 

LO
NLOLO x K

NLO

Tα
0 0.5 1 1.5 2 2.5 3

co
rr.

0.6
0.8

1
1.2

Figure 7.4: Differential distributions of benchmark point SPS1a at a center-of-mass
energy

√
S = 14. In the upper part of the plots we show in black LO, in red NLO and

in blue LO distributions rescaled by the ratio KNLO between the integrated NLO and
LO results. In the lower part of the plots NLO corrections in the shapes are shown,
defined as the full NLO divided by the rescaled LO · KNLO distribution. From top
left to bottom right we show differential distributions in pT1 , p

T
2 , meff, "ET , HT (all in

fb/GeV) and in αT (in pb).
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Figure 7.5: Differential distributions of benchmark point 10.1.5 at a center-of-mass
energy

√
S = 14. In the upper part of the plots we show in black LO, in red NLO and

in blue LO distributions rescaled by the ratio KNLO between the integrated NLO and
LO results. In the lower part of the plots NLO corrections in the shapes are shown,
defined as the full NLO divided by the rescaled LO · KNLO distribution. From top
left to bottom right we show differential distributions in pT1 , p

T
2 , meff, "ET , HT (all in

fb/GeV) and in αT (in pb).
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Figure 7.6: Differential distributions of benchmark point p19MSSM1A at a center-of-
mass energy

√
S = 14. In the upper part of the plots we show in black LO, in red

NLO and in blue LO distributions rescaled by the ratio KNLO between the integrated
NLO and LO results. In the lower part of the plots NLO corrections in the shapes are
shown, defined as the full NLO divided by the rescaled LO ·KNLO distribution. From
top left to bottom right we show differential distributions in pT1 , p

T
2 , meff, "ET , HT (all

in fb/GeV) and in αT (in pb).
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Figure 7.7: Distributions in the invariant mass minv(jj) (in fb/GeV) and the cosine of
the angle between the two hardest jets cosΘjj (in pb) for the benchmark points SPS1a
(top), 10.1.5 (middle), p19MSSM1A (bottom) at a center-of-mass energy

√
S = 14 TeV.

In the upper part of the plots we show in black LO, in red NLO and in blue LO
distributions rescaled by the ratio KNLO between the integrated NLO and LO results.
In the lower part of the plots NLO corrections in the shapes are shown, defined as the
full NLO divided by the rescaled LO ·KNLO distribution.
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Figure 7.8: Distributions in cos Θ̂ (in pb) for the benchmark points SPS1a (upper left),
10.1.5 (upper right) p19MSSM1A (bottom) at a center-of-mass energy of

√
S = 14 TeV.

In the upper part of the plots we show in black LO, in red NLO and in blue LO
distributions rescaled by the ratio KNLO between the integrated NLO and LO results.
In the lower part of the plots NLO corrections in the shapes are shown, defined as the
full NLO divided by the rescaled LO ·KNLO distribution.
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7.1.5 Event rates

After the investigation of inclusive cross sections and differential distributions, we an-
alyze here event rates, i.e., cross sections integrated on signal regions defined to reduce
background contributions. In this way we quantify a possible impact of our calcula-
tion on current searches for supersymmetry and future measurements of event rates at
the LHC. Specifically, we check the effects, in the cut-and-count searches, due to the
approximations in the first three points of the list on page 76.

In table 7.8 we list cross sections after applying cuts of eq. (7.4), and in table 7.9
cross sections after applying cuts of eq. (7.5). We show LO and NLO cross sections for
all three benchmark points and all three energies together with resulting K-factors. For
comparison we again list inclusive K-factors of just production, already shown in table
7.5. From these results, a fully differential description of all squark and gluino chan-
nels including NLO effects in production and decay seems inevitable for a conclusive
interpretation of SUSY searches (or signals) at the LHC. The numbers in table 7.8 and
table 7.9 again show that, for compressed spectra like p19MSSM1A, a pure LO approx-
imation is unreliable for a realistic phenomenological description of the experimental
signatures considered here. Furthermore, as already suggested in [290] and expected
from the differential distributions shown in section 7.1.4, interpretations based on αT ,
as in Table 7.9, seem to be highly affected by the accuracy of higher-order corrections.
The sign of corrections, in αT distributions, changes around αT = 0.5 and cuts from
eq. (7.5) include the requirement αT > 0.55. Thus, flat K-factors underestimate the
impact of NLO contributions.

benchmarkpoint Energy [TeV] N
(0)
ATLAS N

(0+1)
ATLAS KNATLAS Kpp→q̃q̃′

7 0.066 pb 0.083 pb 1.26 1.37

SPS1a 8 0.097 pb 0.121 pb 1.25 1.35

14 0.347 pb 0.424 pb 1.22 1.28

7 0.313 fb 0.503 fb 1.61 1.57

10.1.5 8 0.861 fb 1.344 fb 1.56 1.52

14 13.82 fb 19.77 fb 1.43 1.40

7 0.140 fb 20.76 fb ∼ 150 1.40

p19MSSM1A 8 0.339 fb 37.96 fb ∼ 110 1.39

14 0.0044 pb 0.264 pb ∼ 60 1.34

Table 7.8: LO N (0)
ATLAS and NLO N (0+1)

ATLAS cross section predictions and K-factors
KNATLAS for the three benchmark scenarios SPS1a, 10.1.5, p19MSSM1A and center-
of-mass energies

√
S = 7, 8, 14 TeV where the cuts of eq. (7.4) are applied. For com-

parison we also list is the inclusive NLO production K-factor Kpp→q̃q̃′ already shown in
Table 7.5.
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benchmarkpoint Energy [TeV] N
(0)
CMS N

(0+1)
CMS KNCMS Kpp→q̃q̃′

7 0.112 pb 0.141 pb 1.26 1.37

SPS1a 8 0.157 pb 0.197 pb 1.25 1.35

14 0.488 pb 0.614 pb 1.26 1.28

7 0.201 pb 0.261 pb 1.30 1.57

10.1.5 8 0.542 fb 0.674 fb 1.24 1.52

14 8.129 fb 8.884 fb 1.09 1.40

7 10−6 pb 0.095 pb O(104) 1.40

p19MSSM1A 8 10−6 pb 0.151 pb O(104) 1.39

14 2 · 10−5 pb 0.687 pb O(104) 1.34

Table 7.9: LO N (0)
CMS and NLO N (0+1)

CMS cross section predictions and K-factorsKNCMS for
the three benchmark scenarios SPS1a, 10.1.5, p19MSSM1A and center-of-mass energies√
S = 7, 8, 14 TeV where the cuts of eq. (7.5) are applied. For comparison we also list

the inclusive NLO production K-factor Kpp→q̃q̃′ already shown in Table 7.5.

7.2 The signature 2j + l+l−(OS-SF) + "ET(+X)

This section is structured similarly to the previous section 7.1. We firstly specify in
7.2.1 input parameters and experimental cuts and, afterwards, we present numerical
results. In 7.2.2 we investigate, in the squark rest frame, NLO corrections to the single
decay chain not combined with the production. These results can be interpreted as a
cross check with the study presented in [35] and as a reference for the interpretation of
results for the 2j + l+l−(OS-SF) + "ET (+X) signature. Finally we consider the decay
chain combined with q̃Lq̃′R: differential distributions in 7.2.3 and event rates in 7.2.4.

7.2.1 Parameters and observables

Standard Model input parameters are chosen as in section 7.2 according to [126]. Also,
the same set of PDFs, CTEQ6.6 [144], with the associated αMS

s (µR) at NLO is used.
Renormalization scale µR and factorization scale µF are, again, both set to the average
mass of all light-flavor squarks, µ = µF = µR = mq̃.

Numerical results in this section are presented for the LHC with a center-of-mass
energy of

√
S = 14 TeV using two CMSSM representative benchmark scenarios: SPS1a,

already employed in section 7.1 and 10.1.6 defined in [280, 284]. The value of the
CMMSM parameters at the GUT scale for the point 10.1.6 are similar those of the
point 10.1.5, defined in Table 7.1. The values of m0 and m1/2 for the point 10.1.6 are
slightly larger, namely m0 = 750 GeV and m1/2 = 187.5 GeV. As already said, the
scenario SPS1a has been excluded by searches at LHC, but it still serves as a valuable
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mass [GeV] ũL ũR d̃L d̃R g̃ l̃L l̃R χ̃0
2 χ̃0

1

SPS1a 563.6 546.7 569.0 546.6 608.5 202.4 144.1 180.2 97.0

10.1.6 1531.7 1472.2 1533.6 1466.1 1672.1 536.6 340.6 592.4 313.3

Table 7.10: On-shell masses of the first-generation squarks and sleptons, the gluino,
and the lightest and second-lightest neutralino within the SUSY scenarios considered.
All masses are given in GeV.

