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Abstract

This article introduces a novel distributed controller approach for networked control sys-
tems (NCS) to achieve finite gainL2 stability independent of constant time delay. The
distributed controller is alternatively interpreted as a linear transformation of the input-
output space of the controller and the plant, and in fact represents a generalization of the
well-known scattering transformation. The main results ofthis article are a) a sufficient sta-
bility condition for general multi-input-multi-output (MIMO) input-feedforward-output-
feedback-passive (IF-OFP) nonlinear systems and b) a necessary and sufficient stability
condition for linear time-invariant (LTI) single-input-single-output (SISO) systems. The
performance advantages in terms of sensitivity to time delay and steady state error are dis-
cussed in comparison with alternative delay-independent small gain type approaches. Sim-
ulations verify the superiority of the proposed approach toan LQR controller for zero time
delay without the proposed transformation and to a delay-independent small gain based
controller.
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1 Introduction

In networked control systems (NCS) the spatially separatedplant and controller
are connected through a communication network. (Tipsuwan &Chow 2003, Hristu-
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Varsakelis & Levine 2005, Antsaklis & Baillieul 2007) provide excellent overviews
on the field. The motivation for replacing the classical point-to-point control ar-
chitecture by an NCS also originates from its flexible reconfiguration capabilities:
Plant and controller nodes can be added or removed without additional wiring ef-
fort. The number of active nodes sharing the communication channel has an effect
on the communication parameters in terms of communication time delay, packet
loss, and available communication bandwidth. In consequence, these communica-
tion parameters are, in general, not exactly known during the controller design.

In this work the problem of unknown, constant time delay is addressed. It is well-
known that time delay in a control loop degrades the performance and can lead to
instability. Time delay system approaches are classified into delay-dependent and
delay-independent approaches, see (Richard 2003, Gu, Kharitonov & Chen 2003)
and the references therein for a concise overview and introduction to the rich litera-
ture of time delay systems. While mostly state-space approaches are considered, the
input-output approaches in (Georgiou & Smith 1992, Bonnet &Partington 1999)
assume the time delay to be known, i.e. they are delay-dependent. Input-output ap-
proaches with uncertain time delay are considered in (Hale &Verduyn Lunel 1993,
Miller & Davison 2005), however, they are suited only for linear systems. The clas-
sical small gain result (Khalil 1996), applicable also to general nonlinear systems,
is known to be rather conservative. For example, systems with an integrator in the
open loop do not satisfy the small gain condition. In consequence, the steady state
tracking performance to a reference input is rather poor.

The main contribution of this work is the analysis and designof a distributed
controller to achieve input-output stability of nonlinearsystems in the presence
of unknown constant time delay. In contrast to most of the literature in NCS we
propose to use the limited computational power available atthe plant side for the
implementation of some low order control action. Specifically, a linear static input-
feedforward-output-feedback controller is introduced atthe plant side and a similar
modification at the controller. The controller is assumed tobe designed in advance
without considering the time delay. The additional controlactions can also be in-
terpreted as a linear transformation of the variables transmitted over the network:
Instead of the original plant and controller outputs a linear combination of the re-
spective inputs and outputs is communicated.

The proposed approach can be applied to input-feedforward-output-feedback-passive
(IF-OFP) nonlinear plants and controllers. It is based on stability concepts in lines
with the seminal works (Zames 1966a, Zames 1966b) where conditions for the
open-loop behavior of feedback components are provided that guarantee input-
output stability of the feedback interconnection. The mainresult is stated as fol-
lows: “If the open loop can be factored into two suitably proportioned, conic rela-
tions then the closed loop is bounded-input-bounded-output stable.” Here, by the
IF-OFP assumption we require that the open loop system consisting of a plant and
a controller butwithout time delaycan be factored into such suitable conic sec-
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tors. The proposed input-output transformation then exactly preserves the IF-OFP
property of the plantwith arbitrarily large constant time delay. As a result ev-
ery controller-plant pair, which is stable without the network based on the IF-OFP
assumption, is also stable with the networkwith arbitrarily large constant time de-
lay and the proposed transformation. The result is constructive with respect to the
transformation.

The proposed approach has convincing performance advantages over standard small
gain approaches such as zero steady state error and low sensitivity to time delay,
which are discussed in this article for LTI SISO systems. Note that the controller
design consists of two steps: The original controller for zero time delay is modi-
fied by the proposed transformation to stabilize in the presence of arbitrarily large
constant time delay. Accordingly, the controller for zero time delay can be tuned
rather aggressively compared to the standard small gain approach. Combined with
low sensitivity to time delay this results in good tracking performance over a large
range of time delay values.

The proposed approach builds on ideas analogous to the scattering transforma-
tion (Anderson & Spong 1989, Niemeyer & Slotine 1991), whichis frequently
used in force feedback telepresence applications. However, within this framework
the subsystems are required to be passive. IF-OFP systems represent a substantially
larger class, with passive systems as a special case. In thissense, the proposed ap-
proach in this article represents a generalization to the scattering transformation.
Preliminary work of the same authors apply the scattering transformation for the
first time to non-passive LTI NCS with arbitrary constant time delay (Matiakis,
Hirche & Buss 2005) and to NCS with IF-OFP subsystems in (Matiakis, Hirche
& Buss 2006). A less conservative result is presented here using a general input-
output transformation.

The remainder of this article is organized as follows: In Section II the background
on IF-OFP systems and finite gainL2 stability is presented, followed by the prob-
lem setting in Section III. The stability conditions together with a geometrical inter-
pretation are presented in Section IV. Performance issues are discussed in Section V
and validated through a numerical example in Section VI.

2 Background

Notation. Let L m
2e denote the extendedL2 space of time functions of dimensionm

with support on[0,∞). The notation ‖u‖ stands for theL2 norm of a piecewise
square-integrable functionu(·) : R+ → R

m with R+ being the set of non-negative
real numbers andRm the Euclidean space of dimensionm. The truncation ofu(·) up
to the timet is denoted byut(·). The inner product of the truncated signalsut , yt is
denoted by〈u,y〉t, hence‖ut‖2 = 〈u,u〉t. TheH∞ norm of a transfer functionG(s)
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is denoted by‖G‖∞. M > 0 means that the matrixM is positive definite;I stands
for the unit matrix.

