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Meltem Gölgeli Matur
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Abstract

In this PhD thesis, a special case of a bacterial communication system, the so-called Quo-
rum Sensing is modeled, in two different mathematical approaches. First, the transition
process among bacterial states affected by the signaling molecule concentration is investi-
gated in a stochastic model and their time dynamic is determined. The suitable parameters
are estimated in comparison to experimental data. Next, the spatial distribution of signal-
ing molecules produced by heterogeneously distributed bacteria is described and analyzed
by a reaction-diffusion equation. Approximate analytical solutions to this complex system
were determined. The modeling results are implemented, simulated and discussed for
both approaches.

Zusammenfassung

Im Rahmen dieser Doktorarbeit wird ein Spezialfall bakterieller Kommunikation, das so-
genannte Quorum Sensing, mit zwei verschiedenen mathematischen Ansätzen model-
liert. Zuerst wird der Transitionsprozess zwischen verschiedenen bakteriellen Zuständen,
beeinflusst von Signalmolekülen, mit einem stochastischen Modell untersucht und deren
zeitliche Dynamik bestimmt. Passende Parameter werden im Vergleich mit experimentellen
Daten geschätzt. Anschließend wird die räumliche Verteilung von Signalmolekülen, die
von heterogen verteilten Bakterien produziert werden, durch eine Reaktions - Diffusions
Gleichung beschrieben und analysiert. Geeignete approximative Lösungen zu diesem
komplexen System werden bestimmt. Die Modellierungsergebnisse für beide Ansätze
werden implementiert, simuliert und diskutiert.
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1 Introduction

Mathematical modeling of microbiological processes generates an interdisciplinary scien-
tific interest because a model can simplify understanding of biochemical mechanisms in
complex dynamical systems by reducing them to the essential subprocesses and may pre-
dict the future behavior of the natural systems (Murray [47, 48]). Even the unicellular
organisms, e.g. bacteria, utilize a variety of complex biochemical mechanisms to share
information about environmental issues. It is widely recognized that bacteria commu-
nicate to each other using several mechanisms to facilitate their adaptation to changing
environmental conditions (Bassler [6], Eberhard [11], Fuqua et al. [18], Miller and Bassler
[41], Nealson et al. [50]).

Quorum sensing is one of the several possible cell to cell communication mechanisms
appearing in many bacterial species which indicates a collective behavior of the whole
colony by coordinating their gene expression using diffusible signaling molecules (Bassler
[6], Fuqua et al. [18], Hense et al. [22]). In this process, each bacterium generally pro-
duces signaling molecules and releases them through the cell membrane. Moreover, they
detect the accumulation of signaling molecules, continuously. When a critical environmen-
tal concentration of signaling molecules is reached, bacteria coordinate their gene expres-
sion so that a collective behavior starts for the benefit of the colony (Waters and Bassler
[60], Williams [61]). In other words, quorum sensing effectively can control processes like
bioluminescence, virulence, biofilm formation, sporulation, antibiotic resistance etc. in
various bacterial species allowing the bacteria to act as a multicellular organism (Zhu et al.
[64]).

Various mathematical models describing quorum sensing in bacteria can be found in the
literature. Nevertheless, the similarities between different quorum sensing mechanisms
enable to classify the mathematical models mainly in two different approaches: modeling
at the single cell level (Dockery and Keener [10], James et al. [26]) and modeling at the pop-
ulation level (Anguige et al. [1, 2], Gustafsson et al. [21], Ward et al. [59]). The population
models can describe either a homogeneously mixed population ([1, 21, 59]) or spatially het-
erogeneous structures (Hense et al. [23], Melke et al. [39], Müller et al. [45]). Furthermore,
the noise under the intercellular dynamics and the random cell transcription enforce de-
veloping stochastic models at both single cell and population level that describe bacterial
motion, cell division and chemical communications (Goryachev et al. [20], Koerber et al.
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1 Introduction

[33], Müller et al. [46]).

1.1 Motivation and Objectives of the Thesis

Even though numerous biological and mathematical models of quorum sensing have been
studied over the years, the regulation of dynamic cell responses affected by signaling
molecule concentration and the interaction between cells influenced by the changes of
multiple environmental and cellular factors are still not fully understood. For this reason,
there is a strong interest in experimental research for cell to cell communication which can
be supported by mathematical models to understand and interpret these processes better.
Generally, the analysis of mathematical models and the estimation of the correspondent
parameters aims to predict the future behavior of the bacterial colony and can potentially
motivate to perform new experimental methods. In this thesis, we study two different
mathematical modeling approaches for the quorum sensing mechanism in response to
some open problems appeared from experimental researches.

The first modeling approach in this thesis is based on the stochastic dynamics of indi-
vidual bacterial cells which display a switching behavior from an ’inactive’ to an ’active’
cell state as a result of quorum sensing. The switching behavior is dependent on the sig-
naling molecule concentration around the cell, i.e., if the concentration reaches a certain
threshold around a cell quorum sensing becomes active. Since the signaling molecules are
assumed to be present in large amounts, we model their time dependent change in two
different states by ordinary differential equations (i.e., deterministically), while we take
into account the randomness of the switching process and insert this stochasticity with the
probability density functions into the differential equation system. Thus, we determine
signaling molecule dependent probability density functions of discrete cell states and ex-
plain the dynamics of a bacterial colony in time.

Stochasticity due to switching of the gene status was pioneered in Ko [31] and followed
by many others [29, 34, 46]. Our study mainly focuses on the approaches of Lipniacki
et al. [34] and Müller et al. [46]. First, Lipniacki et al. [34] combine the ordinary differ-
ential equations with a stochastic component for the transcription of mRNA and protein
levels in a single cell and obtain a system of first-order partial differential equations for
two dimensional probability density functions. Then, Müller et al. [46] introduce a sim-
ilar stochastic approach for the transcription process between identical cells switching in
two discrete states in which the large number of product density (mRNA or protein) is
described deterministically.

Hence Müller et al. [46] address the probability density of product concentration (i.e.,
it means for our case: signaling molecule concentration) in two cell states at time t. In
contrast, we investigate the individual dynamics of a bacterial colony of size N in two cell
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1.1 Motivation and Objectives of the Thesis

states (inactive and active ) at time t where the cells are considered to switch randomly
from the ’inactive’ state to the ’active’ state dependently on the signaling molecule concen-
tration. Ultimately, our approach intends to explain the switching behavior in a bacterial
colony as a result of quorum sensing. Taking up the modeling idea in Müller et al. [46],
we introduce a model with partial differential equations including the interaction among
a growing bacterial colony. Since we are not interested here in the spatial distribution
of cells, our model includes the variables of signaling molecule concentration and time.
These partial differential equations turn out to have a unique explicit solution. Further, we
compare the model with an experimental data set and estimate correspondent parameter
values. In that way, we are able to predict the future behavior of bacteria in such a system
and to understand the similar quorum sensing behavior of many other colonies.

In the second part of the thesis, contrary to the first modeling approach, we concern
about the spatial distribution of cells and its effect on the signaling molecule concentration.
Triggering the positive feedback loop diffusible signaling molecules have also an impact
on the behavioral changes of cells as an effect of quorum sensing, e.g. the switching be-
havior which we have studied in the first modeling approach. However we overlook this
possible behavioral change in our model. Müller et al. [45] formulate a similar idea keep-
ing cells as single objects with a spatially homogeneous interior, which enables to describe
the total mass of the signaling molecules within the cells by ordinary differential equations.
In the exterior, the spatial structure becomes important and a diffusion equation with a de-
cay term represents the diffusion and degradation of the signaling molecules. They give
a special attention on diffusion of the signaling molecules through the cell membrane and
explain the active diffusion (assuming that the signaling molecules are carried by active
pumps located in the cell membrane) of signaling molecules with two different rates (in-
flow and outflow rates). Although this model appears in linear form, the PDE in medium
is defined on a region excluding little holes (the cells), which precludes finding analyti-
cal solutions for many cells and costs a high computational effort for a fine discretization
around each of the cells, numerically. Avoiding these costs, they scale the cell size to a
point which facilitates to find an approximate solution in the stationary state. Here, the
scaling behavior of inflow and outflow rates is of special interest, because of the fact con-
sidering the mass within the cell (homogeneously distributed structure) but density in the
exterior (heterogeneous structure).

Müller and Uecker [44] extended the idea of Müller et al. [45] and presented a model
in which cells communicate with each other via diffusion of the signaling molecules in
the non stationary case. The model consists of an initial boundary value problem for a
parabolic partial differential equation describing the exterior concentration of the signaling
molecules, coupled with ordinary differential equations for the masses of the substance
within each cell, analogously to Müller et al. [45], whereas Müller and Uecker [44] develop
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1 Introduction

approximate models and approximation theorems that include the form of an ordinary
differential equation or of a delay equation.

Contrary to the approaches in Müller et al. [45] and Müller and Uecker [44], our model
is based on a reaction diffusion equation for both exterior and interior of cells where the
reaction term contains a nonlinearity because of the quorum sensing process. We assume
that the signaling molecules freely diffuse through the cell membrane and each of the spa-
tially scattered identical cells have a way to sense signaling molecules produced by others
besides its own internal production. We adopt the idea of shrinking cells and therefore
we scale the cells appropriately with the radius L → 0, which allows us to replace each
cell by a point source. As we consider the signaling molecules have a spatially homoge-
neous distribution within the cell, we scale the production rates in each cell so that we
preserve the spatial structure of the heterogeneous medium. Heterogeneity of the signal-
ing molecules in the exterior results from the heterogeneous distribution of cells. Since
the signaling molecules are only transported by diffusion, the distance between cells has
a strong impact on the sensing process. Indeed, a cell may sense the signaling molecules
produced by a neighbor cell much better than produced by one cell located over long dis-
tances. It is well known that the concentration of surrounding signaling molecules triggers
the positive feedback loop and increases the production within the cell [8]. Under all of
these assumptions, we first suggest a single cell model where we can compute a unique
explicit solution for the model which leads us to find a suitable approximate system for the
N cells case. Subsequently, we obtain approximate solutions for the nonlinear equations
under steady state condition and illustrate numerical simulations for the approximate so-
lution. As a result, we investigate a large scale concentration of signaling molecules while
the cells were assumed to shrink to a point.

1.2 Outline of the Thesis

This thesis is organized as follows:
In Chapter 2, we briefly introduce the biological background of quorum sensing. Then,

we give a detailed account of a gene regulation experiment performed for the biofilm form-
ing bacterial strain Pseudomonas putida IsoF. At the end of this chapter we give a short
literature review on relevant papers on mathematical modeling of quorum sensing.

In Chapter 3, we analyze the interaction between cells in a stochastic manner and de-
velop a model describing the probability density function of cells in two different cell
states. The model approach leads to a system of hyperbolic partial differential equations
depending on signaling molecule concentration and time. After solving this hyperbolic
partial differential equation system via the method of characteristics explicitly, we esti-
mate a suitable parameter family appropriate to the experimental data by the least squares
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1.2 Outline of the Thesis

method. Moreover, we simulate the solution numerically and show that the developed
model meets the experimental data quite well. To conclude this chapter, we summarize
the achieved results, interpret the estimated parameter values according to experimental
measurements and give an aspect of the future work.

In Chapter 4, we focus on the spatial interaction between cells via signaling molecules
and develop a model in form of a reaction diffusion equation. Further, we explore the
signaling molecule concentration in space while we assume that the cells shrink to a point
source. The scaling concept of the signaling molecule production rates is of interest, be-
cause the signaling molecules that are produced within the cell can diffuse freely through
the membrane to the spatially structured medium. As it is often not possible to find any
explicit or numerical solution to the derived model, we seek a suitable approximation in
the steady state which can embody the classical solution. Consequently, we present ap-
proximate models and approximation theorems for different typical situations that show
the solutions of original and approximative models are close to each other.
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2 Quorum Sensing and an Overview of its
Mathematical Models

This chapter aims to give an overview of a communication system among bacteria which
is known as quorum sensing. Section 2.1 provides a short history of quorum sensing via
some selected publications in biology. In order to understand the dynamics of this com-
munication system better we give an experimental example in Section 2.2. To conclude this
chapter we present in Section 2.3 some aspects on the mathematical modeling of quorum
sensing among many.

