
Wissenschaftliche Arbeit zur Erlangung des Grades

Master of Science

an der TUM School of Management

der Technischen Universität München

A Decomposition Approach to the Hospital-wide
Therapist Scheduling Problem

Referent: Prof. Dr. Rainer Kolisch
Lehrstuhl für Operations Management
Technische Universität München

Betreuer: Dipl.-Math. oec. Markus Frey
Dipl.-Inform. Med. Daniel Gartner

Studiengang: TUM-BWL Master

Eingereicht von: Alexander Döge, B.Sc.
Schäufeleinstraße 27B
D-80687 München
Tel.: +49 (0) 89 / 71674088
Matrikelnummer: 03603409

Eingereicht am: München, 29. November 2013

Abstract i

When receiving a series of physical treatments, patients prefer to be treated by a
therapist they already know. Accordingly, the objective of a therapy scheduler is
to maximize the matches of patients and their preferred therapists. At the collab-
orating hospital in Freising, Germany, physical therapists are scheduled on a daily
basis. At the beginning of the day, therapy jobs are known. The necessary decision
are when, where and by which therapist a therapy job has to be undertaken. In our
case, we consider a general hospital where patients can be treated in both, the hospi-
tal’s therapy centers (TC) and the hospital’s wards. Hence, the scheduler has to take
into account walking times between different job locations. Currently, the sched-
ule is developed manually which is time-consuming and far from optimal. To treat
this problem we propose two approaches. The first approach interprets the problem
as a vehicle routing problem (VRP) with time windows. The second approach de-
composes the routing problem employing a Dantzig-Wolfe (DW) decomposition. A
modified label correcting algorithm is used to solve the sub-problem (SP). It is ex-
amined how efficient these approaches are in terms of solving real-world problems.

Keywords: Therapist scheduling · Column generation · Label correcting algorithm

Table of Contents ii

Table of Contents

List of Figures iii

List of Tables iv

Abbreviations v

Symbols vi

1 Introduction 1

2 Formal Problem Statement 4
2.1 Problem Definition . 4
2.2 Integer Programming Formulation 8

3 Dantzig-Wolfe Decomposition 14
3.1 Master-problem . 14
3.2 Subproblem . 17

3.2.1 Graph Representation of a Tour 18
3.2.2 Shortest Path Problems . 21
3.2.3 The Bidirectional Label Correcting Algorithm 23

4 Computational Results 35
4.1 Comparison of the Algorithms . 35
4.2 Analysis of Computational Effort and Approaches for Improvement 37

5 Conclusion 43

Bibliography 45

Appendix 49
A Additional Algorithms . 49

List of Figures iii

List of Figures

2.1 Example break time windows. 5
2.2 Example of optimal schedule (T2-J3-R4). 8

3.1 Column generation scheme for the ThSP. 16
3.2 Reduction of edges (non-TC rooms). 20
3.3 Reduction of edges (TC rooms). 20
3.4 Problem with large overlapping time windows. 22
3.5 Fictitious graph that has to be split. 24
3.6 Divided graph when dividing the set of nodes. 24

List of Tables iv

List of Tables

2.1 Working pattern (instance T2-J3-R4). 7
2.2 Therapists (instance T2-J3-R4). 7
2.3 Jobs (instance T2-J3-R4). 7
2.4 Rooms (instance T2-J3-R4). 8

4.1 Comparision of integer program and dantzig-wolfe decomposition. . . . 36
4.2 Comparision of means to accelerate the algorithm. 38
4.3 Number of labels from forward and backward iteration. 39
4.4 Comparison of domination rules. 40
4.5 Results from the randomized algorithm. 42

Abbreviations v

Abbreviations

CG column generation.

DW Dantzig-Wolfe.

IP integer program.

L-RMP linear relaxation of the RMP.
LLF largest label first.
LP linear program.

MP master problem.

RC reduced cost.
RMP restricted master problem.

SLL smallest label last.
SP sub-problem.
SPP shortest path problem.

TC therapy center.
ThSP therapist scheduling problem.

VRP vehicle routing problem.

Symbols vi

Symbols

∆br maximum time interval between br1 and br2.
∆end minimum time to shift end where no break can be sched-

uled.
δjob
i variable indicating if a job i is done within a tour.
δroom
r,t variable indicating if a room r is occupied in time period t.

λ0 root label.
Λv set of last nodes for all labels in Λ with Λv = {vλ | λ ∈ Λ}.
λ∗ label representing the best tour found so far.
λBW label from ΛusefulBW.
λcombi label that results from the combination of λBW and λFW.
λFW label from ΛusefulFW.
λnew new label that results from extension.
λparent label that has to be extended.
Λunprocessed set of unprocessed labels/paths.
Λuseful set of useful labels/paths.
ΛusefulBW set of useful paths from backward iteration.
ΛusefulBW
v set of last nodes for all labels in ΛusefulBW.

ΛusefulFW set of useful paths from forward iteration.
ΛusefulFW
v set of last nodes for all labels in ΛusefulFW.

Θjob
n,i equal to one, if in tour n job i is treated, otherwise zero.

Θmatch
n number of matches within a tour n.

Θroom
n,r,t equal to one, if in tour n room r ∈ Rtc is occupied at time

t, otherwise zero.

Π a path.
Πλ path so far in a label λ.
πconv
p dual variables for convexity constraint.
πjob
i dual variable for job assignment constraint.
πroom
r,t dual variable for TC capacity constraint.

A set of arcs in G.
ar,i,t equal to one if in room r ∈ Rtc job i ∈ I is performed at

time t ∈ Wi, otherwise zero.

Symbols vii

Abackward set of arcs for backward iteration.
Aforward set of arcs for forward iteration.
Ared reduced set of arcs.

bAlreadyBr1
λ a variable indicating if the first break is already in the path.
bAlreadyBr2
λ a variable indicating if the second break is already in the

path.
bLongShift
λ a variable indicating if the path so far represents a long

shift.
bShortShift
λ a variable indicating if the path so far represents a short

shift.
br1 first break.
br2 second break.

cr,l time to travel from room r to room l.

dbr
n duration of break n ∈ {1, 2}.
djob
i duration of job i.
DIn dummy job in.
Dnorm duration of a regular shift.
DOut dummy job out.
Dshort duration of a short shift.

Ebrn
p earliest start time of break n ∈ {1, 2} for therapist p.

fp,i equal to one if therapist p ∈ P treats job i ∈ IFav
p , other-

wise zero.

G a graph.

I set of real-existing therapy jobs.
Iλ set of jobs that still can be done in a label λ.
Ir set of jobs that can be done in room r.
iv job i that is represented by a node v ∈ V .
Ibr set of jobs including break jobs (br1, br2).
Ibr
p set of jobs that can be done by therapist p including break

jobs.
Ibr,D set of jobs including break jobs and dummy jobs (DOut,

DIn).
IFav
p set of jobs for which therapist p is favored by the patient.
IPre
p,i set of possible predecessor jobs for therapist p and job i.
ISend set of jobs representing the end of shift.

Symbols viii

ISendNorm set of jobs representing the end of a normal shift.
ISendLong set of jobs representing the end of a long shift.
ISendShort set of jobs representing the end of a short shift.
ISucc
i set of possible successor jobs for job i.
ISucc
p,i set of possible successor jobs for therapist p and job i.

K tc
r capacity of therapist center room r.

Lbrn
p latest start time of break n ∈ {1, 2} for therapist p.

Lunprocessed a set of unprocessed nodes.

N set of all possible tours.
Np set of all possible tours for therapist p ∈ P .
nnew a new shift to be added to N .

P set of therapists.
Pi set of therapists who can perform job i.

R set of rooms.
Ri set of rooms in which job i can take place.
rv room r that is represented by a node v ∈ V .
Rtc set of TC rooms.
RCλ accumulated reduced cost in a label λ.
RC average reduced cost of Λunprocessed.
RCn reduced cost for a given tour n ∈ N .
RC

new
RC after a new label enters or leaves Λunprocessed.

RC
old

RC before a new label enters or leaves Λunprocessed.
RCv proportional reduced cost of a node v.

Sendp possible end times of shift for therapist p.
SStp start time of shift for therapist p.

T set of time-intervals.
tsep separation time to divide graph.
tv time t that is represented by a node v ∈ V .
tearliest
i,r earliest possible start time for a given job-room-

combination (i, r).
tlatest
i,r latest possible start time for a given job-room-combination

(i, r).

U set of direct successors of v ∈ V which have the same job-
room-combination.

Symbols ix

V set of vertexes/nodes in G.
vλ last node of a path in label λ.
vIN dummy node representing the sink of G.
VPred
v set of predecessor nodes for node v.
V red reduced set of vertexes.
vOUT dummy node representing the source of G.
VSucc
v set of successor nodes for node v.

Wi set of time-intervals when job i can start.
w(Π) weight of a path defined as the sum over all arc weights.
w(Π)∗ minimum path weight.

xpi,j,r,l equal to one if therapist p ∈ P treats job i ∈ Ibr ∪ {DOut}
in room r ∈ Ri before job j ∈ ISucc

p,i is treated in room
l ∈ Rj , otherwise zero.

yend
p,t equal to one if therapist p ∈ P ends his shift at time t ∈

Send
p , otherwise zero.

zn equal to one if tour n ∈ N is used, otherwise zero.
zpi,r,t equal to one if therapist p ∈ P treats job i ∈ Ibr,D which is

started in room r ∈ Ri at time t ∈ Wi, otherwise zero.

1 Introduction 1

1 Introduction

In 2012, non-surgical therapies represented, besides surgeries, the majority of hos-
pital treatments in Germany (Statistisches Bundesamt (2013)). Mainly elderly peo-
ple require physical therapies and their share of the entire population is rising
(Statistisches Bundesamt (2010, 2011)). Thus in future, the demand for physical
therapies will further increase. This strongly emphasizes the need for scheduling
physical therapies effectively and efficiently.

At the collaborating hospital in Freising, Germany, physical therapists are scheduled
on a daily basis. At the beginning of the day, therapy jobs are known. The necessary
decisions are when, where and by which therapist a therapy job has to be under-
taken. Patients prefer to be treated by a therapist they already know. Accordingly,
the objective of a therapy scheduler is to maximize the matches of patients and their
preferred therapists. The reasons for this objective are twofold. First, the hospital’s
mission is to provide the best possible treatment for each patient (Klinikum Freis-
ing (25.11.2013)). Second, hospitals in Germany face a hard competition. More
than half of all hospitals make losses (Blum et al. (2013)) and in densely populated
areas such as the greater Munich area patients can easily change to other hospitals.
However, the hospital expects that satisfied patients are more likely to return to the
hospital when they are in need of care again. Therefore, the hospital tries to maxi-
mize the patients satisfaction by maximizing the number of matches of patients and
their preferred therapist.

The planning in Freising is hospital-wide. That means that in contrast to rehabil-
itation hospitals the scheduler has to decide whether a job has to be done in the
therapy center (TC) or at a ward. The TC consists of differently equipped rooms
where patients can go for a treatment. Out-patients can only be treated at the TC
while in-patients can be treated at the TC or at wards or both. An example for
in-patients who can only be treated at wards are patients staying in the intensive
care unit. Hence, the scheduler has to take into account walking distances between
different job locations. This approach provides more flexibility but increases the
problem’s complexity, too.

Apart from the routing decision and patients preferences the scheduler has to con-
sider the following things while planning:

Each therapy job has to be done.

Therapists have different qualifications.

Therapists have different working patterns (different shift start and shift length).

1 Introduction 2

Part-time and full-time worker are available.

TCs have limited capacity.

Breaks must be assigned to shifts in accordance with the German law.

Currently, the scheduling is done manually and takes approximately one hour each
day. The process is time consuming and it is unknown how close the derived solu-
tion is to optimality.

The aim of this thesis is to develop an algorithm that solves the therapist scheduling
problem (ThSP) to optimality as efficient as possible. Further, the aim is to examine
if such an algorithms is able to solve real-world instances at most within one hour.

The ThSP can be classified as offline operational resource capacity planning ac-
cording to the health care planning matrix of Hans et al. (2012). That means that
the ThSP uses planning decisions that were derived at a higher planning level. For
example, the number of jobs is planned at the strategic level and the number of ther-
apists and their shift schedules at a tactical level. For the ThSP those information
are considered deterministic.

There is a rich literature on planning decisions in health care. A recent review can be
found in Hulshof et al. (2012) who classified more than 450 papers. It appears that
the hospital-wide view of the ThSP was not treated yet. Either physical therapies
are scheduled where patients have to visit a TC or medical personnel is scheduled
where patients are visited. The first aspect of scheduling physical therapies con-
siders rehabilitation treatment planning where a patient has to undergo a series of
treatments. In general, the main aim is to provide appointment schedules that are
more efficient than the current solution in terms of patients waiting time and/or re-
source utilization (see e.g. Chien et al. (2008), Braaksma et al. (2012), Griffiths
et al. (2012) and Schimmelpfeng et al. (2012)). The second aspect of routing med-
ical personnel occurs mostly in home care applications. Home care can be defined
as the process of delivering services such as medical, paramedical and social ser-
vices to patients at their home (Lanzarone et al. (2010)). Recent contributions to
this topic have been made by Bard et al. (2013a), Bard et al. (2013b), Mankowska
et al. (2013), Liu et al. (2013) and Shao et al. (2012). Especially the articles by Bard
et al. (2013a), Bard et al. (2013b) and Shao et al. (2012) are highly relevant to the
ThSP since they focus on the routing of therapists.