In this article the dynamical systems are considered from aninput-output point
of view as causal input-output mapping operatorsh : U → Y with h(t ≤ 0) = 0
andU ⊂ L m

2e representing the admissible input space andY accordingly the out-
put space. The system is supposed to be well defined in the sense that to each
element inU an element inY is associated.

2.1 IF-OFP Systems

Input-feedforward-output-feedback-passive systems area special class of dissipa-
tive systems. Recall that a dynamical systemh : U → Y is called dissipative with
respect to the supply rates(u,y) if for each admissibleu∈ U and eacht ≥ 0

t
∫

0

s(u,y)dτ ≥ 0, (1)

holds, refer to (Willems 1972a, Willems 1972b, Hill & Moylan 1976) for more de-
tails. Often, e.g. in (Willems 1972b), a quadratic supply rates(u,y) = zTPzwith zT = [u y]

P =





Q S

ST R



 , (2)

is considered. With the special choiceQ = −δ I , R= −εI , S= ηI , δ ,ε ∈ R, η = 1
2

IF-OFP systems are characterized.

Definition 1 A dynamical system h: U → Y is called input-feedforward-output-
feedback-passive (IF-OFP) if for each admissible u∈ U and each t≥ 0

〈u,y〉t ≥ δ‖ut‖2+ ε‖yt‖2. (3)

Note that the IF-OFP property represents a generalization of the passivity concept.
If δ = ε = 0 the system is called passive, ifδ = 0 andε > 0 the system is called
output-feedback strictly passive and ifδ > 0 andε = 0 the system is called input-
feedforward strictly passive. If one or both of the valuesδ ,ε are negative there is a
shortage of passivity.

2.2 Finite GainL2 Stability

Among the variety of stability notions we consider finite gainL2 stability in this ar-
ticle, which is another special case of quadratic dissipativity with S= 0,R= I ,Q = −γ2I ,γ ∈ R+.

Definition 2 (Khalil 1996) A dynamical system h: U → Y is called finite gainL2

stable if there exists a constantγ ∈ R+ such that for each admissible u∈ U and
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each t∈ [0,∞)
‖yt‖ ≤ γ‖ut‖. (4)

Finite gainL2 stability of a feedback interconnection can be concluded from the
IF-OFP properties of its subsystems. Consider two IF-OFP systemshp andhc sat-
isfying (3) withδi ,εi, i ∈ {p,c}.

Proposition 1 (Khalil 1996) The negative feedback interconnection of hp and hc is
finite gainL2 stable if

εc +δp > 0 and εp+δc > 0. (5)

Clearly, some of theδi ,εi can be negative if compensated by appropriate positive
values. Within the passivity formalism this can be interpreted as balancing shortage
of passivity with excess of passivity between subsystems.

3 Problem Setting

We consider a system comprising a planthp : Up → Yp and a controllerhc : E → Yc

as mappings from the plant inputup ∈ Up ⊂ L m
2e to the plant outputyp ∈ Yp ⊂ L m

2e
and from the control errore∈ E ⊂ L m

2e to the controller outputyc ∈ Yc ⊂ L m
2e. The

control error is defined ase= w−uc wherew ∈ W ⊂ L m
2e is the reference input,

see Fig. 1 for visualization. The blocksM and its inverseM−1 represent the trans-
formation which is introduced later. Without them the plantis directly connected
with the controller through a communication network.

The network is modelled as a forward time delay operatorhT1 (controller to plant
channel) and backward time delay operatorhT2 (plant to controller channel) with
time delaysT1 andT2, respectively. The input-output relations are given byhT1 : ur(t) = ul (t−T1)
andhT2 : vl (t) = vr(t−T2). It is assumed thatul (t) = 0 ∀t ∈ [−T1,0] andvr(t) = 0∀t ∈ [−T2,0].
The time delaysT1,T2 ∈ R+ are assumed to be constant but unknown.

Without any further control measures the closed loop systemwith time delay can
be unstable. This can easily be verified, as shown in (Anderson & Spong 1989) in
the example of passive subsystems. In order to address this problem we propose to
transmit a linear transformation of the plant input-outputvectorzT

p = [uT
p yT

p] over
the plant-to-controller channel instead of directly transmitting the plant output. The
righthand side transmitted valuessT

r = [uT
r vT

r ], see Fig. 1, are related to the plant
input-output via the transformation matrixM ∈ R

2m×2m

sr = Mzp. (6)

Equivalently stated, a static output-feedback-input-feedforward controller is in-
serted at the plant side leading to a distributed controllerarchitecture. To avoid
confusion in the remainder of this article we will refer to the static output-feedback-
input-feedforward controller as the transformationM. The controllerhc is analo-
gously modified, i.e. the relation between the original controller input-output vec-
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Fig. 1. NCS with input-output transformation.

torzT
c = [yT

c uT
c ] with zc∈Yc×Uc and the lefthand side transmitted valuessT

l = [uT
l vT

l ]
is given by sl = Mzc. (7)
Note that forM = I the standard approach without transformation/ local control
at the plant side is recovered. For a specific choice ofM, as discussed later, the
scattering transformation is recovered guaranteeing stability for passive subsystems
hp andhc with arbitrarily large constant time delay.

Throughout the article we assume that the closed loop systemis well posed, i.e. for
each input signalw∈ W there exists a unique solution for the signalse,uc,yc,ul ,vl ,
ur ,vr ,up,yp that causally depends onw. Note, that this implies the invertibility of
the matrixM as otherwise for a solution oful ,vl ,ur ,vr there are several equiva-
lent solutions forup,yp,uc,yc. For further reference we define the following three
subsystems:vr = h1(ur), uc = h2(yc), andul = h3(vl ,w), see Fig. 1.