2.1 Quorum Sensing and Bacterial Behavior

The cell-to-cell communication system is related to the question under which conditions
and how bacteria change their gene expression in adaptation to the environment. Many
bacterial species have a collective (communal) behavior contrary to their unicellular exis-
tence. They communicate with each other using chemical signals which enables them to
notice the information about the current signaling molecule concentration. If a colony ex-
ceeds a specific threshold of the signaling molecule concentration, all cells act together for
the benefit of the whole colony (bioluminescence, biofilm formation, antibiotic resistance,
etc.) that gives them greater chances to survive in changing environmental conditions
Bassler [6], Waters and Bassler [60].

The cell-cell communication mechanism, often also called quorum sensing (QS), regu-
lates gene expression (production of a DNA protein by a cell) via releasing small signaling
molecules, the so-called autoinducers (AIs), which are synthesized within the cell by an
AI-synthase (Fuqua et al. [18, 19], Kaplan and Greenberg [28]). Every single bacterium
produces AIs in cytoplasm and releases them into environment. AIs around the cell dif-
fuse back from the medium into the cell cytoplasm through the cell membrane (Bassler
[6], Waters and Bassler [60]). At low cell densities, AIs are produced by the bacteria at a
low level and since the population density increases, bacteria trigger the positive feedback
loop and produce more AIs (Kaplan and Greenberg [28]). The bacteria coordinate their
behavior by regulating gene expression and start a population-wide response for the ben-
efit of the colony (Jayaraman and Wood [27], Waters and Bassler [60]). For example, AIs
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2 Quorum Sensing and an Overview of its Mathematical Models

can regulate several processes, like luminescence, building of biofilms or producing toxic
substances (Annous et al. [3], Waters and Bassler [60]).

Initially, it was thought that bacteria have a mechanism to sense the AI concentration
in the environment and by that get an estimate for the present local population density.
When a critical density of population is exceeded bacteria begin then with the transcrip-
tion of some genes that enables to switch their usual behavior (Fuqua et al. [18]). Recently,
it was shown that this process is more complicated and does not depend on their local
density only, i.e. their ”quorum”, but also on the freely diffusible space and other envi-
ronmental factors. In Redfield [55], the same mechanism was interpreted as ”diffusion
sensing”. The underlying idea is that there is a diffusible space around the cell; it is rea-
sonable to speak about diffusion sensing, because it depends on the diffusible area, if and
how fast the AI concentration accumulates and reaches the threshold. For example, in a
limited space (in a pore), the diffusion would be limited comparing to a large space (in a
river). Both approaches can be unified in terms of ”efficiency sensing” which proposes that
bacteria are affected by diffusion or advection and by their spatial distribution and local
density (Hense et al. [22]). This new concept considers that the bacteria do not only sense
the cell density but also cell distribution and diffusion effects in the complex medium,
which allows estimating the efficiency of the regulated behavior. Recently, many other
hypotheses have been proposed to define quorum sensing, e.g. positional sensing, cumu-
lative gradient sensing etc. Platt and Fuqua [54]. As it is more generic, we will use the
term QS to describe several cell interactions throughout the thesis.

As an example of a bacterium with a QS mechanism, we start with the Gram-negative
[52] marine species Vibrio fischeri, in which the QS was firstly observed about four decades
ago (Eberhard [11], Nealson et al. [50]). V.fischeri naturally exists either in a free-living
planktonic state or in a symbiotic state of certain luminescent fishes or squids (Bassler
et al. [7], Fuqua et al. [18]). The host uses this luminescence to attract his prey or defends
himself from predators by a light camouflage, the bacteria benefit from the abundance of
nutrients in the light organ and by that allow proliferation in enormous numbers in the
host (Waters and Bassler [60]). The bacteria luminesce when colonizing with high cell
densities in the light organs, but they are usually dark in the free-living state, namely in
low cell densities. The main QS regulation system of V. fischeri involves two regulatory
proteins called LuxI and LuxR (Engebrecht and Silverman [12]). LuxI synthesizes an AI
which is known to be an acylated homoserine lactone (AHL) (Eberhard [11]). The AHL
is synthesized within the cell, diffuses into the extracellular environment and back into
the cell. The LuxR proteins are cytoplasmic AHL receptors and DNA binding transcrip-
tional activators. As we see in Figure 2.1, the lux box has two operons which are called
luxR on the left side of the box and luxI on the right side of the box. luxCDABEG are
genes responsible for bioluminescence (James et al. [26]). When QS starts, AHLs bind to
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2.2 The Underlying Experiment

(a) At low population density (b) After exceeding a critical threshold of popula-
tion density

Figure 2.1: QS-regulated gene transcription of V. fischeri.

the LuxR protein receptors. These LuxR-AHL (dimerized) complexes attach to the empty
lux box and activate target gene transcription. Thus, luxCDABEG enabled the light pro-
duction (Miller and Bassler [41], Waters and Bassler [60]). Further, transcription of the
AHL synthase luxI creates a positive feedback loop that is thought to contribute to the
coordination of a population-wide transition to a high cell density quorum-sensing state
(Boyer and Wisniewski-Dy é [8]). This LuxIR-type regulation is typical for a large number
of Gram-negative bacteria and acylated homoserine lactones (AHLs), which are found in
Gram-negative bacteria of the phylum Proteobacteria. Gram-positive bacteria have typi-
cally oligopeptides as AI. There is another class of AIs, the so called AI-2, which has been
discovered both in Gram-negative and Gram-positive bacteria. Therefore, it is postulated
as universal signal for communication across species (Waters and Bassler [60]).

2.2 The Underlying Experiment

In order to understand the induction dynamics of QS we present an experiment of the
biofilm forming bacterial strain Pseudomonas putida IsoF in a flow chamber. This experi-
ment was performed by the group of Prof. Dr. J. Rädler, LMU Munich, both under flow
and non flow conditions for several AHL concentrations which were added in the flow
system (0nM, 10nM, 50nM, 100nM). They analyzed the QS mediated induction dynam-
ics of growing microcolonies and their responses to changing AHL concentrations. The
Gram-negative bacterium P. putida IsoF was used as a model organism, since it contains
only one QS system (Megerle [38], Meyer et al. [40]). The underlying molecular mecha-
nisms of the P. putida IsoF QS system have been characterized before and it is known to be
similar to V. fischeri QS system. The QS system of P. putida IsoF consists of the regulatory
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2 Quorum Sensing and an Overview of its Mathematical Models

activator PpuR and the AHL synthase PpuI (Fekete et al. [16], Steidle et al. [57]).
In the following experiment, they used a so-called Las-based reporter system to monitor

the bacterial behavior. The QS system of P. putida IsoF with Las-based reporter is schemat-
ically shown in Figure 2.2. When the AHL concentration reaches a certain threshold, AHL
binds to the activator PpuR. The PpuR/AHL complex activates expression of the AHL
synthase PpuI and by that triggers the positive feedback loop, which results in increased
AHL production. Gene expression is followed using an AHL sensor which contains a fu-
sion of lasB promoter with the green fluorescent protein (GFP). This modification allows
the bacteria to fluoresce in their activated state, which can be observed by fluorescence
microscopy. Here gfp is the gene, which is responsible for fluorescence. When LasR binds
to AHL, this complex stimulates the GFP gene expression [38, 40].

Figure 2.2: QS system of P.putida IsoF with Las based reporter.

In Figure 2.3, a sketch of a flow chamber is given, where the bacteria were attached
and then observed under both bright field and fluorescence microscopy, respectively. As
a result of QS, some of the cells had switched their current state and they are fluorescent,
which can be seen under fluorescence microscopy. In that way it is possible to monitor
the ”switch” of cells and the flow effect during the accumulation of AHL. We will call this
”switch of cell state” as activation and a cell active, when it is fluorescent, and the remain-
ing non-fluorescent cells inactive. Black points refer to all bacteria and their positions.
Green points refer to bacteria which are activated and can be observed under fluorescence
microscopy. We draw four windows as being in flow chamber which represent a unit
area, where the pictures are collected from each of them every 20 minutes, simultaneously
[38, 40].
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2.2 The Underlying Experiment

Figure 2.3: A sketch of flow chamber: Left panel - under bright field microscopy and right
panel - under fluorescence microscopy.

The picture in Figure 2.4 clearly shows what we have drawn in Figure 2.3. It was taken
under non-flow conditions with 0 nM AHL after 6 hours from the begin of the experiment.
Further, there are sample pictures in Figure 2.5 from the experiment performed by the
group of Prof. Dr. J. Rädler, LMU Munich in non-flow conditions for 0 nM AHL. The
pictures on the left column were taken under bright field microscopy and on the right
column under the fluorescence microscopy. It is possible to see how many and how strong
the bacteria fluoresce comparing the pictures at the same time point.

Figure 2.4: Picture of P.putida IsoF under bright field and fluorescence microscopy. Picture
was taken at 6. hours of the experiment performed by the group of Prof. Dr. J.
Rädler, LMU Munich from the second window of the flow chamber.

All these pictures were analyzed with ”Imageana”, an image analysis program by Prof.
Dr. J. Müller, TU München [42]. Imageana compares the pictures from bright field and flu-
orescence microscopy and measures the area where bacteria are dark or bright. Knowing
the average number of bacteria in unit area we converted these data to a raw data set, like
the number of active and inactive cells for each time point.
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0 h.

2 h.

4 h.

6 h.

Figure 2.5: Pictures from the experiment: left column under bright field microscopy and
right column under fluorescence microscopy.

14



2.3 A Brief Overview on Mathematical Modeling of QS

2.3 A Brief Overview on Mathematical Modeling of QS

The first mathematical model on QS was built up on V. fischeri QS system (James et al. [26]).
It dealt with the regulation of bioluminescence in V. fischeri and focused on the response of
a single cell to the external AI concentration. They started with a system of the ordinary
nonlinear differential equations (ODEs) for the time dependent changes of AIs, LuxR and
LuxR/AI complex concentration within the cell end extended the model by a variable for
the external AI concentration to understand the way, in which a cell might response to
surrounding AI concentration. It was concluded that two stable steady states are possible
for luminescent and non-luminescent phenotypes. The ”switch” between these states are
explained due to the change in parameters describing the system dynamics and extracel-
lular AI concentration.

A similar mathematical model was introduced for the bacterial species Pseudomonas
aeruginosa with two regulatory QS systems, called las system and rhl system (Dockery and
Keener [10]). In that work, they emphasized on the kinetics of the las system and described
it by an eight-dimensional ODEs with rates in Michaelis-Menten type. They simplified this
ODE system by taking into account that some reactions are faster than others. The idea
on this was that the enzymes LasR and LasI were living much longer than their produc-
ers, respectively lasR mRNA and lasI mRNA. Then, they switched to a partial differential
equation (PDE) model, which included the possibility of inhomogeneous distribution of
AIs outside of the cell. Starting with a single cell, it was pointed out that the AI production
increase (decrease) is dependent on colony size and density.

In Nilsson et al. [51] was presented a model on the change of AHL concentration inside
bacterial cells and in a biofilm over time. They showed that the AHL concentration within
a cell often exhibits a rapid increase early in population growth. Since they did not con-
sider the spatial variation of AHL molecules an/or the stochasticity in cell transcription,
this kind of modeling is only useful for identifying the critical treshold for a single cell to
initiate QS.

The first example for a mathematical model on population level in QS was given by
(Ward et al. [59]). There, the focus was on the population dynamics for V. fischeri, in view
of down-regulated and up-regulated subpopulations and their switching behavior with
increasing AI production. They used a system of non-linear ODEs and showed through
curve fitting techniques for parameter estimation that the solution of systems agree with
experimental data. An important view of this paper was pointing out that AI production
is much faster in the former than the latter bacterial population. Although they did not
consider the spatial variation of AIs, they described the model as a first step towards mod-
eling complex behavior in biological systems and extended their work in Koerber et al.
[32] taking into account the spatial distribution of AIs and its effect on QS.
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2 Quorum Sensing and an Overview of its Mathematical Models

Koerber et al. [32] focused on the medical aspects of QS for the bacteria Pseudomonas
aeruginosa which is associated with the burn-wound infection. They presented a model for
the early stages of a QS correlated infection process in burn-wounds and for the diffusion
of AIs in the burn-wounds environment. They defined the cells densities for two states,
where QS regulated cells were called ”up-regulated” and the other remaining ”down-
regulated”. A system of ODEs referred to the change of cell concentration whereas a
reaction-diffusion equation described the change of AI concentration over time. Further,
they fitted the model to experimental data by estimating parameters. Thus, they pointed
out that the wound environment itself has an important effect upon the QS mechanism.