However, to the best of our knowledge the possibility that therapists can visit pa-
tients and vice versa has not been treated yet. Only in the very recent work of Ceselli
et al. (2013) a similar setting occurs. They study the problem of distributing drugs
or vaccines in a given region. There are two possibilities how citizen can receive
the drugs: either they are delivered by a vehicle or the citizens pick up the drugs
at a distribution center. This is similar to the ThSP where patients can be visited
by a therapist or visit the TC. However, the main difference is that the citizens are
grouped in advance. Then for each group it is decided whether the drugs are de-

1 Introduction 3

livered by vehicles or provided by a distribution center. In the ThSP no groups are
created in advance. For each patient who can be treated at the TC and ward the
decision where the patient is treated is made separately . For out-patients who have
to be treated in the TC and in-patients who have to be treated at wards no choice
exist. However, those groups interact with each other since they are using the same
resources such as TC rooms and therapists. In contrast to that the groups in the
setting described in Ceselli et al. (2013) are separated. Thus, it seems that the ThSP
treats a problem that has no yet been investigated.

The remainder of this thesis is structured as follows. In section 2, the problem set-
ting is explained in detail. Moreover, it is described how the real-world problem
can be abstracted and an integer program (IP) formulation for the ThSP is provided.
In section 3, a DW decomposition is developed in order to provide an efficient al-
gorithm to the ThSP. Section 3.1 describes the master problem (MP) and the course
of the column generation (CG) algorithm. In section 3.2, the SP is detailed. It is
described why the SP can be seen as a shortest path problem (SPP) and how the un-
derlying graph can be reduced. Moreover, a modified bidirectional label correcting
algorithm is presented to solve the SP. In section 4, a numeric study is given. The
performance of the different approaches is tested. We examine how efficient the
means to accelerate the algorithm are. In addition, we discuss how the algorithm
could possibly be speed up further. The work closes with a conclusion and outlook
in 5.

2 Formal Problem Statement 4

2 Formal Problem Statement

The following section describes the ThSP in a formal manner. In 2.1 it is explained
what information is needed to solve the problem and how it is derived. In 2.2 an IP
is developed. This IP can be seen as an exact mathematical description of the ThSP.

2.1 Problem Definition

The ThSP contains three main elements: (1) the therapists, (2) the therapy jobs and
(3) the hospital layout. Those elements must be clearly defined to derive a feasible
schedule for the ThSP.

(1) Therapists
Each therapist has a certain number of skills and a certain working pattern. The
skills define what kind of jobs a therapist can perform. For example a special train-
ing is required to perform reflex-zone therapies while all therapists can perform
massages. In this work, skills are abstracted as qualifications. If a therapist has a
certain qualification (s)he has a certain amount of skills. A therapist with higher
qualifications has all skills of the lower qualifications and at least one more skill.
For the ThSP we define 5 levels of qualification with lowest qualification 0 and
highest qualification 4. Thus, a therapist with qualification 4 can perform all jobs, a
therapist with qualification 3 all jobs without the ones requiring qualification 4 and
so on.

Next to the qualification a therapist has a certain working pattern. The working
pattern defines the start of a shift, possible shift ends and the time windows when
a break can be taken. The type of shift that is assigned to a therapist is planned
at a higher tactical level and known at the beginning of the therapist scheduling.
The hospital in Freising employs full-time and part-time worker. Part-time worker
work 4 hours a day and receive no break while full-time worker work 8.5 hours
regularly. This includes a break of 30 minutes. However, it is possible that full-time
worker work overtime. Then the maximum shift length expands to 11.75 hours and
a second break of 15 has to be assigned.

The break assignment must respect national law.1 Thus, a break can start earliest 2
hours after the shift start and end latest 1 hour before the shift end. It is not allowed
that a therapist works more than 6 hours without a break. If (s)he works between 6

1The regulations can be found in §9 Arbeitszeitgesetz (ArbZG). [§9 labor hours act] (In German)

2.1 Problem Definition 5

and 9 hours a break of at least 30 minutes must be given. For a working time that
exceeds 9 hours at least 45 minutes of breaks must be given in total.

To define the break time windows, different shift types have to be defined. A shift is
called a short shift if it does not exceed 4 hours. A shift is called a normal shift if it
exceeds 4 hours but not 8.5 hours. And a shift is called a long shift if it exceeds 8.5
hours. Those times correspond to the possible shift ends of full-time and part-time
worker at the hospital.

It would be legal to split the breaks in blocks of 15 minutes. However, for the ThSP
there will only be at most two breaks. A short shift receives no break. A normal
shift receives a break of 30 minutes and a long shift receives a break of 30 minutes
and a break of 15 minutes. For the sake of simplicity it is defined that the 30 minutes
break must precede the 15 minutes break. Therefore, the 30 minutes break is called
first break or break 1 and the 15 minutes break is called second break or break 2.
The resulting break time windows can be seen in Figure 2.1.

0 1 2 3 4 5 6 7 8 9 10 11

Send(0) Send(1) Send(2)Sstart

Ebr1 Lbr1

Ebr2 Lbr2

time (in h)
from Sstart

∆start

dbr
2 ∆end

Figure 2.1: Example break time windows.

The shift depicted in Figure 2.1 starts at 0 (Sstart) and can end after 4, 8.5 or 10.75
hours (Send(0), Send(1) or Send(2) respectively). The earliest start for the first break
is defined by Ebr1 and the latest by Lbr1 and for the second break by Ebr2 and Lbr2.
Ebr1 is defined by the minimum time between shift start and first break which is two
hours. Lbr1 is defined by the fact that after 6 hours there must be a 30 minutes break.
The second break must end one hour before the latest shift end. Ebr2 is the earliest
possible point in time where it is still guaranteed that there is not more than 6 hours
of consecutive work.

Nevertheless, the break time windows are not sufficient to guarantee a legal sched-
ule. If the shift is a long shift and both breaks were assigned in the light gray areas
the time of consecutive work could exceed 6 hours. The scheduler has to keep that
in mind or the break time windows must be narrowed down to the dark gray areas.

(2) Therapy jobs
Besides therapist the therapy jobs are a central element of the planning process.
Each job requires a certain qualification, can be started within a pre-defined time

2.1 Problem Definition 6

window in a set of rooms and takes a certain time to be performed. Furthermore,
there is a set of therapists by which the job is preferably done. The qualifications
are the same as defined for the therapists. A job has to be done by exactly one
therapist. If a job represents a group therapy it is still considered as one job. There
is no case where more than one therapist is needed for one treatment. The ThSP is
an individual scheduling problem and does not contain crew scheduling decisions.

The modeling of real-existing jobs as described above is straightforward. However,
also breaks are modeled as jobs. Those are jobs that can be done but not necessarily
have to be done (depending on the shift length). The required qualification is 0
and the time window is the entire planning horizon. Note that there is a difference
between the start time window for the break jobs and the break time window for
the therapists. A therapist can take a break only in the limited break time window.
However, depending on the possible shifts of all therapists a break could occur
during the entire planning horizon.

In addition, two dummy jobs are introduced. A dummy job representing the shift
start and a dummy job representing the shift end. Those jobs can be done by every
therapist and the start time window is again the entire planning horizon. The dummy
jobs are not necessarily needed to describe the problem but they will be used in the
model in section 2.2 and the are the starting point for solving the SP in section 3.2.

(3) Hospital layout
The hospital layout is the last part that must be defined in order to be able to solve
the ThSP. The hospital layout is an abstraction of the real-world hospital. It contains
information on the rooms and the walking distances between the rooms. Informa-
tion on the rooms are the type of the room and the room’s capacity. Three different
types can be distinguished. Ward rooms, TC and the break room. The break room
works as a dummy room. A shift is started and ended in the break room and all
breaks are done in this room. TC rooms are the only rooms where a capacity info
is needed. If a patient is treated in a ward room this is always the room where (s)he
already recovers. Thus, a patient can never be assigned to somebody else’s ward
room. As said before the break room is a dummy room. Only TC rooms can be
overbooked if too many therapies are scheduled at the same time in the same room.

The information that were described above are sufficient to solve the ThSP. An ex-
ample for a very small instance is provided in order to show how therapists, therapy
jobs and hospital layout work together. The instance contains 2 therapist, 3 real-
existing jobs and 4 rooms (T2-J3-R4). First, all data is listed and then one optimal
schedule is shown.

The planning interval is 15 minutes. Thus, one day is split into 96 time-intervals
(0,. . . ,95). The data for working patterns and therapists can be found in Table 2.1
and Table 2.2. Both therapists have the same working pattern with id=0 and the
qualification 2. A shift starts in period 28 (7 o’clock) and possible shift ends are
in period 44, 62 and 71. The break time window for the first break is Ebr1=36 to

2.1 Problem Definition 7

Table 2.1: Working pattern (instance T2-J3-R4).

Working Pattern

id Shift Start Shift Ends Ebrn Lbrn

0 28 44, 62, 71 36, 46 54, 66

Table 2.2: Therapists (instance T2-J3-R4).

Therapists

id qualification working pattern

0 2 0
1 2 0

Lbr1=52 and for the second break 46-66.

The data for the jobs is found in Table 2.3. The qualification for a job with id i is
denoted by qi, the duration of i by djob

i , the rooms where i can take place by ri and
the starting time window byWi. Further, the job type is specified and the preferred
therapist for the job is listed. If no information on the job is given the job is a real-
existing job. 14. If no preference information is given no preference for a therapist
exists

The information for rooms is provided in Table 2.4. The room type and the room’s
capacity is stated. Capacity is only relevant to TC rooms. Hence, no information
for other room types is provided. The travel time matrix which lists the time needed
to walk from room r to room l is stated in equation 2.1.

cr,l =

0 5 3 2

5 0 4 2

3 4 0 6

2 2 6 0

 (2.1)

An optimal schedule is depicted in Figure 2.2.

Table 2.3: Jobs (instance T2-J3-R4).

Jobs

id qi djob
i ri Wi type pref

0 2 11 1, 2, 3 36 0
1 2 10 1 50 1
2 2 4 2, 3 32
3 0 2 0 0-95 br1
4 0 1 0 0-95 br2
5 0 0 0 0-95 DOut

6 0 0 0 0-95 DIn

2.2 Integer Programming Formulation 8

Table 2.4: Rooms (instance T2-J3-R4).

Rooms

id type capacity

0 break room
1 ward
2 TC 1
3 TC 1

time
periods

Sstart
Send(0) Send(1) Send(2)

28 32 36 40 44 48 52 56 60 64 68 72

job=0
room=3

3
0

2
2

3
0

1
1

4
0

5
0

5
0

6
0

6
0

p = 0

p = 1

Figure 2.2: Example of optimal schedule (T2-J3-R4).

Light gray areas mark the time when a shift is active. Dark gray boxes mark jobs
that are performed by a therapist and white marked boxes represent breaks. The
first number in the box stands for the job’s id and the second number for the room’s
id. Both therapists start their shifts in period 28. Therapist p = 0 has a normal shift
ending in period 62 and therapist p = 1 has a long shift ending in period 71. The
overall number of matches is two since therapist 0 performs job 0 and therapist 1

performs job 1. For this tiny case all jobs are done by the preferred therapists.

It must be noted that more than one optimal schedule exist for this instance. There
is a lot of flexibility to move the break jobs. For instances where regular jobs have
bigger time windows as well it is also likely that they can be moved. Neverthe-
less, the solution represents an optimal schedule which respects all working time
regulations.

2.2 Integer Programming Formulation

The IP that is developed in this section serves two purposes. First, it provides an
exact mathematical definition of the ThSP and second, it is an approach that can be
used to solve problem instances of a size which cannot be solved by hand anymore.

The central idea of the ThSP is that apart from the assignment of therapists to jobs
also a routing decision is included. Thus, a natural way would be to model the ThSP
as a routing problem. The ThSP indeed can be seen as a special case of the vehicle
routing problem (VRP) with time windows.

A shift can be interpreted as a tour and the set of therapists can be interpreted as a
very heterogeneous fleet of vehicles where each vehicle can only perform one tour.
The fleet is very heterogeneous because each therapist is different in terms of the

2.2 Integer Programming Formulation 9

jobs for which (s)he is the preferred therapist due to the patients preferences. Only
one tour can be performed since it is not possible to perform more than one shift
within one day. The break room can be seen as the depot where the vehicles start
their tour.

The main difference to classic VRPs2 is that a job is not bound to a certain loca-
tion but can be done in more than one location. Thus, the ThSP can be seen as a
generalization of the VRP. However, it must not be mixed up with the generalized
VRP. The generalized VRP is the problem of finding a route from the depot to a
number of predefined clusters of nodes. The node sets are mutually exclusive and it
is sufficient to visit only one node of each cluster (Pop et al. (2012)). Hence, even
though both problems are a generalization of the VRP they address very different
settings.

In the remainder of this section the IP for the ThSP is detailed. First, all necessary
sets, parameters and decision variables are defined. Then the mathematical model
is stated, followed by the explanation of the objective function and the constraints.

Sets

P = set of therapists.
Pi = set of therapists who can perform job i.
I = set of real-existing therapy jobs.
Ibr = set of jobs including break jobs (br1, br2).
Ibr,D = set of jobs including break jobs and dummy jobs (DOut, DIn).
Ibr
p = set of jobs that can be done by therapist p including break jobs.
IPre
p,i = set of possible predecessor jobs for therapist p and job i.
ISucc
i = set of possible successor jobs for job i.
ISucc
p,i = set of possible successor jobs for therapist p and job i.
IFav
p = set of jobs for which therapist p is favored by the patient.
Ir = set of jobs that can be done in room r.
R = set of rooms.
Ri = set of rooms in which job i can take place.
Rtc = set of TC rooms.
T = set of time-intervals.
Wi = set of time-intervals when job i can start.
Sendp = possible end times of shift for therapist p.
Ebrn
p = earliest start time of break n ∈ {1, 2} for therapist p.

Lbrn
p = latest start time of break n ∈ {1, 2} for therapist p.

Parameters

DOut = dummy job out.

