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Abstract

This article introduces a novel distributed controller mgeh for networked control sys-
tems (NCS) to achieve finite gaif stability independent of constant time delay. The
distributed controller is alternatively interpreted asirear transformation of the input-
output space of the controller and the plant, and in factesgmts a generalization of the
well-known scattering transformation. The main resultthaf article are a) a sufficient sta-
bility condition for general multi-input-multi-output (NMO) input-feedforward-output-
feedback-passive (IF-OFP) nonlinear systems and b) a sexgeand sufficient stability
condition for linear time-invariant (LTI) single-inputrgle-output (SISO) systems. The
performance advantages in terms of sensitivity to timeydatal steady state error are dis-
cussed in comparison with alternative delay-independmiatlgain type approaches. Sim-
ulations verify the superiority of the proposed approachrt@.QR controller for zero time
delay without the proposed transformation and to a deldgpendent small gain based
controller.
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1 Introduction

In networked control systems (NCS) the spatially separptadt and controller
are connected through a communication network. (Tipsuwa@m&w 2003, Hristu-
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Varsakelis & Levine 2005, Antsaklis & Baillieul 2007) pra\a excellent overviews
on the field. The motivation for replacing the classical pagipoint control ar-
chitecture by an NCS also originates from its flexible reqgunfation capabilities:
Plant and controller nodes can be added or removed withaliti@ual wiring ef-
fort. The number of active nodes sharing the communicati@moel has an effect
on the communication parameters in terms of communicatioa tlelay, packet
loss, and available communication bandwidth. In consecgigihese communica-
tion parameters are, in general, not exactly known duriegtintroller design.

In this work the problem of unknown, constant time delay idradsed. It is well-
known that time delay in a control loop degrades the perfocaand can lead to
instability. Time delay system approaches are classifierldelay-dependent and
delay-independent approaches, see (Richard 2003, Guitéihar & Chen 2003)
and the references therein for a concise overview and inttozh to the rich litera-
ture of time delay systems. While mostly state-space ajgpessare considered, the
input-output approaches in (Georgiou & Smith 1992, BonndRaitington 1999)
assume the time delay to be known, i.e. they are delay-depéendput-output ap-
proaches with uncertain time delay are considered in (Hale&uyn Lunel 1993,
Miller & Davison 2005), however, they are suited only fordar systems. The clas-
sical small gain result (Khalil 1996), applicable also tmgel nonlinear systems,
is known to be rather conservative. For example, systentsamtintegrator in the
open loop do not satisfy the small gain condition. In consege, the steady state
tracking performance to a reference input is rather poor.

The main contribution of this work is the analysis and desifra distributed
controller to achieve input-output stability of nonlinesystems in the presence
of unknown constant time delay. In contrast to most of therditure in NCS we
propose to use the limited computational power availabtbaplant side for the
implementation of some low order control action. Specilycal linear static input-
feedforward-output-feedback controller is introducethatplant side and a similar
modification at the controller. The controller is assumebdalesigned in advance
without considering the time delay. The additional con&ralions can also be in-
terpreted as a linear transformation of the variables tatiesd over the network:
Instead of the original plant and controller outputs a Ims@anbination of the re-
spective inputs and outputs is communicated.

The proposed approach can be applied to input-feedforaatplt-feedback-passive
(IF-OFP) nonlinear plants and controllers. It is based abisty concepts in lines
with the seminal works (Zames 196Zames 1966) where conditions for the
open-loop behavior of feedback components are providedgharantee input-
output stability of the feedback interconnection. The nraisult is stated as fol-
lows: “If the open loop can be factored into two suitably pydpned, conic rela-
tions then the closed loop is bounded-input-bounded-astaible.” Here, by the
IF-OFP assumption we require that the open loop systemstomgiof a plant and
a controller butwithout time delaycan be factored into such suitable conic sec-



tors. The proposed input-output transformation then éxaceserves the IF-OFP
property of the plantith arbitrarily large constant time delayAs a result ev-

ery controller-plant pair, which is stable without the netivbased on the IF-OFP
assumption, is also stable with the netwurikh arbitrarily large constant time de-
lay and the proposed transformation. The result is constrigtith respect to the
transformation.

The proposed approach has convincing performance adwswagr standard small
gain approaches such as zero steady state error and lowi\sgng time delay,
which are discussed in this article for LTI SISO systems.eNbat the controller
design consists of two steps: The original controller faozgme delay is modi-
fied by the proposed transformation to stabilize in the presef arbitrarily large
constant time delay. Accordingly, the controller for zeirnda delay can be tuned
rather aggressively compared to the standard small gamagip. Combined with
low sensitivity to time delay this results in good trackingrfermance over a large
range of time delay values.

The proposed approach builds on ideas analogous to thersiegttransforma-
tion (Anderson & Spong 1989, Niemeyer & Slotine 1991), whisHrequently
used in force feedback telepresence applications. Howenthin this framework
the subsystems are required to be passive. IF-OFP systpraseat a substantially
larger class, with passive systems as a special case. Isethé, the proposed ap-
proach in this article represents a generalization to théestng transformation.
Preliminary work of the same authors apply the scatteriagsiormation for the
first time to non-passive LTI NCS with arbitrary constant dimelay (Matiakis,
Hirche & Buss 2005) and to NCS with IF-OFP subsystems in (dadti, Hirche
& Buss 2006). A less conservative result is presented heng asgeneral input-
output transformation.

The remainder of this article is organized as follows: Int®ecll the background
on IF-OFP systems and finite gaitp stability is presented, followed by the prob-
lem setting in Section Ill. The stability conditions togethvith a geometrical inter-
pretation are presented in Section IV. Performance isseatiscussed in Section V
and validated through a numerical example in Section VI.