In the last years, (parallel to the biological developments) mathematical QS models came
into question which extended the focus to include stochastic aspects. This enabled to ex-
amine the small noise quantities, which can be found for example in Goryachev et al.
[20], Koerber et al. [33], Müller et al. [45]. In Koerber et al. [33], they started with a deter-
ministic model for a large bacterial population of a human pathogen Staphylococcus aureus
within the endosome. Using the information from the first model, they switched to sin-
gle cell case, where the bacterial cell escapes from an endosome into the cytoplasm and
had only two different states (down-regulated and up-regulated). The probability that a
bacterium is in the down-regulated state (up-regulated state) was given with a probability
density function (pdf) at time t, dependent on the thickness of the endosome membrane,
AI concentration and the concentration of the principal degradative exo-enzyme, which
were assumed as random variables. It was possible in the model that a down-regulated cell
became up-regulated and an up-regulated cell can also drop back to the down-regulated
state. The pdfs governed by these model assumptions enable to measure the probabil-
ity that a bacterium being in one of these states. Taking a Taylor expansion in ∆t, they
achieved a system of two first order PDEs. From this model they had been able to deter-
mine biologically meaningful asymptotic and numerical solutions.

In Goryachev et al. [20], an intracellular model in an Agrobacterium population was incor-
porated into a stochastic population model, which described bacterial motion, cell division
and chemical communication. The developed model described the intracellular control
network in terms of cell transition related with environmental control. The population
model consisted of an intracellular model in which each bacterium was given a unique
copy of an intracellular model. This approach allowed monitoring of both the individual
cells and population behavior. They first formulated the chemical kinetics of QS with a de-
terministic view. Further, they complemented two ODEs describing the dynamics of cell
density and extracellular AI concentration for the population model. As the QS network
is robust to molecular noise, the intracellular model was simulated stochastically. They
assumed that bacteria can either randomly move in the medium with a diffusion effect
or remain attached (stable). Both forms exchange AI with the surrounding medium and
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divide periodically. With the exact Gillespie algorithm and with an self created software,
they simulated cell motion, exchange and diffusion of AI.

In Müller et al. [46], a general stochastic model in Gram-negative bacteria was devel-
oped which presents the random distribution of a gene product. It was assumed that the
only source of variance is due to switching transcription on and off by a random process.
Probability density functions were created for two possible gene states, e.g. ON or OFF.
They first determined with ODEs the change of the the product density, which can be ei-
ther mRNA or a protein. According to the model assumptions, they set the probability
that a bacterium being in state ON (OFF) with a pdf that includes the change of product
density and time. As ∆t → 0 they achieved a PDE system which allowed for an explicit
solution. They found that certain parameters translates bistable behavior into bimodal
distributions, which was supported by experimental results.

The models we have mentioned above are only of a few selected publications among
many. In this chapter, we aimed to give a short overview of the progression in mathemat-
ical modeling of QS from its beginning. However several modeling aspects of QS can be
found in many other works, e.g [16, 17, 23, 30, 58].
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3 A Stochastic Model of QS

In this chapter we present a stochastic model of QS in the bacterium P. putida IsoF to ex-
plore the cell dynamics at the population level. The background and details of the under-
lying QS experiment and its results were given in Section 2.2. Our stochastic population
model describes the bacterial transition between inactive and active cell states affected by
surrounding AHL concentration for single cells and determines the AHL dependent prob-
ability density functions of both cell states. The model formulation is based on Müller et al.
[46] and allows to quantify, e.g., the rates of cell division, activation and AHL degradation.

3.1 Model Assumptions

We assume that at a time point t ≥ 0, each cell is either in the inactive (I) or in the active (A)
state and there is not any interstate. Figure 3.1 shows the cell transition with the one way
arrow from the inactive cell (I) to the active cell (A), i.e., the inactive cells can be activated
with the rate α, whereas active cells never become inactive. The cell transition occurs as
a consequence of a QS process and that is why it is dependent on the intracellular AHL
concentration. The β arrows in Figure 3.1 represent that each cell divides independently of
its state (active or inactive) with the same rate and the offspring preserves the current state
of its parents. There are different rates for the AHL production in each cell state, i.e., an
inactive cell (I) produces with the rate m1 while an active cell (A) produces with the rate
m1 +m2. In both states, AHL is degraded abiotically with the rate γ. We suppose that each
element of the parameter set P = {α, β, γ,m1,m1 +m2} is a positive real number and we
neglect the possibility that a cell dies or leaves the colony, for simplicity.

3.2 A Single Cell Model

Primarily, we develop a model for the case of a single cell that includes the deterministic
AHL production dynamics within the cell and a stochastic process describing the transi-
tion from inactive to active. Let us denote the two possible cell states inactive (I) and active
(A) as shown in Figure 3.1. We describe the AHL concentration by z and the change of the
AHL concentration in time by corresponding ODEs (with the initial condition z(0) = z0)
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3 A Stochastic Model of QS

Figure 3.1: Possible states of one cell and their transition.

without the switch of the cell state is given by Equation (3.1).

ż =

m1 − γz, for cell state I

(m1 +m2)− γz, for cell state A.
(3.1)

So, the AHL concentration at time t for the initial condition z(0) = z0 reads

z(t) =

m1
γ + (z0 − m1

γ ) e−γt, for cell state I
m1+m2

γ + (z0 − m1+m2
γ ) e−γt, for cell state A.

(3.2)

While t → ∞ we find that the maximum value of AHL concentration (zmax) for the
inactive cell state is z−max = m1

γ and for the active cell state is z+
max = m1+m2

γ . In Figure
3.2 the corresponding plot to Equation (3.2) can be found for the initial value z0 = 0, i.e.,
assuming to have no AHL at time t = 0. The essential variables and parameters, which we
need during the whole chapter, are given in Tables 3.1 and 3.2.

Our aim is to develop a model describing the AHL dependent distribution (in time) of
inactive and active cells. Therefore, we define the probability density function (pdf) for a
given AHL concentration at time t by u(z, t, s), where s denotes the state of the cell, i.e.
s = I for the inactive state or s = A for the active state. For simplification, we use the
notation u− = u(z, t, I) and u+ = u(z, t, A). Here, for an arbitrary time point tg, we have∫

z

(
u−(z, tg) + u+(z, tg)

)
dz = 1.

We derive a PDE model, taking into account the change of AHL concentration continu-
ously in time for both cell states given by Equation (3.1). Table 3.3 shows how the pdfs of
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3.2 A Single Cell Model

Figure 3.2: AHL concentration in active and inactive cell state. Equation (3.2) is plotted for
the chosen parameter values from the Table 3.2.

inactive cells u−(z, t) and active cells u+(z, t) change in a small time step ∆t correlated to
the AHL concentration. Thus, we obtain the following system of equations

u−(z + (m1 − γz)∆t, t+ ∆t) = u−(z, t) +O(∆t),

and
u+(z + (m1 +m2 − γz)∆t, t+ ∆t) = u+(z, t) +O(∆t),

where O(∆t) is the first order correction term. This system of equations consists of the
probability mass that leaves from u− by activation, −α(z)u−(z, t) and adds on the u+,
α(z)u−(z, t). Thus, we conclude

u−(z + (m1 − γz)∆t, t+ ∆t)− u−(z, t) = (−α(z)u−(z, t))∆t+O(∆t2)

⇔ u−(z + (m1 − γz)∆t, t+ ∆t)− u−(z, t)

∆t
= −α(z)u−(z, t) +O(∆t)

Table 3.1: Variables of the model developed in Chapter 3.

Variable Description
z AHL concentration
t time
u− pdf for inactive cell state
u+ pdf for active cell state
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Table 3.2: Parameters of the model developed in Chapter 3.

Parameter Description Values Reference
m1 AHL production rate in inactive cells 2.3× 10−19

[
mol
cell.h

] 1

m1 +m2 AHL production rate in activated cells 2.3× 10−18
[
mol
cell.h

] 1

γ AHL degradation rate 0.001
[
h−1

] 2

αc activation rate of inactive cell 0.1
[
h−1

] 3

β division rate in both states 0.13
[
h−1

] 3

Athresh activation threshold 70× 10−9
[
mol
l

] 1

1 correspondent to [16].
2 for a realistic PH value correspondent to [13].
3 roughly estimates of the experimental data correspondent to [38].

and obtain the model for a bacterium in the inactive state as ∆t→ 0

∂u−(z, t)

∂t
+
∂((m1 − γz)u−(z, t))

∂z
= −α(z)u−(z, t).

After a similar calculation for u+ we have the following PDE model for the correspondent
pdfs of the possible cell states, I and A

∂u−(z, t)

∂t
+
∂((m1 − γz)u−(z, t))

∂z
= −α(z)u−(z, t), (3.3)

∂u+(z, t)

∂t
+
∂((m1 +m1 − γz)u+(z, t))

∂z
= +α(z)u−(z, t). (3.4)

We know that a probability distribution preserves mass, i.e., we have homogeneous
Neumann boundary conditions [46]. Further, we assume to have the initial conditions,
u−(z, 0) = u0(z) for the inactive state and u+(z, 0) = 0 for the active state , since we first
want to describe the case starting with one inactive and no active cell. The system of PDEs
need also boundary conditions. As an inactive cell activates in high AHL concentrations,
we have lim

z→∞
u−(z, t) = 0. According to the continuous AHL production within the cell,

Table 3.3: Change of AHL and pdf in time.

time t t+ ∆t

AHL concentration for cell state I z z + (m1 − γz)∆t
pdf for inactive state u−(z, t) u−(z + (m1 − γz)∆t, t+ ∆t)

AHL concentration for cell state A z z + (m1 +m2 − γz)∆t
pdf for active state u+(z, t) u+(z + (m1 +m2 − γz)∆t, t+ ∆t)
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3.2 A Single Cell Model

we suppose that the second boundary condition is given by u−(0, t) = 0 for t > 0.
Let us define the time dependent function for the inactive cell state:

u−(t) =

∞∫
0

u−(z, t)dz.

Taking the derivative of both sides of the equation with respect to t we have

d

dt
u−(t) =

∞∫
0

∂

∂t
u−(z, t)dz

=

∞∫
0

[− ∂

∂z
(m1 − γz)u−(z, t)− α(z)u−(z, t)]dz

=

∞∫
0

− ∂

∂z
((m1 − γz)u−(z, t))dz −

∞∫
0

α(z)u−(z, t)dz,

for a constant α(z) ≡ α > 0 we obtain

d

dt
u−(t) =

∞∫
0

− ∂

∂z
((m1 − γz)u−(z, t))dz − α

∞∫
0

u−(z, t)dz

=
[
−((m1 − γz)u−(z, t)

]∞
0
− αu−(t). (3.5)

As we have [
−((m1 − γz)u−(z, t)

] ∣∣∞
0

= 0,

according to the boundary conditions (u−(0, t) = 0 and lim
z→∞

u−(z, t) = 0), the Equation
(3.5) reduces to a linear ODE

d

dt
u−(t) = −αu−(t),

or rather

u−(t) = e−αtC,

where C is a constant. Due to the positivity condition, we acquire

u− ≡ 0 for t→∞. (3.6)

3.2.1 Stationary States

In this section, we examine the steady-state behavior of the Equation system (3.3)-(3.4). We
assume here that the activation rate α(z) ≡ α > 0 is constant, i.e., does not depend on z.
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We obtain two ODEs for the time independent state of the PDE system (3.3)-(3.4),

d

dz
((m1 − γz)u−(z)) = −αu−(z), (3.7)

d

dz
((m1 +m2 − γz)u+(z)) = +αu−(z),

with boundary conditions u−(m1
γ ) = 0 and u+(0) = 0, which represent the probability

density of being inactive at the maximum AHL concentration and the probability density
of being active at the minimum AHL concentration, respectively. If z ∈ [0, zmax], where
z−max = m1

γ for inactive state and z+
max = m1+m1

γ for active state, the Equation system (3.7)
is equivalent to

(m1 − γz)
du−(z)

dz
= γu−(z)− αu−(z), (3.8)

(m1 +m2 − γz)
du+(z)

dz
= γu+(z) + αu−(z),

where we suppose that u−(z) ≡ 0 for z > m1
γ and u+(z) ≡ 0 for z > m1+m2

γ . The system of
Equations in (3.8) can be written in the form

du−(z)

dz
=

γ

m1 − γz
u−(z)− α

m1 − γz
u−(z), (3.9)

du+(z)

dz
=

γ

m1 +m2 − γz
u+(z) +

α

m1 +m2 − γz
u−(z). (3.10)

The explicit solution of the ODE (3.9) for z ∈ [0, z−max] reads

u−(z) = (m1 − γz)−
γ−α
γ C1, (3.11)

where C1 is a constant and due to the boundary condition C1 = 0. Additionally, we know
from Equation (3.6) that u− also vanishes for t→∞.
We now deal with the Equation (3.10) and solve it for a fixed z0, where z0 ∈

[
0, m1+m2

γ

]
.