2A classification of VRPs can be found in Eksioglu et al. (2009).

2.2 Integer Programming Formulation 10

Parameters (continuation)

DIn = dummy job in.
SStp = start time of shift for therapist p.
djob
i = duration of job i.
cr,l = time to travel from room r to room l.
K tc
r = capacity of therapist center room r.

Dshort = duration of a short shift.
Dnorm = duration of a regular shift.
dbr
n = duration of break n ∈ {1, 2}.

∆end = minimum time to shift end where no break can be scheduled.
∆br = maximum time-interval between br1 and br2.

Decision variables

xpi,j,r,l = equal to one if therapist p ∈ P treats job i ∈ Ibr ∪ {DOut} in room
r ∈ Ri before job j ∈ ISucc

p,i is treated in room l ∈ Rj , otherwise
zero.

yend
p,t = equal to one if therapist p ∈ P ends his shift at time t ∈ Send

p ,
otherwise zero.

zpi,r,t = equal to one if therapist p ∈ P treats job i ∈ Ibr,D which is started
in room r ∈ Ri at time t ∈ Wi, otherwise zero.

ar,i,t = equal to one if in room r ∈ Rtc job i ∈ I is performed at time
t ∈ Wi, otherwise zero.

fp,i = equal to one if therapist p ∈ P treats job i ∈ IFav
p , otherwise zero.

Maximize
∑
p∈P

∑
i∈IFav

p

fp,i (2.2)

subject to

∑
r∈Rtc

∑
t∈Wi

zpi,r,t = fp,i ∀ p ∈ P , i ∈ IFav
p , (2.3)

∑
p∈Pi

∑
j∈IPre

p,i

∑
r∈Rj

∑
l∈Ri

xpj,i,r,l = 1 ∀ i ∈ I, (2.4)

∑
i∈Ibr

p

∑
r∈Ri

xpDout,i,0,r = 1 ∀ p ∈ P , (2.5)

∑
i∈Ibr

p

∑
r∈Ri

xp
i,Din,r,0

= 1 ∀ p ∈ P , (2.6)

2.2 Integer Programming Formulation 11

∑
j1∈IPre

i,p

∑
l∈Rj1

∑
r∈Ri

xpj1,i,l,r

−
∑

j2∈ISucc
i,p

∑
r∈Ri

∑
l∈Rj2

xpi,j2,r,l = 0

∀ p ∈ P , i ∈ Ibr
p ,

r ∈ Ri,
(2.7)

∑
p∈Pi

∑
r∈Ri

∑
t∈Wi

zpi,r,t = 1 ∀ i ∈ I, (2.8)

zp
DOut,0,SSt = 1 ∀ p ∈ P , (2.9)∑
t∈Send

p

yend
p,t = 1 ∀ p ∈ P , (2.10)

∑
t∈Send

p

t · yend
p,t =

∑
t∈T

t · zp
Din,0,t

∀ p ∈ P , (2.11)

∑
j∈IPre

p,i

∑
l∈Rj

xpj,i,l,r =
∑
t∈Wi

zpi,r,t
∀ p ∈ P , i ∈ Ibr

p ∪ {Din},
r ∈ Ri,

(2.12)

∑
j∈ISucc

p,i

∑
l∈Rj

xpi,j,r,l =
∑
t∈Wi

zpi,r,t
∀ p ∈ P , i ∈ Ibr

p ∪ {Dout},
r ∈ Ri,

(2.13)

∑
t∈Wi

(
t+ djob

i

)
· zpi,r,t + cr,l −

∑
t∈Wj

t · zpj,l,t

≤ |T | · (1− xpi,j,r,l)

∀ p ∈ P , i ∈ Ibr
p ∪ {DOut},

j ∈ ISucc
p,i , r ∈ Ri, l ∈ Rj,

(2.14)

∑
i∈Ir

ar,i,t ≤ K tc
r ∀ r ∈ Rtc, t ∈ T , (2.15)

t+d
job
i −1∑
τ=t

ar,i,τ ≥
∑
p∈P

djob
i · z

p
i,r,t

∀ r ∈ Rtc, i ∈ Ir,
t ∈ Wi,

(2.16)

∑
t∈Send

p

t · yend
p,t − Sst

p −Dshort

−
Lbr1
p∑

t=Ebr1
p

zpbr1,0,t · |T | ≤ 0

∀ p ∈ P , (2.17)

∑
t∈Send

p

t · yend
p,t − Sst

p − dbr
1 −Dnorm

−
Lbr2
p∑

t=Ebr2
p

zpbr2,0,t · |T | ≤ 0

∀ p ∈ P , (2.18)

∆end + dbr
1 ≤

∑
t∈Send

p

t · yend
p,t −

Lbr1
p∑

t=Ebr1
p

t · zpbr1,0,t ∀ p ∈ P , (2.19)

∆end + dbr
2 ≤

∑
t∈Send

p

t · yend
p,t −

Lbr2
p∑

t=Ebr2
p

t · zpbr2,0,t ∀ p ∈ P , (2.20)

2.2 Integer Programming Formulation 12

∆br + dbr
1 ≥

Lbr2
p∑

t=Ebr2
p

t · zpbr2,0,t −
Lbr1
p∑

t=Ebr1
p

t · zpbr1,0,t ∀ p ∈ P , (2.21)

Lbr1
p∑

t=Ebr1
p

(|T | − t) · zpbr1,0,t

−
Lbr2
p∑

t=Ebr2
p

(|T | − t) · zpbr2,0,t ≥ 0

∀ p ∈ P , (2.22)

ar,i,t ∈ {0, 1}
∀ r ∈ Rtc, i ∈ Ip,
t ∈ Wi,

(2.23)

fp,i ∈ {0, 1} ∀ p ∈ P , i ∈ IFav
p , (2.24)

xpi,j,r,l ∈ {0, 1}
∀ p ∈ P , i ∈ Ibr

p ∪ {DOut},
j ∈ ISucc

p,i , r ∈ Ri, l ∈ Rj,
(2.25)

yend
p,t ∈ {0, 1} ∀ p ∈ P , t ∈ Send

p , (2.26)

zpi,r,t ∈ {0, 1}
∀ p ∈ P , i ∈ Ibr,D

p , r ∈ Ri,

t ∈ Wi

(2.27)

The objective is to maximize the number of jobs that have been done by the favored
therapist. Therefore, the objective function (2.2) sums up the fp,i for all Therapists
p ∈ P and their corresponding favored jobs i ∈ IFav

p .

The constraints can be separated into 7 parts: (a) link between time-stamps and
favored jobs constraint, (b) tour constraints, (c) time-stamp constraints, (d) link
between tour construction and time-stamp constraints, (e) TC room capacity con-
straints, (f) break constraints and (g) variable domains.

(a) Link between time-stamps and favored jobs constraint

Constraint (2.3) links time-stamps and favored jobs. Whenever a job is done by a
therapist who is the preferred therapist for this job (xpi,r,t = 1) the variable fi,p is set
to 1.

(b) Tour constraints

Constraint (2.4) ensures that each real-existing job is visited exactly once. This ex-
cludes break and dummy jobs. Constraints (2.5) and (2.6) impose for each therapist
that exactly one tour is started and finished, respectively. In addition, it is assured
that the starting and ending takes place in the break room. Constraint (2.7) preserves
the flow. A certain job-room combination (i, r) including break jobs can only be
reached if it is left again in direction to some other job-room combination.

2.2 Integer Programming Formulation 13

(c) Time-stamp constraints

Every real-existing job gets exactly one time-stamp (2.8). The time-stamp for the
tour start is the beginning of the shift SSt (2.9). Constraint (2.10) ensures that each
shift has exactly one shift end. And (2.11) assures that this shift end is also the
time-stamp of the tour end.

(d) Link between tour construction and time-stamp constraints

If a job i is done in room r after a job j was done in room l then one time-stamp
must be assigned to job i (2.12). Constraint (2.13) works similarly. If a job i is done
in room r and job j will follow in room l then a time-stamp must be assigned to that
job. One of the model’s central constraints is (2.14). It assures that 2 consecutive
jobs i and j maintain the interval needed to get from the location r where i is
performed to the location l where j is performed. Furthermore, it also works as
the sub-tour elimination constraint. Since the duration of all non-dummy jobs is
bigger than 0 for all job pairs (i, j) one of the jobs gets a bigger time-stamp. Thus,
it is impossible that there is a cycle of jobs where job i has a predecessor which is a
successor of one of i’s successors.

(e) TC room capacity constraints

Constraints (2.15) and (2.16) collaborate. Constraint (2.15) ensures that the capacity
of a TC room cannot be exceeded and (2.16) links jobs and TC room occupancy.

(f) Break constraints

For each therapist the shift length is calculated by the difference between shift end
and shift start. If this shift length is bigger than the duration of a short shift the
first break must be assigned to that shift (2.17). If the shift length is bigger than
the normal shift length less the duration of break 1 also the second break must
be assigned to that shift (2.18). Constraints (2.19) to (2.21) ensure the minimum
interval among the breaks, and between the breaks and the possible shift ends. If
break 2 is assigned to the shift constraints (2.22) enforces break 2 to succeed break
1.

(g) Variable domains

Constraints (2.23) to (2.27) define the domains for all decision variables.

3 Dantzig-Wolfe Decomposition 14

3 Dantzig-Wolfe Decomposition

The routing model from section 2.2 can only be used to describe the ThSP. Even
for solving small instances it needs considerable time. In general, VRPs are hard to
solve (Lenstra and Kan (1981)) and the ThSP is a generalization of the VRP which
makes it even harder to solve.

To overcome this obstacle a DW decomposition is developed in this section. Dantzig
and Wolfe (1960) proposed this technique in order to solve large scale linear pro-
grams (LPs). The main idea is to exploit the structure of problems where some sets
of constraints are independent from each other and are just linked together by joint
constraints (Wolsey (1998, p. 185)). The original problem is divided into a so called
MP and a set of SPs. The MP works as a coordinator at a superior stage. It treats
the linking structure and thus, keeps the problem together. On a subordinated stage
the special structure of the SPs is exploited to solve them efficiently (Lübbecke and
Desrosiers (2005)).

In section 3.1, the MP is described. In scetion, 3.2, an algorithm is developed to
solve the SP.

3.1 Master-problem

The routing model from section 2.2 can be reformulated as a set partitioning formu-
lation. Additional notation and the model are described below.

Sets

N = set of all possible tours.
Np = set of all possible tours for therapist p ∈ P .

Parameters

Θmatch
n = number of matches within a tour n.

Θjob
n,i = equal to one, if in tour n job i is treated, otherwise zero.

Θroom
n,r,t = equal to one, if in tour n room r ∈ Rtc is occupied at time t, other-

wise zero.

Decision variables

zn = equal to one if tour n ∈ N is used, otherwise zero.

3.1 Master-problem 15

Maximize
∑
n∈N

Θmatch
n · zn (3.1)

subject to∑
n∈N

Θjob
n,i · zn = 1 ∀ i ∈ I, (3.2)

∑
n∈N

Θroom
n,r,t · zn ≤ K tc

r ∀ r ∈ Rtc, t ∈ T , (3.3)

∑
n∈Np

zn ≤ 1 ∀ p ∈ P , (3.4)

zn ∈ {0, 1} ∀n ∈ N (3.5)

The objective function (3.1) maximizes the number of matches over all tours. The
job assignment constraint (3.2) ensures that each real-existing job is done exactly
once. The TC capacity constraint (3.3) assures that the TC’s capacity cannot be
exceeded. The convexity constraint (3.5) imposes that for each therapist at most
one tour can be used in the optimal solution.

The number of possible toursN is huge. It might be computationally intractable to
generate all tours. Hence, only a small subset of tours N ′ ⊆ N is used (Lübbecke
and Desrosiers (2005)). The resulting problem including onlyN ′ is called restricted
master problem (RMP).

In order to generate new tours we employ CG and decompose the problem on ther-
apists. Each tour can be seen as a column for the MP/RMP. A new tour is only
added to the RMP when it promises an improvement of the objective function value
(Desrosiers and Lübbecke (2005)). To decide whether a new tour improves the ob-
jective function value or not the linear relaxation of the RMP (L-RMP) is solved.
The resulting dual-variables are used to calculate the reduced cost (RC) for the new
tour. If the RC are greater than zero the tour is added to the L-RMP.

Let πjob
i be the dual variables for the job assignment constraint (3.2), πroom

r,t the dual
variables for the TC capacity constraint (3.3) and πconv

p the dual variables for the
convexity constraint (3.5). Further let δjob

i be a variable indicating whether a job
i ∈ I is done in a tour and let δroom

r,t be a variable indicating whether a TC room is
occupied in a certain time period. Then the RC for a tour n ∈ N results to:

RCn = Θmatch
n −

(∑
i∈I

πjob
i · δ

job
i +

∑
r∈Rtc

∑
t∈T

πroom
r,t · δroom

r,t + πconv
p

)
(3.6)

The tour with biggest RC for a given set of dual variables is generated in the SP
which is described in section 3.2.

After obtaining a new favorable tour the L-RMP is solved again with the updated
set of tours. The full course of the CG algorithm is depicted in Figure 3.1.

3.1 Master-problem 16

generate L-RMP generate all SPs

initial solution L-RMP
initial

column

dual
values

solve L-RMP with
updated column set

p := 0

p < |P|

solve SP

column
favorable?

p+ +

add favorable
column to N

favorable
columns
found?

optimal LP
solution found

yes

no

yes

no

yes

no

Figure 3.1: Column generation scheme for the ThSP.