2 Background

Notation. Let_£77 denote the extendet, space of time functions of dimensiom
with support on[0, ). The notation ||u|| stands for theZ, norm of a piecewise
square-integrable functiom’-) : R, — R™ with R, being the set of non-negative
real numbers an®™ the Euclidean space of dimensionThe truncation ofi(-) up

to the timet is denoted by (-). The inner product of the truncated signalsy; is
denoted by(u,y), hencel|w||? = (u,u). TheHs, norm of a transfer functio(s)



is denoted by|G||». M > 0 means that the matrid is positive definitej stands
for the unit matrix.

In this article the dynamical systems are considered fronmpat-output point
of view as causal input-output mapping operators” — % with h(t <0)=0
and% C Z5) representing the admissible input space &ndccordingly the out-
put space. The system is supposed to be well defined in the seasto each
element inZ/ an element ir? is associated.

2.1 IF-OFP Systems

Input-feedforward-output-feedback-passive systemaagecial class of dissipa-
tive systems. Recall that a dynamical systen — % is called dissipative with

respect to the supply ragtu,y) if for each admissible € %7 and each > 0
t

[stuydr=o @

0
holds, refer to (Willems 1972 Willems 1972, Hill & Moylan 1976) for more de-
tails. Often, e.g. in (Willems 1914}, a quadratic supply ragéu,y) = z' Pzwith z' = [u ]

p=| S], @
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is considered. With the special cholQe= -0, R=—¢€l,S=nl,d,e € R, n = %
IF-OFP systems are characterized.

Definition 1 A dynamical system:w — % is called input-feedforward-output-
feedback-passive (IF-OFP) if for each admissible @ and each £ 0

(U Y)t > Olw|*+ el | 3)

Note that the IF-OFP property represents a generalizafidregassivity concept.

If 6 =¢ =0 the system is called passivedf= 0 ande > 0 the system is called

output-feedback strictly passive andif> 0 ande = 0 the system is called input-
feedforward strictly passive. If one or both of the valdes are negative there is a
shortage of passivity.

2.2 Finite Gain.¥, Stability

Among the variety of stability notions we consider finiterg&f, stability in this ar-
ticle, which is another special case of quadratic dissifigtivith S= 0,R=1,Q = —y?l,y e R,.

Definition 2 (Khalil 1996) A dynamical system ¥/ — % is called finite gain%,
stable if there exists a constape R, such that for each admissibleau7 and



each te [0, )

el < lluell- (4)
Finite gain.%, stability of a feedback interconnection can be concludethfthe
IF-OFP properties of its subsystems. Consider two IF-OFfesysh, andh, sat-
isfying (3) with &, &, 1 € {p,c}.

Proposition 1 (Khalil 1996) The negative feedback interconnectiongdhd h: is
finite gain. %, stable if

E&+0p>0 and Ep+ o > 0. (5)

Clearly, some of thé, & can be negative if compensated by appropriate positive
values. Within the passivity formalism this can be intetpdeas balancing shortage
of passivity with excess of passivity between subsystems.

3 Problem Setting

We consider a system comprising a plagt %, — %, and a controlleh; : & — %
as mappings from the plant inpug € %, C .Z5 to the plant outpuyp € %, C 250
and from the control err@ e & C .Z;0 to the controller outpwic € #c C £, The
control error is defined as=w—uc; wherew € 7 C 231 is the reference input,
see Fig. 1 for visualization. The blocké and its inversavl 1 represent the trans-
formation which is introduced later. Without them the plandirectly connected
with the controller through a communication network.

The network is modelled as a forward time delay operhipi(controller to plant

channel) and backward time delay operdtgr (plant to controller channel) with

time delaysl; andT,, respectively. The input-output relations are givertnfy: uy (t) = u(t —Ty)
andhr, : vi(t) = v (t —Ty). Itisassumed thaf (t) = 0 Vt € [—Ty,0] andv, (t) = 0Vt € [-T2,0].
The time delayd1,T> € R, are assumed to be constant but unknown.

Without any further control measures the closed loop systémtime delay can
be unstable. This can easily be verified, as shown in (Ande$sSpong 1989) in
the example of passive subsystems. In order to addresstinikem we propose to
transmit a linear transformation of the plant input-outpecttorz, = [u} y;] over
the plant-to-controller channel instead of directly trating the plant output. The
righthand side transmitted valugs = [u] V]|, see Fig. 1, are related to the plant
input-output via the transformation matiig € R2™<2m

S = Mz,. (6)
Equivalently stated, a static output-feedback-inputifeavard controller is in-
serted at the plant side leading to a distributed contr@tehitecture. To avoid
confusion in the remainder of this article we will refer te ttatic output-feedback-

input-feedforward controller as the transformatidn The controllerh; is analo-
gously modified, i.e. the relation between the original oolfer input-output vec-
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Fig. 1. NCS with input-output transformation.

torzl = [yl ul] with z; € % x % and the lefthand side transmitted valsks= [ul V']
is given by § =Mz ‘ ((Q)
Note that forM = | the standard approach without transformation/ local @ntr
at the plant side is recovered. For a specific choic&lpfas discussed later, the
scattering transformation is recovered guaranteeinglisyebr passive subsystems
hp andh¢ with arbitrarily large constant time delay.