BR [%] q̃R → χ̃0
1 q̃R → χ̃0

2 q̃L → χ̃0
1 q̃L → χ̃0

2 χ̃0
2 → l̃±L χ̃0

2 → l̃±R χ̃0
2 → Z

SPS1a 98.5 1.0 1.5 31.2 − 13.1 −
10.1.6 99.8 0.03 1.5 32.1 28.4 0.2 0.2

Table 7.11: Branching ratios for the decay of squarks into χ̃0
1 and χ̃0

2 and for the decay
of χ̃0

2 into right- and left-handed sleptons. Squarks and sleptons of the first two families
are considered, where branching ratios into second- and first- generation sleptons and
their charge-conjugate contributions are summed. The branching ratios of squarks are
at NLO accuracy; differences with values at LO accuracy are lower than per mill level.

benchmark point for comparisons with numerous numerical results available in the
literature. Sparticle on-shell masses relevant for our analysis are obtained again with
SOFTSUSY [285] and listed in Table 7.10 for both the scenarios SPS1a and 10.1.6.

Also here, we set all second-generation masses equal to their first-generation coun-
terparts, since, for these two scenarios, the phenomenological effects originating from
the small mass differences are negligible in this study.

As already mentioned, our calculation is phenomenologically sensible for scenarios
with the gluino heavier than all light flavor squarks, where all these squarks decay
exclusively into charginos and neutralinos. As can be seen in Table 7.10, the scenarios
SPS1a and 10.1.6 satisfy this condition.

In Table 7.11 we list the branching ratios, calculated with SDECAY [254], of two-
body decays relevant for this study. We show only the average value of the branching
ratios for up- and down-type squarks, since they differ at most by ∼ 1%. Differences
between branching ratios at LO and NLO for squark decays are even smaller (less than
per mill) for the considered scenarios and so we do not show them. Again, Table 7.11
shows that the right-handed squarks decay dominantly directly into the bino-like χ̃0

1,
and the left-handed squarks into χ̃0

2 and the lighter chargino, χ̃±
1 .

In Table 7.11 we also list branching ratios for the second-lightest neutralino into
light-flavor sleptons. Branching ratios into first- and second-generation sleptons are
identical, and in Table 7.11 we sum those contributions. For benchmark point SPS1a
only the right-handed l̃R is lighter than the χ̃0

2, yielding together with the decay into
a τ -slepton the only available two-body decays. In our numerical analysis of SPS1a,
both for the decay chain alone and combined with the production, only the decay
via a right-handed slepton is considered. In contrast, for the CMMSM point 10.1.6
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both sleptons are lighter than the χ̃0
2. However, due to its wino-like nature the χ̃0

2

here decays dominantly into the left-handed l̃L despite the smaller mass of the l̃R. For
simplification, in our numerical analysis of the CMMSM point 10.1.6 only the decay via
a left-handed slepton is considered. As can be seen from Table 7.11, the contribution
from the decay into a l̃R can be safely neglected. Table 7.11 shows also the branching
ratio of the χ̃0

2 → χ̃0
1Z decay, entering the decay chain q̃ → qχ̃0

2 → qZχ̃0
1 → ql+l−χ̃0

1,
which gives the same signature of the “golden decay chain”. This decay chain via the
Z boson is kinematically forbidden with SPS1a, for on-shell Z and χ̃0

2, and negligible
for the CMMSM point 10.16. Thus, it can be safely neglected in our analysis for these
two scenarios.

In all numerical results presented in the following we employ the anti-kT jet clus-
tering algorithm with a jet radius of R = 0.4 implemented in FastJet 3.0.2 [287].
Furthermore, in order to obtain an experimentally well defined result, jets that do not
pass the cut conditions

pTji ≥ 20 GeV , |ηji| ≤ 2.8 , (7.6)

are discarded. In the analyses of sections 7.2.3 and 7.2.4, where decays are combined
with squark–squark production, the following realistic experimental cuts are applied:

pTj1 ≥ 150 GeV , pTj2 ≥ 100 GeV ,

|ηj,l| ≤ 2.5 , pTl1,2 ≥ 20 GeV (OS-SF) ,

"ET ≥ 100 GeV , (7.7)

where we implicitly require the two leptons to have opposite charge and same flavor
(OS-SF). Such cuts efficiently reduce SM backgrounds [179,269,270]. Furthermore, we
assume that contributions from leptonic decays of τ -leptons (from the corresponding
signal decay chain with intermediate tau sleptons) are removed in the standard way
by subtracting events with opposite-sign different-flavor lepton pairs (OS-DF), see e.g.
[175, 176, 178–180]. For this reason we do not include contributions from l̃ = τ̃ in our
numerical evaluation.

7.2.2 Squark decay chain

Here we investigate the NLO corrections to the isolated “golden decay chain” evaluated
in the squark rest frame. In Figure 7.9 we show various invariant mass distributions at
LO and NLO in the final-state leptons and jet(s) for the benchmark scenario SPS1a.
As explained in section 5.3.1, shapes of such distributions are important for the de-
termination of masses and spins of sparticles. In order to highlight NLO corrections
purely in the shapes, here and also afterward in section 7.2.3, we show all distributions,
both at LO and at NLO, normalized to unity.

Two kinds of combinatorial problems arise for invariant mass distributions involving
the final-state leptons and jet(s). First, as already mentioned in section 6.6, from an
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Figure 7.9: Normalized differential distributions for SPS1a in mjlf , mjln for the two
unobservable decays ũL → jl−n l

+
f χ̃

0
1 (upper two) and ũL → jl+n l

−
f χ̃

0
1 (central two) and

in mjl+ and mjl− (lower two) where contributions from the two decays are summed.
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Figure 7.10: LO and NLO normalized differential distributions for SPS1a in mjl(low),
mjl(high), mjll and mjll(thresh) (from top left to bottom right) for the decay chain q̃L →
q χ̃0

2 → q l± l̃∓R → q l± l∓ χ̃0
1.
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Figure 7.11: LO and NLO normalized differential distributions for 10.1.6 in mjl(low),
mjl(high), mjll and mjll(thresh) (from top left to bottom right) for the decay chain q̃L →
q χ̃0

2 → q l± l̃∓L → q l± l∓ χ̃0
1.

experimental point of view we cannot distinguish between the near and the far lepton
on an event-by-event basis. This is a well known problem and many solutions have
been suggested in the literature, see e.g. [175]. Second, it is not obvious which jet has
to be chosen to build the desired invariant mass distributions. Considering only the
isolated decay chain, at LO the jet from the squark decay is the only one in the final
state. But at higher orders, due to real gluon radiation, further jets can appear. Here
we always choose the hardest available jet to build the invariant mass distributions, as
done in [35].

In the upper left/right part of Figure 7.9 we show (unobservable) distributions in
the invariant mass of the hardest jet and the negatively/positively charged near/far
lepton from the decay chain ũL → jl−n l

+
f χ̃

0
1. Here and in the remainder of this section

we do not apply any cut but the jet definition cuts in eq. (7.6). In the center left/right
part, on the other hand, we show (again unobservable) distributions in the invariant
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mass of the hardest jet and the negatively/positively charged far/near lepton from
the decay chain with the opposite charges for far and near leptons, ũL → jl+n l

−
f χ̃

0
1.

Finally, in the lower part of Figure 7.9 we show, in some sense4, the sums of the two
previous contributions. These distributions are in principle experimentally observable
(after combination with the corresponding production process). The lower left/right
panel shows the invariant mass of the hardest jet and the negatively/positively charged
lepton summed over near and far contributions (mjl− and mjl+).

In the case of the decay of a left-handed anti-squark, all the distributions introduced
so far are equal to the charge-conjugate ones of the corresponding squark, e.g, the
mjl+n

distribution from an ũ∗
L decay chain is equal to the mjl−n

distribution from an
ũL decay chain. Hence, the analogue of Figure 7.9 for q̃∗L would present the shapes
of the distributions of the left column exchanged with the ones of the right column.
Differences between squarks and anti-squarks obviously do not appear for quantities
that are inclusive in the different charges of the leptons5.