4 Conditions for Delay-Independent Stability

4.1 Delay-independent stability for IF-OFP systems

Without loss of generality we can assume that the dissipativity parameters of ev-
ery considered IF-OFP systemδ ,ε,η belong to the domainΩ = Ω1 ∪ Ω2 with
Ω1 = {δ ,ε,η ∈ R|δε −η2 < 0} andΩ2 = {δ ,ε,η ∈ R|δε −η2 = 0;δ ,ε > 0}, or
equivalently that the dissipativity matrixP (2) has eithermnegative andmpositive,
or m negative andm zero eigenvalues. For a proof, see Lemma 1 in the appendix.
Where it is non-ambiguous, the time argumentt is dropped.
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Throughout this section we make the following assumption:

A1 Planthp and controllerhc are IF-OFP withδi ,εi wherei ∈ {p,c} satisfying (5),
i.e. the negative feedback interconnectionwithout time delayis finite gainL2

stable.

For subsequent derivations the transformation matrixM is decomposed into a rota-
tion matrixR and matrixB, i.e.

M = RB, R=





cosθ I sinθ I

−sinθ I cosθ I



 , θ ∈ [−π
2

,
π
2

]. (8)

B =





b11I b12I

b21I b22I



 ,

with b11,b12,b21,b22 ∈ R and detB 6= 0. For the following stability result only the
rotationR is crucial. The matrixB gives an additional degree of freedom for per-
formance design aspects. The overall system is decomposed into the feedback-
interconnected subsystemshc andh2, with the latter defined byuc = h2(yc) and
comprises the planthp, the forward and backward time delay operators, and the
right and left transformationsM andM−1, see Fig. 1. The subsystemh2 can be
shown to be IF-OFP. In fact, the following theorem gives necessary and sufficient
conditions for theexactpreservation of the plant IF-OFP properties to the subsys-
tem h2 independently of the constant time delay. Define the dissipativity matrix
Pp (2) with elements(δp, εp,ηp = 1

2) ∈ Ω and furthermoreδB,εB,ηB as the ele-
ments of the matrixPB

Pp =





−δpI ηpI

ηpI −εpI



 ; PB = B−TPpB−1 =





−δBI ηBI

ηBI −εBI



 . (9)

Theorem 1 Assume that the plant hp is IF-OFP with δp, εp, ηp = 1
2. Then the

subsystem h2 is IF-OFP withδp, εp, ηp = 1
2 if and only if for each B the angleθ is

chosen as the one of the two solutions of

cot2θ =
εB−δB

2ηB
, (10)

which simultaneously satisfies

α(θ) = 2ηBsin(θ)cos(θ)−δBcos2(θ)− εBsin2(θ) ≥ 0. (11)

Proof: (sufficiency) Rewriting (3) for the plant in matrix form, in terms of the
transmitted variablessr yields

t
∫

0

sT
r M−TPpM−1srdτ ≥ 0⇔

t
∫

0

sT
r R−TPBR−1srdτ ≥ 0 (12)

with PB given by (9) and

R−TPBR−1 =





α(θ)I ζ (θ)I

ζ (θ)I −β (θ)I



 , (13)
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parameterized byθ , δB, εB, ηB throughα(θ) (11),

β (θ) = α(θ)+δB + εB,

and
ζ (θ) = ηBcos2θ − εB−δB

2
sin2θ . (14)

Choosingθ according to (10), it follows thatζ (θ) = 0 (14), and hence we can
rewrite (12) α(θ)‖ur,t‖2−β (θ)‖vr,t‖2 ≥ 0.
According to Sylvester’s law of inertia, congruence transformations do not change
the inertia of the matrix, i.e. the number of positive, negative and zero eigenvalues.
Thus(δp,εp,ηp = 1

2) ∈ Ω ⇔ (δB,εB,ηB) ∈ Ω. For this domain of(δB,εB,ηB) we
can always choose one of the two solutions to (10) in[−π

2 , π
2 ], denoted byθ+ and

θ− respectively, so thatα(θ+) ≥ 0 as required by (11) and furthermoreβ (θ+) >
0, see Lemma 2 in the Appendix. For this choice ofθ the subsystemh1 is finite
gainL2 stable with

‖vr,t‖ = ‖h1(ur,t)t‖ ≤ γh1‖ur,t‖ ∀t γ2
h1

=
α(θ+)

β (θ+)
. (15)

Considering further that the constant time delay operator has anL2 gain one, and
using the assumption thatul (t) = 0 ∀t ∈ [−T1,0] andvr(t) = 0 ∀t ∈ [−T2,0], we
may state‖ur,t‖2 ≤ ‖ul ,t‖2, ‖vl ,t‖2 ≤ ‖vr,t‖2, ∀t > 0. It follows that

α(θ+)‖ul ,t‖2−β (θ+)‖vl ,t‖2 ≥ 0.

Analogously to (12) we may rewrite the latter equation as
∫ t

0
sT
l M−TPpM−1sldτ ≥ 0 (16)

which expressed in the variablesyc, uc becomes

〈yc,uc〉t ≥ δp‖yc,t‖2 + εp‖uc,t‖2.

Thus, the subsystemh2 satisfies (1) with the exact same dissipativity parame-
tersδp,εp,ηp = 1

2 as the plant. Fornecessityit only has to be shown that without
settingζ (θ) = 0 the time delay alters the IF-OFP property of the subsystemh2.
This can be shown straightforwardly through the counter exampleyp(t) = k ·up(t).

Observe thatθ+ exists for eachB, i.e.b11,b12,b21,b22 can be chosen freely to meet
performance requirements. From this result it is straightforward to conclude finite
gainL2 stability.

Corollary 1 The closed loop system with the input-output transformation (8) sat-
isfying Theorem 1 is delay-independently finite gainL2 stable.