Throughout the article we assume that the closed loop syistergll posed, i.e. for
each input signal € 7 there exists a unique solution for the sigrals, yc, U, Vi,

Ur, Vr, Up, Yp that causally depends am Note, that this implies the invertibility of
the matrixM as otherwise for a solution af,v,uy,Vv; there are several equiva-
lent solutions forp, yp, Uc, Yc. For further reference we define the following three
subsystemsz = hy(uy), uc = ha(yc), andu; = hz(vj,w), see Fig. 1.

4 Conditions for Delay-Independent Stability
4.1 Delay-independent stability for IF-OFP systems

Without loss of generality we can assume that the dissipaiparameters of ev-
ery considered IF-OFP systedne,n belong to the domaif2 = Q1 U Q» with
Q1=1{08,,n €R|6s—n? <0} andQ, = {4,£,n € R|6c—Nn?=0;3,£ >0}, or
equivalently that the dissipativity matriX(2) has eithem negative andn positive,

or m negative anan zero eigenvalues. For a proof, see Lemma 1 in the appendix.
Where it is non-ambiguous, the time argumeistdropped.



Throughout this section we make the following assumption:

Al Planth, and controlleh; are IF-OFP withd;, & wherei € {p, c} satisfying (5),
i.e. the negative feedback interconnectieithout time delays finite gain.#%
stable.

For subsequent derivations the transformation maris decomposed into a rota-
tion matrixR and matrixB, i.e.

cosB! sindl T T
M:RB7 R= ’ 96[__7_]' (8)
—sindl cosOl 22
b1l byol
B_ 111 D12 ,
b1l bool

with by1,b12,b21,b22 € R and deB # 0. For the following stability result only the
rotationR is crucial. The matriXB gives an additional degree of freedom for per-
formance design aspects. The overall system is decomposedhie feedback-
interconnected subsysterhg and hy, with the latter defined by = hx(y¢) and
comprises the plarttp, the forward and backward time delay operators, and the
right and left transformations! andM ™1, see Fig. 1. The subsystem can be
shown to be IF-OFP. In fact, the following theorem gives 1sseey and sufficient
conditions for theexactpreservation of the plant IF-OFP properties to the subsys-
tem hy independently of the constant time delay. Define the dissipamatrix

Pp (2) with elements(dp, £p, Np = %) € Q and furthermoredg, €g, nNg as the ele-
ments of the matri¥s

Npl —&pl nel —é&al

Theorem 1 Assume that the plantghis IF-OFP with &p, €p, Np = 3. Then the

subsystem:his IF-OFP with oy, &p, Np = % if and only if for each B the anglé is

chosen as the one of the two solutionsgof
.

(9)

 Pp=B"P,B 1= [

cot20 = , (20)
218
which simultaneously satisfies
a(6) = 2ngsin(6) cog 8) — dgcos(0) — egsin’(6) > 0. (11)

Proof: (sufficiency Rewriting (3) for the plant in matrix form, in terms of the
transmitted variables yields

t t
/sIMTPpmls,dr >0 /srTRTPBRlsrdT >0 (12)
0 0
with Ps given by (9) and
RTRRL— a(e)l (o)l (13)
28 —p(oy |



parameterized by, Jg, €g, N througha (6) (11),
B(6)=0a(0)+ o+ €s,

and —
{(8) =ngcosd — £ 258

Choosingf according to (10), it follows thaf (68) = 0 (14), and hence we can
rewrite (12) 2 2
According to Sylvester’salg?/\; |l)lléritrvertiaﬁ? <ceo>rL|§/HJUen%eOt'rmnlsfations do not change
the inertia of the matrix, i.e. the number of positive, nagaand zero eigenvalues.
Thus (8p, £p, Np = %) € Q<& (dg, B, NB) € Q. For this domain of dg, £g, NB) We
can always choose one of the two solutions to (10§, 7], denoted byd* and
0~ respectively, so that (67) > 0 as required by (11) and furthermqs¢o+) >

0, see Lemma 2 in the Appendix. For this choicefothe subsysterh; is finite
gain_% stable with

sin26. 14

a(eh)
Veell = [Iha(Ueel] < vy llurell V¥R = BT (15)
Considering further that the constant time delay operaasrdn?> gain one, and
using the assumption thaf(t) =0 WVt € [-T;,0] andv,(t) =0Vt € [-T,0], we
may state|ur¢[|2 < [|u¢]|?, [[Vit]|2 < [[Vee]|?, Wt > 0. It follows that

a(64)[|u el = B(6F)[vi]> > 0.
Analogously to (12) we may rewrite the latter equation as

t
/ sMTP,M 1gdr >0 (16)
0
which expressed in the variablgs u. becomes

(Yo, o)t > Bpllyeill® + €pl Ul
Thus, the subsystern, satisfies (1) with the exact same dissipativity parame-
tersdp, Ep, Np = % as the plant. Fonecessityt only has to be shown that without
setting{ (6) = 0 the time delay alters the IF-OFP property of the subsydiem
This can be shown straightforwardly through the countemgptayp(t) = k- up(t).
|

Observe thab* exists for eacl, i.e.bi1,b12, by1, boo can be chosen freely to meet
performance requirements. From this result it is stragyiathrd to conclude finite
gain_%, stability.

Corollary 1 The closed loop system with the input-output transformgg sat-
isfying Theorem 1 is delay-independently finite gafnstable.