In all of the plots in Figure 7.9 NLO corrections tend to shift the distributions to
smaller invariant masses, however, locations of endpoints are unaffected. Indeed, in
general, the gluon radiation reduces the energy of the remaining particles, but with
soft gluons, Eg = 0, the position of the endpoints are not changed. Kinematical edges
in the NLO predictions are rounded off compared to LO; still, overall shapes of the con-
sidered contributions seem to be unaltered. Results and distributions of the same type
have also been calculated in [35]. In their numerical evaluation the slightly different
parameter point SPS1a’ was investigated resulting in LO shapes somewhat different
to those presented here. Qualitatively the NLO corrections shown in [35] for SPS1a’
and ours for SPS1a agree. Moreover, we also investigated distributions and corrections
for SPS1a’ and found a qualitative agreement with [35]. However, in reference [35] a
different jet algorithm was used. Results for SPS1a’ presented there for yc = 0.002
(see [35] for the definition) agree best with our results obtained using the anti-kT jet
clustering algorithm.

In Figure 7.10 we look, again for SPS1a, at the invariant mass distributions in-
troduced in section 5.3.1: mjl(low), mjl(high) and mjll plus mjll(thresh), defined in the
following. For mjl(low) and mjl(high) we select on an event-by-event basis the smaller
and higher invariant mass between one of the leptons and the hardest jet. mjll is the
invariant mass between the hardest jet and the two leptons, and mjll(thresh) is the same
distribution where an additional constraint on the invariant mass of the two leptons,
mmax

ll√
2

< mll, is applied. Here, mmax
ll is the well measurable endpoint of the dilepton

invariant mass distribution. In our numerical analysis we use the theoretical endpoints,

4Since all plots are individually normalized to one, the plots in the last row of Figure 7.9 are not
exactly the sums of the plots of the first and second rows.

5All the observable distributions discussed in this section but the one respect to A, satisfy this
condition.
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from LO analytical relations6, mmax
ll = 80.0 GeV for SPS1a and mmax

ll = 203.8 GeV for
the parameter point 10.1.6.

All these invariant mass distributions are in principle experimentally measurable
and have been extensively discussed in the literature [175,176,179,180] (and references
therein). From a measurement of their upper (and in case of mjll(thresh) the lower)
endpoints one might be able to extract relations for the masses of the intermediate
sparticles. As mentioned in section 5.3.1, these relations often show ambiguities and,
in particular, measurements of the threshold of mjll(thresh) might help to resolve them.
Also, shapes of the presented invariant mass distributions might help to overcome these
difficulties.

Let us now look at the NLO corrections to these invariant mass distributions.
Overall, again, distributions are shifted to smaller invariant masses. Also, upper kinks
of mjll and mjll(thresh) are rounded off. These shifts might result in a slightly lowered
accuracy in the measurement of the upper endpoints. Furthermore, the threshold
of the mjll(thresh), given by mmin

jll(thresh) = 215.4 for SPS1a and mmin
jll(thresh) = 437.1 for

10.1.6 [178], is diluted due to NLO corrections. In contrast to upper endpoints, the
position of lower endpoints different from zero can be affected from real radiation. Also,
due to this dilution, a precise measurement of this observable seems to be questionable.

The same set of invariant mass distributions, mjl(low), mjl(high), mjll and mjll(thresh),
is shown in Figure 7.11 for the parameter point 10.1.6 and the corresponding decay
chain involving a l̃L. For the main part, again, NLO corrections shift the differential
distributions to smaller invariant masses and round off the upper kinks. Particularly for
mjl(low) this might result in a smaller possible experimental accuracy for determining
the upper endpoint. Apart from the rounding off of the kinks, general shapes of the
distributions are mostly unaltered by NLO corrections. Also, a possible dilution of the
lower endpoint of mjll(thresh) due to NLO corrections seems to be less severe for the
parameter point 10.1.6 compared to SPS1a.

7.2.3 Combined production and decay: distributions

Now we want to investigate the combined process, where cuts defined in eq. (7.7) have
been applied. Here, we first examine the impact on various differential distributions
important for parameter determination. Afterwards, in section 7.2.4 we investigate the
impact of NLO QCD corrections on inclusive OS-SF dilepton observables and thus on
searches currently performed at the LHC.

In the combination of production and decay, already at LO a combinatorial problem
arises looking at invariant mass distributions. As already mentioned in section 7.2.2
it is not clear which jet to choose for building the different invariant masses. Just
choosing the hardest jet as was done in section 7.2.2 does not seem to be sensible,

6The analytic relations for mmax
ll , as the ones used afterwards in the text to calculate mmin

jll(thresh)

and mmax
jll , are given in [187].
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Figure 7.12: LO and NLO normalized differential distributions for SPS1a in mjl(low),
mjl(high), mjll and mjll(thresh) (from top left to bottom right) for combined production
and decay.
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since the jet from the second decay, present already at LO, is often the hardest one.
This is a well known problem in the application of the endpoint methods for mass
determination and various methods have been developed to reduce this ambiguity. The
easiest method is to always use the jet which gives e.g. the smaller mjll value. In this
way one improves the measurements of the upper endpoints without losing statistics;
however, shapes are heavily distorted already at LO. In principle there are advanced
techniques to solve this problem, amongst others, full kinematic event reconstruction
[291] or hemisphere techniques [292–294]. However, these techniques are quite involved,
parameter point dependent, and not generally applicable. Here, we apply consistency
cuts, also discussed in [180], to reduce the impact of the jet combinatorics ambiguity.
Applying such consistency cuts means that we accept only events where one jet ji out
of the two hardest jets ji, jk gives an invariant mass smaller than mmax

jll and the other
jet jk an invariant mass larger than mmax

jll ,

mjill < mmax
jll < mjkll . (7.8)

Now ji will be used in the following to build the invariant mass distributions. In
this way we restrict to the case in which for sure we do not include, for building the
invariant masses, one of the two jets not corresponding to the quark in the decay chain,
i.e., either the jet from real correction or the jet from q̃′R → qχ̃0

1 decay.
This technique is very efficient in reducing the jet combinatorics ambiguity, how-

ever, event rates are also reduced (see section 7.2.4 and particularly Table 7.12). From
an experimental point of view the endpoint mmax

jll is assumed to be measured in a first
step where for example always the jet is chosen yielding the smaller mjll. Here, we use
the theoretical endpoints mmax

jll = 450.6 GeV for SPS1a and mmax
jll = 1147.7 GeV for

10.1.6.

In Figure 7.12 we show for SPS1a the same invariant mass distributions as already
shown in Figure 7.10. Here, production and decays are combined at NLO, cuts of
eq. (7.7) and further consistency cuts of eq. (7.8) are applied. Due to the NLO cor-
rections, distributions are in general shifted to smaller invariant masses. Comparing
just LO predictions in Figure 7.12 and Figure 7.10, particularly mjll and mjll(thresh)

show a slightly different behavior introduced by the consistency cuts: the plateau is
less prominent in Figure 7.12. Here, again we observe a dilution of the threshold in
the mjll(thresh) distribution at NLO. Similar observations can be made looking at Fig-
ure 7.13 (and comparing with Figure 7.11) for the combined results of parameter point
10.1.6. Overall, changes to the shapes are moderate and, concerning the measure-
ments of the upper endpoints, only for mjl(low) might be experimentally detectable.
The consistency cuts, eq. (7.8), are based only on mjll and this is why we observe,
already at LO, contributions also beyond the theoretical upper endpoint of the other
distributions; moreover, this effect is enhanced at NLO. Jets from real radiation in
production and from q̃′R → q′χ̃0

1 decay can yield, if selected, invariant masses higher
than the theoretical endpoints expected from the isolated decay chain.
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Figure 7.13: LO and NLO normalized differential distributions for 10.1.6 in mjl(low),
mjl(high), mjll and mjll(thresh) (from top left to bottom right) for combined production
and decay.
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Figure 7.14: LO and NLO normalized differential distributions for 10.1.6 in mjl(u),
mjl(d), mjl(s) and mjl(p) (from top left to bottom right) for combined production and
decay shown with a quadratic scale.
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Figure 7.15: LO and NLO normalized differential distributions for SPS1a (left) and
10.1.6 (right) in the asymmetry A for combined production and decay.