Proof: We have to show that bounded inputw∈ L2e implies bounded outputyp ∈
L2e. By applying Proposition 1 to the closed loop system decomposed into subsys-
temsh2 andhc it is straightforward that also the signalsuc,yc,e∈ L2e. Sinceul ,vl

are linear combinations ofuc,yc we haveuc,yc ∈ L2e ⇒ ul ,vl ∈ L2e. The forward
constant time delay operator is finite gainL2 stable soul ∈ L2e ⇒ ur ∈ L2e. Fur-
thermoreh1 is finite gainL2 stable thusur ∈ L2e ⇒ vr ∈ L2e. Since againup,yp
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are a linear transformation ofur ,vr , we have thatur ,vr ∈ L2e ⇒ up,yp ∈ L2e, i.e.
there exists aγ < ∞ such that‖yp,t‖ ≤ γ‖wt‖ holds∀t. Assuming the plant output
to be unbounded, i.e.yp /∈ L2e, results with the same arguments as above in a
contradiction to the assumptionw∈ L2e.

In short, the central point of the proposed approach is that the righthand input-
output transformation transforms the IF-OFP planthp into the finite gainL2 stable
subsystemh1, see (15). A constant time delay operator does not alter thissys-
tem’s L2 gain since it has anL2 gain one,γT1 = γT2 = 1. The lefthand transfor-
mationM−1 is the inverse of the righthand transformation, and therefore the exact
IF-OFP plant properties are recovered to the subsystemh2. Thus, a bounded in-
put w∈ L2e implies that the signals in the feedback interconnection are bounded,
i.e. e,uc,yc ∈ L2e. The invertibility of the transformation further implies that all
signals are bounded, i.e.e,uc,yc,ul ,vl ,ur ,vr ,up,yp ∈ L2e. As an important result,
the feedback interconnection of any controller-plant pairsatisfying the finite gainL2

condition from Proposition 1without time delayis finite gainL2 stable forarbi-
trarily large time delayby using the proposed input-output transformation.

Remark 1 In case of unstable plants the proposed approach locally pre-stabilizes
by the righthand input-output transformation. This becomes clear from(15), where
every IF-OFP plant hp results in a finite gainL2 stable system h1.

Remark 2 For passive plants, i.e. withδ = ε = 0 in (3), the proposed input-output
transformation withθ = π

4 and the elements of B given by b11 =
√

b,b22 = 1√
b
,b>

0 and b12,b21 = 0, is equivalent to the scattering transformation (Anderson&
Spong 1989, Niemeyer & Slotine 1991).

4.2 Small Gain Interpretation

An interesting viewpoint gives the interpretation of Theorem 1 from a small gain
perspective. Therefore, we assume that Theorem 1 is satisfied. For the analysis, the
closed loop system is decomposed into the subsystemsh1, h3, hT1, andhT2, where
the transmittedsignalsul , ur , vr , vl act as inputs and outputs, and the open loop
system hOL = h3◦hT1 ◦h1◦hT2 (17)
is considered, see Fig. 1. In the next it is shown thanhOL is finite gainL2 stable,
i.e.

‖hOL(vl ,t)t‖ ≤ γOL‖vl ,t‖ ∀t, (18)
with γOL < 1, i.e. the system satisfies the small gain condition in the transformed
variables.

Corollary 2 The open loop system hOL has anL2 gain γOL < 1.

Proof: For the subsystemhOL it is straightforward to show that‖hOL(vl ,t)t‖ ≤
γOL‖vl ,t‖with γhOL ≤ γh3γT1γh1γT2 = γh3γh1 since for the time delay operatorsγT1 = γT2 = 1
holds. It remains to show thatγh3γh1 < 1. From (15) the finiteL2 gain stability
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of h1 is certified with gainγ2
h1

. For h3, consider the dissipativity inequality of the
controller expressed in the variablessl

t
∫

0

sT
l M−TPcM

−1sl dτ ≥ 0, with Pc =





−εcI −1
2I

−1
2I −δcI



 , (19)

where the negative signs in the off-diagonals ofPc result from thenegativefeedback
interconnection. Settingk = min[(εp+δc),(εc +δp)] > 0, where positivity comes
from assumption A1, it is straightforward to show that

Pc ≤−(Pp+kI). (20)

Thus, by substituting (20) in (19) it follows that

−
t

∫

0

sT
l M−TPpM−1sl +ksT

l M−TM−1sldτ ≥ 0⇒

−
t

∫

0

sT
l M−TPpM−1sl +kλmins

T
l sldτ ≥ 0

with λmin > 0 the minimum eigenvalue ofM−TM−1 > 0. Following the derivations
of the proof of Theorem 1 using (12), (13) and choosingθ+, the quadratic term
above involvingPp is simplified and the inequality can be rewritten as

‖ul ,t‖ = ‖h3(vl ,t)t‖ ≤ γh3‖vl ,t‖ ∀t γ2
h3

=
α(θ+)−kλmin

β (θ+)+kλmin
.

Therewith, the subsystemh3 is certified to be finiteL2 gain stable with gainγh3.
Accordingly, with (15)

γ2
h3

γ2
h1
≤ α(θ+)

β (θ+)

β (θ+)−kλmin

α(θ+)+kλmin
< 1,

henceγh3γh1 < 1, and thusγhOL < 1.

Hence, the small gain condition holds in the loop of the communicated variables,
see also Fig. 1 for visualization. In fact, with equality in Proposition 1, i.e. marginal
stability, also the open loop gain becomesγOL ≤ 1. TheL2 gains of the subsys-
temsh1 andh3 depend on the IF-OFP properties of plant and controllerγh1 = γh1(δp,εp)
andγh3 = γh3(δc,εc). More conservative, i.e. higher values ofδp, εp andδc, εc in
Proposition 1 result in a smaller open loop gain, hence in a higher stability reserve.
Note, that the small gain theorem is only satisfied for the mappings with the com-
municated (transformed) variablesul , ur , vr , vl as input/output, but not for the map-
pings with the (original) control variablese,yc,up,yp, Therefore, less conservative
behavior than through the standard small gain approaches can be achieved.