Proof: We have to show that bounded input %, implies bounded output, €
Y. By applying Proposition 1 to the closed loop system decaaganto subsys-
temshy andh, it is straightforward that also the signais yc, e € %%. Sinceu,, Vv,
are linear combinations af;, y. we haveug,yc € % = U, V| € %e. The forward
constant time delay operator is finite gaif» stable say € %5 = Uy € Z%e. Fur-
thermorehy is finite gain.#> stable thusi € 2% = v € Z%e. Since againp, yp



are a linear transformation of, vy, we have thati, vy € Z%¢ = Up,Yp € L2, i.€.
there exists & < o such thafypt|| < y||w|| holdsVvt. Assuming the plant output

to be unbounded, i.eyp ¢ %%, results with the same arguments as above in a
contradiction to the assumptione . [ |

In short, the central point of the proposed approach is tmatrighthand input-
output transformation transforms the IF-OFP plaginto the finite gainZ; stable
subsystenh;, see (15). A constant time delay operator does not altersiyss
tem’s %> gain since it has a¥> gain one,yr, = yr, = 1. The lefthand transfor-
mationM~1 is the inverse of the righthand transformation, and theecfloe exact
IF-OFP plant properties are recovered to the subsystenihus, a bounded in-
putw € % implies that the signals in the feedback interconnectienbaunded,
I.e. e Uc, Yc € . The invertibility of the transformation further impliebat all
signals are bounded, i.e,Uc,Yc, U, Vi, Ur, Vi, Up, Yp € Z2e. AS an important result,
the feedback interconnection of any controller-plant pairsfying the finite gaif#,
condition from Proposition Without time delays finite gain.#% stable forarbi-
trarily large time delayby using the proposed input-output transformation.

Remark 1 In case of unstable plants the proposed approach locallyspadilizes
by the righthand input-output transformation. This becermlear from(15), where
every IF-OFP plant g results in a finite gainZ’, stable systemjh

Remark 2 For passive plants, i.e. with = € = 0in (3), the proposed input-output
transformation withf = ’ZT and the elements of B given byib= v/b, by, = %, b>

0 and by,by; = 0, is equivalent to the scattering transformation (Andersgon
Spong 1989, Niemeyer & Slotine 1991).

4.2 Small Gain Interpretation

An interesting viewpoint gives the interpretation of Theorl from a small gain
perspective. Therefore, we assume that Theorem 1 is sdtiEbe the analysis, the
closed loop system is decomposed into the subsystents, hr,, andhr,, where

the transmittedsignalsu, ur, vy, Vi act as inputs and outputs, and the open loop
system hso hr. o hy o hy (17)

is considered, see Fig. 1. In%e next |t]|s S owﬁ thgnis finite gain.¥, stable,

i.e.

: . Uh g t]J L|| Q (18)
with yoL < 1, i.e. the system sali |es & small gain condition in thesfiormed

variables.

Corollary 2 The open loop systenphhas an%s gain yo. < 1.
Proof: For the subsysterhg it is straightforward to show thatho (vi t)t|| <

YoL|IVi t]] With Yho, < Wh, Y Yhy Y1 = Yhs Wy SiNCe for the time delay operatgrg = yr, = 1
holds. It remains to show thak,yh, < 1. From (15) the finite#, gain stability



of hy is certified with gainyﬁl. For hs, consider the dissipativity inequality of the
controller expressed in the variablgs

1
—gl —3I

1
—1 —5l

2
where the negative signs in the off-diagonalBafesult from thenegativdfeedback
interconnection. Setting = min[(&p+ &), (&c+ dp)] > 0, where positivity comes
from assumption Al, it is straightforward to show that

P < —(Pp+KI). (20)
Thus, by substituting (20) in (19) it follows that

t
/ s M TRM1gdr >0, with P, = ! , (19)
0

t
—/QTMTPlea +k§ M "M lgdr > 0=
0
t
—/qTM‘TPpM‘ls + KAmins' sdT >0
0

with Amin > 0 the minimum eigenvalue o-TM-1>o0. Following the derivations
of the proof of Theorem 1 using (12), (13) and choosthg the quadratic term
above involvingP, is simplified and the inequality can be rewritten as

a(6") —KkAmin

B(6F) +KAmin

Therewith, the subsysteh is certified to be finiteZ> gain stable with gairy,,.
Accordingly, with (15)

Jurell = lhs(Vi el < Whglliell YVt yh, =

a(6") B(6") — KAmin
< <1,
Wl < B(67) a(07) +KAmin
hencey,\h, < 1, and thusp, < 1. m

Hence, the small gain condition holds in the loop of the comicated variables,
see also Fig. 1 for visualization. In fact, with equality iroposition 1, i.e. marginal
stability, also the open loop gain becomes < 1. The_ % gains of the subsys-
temsh; andhz depend on the IF-OFP properties of plant and contrfles yh, (dp, £p)
and yh, = ¥h,(0c, &c). More conservative, i.e. higher values &, £, and &, & in
Proposition 1 result in a smaller open loop gain, hence ighdristability reserve.
Note, that the small gain theorem is only satisfied for the pivegs with the com-
municated (transformed) variables uy, v;, vi as input/output, but not for the map-
pings with the (original) control variablesyc, up, yp, Therefore, less conservative
behavior than through the standard small gain approacimelsecachieved.

Remark 3 Observe that for the stability guarantee only the finitgé gainy =1
property of the time delay operator is important. Accordyngtability is guar-
anteed also for any other norm bounded uncertaintyrhthe loop of the trans-
formed variables, replacing the time delay operatofs, y,, or being in cas-
cade with them, as long g, < 1. Many scattering based approaches addressing

10



time-varying delay (Lozano, Chopra & Spong 2002, Munir & B@002), packet
loss (Secchi, Stramigioli & Fantuzzi 2003, Berestesky, gta& Spong 2004,
Hirche & Buss 2004), and sampled-data systems (Stramig@flil) are based on
the same argument, introducing control actions to keep_#hegain of the cor-
responding input-output operatpr< 1. These approaches are straightforward to
combine with the proposed approach.