Since the Equation (3.9) includes the solution of Equation (3.11), we may keep it in mind
by calculation that u−(z) ≡ 0 for t→∞. Thus, the Equation (3.10) reduces to

d

dz

(
(m1 +m2 − γz)u+(z)

)
= 0. (3.12)

Definition 3.1 (Viscosity solution)[56]
We say that u+(z, t) is a viscosity solution of the equation

∂

∂t
u+(z, t) +

∂

∂z
f
(
u+(z, t)

)
= 0,
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if u+(z, t) can be obtained as the limit for ε > 0

u+(z, t) = lim
ε→0+

u+
ε (z, t),

of a solution of parabolic system of differential equations

∂

∂t
u+
ε (z, t) +

∂

∂z
f(u+

ε (z, t)) = εA
∂2

∂z2
(u+
ε (z, t)),

for some positive definite matrix A.

The solution of Equation (3.12) is given by vanishing viscosity method as below where we
first calculate for a small positive number ε and then let ε→ 0+:

d

dz

(
(m1 +m2 − γz)u+(z)

)
= ε

d2

dz2
u+(z) (3.13)

Integrating both sides of the Equation (3.13) with respect to z we have

d

dz
u+(z) =

1

ε
(m1 +m2 − γz)u+(z) + C1

According to boundary conditions we have C1 = 0. Thus, we obtain

d

u+(z)
u+(z) =

1

ε
(m1 +m2 − γz) dz

ln
(
u+(z)

)
=

z∫
z0

1

ε
(m1 +m2 − γz) dz + C2 (ε)

For letting z0 → 0, we have

u+(z) = e
1
ε ((m1+m2)z− 1

2
γz2)eC2(ε)

Since we have assumed u+(0) = 0, we need

u+(0) = eC2(ε) = 0,

which implies lim
C2(ε)→−∞

eC2(ε) = 0.

Let us denote the total probability density function u(z) = u−(z) + u+(z). The properties

on pdfs allow us to write
zmax∫

0

u(z) = 1. Thus, we can calculate in the stationary state

keeping in mind that u− ≡ 0:

zmax∫
0

u(z)dz =

z−max∫
0

u−(z)dz +

z+max∫
0

u+(z)dz

= 0 +

m1+m2
γ∫

0

lim
ε→0

e
1
ε ((m1+m2)z− 1

2
γz2)eC2(ε)dz

= 1.
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We seek a suitable constant C2 (ε) which fulfills
m1+m2

γ∫
0

lim
ε→0

e
1
ε ((m1+m2)z− 1

2
γz2)eC2(ε)dz = 1. (3.14)

Let us calculate the left hand side of the Equation (3.14)
m1+m2

γ∫
0

lim
ε→0

e
1
ε ((m1+m2)z− 1

2
γz2)eC2(ε)dz

= lim
ε→0

eC2(ε)

m1+m2
γ∫

0

e
1
ε ((m1+m2)z− 1

2
γz2)dz

= lim
ε→0

eC2(ε)

m1+m2
γ∫

0

e
− 1

2

(
−2(m1+m2)

ε
z+ γ

ε
z2
)
dz

= lim
ε→0

eC2(ε)e
1
2

(m1+m2)
2

ε γ

m1+m2
γ∫

0

e
− 1

2

(
z− (m1+m2)

γ√
ε/γ

)2

dz

= lim
ε→0

eC2(ε)e
1
2

(m1+m2)
2

ε γ

√
2π
√
ε/γ

√
2π
√
ε/γ

m1+m2
γ∫

0

e
− 1

2

(
z− (m1+m2)

γ√
ε/γ

)2

dz

= lim
ε→0

eC2(ε)e
1
2

(m1+m2)
2

ε γ
√

2π
√
ε/γ

[
Φ (0)− Φ

(
−(m1 +m2)

γ
√
ε/γ

)]
,

where Φ denotes the Gaussian error function. Choosing

C2 (ε) = −

(
1

2

(m1 +m2)2

ε γ
+ ln

(
√

2π
√
ε/γ

[
Φ (0)− Φ

(
−(m1 +m2)

γ
√
ε/γ

)]))
,

we achieve the Equation (3.14).

3.2.2 Exact Solution for the Single Cell Model

After analyzing the stationary states of the single cell model, we consider the time depen-
dent PDE system for a single cell given by Equations (3.3)-(3.4), where z, t ∈ R. Let us
present the equivalent PDE system to the Equations (3.3)-(3.4):

∂u−(z, t)

∂t
+ (m1 − γz)

∂u−(z, t)

∂z
= (γ − α(z))u−(z, t), (3.15)

∂u+(z, t)

∂t
+ (m1 +m2 − γz)

∂u+(z, t)

∂z
= γu+(z, t) + α(z)u−(z, t). (3.16)
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Since Equation (3.15) does not depend on u+(z, t), we first deal with the initial value prob-
lem for u−(z, t),

∂u−(z, t)

∂t
+ (m1 − γz)

∂u−(z, t)

∂z
= (γ − α(z))u−(z, t), (3.17)

u−(z, 0) = u0(z). (3.18)

Henceforth we will be able to use the corresponding solution in the second hyperbolic
Equation (3.16).
The first order linear hyperbolic PDEs can be solved by the method of characteristics,
which reduces a PDE into an appropriate system of ODE by changing from the current
coordinate system (z, t) to a new coordinate system (z0, s), [15]. In general, any curve in
the z − t plane can be parametrized as z(s) and t(s), where s gives a measure of the dis-
tance along the curve. The set of these parametrized curves, i.e., {(z(s), t(s)) : 0 < s <∞}
is called characteristic curves. Here, the variable s varies but the variable z0 = z(0) is
constant along the characteristic curves and it only changes along the line t = 0 and can
be interpreted as an index for the family of characteristics curves, denoted by the initial
z−values, [37]. Since u(z, t) is a function of two independent variables, the solution u(z, t)

is a surface on the plane z − t.
We consider the following system of ODEs via the new coordinate s

dt

ds
= 1,

dz

ds
= m1 − γz,

du−

ds
= (γ − α(z))u−.

Solving the first two equations of the ODE system we obtain a s-dependent relationship
between z and t,

t = s+ C1,

z =
m1 − C2e

−γs

γ
.

For s = 0 and z(0) = z−0 we have C1 = 0 and C2 = m1 − γz−0 . Thus, we obtain t = s and

z =
m1−(m1−γz−0 )e−γt

γ , which represents the characteristic curves of the IVP (3.17)-(3.18) for
several different values of z−0 along the line t = 0. The corresponding graphs are shown in
Figure 3.3 using the parameter values in the Table 3.2, where 0 ≤ z−0 ≤ z−max.

Hence the solution u(z(t), t) is constant on characteristic curves, we substitute them in
the third ODE. So, we convert the hyperbolic PDE (3.17) to the following ODE:

du−(z(t), t)

dt
=

(
γ − α

(
m1 − (m1 − γz−0 )e−γt

γ

))
u−(z(t), t).
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3 A Stochastic Model of QS

Figure 3.3: Characteristic curves of an inactive cell using the parameter values in Table 3.2.

The solution of this equation reads

u−(z(t), t) = e

∫ t
0 γ−α

(
m1−(m1−γz

−
0 )e−γρ

γ

)
dρ
C3.

Using the initial conditions we find

u−(z−0 , 0) = C3 = u−0 (z−0 ),

and have

u−(z(t), t) = e

∫ t
0 γ−α

(
m1−(m1−γz

−
0 )e−γρ

γ

)
dρ
u−0 (z−0 ),

which is transported on the characteristics, i.e., another choice of z−0 gives another curve
of z(t) and the solution u−(z(t), t) is determined along this curve. Finally, we acquire the
solution u−(z, t) to IVP (3.17)-(3.18) replacing z−0 by z−0 = m1−(m1−γz)eγt

γ , i.e., we obtain the
pdf of inactive cell state for one cell

u−(z, t) = u0

(
m1 − (m1 − γz)eγt

γ

)
e

∫ t
0 γ−α

(
m1−(m1−γz)e

γ(t−ρ)
γ

)
dρ
. (3.19)

Thereby, we are able to determine the pdf (3.19) of inactive cell state for one cell, ex-
plicitly. As we have assumed to start with one inactive cell, we have u−(z, 0) = u−(z).
According to the boundary conditions, we choose an appropriate Beta distribution as an
initial function in the interval 0 ≤ z ≤ m1

γ , with the adequate shape parameters. This
initial function reaches its maximum value at the low amount of AHL, decreases mono-
tonely and vanishes for the maximum value of AHL. It is also possible to choose other
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Figure 3.4: Suitable initial distribution for u−(z, 0) given by Equation 3.20 where z1 =

2.53× 10−17 and M = 5.155× 1032

initial distributions which have a shape similar to our expectation. For example, Gaussian

distribution u−0 (z−0 ) =
√

2
σ
√
π
e−

(z−0 )2

2σ2 for z0 > 0 could be also one of the other options.
Let us define the initial distribution

u−(z, 0) =


Mz , for z ≤ z1

1
B(0,

m1
γ
,p,q)

(z−0 − 0)(p−1)
(
m1
γ − z

−
0

)(q−1)
, for z > z1

(3.20)

defined on the interval [0, m1
γ ] for suitable shape parameters p, q > 0, where the denom-

inator denotes B(0, m1
γ , p, q) =

∫ m1
γ

0 (w − 0)(p−1)(m1
γ − w)(q−1)dw. See Figure 3.4 for the

corresponding graph of the shifted Beta distribution (p = 1, q = 3 and u−(0, 0) = 0). The
initial distribution is followed by the concentration-temporal simulation of the pdf for one
inactive cell in Figure 3.5, accordingly to parameter values in Table 3.2.
By now, we start to examine the hyperbolic PDE for the pdf of one active cell given by
the Equation (3.16). Since a cell can be either in an active state or in an inactive state (an
interstate is ignored) and since we assumed that the cell is inactive at the beginning, the
initial pdf for an active cell can be chosen as u+(z, 0) = 0.
So, the IVP for one active cell reads

∂u+(z, t)

∂t
+ (m1 +m2 − γz)

∂u+(z, t)

∂z
= γu+(z, t) + α(z)u−(z, t), (3.21)

u+(z, 0) = 0. (3.22)

Similar to the previous case, we use the method of characteristics to solve the IVP given
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Figure 3.5: Simulation of one inactive cell.

by the equations (3.21)-(3.22). We consider the system of ODEs with the new coordinate s,

dt

ds
= 1,

dz

ds
= m1 +m2 − γz,

du+

ds
= γu+ + α(z)u−,

where z, t ∈ R. Solving the first two equations of this ODE system we obtain

t = s+ C1,

z =
(m1 +m2)− C2e

−γs

γ
.

For s = 0 and z(0) = z+
0 we have C1 = 0, i.e., t = s and C2 = (m1 + m2) − γz+

0 . The

characteristic curves read z =
(m1+m2)−((m1+m2)−γz+0 )e−γt

γ and they have the similar shape
shown in Figure 3.3, but the interval of starting points changes because of the different
maximum value of AHL in the active cell state, i.e., z+

0 ∈ [0, (m1 + m2)/γ]. As the IVP
given by the Equations (3.21)-(3.22) includes the pdf of inactive cell state, we substitute the
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3.2 A Single Cell Model

solution (3.19) in the third ODE of characterized system as below

du+(z(t), t)

dt
= γu+(z(t), t)

+ α (z(t))u0

(
m1 − (m1 − γz(t))eγt

γ

)
e

∫ t
0 γ−α

(
m1−(m1−γz(t))e

γ(t−ρ)
γ

)
dρ
.