First, the L-RMP is generated as well as the SPs for all therapists p ∈ P . An initial
column is used to solve the L-RMP and derive an initial solution. The initial column
is a dummy tour that contains no matches. In addition, it is performed by a dummy
therapist doing all jobs i ∈ I and without occupying any TC during the planning
horizon. With this dummy tour the L-RMP is feasible since the tour does not violate
any constraint. The objective function value of the initial solution takes the smallest
value possible (0) since the dummy tour does not contain any match. By doing so,
every other feasible combination of tours is at least as good as the initial solution.
Thus, if the L-RMP is feasible there is no possibility that this dummy tour is used
in an optimal solution.

In the second step, the initial solution is used to obtain the dual variables for the first
iteration. For the first therapist (p := 0) the SP is solved. If the new tour has positive
RC and is thus favorable it is added to the set of column N . After the new column

3.2 Subproblem 17

was added or if there was no favorable column found the procedure is repeated for
the next therapist. The SP is solved for the second therapist, it is checked if the
new column is favorable and if so it is added to the N . This continues until it was
iterated over all therapists (p < |P|).

When all SPs were solved it is checked whether at least one favorable column was
found or in other words if the set of columns N was updated. If new columns were
added to the L-RMP it is solved again. New dual variables result from the new
L-RMP solution and the SPs are solved again.

If within one iteration through all SPs no new column was found the optimal LP-
solution is found. Nevertheless, if one would solve the L-RMP again the set of
columns N would remain the same. Thus, also the dual variables would stay the
same and with the same duals again no new columns could be obtained.

To avoid unnecessary calculation one could reduce the number of SPs that have to
be solved within each iteration. A decision can be added if a certain SP can still
generate new promising tours. Once a SP returns RC ≤ 0 no new tours can be
generated. Thus, it would be a waste of computational effort to solve the according
SP again.

Note that since the linear relaxation of the RMP is solved the CG process does
not necessarily provide an integral solution. It just provides an upper bound on the
number of matches. However, the generated solution can be taken as a starting point
to for a branch-and-price algorithm where an integral solution can be obtained.

3.2 Subproblem

The MP can be solved easily even for a big number of columns. Likewise the
process of checking if a column is favorable, adding a column to N or deriving the
dual variables is computed in short time. The crucial part in the column generation
process is to solve the SPs and generate feasible tours for the therapists.

The objective function for the SP is to maximize the tour’s RC.

Maximize Θmatch −

(∑
i∈I

πjob
i · δ

job
i +

∑
r∈Rtc

∑
t∈T

πroom
r,t · δroom

r,t + πconv
p

)
(3.7)

The RC are found when Θmatch
n , δjob

i and δroom
r,t are determined. Thus, an efficient

algorithm must be identified to determine those variables quickly.

The easiest possibility would be to model the SP as a VRP based on the routing
problem in section 2.2. Then the problem would become a VRP with a single
vehicle representing the therapist. However, the SP’s complexity would remains
almost the same as for the original problem. On the one hand, the problem would

3.2 Subproblem 18

need only constraints for one therapist. On the other hand, the problem would have
to be solved |P| times.

Since the routing perspective is not practical, a new approach must be developed.
The approach that is used most when CG is applied to VRPs is interpreting the SPs
as a SPPs (Irnich and Desaulniers (2005)). In 1992, Desrochers et al. presented
this method and since then a lot of research has been done. However, the problem
setting of assigning therapist to jobs and rooms is novel. Thus, no algorithm could
be identified which can be applied directly to the ThSP. Therefore, the remainder of
this section deals with developing a shortest path algorithm that is capable to solve
the ThSP’s SP.

In section 3.2.1, the underlying graph for the SPP is described. In section 3.2.2, dif-
ferent approaches to solve SPPs are examined. In section 3.2.3, the final algorithm
to solve the CG-SP for the ThSP is presented.

3.2.1 Graph Representation of a Tour

As described above a tour can be seen as a way through a graph. Let G = (V ,A)

be a directed graph where V is the vertex set and A is the arc set. The terms vertex
and node are used synonymously throughout this work.

The first who dealt with a large-scale single-vehicle VRP with time-windows were
Desrosiers et al. (1986). Their nodes represent jobs and each job has a time-window
when the node can be reached. The arcs represent the costs that are connected with
going from one node to another. This approach is highly efficient since it keeps the
number of nodes and thus the number of arcs small.

Unfortunately, this is not suitable for the ThSP. It is not necessary to know only
that a job was started in its time-window. It is needed to know when exactly it was
started. Only then it can be calculated when a TC room is occupied. Therefore, in
the ThSP each vertex in G represents a job-room-time combination 〈i, r, t〉. For ex-
ample, job 1 can be performed in rooms 1 or 2 and start in periods 15 or 16. Then the
resulting set of vertexes would be V = {〈1, 1, 15〉, 〈1, 1, 16〉, 〈1, 2, 15〉, 〈1, 2, 16〉}.
Thus, the resulting graph contains much more nodes and arcs than in the approach of
Desrosiers et al. (1986) and consequently it is harder to find a shortest path through
the network. To overcome this difficulty the graph is reduced to only those nodes
and arcs that are really needed to generate feasible solution for the SPs.

First of all, for all real-existing jobs i ∈ I all job-room-time combinations are
generated. For all possible shift-ends one dummy node is created. Let ISendShort ,
ISendNorm , ISendLong and ISend be the sets for jobs representing short, normal, long and
all shift ends, respectively. Further, two additional dummy nodes are created: vOUT

for the tour start representing the source of G and vIN for the latest possible end of
the tour representing the sink of G. Job-room-time combination for break jobs are

3.2 Subproblem 19

only generated if the according break is possible in the SP. For example, if only a
short shift is possible in the SP no breaks have to be generated and if only short or
normal shifts are possible no second break has to be generated.

In order to further reduce the set of nodes only those nodes are maintained that can
improve the RC. Therefore, nodes are weighted with their positive contribution to
the RC. Positive contribution means that it is only considered if a job is a favored
job and if the duals for the job assignment constraint are negative. For example, job
1 is a favored job for the SP’s therapist and the dual value for this job is −0.5. Then
the node’s contribution to the RC is 1 − (−0.5) = 1.5. Nodes are now eliminated
from the graph if their weight is not bigger than 0. In that case they can never be
higher than the RC. Especially at the beginning of the CG algorithm this is efficient.
Directly after the start the L-RMP has only generated a few duals and the number of
favored jobs is generally small. Thus, the graph is small and a solution is obtained
fast.

Later on, when the L-RMP has generated many duals this does not reduce the set
of vertexes that much. However, also the set of arcs can be reduced. Let v and
v′ be two nodes in V . Let iv be the job, rv the room and tv the starting time that
is represented by a node v ∈ V . An arc (v, v′) ∈ A connects v and v′ if iv′ is a
possible successor job of iv and if rv′ can be reached from rv in a time not greater
than tv + djob

iv
+ crv ,rv′ .

However, some sub-paths are dominated by others and thus can be removed from
G. To do so, the remaining nodes in G are weighted with their overall contribution
to the RC. That does include positive duals from the job assignment constraint and
the capacity constraint for TC rooms. The only exception is the sink which gets the
weight the convexity dual for the according therapist. This is a constant and cannot
be changed by any node.

In order to eliminate arcs, it has to be distinguished between nodes representing TC
and non-TC rooms. The more straightforward case is non-TC rooms. For every
node v ∈ V all outgoing arcs are examined. Let U be the set of direct successors of
v which have the same job-room combination. If |U| > 1 only u with the earliest
starting time keeps its arc from v. The rest of the nodes u′ ∈ U\{u} has the same
contribution to the RC as u but it is not possible that u′ has more possible successors
than u since u’s starting time is earlier. In a final step, all outgoing arcs are deleted
for nodes that have no incoming arcs and therefore cannot be part of the shortest
path. The process of eliminating arcs from non-TC rooms is depicted in Figure 3.2
for a fictitious graph.

In graph (a) a break can follow job 1 in the periods 3,4,5 and 6. It is sufficient to
allow a break only in period 3 when following job 1. Then the arcs to the breaks
in period 4,5 and 6 can be disposed which leads to graph (b). Now, there are arcs
leaving breaks in t = 4, 5, 6 but it is not possible to get to those nodes when starting

3.2 Subproblem 20

1,1,1

2,1,7

br,0,3

br,0,4

br,0,5

br,0,6

3,2,9

(a)

1,1,1

2,1,7

br,0,3

br,0,4

br,0,5

br,0,6

3,2,9

(b)

1,1,1

2,1,7

br,0,3

br,0,4

br,0,5

br,0,6

3,2,9

i,r,t

(c)

Figure 3.2: Reduction of edges (non-TC rooms).

in the source.3 Thus, all of their outgoing arcs can be disposed as well. The graph
is then reduced to (c).

The case for TC rooms works similar. Again for every node v ∈ V all outgoing
arcs are examined and again U is the set of direct successors of v with the same
job-room combination. However, this time it is not guaranteed that for all nodes in
U the node with the earliest starting times dominates the others. For the TC case
one has to consider the sum of the duals for the TC capacity constraint from the start
of the job to its end. Hence, it is necessary not only to maintain the arc from v to
u with the earliest starting time of all nodes in U . It is rather necessary to maintain
additionally all nodes u ∈ U with bigger RC than all nodes u′ ∈ U | tu′ < tu with
smaller starting time. The process of choosing nodes u that keep their arc from v is
depicted in Figure 3.3.

RC=2

RC=1

RC=1

RC=1

RC=1

RC=0

RC=0

0 1 2 3 4 5 6 7 8 9 10

E job Ljob

RC = 1 1 1 0 0 1 0 0 0 0

time
periods

Figure 3.3: Reduction of edges (TC rooms).

A fictitious job can be started earliest in period 2 and latest in period 8. The RC for
3It is assumed that (br, 0, 4), (br, 0, 5) and (br, 0, 6) do not have incoming arcs from any other node

of the entire graph (not only from the small part shown in Figure 3.2).

3.2 Subproblem 21

the time periods are stated at the bottom. The arc connecting the node representing
a start in period 2 has to be maintained because it is not guaranteed that a later start
can reach all of its successors. The second possibility is to start the job in period
3 with RC from the TC room capacity constraint of 1. Again the incoming arc to
this node has to be maintained because it is the earliest job with RC smaller than 2.
The next three possibilities (start in period 4,5 and 6) do not improve the RC. Thus,
their incoming arcs from v can be disposed. In period 7 the RC can be reduced
again. Consequently, also this incoming arc has to be maintained. It is not possible
to get a value lower than 0 therefore all arcs going to a node with later start can be
disposed. Thus, only the nodes representing startings in period 2, 3 and 7 have to
be maintained.

3.2.2 Shortest Path Problems

In the previous section, the structure of the graph for the SPP was examined. This
section deals with the question what kind of algorithms could be used to solve SPPs
and which one suits best the ThSP.
First of all, it must be defined what exactly is meant by a shortest path. Let Π =

〈v0, v1, . . . , vk〉 be a path containing nodes v0 to vk. Let w(Π) be the weight of the
path which is the sum over all arc weights:

w(Π) =
k∑
i=1

w(vi−1, vi). (3.8)

If there exists a path from node u to v the shortest path between them is defined
as the path with minimum path weight w(Π)∗. If no such path exists the weight
is set to infinity (Cormen et al. (2009, p. 643)). In the ThSP-SP always the path
between vOUT and vIN has to be determined. At least one path exists with w(Π)

of the negative convexity constraint dual (the proportional RC of vOUT). Thus, the
case that no path exists can be neglected for this work.

The ThSP-SP is de facto calculating the longest and not the shortest path. However,
the described means can be applied as well since longest path problems can be
transformed to a SPPs by inverting the sign of the arc weights (Ahuja et al. (1993,
p. 102)). The shortest path weight that is found then is the longest path weight with
negative sign.

After defining the shortest path the question is how it can be determined. In general,
it is distinguished between label setting and label correcting algorithms. Both have
in common that they are iterative approaches that assign distance or cost labels to
nodes at each iteration(Ahuja et al. (1993, p. 96)). The difference between both is
how they update those distance labels. Label setting algorithms generally based on
Dijkstra (1959) mark one label as permanent at each iteration (Ahuja et al. (1993,
p. 96), Bertsekas (1998, p. 65)). Label correcting algorithms generally based on

3.2 Subproblem 22

Bellman (1958) set all labels permanent in the last step. Until then all labels are
considered as temporary (Ahuja et al. (1993, p. 96), Bertsekas (1998, p. 73)).

Label setting algorithms are considered to be more efficient than label correcting
algorithms. The restriction to use a label setting algorithm is that the underlying
graph does not contain cycles or that the graph has non negative arc weights (Ahuja
et al. (1993, pp. 96-97)). Both is fulfilled for the ThSP-SP. However, some kind
of cycling can exist within the set of nodes representing the same jobs. Hence, an
algorithm is needed which is algorithmically more flexible and label correcting al-
gorithms are considered to be more flexible (Ahuja et al. (1993, pp. 97)). Therefore,
a label correcting algorithm is used to solve the ThSP-SP.

Without further restrictions the SP would generate shortest paths which are not fea-
sible for the ThSP. For example, if two jobs have sufficiently large overlapping time
windows and at least one of the jobs improves the RC it would be possible that a
job is done more than one time in a tour. This situation is shown in Figure 3.4.

OUT

1,1,1

RC = 1 1,1,2

RC = 1

1,1,3

RC = 1

1,1,4

RC = 1

1,1,5

RC = 1

br,0,1

br,0,2 br,0,3 br,0,4

br,0,5

IN

i,r,t

Figure 3.4: Problem with large overlapping time windows.

Job 1 and the break job have overlapping time windows. Thus, job 1 can be done
two times (thick solid line). However, after visiting node 〈1, 1, 1〉 and 〈br, 0, 4〉 the
only possible successor is node 〈IN〉 (thick dashed line). Thus, it must be assured
that no job is visited twice.