Remark 3 Observe that for the stability guarantee only the finiteL2 gain γ = 1
property of the time delay operator is important. Accordingly, stability is guar-
anteed also for any other norm bounded uncertainty h∗ in the loop of the trans-
formed variables, replacing the time delay operators hT1, hT2, or being in cas-
cade with them, as long asγh∗ ≤ 1. Many scattering based approaches addressing
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time-varying delay (Lozano, Chopra & Spong 2002, Munir & Book 2002), packet
loss (Secchi, Stramigioli & Fantuzzi 2003, Berestesky, Chopra & Spong 2004,
Hirche & Buss 2004), and sampled-data systems (Stramigioli2001) are based on
the same argument, introducing control actions to keep theL2 gain of the cor-
responding input-output operatorγ ≤ 1. These approaches are straightforward to
combine with the proposed approach.

4.3 Conic Sectors Interpretation

Conic sectors in the input-output space give a nice geometrical interpretation of
IF-OFP systems behavior, see e.g. (Zames 1966a, Zames 1966b). Following these
lines, the input-output transformation can be interpretedas a rotation of conic sec-
tors. For simplicity a memory-less, SISO, IF-OFP system is considered as plant,
even though stability related notions are futile in this case. The IF-OFP inequal-
ity (3) holds instantaneously, i.e.

upyp ≥ δpu2
p+ εpy2

p, ∀t, (δp,εp,ηp =
1
2
) ∈ Ω. (21)

Geometrically, this equation describes a conic sector in the up-yp-plane which is
sufficiently described by its center-line angleθz and its apex angle 2θk,p. At each
time instantt the input and output lies within the conic sectorθp(t) ∈ [θz−θk,p,θz+θk,p]
or its mirrored counterpart, see Fig 2 (a) for a visualization. The center-line angle is
straightforwardly derived by parameterizing the plant input and output in polar co-
ordinatesup(t) = rp(t)cosθp(t), yp(t) = rp(t)sinθp(t) in (21), and is implicitly
given as the solution of

cot2θz = εp−δp, (22)

Fig. 2. (a) The conic sector of an IF-OFP plant. (b) The conic sector of the same plant and
the corresponding controller satisfying Proposition 1.
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in the interval[0, π
2 ]. Similarly, the apex angle 2θk,p is given by the solution of

cos2θk,p =
εp+δp

√

(1−4δpεp)+(εp+δp)2
,

with θk,p ∈ [0, π
2).

4.3.1 Conic Sectors Interpretation of Proposition 1

Given the plant sector by (21) the finite gainL2 stability condition determines
the allowable controller sector. Using a similar techniqueas in proof of Corol-
lary 2, the allowable controller sector is derived to beθc(t) ∈ (θz−θk,c,θz+θk,c)
whereθk,c = π

2 −θk,p. Note, that due to the strict inequality in Proposition 1 the
controller is confined to an open set in a sector with the same center-line as the
plant, and complementary angle with respect to 90o. The larger the sector of the
plant is, the smaller is the allowable sector for the controller, as visualized by the
arrows in Fig. 2 (b).

4.3.2 Conic Sectors with Input-Output Transformation

As discussed above, only the rotation matrixR of the input-output transformation
(8) plays a role for stability. Thus, for clarity of presentation and without loss of
generality, we consider in the remainder of this section that B = I . By the input-
output transformation satisfying Theorem 1 the IF-OFP plant with input up and
outputyp is transformed into a finite gainL2 stable subsystemh1 with input ur

and outputvr . Observe that the center-line angle for the IF-OFP plant given by (22)
is equal to the rotation angleθ+ derived from Theorem 1 forB = I . Thus, by the
input-output transformation the sector of the plant is rotated such that the sector

gain,
enlarged plant sector

Fig. 3. (a) Finite gainL2 stable system after applying input-output transformationto the
plant and controller from Fig. 2 (b). (b) EquivalentL2 gain sector of an IF-OFP system.
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of the subsystemsh1 has a center-line angle ofθz = 0. This, however, is exactly
the conic sector representation for finite gainL2 stability, i.e. for the plant side in
the transformed coordinates‖vr,t‖ ≤ γh1‖ur,t‖. The apex angles 2θk,p, 2θk,c of the
plant and of the also rotated allowable controller sector, are invariant to the rotation
and are related to theL2 gain by tanθk,p = γh1 and tanθk,c = 1/γh1. The allowable
controller area thus expresses the small gain theorem of theopen loop system with
the “rotated” subsystemsh1 andh3 as has been shown also in Corollary 2. The
rotation of the IF-OFP plant and controller from Fig. 2(b) toa finite gainL2 stable
system is visualized in Fig. 3(a).

For comparison, the classical small gain approach without input-output transfor-
mation is discussed. The classical small gain approach can be applied only if the
plant is initially finite gainL2 stable. This means that the plant’s sector lies in
the first and fourth quadrant. Clearly, in this case the IF-OFP plant sector from
Fig. 2 (a) can also be represented by anenlargedconic sector symmetric to theup

axis, as shown in Fig. 3 (b). For the open loop gainγs
pγs

c = tan(θs
k,p) tan(θs

k,c) < 1
has to hold, where|2θs

k,p| ≥ |2θk,p| is the apex angle of the enlarged conic sector
of the plant. Accordingly, the stability allowable controller sector with apex an-
gle |2θs

k,c| ≤ |2θk,c| is smaller than with the transformation approach, i.e. is more
conservative.

Last, for comparison, the scattering transformation is also discussed. The scattering
transformation, representing a rotation ofθ+ = 45o, is recovered by the proposed
approach in case of a passive system. The sector of a passive system is the first
quadrant, i.e.θz = 45o, requiring thus, a rotation of exactly 45o in order to become
a finite gainL2 stable system. Generally, using the scattering transformation in a
non-passive system leads to conservatism, as with a rotation of 45o the center line
of the sector does not necessarily coincide with the axisup. Stability may be guar-
anteed in some cases by considering the enlarged, finite gainstability sectors, as
in the classical small gain case. Nevertheless, with the proposed parameterization,
conservatism is in all cases avoided. Hence, as long as stability is guaranteed for
the initial plant and controller without the network, stability is again guaranteed for
arbitrarily large constant time delay and the appropriate rotation.

With the intuition of conic sectors, the main idea of the proposed approach can be
summarized into rotating the plant and controller conic sectors to achieve a non-
conservativeL2 gain representation in the communicated signals compared to the
classical small gain approach. Arbitrarily large constanttime delay does not alter
this argument.