From the discussion above, the usefulness of the threshold of mjll(thresh) seems ques-
tionable. Additionally, a measurement of a lower endpoint is always subject to large
experimental backgrounds [182,187]. Since this threshold was introduced to solve am-
biguities in the mass determination due to the near–far indistinguishability, new tech-
niques for this purpose have been invented. In [187] the authors argue that all invariant
mass distributions used for mass determination from the given decay chain should be
built symmetrically under the interchange lnear ↔ lfar. In this spirit they introduce a
new set of invariant mass distributions, m2

jl(u) ≡ m2
jln ∪ m2

jlf
, m2

jl(d) ≡ |m2
jln − m2

jlf
|,

m2
jl(s) ≡ m2

jln +m2
jlf

and m2
jl(p) ≡ mjln ·mjlf . The variable m

2
jl(u) ≡ m2

jln ∪m2
jlf

denotes

the distribution obtained making the union of m2
jln and m2

jlf
distributions. Here we

study the impact of the NLO QCD corrections on this class of distributions. In Fig-
ure 7.14 we show the normalized LO and NLO distributions in m2

jl(u), m
2
jl(d), m

2
jl(s) and

m2
jl(p) against a quadratic scale. Shapes of these distributions are slightly changed due

to NLO corrections; however, the possibility of measuring their upper endpoints (both
endpoints in the case of mjl(u)) seems to be unaffected.

Besides for mass determination, the given decay chain can also be used for spin
determination or, more precisely, for spin distinction. As pointed out in [196] and many
subsequent works, the asymmetry between the mjl+ and mjl− distributions defined as

A =
dσ/dmjl+ − dσ/dmjl−

dσ/dmjl+ + dσ/dmjl−
(7.9)

can help to discriminate between a SUSY model and other models like Universal Extra
Dimensions (UED) in which a similar decay chain is possible, but the intermediate
particles have different spins [197]. In Figure 7.15 we show LO and NLO predictions
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for this asymmetry for SPS1a (left) and 10.1.6 (right). Again, cuts of eq. (7.7) and
consistency cuts of eq. (7.8) have been applied. It seems that the NLO QCD cor-
rections do not spoil the possibility of using these observables for spin determination
and/or model discrimination. For SPS1a, at NLO, there is a contribution beyond the
upper endpoint not present for this observable at LO. Indeed, this NLO contribution
originates from events that pass the consistency cuts, based on the endpoint of the mjll

distribution. However, the expected rate for events, in this region of the asymmetry
distribution, are experimentally negligible.

7.2.4 Combined production and decay: inclusive observables

The signature with two jets, two OS-SF leptons and missing transverse energy can also
be used for searches for supersymmetry. At the LHC, using this signature, cut-and-
count searches have been performed in the analyses of the 7 and 8 TeV runs [269,270]
and will be performed also at 14 TeV. Consequently, precise calculations of inclusive
cross sections for the specific signal regions used in the cut-and-count searches are
necessary. Moreover, also inclusive rates can be used, in principle, for parameter de-
termination within a global fit [295].

Here, we discuss the differences between predictions in our calculation and rescaling
LO with a flat K-factor from NLO corrections to squark-squark production without
including decays and cuts. Also, we analyze the impact of the additional consistency
cuts defined in eq. (7.8).

In Table 7.12 various integrated quantities at 14 TeV for the parameter points
SPS1a and 10.1.6 are listed. Starting from the first column on the left we display: the
total cross section N (0)

2j+2l+ *ET
at LO in the signal region defined by the cuts of eq. (7.7)

and N (0),cons. cuts
2j+2l+ *ET

applying also the consistency cuts, together with the corresponding
K-factors for these two quantities, KN2j+2l+ #ET

and Kcons. cuts
N2j+2l+ #ET

. Furthermore, we list the

K-factors for just the production, including only the q̃Lq̃′R channels, Kpp→q̃Lq̃′R
, and the

K-factors including all chirality configurations, Kpp→q̃q̃′.
The difference between the K-factors including the cuts defining the signal region,

KN2j+2l+ #ET
, and the K-factors for production of q̃Lq̃R pairs, Kpp→q̃L q̃R, is small, namely

N
(0)
2j+2l+"ET

N
(0),cons. cuts
2j+2l+"ET

KN2j+2l+"ET
Kcons. cuts

N2j+2l+"ET
Kpp→q̃Lq̃′

R
Kpp→q̃q̃′

SPS1a 38.2 fb 23.0 fb 1.36 1.23 1.34 1.28

10.1.6 0.628 fb 0.243 fb 1.46 1.39 1.44 1.41

Table 7.12: LO N (0) and NLO N (0+1) cross section predictions and K-factors KN for
the two benchmark scenarios SPS1a, 10.1.6 at a center-of-mass energy

√
S = 14 TeV

where the cuts of eq. (7.7) are applied. For comparison we also list the inclusive NLO
production K-factor Kpp→q̃q̃′ and Kpp→q̃Lq̃′R

.
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0.02. This difference increases to 0.08 for SPS1a and 0.05 for the parameter point
10.1.6, if the K-factor for just the production includes all the chirality configurations.
Thus, for the scenarios analyzed here, NLO corrections can be safely approximated by
rescaling LO predictions with the K-factor obtained for the production part, provided
that only the contributing chirality configurations are included in the calculation of the
K-factor. It seems that, in this case, the effects due to the approximation indicated
by the third point of the list on page 76 are dominant compared to the approximation
indicated in the first two points. This feature, however, cannot easily be generalized;
for example, as can be seen from Table 7.12, applying consistency cuts the differences
between NLO and rescaled LO predictions increase also using Kpp→q̃Lq̃′R

as K-factor.
Consistency cuts are designed for the study of distributions relevant for parameter

determination, as the ones discussed in the previous section. However, they decrease the
cross sections, as can be seen comparing N (0)

2j+2l+ *ET
and N (0),cons. cuts

2j+2l+ *ET
, without adding

any obvious benefit in the context of searches. On the other hand, so far, we did
not discuss the different normalization of the LO and NLO distributions shown in
the previous sections. The values of Kcons. cuts

N2j+2l+ #ET
are exactly the ratios between the

normalization of the LO and NLO results. These values are smaller than the K-factors
obtained without consistency cuts. As discussed, such cuts are designed to solve the jet
combinatorial problems arising from the combination with the production process and
from NLO corrections. However, NLO corrections introduce combinatorial problems
only via real radiation, but not via loop corrections. Neglecting the combinatorial
problem due to the combination with production, consistency cuts reject only events
for the real radiation contribution, but not events taking into account loop corrections.
In this way, consistency cuts also reduce the positive contributions from real radiation
of a gluon or a quark and consequently reduce the resulting K-factors. Thereby, in
contrast to the case without consistency cuts applied, fully differential factorizable
corrections have to be taken into account for a precise estimation of NLO effects.
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Chapter 8

Conclusions

In this thesis we have discussed the calculation and the phenomenological impact of
higher-order corrections for two different types of processes involving the production
of massive particles at hadron colliders. We considered a SM process, top quark pair
production, and a class of MSSM processes, squark–squark production and decays. In
particular, we studied

• the electroweak contribution to the top quark forward-backward asymmetry at
the Tevatron,

• the contribution of the factorizable NLO QCD corrections in NWA to the pro-
duction of squark–squark pairs combined with subsequent squark decays, at fully
differential level.

In both the studies the phenomenological impact of the considered higher-order cor-
rections turned out to be relevant.

In the first study, our detailed analysis of the electroweak contributions to the
forward-backward asymmetry in top quark pair production showed that O(α2

sα) and
O(α2) terms of the cross section provide a non-negligible addition, with the same
overall sign, to the QCD-induced asymmetry. In this way, they enlarge the Standard
Model prediction for the asymmetry at the Tevatron by a factor ∼ 1.2, diminishing the
deviation from experimental measurements. The precise value of the factor depends
on the different definitions of the asymmetry and on applied cuts. However, the QED
part of the contribution from the O(α2

sα) term, which gives the largest part of the
electroweak corrections, can be calculated multiplying the QCD-induced contribution
from O(α3

s) cross section with a factor that does not depend on the definition of the
asymmetry and the possible applied cuts.