We seek a solution, which is transported on characteristic curves. Thereby, we write the
characteristic curves instead of the z(t)

du+(z(t), t)

dt
− γu+(z(t), t) = α

(
(m1 +m2)− (m1 +m2 − γz+

0 )e−γt

γ

)
· u−0

(
m1 +m2e

γt − (m1 +m2 − γz+
0 )

γ

)

· e
∫ t
0 γ−α

(
m1+m2e

γ(t−ρ)−(m1+m2−γz
+
0 )e−γρ

γ

)
dρ
.

Using the variation of constants method the solution of this equation reads

u+(z(t), t) = eγt

(∫ t

0
e−γτα

(
(m1 +m2)− (m1 +m2 − γz+

0 )e−γτ

γ

)
· u−0

(
m1 +m2e

γτ − (m1 +m2 − γz+
0 )

γ

)

· e
∫ t
0 γ−α

(
m1+m2e

γ(τ−ρ)−(m1+m2−γz
+
0 )e−γρ

γ

)
dρ
dτ + u+(z+

0 )

)
.

Due to initial condition (3.22), i.e., u+(z+
0 ) = 0 and replacing of z+

0 by

z+
0 =

(m1 +m2)− ((m1 +m2)− γz)eγt

γ
,

we require the solution of the IVP given by the Equations (3.21)-(3.22)

u+(z, t) =eγt
∫ t

0
e−γτα

(
(m1 +m2)− (m1 +m2 − γz)eγ(t−τ)

γ

)

· u−0
(
m1 +m2e

γτ − (m1 +m2 − γz)eγt

γ

)
· e
∫ τ
0 γ−α

(
m1+m2e

γ(τ−ρ)−(m1+m2−γz)e
γ(t−ρ)

γ

)
dρ
dτ.

Thus, we obtain the pdf for one active cell explicitly, which is dependent on the pdf of one
inactive cell. Here, it is important to take care of the characteristics of an inactive cell and
an active cell, separately, while we simulate the pdf for one active cell. The corresponding
simulation can be found in Figure 3.6. Additionally, we will explain the computing ideas
of this recursive simulation in Section 3.4.
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Figure 3.6: Simulation of one active cell.

3.3 A Population Model

In this section we evaluate a model for a population of finite size N(t) based on the model
declared in the previous Section 3.2 for one cell. We assume to have k(t) inactive and l(t)

active cells at a given time and we denote the corresponding pdf by uk,l(z, t). As we sup-
posed in the previous Section 3.2: a single cell can only perform one independent action in
a time step, i.e., an inactive cell may either divide or activate and an active cell may only
divide in a time step. It is assumed that an active cell never deactivates. Furthermore, in
case that we have a population of finite size N , we state that only one cell of the popula-
tion is allowed to perform an action in each time step, i.e., a single cell either divides or
activates whereas the other cells in the populations preserve their current state. Keeping in
mind that deactivation does not occur, we draw the following scheme in Figure 3.7, which
shows all possible cell states in a population of finite size N .
The scheme given in Figure 3.7 leads us to derive the complete model for a population of
finite sizeN with all their transitions between states. We first recall the model for one inac-
tive/active cell given by Equations (3.3)-(3.4) which were constructed as described in Table
3.3. The same idea is also valid here and gives us the left hand side of the hyperbolic PDE
given by the Equation (3.23). Moreover, having more than one cell forces us to take the
division possibility into account in addition to the activation possibility. Thereby, we es-
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3.3 A Population Model

Figure 3.7: Structure of transition of cell states by cell division and activation.

tablish the cell transitions shown in Figure 3.7 on the right hand side of the Equation (3.23),
where β represents the division rate given also in the Table 3.2 as the other parameters.

∂

∂t
u(k,l)(z, t)+

∂

∂z

(
(m1 k + (m1 +m2) l − γ z) u(k,l)(z, t)

)
= (3.23)

β (k − 1)u(k−1,l)(z, t) + β (l − 1)u(k,l−1)(z, t)− β (k + l)u(k,l)(z, t)

+α(z) (k + 1)u(k+1,l−1)(z, t)− α(z) k u(k,l)(z, t).

We have studied the model of one inactive cell and one active cell in Section 3.2 and defined
the pdf for inactive cell state by u−(z, t) and pdf for active cell state by u+(z, t). Each of
these two cases can be acquired from Equation (3.23), with the new notations u(1,0)(z, t)

and u(0,1)(z, t) instead of previous ones u−(z, t) and u+(z, t), respectively.

3.3.1 Exact Solution for the Population Model

We construct the population model as a generalization of the one cell case. Since we have
a system of hyperbolic PDEs given by the Equation (3.23), we will use again the method of
characteristic to obtain explicit solutions for the population model. First, we will start by
investigating the solutions of merely inactive cells,{

u(1,0)(z, t), u(2,0)(z, t), u(3,0)(z, t), ..., u(k,0)(z, t)
}
,

from the corresponding hyperbolic PDE system. Afterwards, we will generalize this idea
for k inactive and l active cells with the similar structure of characteristic curves.
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3 A Stochastic Model of QS

Let us rewrite the population model given by the Equation (3.23) for k inactive cells, dis-
tinctly.

∂

∂t
u(1,0)(z, t) + (m1 − γz)

∂

∂z
u(1,0)(z, t) = (γ − β − α(z))u(1,0)(z, t),

∂

∂t
u(2,0)(z, t) + (2m1 − γz)

∂

∂z
u(2,0)(z, t) = (γ − 2β − 2α(z))u(2,0)(z, t) + βu(1,0)(z, t),

∂

∂t
u(3,0)(z, t) + (3m1 − γz)

∂

∂z
u(3,0)(z, t) = (γ − 3β − 3α(z))u(3,0)(z, t) + 2βu(2,0)(z, t),

...
∂

∂t
u(k,0)(z, t) + (km1 − γz)

∂

∂z
u(k,0)(z, t) = (γ − k(β + α(z)))u(k,0)(z, t) + (k − 1)βu(k−1,0)(z, t).

Hence we have already calculated the characteristic curves for IVP given by Equations
(3.17)-(3.18), we extend these related to the recursive PDE system:

z(1,0) =
m1 − (m1 − γz(1,0)

0 )e−γt

γ
, (3.24)

z(2,0) =
2m1 − (2m1 − γz(2,0)

0 )e−γt

γ
,

z(3,0) =
3m1 − (3m1 − γz(3,0)

0 )e−γt

γ
,

...

z(k,0) =
km1 − (km1 − γz(k,0)

0 )e−γt

γ
,

where the initial values for each characteristic curve appear

z
(k,0)
0 =

km1 − (km1 − γz(k,0))eγt

γ
.

Using the pdf of one inactive cell given by the Equation (3.19) and according to the charac-
teristic curves we have represented by Equations (3.24), the exact solutions to the system
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3.4 Implementation of the Explicit Solution for the Parameter Estimation

of PDEs for k inactive cells can be given as below:

u(1,0)(z, t) = u0

(
m1 − (m1 − γz)eγt

γ

)
e

∫ t
0 γ−β−α

(
m1−(m1−γz)e

γ(t−ρ)
γ

)
dρ
,

u(2,0)(z, t) = e

∫ t
0 γ−2β−2α

(
2m1−(2m1−γz)e

γ(t−ρ)
γ

)
dρ

·

(∫ t

0
e
−
∫ τ
0 γ−2β−2α

(
2m1−(2m1−γz)e

γ(t−ρ)
γ

)
dρ
e

∫ t
0 γ−β−α

(
m1+m1e

γ(t−ρ)−(2m1−γz)e
γ(t−ρ)

γ

)
dρ

· u0

(
m1 +m1e

γt − (2m1 − γz)eγτ

γ

)
dτ

)
,

...

u(k,0)(z, t) = e

∫ t
0 γ−kβ−kα

(
km1−(km1−γz)e

γ(t−ρ)
γ

)
dρ

·

(∫ t

0
e
−
∫ τ
0 γ−kβ−kα

(
km1−(km1−γz)e

γ(t−ρ)
γ

)
dρ
u((k−1),0)((z(k,0)(z

(k,0)
0 ), τ)dτ

)
.

So, we obtain the whole system of pdfs for k inactive cells, where each pdf is dependent on
the previous one via its own characteristic curves. If we generalize this idea for k inactive
and l active cells thanks to the concept shown in Figure 3.7, we have the characteristic
curves

z(k,l)(z0, t) =
km1 + (m1 +m2)l − (km1 + (m1 +m2)l − γz(k,l)

0 )e−γt

γ
, (3.25)

and the explicit solution of Equation (3.23) on the characteristic curves is

u(k,l)(z, t) = e

∫ t
0 γ−(k+l)β−kα

(
km1+(m1+m2)l−(km1+(m1+m2)l−γz)e

γ(t−ρ)
γ

)
dρ

(3.26)

·

(∫ t

0
e
−
∫ τ
0 γ−(k+l)β−(k+l)α

(
km1+(m1+m2)l−(km1+(m1+m2)l−γz)e

γ(t−ρ)
γ

)
dρ

·
(
β(l − 1)u(k,l−1)(z(k,l), τ) + β(k − 1)u(k−1,l)(z(k,l), τ)

+ α(z(k,l))(k + 1)u(k,l−1)(z(k,l), τ)
)
dτ

)
.

3.4 Implementation of the Explicit Solution for the Parameter
Estimation

In this section we implement explicitly the pdfs of N = k + l cells given by Equation
(3.26) in a computer program using MATLAB [36] (R2012a, The MathWorks Inc.) and start
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3 A Stochastic Model of QS

checking our method by applying it in to simulated data with known parameter values.
In the next step we determine real parameter values for the experiments performed by the
group of Prof. Dr. Rädler, LMU München, as explained in Section 2.2.

3.4.1 Implementation

We define the parameter vector θ = (m1,m2, γ, β, αc, Athresh) as a collection of parameters
given in Table 3.2. For numerical simulations we suppose the transition function α(z) as a
Hill function, i.e.,

α(z) = αc

(
z
V

)s
Asthresh +

(
z
V

)s ,
with Hill coefficient s = 2.5 in accordance to [16]. Assuming the volume of one bacterium
to be VB = 1 × 10−15l, as in [40], V represents the volume of a bacterial colony with 5000

cells, i.e., V = 5000× 10−15l.
We construct a four dimensional regular grid of time (t), AHL concentration (z) and the
number of cells in inactive (k) or active (l) state, independently. In fact, however, z is
in some sense dependent on the independent variables t, k, l and z0 given by Equation
(3.25). Therefore, we have to determine on which characteristic curve an arbitrary point
of the grid is located. For example, the two dimensional illustration of the (z − t)- grid
shown in Figure 3.8 indicates that the chosen point (z = 3, t = 3) of the grid might
stay on two different characteristic curves (z(0,1), z(1,0)), which are starting from initial val-
ues (z(0,1)

0 , z
(1,0)
0 ), respectively. Indeed, an arbitrary point of the (z − t)-grid is located on

((k + 1)× (l + 1)− 1) different characteristics for a colony of size N = k+ l, dependent on
the considered cell states.

Figure 3.8: Characteristic curves on the (z − t)-grid.
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3.4 Implementation of the Explicit Solution for the Parameter Estimation

The characteristic curves appear in an interval changing up to the cell numbers, i.e., they
exist in [0, (km1 + l (m1 +m2)) /γ] for the starting values of z(k,l)(0) = z

(k,l)
0 . Outside of

these intervals the corresponding characteristic curves are not relevant. Consequently, we
adopt the starting values (z(k,l)

0 ) of characteristics for each point (z, t) of the grid in order
to see in which interval we might work. In other words, if

0 < z
(k,l)
0 < (km1 + l (m1 +m2)) /γ,

then we establish the corresponding pdf u(z, t, k, l) given by Equation (3.26) and store it
by a matrix in a Matlab program. As the pdf u(z, t, k, l) given by Equation (3.26) includes
the previous pdfs, u(z, t, k − 1, l) and u(z, t, k, l − 1), we require the interpolation of the
previous solutions on the current characteristics. Hence we collect all pdfs for k + l cells.
Next, we start to estimate appropriate parameters to the model given by Equation (3.25).