Note, however, that Corollary 1 gives only a sufficient condition for finite gainL2

stability as it relies on the sufficient stability conditionfrom Proposition 1. This can
be expected as only very little knowledge of the plant and controller input-output
relation is required. In the following LTI systems withknowntransfer functions are
considered as plant and controller, and the necessary and sufficient conditions for

13



delay-independent stability are derived.

4.4 Stronger Stability Condition for Known LTI Systems

The remainder of this article concerns LTI systems. The presented results are re-
stricted to the SISO case. The LTI plant and controller are described by the transfer

functionsGp(s) =
Yp(s)
Up(s)

, Gc(s) = Yc(s)
E(s) respectively, whereYp(s) andUp(s) repre-

sent the Laplace transformations of the plant outputyp(t) and inputup(t), andYc(s)
andE(s) the Laplace transformations of the controller outputyc(t) and inpute(t).
Where it is non-ambiguous the Laplace variables is dropped for convenience of
notation. Consider the transfer function

GOL = G1G3 =
m21+m22Gp

m11+m12Gp

m12−m11Gc

m22−m21Gc
(23)

with G1 andG3 being the transfer functions ofh1 and h3 respectively, and{mi j ∈ R,
with i, j ∈ {1,2}} the elements ofM ∈ R

2×2. The following corollary gives a nec-
essary and sufficient condition for delay-independent stability.

Corollary 3 The LTI closed loop system consisting of plant Gp, controller Gc and
the input-output-transformationM∈R

2×2 is delay-independently stable if and only
if G1,G3 are stable and

|GOL| < 1, ∀ω > 0. (24)

Proof: For delay-independent stability the closed loop system hasto be stable when
T1 = T2 = ∞, i.e.G1,G3 must be stable. Consider now the open loop transfer func-
tion including the time delay operators, i.e.GOLe− jωT with T = T1+T2. For sta-
bility |GOLe− jωT | < 1 must hold, when arg{GOLe− jωT} ≤ −180o. For arbitraryT
andω 6= 0, e− jωT defines an arbitrary phase shift. Thus, for allω > 0, |GOL| < 1
must hold.

Observe that Theorem 1 leads to the more conservative stability resultγh1γh3 = ‖G1‖∞‖G3‖∞ < 1.
The conservatism comes from the fact that more generally maxω>0 |G1G3| ≤ ‖G1G3‖∞ ≤
‖G1‖∞‖G3‖∞ holds with strict inequality. Equality is given only if the maximum
magnitude of G1 andG3 appears at the same frequencyωmax = arg supω |G1| =
arg supω |G3|, which is not equal to zero.

Under the restriction of Corollary 3, the controller and theinput-output transfor-
mation can be conjointly designed in the LTI case with known transfer functions.
Knowledge of the time delay value for the controller design is not required.
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5 Performance Issues

In the following some performance issues, i.e. the sensitivity to time delay, the
steady state behavior, and the zero time delay case are briefly discussed for LTI
systems. Based on the Corollary 3, in the remainder of this section it is considered

that‖GOL‖∞ < 1. The closed loop transfer functionG(s) =
Yp(s)
W(s) , from the reference

inputW to the plant outputYp, is computed by (6) (7) to be

G(s) = G0(s)Gtr(s)e
−sT1, Gtr(s) =

1−GOL(s)
1−GOL(s)e−sT , (25)

with G0 = (GpGc)(1+GpGc)
−1 andGOL given from (23). The system can be seen

as a series connection of the standard closed loop systemG0 without time delay and
without input-output transformation, and ofGtr which describes the influence of the
time delay and the input-output transformation. Obviously, if Gtr is far away from
identity, the behavior of the closed loop system with time delay and transformation
largely differs from the behavior of the closed loop system without time delay and
without transformation.

5.1 Sensitivity to Time Delay

Sensitivity to time delay is an interesting aspect of performance, especially in NCS
where the time delay is not exactly known in advance. Low sensitivity to time
delay means that a similar input-output behavior is achieved in a large range of
time delay values. The sensitivity function with respect tothe round trip time de-
lay T = T1 +T2 is given by the infinite dimensional transfer function

SG∗
T =

T
G∗

dG∗

dT
= sTe−sT GOL

1−GOLe−sT ,

whereG∗(s) = G0(s)Gtr(s) is the transfer function (25) without the purely time
shifting parte−sT1. For the norm ofSG∗

T a frequency-dependent maximum can be
computed as stated in the next theorem.

Theorem 2 When‖GOL‖∞ < 1 holds, the norm of the time delay sensitivity func-
tion is for each frequencyω0 bounded from above by

|SG∗
T ( jω0)| ≤

ω0T‖GOL‖∞
1−‖GOL‖∞

. (26)

Proof: Straightforward computation of the norm of the sensitivityfunction yields

|SG∗
T ( jω0)| =

ω0T|GOL|
|1−GOLe− jω0T | ≤

ω0T|GOL|
1−|GOL|

≤ ω0T‖GOL‖∞
1−‖GOL‖∞

,

where the dependence onjω0 in |GOL( jω0)| is suppressed for convenience of no-
tation.

Interestingly, the performance requirement for low sensitivity to time delay is com-
patible with the demand for large stability reserve; in bothcases‖GOL‖∞ is re-
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quired to be small, and of course below one. This can be seen bytaking the deriva-
tive of (26) with respect to‖GOL‖∞ and showing that the righthand part of (26)
is a strictly increasing function of‖GOL‖∞ when ‖GOL‖∞ < 1. Thus, minimiz-
ing ‖GOL‖∞ jointly achieves stability and sensitivity goals.

InsensitivitySG∗
T = 0 can be achieved by using a proportional controllerGc(s) = m12

m11
,

independently of the plant. This follows straightforwardly from substitutingGc

in (24) resulting inGOL = 0⇒ SG∗
T = 0⇒ Gtr(s) = 1. The closed loop transfer

function (25) reduces toG(s) = G0(s)e−sT1 with the time shifting part having no
effect on the transient response. This fact reflects the intuition that if a static con-
troller Gc is used in the proposed setup, then it can be implemented at the plant
side and no remote control action is required. However, a proportional controller
usually does not meet the performance requirements and a compromise should be
made between performance and sensitivity to time delay.