Taking into account these corrections, in recent analyses with a larger data set, the
3.5σ deviation from SM prediction previously observed by CDF collaboration for high
invariant masses of the top quark pair decreased to 2.5σ. Still, the dependence of the
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asymmetry on the invariant mass remains and is not in agreement with SM predic-
tions. This dependence of the forward-backward asymmetry could be an indication for
the presence of new physics below the TeV scale. However, the BSM models that are
designed to explain these deviations, must not considerably alter the SM predictions
for top quark pair cross section and the charge asymmetry at the LHC. Indeed, in
contrast to the case of the forward-backward asymmetry at the Tevatron, for these two
observables SM predictions are in good agreement with experimental measurements.
On the other hand, additional SM contributions to the prediction of the asymmetry
might arise from the O(α4

s) differential cross section, which has not been calculated yet.

In the second study we considered the production of squark–squark pairs combined
with two different decay configurations, which lead to two different experimental sig-
natures. Firstly, we studied squark–squark production with both the squarks decaying
directly into the lightest neutralino, which leads to the signature corresponding to 2
jets + missing transverse energy. Secondly, we studied the production of a left-handed
squark and a right-handed squark combined with two different decays: the right-handed
squark decaying directly into the lightest neutralino and the left-handed squark decay-
ing via the “golden decay chain”. In this way the emerging signature corresponds to
2 jets+ 2 leptons + missing transverse energy with the two leptons of opposite sign
and same flavor. In both cases we used the same theoretical framework, calculating
NLO QCD corrections in NWA and treating independently each flavor and chirality
configuration of the squarks, at the fully differential level.

In the first case, we studied inclusive cross sections, differential distributions for jet
observables, and experimental signatures with appropriate cuts. The NLO corrections
are important and generally not flat in phase space. Thus, precise limits on the sparticle
masses and model parameters cannot be in general obtained by rescaling LO predictions
with a global K-factor. Moreover, this rescaling leads to unrealistic results in the case
of compressed spectra. Also, in our calculation, the theoretical uncertainty at the level
of differential distributions is reduced.

In the second case, we focused on the impact of NLO corrections on invariant-
mass distributions that can be used, in case of discovery of supersymmetric particles,
for parameter determination. We observed that general shapes, besides smoothing of
edges and kinks and a shift towards smaller invariant masses, are not strongly altered.
This seems to be an universal behavior despite the strong dependence of shapes on the
parameter region. We also analyzed the impact of NLO corrections including decays on
the predictions for cut-and-count strategies used in discovery searches. The predictions
depend on the cuts applied and in general can be different from the results obtained
rescaling LO predictions with flat K-factors obtained from the cross section of just
production without decays and cuts included. However, in particular cases, results
obtained in this approximation can be in very good agreement with those from our
calculation, provided that only the contributing chirality configurations are included
in the calculation of the flat K-factor.



Appendix A

Separation of factorizable and
non-factorizable contributions

In this appendix, expanding the discussion in section 6.2.2, we explain in more detail
the structure of factorizable and non-factorizable contributions and show that these two
classes of contributions are independently gauge invariant. We also motivate and briefly
describe the general features of the techniques for the evaluation of non-factorizable
contributions. For completeness, and an easier reading of this appendix, we repeat
here Figure 6.4 and Figure 6.5 shown in chapter 6.

As said in section 6.2.2, part of the NLO corrections to the combined production
and decays of squark–squark pairs cannot be factorized into separate contributions to
the production and to the decays. Indeed, loop diagrams as, e.g., the one shown in
Figure A.1 involve interactions between quarks in the initial state and quarks emerg-
ing from squark decays. Analogously, for real gluon radiation, contributions as the one
from the interference of the diagrams in Figure A.2 cannot be expressed as a correc-
tion for either production or decays separately. However, considering the same two

Figure A.1: Loop connecting quarks in the initial and final state.
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(a) Initial-state radiation.

(b) Final-state radiation.

Figure A.2: Initial- and final-state real gluon radiation. Illustrative examples.

diagrams, the contributions from the separate squared diagrams of Figure A.2(a) and
Figure A.2(b) can be factorized into contributions to the production and to the de-
cays. Thus, the classification of factorizable and non-factorizable contributions has to
be done at the level of squared amplitudes. Moreover, considering diagrams with real
radiation of gluons from squarks, as e.g. the one shown in Figure A.3, or loop dia-
grams in which a gluon is connected to a squark propagator, the classification becomes
more involved. The interference between this kind of diagrams and another diagram
gives rise to both factorizable corrections to the production and the decays and to
non-factorizable corrections. Thus, the division of factorizable and non-factorizable
contributions cannot be based on a pure diagrammatical classification.

In general, the interference of real radiation diagrams and the interference of Born
and loop diagrams can be classified according to:

• factorizable terms,

• manifestly non-factorizable terms,

• non-manifestly non-factorizable terms.

The first group gives rise only to factorizable contributions and includes terms as, e.g.,
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Figure A.3: Real emission of a gluon from a squark.

the two separate squared diagrams in Figure A.2. The second group gives rise only
to non-factorizable corrections and contains terms as, e.g., the interference of the two
diagrams in Figure A.2. The third group includes terms that produce both factor-
izable and non-factorizable contributions, as, e.g, the interferences of the diagram in
Figure A.3 with the diagrams in Figure A.2. Since the Born diagram have no ambi-
guities, for virtual corrections this classification can be directly applied at the level of
loop diagrams.

Factorizable and non-factorizable contributions are separately gauge-invariant. This
can be shown in two different ways, according to [296, 297] or [298–300], where the
same problem has been studied for the case of the electroweak NLO corrections to
WW production, with W bosons decaying into fermions. The first approach, based
on [296, 297] appears more practical for performing calculations and obtaining phe-
nomenological predictions. The second approach, based on [298–300], provides a more
general classification of factorizable and non-factorizable terms and does not require
to specify every single contribution. Both approaches lead to well defined quantities,
and the final results differ only by terms beyond the intrinsic order of accuracy, i.e.,
O(αs) corrections to the LO in NWA, eq. (6.3), including only the leading terms in the
expansion in Γq̃/mq̃.

In the first approach, non-factorizable corrections are identified, inside the com-
plete set of NLO corrections to production and decay of squarks in Double-Pole-
Approximation (DPA)1, as part of the set complementary to the subset of factorizable
corrections evaluated in NWA.

NLO corrections to just the production of squarks are gauge invariant. Thus,
attaching tree-level diagrams for the decays to the diagrams for the squark–squark
production at NLO, a gauge-invariant subset of the complete set of NLO corrections

1In DPA, only contributions arising form diagrams with at least two squark propagators that can
potentially be on shell are taken into account.
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is generated. Analogously, NLO corrections to just the decay of a squark are gauge
invariant. Thus, attaching the corresponding diagrams to the tree-level diagram for
squark–squark production, another gauge-invariant subset of the complete set of NLO
corrections is generated. These two sets of corrections correspond to the terms explic-
itly shown in eq. (6.6) dropping NF , and form the gauge-invariant set of factorizable
corrections in NWA.

Since the complete set of NLO corrections to the entire process is gauge invariant,
the remaining contribution, complementary to factorizable corrections in NWA, is also
gauge invariant. This complement contains non-factorizable corrections, which in the
soft gluon limit, by allowing squarks to be on-shell, contribute to O(αs) corrections to
the LO cross section in NWA, eq. (6.3). In addition, this complement also contains
terms that contribute only to O(αs

Γq̃
mq̃

) corrections to the LO cross section in NWA,

but not to O(αs) corrections. Thus, non-factorizable corrections can be correctly taken
into account keeping in the complement only the contributions from non-manifestly
and manifestly non-factorizable terms and discarding the remaining contributions from
factorizable terms originating from off-shell configurations of the squarks and yielding
only O(αs

Γq̃
mq̃

) corrections.
The evaluation of the non-factorizable corrections can be performed keeping the

dependence on the gluon momentum only in infrared and collinear divergent terms
(soft-gluon approximation) and in the squark propagators2, and integrating the gluon
momentum in the full phase space. In this way, the O(αs) corrections to the LO in
NWA from non-factorizable contributions are correctly taken into account and their
practical evaluation is technically easier.