4.3 Conic Sectors Interpretation

Conic sectors in the input-output space give a nice geocadtinterpretation of

IF-OFP systems behavior, see e.g. (Zames 4968mes 1966). Following these

lines, the input-output transformation can be interpreted rotation of conic sec-
tors. For simplicity a memory-less, SISO, IF-OFP systemoisstdered as plant,
even though stability related notions are futile in thisecahe IF-OFP inequal-
ity (3) holds instantaneously, i.e.

1
Upyp Z 5pU%+£py2, \V/t, (6p,8p, r’p — §> E Q (21)

Geometrically, this equation describes a conic sector érufayp-plane which is
sufficiently described by its center-line andglgand its apex angle&, . At each
time instant the input and output lies within the conic secfig(t) € [6, — 6 p, 6, + 6 p]
or its mirrored counterpart, see Fig 2 (a) for a visualizatithe center-line angle is
straightforwardly derived by parameterizing the plantingnd output in polar co-
ordinatesup(t) = rp(t)cosfp(t), yp(t) =rp(t)sinbp(t) in (21), and is implicitly
given as the solution of

cot26, = gp — Op, (22)
(b)
ek,p
= 0
~0 k,c
>
ek’,p
0
Up Up, Uc

Fig. 2. (a) The conic sector of an IF-OFP plant. (b) The coata of the same plant and
the corresponding controller satisfying Proposition 1.

11



in the intervall0, 7]. Similarly, the apex angle , is given by the solution of

Ep+Op
cos = ;
By V/ (1—48,€p) + (gp+ Op)?

with 6, € [0, 5).

4.3.1 Conic Sectors Interpretation of Proposition 1

Given the plant sector by (21) the finite gaith stability condition determines
the allowable controller sector. Using a similar technigsein proof of Corol-
lary 2, the allowable controller sector is derived tofét) € (6, — B¢, 8.+ bk c)
where 6. = 5 — 6 p. Note, that due to the strict inequality in Proposition 1 the
controller is confined to an open set in a sector with the saenéecline as the
plant, and complementary angle with respect t8. 9he larger the sector of the
plant is, the smaller is the allowable sector for the cofgrphs visualized by the
arrows in Fig. 2 (b).

4.3.2 Conic Sectors with Input-Output Transformation

As discussed above, only the rotation maRixf the input-output transformation
(8) plays a role for stability. Thus, for clarity of presetida and without loss of
generality, we consider in the remainder of this section Bia |. By the input-
output transformation satisfying Theorem 1 the IF-OFP fplaith input up and
outputyp is transformed into a finite gairy, stable subsysterm with input u,
and output,. Observe that the center-line angle for the IF-OFP plardrghwy (22)
is equal to the rotation ang@™ derived from Theorem 1 foB = |. Thus, by the
input-output transformation the sector of the plant is teddasuch that the sector

(b)

Igl‘arh}sector / /|
N
/5 k.p)
T
/ 5/
V5%
0%
: § 0 ) ‘,p
////
////
Lo gain,
enlarged plant sector
isra \l
0
Up

Fig. 3. (a) Finite gain¥, stable system after applying input-output transformatimithe
plant and controller from Fig. 2 (b). (b) Equivale#% gain sector of an IF-OFP system.
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of the subsystemb; has a center-line angle & = 0. This, however, is exactly
the conic sector representation for finite ga&#h stability, i.e. for the plant side in
the transformed coordinatgls; || < yh, ||urt||. The apex angles& ,, 26 of the
plant and of the also rotated allowable controller secterjravariant to the rotation
and are related to th&’ gain by tar , = y, and tar c = 1/y,. The allowable
controller area thus expresses the small gain theorem aipe loop system with
the “rotated” subsystemis; and hs as has been shown also in Corollary 2. The
rotation of the IF-OFP plant and controller from Fig. 2(bxtéinite gain, stable
system is visualized in Fig. 3(a).

For comparison, the classical small gain approach withmpait-output transfor-
mation is discussed. The classical small gain approach eapplied only if the
plant is initially finite gain.#, stable. This means that the plant’'s sector lies in
the first and fourth quadrant. Clearly, in this case the IFRQffant sector from
Fig. 2 (a) can also be represented byeaargedconic sector symmetric to thg,
axis, as shown in Fig. 3 (b). For the open loop g@ii = tar(@lzp) tan(@lzc) <1
has to hold, wheré26p | > 26 p| is the apex angle of the enlarged conic sector
of the plant. Accordingly, the stability allowable contesl sector with apex an-
gle [262 | < |26k | is smaller than with the transformation approach, i.e. isemo
conservative.

Last, for comparison, the scattering transformation is discussed. The scattering
transformation, representing a rotation@f = 45°, is recovered by the proposed
approach in case of a passive system. The sector of a pagsiesnsis the first
guadrant, i.e6, = 45°, requiring thus, a rotation of exactly 48 order to become
a finite gain.#> stable system. Generally, using the scattering transfooman a
non-passive system leads to conservatism, as with a notatid5’ the center line
of the sector does not necessarily coincide with the axisStability may be guar-
anteed in some cases by considering the enlarged, finitesggility sectors, as
in the classical small gain case. Nevertheless, with thpqeed parameterization,
conservatism is in all cases avoided. Hence, as long adistabiguaranteed for
the initial plant and controller without the network, stékiis again guaranteed for
arbitrarily large constant time delay and the appropriatation.