Remark 4 The minimization of‖GOL‖∞ can be formulated as an optimization
problem with bilinear matrix inequality constraints, as shown in (Matiakis, Hirche
& Buss 2008). Nevertheless, as this is out of the scope of thisarticle, in the numer-
ical example that follows in Section 6, classical gradient descent optimization is
used instead, for the design of M.

5.2 Zero Time Delay Case

As the time delay reduces to zero, i.e.T1 = T2 = T = 0, the system reduces to
that without input-output transformation, i.e.G(s) = G0(s) as straightforward com-
putable from (25). The statement holds as well for the general nonlinear case,
sincesl = sr whenT1 = T2 = 0. This is interesting as the controller can be rather
aggressively designed, compared to the standard small gainapproach, without con-
sidering time delay. For zero time delay “nominal” performance is recovered. To-
gether with low sensitivity this means that good performance is achieved in a large
range of time delay values.

5.3 Steady State Behavior

The steady state behavior of the system with the input-output transformation and
time delay is equivalent to the steady state behavior of the system without the input-
output transformation and without time delay as easily derivable by settings= 0
in (25), resulting inG(0) = G0(0). For the nonlinear case this can be observed from
the steady state conditionsl = sr , hencezc = M−1sl = M−1sr = M−1Mzp = zp.

In terms of steady state error the proposed approach clearlyoutperforms the stan-
dard small gain approach which requires|Gc( jω)Gp( jω)| < 1,ω > 0, i.e. free in-
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tegrators in the open loop are not allowed, leading thus to a non-zero steady state
error. In the proposed approach free integrators in plant orcontroller do not neces-
sarily appear as free integrators inGOL (24). As a result delay-independent stability
based on Corollary 3 and steady state error zero can be simultaneously guaranteed.
This is demonstrated in the following example.

Example: Consider the plantGp(s) = 1
s+1 and the controllerGc(s) = s+1

s(s+10) . The
input-output transformation minimizing‖GOL‖∞ in numerical optimization is given
by m11 = m22 = 0.866,m12 = 0.5, andm21 = −0.5. The open loop transfer func-
tion GcGp violates the small gain condition. With transformation, i.e. distributed
control approach, zero steady state error is achieved.

In summary, the proposed distributed control approach indicates significant ad-
vantages over the standard small gain approach. In fact, even delay-dependent
input-output approaches are outperformed in simulation and experiments as shown
in (Matiakis & Hirche 2006). Here we demonstrate its efficacyby a numerical ex-
ample.

6 Numerical Example

As plant we consider the NN8 example, extracted from the publicly available bench-
mark collection COMPleib (Leibfritz 2004), regarding only its first input and out-
put, resulting in a SISO system. The state space matrices are

Ap =











−0.25 0.1 1

−0.05 0 0

0 0 −1











,

Bp = [0 0 1]T

Cp = [1 0 0]

Dp = 0.

Three different controllers are compared. A linear quadratic regulator (LQR), with
and without the transformation, and a small gain based controller with state feed-
back. The exact design procedure is described in the following.

6.1 Linear Quadratic Regulator

The controllerhc is an LQR for zero time delay minimizing the cost function

J =

∞
∫

0

y2(τ)+0.01u2(τ)dτ. (27)
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A full state observer is computed with its poles placed at thereal axis to [-2 -3 -4].
The overall observer based controller is given by

Ac =











−8 0.1 1

−240 0 0

−3.122−0.339−4.387











, Bc =











−7.8

−239.95

6











,

Cc = [−9.122−0.339−3.387], Dc = 0.

6.2 Transformation

The LQR described in Section 6.1 is used as the pre-designed controller. The
transformationM is designed by numerical optimization solving minM ‖GOL‖∞.
The optimization is performed usingfminsearch of the Matlab optimization tool-
box. Note that the optimization problem is not convex. Therefore the optimiza-
tion algorithm is executed starting from different random initial conditionsM0,
and the best achieved (locally optimal) solution after several trials is applied. The
computation of‖GOL‖∞ is done by expressing‖GOL‖∞ as an optimization prob-
lem with linear matrix inequality constraints, and using the YALMIP Matlab tool-
box (Löfberg 2004) with the SDPT3 solver (Tutuncu, Toh & M.J. 2003). The best
achieved solution is‖GOL‖∞ = 0.5533 for the transformation

M =





0.7778 5.2414

0.0474−11.9826



 . (28)

6.3 Small gain based controller

For the small gain based controller the LQR state feedback problem is solved, for-
mulated in LMIs (Boyd, Ghaoui, Feron & Balakrishnan 1994), with a additional
small gain constraint of the open loop transfer function, which ensures delay-
independent stability. The problem is described as

minimize x0K1x0 subject to




0.01I BT
pK1

K1Bp AT
pK1+K1Ap+CT

pCp



 < 0,





ApTK2+K2Ap+K1BpR−2BpTK1 K2Bp

BT
pK2 −I



 > 0,

K1 > 0, K2 > 0,

where with bold letters the optimization parameters are denoted, andxT
0 = [111] is

the initial condition. For the solution the YALMIP Matlab toolbox (Löfberg 2004)
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Fig. 4. Norm of the sensitivity to time delay function|SG∗
T | of the systems with the LQR

with and without the input-output transformation, and the small gain based controller.

with the local solver PENBMI (Kočara & Stingl 2003) is used,trying several differ-
ent initial conditions. The obtained state feedback isF = [183.05 92.631 5.914]10−3.