In this approximation, it is possible to express loop diagrams as tree-level diagrams
multiplied by a factor and a scalar loop integral. We illustrate the method for the
diagram in Figure A.1, yielding:
∫

d4q

(2π)4
ū(p3)(−i)gst

Aγµ(−i)
p/3 − q/

(p3 − q)2 −m2
q

V q̃qχ̃0
1

−i

(k1 − q)2 −m2
q̃ + imq̃Γq̃

V g̃qq̃Mout

× (−i)
p/1 − q/

(p1 − q)2 −m2
q

(−i)gst
Aγµ

−i

q2 − λ2
u(p1) −−−−→

ū(p3)V
qq̃χ̃0

1
−i

k2
1 −m2

q̃ + imq̃Γq̃
V qq̃g̃Moutu(p1)× [(k2

1 −m2
q̃ + imq̃Γq̃) 4p3 · p1 Fcolor]

× i

∫

d4q

(2π)4
1

q2 − λ2

1

2p3q − q2
1

2p1q − q2
1

(k1 − q)2 −m2
q̃ + imq̃Γq̃

. (A.1)

In eq. (A.1), V q̃qχ̃0
1 and V g̃qq̃ are the q̃qχ̃0

1 and g̃qq̃ vertices, Fcolor is a color factor3 and
Mout is the part of the amplitude not involved in the loop. The third line presents

2In [296], the analogous approximation for the photon momentum in electroweak corrections is
called Extended-Soft-Photon-Approximation (ESPA). The only difference with the standard SPA is
the presence of the photon momentum in the resonating intermediate propagators.

3If q̃ = q̃′, two diagrams are present at tree level and Fcolor can vary in the different interferences.
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the tree-level amplitude multiplied by a factor, and the fourth line is a scalar loop
integral as another factor. Thus, the contribution to the cross section originating from
this diagram can be written as the LO cross section with a multiplicative correction
including a scalar loop integral. Similar arguments apply to the other loop diagrams.

This approximation can be used also to evaluate the real radiation. The contri-
bution from the interference of two diagrams can be again written as the LO cross
section with a multiplicative correction including a scalar integral. In this case, the
scalar integrals contain integrands with the same structure as in the loop case, but the
integration is performed on d3-q

(2π)32Eq
. When loop and real radiation integrals are com-

bined, the dependence on mq and on λ, regulating collinear and infrared divergences,
analytically cancels.

The second strategy consists in splitting the amplitudes into gauge-invariant terms
and using them to classify factorizable and non-factorizable contributions in the squared
matrix elements. For simplicity we start the discussion considering the real gluon
radiation contribution, virtual corrections are discussed afterward.

As previously said, the classification of factorizable and non-factorizable contribu-
tions is at the level of squared amplitudes and is obtained in a non-diagrammatic way.
Thus, also the gauge-invariant subsets in the real gluon emission amplitude cannot fol-
low a diagrammatic classification. In order to divide the amplitude into gauge-invariant
terms, we start applying the DPA. In this approximation also the contributions from
diagrams with gluon emission from a squark, as in Figure A.3, are included. The emis-
sions of a gluon from squarks are the problematic part, since we cannot define them
as a correction to the initial or final state. They can, however, be decomposed into
two parts and combined with initial- or final-state emission. In this way the real gluon
radiation amplitude is divided into three gauge-invariant terms.

The key point is splitting the product of the squark propagators attached to the
gluon, as e.g. in Figure A.3, into a sum of two propagators, as was already discussed
in [301]. Ignoring, for a moment, couplings and color factors, this product of the two
propagators and the q̃q̃g vertex can be written as

2kµ
1 + qµ

[k2
1 −m2

q̃ + imq̃Γq̃][(k1 + q)2 −m2
q̃ + imq̃Γq̃]

=

=
2kµ

1 + qµ

2k1q

( 1

[k2
1 −m2

q̃ + imq̃Γq̃]
−

1

[(k1 + q)2 −m2
q̃ + imq̃Γq̃]

)

, (A.2)

where k1 is the sum of the momenta of the neutralino and the quark from the decay of
the squark and q is the momentum of the emitted gluon. The two terms in the second
line of eq. (A.2) are respectively similar to the corresponding contributions from a
gluon emitted from initial- or final-state quarks. Indeed, in an emission of a gluon
from the initial state, as e.g. in Figure A.2(a), the quark propagator introduces in the
Born amplitude a term (p/1 − q/)γµ/(−2p1q), where p1 is the momentum of the initial-
state quark. Including also the first squark propagator, the change in the amplitude
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corresponds to the term

(p/1 − q/)γµ

(−2p1q)[k2
1 −m2

q̃ + imq̃Γq̃]
. (A.3)

Analogously, with an emission of a gluon from the final state, as e.g. in Figure A.2(b),
the quark propagator introduces in the Born amplitude a term (p/3+q/)γµ/(2p3q), where
p3 is the momentum of the final-state quark. In addition, the momentum of the squark
is shifted to k1 + q, leading to a change in the amplitude

γµ(p/3 + q/)

(2p3q)[(k1 + q)2 −m2
q̃ + imq̃Γq̃]

. (A.4)

A term in the amplitude for the qq′ → q̃q̃′g process is gauge invariant if it vanishes for
longitudinally polarized gluons. When the index µ is contracted with qµ, the sum of
the term in (A.3) and the first term in the r.h.s of eq. (A.2) and the sum of the second
term of the r.h.s of eq. (A.2) and the term in (A.4) separately vanish between external
spinors,

{ (p/1 − q/)γµ

(−2p1q)[k2
1 −m2

q̃ + imq̃Γq̃]
+

2kµ
1 + qµ

2k1q

1

[k2
1 −m2

q̃ + imq̃Γq̃]

}

qµ →

→
−1 + 1

[(k1 + q)2 −m2
q̃ + imq̃Γq̃]

= 0 ,

(A.5)
{

−
2kµ

1 + qµ

2k1q

1

[(k1 + q)2 −m2
q̃ + imq̃Γq̃]

+
γµ(p/3 + q/)

(2p3q)[(k1 + q)2 −m2
q̃ + imq̃Γq̃]

}

qµ →

→
−1 + 1

[k2
1 −m2

q̃ + imq̃Γq̃]
= 0 .

Thus, the amplitude Mreal for qq′ → q̃q̃′g can be written as,

Mreal = Mreal,prod +Mreal,decay1 +Mreal,decay2 . (A.6)

In Mreal,prod we include all the contributions from initial-state emission and contribu-
tions from the intermediate emission, as the first term in the second line of eq. (A.2).
In Mreal,decay1 we include the contribution of the emission from the quark of the decay
in the upper part of the diagram and contributions from the intermediate emission
from the squark in the upper part of the diagram, as the second term in the second
line of eq. (A.2). In the same way, in Mreal,decay2 we include the emission from the
quark of the decay in the lower part of the diagram and contributions as the second
term of eq. (A.2) for the emission from the squark in the lower part of the diagram.
The analogue formulae for this case can be obtained with the replacements p1 → p2,
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p3 → p5, k1 → k2 in formulae (A.2)-(A.4). Thus, according to eq. (A.5), the three
terms Mreal,prod, Mreal,decay1 and Mreal,decay2 are gauge invariant.

Squaring Mreal, we get

|Mreal|2 = |Mreal,prod|2 + |Mreal,decay1|2 + |Mreal,decay2|2+
2Re(Mreal,prod,M∗

real,decay1) + 2Re(Mreal,prod,M∗
real,decay2)+

+2Re(Mreal,decay1,M∗
real,decay2) . (A.7)

The factorizable contributions originate from the first three squared terms of eq. (A.7).
Each one of the terms Mreal,prod, Mreal,decay1 and Mreal,decay2 is the sum of contribu-
tions that contain the same two resonating squark propagators. Thus, factorizable
corrections contain two Breit-Wigner distributions for the squark momenta and can be
calculated in NWA, setting squarks on-shell. The non-factorizable corrections originate
from the remaining interference terms of eq. (A.7). In contrast to non-factorizable cor-
rections, they do not contain two Breit-Wigner distributions for squark momenta and
thus cannot be calculated in NWA.

For simplicity, we skipped in the previous discussion the effect of color matrices.
Including them, we would not get zero in the second equation in (A.5). The color
structure of gluon radiation from a squark is equal to the case of gluon radiation
from the quark emerging from its decay, but not to the case of the radiation from a
quark in the initial state. Moreover, for fixed external momenta, the momentum of
the gluino is different when a gluon is radiated from the upper part of the diagram,
as in Figure A.2 and Figure A.3, or from the lower part. However, this mismatch of
the gluino momentum and the different color structures are compensated by including
gluon emission from the gluino in Mreal,prod.