If the underlying graph was a job graph this could be seen as elementary SPP. An
elementary SPP determines the shortest elementary path between two nodes. An
elementary path is defined as a path which contains each node at most once (Irnich
and Desaulniers (2005)). For the ThSP this becomes more complicated. Practically
each node can at most be once in a path since the graph does not contain cycles. 4

However, the path may contain more than one node which is representing the same
job. Fortunately, the same means that can be used for the elementary SPP can be
used for the ThSP-SP as well.

The idea is to give the label information about if jobs have been done or if jobs still
can be done. This information works as a binary resource. If a job was done and thus

4This is true for all SPs because it is only possible to go from one node to another node if the
successor represents a later start. Thus, one can never return to a node that was already visited.

3.2 Subproblem 23

the resource was used another node which requires this resource cannot be visited.
A recent overview over exact solution approaches to the resource constrained SPP
is provided in Pugliese and Guerriero (2013).

The approach of assigning information about jobs to labels appeared first in 1989
when Beasley and Christofides proposed to use information on what jobs have been
done. Feillet et al. (2004) state that it would be more efficient to save information
on jobs that still can be done. Indeed, the information on jobs that still can be done
reduces the set of possible successor nodes for a given label more than information
on jobs that have been done. Thus, for the ThSP-SP the information on jobs that still
can be done is used to extend labels. How exactly labels are extended is described
in section 3.2.3.

However, it mus be discussed weather labels are extended to its predecessors (back-
ward iteration) or its successors (forward iteration). That means if one starts the
iteration at the source or the sink. It is considered to be most efficient if both is
combined (Ceselli et al. (2009)). That means if one starts at the source and sink
simultaneously. From the source labels are extended to its successors and from the
sink to its predecessors. This is done until both have examined a half of the graph.
Then the labels from forward and backward iteration are combined to determine the
cost-optimal tour.

All in all the ThSP-SP turns out to be a kind of elementary SPP with resource
constraints which is solved by means of a bidirectional label correcting algorithm.
How this algorithm works in particular is described in the following section.

3.2.3 The Bidirectional Label Correcting Algorithm

The previous sections focused on the graph structure and what kind of algorithm
could be used. This section focuses on how the algorithm works in detail. The
process of solving the SP can be divided into the following 6 stages:

(1) creating the reduced graph,

(2) dividing the graph in half,

(3) performing the forward iteration for one half,

(4) performing the backward iteration for the other half,

(5) combining the results of forward and backward iteration and

(6) post-processing to provide information for L-RMP.

Stage 1 – creating the reduced graph

The graph is constructed as described in section 3.2.1. Only those nodes and arcs
are part of the graph that could lead to positive RC.

3.2 Subproblem 24

Stage 2 – dividing the graph in half

To be able to perform a forward and backward iteration, the graph has to be divided
in half. For the sake of a better understanding let the fictitious graph in Figure 3.5
be a graph that has to be divided. The labels above the nodes indicate the starting
time represented by the node.

1

t = 0

2

t = 1

3

t = 2

4

t = 2

5

t = 2

6

t = 3

7

t = 3

8

t = 3

9

t = 4

Figure 3.5: Fictitious graph that has to be split.

However the graph is divided, the following two conditions must hold. First, for
every node in the graph of the forward iteration (Gforward) all the node’s predecessors
must also be part of Gforward. Second, for every node in the graph of the backward
iteration Gbackward all the node’s successors must also be part of Gbackward. Otherwise,
it might be that the splitting forbids beneficial tours.

A straightforward possibility to ensure that the precedence relationship between
the nodes is maintained, is to divide the nodes according to the starting time they
represent. That means that one defines a certain separation time tsep and all nodes
which have a starting time less or equal to tsep are added to Gforward and remaining
nodes to Gbackward. If this rule is applied to the graph in Figure 3.5 and the separation
time is set to tsep = 2 the resulting graphs are depicted in Figure 3.6. All nodes on

1

t = 0

2

t = 1

3

t = 2

4

t = 2

5

t = 2

6

t = 3

7

t = 3

8

t = 3

9

t = 4

Figure 3.6: Divided graph when dividing the set of nodes.

the left hand side would be assigned to the graph for forward iteration and all nodes
on the right hand side to the backward iteration. The gray shaded nodes and the
dotted lines between them represent the connection between both iterations and
will be used when the results from forward and backward iteration are combined.

3.2 Subproblem 25

Depending on how tsep is set, the number of arcs and nodes in each half of the graph
can vary considerably. For the label correcting algorithm the separation time is set
to:

tsep =

⌈
SStp + max(t | t ∈ Sendp)

2

⌉
(3.9)

Thus, all nodes which represent a starting time less or equal to the half of the maxi-
mum shift length are added to Gforward. A discussion on the balancing of the resulting
graphs can be found in section 4.2.

Stage 3 – forward iteration

When the sub-graphs are defined, the forward iteration begins for the sub-graph
containing vOUT. The basic idea behind the label correcting algorithm can be sum-
marized as follows. Paths are labeled with information on their costs and resource
consumption. One starts with the trivial path Π = 〈vOUT〉 and explores iteratively
new paths. This is done by manipulating two sets. The first set Λunprocessed contains
all unprocessed paths that wait to be extended. The second set Λuseful contains all
useful paths that have already been treated (Irnich and Desaulniers (2005)). Domi-
nance rules are used to dispose labels from the set and accelerate the algorithm. The
course of the algorithm can be seen in Algorithm 1. Thereafter, the structure of a
label, the dominance rules and the label extension is detailed.

First of all, a root label λ0 is created. The root label represents the trivial path
Π = 〈vOUT〉. The set of unprocessed paths Λunprocessed is created which contains
only λ0 at the beginning. The set for useful paths Λusefull is empty at the beginning.
Further, two binary variables are introduced indicating if a label dominates other
labels (bdominant) and if the label is dominated by another label (binferior).

The procedure continues as long as Λunprocessed is not empty. The first label λ of
Λunprocessed is taken and deleted from the set. It is compared to each label λ′ in
Λusefull. If λ dominates λ′ and λ′ is the first label dominated by λ then λ′ is replaced
by λ. Additionally bdominant is set true if λ′ is the first label that is dominated by
λ. If λ′ is not the first label that is dominated λ′ is removed from Λusefull. If λ is
dominated by λ′ then binferior is set true.

In case that λ has not replaced a label and is not dominated by a label already in
Λusefull then λ is added to Λusefull.
Whenever λ was not dominated the path is extended to all possible successor nodes
of λ’s final node. This is only possible if the extension is not forbidden by some
resource restriction. All labels λ′ that are generated during the extension process
are added to Λunprocessed.

The remainder of this forward iteration part describes in detail (a) how a label is
structured, (b) what values are assigned to the root label, (c) when a label domi-
nates and when it is dominated, (d) how a label is extended and (e) how the process

3.2 Subproblem 26

Algorithm 1: LABEL CORRECTING ALGORITHM (FORWARD ITERATION)
Input: Sub-graph Gforward and all information from nodes and arcs included in it
Output: A set of useful paths from the forward iteration

1 create root label λ0

2 Λunprocessed := {λ0}
3 Λusefull := ∅
4 bdominant := false
5 binferior := false
6 while Λunprocessed 6= ∅ do
7 λ← Λunprocessed[0]
8 Λunprocessed := Λunprocessed \ {λ}
9 foreach λ′ ∈ Λusefull do

10 counter := 0
11 if λ > λ′ then
12 if counter := 0 then
13 bdominant := true
14 Λusefull :=

{
Λusefull ∪ {λ}

}
\ {λ′}

15 counter := 1
16 else
17 Λusefull := Λusefull \ {λ′}
18 else
19 if λ < λ′ then
20 binferior := true

21 if bdominant = false and binferior = false then
22 Λusefull := Λusefull ∪ {λ}
23 if binferior = false then
24 foreach u ∈ VSucc

vλ
do

25 if path can be extended to u then
26 create new label λ′

27 Λunprocessed := Λunprocessed ∪ {λ′}

3.2 Subproblem 27

of getting labels from the unprocessed paths and adding label to the useful paths
can be adjusted to strengthen the algorithm.

(a) label structure
Each label λ contains the following 4 basic parameters:

The path so far that is represented by the label: Πλ.

The path’s last node: vλ.

The accumulated RC for the path so far: RCλ.

The set of jobs that still can be done: Iλ.

In addition to those parameters, 4 binary variable are assigned to each label. The
latter will be needed when the resulting sets of useful paths from forward and back-
ward iteration are combined.

A variable indicating if the path so far represents a short shift: bShortShift
λ .

A variable indicating if the path so far represents a long shift: bLongShift
λ .

A variable indicating if the first break is already in the path: bAlreadyBr1
λ .

A variable indicating if the second break is already in the path: bAlreadyBr2
λ .

(b) creation of root-label
The root label λ0 gets the following parameters assigned. The path consists only of
the graph’s source: Πλ0 := 〈vOUT〉. Thus, vOUT is the last node. The RC are the sum
of the convexity duals RCλ0 := πconv

p .

The set of jobs that still can be done contains every real-existing job that can be
reached. A job cannot be reached if the time to perform it and return to the break
room exceeds the time for a short shift. If shift ends representing a short shift exist
jobs corresponding to those ends are also added to Iλ0 .

The binary variable bShortShift
λ0

is set to 1 and bLongShift
λ0

, bAlreadyBr1
λ0

and bAlreadyBr2
λ0

to 0.

(c) dominance rules
A label λ dominates a label λ′ if the following conditions hold:

The dominating label must have greater RC (RCλ > RCλ′).

Both labels must have the same last node (vλ = vλ′).

Both labels must be of the same shift type (bShortShift
λ = bShortShift

λ′ ∧ bShortLong
λ =

bShortLong
λ′).

The dominating label must have at least the same jobs that still can be visited
(Iλ′ ⊆ Iλ).

If the RC are not greater the tour cannot lead to a better path through the graph.
The remaining three conditions ensure that the dominating label RCλ is not denying
paths that could have been explored from RCλ′ .

3.2 Subproblem 28

The reversed case that a label λ′ is dominated by a label λ works similar. The only
difference is that it is sufficient that the RC are greater or equal such that a label is
dominated (RCλ ≥ RCλ′). The other conditions remain the same.

(d) label extension
In the forward iteration a label λ is always extended from its last node vλ to the
successors of vλ. This holds unless resource constraints deny an extension. There
are two possibilities why a successor node cannot be reached. First, the successor
node represents a job that was already done. Second, the starting time represented
by the node is too late and would violate working time regulations. For example,
no break was assigned and it would be impossible to perform the job represented
by the successor node and return to the break room before the short shift ends.

If no such restriction prohibits an extension the label is extended as follows. Let
λparent be the label that is to be extended and λnew the resulting label. First, the new
label gets exactly the same values as the parent label:

λnew := λparent (3.10)

In the next step, the parameters are updated. The target node u in which direction
λparent is to be extended is added to the path so far:

Πλnew := Πλnew ∪ {u} (3.11)

The proportional RC of u are added:

RCλnew := RCλnew + RCu (3.12)

If the job iu that is represented by the destination node u is break job br1 or br2 the
binary variables are set accordingly:

iu = br1 → bShortShift
λnew = 0, bAlreadyBr1

λnew = 1 (3.13)

iu = br2 → bLongShift
λnew = 1, bAlreadyBr2

λnew = 1 (3.14)

The part that requires most calculation during the extension process is to update the
set of jobs that still can be done. In a first step, job iu is removed from the set:

Iλnew := Iλnew \ {iu} (3.15)

(3.16)

Thereafter, the possible shift ends are updated. If job iu was break br1 the tour can
no longer represent a short shift. It must then be a normal shift until the break br2
is given. Thus, all jobs representing a short shift must be removed from the set and

3.2 Subproblem 29

all jobs representing a normal shift must be added to it. Additionally break br2 has
to be added.

iu = br1 → Iλnew :=
{
Iλnew ∪ ISendNorm ∪ {br2}

}
\ ISendShort

(3.17)

If job iu was break br2 the tour can no longer represent a normal shift. It must then
be a long shift. Thus, all jobs representing a normal shift must be removed from the
set and all jobs representing a long shift must be added to it.

iu = br2 → Iλnew :=
{
Iλnew ∪ ISendLong

}
\ ISendNorm

(3.18)

By (3.17) and (3.18) all dummy and break jobs are updated. However, it is possible
that some of the jobs which are in Iλnew cannot be reached anymore since the time
to get from rvλnew (the room that represents the last node of λnew) to the room where
the successor job should be performed is too short. Or it might be that a later shift
end allows additional jobs to enter Iλnew . How Iλnew is updated for real-existing jobs
is shown in Algorithm 2.

Algorithm 2: UPDATE THE SET OF JOBS THAT STILL CAN BE DONE

Input: The set of jobs that still can be done Iλnew , all jobs that a therapist p can
perform Ip, the path so far Πλnew and the latest possible start time for a given job-
room-combination tlatest

j,l

Output: Updated set Iλnew

1 foreach j ∈ Ip ∧ vj /∈ Πλnew do
2 foreach l ∈ Rj do
3 if j ∈ Iλnew and tvλnew + djob

ivλnew
+ crvλnew ,l > tlatest

j,l then
4 Iλnew := Iλnew \ {j}
5 else
6 if j /∈ Iλnew and tvλnew + djob

ivλnew
+ crvλnew ,l ≤ tlatest

j,l then
7 Iλnew := Iλnew ∪ {j}

The algorithm’s first loop runs for each job j that can be performed by therapist
p and which is not represented by a node already in the path Πλnew . The second
loop runs over all rooms l where job j can be performed. For each job-room-
combinations (j, l) the following conditions are checked. If a job in Iλnew cannot be
reached from the last node in the path the job is removed from Iλnew . This is the
case when the starting time tvλnew of the job ivλnew (represented by the last node in
the path) plus the duration for that job plus the time needed to travel from the room
where ivλnew is performed to l where j is performed is bigger than the latest starting
time of j in l. For jobs that are not in Iλnew it is checked if they can be reached. If
so, they are added to Iλnew .