6.4 Simulations

The norm of the sensitivity function with respect to time delay |SG∗
T | is shown in

Fig. 4 for the three different approaches for round trip timedelayT = 300ms, plot-
ted until the maximum cutoff frequency of the three closed loop systems. The sen-
sitivity of the proposed approach is less than the LQR without the transformation, in
almost all the considered frequencies, except for a small rangeω ∈ [100.2100.3]rad/s.
The state feedback small gain based controller shows lower sensitivity in the higher
frequencies, it is however very conservative as explained in the next. The response
for the three approaches with initial conditionxT

0 = [111] and roundtrip time de-
lay valuesT = 0, 150, 300, 450ms equally divided in the forward and backward
channel are presented in Fig. 5. The system with the input-output transformation
remains stable in all cases, and its response is only slightly affected by the time de-
lay value. On the contrary, the system without the transformation is sensitive to the
time delay, and becomes unstable forT=288ms. The response of the system with
the state feedback small gain based controller is also slightly affected by the time
delay value, but it is very conservative. The value of the cost function (27) for the
simulation time horizon of 10sec, is further presented in Table 1, certifying that the
proposed approach shows the best performance for increasing time delay values.

In short, compared to the LQR without the transformation, the proposed approach
shows significantly lower sensitivity, and compared to the state feedback small
based controller significantly better performance.
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Transformation

No transformation

Small gain

No transformation

Small gain

Transformation

Transformation

Small gain

No transformation

Small gain

Transformation

No transformation

Fig. 5. Impulse response of the systems with the LQR with and without the input-output
transformation, and the small gain based controller, for various time delay values.

Table 1
Cost functionJ for time horizon 10sec.

Time Delay [ms] 0 150 300 450

Transformation 0.2731 0.2887 0.3155 0.3529

LQR 0.2731 0.6146 unst. unst.

Small gain 2.6110 2.6983 2.7876 2.8790

7 Conclusions

This article presents a novel distributed controller approach for delay-independent
stability of NCS. The key idea is to use the limited computation power in the plant
side to implement a transformation of the transmitted through the network signals.
Instead of direct communication, a linear combination of plant and controller input
and output is transmitted. In case of non-linear, IF-OFP systems with largely un-
known model, delay-independent stability is guaranteed for every plant-controller
pair which is stable without time delay based on their dissipativity parameters. A
geometrical interpretation in terms of conic sectors is given. In case of LTI sys-
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tems with known transfer functions, a necessary and sufficient stability condition
is given. The proposed approach allows non-conservative controller design without
considering time delay in the loop, resulting in a superior tracking performance.
Due to the low sensitivity to time delay the performance remains good even for
high time delay values. Simulations verify the proposed approach in a compari-
son with an LQR without the input-output transformation andwith a small gain
based state feedback controller. Future research addresses the investigation of more
general transformations, robustness issues, time-varying delay and packet loss.
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Khalil, H. K. (1996),Nonlinear Systems, Pearson Education International, Prentice Hall.
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A Appendix

The following lemma imposes restrictions on the eigenvalues of the dissipativity
matrixP.

Lemma 1 The dissipativity parametersδ ,ε,η of all dissipative systems belong to
the domainΩ = Ω1∪Ω2 with Ω1 = {δ ,ε,η ∈R|δε−η2 < 0} andΩ2 = {δ ,ε,η ∈
R|δε −η2 = 0;δ ,ε > 0}.

Proof: For convenient notation the proof is given for the SISO case.In case of
MIMO system the proof is exactly the same, only the multiplicity of the eigenval-
ues changes accordingly. For(δ ,ε,η) ∈ Ω̄ = Ω3∪Ω4 with Ω3 = {δ ,ε,η ∈R|δε−
η2 > 0}, andΩ4 = {δ ,ε ∈ R|δε −η2 = 0;ε,δ < 0} degenerate cases occur. The
condition(δ ,ε,η) ∈ Ω3 is equivalent to positive or negative definiteness of ma-
trix P, i.e. detP = λ1λ2 = δε −η2 > 0 whereλ1,λ2 are the two eigenvalues ofP.
Hence,λ1,λ2 > 0 ⇔ P > 0 or λ1,λ2 < 0⇔ P < 0. For P > 0 (1) is satisfied for
any pairu(τ), y(τ) imposing no restriction to the system input-output behavior.
Analogously, forP < 0 (1) cannot be satisfied for any pairu(τ),y(τ). In case
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(δ ,ε,η) ∈ Ω4 we getλ1 = 0,λ2 = −δ − ε > 0. Thus,P is positive semidefinite
and (1) is again satisfied for any pairu(τ), y(τ).

Lemma 1 implies that without loss of generality we can restrict P to have either one
positive and one negative, or one zero and one negative eigenvalue. ForΩ the next
lemma holds.

Lemma 2 Consider the expressions

α(θ) = 2η sin(θ)cos(θ)−δ cos2(θ)− ε sin2(θ)

β (θ) = α(θ)+δ + ε

whereθ = θ+ andθ = θ− are the two solutions of

cot(2θ) =
ε −δ
2η

in the interval[−π
2 , π

2 ], and(δ ,ε,η) ∈ Ω. The following statements are true:

• (δ ,ε,η) ∈ Ω1
⇒ α(θ+) > 0, β (θ+) > 0, andα(θ−) < 0, β (θ−) < 0

• (δ ,ε,η) ∈ Ω2

⇒ α(θ+) = 0, β (θ+) > 0, andβ (θ−) = 0, α(θ−) < 0

Proof: For the two anglesθ = θ+ andθ = θ− it can be shown thatα(θ)β (θ) = η2−δε .
Thus for(δ , ε,η) ∈ Ω1, α(θ)β (θ) > 0 meaning thatα, β have always the same
sign for each angle. Furthermoreα(θ−) = −β (θ+),β (θ−) = −α(θ+) meaning
that α(θ),β (θ) have always different signs for the two angle solutionsθ = θ+

andθ = θ−. Combining the above the first part of the lemma is proved. For(δ , ε, η) ∈ Ω2

we getα(θ)β (θ) = η2−δε = 0 meaning thatα(θ) and/orβ (θ) are zero. Fur-
thermore,β (θ) = α(θ)+δ + ε ⇒ β (θ) > α(θ). If α(θ+) = −β (θ−) = 0 then
β (θ+) > 0,α(θ−) < 0; analogously for the other caseα(θ−) = −β (θ+) = 0.
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