3.4.2 Parameter Estimation and Numerical Simulations

For a first validation of the algorithm given by Equation (3.25) we utilize some simulated
data, created by Müller [43], to compare with the model. Let us built the grid for the model,
i.e., time (tgrid), grid number of inactive cells (kgrid) and grid number of active cells (lgrid)
and establish an algorithm for the model pdf u(z, t, k, l). From the simulated data we have
time (tdata), number of inactive cells (kdata) and number of active cells (ldata). However,
in the mathematical model we have the pdf u(z, t, k, l), which requires information on the
AHL concentration z, but this is not provided from the data set. To get rid of this problem,
we calculate the marginal function of the pdf u(z, t, k, l) and reduce the pdf u(z, t, k, l) to a
z-independent function convenient to the data for the grid values:

uM (t, k, l) =

∫
z

u(z, t, k, l)dz.

As we want to compare the marginal pdfs of the model and of the data, we generate the
marginal pdf (Marjdata) for the simulated data, i.e., let us define the following vectors
~tdata = (t1, t2, ..., ti, ..., tn), ~kdata = (k1, k2, ..., ki, ..., kn) and ~ldata = (l1, l2, ..., li, ..., ln)

where i = 1, 2, ..., n ∈ N . For any i we have

Marjdata(t, k, l) =

1, t = t(i) and k = k(i) and l = l(i),

0, else.

After this set out we are able to compare the marginal functions from model and from data,
i.e., the model is available for parameter estimation.

There are two well-known methods of parameter estimation: least-square estimation
(LSE) and maximum likelihood estimation (MLE). Both methods have some advantages
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3 A Stochastic Model of QS

and it is difficult to say clearly that one of them is better than the other one. Since the
LSE has minimum variance among all linear unbiased estimators, it is often called as best
linear unbiased estimator [5]. LSE is a convenient method but MLE is preferred in the case
where the distribution of errors are known. This is a more general and efficient approach
and has better statistical properties than LSE. The mean difference between two methods
are that the MLE requires a probability distribution unlike LSE [49]. As we do not use a
standard pdf and do not know about the error function of the developed model we prefer
to estimate the parameters by LSE.
LSE estimates parameter values by minimizing the sum of the m squared errors (SSE)
between a value from the data set and the correspondent numerical simulation. In other
words, the parameter vector to be estimated is θe = (αc, β, γ) and the observed data is
given by yi. So, we set

SSE(θe) =
m∑
i=1

(yi −model(θe))2. (3.27)

Estimated values of θe can be found by minimizing the Equation (3.27)

∂SSE

∂θe
= 0 and

∂2SSE

∂2θe
> 0.

We reduced the parameter vector θ = (m1,m2, γ, β, αc, Athresh) to θe = (αc, β, γ), in case
the parameters {m1,m2, Athresh} are conversant with [16]. In our case yi is the set of {0, 1}
for each tdata saved as (Marjdata) and model(θe) is the matrix of marginal distribution
defined on grid points (uM (t, k, l)). So, we achieve the SSE, by squaring the difference
between (Marjdata) and (uM (t, k, l)). We estimate parameters with the ”fminsearch” tool
of Matlab, which minimizes the SSE for a given initial value of parameter. The estimated
parameters for a single simulation and for the mean value of ten different simulations are
given in the Table 3.4.

Table 3.4: Comparison of start parameter values and the corresponding estimated param-
eter values, applied on simulated data.

Parameter Start values Estimation (1 Sim.)

m1 2.3
[
10−7·pmol
cell·h

]
-

m2 9× 2.3
[
10−7·pmol
cell·h

]
-

γ 0.001 h−1 0.0042 h−1

αc 0.1 h−1 0.0641 h−1

β 0.13 h−1 0.8916 h−1

Athresh 70× 1010
[
10−7·pmol

l

]
-

Start values Estimation (10 Sim.)

2.3
[
10−7·pmol
cell·h

]
-

9× 2.3
[
10−7·pmol
cell·h

]
-

0.0042 h−1 0.0073 h−1

0.0641 h−1 0.0450 h−1

0.8916 h−1 0.2362 h−1

70× 1010
[
10−7·pmol

l

]
-
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3.4 Implementation of the Explicit Solution for the Parameter Estimation

By now, we are interested in fitting the model with the experimental data, [40]. In Sub-
section 2.2, we have mentioned how to convert the pictures of the experiment [40] to a set
of numerical data, by [42]. Figure 3.9 shows the number of cells from the experiment under
non-flow conditions and without adding external AHL in time steps of 20 minutes, each.
We estimate parameters θe = {γ, β, αc} using the estimated parameters for the simulations
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Figure 3.9: Number of cells without external AHL.

as start values. Then, we are able to calculate the expected values of cell numbers (E(I)

and E(A)), both for inactive and active cells whereby the marginal function uM (t, k, l) is
needed. In Table 3.5 the model fitted to the mean value of real data via expected values of
cells can be found, for the comparison with data see Figure 3.10.

Table 3.5: Find the start values in the Table 3.4.

Parameter Start values Estimation for real data

m1 2.3
[

10−7·pmol
cell·h

]
-

m2 9× 2.3
[

10−7·pmol
cell·h

]
-

γ 0.0073 h−1 0.5339 h−1

αc 0.0450 h−1 0.0402 h−1

β 0.2362 h−1 0.3028 h−1

Athresh 70× 1010
[

10−7·pmol
l

]
-
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(a) Model fitted for inactive cells
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(b) Model fitted for active cells

Figure 3.10: Model (3.26) fitted to experimental data

3.5 Conclusions

In this chapter, we developed an AHL mediated mathematical model for the QS of bacte-
rial strain P. putida IsoF to describe the evolution (in time) of the population size of inactive
and active cells, respectively. In a first approach, Equations (3.3)-(3.4), we combined a de-
terministic process (AHL production within the cell) with a stochastic one (transition from
the inactive state to the active state for one cell) for a single cell. In the second model (3.23),
we extended this idea to a population dynamics model in which we have considered each
cell of the population with its own stochastic cellular dynamics. In both cases our model
equations could be solved explicitly. We have provided the explicit unique analytical solu-
tion of the PDE and its numerical simulation. Furthermore, we have estimated the values
for the parameters (γ, β, αc) by mean of a data set of four colonies under non-flow condi-
tions.

Our model was intended to describe the distribution in time of cellular states affected by
signaling molecule concentration under non-flow conditions, without any external addi-
tion of AHL. We could fit the model to a given data set of the experiment for the QS strain
P. putida IsoF, performed by the group of Prof. Dr. Rädler, LMU München (see Figure 3.10).
We have estimated the division rate of the cells β = 0.3028h−1 so that the correspondent
doubling time is Td = ln 2

β = 2.2891h−1 by the consideration of an exponential growth.
Both these values are in accordance to previously reputed biological information, compare
[40].

Nevertheless, the estimated degradation rate γ = 0.5339h−1 is quite high, which might
indicate that AHL accumulates on the surface of flow chamber. The long-chained AHLs
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synthesized in the correspondent experiment, i.e., 3-oxo-C10-HSL and 3-oxo-C12-HSL
(typical AHL molecules used in the experiment given in Section 2.2) are progressively less
water-soluble molecules, [9, 40]. Moreover, AHL accumulation could be caused by the fact
that the biofilm polymeric extracellular matrix, in which the bacteria are embedded, acts as
a barrier to AHL diffusion, [40]. A model with an additional term for the adhesion process
may give better results of the estimated degradation rate by inhibiting the accumulation.

The estimated activation rate of inactive cells αc = 0.0402h−1 is also smaller than we
expected. Since we have described a spatial structure (biofilms) by a non-spatial model,
we could not conclude the exact locations of cells. If the cells lie close to the boundary of
the biofilm, the activation of cells are less probable, considering the fast diffusion of AHL
under the effect of the diffusion gradient. In our opinion, a spatial model could give a
better estimation for the activation rate.

In a future work, the model could be extended by including the effect of flow. Moreover,
addition of external AHL to the system can also be considered, there is already experi-
mental data on this, [40]. With regard to improving the parameter estimation the fitting
could be performed with a broader data range, i.e., for many more colonies. Alternatively,
it may be beneficial to try different starting values for the fitting algorithm. Since the pdfs
u(k,l)(z, t) representing our model include recursivity in their construction, the computa-
tional work of parameter estimation necessitates a long time period, e. g. the extensive
interpolations which we absolutely needed seems to be quite costly. Another approach
for the parameter estimation could be maximum likelihood estimation (MLE) and another
choice of minimization function of Matlab might be a better alternative instead of ”fmin-
search”, e.g., ”lsqnonlin”.

Consequently, we have developed an original modeling approach that fits good to ex-
perimental data and gives a future prediction of the cell state distribution for P. putida IsoF
in the flow chamber. Additionally, we offer many different aspects to evolve the model
and correspondent parameter estimation.
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4 Spatial Structure of Cells and their Effect
on the AHL Concentration

This chapter is devoted to understanding the QS system between cells where their loca-
tions and states are determined at the single cell level, even though the AHL concentration
remains unknown. As a starting point we refer to the paper [45], which introduces a mod-
eling approach for the description of the QS system of a bacterial population with their
single cell dynamics, including a discussion of the regulatory network and its bistable
behavior. The model consists of a system of non-linear ODEs and a linear parabolic PDE
describing the AHL concentration within and outside of the cell, respectively. Even though
an approximate solution (as an algebraic system) based on the single cell solution and su-
perposition thereof was obtained, finding analytical solutions for the case of several cells
was not possible. They avoid also numerical solutions which would need a quite fine
discretization around each of the cells causing a high computational effort. Thus, the ap-
proach assuming the cells as shrinking objects to the size of points plays an important role
to have a homogeneous equation for the signaling substance.

In contrast to [45] where the AHL production by single cells was described via intracel-
lular ODEs and corresponding boundary conditions to the extracellular space, we assume
here that cells are just characterized by locations in the whole space where AHL production
takes place and AHL molecules move via free diffusion through the cell walls. We develop
our model using reaction diffusion equations (RDEs), which explain the change of AHL
substance within the cell and in the exterior, simultaneously. Moreover, these RDEs consist
of the QS components managing the positive feedback loop and the interaction between
cells. Assuming the cells as little spheres, we obtain an analytical solution for a single cell
case thanks to the radially symmetric structure. Nevertheless, the scattered spatial struc-
ture of many cells frustrates finding analytical solutions. Numerical schemes are also not
an ideal approach because the cells are supposed to be three dimensional objects which
need fine discretization around each of them. Therefore, we aim to simplify the model.
For that purpose, we let the cells shrink to a point conserving the behavior of the whole
system with the appropriate scaling, which enables us to approach the RDEs point wise in
the case of a homogeneous space.
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4 Spatial Structure of Cells and their Effect on the AHL Concentration

4.1 Model Assumptions

We consider a model of N cells that communicate via AHL molecules and define each
of them as a sphere by Ωi :=

{
|x− xi| ≤ L|x ∈ R3, i = 1, . . . N

}
with radius L. The cells

produce AHL but they do not only sense the self-produced signaling molecules but also
those produced by other cells. Thus, it is indicated through a function f describing AHL
production in terms of cell interaction, i.e. AHL production within the cell centered at xi
and its sense of AHL produced by others. The real valued function ui(x, t) denotes the
AHL concentration of the cell centered at xi, which can freely diffuse from the cell wall to
the environment and come back into the cell. At this point, we prefer to use the notation
ui(x, t) representing the substance concentration as usual in RDEs, instead of z describing
the time dependent AHL concentration in the stochastic model derived in Chapter 3. Here,
x ∈ R3 and t represent the spatial and temporal variable, respectively. The diffusion rate is
constant and given byD in the sense of Fickian diffusion. γ denotes the abiotic AHL decay

in whole domain and ∆ denotes the Laplace operator which is defined by ∆ =
3∑
j=1

∂2

∂x2j
.

Since we have an AHL production only within the cells and each cell senses the total
concentration of AHL in themselves, χ represents the characteristic function for the source
term. For N cells, we set the following general reaction diffusion model with an initial
function g(x) for t = 0

∂ui(x, t)

∂t
= D∆ui(x, t)− γui(x, t) + f

 N∑
j=1
i 6=j

uj(x, t), ui(x, t)

χ|x−xi|≤L, (4.1)

u(x, 0) = g(x), (4.2)

where x ∈ R3, t ∈ [0, T ), 0 ≤ T <∞ and the characteristic function is

χ|x−xi|≤L =

1, if x ∈ Ωi,

0, else.