3.2 Subproblem 30

(e) label getting and adding strategies
In Algorithm 1 always the first label is taken from unprocessed paths to be ex-
amined and it is not defined where a new label is added to unprocessed paths. A
straightforward approach is to add the label in the last position. Then it would be
a first-in-first out strategy. However, this strategy can be improved in terms of the
overall performance of the algorithm (Bertsekas (1998, pp. 73-78)). The idea is
that labels should be examined first if they are more likely to dominate othes. This
would lead to a smaller overall number of generated labels and thus accelerate the
algorithm.

For the case of choosing a label from unprocessed paths Bertsekas (1998, pp. 76)
suggests to use a so called large label last strategy. Since a longest path has to be
found for the ThSP it changes to a smallest label last (SLL) method. The first la-
bel of unprocessed paths in compared to the average label in unprocessed paths. If
the RC of the label are bigger than the RC of the average label the label is used
in the iteration. Otherwise, the label is taken from the top and added to the end of
unprocessed paths. This continues until a large enough label is discovered. The av-
erage reduced costRC of unprocessed paths can be calculated as follows (Bertsekas
(1998, p. 77)):

RC =

∑
λ∈Λunprocessed

RCλ

|Λunprocessed|
(3.19)

If a new label λ′ enters Λunprocessed the resulting RC
new

can be derived from the
former RC

old
as follows:

RC
new

=
RC

old
+RCλ′

|Λunprocessed|+ 1
(3.20)

If a label λ′ leaves Λunprocessed the resulting RC
new

are:

RC
new

=
RC

old −RCλ′
|Λunprocessed| − 1

(3.21)

For the case of adding new labels to unprocessed paths Bertsekas (1998, pp. 76)
suggests a small label first strategy. For the ThSP this turns into a largest label first
(LLF) strategy. A newly generated label is compared to the top-node of unprocessed
paths. If the new label has greater RC it is added to the top. Otherwise, it is added
to the end.

LLF and SLL strategy are both used during in the label setting algorithm to solve
the ThSP.

3.2 Subproblem 31

Stage 4 – backward iteration

In its essence the backward iteration works similar to the forward iteration as de-
scribed in Algorithm 1 on page 26. The differences in the course of algorithm are
that the backward iteration works on the graph Gbackward and that paths are extended
to possible predecessor. Thus, u ∈ VSucc

vλ
in line 24 changes to u ∈ VPred

vλ
. The

pseudecode depiction of the backward iteration can be found in Appendix A.

Although the overall course of forward and backward iteration are identical they
differ in (a) how the root label is created and (b) how labels are extended.

(a) creation of root-label
The backward iteration starts at the sink of graph G which is the source of sub-graph
Gbackward. Thus, the root label λ0 gets the following parameters assigned. The path
consists only of Gbackward’s source: Πλ0 := 〈vIN〉. Hence, vIN is the last node. The
RCλ0 are set to 0.

At the beginning only nodes representing a possible shift end can be reached. There-
fore, the set of jobs that can be reached is:

Iλ0 := ISendShort ∪ ISendNorm ∪ ISendLong
. (3.22)

The binary variables bAlreadyBr2
λ0

, bAlreadyBr2
λ0

, bShortShift
λ0

and bLongShift
λ0

are all set to 0.

(b) label extension
The label extension keeps the same as in the forward iteration for the path so far
Πλnew , the reduced cost RCλnew and the binary variables bAlreadyBr1

λnew and bAlreadyBr2
λnew .

However, the updating of the binary variables bShortShift
λnew and bLongShift

λnew and the set of
jobs that still can be done Iλnew is different.

If the job iu that is represented by the destination node uSend is a job representing a
short or a long shift end the binary variables are set accordingly:

iu ∈ IS
EndShort → bShortShift

λnew = 1 (3.23)

iu ∈ IS
EndLong → bShortLong

λnew = 1 (3.24)

The most challenging part again is to update the set of jobs that still can be done.
First, the job that has just be done is removed from the set:

Iλnew := Iλnew \ {iu} (3.25)

If a job iu represented by a destination node uSend representing a shift end Iλnew is
updated as follows:

iu ∈ IS
end → Iλnew = Iλnew \ ISend

(3.26)

3.2 Subproblem 32

Additionally breaks must be included according to the shift end.

iu ∈ IS
EndNorm → Iλnew = Iλnew ∪ {br1} (3.27)

iu ∈ IS
EndLong → Iλnew = Iλnew ∪ {br2} (3.28)

In case that break br1 was given break br2 must be made available

iu = br2 → Iλnew = Iλnew ∪ {br1} (3.29)

After those steps are performed, all dummy and break jobs are updated correctly.
However, also for the backward iteration it might be possible that some jobs in the
set cannot be reached anymore or other jobs could be reached but are not included
in the set. The updating Algorithm 3 works similar to Algorithm 2.

Algorithm 3: UPDATE THE SET OF JOBS THAT STILL CAN BE DONE

Input: The set of jobs that still can be done Iλnew , all jobs that a therapist p can
perform Ip, the path so far Πλnew and the earliest possible start time for a given job-
room-combination tearliest

j,l

Output: Updated set Iλnew

1 foreach j ∈ Ip ∧ vj /∈ Πλnew do
2 foreach l ∈ Rj do
3 if j ∈ Iλnew and tvλnew + djob

jvλnew
+ crvλnew ,l < tearliest

j,l then
4 Iλnew := Iλnew \ {j}
5 else
6 if j /∈ Iλnew and tvλnew + djob

ivλnew
+ crvλnew ,l ≥ tearliest

j,l then
7 Iλnew := Iλnew ∪ {j}

The differences are first, that not the latest but the earliest time tlatest
j,l for a given

job-room-combination (j, l) is compared. And second, that the relational operators
are changed. The earliest starting time tearliest

j,l has to be greater (instead of less) than
tvλnew +djob

jvλnew
+ crvλnew ,l such that a job can be removed from the set. And tearliest

j,l has
to be less (instead of greater) or equal than tvλnew + djob

ivλnew
+ crvλnew ,l such that a job

has to be added to the set.

Stage 5 – combining the results from forward and backward iteration

The crucial part within the bidirectional algorithm is to join the results of forward
and backward iteration in order to generate feasible tours and obtain the optimal
solution. Therefore, the labels from useful paths from forward iteration (ΛusefulFW)
and from backward iteration (ΛusefulBW) have to be combined.

However, not all labels can be combined. Only those can be joined that have a
connection arc to a node in the other half of the graph. Additionally further resource

3.2 Subproblem 33

constraints must be fulfilled. Let λFW be one label out of ΛusefulFW and λBW one label
out of ΛusefulBW. Then the following conditions must hold:

The shift type must be equal.

bShortShift
λFW = bShortShift

λBW ∧ bLongShift
λFW = bLongShift

λBW (3.30)

The number of assigned breaks must match with the shift type.

bShortShift
λFW = 1 ↔

bAlreadyBr1
λFW + bAlreadyBr1

λBW = 0

bAlreadyBr2
λFW + bAlreadyBr2

λBW = 0
(3.31)

bShortShift
λFW = 0 ∧ bShortLong

λFW = 0 ↔
bAlreadyBr1
λFW + bAlreadyBr1

λBW = 1

bAlreadyBr2
λFW + bAlreadyBr2

λBW = 0
(3.32)

bShortLong
λFW = 1 ↔

bAlreadyBr1
λFW + bAlreadyBr1

λBW = 1

bAlreadyBr2
λFW + bAlreadyBr2

λBW = 1
(3.33)

If the shift is a short shift then no break must be assigned (3.31). If the break is
a normal shift then exactly one first break has to be assigned but no second break
(3.32). If the shift is a long shift both breaks must be assigned exactly once (3.33).

If the conditions (3.30) to (3.33) hold the labels can be combined to one shift. In
order to derive this information, labels have to be compared. The process of com-
paring and combining labels is depicted in Algorithm 4.

Algorithm 4: GENERATE FEASIBLE TOURS BY JOINING LABELS

Input: The lists of useful labels from forward and backward iteration ΛusefulFW,
ΛusefulBW, the duals for the convexity constraint πconv

p and the root label from for-
ward iteration λ0

Output: The best tour λ∗

1 λ∗ = λ0

2 foreach λ ∈ ΛusefulFW do
3 foreach u ∈ VSucc

vλ
do

4 foreach λ′ ∈ ΛusefulBW do
5 if u = vλ′ and conditions fulfilled then
6 λcombi = f combi(λ, λ′)
7 if RCλcombi > RCλ∗ then
8 λ∗ = λcombi

Let λ∗ be the best tour that could be found and RC∗ the corresponding RC. At the
beginning of the algorithm the best tour is set to the root label from the forward
iteration and thus the best RC are set to the negative value of the convexity duals.
The algorithm examines each element λ in the list of useful paths. The last node
of λ is extended to all its possible successors. For every successor it is checked if
there is a label in useful paths from backward iteration with the same last node. If

3.2 Subproblem 34

both nodes correspond and the conditions described in (3.30) to (3.33) are fulfilled
the labels are joined by the combination function f combi.

In order to safe computational effort, the function hands over only a fraction of
information to λcombi; the RC which are needed to decide whether the best tour
must be updated and the path which is needed for the L-RMP.
The resulting RC are:

RCλcombi = RCλFW + RCλBW (3.34)

The resulting path is:

Πλcombi =
〈
vOUT, . . . , vλFW︸ ︷︷ ︸

forward
iteration

, vλBW , . . . , vIN︸ ︷︷ ︸
backward
iteration

〉
(3.35)

If the RC of the combined label are bigger than the best RC so far the best tour is
set to λcombi. When all elements in ΛusefulFW are checked λ∗ represents the optimal
tour for the ThSP-SP.

Stage 6 – post-processing to provide information for L-RMP

In the last step a new tour nnew is created to be added to the L-RMP. The path Πλ∗

contains all nodes that were visited in the optimal tour. For the nodes representing
a real-existing job the following information is extracted.

Θmatch
nnew = number of matches within tour nnew.

Θjob
nnew,i = equal to one, if in tour nnew job i is treated, otherwise zero.

Θroom
nnew,r,t = equal to one, if in tour nnew room r ∈ Rtc is occupied at time t,

otherwise zero.

When the whole CG process terminates it returns the maximum number of matches
for the given ThSP. However, the scheduler in a hospital is not only interested in
the maximum number of matches. In particular it is important to assign tours to the
therapists. Therefore, the whole path is added to the column nnew, too. Then it is
possible to extract the shifts represented by a certain column used in the optimal
solution after the CG algorithm terminates.

Note that it is not guaranteed that the algorithm terminates with a integral solution.
Since only the L-RMP is solved an upper bound on the optimal solution to the RMP
is provided.

4 Computational Results 35

4 Computational Results

The aim of this section is to evaluate to what extend the developed approaches
could be used to solve a real-world ThSP. It is examined how powerful the speed-
up means such as graph reduction and LLF and SLL strategies are. Further, it is
discussed where most computational effort is needed during the execution of the
algorithms and how this issue could be handled.

4.1 Comparison of the Algorithms

During this thesis, two main concepts were exploited to address the ThSP: (1) the
IP formulation in Section 2.2 and (2) the DW decomposition in Section 3. The DW
decomposition can be subdivided according to the direction of the graph search
in the SP. Forward, backward and bidirectional label correcting algorithms were
developed.

In order to test the instances in terms of their capability to solve the ThSP appro-
priate test instances must be defined. Seven instances were created.5 Starting with
the tiny one from Section 2.1 up to an instance of real-world problem size. The
instances are named by the combination of the number of therapists, real-existing
jobs and rooms. For example a problem set containing 2 therapists, 3 real-existing
jobs and 4 rooms is denoted T2-J3-R4.

Out of the 7 instances only the biggest is of real-world problem size. However, the
instances are sufficient to draw the limitations of the several approaches.

In order to evaluate the different approaches two criteria are used. The first one is
if the algorithm is able to solve the problem to optimality. The second is what time
is required to solve it. Note that the scheduler at the hospital needs approximately
one hour. Thus, the program should never need more time. One has to add that
the DW decomposition only solve the L-RMP. That means that it is possible that
fractional solutions are generated. Those solutions have to be treated further by a
branch-and-price algorithm which require to solve the ThSP several times. Thus, a
time limit of 5 minutes is imposed for each run for the DW approaches and a limit
of 45 minutes for the integer program.

The algorithms were coded in Java SE6 environment linked to CPLEX 12.4 as an
LP solver and executed on a 2.00 GHz Intel Core i7 Medion Notebook with 6 GB
RAM under a 64-bit Version of Windows 7.

5The instances can be found on the CD-ROM attached to this thesis.

4.1 Comparison of the Algorithms 36

Table 4.1: Comparision of integer program and dantzig-wolfe decomposition.

Integer Program Dantzig-Wolfe
Forward Backward Bidirectional

Instance CPU (s) Solved % CPU (s) CPU (s) CPU (s)

T2-J3-R4 0.4 100.00 0.2 0.2 0.1
T3-J8-R6 38.2 100.00 0.4 0.3 0.4
T4-J8-R12 1.4 100.00 0.4 0.4 0.6
T4-J16-R12 309.5 100.00 5.7 6.2 1.9
T4-J29-R12 > 2700.0 0.00 > 300.0 > 300.0 21.4
T4-J45-R12 146.2
T10-J117-R28 > 300.0

The result for the different algorithm are provided in Table 4.1. For very small
instances the computation times almost do not differ. However, with increasing
problem size the limitations of the different approaches can be seen. A direct com-
parison between IP and DW decomposition is not possible since the IP solves to
optimality and the DW decomposition provides just an upper bound. A priori it is
not known how often the CG algorithm would have to be solved in a branch-and-
price algorithm. Hence, the overall run time to solve the problem to optimality can
not be determined. However, it can be said that the IP is not able to solve instances
bigger than T4-J16-R12. Thus, it could not be used to solve the ThSP in a real-world
application.