With the intuition of conic sectors, the main idea of the egd approach can be
summarized into rotating the plant and controller conid@®scto achieve a non-
conservative?, gain representation in the communicated signals compartget
classical small gain approach. Arbitrarily large constane delay does not alter
this argument.

Note, however, that Corollary 1 gives only a sufficient caiodi for finite gain.#>
stability as it relies on the sufficient stability condititom Proposition 1. This can
be expected as only very little knowledge of the plant andradlier input-output
relation is required. In the following LTI systems wikhowntransfer functions are
considered as plant and controller, and the necessary dindesu conditions for
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delay-independent stability are derived.

4.4 Stronger Stability Condition for Known LTI Systems

The remainder of this article concerns LTI systems. Theegesl results are re-
stricted to the SISO case. The LTI plant and controller asedeed by the transfer

functionsGp(s) = J‘;—((SS)), Ge(s) = EC((;) respectively, wher&(s) andUp(s) repre-
sent the Laplace transformations of the plant ouyg(i) and inputup(t), andYe(s)
andE(s) the Laplace transformations of the controller outpyit) and inpute(t).
Where it is non-ambiguous the Laplace variablis dropped for convenience of

notation. Consider the transfer function

Mp1 + Mp2Gp M — M1 Ge
M1+ MioGp Mpo — My Ge

GoL = G1G3 = (23)

with G; andGs being the transfer functions bf and hz respectively, andmj; € R,
with i, j € {1,2}} the elements ol € R>*2. The following corollary gives a nec-
essary and sufficient condition for delay-independentlgiab

Corollary 3 The LTI closed loop system consisting of plagt Gntroller G. and
the input-output-transformation M R?*? is delay-independently stable if and only
if G1,G3 are stable and

|GoL| < 1, Yw > 0. (24)

Proof: For delay-independent stability the closed loop systendbe stable when

T1 =T = o, i.e. Gy, Gz must be stable. Consider now the open loop transfer func-
tion including the time delay operators, i®o e /“T with T = Ty + T,. For sta-
bility |GoLe™1¥T| < 1 must hold, when afg5o e 1“7} < —18C°. For arbitraryT
andw # 0, e 19T defines an arbitrary phase shift. Thus, foralb 0, |G| < 1
must hold. -

Observe that Theorem 1 leads to the more conservativeigtabgultyy, yh, = ||G1]/e||G3|le < 1.
The conservatism comes from the fact that more generallymg1Gs| < ||G1G3]|o <
|G1]|»||Gsl| holds with strict inequality. Equality is given only if theaximum

magnitude of G; and Gz appears at the same frequeryax = arg sup, |G1| =

arg sup, |Gs|, which is not equal to zero.

Under the restriction of Corollary 3, the controller and thput-output transfor-

mation can be conjointly designed in the LTI case with knovamsfer functions.
Knowledge of the time delay value for the controller desgnat required.
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5 Performance Issues

In the following some performance issues, i.e. the seiisitto time delay, the
steady state behavior, and the zero time delay case areyhtisflussed for LTI
systems. Based on the Corollary 3, in the remainder of tluaseit is considered

that||GoL ||« < 1. The closed loop transfer functi@(s) = 53—8 from the reference
inputW to the plant outpuYp, is computed by (6) (7) to be
G(5) = Go(8)Gur(s)e ™", Gur(9) = 1 _16 OGL%;ES)W (25)
with Go = (GpGe) (1+ GpGe) ~t andGoy given from (23). The system can be seen
as a series connection of the standard closed loop sy&gemithout time delay and
without input-output transformation, and@f; which describes the influence of the
time delay and the input-output transformation. Obviopi$l;, is far away from
identity, the behavior of the closed loop system with timagand transformation
largely differs from the behavior of the closed loop systeitthaut time delay and

without transformation.

5.1 Sensitivity to Time Delay

Sensitivity to time delay is an interesting aspect of penance, especially in NCS
where the time delay is not exactly known in advance. Low isgitg to time
delay means that a similar input-output behavior is achianea large range of
time delay values. The sensitivity function with respectie round trip time de-
lay T = T1 + T is given by the infinite dimensional transfer function

. T dG* _ TS GoL ’

G+ dT 1-GgoesT

where G*(s) = Go(s)Gir (s) is the transfer function (25) without the purely time
shifting parte ST, For the norm oi§* a frequency-dependent maximum can be
computed as stated in the next theorem.

Theorem 2 When||GoL||» < 1 holds, the norm of the time delay sensitivity func-
tion is for each frequencgy bounded from above by

ISF (jan)| < %- (26)
Proof: Straightforward computation of the norm of the sensitifitgction yields
. wo T |GoL | woT|GoL| _ woT||GoLle
[SF (jw)| = < <

 [1-Gore 17| = 1—|Gor| ~ 1-||Gotlle’
where the dependence gay in |Go(ja)| is suppressed for convenience of no-
tation. ]

Interestingly, the performance requirement for low sevigjtto time delay is com-
patible with the demand for large stability reserve; in bo#ises||Go ||« is re-
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quired to be small, and of course below one. This can be setklng the deriva-
tive of (26) with respect td|GoL || and showing that the righthand part of (26)
is a strictly increasing function ofGoL||~ When|GoL||« < 1. Thus, minimiz-
ing ||GoL ||« jointly achieves stability and sensitivity goals.