4.1.1 Pre-model: Line Shaped Single Cell in 1D

The first step to reach our goal is investigating the behavior of a one dimensional reaction
diffusion model as a pre-model of our work. At the beginning, we consider a model in 1D
with a constant production rate α of AHL within the cell. The AHL molecules are freely
diffusible through the cell wall. Figure 4.1 represents the cell on the x− axis with a line
shape and diameter L, i.e., Ω1 =

{
x
∣∣0 ≤ x ≤ L}.
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Figure 4.1: 1D cell on the x-axis.

Corresponding RDE for the pre-model reads

∂u(x, t)

∂t
= D∆u(x, t) + αχΩ1 , (4.3)

u(x, 0) = g(x),

where x ∈ R and χΩ1 is defined by

χΩ1 =

1, if 0 ≤ x ≤ L,

0, else.

We first want to check the validity of our idea in 1D, i.e., how does u(x, t) behave as
the diameter of cell, L tends to zero. Let us remind the fundamental solution of non-
homogeneous parabolic equations with a reaction and diffusion term in an unbounded
domain.

Definition 4.1 (Diffusion equation and its fundamental solution)[14]
We consider the diffusion equation in Rn for t > 0

∂u(x, t)

∂t
= D∆u(x, t) (4.4)

The function

Φ(x, t) =


1

(4Dπt)n/2
e−|x|

2/4Dt, x ∈ Rn, t > 0,

0, x ∈ Rn, t < 0,

is called the Green’s kernel or fundamental solution of the diffusion equation given by
Equation (4.4).

Remark 4.2 Now, we consider the following IVP

∂u(x, t)

∂t
= D∆u(x, t), x ∈ Rn, t > 0, (4.5)

u(x, 0) = g(x), x ∈ Rn, t = 0.
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4 Spatial Structure of Cells and their Effect on the AHL Concentration

Φ(x−y, t) is a solution of the IVP (4.5) for all y ∈ Rn because of the translation invariance property
of the diffusion equation, i.e., when x is replaced by x−y, the diffusion equation remains unchanged.
By linearity and homogeneity of the diffusion equation (4.4) we may take a linear combination of
solutions, e.g.,

u(x, t) =

∫
Rn

Φ(x− y, t)g(y)dy, (4.6)

for a fixed y ∈ Rn. The function u(x, t) given by the Equation (4.6) is a solution of (4.4), in case
the integral converges in an adequate manner.

Remark 4.3 The Green’s Kernel G(x, y, t) = Φ(x− y, t) has the following properties

(i) G(x, y, t) ∈ C∞(Rn × Rn × (0,∞)),

(ii) ( ∂∂t −∆)G(x, y, t) = 0, t > 0,

(iii) G(x, y, t) > 0, t > 0,

(iv)
∫
R3

G(x, y, t)dy = 1, t > 0 and x ∈ Rn,

(v) for each fixed δ,
lim
t→0

∫
Rn\Bδ(x)

G(x, y, t)dy = 0.

Theorem 4.4 [14] Assume g ∈ C(Rn) and sup
x∈Rn

|g(x)| <∞. Then for u(x, t) defined by Equation

(4.6) we have

(i) u ∈ C∞(Rn × (0,∞)),

(ii) lim
(x,t)→(x0,0)

t>0

u(x, t) = g (x0) for all x0 ∈ Rn,

(iii) u is a solution of the IVP (4.5).

Definition 4.5 (Non-homogeneous RDE)[53]
We consider the following non-homogeneous IVP with a given source term f and given initial

function g,

∂u(x, t)

∂t
= D∆u(x, t) + f(x, t), x ∈ Rn, t > 0, (4.7)

u(x, 0) = g(x), x ∈ Rn, t = 0.

We have already derived the solution of the diffusion equation (4.4) and we use it to define
the function

uh(x, t) =

∫
Rn

Φ(x− y, t)g(y)dy
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satisfies the homogeneous part of the IVP in (4.7). Due to linearity, a linear combination of
functions uh and a particular solution up, e.g.,

u(x, t) = uh(x, t) + up(x, t),

solves the IVP in (4.7). In order to find a solution to the non-homogeneous part of the IVP
(4.7) up we use the so-called Duhamel’s principle, which considers the non-homogeneous
problem as a set of homogeneous problems. In this context, we define a family of functions
ũ(x, t; s) by introducing a parameter s > 0 as solutions to the following IVP

∂ũ(x, t)

∂t
= D∆ũ(x, t), x ∈ Rn, t > s, (4.8)

ũ(x, s; s) = f(x, s), x ∈ Rn, t = s.

According to the Duhamel’s principle, the particular solution to the non-homogeneous
IVP (4.7) can be written as a sum of the solutions ũ(x, t; s) over s, i.e.,

up(x, t) =

t∫
0

ũ(x, t; s)ds. (4.9)

By Theorem 4.4, we know that

ũ(x, t; s) =

∫
Rn

Φ(x− y, t− s)f(y, s)dy (4.10)

is a solution of the IVP in (4.8). By combining the Equations (4.9) and (4.10)

u(x, t) =

∫
R3

Φ(x− y, t)g(y)dy +

∫ t

0

∫
R3

Φ(x− y, t− s)f(y, s)dyds. (4.11)

Theorem 4.6 [14] Assume that f ∈ C2
1 (Rn × [0,∞)). Then for u(x, t) defined as in (4.11) we

have

(i) u ∈ C2
1 (Rn × [0,∞)),

(ii) lim
(x,t)→(x0,0+)

t>0

u(x, t) = g (x0) for all x0 ∈ Rn,

(iii) u is a solution of the IVP in (4.7).

It is important to know how the reaction term f behaves, for the existence and uniqueness
of the solution of Equation (4.7). Generally, small changes in the reaction term structure
may lead to a completely different behavior. The reaction term might be linear or non-
linear, i.e., the function f may depend on x, t and u as long as it is sufficiently smooth. The
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4 Spatial Structure of Cells and their Effect on the AHL Concentration

theory describing the existence and uniqueness of solutions of these types of RDEs are well
studied, at least locally in time, [35],[63]. The IVP (4.7) is known to be well posed in many
Lebesgue spaces Lp (Ω) by assuming that the reaction term f is a Lipschitz continuous
function. Thus, there exists for every given initial function g ∈ B and for appropriate
conditions on the reaction term f , a unique solution u(x, t) ∈ B for all t ∈ [0, T ], where B
is a Banach space.

We assume that the reaction term f is bounded and in C∞. Then the Cauchy problem
can be solved and the solution u(x, t) is unique, C∞ smooth in Rn× (0,∞) and continuous
in Rn × [0,∞), where the initial function u(x, 0) = g(x) is bounded and continuous, [14].

We turn to the solution of the line-shaped model (4.3) which can be found in (4.11). Here
we have to take into account that the AHL production is only possible within the cell. We
substitute the Equation (4.11) for x ∈ R3 and t > 0 and replace Φ by Green’s kernel G:

u(x, t) =

∫ 0

−∞
G(x− y, t)g(y)dy +

∫ L

0
G(x− y, t)g(y)dy +

∫ ∞
L

G(x− y, t)g(y)dy

+

∫ t

0

(∫ 0

−∞
G(x− y, t− s)αχΩdy +

∫ L

0
G(x− y, t− s)αχΩdy

+

∫ ∞
L

G(x− y, t− s)αχΩdy

)
ds

=

∫ 0

−∞

1

2
√
πDt

e−
|x−y|2
4Dt g(y)dy +

∫ L

0

1

2
√
πDt

e−
|x−y|2
4Dt g(y)dy

+

∫ ∞
L

1

2
√
πDt

e−
|x−y|2
4Dt g(y)dy

+

∫ t

0

(∫ 0

−∞
0 dy + α

∫ L

0

1

2
√
πD(t− s)

e
− |x−y|

2

4D(t−s) g(y)dy +

∫ ∞
L

0 dy

)
ds.

Let us consider L→ 0, i.e., the cell is shrinking with a constant production rate α

lim
L→0

u(t, x) =

∫ ∞
−∞

1

2
√
πDt

e−
|x−y|2
4Dt g(y)dy

+ α

∫ t

0

[
lim
L→0

∫ L

0

1

2
√
πD(t− s)

e
− |x−y|

2

4D(t−s)dy

]
ds

=
1

2
√
πDt

[∫ ∞
−∞

e−
|x−y|2
4Dt dy

]
.

Thus we find out that the AHL concentration u(x, t) is independent of AHL production
rate, i.e., for a constant α, the production vanishes completely. This means if we have a
constant α, then the length of the cell does not play a role. Even for a very small cell we
have the same equation for the AHL concentration. Further we assume that we have a
source term αχΩ(L) which is dependent on cell length, then we get
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4.2 A Single Cell Model in R3 with a Linear Source Term

lim
L→0

u(x, t) =
1

2
√
πDt

[∫ ∞
−∞

e−
|x−y|2
4Dt g(y)dy

]
+

∫ t

0

[
lim
L→0

∫ L

0

1

2
√
πD(t− s)

α(L)e
− |x−y|

2

4D(t−s)dy

]
ds.

This means that if we let the cell length shrink then the source term has to produce the
AHL with an appropriately scaled rate, so that the function of density does not disappear.
We achieve the relationship between cell length and source term in the way of assuming
the cell has a one dimensional shape. In order to ensure that the AHL concentration is
positive, we have to choose an appropriate source term, which can be for example 1

L .
The results of the pre-model will help to extend the main concept given by the Equations

(4.1)-(4.2). Thus, we are able to examine the spatial behavior of a single sphere shaped cell
in R3 and their suitable approximations. Through the analytical solutions to this model are
not easy to find, we first simplify our model and start with the stationary state for a linear
source term. We will derive some analytical results from this single cell model and extend
them under suitable conditions to a N−cell model.

4.2 A Single Cell Model in R3 with a Linear Source Term

We first present a three-dimensional steady state model for a single cell with a special case
of the AHL production within the cell, to capture the basic mathematical principles and the
idea for a suitable scaling. The suitable scaling of the main model is interesting, because
we do not only look into self produced molecules but also carried molecules through the
cell membrane by diffusion.

4.2.1 Assumptions of the Single Cell Model with a Linear Source Term

We assume that we have a single cell centered at x = 0 with radius L in R3 and we suppose
that we have only a constitutive AHL production with a rate a and a state-dependent decay
b u(x) of AHL within the cell, i.e., the reaction term reads f(u(x)) = a− b u(x) for all b > 0.
Note that the choice of the simplified linear reaction term contradicts the usual biologi-
cally meaningful assumption, but the decay −b u(x) is justified by the need for bounded
AHL production within the cell. Furthermore, we neglect the abiotic degradation rate γ
(occurring over the whole domain) of AHL appearing in the main model (4.1), because it
has no effect on the scaling concept.
Before we start to examine the model structure, we summarize all required variables for
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this chapter in the Table 4.1 and the parameters that we need for the models with a linear
reaction term in the Table 4.2, respectively.

Table 4.1: Variables used for the model 4.

Variable Description
x Position
t Time

u(x, t) AHL concentration in x at t

Table 4.2: Parameters used for the models with a linear reaction term in Sections 4.2 and
4.3.

Parameter Description
D Constant diffusion rate of AHL
a AHL production rate within the cell
b AHL degradation rate within the cell
α Scaled AHL production rate
β Scaled AHL degradation rate
γ Abiotic AHL degradation rate in whole domain

Knowing that AHL production is highly dependent on the position of cell, we start with
the stationary state assumption, which will also simplify to determine the suitable scaling
factor.

−D∆u(x) = (a− bu(x)), if |x| ≤ L, (4.12)

−D∆u(x) = 0, if |x| > L. (4.13)

We assume that a, b > 0, in case b < 0 there may appear a blow-up of the solution for t→∞
in the dynamical state. Suppose that the solution u = u(r) is radially symmetric and recall
the three-dimensional Laplacian in terms of spherical coordinates, ∆u(r) = d2u

dr2
+ 2

r
du
dr .