The DW decomposition in its current design is also not suitable to solve real-world
problems. None of the approaches could solve instance T10-J117-R28. The bidi-
rectional algorithm is more powerful than the forward or backward algorithm. The
difference in the run times for forward and backward algorithm can be explained by
the graph structure. If it is possible to dominate more labels at the starting points
of the algorithm the set of generated labels is kept smaller and thus the algorithm
faster. If the graph structure allows more domination close to the source the forward
iteration is faster. If the graph structure allows more domination close to the sink
the backward iteration is faster.

However, none of these algorithms developed in this work is capable of solving
real-world problems. An analysis where most computational effort is needed and
how the algorithm could further be improved is provided in the subsequent section.

Although, the bidirectional label correcting algorithm is not able to solve the ThSP
it already contains some components of acceleration: (1) the bidirectional structure
itself, (2) the reduction of the underlying graph for the SP by eliminating nodes and
arcs and (3) the LLF and SLL strategies to decide when and where a node enters
the lists of unprocessed paths. It is of interest to know to what extend those means
were able to improve the algorithm.

The benefit from the bidirectional structure could already be seen in Table 4.1. The
bidirectional algorithm was faster and could solve more complex instances. The

4.2 Analysis of Computational Effort and Approaches for Improvement 37

benefit from LLF and SLL strategies and the reduction of the graph can be seen in
Table 4.2 on page 38. Four cases are compared: (1) the algorithm contains neither
LLF and SLL strategy nor the graph reduction, (2) the algorithm contains only
LLF and SLL strategy (LLF+SLL), the algorithm contains only the graph reduction
(V red +Ared) and (4) the algorithm contains both the algorithm contains neither LLF
and SLL strategy and the graph reduction (LLF+SLL and V red + Ared). The two
biggest instances were not tested since already instance T4-J29-R12 yields to a run
time greater than 5 minutes.

Both, the label selection strategies and the graph reduction have positive influence
on the run time. However, the influence of the LLF and SLL strategy is rather small
in comparison to the graph reduction. For example for T4-J29-R12 the label selec-
tion strategy reduces the run time by 22% in comparison to the the case without any
acceleration means. The graph reduction reduces the run time by 95%. However,
when both are applied together the run time can be reduced to 97%.

Consequently, it can be said that the applied means are efficient in terms of speeding
up the algorithm. However, they are not able to speed-up the algorithm to solve
realistic problem size.

4.2 Analysis of Computational Effort and
Approaches for Improvement

In order to be able to further improve the algorithm it must be known where exactly
the huge computational effort is generated. As described in section 3 the crucial
part within the CG process is the SP. The SP consists of the graph generation,
the forward and backward iteration and the combining of the useful labels from
forward and backward iteration. The generation of the graph and the combining of
the useful paths requires less than a second. Although there might still be space for
improvement the waste majority of time is needed during the forward and backward
iteration.

The computation time corresponds to the number of generated labels. Table 4.2
reveals this connection. If less labels are generated the optimal solution is found
faster. For small instances this does not necessarily hold since in any case only a
small number of labels is needed to find the optimal solution. Then the time which
is saved by generating fewer labels is outperformed by the additional computation
effort for LLF and SLL strategy. However, for bigger instances the correlation holds
and a real-world instance for the ThSP would be a big instance. Thus, the question
is how it is possible to further reduce the number of generated labels.

The reason for combining forward and backward iteration was to reduce the possible
state space. It is more likely that labels dominate each other close to the starting
point when the represented path do not differ that much. If one starts from the sink

4.2 Analysis of Computational Effort and Approaches for Improvement 38

Ta
bl

e
4.

2:
C

om
pa

ri
si

on
of

m
ea

ns
to

ac
ce

le
ra

te
th

e
al

go
ri

th
m

.

L
L

F+
SL

L
L

L
F+

SL
L

V
re

d
+
A

re
d

V
re

d
+
A

re
d

In
st

an
ce

C
PU

(s
)

|Λ
|

C
PU

(s
)

|Λ
|

C
PU

(s
)

|Λ
|

C
PU

(s
)

|Λ
|

T
2-

J3
-R

4
0.

3
3

54
6

0.
3

3
52

2
0.

1
21

1
0.

1
21

1
T

3-
J8

-R
6

2.
0

12
3

08
3

1.
8

11
2

13
5

0.
4

2
60

4
0.

4
2

47
1

T
4-

J8
-R

12
1.

5
10

1
08

7
1.

6
93

17
8

0.
5

5
40

5
0.

6
5

14
6

T
4-

J1
6-

R
12

29
.3

4
49

4
27

4
24
.5

3
43

1
59

7
2.

0
22

5
74

1
1.

9
20

2
16

2
T

4-
J2

9-
R

12
69

2.
1

50
07

7
08

0
54

0.
2

35
26

6
16

5
37
.8

5
09

3
58

5
21
.4

2
95

1
70

6

4.2 Analysis of Computational Effort and Approaches for Improvement 39

Table 4.3: Number of labels from forward and backward iteration.

Bidirectional

Instance |Λ| forward |Λ| backward

T2-J3-R4 78 133
T3-J8-R6 1 706 757
T4-J8-R12 3662 1 444
T4-J16-R12 198 594 3 467
T4-J29-R12 2 940 332 11 156
T4-J45-R12 4 301 204 3 277 363
T10-J117-R28 8 303 15 394

and the source this drastically reduces the number of generated labels. However,
it might be that the separation of the graph leads to unbalanced effort for forward
and backward iteration. That means that in one part of the graph much more labels
are generated and that the idea of the bidirectional algorithm cannot be exploited
completely.

Table 4.3 shows the number of generated labels for forward and backward itera-
tion for all instances. The values for instance T10-J117-R28 are the number of
labels generated after the last iteration that was completed before the time limit
was reached.6 When looking especially at instances T4-J16-R12 and T4-J29-R12
it seems that the graph is very unbalanced. This can be explained since those in-
stances contain much more jobs in the first half of the shift. For the big instances
T4-J45-R12 and T10-J117-R28 where the jobs are distributed more evenly over the
shift the unbalance is not so distinctive. Thus, there exist some unbalance between
forward and backward iteration. A possibility to impose more balance could be
to set the separation time according to the number of jobs or nodes in each half.
However, this it is not promising to lead to an improvement such that a real-world
problem could be solved.

In case that both parts of the iteration would be balanced still too much labels would
be generated. This number has to be reduced. A label is only generated when it is
not dominated by another label in useful paths. As described in section 3.2.3 a label
has to fulfill the following for conditions to dominate another label.

The dominating label must have greater RC.

Both labels must have the same last node.

Both labels must be of the same shift type.

The dominating label must have at least the same jobs that still can be visited.

The RC must be greater. Otherwise, labels would dominate which have a negative
influence on the objective function. The last three conditions impose that only those

6The number of labels is small since only a few numbers of SPs with sparse graph could be solved.
In the moment when the L-RMP gets an objective function value greater than zero a lot of duals
are generated. Then the SP becomes intractable.

4.2 Analysis of Computational Effort and Approaches for Improvement 40

Table 4.4: Comparison of domination rules.

domination old domination new

Instance CPU (s) |Λ| CPU (s) |Λ|

T2-J3-R4 0.1 211 0.1 167
T3-J8-R6 0.4 2 471 0.4 2 016
T4-J8-R12 0.6 5 146 0.5 2 528
T4-J16-R12 1.9 202 162 1.2 53 809
T4-J29-R12 21.4 2 951 706 4.5 566 258
T4-J45-R12 146.2 7 579 003 105.1 1 747 093
T10-J117-R28 > 300.0 > 300.0

labels are dominated that do not lead to distinct tours. However, this could be
done in a different manner. The condition that both labels must have the same last
node can be relaxed. In order to assure that no promising paths are dominated the
condition that both have the same follower jobs must be expand.

For the forward iteration it works in the following manner. If a job is a follower
job for both labels it is checked if the dominating label can reach the job at least
as early as the dominated label. Otherwise the following situation could occur. A
label λ1 has dominated a label λ2. The optimal path after λ1 would be to visit the
jobs 1, 2 and 3. All jobs can be visited from λ1 since it has the same set of follower
nodes as λ2. However, it might be that job 1 is reached in moment of time where it
is too late to visit job 2. Then the optimal path cannot be constructed. To overcome
this problem it must be checked if a job can be reached at least as early as for the
dominated label. Then there is no effect on the following path. The domination
rules described in section 3.2 are not affected by such a situation. If both labels
have the same last node they have the same job-room-time combination and thus
they have the same possible starting times for all follower nodes (assumed that both
labels have the same set of possible successor jobs).

A comparison of this new domination rule (domination new) and the old one (dom-
ination old) can be found in Table 4.4. The new domination rule is more efficient
than the old one. For every instance less labels are generated and thus the run time
could be reduced. The number of labels is reduced more than the run time could be
reduced. The reason is that the new domination rule requires more computational
time. However, this is outperformed by the reduction of the number of labels. Un-
fortunately, again this improvement was not sufficient to solve T10-J117-R28. It
seems that the ThSP cannot be solved to optimality for realistic problem size. It
might be that more complex and more effective domination rules exist which con-
sider not only the next nodes but a series of nodes or sub-paths. However, those
domination rules would require additional computational effort that could exceed
the benefits.

A different approach is to relax some of the domination criteria. The resulting
solution would not necessarily be optimal. However, it is not needed that the SP is

4.2 Analysis of Computational Effort and Approaches for Improvement 41

solved to optimality. It is necessary if the SP returns positive RC. Such a heuristic
solution might be generated in appropriate time.

The condition that the RC must be greater cannot be relaxed without imposing that
inferior paths displace superior ones. An option is to allow labels to dominate even
though not all jobs can be reached or reached in the same time as for the dominated
label. The question is when and under which conditions such a domination rule can
be applied. When adding the label to the list of unprocessed paths it is unknown
how the path will develop. A priori it cannot be said if RC of a certain value or a
certain resource consumption will lead to a preferable path when the label is further
extended.

Since the resulting path of a label is unknown one could randomly reduce the num-
ber of labels added to unprocessed paths. This approach is similar to a greedy
randomized adaptive search procedure as described for example in Resende (2009).
In such an algorithm the element that is treated next by the algorithm is chosen from
a so called restricted candidate list. The list is restricted because it does contain only
the "best" candidates. Randomly one element out of the best candidates is chosen.

This setting is not directly applicable to the label correcting algorithm. However,
the central idea can be used. As described above it is not possible to judge how
good a label is. Thus, there is no list of "best" candidates. For the label correcting
algorithm a label can be seen as "best" if it is not dominated. Then a random value
is generated indicating if the label is really added to unprocessed paths.

A risk within this dominance rule is that paths are not branched which would lead
to positive RC and no other path with positive RC can be obtained. A possibil-
ity to counteract this is by imposing that the rule is only applied to labels whose
predecessor labels have more than a certain number of possible successor nodes.
For example if a label cannot be extended to more than 10 nodes the rule is not
applied to the resulting label. If an algorithm with this domination rule is able to
solve the SPs quickly an additional mechanism can be used to improve the chance
that positive RC are generated. The problem could be solved several times at least
until positive RC are found. Only the best solution is kept and then send to the
L-RMP. However, a limit on the maximum number of repetition has to be imposed.
Otherwise, the algorithm would get stuck in an infinite loop when the best RC are
zero.

Let hsucc be the number of successor nodes that must be exceeded that the algorithm
can be applied. Let hrand be the random number which has to be undercut that
the algorithm can be applied and let hcount be the number of repetitions each SP is
solved.

For the arbitrary chosen values of hsucc = 10, hrand = 0.1 and hcount = 4 the result-
ing solutions are as found in Table 4.5. For the smaller instances more labels are
generated during the execution of the randomized algorithm. The graph for those

4.2 Analysis of Computational Effort and Approaches for Improvement 42

Table 4.5: Results from the randomized algorithm.

exact randomized

Instance CPU (s) |Λ| CPU (s) |Λ| solve %

T2-J3-R4 0.1 211 0.2 762 100.00
T3-J8-R6 0.4 2 471 0.5 5 318 100.00
T4-J8-R12 0.6 5 146 0.5 6 721 100.00
T4-J16-R12 1.9 202 162 1.1 40 084 88.20
T4-J29-R12 21.4 2 951 706 3.5 362 407 92.75
T4-J45-R12 146.2 7 579 003 141.0 7 457 027 45.08
T10-J117-R28 > 300.0 > 300.0

instances is small and each node does not have many successors. Thus, the domi-
nation is not applied very often. In addition, the SPs are solved several times and
thus the same problems are generated again even though they were already solved
to optimality. For larger instances it seems that the number of generated labels and
the run time decreases. However, no reliable statement can be made concerning
the randomized label correcting algorithm. The results differ too much depending
on the instance. The results for instance T4-J29-R12 are satisfying. It is solved
quickly and the objective function value is close to optimal. In contrast, solving
instance T4-J45-R12 requires almost the same computational effort as for the exact
approach and the solution is far from optimal. Again, the biggest instance could not
be solved. However, it should be noted that more columns were generated until the
time limit was reached.

It might be that the randomized bidirectional label correcting algorithm is able to
solve the ThSP for real-world instances. The quality of the solution depends on
how well the parameters (hsucc, hrand and hcount) fit the problem instance. In order to
figure out how parameters can be adjusted optimally to the instance more research
has to be done.