The evaluation of the non-factorizable contributions from real gluon radiation can
be performed, as in the first strategy, in the soft-gluon approximation and keeping the
dependence on the gluon momentum in the propagators of the intermediate resonating
squarks. Every contribution from the different diagrams can be expressed as the Born
amplitude, with an additional SU(3)C color matrix from the emission vertex, multiplied
by an eikonal soft factor. This factor has to include the possible modification induced
by the gluon momenta in the squark propagator. For illustration, we explicitly show
how the contributions of diagrams in Figure A.2, named respectively Mµ,A

ini and Mµ,A
fin ,

are expressed in this approximation,

Mµ,A
ini = −igsMA

Born

2pµ1
2qp1

,

Mµ,A
fin = −igsM′A

Born

2pµ3
2qp3

k2
1 −m2

q̃ + imq̃Γq̃

(k1 + q)2 −m2
q̃ + imq̃Γq̃

. (A.8)

In eq. (A.8) A is the color index of the radiated gluon and MA
Born is the Born amplitude

with a matrix tA inserted before the upper qq̃g̃ vertex; in the case of final-state radiation
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the matrix is inserted after the vertex, yielding M′A
Born. The two contributions arising in

eq. (A.2) from the splitting of gluon emission from squarks can be written in an analogue
way. Squaring the amplitudes, the non-factorizable contribution from real radiation
can be again expressed as the LO cross section multiplied by a factor. This factor
consists in the integration in d3-q

(2π)3Eq
of the interferences of all the q-dependent terms in

this approximation, as, e.g., the ones explicitly shown in eq. (A.8). For example, the
structure of the integrand generated by Mµ,A

ini (MB
fin,µ)

∗ yields a multiplicative factor
that, besides some signs, is equal to the one explicitly shown in eq. (A.1).

In the case of virtual corrections, the loop amplitude can be divided into two gauge-
invariant terms, yielding respectively the factorizable and non-factorizable contribu-
tions. As mentioned before, loop diagrams can be divided into: factorizable (loops
not involving squark propagators), non-manifestly non-factorizable, and manifestly
non-factorizable. This division is not gauge invariant, but every non-manifestly non-
factorizable diagram, involving interactions of squarks and gluons, can be split into a
factorizable contribution and a non-factorizable contribution. This splitting can be ob-
tained using the equivalent of relation eq. (A.2) for loop diagrams, in which in general
q2 "= 0,

2kµ
1 + qµ

[k2
1 −m2

q̃ + imq̃Γq̃][(k1 + q)2 −m2
q̃ + imq̃Γq̃]

=

=
2kµ

1 + qµ

2k1q + q2

( 1

[(k1 + q)2 −m2
q̃ + imq̃Γq̃]

−
1

[k2
1 −m2

q̃ + imq̃Γq̃]

)

(A.9)

and a similar relation for the second squark. Contracting qµ with the gluon propagator
in the loop, the terms proportional to 1/(k2

1 −m2
q̃ + imq̃Γq̃)× 1/(k2

2 −m2
q̃′ + imq̃′Γq̃′),

produce factorizable corrections. Indeed, these terms with, outside the loop, the same
propagators as the Born amplitude produce Breit-Wigner distributions in their contri-
bution to the virtual corrections. The remaining terms produce non-factorizable contri-
butions. Once non-manifestly non-factorizable diagrams are split into factorizable and
non-factorizable contributions, all the factorizable and non-factorizable contributions
in the loop amplitude can be arranged to yield two gauge-invariant classes.

The integrand in the loop amplitude can also be expressed in the soft-gluon ap-
proximation, keeping the dependence of squark propagators on the gluon momentum.
Integrating over the full gluon momentum, the loop amplitude can be written as the
Born amplitude multiplied by a factor containing a scalar loop integral, as shown in
eq. (A.1).

In general, the integrands present the same structures of those entering the soft
factor integral in the real-radiation contribution. However, in this case the integration
is performed, as usual, in d4q

(2π)4 .
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Diagrams of NLO corrections

Here, we display all relevant loop diagrams involved in our NLO calculation of squark–
squark production.
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Figure B.1: Loop diagrams contributing only for squarks with equal flavor.
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Figure B.2: Loop diagrams contributing to all flavor and chirality structures of squark–
squark production.
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Figure B.3: Counterterms diagrams. The first three diagrams are always present, the
remaining diagrams appear only for squarks with the same flavor.
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Appendix C

Counterterms and renormalization
constants

In this appendix we specify the renormalization counterterms used to eliminate the UV
divergences stemming from the calculations of the virtual contributions discussed in
chapter 6. As said, for squarks of the first two generations, assuming massless quarks,
left–right mixing can be neglected and thus squark gauge eigenstates are also mass
eigenstates. We denote, as usual, the chirality of a squark with an index a = L,R,
which, in this appendix, is used also to specify the chirality of quarks.

The Feynman rules for the counterterms entering our calculations can be expressed
via the field renormalization constants of quarks, squarks, gluons, and gluinos,

q bare
ia = q ren

ia

(

1 +
1

2
δZqia

)

, q̃ bare
ia = q̃ ren

ia

(

1 +
1

2
δZq̃ia

)

,

G bare
µ = G ren

µ

(

1 +
1

2
δZG

)

, g̃ bare = g̃ ren

(

1 +
1

2
δZg̃

)

, (C.1)

and via the renormalization constants for the strong coupling gs, for the strong Yukawa
coupling ĝs, and for the squark and gluino masses,

g bare
s = g ren

s (1 + δZgs) , ĝ bare
s = ĝ ren

s (1 + δZĝs) ,

m2 bare
q̃ia = m2 ren

q̃ia + δm2
q̃ia , m bare

g̃ = m ren
g̃ + δmg̃ . (C.2)

Since there is no gluon in the tree-level amplitudes, δZG and δZgs are not explicitly
involved in our calculations. However, Slavnov-Taylor identities relates δZgs and δZĝs

via eq. (6.20) and also δZG and δZgs via the relation

δZG = 2δZgs . (C.3)

As said in section 6.4.2, eq. (6.20) is due to supersymmetry and it is valid at NLO
QCD in the MS scheme, whereas eq. (C.3) is due to the SU(3)C gauge symmetry.
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The expressions of the counterterms, that are relevant for our calculation of NLO
QCD corrections to squark–squark production and q̃ia → qiχ̃0

j squark decays, are given
in the following,

• Gluino self energy counterterm:

g̃

g̃
= i[(p/−mg̃)δZg̃ − δmg̃]

• Vertex counterterms:

qi

g̃

qia˜

= −i gs√
2
[ ( δZq̃ia + 2δZĝs + δZg̃ + δZqiL ) δaL PL−

( δZq̃ia + 2δZĝs + δZg̃ + δZqiR ) δaR PR ] tC

qi

g̃

qia˜

= i gs√
2
[ ( δZq̃ia + 2δZĝs + δZg̃ + δZqiR ) δaR PL−

( δZq̃ia + 2δZĝs + δZg̃ + δZqiL ) δaL PR ] tC

qi

χj
0˜

qia˜

= ie[Aj
−(qi) (δZq̃ia + δZqiL)δaL PL+

Aj
+(qi) (δZq̃ia + δZqiR)δaR PR]

qi

χj
0˜

qia˜

= ie[Aj∗
+ (qi) (δZq̃ia + δZqiR)δaR PL+

Aj∗
− (qi) (δZq̃ia + δZqiL)δaL PR]

qj

χk˜

qia˜

= −ieBk(qj)
2sW

(δZq̃ia + δZqjL)δaL PL

qj

χk˜

qia˜

= −ieBk∗(qj)
2sW

(δZq̃ia + δZqjL)δaL PR

The vertices involving neutralinos are defined via the quantities

Aj
+(qi) =

1√
2

QqiNj1

cW
, Aj

−(qi) = −
1√
2

(

1

6

N∗
j1

cW
+ T 3

qi

N∗
j2

sW

)

, (C.4)

where Nij is the mixing matrix of the neutralinos introduced in eq. (5.10) and, again,
sW and cW denote respectively the sine and the cosine of the electroweak mixing angle
θW . The terms PL and PR respectively indicate the left-handed projector (1 − γ5)/2
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and the right handed projector (1+γ5)/2. The vertices involving charginos are defined
via the quantities Bk(qj), which can be expressed in terms of the mixing matrices U
and V (see eq. (5.11)) of the chargino sector: Bk(qj) = U∗

k1 for up-type quarks and
Bk(qj) = V ∗

k1 for down-type quarks. In the calculation of Feynman rules involving Ma-
jorana particles, the prescription of Ref. [302] has been used; the arrows in the quark
lines indicate the fermion flow.