InsensitivitySGT* = 0 can be achieved by using a proportional contr@lg(s) = m—ﬁ
independently of the plant. This follows straightforwgrdiom substitutingG.
in (24) resulting inGo. = 0= S = 0= Gy(s) = 1. The closed loop transfer
function (25) reduces t&(s) = Go(s)e S with the time shifting part having no
effect on the transient response. This fact reflects thétimmuthat if a static con-
troller G¢ is used in the proposed setup, then it can be implementedt qiléimt
side and no remote control action is required. However, agnt@nal controller
usually does not meet the performance requirements and proamse should be
made between performance and sensitivity to time delay.

Remark 4 The minimization of|GoL||~ can be formulated as an optimization
problem with bilinear matrix inequality constraints, asostn in (Matiakis, Hirche
& Buss 2008). Nevertheless, as this is out of the scope oathdde, in the numer-
ical example that follows in Section 6, classical gradieascknt optimization is
used instead, for the design of M.

5.2 Zero Time Delay Case

As the time delay reduces to zero, iB.=T, =T =0, the system reduces to
that without input-output transformation, i®(s) = Go(s) as straightforward com-
putable from (25). The statement holds as well for the génevalinear case,
sinces = s whenT, =T, = 0. This is interesting as the controller can be rather
aggressively designed, compared to the standard smalhgpnoach, without con-
sidering time delay. For zero time delay “nominal’ perfonna is recovered. To-
gether with low sensitivity this means that good perforngaisachieved in a large
range of time delay values.

5.3 Steady State Behavior

The steady state behavior of the system with the input-autposformation and
time delay is equivalent to the steady state behavior ofyteeem without the input-
output transformation and without time delay as easilyvadye by settings= 0

in (25), resulting inG(0) = Go(0). For the nonlinear case this can be observed from
the steady state conditien= s, henceze = M1 = M~1s = MMz, =z,

In terms of steady state error the proposed approach cleatperforms the stan-
dard small gain approach which requit€(jw)Gp(jw)| < 1,w >0, i.e. free in-
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tegrators in the open loop are not allowed, leading thus torazero steady state
error. In the proposed approach free integrators in planootroller do not neces-
sarily appear as free integratorsGg, (24). As a result delay-independent stability
based on Corollary 3 and steady state error zero can be aimeolisly guaranteed.
This is demonstrated in the following example.

Example: Consider the planBy(s) = ﬁ and the controlleGG¢(s) = s(%%oy The
input-output transformation minimizingGoy || in numerical optimization is given
by my1 = np> = 0.866,m2 = 0.5, andnyp; = —0.5. The open loop transfer func-
tion G:Gp, violates the small gain condition. With transformatioe, idistributed

control approach, zero steady state error is achieved.

In summary, the proposed distributed control approachcatds significant ad-
vantages over the standard small gain approach. In fach éey-dependent
input-output approaches are outperformed in simulatiechexxperiments as shown
in (Matiakis & Hirche 2006). Here we demonstrate its effichgya numerical ex-

ample.

6 Numerical Example

As plant we consider the NN8 example, extracted from theipiytavailable bench-
mark collection COMRIib (Leibfritz 2004), regarding only its first input and out-
put, resulting in a SISO system. The state space matrices are

-02501 1| g _[o0qT
Ap=|-005 0 O, ¢ —[100
0 0-1} p,-o
Three different controllers are compared. A linear quadragulator (LQR), with

and without the transformation, and a small gain based clertiwith state feed-
back. The exact design procedure is described in the fatigwi

6.1 Linear Quadratic Regulator

The controlleh is an LQR for zero time delay minimizing the cost function

(o]

J= /yz(r) +0.01u%(1)dT. (27)

0
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A full state observer is computed with its poles placed atéag axis to [-2 -3 -4].
The overall observer based controller is given by

-8 0.1 1 —7.8
Ac= —240 0 0|, Bc= | —-23995],
—3.122 —0.339 —4.387 6
Cc =[-9.122—0.339— 3.387, D:=0.

6.2 Transformation

The LQR described in Section 6.1 is used as the pre-desigoetlotier. The
transformationM is designed by numerical optimization solving MilGoL ||c-
The optimization is performed usifgiinsearch of the Matlab optimization tool-
box. Note that the optimization problem is not convex. Thaee the optimiza-
tion algorithm is executed starting from different randamitial conditionsM,
and the best achieved (locally optimal) solution after ssvieials is applied. The
computation of||Goy ||~ IS done by expressinGoy || as an optimization prob-
lem with linear matrix inequality constraints, and using ¥ALMIP Matlab tool-
box (Lofberg 2004) with the SDPT3 solver (Tutuncu, Toh & M2003). The best
achieved solution i§Go || = 0.5533 for the transformation

0.7778 52414
M = . (28)
0.0474-11.9826

6.3 Small gain based controller

For the small gain based controller the LQR state feedbaultl@m is solved, for-
mulated in LMIs (Boyd, Ghaoui, Feron & Balakrishnan 1994jthma additional

small gain constraint of the open loop transfer functionjolvhensures delay-
independent stability. The problem is described as

minimize xgK 1Xp subject to

0.011 BJK3

| K1Bp ALK 1 +K1Ap+CpCp

AP Ko+ KoAp+K1BpR2Bp'K; KBy 0
>0,

_Bng —1

Ki1>0, Ky>0,

<0,

where with bold letters the optimization parameters aretih and) = [111] is
the initial condition. For the solution the YALMIP Matlabdtbox (Lofberg 2004)
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Fig. 4. Norm of the sensitivity to time delay functid8? | of the systems with the LQR
with and without the input-output transformation, and theall gain based controller.

with the local solver PENBMI (Kocara & Stingl 2003) is uséying several differ-
entinitial conditions. The obtained state feedbadk is [18305 92631 5914103,