The resulting solutions might not solve the problem to optimality. However, a solu-
tion close to optimal could also be a considerable improvement of the daily schedul-
ing at hospitals.

5 Conclusion 43

5 Conclusion

This thesis introduced the hospital-wide ThSP. To the best of our knowledge it was
the first time that scheduling and routing decisions were combined in a hospital
related context. The objective was to maximize the matches of patients and their
preferred therapist for a certain treatment. An IP formulation and a DW decompo-
sition were developed. The SP was solved using a bidirectional label correcting al-
gorithm to find a SPP through a graph representing possible shifts. It was examined
to what extend those approaches were capable to solve problems of real-world ap-
plication size. Unfortunately, it seems that the ThSP cannot be solved to optimality
for such instances. Although some progress has been made using the bidirectional
label correcting algorithm. This provides only a starting point for further research.

In order to address the ThSP heuristically a randomized version of the bidirectional
label correcting algorithm was developed. This algorithms is promising to perform
well on the instances when the adjusting parameters are set accordingly. However,
an extensive survey and real-world data from hospitals are needed to finally judge
if the randomized algorithm can produce appropriate schedules.

In general, further research should focus on solving the SP since most computa-
tional effort was bound at this stage. The SP should be solved more efficiently and
less often. The latter can be reached if the set of initial columns for the L-RMP is
improved. For example a heuristic could be used to construct a feasible tour. The
resulting dual variable would be better than the ones generated by the dummy tour.
The second aspect is that the SP not necessarily has to be solved by a shortest path
algorithm. This approach was chosen since the problem should be solved to opti-
mality. However, if one wants to solve the ThSP heuristically also other algorithms
capable to construct a tour could be developed.

If once the CG algorithms can be solved in a timely manner just an upper bound
is obtained. That means the solution might not be integral. In order to generate
usable schedules for the hospital the ThSP could be embedded in a branch-and-
price algorithm.

A completely different approach would be to treat the problem entirely heuristically.
Depending on the hospital’s current planning a heuristic schedule could still be an
improvement. An advantage would be that heuristic solutions are generated quite
fast. On the other hand, if the same solution is used as a starting point for the CG it
is promising to obtain better results.

Apart from the issues on solving the problem efficiently one could also think about

5 Conclusion 44

different objectives and constraints. It might be that other hospitals want to equally
distribute the workload among the therapists. An interesting problem is how walk-
ing times would then be considered. Walking times definitely belong to working
time. However, it must be avoided that therapists walk unnecessary long ways just
to have an equally distributed workload. Another possible objective could be the
minimization of the walking times in order to minimize time where no revenue is
generated for the hospital. Also multi-criteria objective function could be used.

From a constraint point of view one could consider that for certain treatments dif-
ferent material is needed (e.g. gymnastic ball). Thus, the treatment can only be
executed when the equipment is available. This holds for all resources that could
be taken into account. It might also be that more than one therapist is needed for a
certain treatment. Hence, those therapists would have to execute this treatment at
the same time.

The ThSP might also be applicable to other logistic settings where a certain task
could be done in more than one place. A capacity could be added to a therapist and
one can think of the therapist as a vehicle. If the problem instance is not too big
already the algorithm presented in this thesis could be applied.

All in all, by addressing the hospital-wide ThSP a novel research problem got for-
mulated. This thesis provides a starting point and various options exist for the re-
search community to continue and expand this work in future.

Bibliography 45

Bibliography

Ahuja, Ravindra K., Thomas L. Magnanti, James B. Orlin. 1993. Network Flows:

Theory, Algorithms, and Applications. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA.

Bard, Jonathan F., Yufen Shao, Ahmad I. Jarrah. 2013a. A sequential grasp for the
therapist routing and scheduling problem. Journal of Scheduling 1–25.

Bard, Jonathan F., Yufen Shao, Huan Wang. 2013b. Weekly scheduling models for
traveling therapists. Socio-Economic Planning Sciences 47(3) 191–204.

Beasley, John E., Nicos Christofides. 1989. An algorithm for the resource con-
strained shortest path problem. Networks 19(4) 379–394.

Bellman, Richard. 1958. On a routing problem. Quarterly of Applied Mathematics

16 87–90.

Bertsekas, Dimitri P. 1998. Network Optimization: Continuous and Discrete Mod-

els. Athena Scientific, Belmont, Massachusetts, USA.

Blum, Karl, Sabine Löffert, Matthias Offermanns, Petra Steffen. 2013. Kranken-
haus Barometer Umfrage 2013. [Hospital barometer survey 2013.] (In German).

Braaksma, Aleida, Nikky Kortbeek, Gerhard Post, Frans Nollet. 2012. Inte-
gral multidisciplinary rehabilitation treatment planning. URL http://doc.

utwente.nl/80926/.

Ceselli, Alberto, Giovanni Righini, Matteo Salani. 2009. A column generation
algorithm for a rich vehicle-routing problem. Transportation Science 43(1) 56–
69.

Ceselli, Alberto, Giovanni Righini, Emanuele Tresoldi. 2013. Combined location
and routing problems for drug distribution. Discrete Applied Mathematics doi:
http://dx.doi.org/10.1016/j.dam.2013.07.016.

Chien, Chen-Fu, Fang-Pin Tseng, Chien-Hung Chen. 2008. An evolutionary ap-
proach to rehabilitation patient scheduling: A case study. European Journal of

Operational Research 189(3) 1234–1253.

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. 2009.
Introduction to Algorithms. 3rd ed. The MIT Press.

Dantzig, George B., Philip Wolfe. 1960. Decomposition principle for linear pro-
grams. Operations Research 8(1) 101–111.

http://doc.utwente.nl/80926/
http://doc.utwente.nl/80926/

Bibliography 46

Desrochers, Martin, Jacques Desrosiers, Marius Solomon. 1992. A new optimiza-
tion algorithm for the vehicle routing problem with time windows. Operations

Research 40(2) 342–354.

Desrosiers, Jacques, Yvan Dumas, François Soumis. 1986. A dynamic program-
ming solution of the large-scale single-vehicle dial-a-ride problem with time win-
dows. American Journal of Mathematical and Management Sciences 6(3&4)
301–325.

Desrosiers, Jacques, Marco E. Lübbecke. 2005. A primer in column generation.
Guy Desaulniers, Jacques Desrosiers, MariusM. Solomon, eds., Column Gener-

ation. Springer, 1–32.

Dijkstra, Edsger W. 1959. A note on two problems in connexion with graphs. Nu-

merische Mathematik 1(1) 269–271.

Eksioglu, Burak, Arif Volkan Vural, Arnol Reisman. 2009. The vehicle routing
problem: A taxonomic review. Computers Industrial Engineering 57(4) 1472–
1483.

Feillet, Dominique, Pierre Dejax, Michel Gendreau, Cyrille Gueguen. 2004. An ex-
act algorithm for the elementary shortest path problem with resource constraints:
Application to some vehicle routing problems. Networks 44(3) 216–229.

Griffiths, Jeffrey Deacon, Janet Elizabeth Williams, Richard Max Wood. 2012.
Scheduling physiotherapy treatment in an inpatient setting. Operations Research

for Health Care 1(4) 65–72.

Hans, Erwin W., Mark Houdenhoven, Peter J.H. Hulshof. 2012. A framework for
healthcare planning and control. Randolph Hall, ed., Handbook of Healthcare

System Scheduling. Springer.

Hulshof, Peter J.H., Nikky Kortbeek, Richard J. Boucherie, Erwin W. Hans,
Piet J.M. Bakker. 2012. Taxonomic classification of planning decisions in health
care: a structured review of the state of the art in or/ms. Health Systems 1 129–
175.

Irnich, Stefan, Guy Desaulniers. 2005. Shortest path problems with resource con-
straints. Guy Desaulniers, Jacques Desrosiers, Marius M. Solomon, eds., Column

Generation. Springer.

Klinikum Freising. 25.11.2013. Leitbild Klinikum Freising. [Role model of Freis-
ing hospital.] (In German). URL http://www.klinikum-freising.

de/klinikum/leitbild.html.

Lanzarone, Ettore, Andrea Matta, Gianlorenzo Scaccabarozzi. 2010. A patient
stochastic model to support human resource planning in home care. Production

Planning Control 21(1) 3–25.

Lenstra, J. K., A. H. G. Rinnooy Kan. 1981. Complexity of vehicle routing and
scheduling problems. Networks 11(2) 221–227.

http://www.klinikum-freising.de/klinikum/leitbild.html
http://www.klinikum-freising.de/klinikum/leitbild.html

Bibliography 47

Liu, Ran, Xiaolan Xie, Vincent Augusto, Carlos Rodriguez. 2013. Heuristic algo-
rithms for a vehicle routing problem with simultaneous delivery and pickup and
time windows in home health care. European Journal of Operational Research

230(3) 475–486.

Lübbecke, Marco E., Jacques Desrosiers. 2005. Selected topics in column genera-
tion. Operations Research 53(6) 1007–1023.

Mankowska, DorotaSlawa, Frank Meisel, Christian Bierwirth. 2013. The home
health care routing and scheduling problem with interdependent services. Health

Care Management Science 1–16.

Pop, Petricǎ C., Imdat Kara, Andrei Horvat Marc. 2012. New mathematical models
of the generalized vehicle routing problem and extensions. Applied Mathematical

Modelling 36(1) 97–107.

Pugliese, Luigi Di Puglia, Francesca Guerriero. 2013. A survey of resource con-
strained shortest path problems: Exact solution approaches. Networks 62(3) 183–
200.

Resende, Mauricio G.C. 2009. Greedy randomized adaptive search procedures.
Christodoulos A. Floudas, Panos M. Pardalos, eds., Encyclopedia of Optimiza-

tion. Springer US, 1460–1469.

Schimmelpfeng, Katja, Stefan Helber, Steffen Kasper. 2012. Decision support for
rehabilitation hospital scheduling. OR Spectrum 34(2) 461–489.

Shao, Yufen, Jonathan F. Bard, Ahmad I. Jarrah. 2012. The therapist routing and
scheduling problem. IIE Transactions 44(10) 868–893.

Statistisches Bundesamt. 2010. Demografischer Wandel in Deutschland. Heft 2:
Auswirkungen auf Krankenhausbehandlungen und Pflegebedürftige im Bund und
in den Ländern. [Demographic change in Germany. Number 2: Impact on hos-
pital treatments and persons in need of nursing in the Federation and the States.]
(In German).

Statistisches Bundesamt. 2011. Fachserie 12 Reihe 6.2.2: Diagnosedaten der Pa-
tienten und Patientinnen in Vorsorge- oder Rehabilitationseinrichtungen. [Diag-
nostic data of patients in provision and rehabilitation centers.] (In German).

Statistisches Bundesamt. 2013. Press release 359/13: 51 Millionen Operationen und
medizinische Prozeduren bei stationären Patienten 2012. [51 million surgeries
and medical procedures for in-patients in 2012.] (In German).

Wolsey, L. A. 1998. Integer programming. Wiley-Interscience, New York, NY,
USA.

Appendix

A Additional Algorithms 49

A Additional Algorithms

Algorithm 5 depicts the course of the backward iteration for the label setting algo-
rithm described in Section 3.2.3.

Algorithm 5: LABEL CORRECTING ALGORITHM (BACKWARD ITERATION)
Input: Sub-graph Gbackward and all information from nodes and arcs included in it
Output: A set of useful paths from the forward iteration

1 create root label λ0

2 Λunprocessed := {λ0}
3 Λuseful := ∅
4 bdominant := false
5 binferior := false
6 while Λunprocessed 6= ∅ do
7 λ← Λunprocessed[0]
8 Λunprocessed := Λunprocessed \ {λ}
9 foreach λ′ ∈ Λuseful do

10 counter := 0
11 if λ > λ′ then
12 if counter := 0 then
13 bdominant := true
14 Λuseful :=

{
Λuseful ∪ {λ}

}
\ {λ′}

15 counter := 1
16 else
17 Λuseful := Λuseful \ {λ′}
18 else
19 if λ < λ′ then
20 binferior := true

21 if bdominant = false and binferior = false then
22 Λuseful := Λuseful ∪ {λ}
23 if binferior = false then
24 foreach u ∈ VPred

vλ
do

25 if path can be extended to u then
26 create new label λ′

27 Λunprocessed := Λunprocessed ∪ {λ′}

Ehrenwörtliche Erklärung

Ich erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit selbständig angefertigt
habe. Die aus fremden Quellen direkt und indirekt übernommenen Gedanken sind als
solche kenntlich gemacht.

Ich weiß, dass die Arbeit in digitalisierter Form daraufhin überprüft werden kann, ob uner-
laubte Hilfsmittel verwendet wurden und ob es sich - insgesamt oder in Teilen - um ein Plagiat
handelt. Zum Vergleich meiner Arbeit mit existierenden Quellen darf sie in eine Datenbank
eingestellt werden und nach der Überprüfung zum Vergleich mit künftig eingehenden Ar-
beiten dort verbleiben. Weitere Vervielfältigungs- und Verwertungsrechte werden dadurch
nicht eingeräumt. Die Arbeit wurde weder einer anderen Prüfungsbehörde vorgelegt noch
veröffentlicht.

München, 29. November 2013

Unterschrift

	Table of contents
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	Introduction
	Formal Problem Statement
	Problem Definition
	Integer Programming Formulation

	Dantzig-Wolfe Decomposition
	Master-problem
	Subproblem
	Graph Representation of a Tour
	Shortest Path Problems
	The Bidirectional Label Correcting Algorithm

	Computational Results
	Comparison of the Algorithms
	Analysis of Computational Effort and Approaches for Improvement

	Conclusion
	Bibliography
	Appendix
	Additional Algorithms