The renormalization constants of the squark sector are fixed by on-shell conditions
(see also Ref. [303, 304]),

δZq̃ia = −Re

{

∂Σq̃ia(p
2)

∂p2

}

∣

∣p2=m2
q̃ia

, δm2
q̃ia = Re

{

Σq̃ia(m
2
q̃ia)
}

,

δZq̃ja = −Re

{

∂Σq̃ja(p
2)

∂p2

}

∣

∣p2=m2
q̃ia

, δm2
q̃jR

= Re
{

Σq̃jR(m
2
q̃jR

)
}

, (C.5)

where in eq. (C.5) the pair of indices (i, j) are from a SU(2)L doublets and Σq̃ia is the
self energy of the squark q̃ia. Due to SU(2)L invariance, the mass counterterm of the
left-handed down-type squark is a dependent quantity,

δm2
q̃jL

= δm2
q̃iL

(C.6)

The field renormalization constants of the quarks are obtained in on-shell scheme
as follows [124],

δZqia = −Re
{

Σa
qi(m

2
q)
}

−m2
qRe

{

∂

∂p2
(

ΣL
qi(p

2) + ΣR
qi(p

2) + 2ΣS
qi(p

2)
)

}

∣

∣p2=m2
q

(C.7)

via the scalar coefficients in the Lorentz decomposition of the self energy,

Σ(p2) = p/PLΣ
L(p2) + p/PRΣ

R(p2) +mqΣ
S(p2). (C.8)

In our calculation we considered massless quark, however, in eq. (C.7) we assumed the
mass of the quark equal to the regulator parameter mq, in order to regulate collinear
singularities. Analogously, the infrared singularities are regularized via the fictitious
gluon mass λ.

Finally, also in the gluino sector the renormalization constants are determined by
on-shell conditions,

δmg̃ =
1

2
Re
{

mg̃ (Σ
L
g̃ (m

2
g̃) + ΣR

g̃ (m
2
g̃) + 2ΣS

g̃ (m
2
g̃))
}

, (C.9)

δZg̃ =−Re
{

ΣL
g̃ (m

2
g̃)
}

−m2
g̃ Re

{

∂

∂p2
(

ΣL
g̃ (p

2) + ΣR
g̃ (p

2) + 2ΣS
g̃ (p

2)
)

}

∣

∣p2=m2
g̃

.
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Appendix D

Comparison between local and
global DS schemes

In this appendix, expanding the discussion in section 6.4.3, we analyze in more detail
the differences between the implementations of the DS scheme in the global approach,
as indicated in eq. (6.38), and in the local approach, as used e.g. in [33,276,277]. In the
following, we consider the contribution from the resonant diagrams of Figure 6.12(a),
however, the same arguments apply also to the other contributions from resonant
diagrams.

In a notation similar to the one of appendix B.1 of [33], where the DS scheme in the
local approach was introduced, the contribution to the partonic cross section emerging
from these diagrams of Figure 6.12(a) can be written as

σ̂ =

∫ q2max

m2
q̃ia

dq2
f(q2)

(q2 −m2
g̃)

2 +m2
g̃Γ

2
g̃

, (D.1)

where f(q2) is the differential cross section in q2 (the squared invariant mass of q̃ia and
qi) without the squared gluino propagator. Given the squared total energy s in the
partonic center-of-mass frame, the maximum allowed value for q2 is q2max = (

√
s−mq̃jb)

2.
In the global approach the contribution from on-shell q̃jbg̃ production is subtracted

by substituting σ̂ with

∆σ̂Global = σ̂ − σ̂q̃jbg̃
Γg̃→q̃ia

Γg̃
, (D.2)

i.e. subtracting exactly the total cross section for on-shell production of q̃jbg̃ multiplied
by the branching ratio of g̃ → q̃iaqi.

In the local approach, before phase-space integration, f(q2) evaluated in the on-shell
gluino configuration

f(m2
g̃) = σ̂q̃jbg̃

mg̃Γg̃

π

Γg̃→q̃ia

Γg̃
(D.3)
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is subtracted in the numerator of the integrand of eq. (D.1),

∆σ̂Local =

∫ q2max

m2
q̃ia

dq2
f(q2)− f(m2

g̃)

(q2 −m2
g̃)

2 +m2
g̃Γ

2
g̃

:= σ̂−I , with I =

∫ q2max

m2
q̃ia

dq2
f(m2

g̃)

(q2 −m2
g̃)

2 +m2
g̃Γ

2
g̃

.

(D.4)
In this parton level example the integral I can be analytically calculated. Formg̃ > mq̃ia

and
√
s > mg̃ +mq̃jb , i.e. in the region where the subtraction is required, it yields

I =
f(m2

g̃)

Γg̃mg̃

[

arctan

(

q2max −m2
g̃

Γg̃mg̃

)

− arctan

(

m2
q̃ia −m2

g̃

Γg̃mg̃

)]

(D.5)

= σ̂q̃jbg̃
Γg̃→q̃ia

Γg̃

[

1−
Γg̃mg̃

π

(

q2max −m2
q̃ia

(q2max −m2
g̃)(m

2
g̃ −m2

q̃ia
)

)]

+O(Γg̃) .

Comparing in this way the global and local approach for the DS subtraction we find

∆σ̂Global −∆σ̂Local = −σ̂q̃jbg̃Γg̃→q̃ia

mg̃

π

(

q2max −m2
q̃ia

(q2max −m2
g̃)(m

2
g̃ −m2

q̃ia
)

)

+O(Γg̃) , (D.6)

where the leading term is O(1) in the expansion in Γg̃. Hence, even in the limit Γg̃ →
0, the two approaches differ by a finite term depending on the physical phase-space
boundaries, see also [305]. This can be understood from the fact that the approximation
of the Breit-Wigner distribution mg̃Γg̃/[(q2−m2

g̃)
2+m2

g̃Γ
2
g̃] → πδ(q2−m2

g̃), i.e. eq. (6.1),
in the integrand of I is strictly valid only for an integration over the entire real axis,
where

∫ ∞

−∞
dq2

mg̃Γg̃

(q2 −m2
q̃)

2 +m2
q̃ Γ

2
q̃

= π . (D.7)

However, if the decay products of q̃ are not massless, the integration cannot be per-
formed over the entire real axes. Moreover, the result in eq. (D.6) can be altered if
the mapping q2 → m2

g̃ in the local subtraction is performed before the integration of
the other phase-space variables. This mapping is not uniquely defined and can lead to
further differences. Indeed, the set of Lorentz invariant variables used, in addition to
q2, to write the cross section is not unique. Practically, the mapping consists in setting
q2 equal to m2

g̃ and keeping fixed the remaining Lorentz-invariant variables. However,
as said, a different set of variable can also be used and thus, in general, different results
can be obtained.

At the hadronic level the numerical differences between the two approaches can
be of the order of a few per mill of the on-shell q̃jbg̃ production. Thus, depending on
the parameter region, few per-cent differences can appear for the q̃iaq̃jb NLO relative
corrections. For example, for SPS1a and

√
S = 14 TeV, corrections for the d̃Rd̃R cross

section arising from eq. (D.6) amount to 0.08% of σ(0)

d̃R g̃
and to 1.9% of σ(0)

d̃Rd̃R
, since

σ(0)

d̃R g̃
/σ(0)

d̃Rd̃R
≈ 23.



167

For different flavor and chirality configurations these corrections vary. Typically,
the relative difference between global and local DS schemes are enhanced for processes
with non-valence quarks in the LO partonic subprocess qiqj → q̃iq̃j . However, the
contribution from these processes are smaller than in the case with valence quark in
the initial state.

Finally, we want to note that both the local and the global approach can be extended
to a fully differential level.
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