6.4 Simulations

The norm of the sensitivity function with respect to timeajelS® | is shown in
Fig. 4 for the three different approaches for round trip toleéay T = 300ms, plot-
ted until the maximum cutoff frequency of the three closemplsystems. The sen-
sitivity of the proposed approach is less than the LQR wittio&itransformation, in
almost all the considered frequencies, except for a snadea < [10°210°3|rad/s.
The state feedback small gain based controller shows |leewnsitsvity in the higher
frequencies, it is however very conservative as explainglde next. The response
for the three approaches with initial conditia@ = [111 and roundtrip time de-
lay valuesT = 0, 150 300 450ms equally divided in the forward and backward
channel are presented in Fig. 5. The system with the inptgubdransformation
remains stable in all cases, and its response is only sligffdcted by the time de-
lay value. On the contrary, the system without the transétion is sensitive to the
time delay, and becomes unstable T6r288ms. The response of the system with
the state feedback small gain based controller is alsotbligifected by the time
delay value, but it is very conservative. The value of tha @msction (27) for the
simulation time horizon of 10sec, is further presented inld4,, certifying that the
proposed approach shows the best performance for inceetasia delay values.

In short, compared to the LQR without the transformatior,ghoposed approach

shows significantly lower sensitivity, and compared to tteesfeedback small
based controller significantly better performance.
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Fig. 5. Impulse response of the systems with the LQR with aitdowt the input-output
transformation, and the small gain based controller, folous time delay values.

Table 1
Cost functiond for time horizon 10sec.

Time Delay [ms] 0 150 300 450

Transformation || 0.2731| 0.2887 | 0.3155| 0.3529

LQR 0.2731| 0.6146| unst. unst.
Small gain 2.6110|| 2.6983|| 2.7876| 2.8790

7 Conclusions

This article presents a novel distributed controller applofor delay-independent
stability of NCS. The key idea is to use the limited compuatagpower in the plant
side to implement a transformation of the transmitted tglothe network signals.
Instead of direct communication, a linear combination afplnd controller input
and output is transmitted. In case of non-linear, IF-OFResys with largely un-
known model, delay-independent stability is guaranteecvery plant-controller
pair which is stable without time delay based on their dstbiity parameters. A
geometrical interpretation in terms of conic sectors iegivn case of LTI sys-
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tems with known transfer functions, a necessary and suitig&bility condition

is given. The proposed approach allows non-conservativealter design without
considering time delay in the loop, resulting in a supeniacking performance.
Due to the low sensitivity to time delay the performance rema@ood even for
high time delay values. Simulations verify the proposedreagh in a compari-
son with an LQR without the input-output transformation amth a small gain

based state feedback controller. Future research addithes@vestigation of more
general transformations, robustness issues, time-\adgtay and packet loss.
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A Appendix

The following lemma imposes restrictions on the eigenvalofethe dissipativity
matrix P.

Lemma 1 The dissipativity parameteid, €, of all dissipative systems belong to
the domai = Q;UQo with Q1 = {8,&,n € R|de —n? < 0} andQ, = {J,&,n €
R|&e —n?=0;0,& > 0}.

Proof: For convenient notation the proof is given for the SISO césease of
MIMO system the proof is exactly the same, only the multipfiof the eigenval-
ues changes accordingly. Rar,e,n) € Q = Qz3U Q4 with Q3 ={d,&,n € R|de—

n? >0}, andQ4 = {0,€ € R|de — n? = 0;¢,6 < 0} degenerate cases occur. The
condition (d,&,n) € Qgz is equivalent to positive or negative definiteness of ma-
trix P, i.e. deP = A Ay = de — n2 > 0 whereA1, A; are the two eigenvalues &t
Hence,A1,A2 >0 P >00rA;,A2 <0< P<0. ForP >0 (1) is satisfied for
any pairu(t), y(T) imposing no restriction to the system input-output behavio
Analogously, forP < 0 (1) cannot be satisfied for any paift),y(7). In case
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(0,€,n) € Qq we getAd; =0,A2 = —-0—¢€ > 0. Thus,P is positive semidefinite
and (1) is again satisfied for any paiit), y(1). [ |

Lemma 1 implies that without loss of generality we can resRito have either one
positive and one negative, or one zero and one negative\ailyen ForQ the next
lemma holds.

Lemma 2 Consider the expressions

a(6) = 2nsin(0)cog ) — dcog(0) — esirt(0)
B(O)=a(0)+d+¢
wheref = 6+ and @ = 6~ are the two solutions of
)
COt(ZQ) - W
in the interval[—7, 7], and(d,€,n) € Q. The following statements are true:
i (6787'7) € Ql
= a(6%)>0,B(67)>0,anda(67)<0,B(67)<0
d (5787'7) € QZ
= a(67)=0,B(67)>0,andB(67)=0,a(67)<0

Proof: For the two angle§ = 8+ and8 = 6~ it can be shown that(8)B(0) = n? — Je.
Thus for(d, €,n) € Q1, a(0)B(6) > 0 meaning thatr, B have always the same
sign for each angle. Furthermoog6~) = —B(61),8(67) = —a(61) meaning

that a(6),B(08) have always different signs for the two angle solutiéhs 6+

andf = 6. Combining the above the first part of the lemma is proved.(®ok, n) € Q>
we geta(8)B(8) = n? — 5 = 0 meaning thatr(8) and/orB(6) are zero. Fur-
thermore,3(6) =a(6)+d+¢e=B(0) > a(O). If a(67) =—B(6~) =0 then
B(67) > 0,a(6~) < 0; analogously for the other cas€6~) = —B(67)=0. =
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