Expecting a delta-peak behavior from the solution u(r) as L → 0 brings us to define the
Equation (4.14) in terms of radial coordinates:

u(r) =
s(r)

r
. (4.14)

Then, we convert the model given by Equations (4.12)-(4.13) in the Cartesian coordinates
to the spherical coordinates and obtain the following system of second order ODEs by
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4.2 A Single Cell Model in R3 with a Linear Source Term

transforming it in terms of s

s
′′
(r)− b

D
s(r) +

a

D
r = 0, if r ≤ L, (4.15)

s
′′
(r)

r
= 0, if r > L. (4.16)

Avoiding to have a pole at r = 0 we obtain the general solutions to the Equations given by
(4.15)-(4.16)

s(r) = Ae
√
b/Dr +B e−

√
b/Dr +

a

b
r, if r ≤ L,

s(r) = c1 + c2r, if r > L,

where A,B, c1, c2 ∈ R. Since the signaling molecule production is only possible within
the cell, we know that s(r) is not a monotone increasing/decreasing function in r > L.
Thus, we set c2 = 0 and have s(r) = c1. In order to avoid a singularity at r = 0, we set
s(0) = 0 which gives us A = −B. Furthermore, the necessity of the smoothness on the
boundary imposes the boundary conditions where the solutions for r ≤ L and r > L have
to be equivalent at r = L, as well as the first derivatives thereof. The first derivatives of
the solutions are

s
′
(L) = A

√
b/De

√
b/DL −B

√
b/De−

√
b/DL +

a

b

= A
√
b/D

(
e
√
b/DL + e−

√
b/DL

)
+
a

b

= 2A
√
b/D cosh(

√
b/DL) +

a

b
,

for r ≤ L and

s
′
(L) = 0,

for r > L. By setting those equal at the boundary, we obtain the coefficients

A =− a
√
D

2b3/2
1

cosh(
√
b/DL)

,

B =
a
√
D

2b3/2
1

cosh(
√
b/DL)

.

Finally, let us determine the constant c1 by avoiding any jumps at r = L,

c1 =
a

b
L− a

√
D

b3/2
sinh(

√
b/DL)

cosh(
√
b/DL)

⇒ c1 =
aL

b

(
1−

√
D/b

tanh(
√
b/DL)

L

)
.
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Here, c1 should be independent of L in the exterior of cell, so we we have to scale the
parameters a and b, appropriately.
After determining the coefficients, we obtain the explicit solution to the model given by
Equations (4.12)-(4.13) in the following:

u(r) =


a
b −

a
√
D

b3/2 cosh(
√
b/DL)

sinh(
√
b/Dr)

r , if r ≤ L,

a
b L

(
1−

√
D/b

tanh(
√
b/DL)

L

)
1
r , if r > L.

(4.17)

Additionally, we want to ensure that this function has a finite limit for b → 0 which
restricts the infinite production (lim

b→0
u(r) =∞) or extinction (lim

b→0
u(r) = 0) of AHL concen-

tration within the cell. Here, we show that the lim
b→0

u(r) tends to a constant value, which is

not equal to zero:

lim
b→0

u(r) = lim
b→0

a

b
− a
√
D

b3/2 r

sinh(
√
b/Dr)

cosh(
√
b/DL)

= lim
b→0

a

b
− a
√
D

b3/2 r

√
b/Dr + (b/D)3/2 r3

3! +O(b5/2)

1 + L2b
2!D +O(b2)

= lim
b→0

a

b
− a
√
D

r

(
6 b−3/2

√
b/Dr + r3D−3/2 +O(b)

)
6
(

1 + L2b
2!D +O(b2)

)
= lim

b→0

1(
1 + L2b

2!D +O(b2)
) (a(1 + L2b

2!D +O(b2))

b
− a

b
− a r2

6D
+O(b)

)

= lim
b→0

1(
1 + L2b

2!D +O(b2)
) ( aL2

2
√
D
− a r2

6D
+O(b)

)

=
aL2

2D
− a r2

6D
.

Note that b = 0 causes an infinite AHL production within the cell, therefore we assume
here b 6= 0.

4.2.2 Suitable Scaling for the Single Cell Model with a Linear Source Term

Since we ignore the sensing process for simplicity in the single cell model, we consider
that the net AHL production is represented by the right hand side of the Equation (4.12).
By integrating it over space, we determine the parameters a and b so that the total mass of
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4.2 A Single Cell Model in R3 with a Linear Source Term

AHL in the first order within the cell is:∫
R3

(a− b u(x))χ|x|≤Ldx =

L∫
0

a 4πr2dr −
L∫

0

b u(r)4πr2dr (4.18)

=
4

3
πaL3 − b

L∫
0

u(r)4π r2dr

=
4

3
πaL3 − b TL,

where TL :=
L∫
0

u(r)4πr2dr represents the total mass of AHL within the cell. Using the

explicit solution given by Equation (4.17) we obtain TL as below:

TL =

L∫
0

u(r)4πr2dr

=

L∫
0

a
b
− a

√
D

b3/2 cosh
(√

b/DL
) sinh(

√
b/Dr)

r

 4πr2dr

=
4π

3

a

b
L3 − 4πa

√
D

b3/2 cosh
(√

b/DL
) L∫

0

sinh(
√
b/Dr)rdr.

Though the integral is analytically solvable, we use a Taylor expansion in r for small L and
we have

TL =
4π

3

a

b
L3 −

4πa
√
D
√
b/D

b3/2 cosh
(√

b/DL
)

·
L∫

0

(
r + (b/D)

r3

3!
+ (b/D)2 r

5

5!
+ (b/D)3 r

7

7!
+O(r9)

)
rdr

=
4π

3

a

b
L3 − 4πa

b cosh
(√

b/DL
)

·

(
L3

3
+

b

D

L5

5 · 3!
+

(
b

D

)2 L7

7 · 5!
+

(
b

D

)3 L9

9 · 7!
+O(L11)

)

=
4π

3

a

b
L3 − 4πa

b

L3

3

(
1 +

b

D

3L2

5 · 3!
+

(
b

D

)2 3L4

7 · 5!
+

(
b

D

)3 3L6

9 · 7!
+O(L8)

)

·

(
1−

(
b

D

)
L2

2!
+

(
b

D

)2 5L4

4!
−
(
b

D

)3 61L6

6!
+O(L8)

)
,
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4 Spatial Structure of Cells and their Effect on the AHL Concentration

Hence we only need the order of L to reach a suitable scaling, we do not need all coeffi-
cients accurately. Therefore, the real numbers {µ1, µ2, µ3, µ4, µ5, µ6, µ7, µ8, µ9} embody the
real coefficients family for the product term(

1 + bµ1 L
2 + b2µ2 L

4 + b3µ3 L
6 +O(L8)

) (
1− bµ4 L

2 + b2µ5 L
4 − b4µ6 L

6 +O(L8)
)

=(
1− µ7 bL

2 + µ8b
2 L4 + µ9b

3L6 +O(L8)
)
.

We come back to the calculation of TL,

TL =
4πaL3

3b
− 4πaL3

3b

(
1− µ7 bL

2 + µ8b
2 L4 + µ9b

3L6 +O(L8)
)

=
4π

3
µ7aL

5 − 4π

3
µ8 a bL

7 +O(L9).

Then, we insert this Taylor expansion of TL into the integral in (4.18)∫
R3

(a− bu(x))χ|x|≤Ldx =
4

3
πaL3 − bTL

=
4

3
πaL3 − b

(
4π

3
µ7aL

5 − 4π

3
µ8 b L

7 +O(L8)

)
=

4

3
πaL3 − 4π

3
µ7a bL

5 − 4π

3
µ8a b

2 L7 +O(L8).

Choosing the parameters a = αL−3 and b = βL−2 makes all terms in zero order. So, we
achieve the scaled model for a single cell

−D∆u(x) =

(
α

L3
− β

L2
u(x)

)
χ|x|≤L.

The radial symmetric solution for the scaled model reads

u(r) =


αL−1

β

(
1− 1√

β/D cosh
(√

β/D
) sinh

(√
β/D r

L

)
r
L

)
, if r ≤ L,

α
β

(
1−

√
D/β tanh

(√
β/D

))
1
r , if r > L.

After determining the suitable scaling of parameters, we check the positivity of the solu-
tion as r → 0:

lim
r→0

u(r) =
αL−1

β

1− 1√
β/D cosh

(√
β/D

) lim
r→0

sinh
(√

β/D r
L

)
r
L


=
αL−1

β

1− 1√
β/D cosh

(√
β/D

)√β/D


=
αL−1

β

1− 1

cosh
(√

β/D
)
 .

As being 0 < 1

cosh
(√

β/D
) < 1, u(r) fulfills the positivity condition.
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4.2 A Single Cell Model in R3 with a Linear Source Term

4.2.3 Single Cell Model with Abiotic AHL Degradation

By now, we add a general decay term γ to our model which preserves the previous scaling.
Thus, the model reads

−D∆u(x) + γu(x) =

(
α

L3
− β

L2
u(x)

)
, if |x| ≤ L, (4.19)

−D∆u(x) + γu(x) = 0, if |x| > L. (4.20)

We can convert this model to the system of second order ODEs because of the radial sym-
metry for the assumption u(r) = s(r)

r , so we have

s
′′
(r)−

(
βL−2 + γ

D

)
s(r) +

αL−3

D
r = 0, if r ≤ L, (4.21)

s
′′
(r)− γ

D
s(r) = 0, if r > L. (4.22)

The general solution to the system of ODEs (4.21)-(4.22) is

s(r) =

Ae
√

(βL−2+γ)/Dr +B e−
√

(βL−2+γ)/Dr + αL−3

βL−2+γ
r, if r ≤ L,

c1 e
√
γ/Dr + c2 e

−
√
γ/Dr, if r > L.

(4.23)

As we have no pole at r = 0, we set s(0) = 0 in the solution for r ≤ L and obtain A = −B.
Since s(r) given by the solution for r > L has to be bounded for a large r, we necessarily
have c1 = 0. So, we obtain

s(r) =

A
(
e
√

(βL−2+γ)/Dr − e−
√

(βL−2+γ)/Dr
)

+ αL−3

βL−2+γ
r, if r ≤ L,

C e−
√
γ/Dr, if r > L.

We substitute the constants A and C though u(L) = u0 by avoiding any jump of the solu-
tions on the boundary and we enforce the first derivatives of s(r) at r = L to be equal for
the smoothness. Thus, the radially symmetric solution to the model given by the Equations
(4.19) and (4.20) is

u(r) =


(
u0 − αL−1

γL2+β

)
L

sinh
(√

(γL2+β)/D
) sinh

(√
(γL2+β)/D r

L

)
r + αL−1

γL2+β
, if r ≤ L,

u0 Le
√
γ/DL e−

√
γ/Dr

r , if r > L,

(4.24)

where

u0 =
αL−1

γL2 + β

 √
(γL2 + β)/D coth

(√
(γL2 + β)/D

)
− 1√

(γL2 + β)/D coth
(√

(γL2 + β)/D
)

+ L
√
γ/D

 .

Since the decay term γ suppresses the infinite AHL production within the cell, we take
β = 0. Next, our goal is to seek an optimal approximate model for a single cell in R3,
which aims to minimize the error between the explicit solution of the real model given by
the Equation (4.24) and the solution of the approximate model.
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4.2.4 A suitable Approximate Model for a Single Cell in R3 with a Linear
Source Term

As we expect a delta peak behavior from the source term while L → 0, we describe an
approximate model essentially similar to the rescaled model given by Equations (4.19)-
(4.20)

−D∆v(x) + γv(x) = M(L)δ0(x), (4.25)

where v(x) denotes the approximate concentration of AHL and δ0 is the dirac delta dis-
tribution in radial coordinates, which makes a peak at the center of the cell, i.e., at r = 0.
Here, M(L) is the total amount of AHL production within the cell. So, the solution of the
approximate model (4.25) yields

v(x) =
M(L)

4πD |x|
e−
√
γ/D|x|,

where M(L) is given by

M(L) =

∫
R3

(
α

L3
− β

L2
u(x)

)
χ|x|≤Ldx (4.26)

=

∫ L

0

(
α

L3
− β

L2
u(r)

)
4πr2dr

=
4πα

3
− β

L2

L∫
0

u(r) 4πr2dr

=
4πα

3
− β

L2
DL,

where DL :=
L∫
0

u(r) 4πr2dr represents the total amount of AHL within the cell. We com-

pute DL using the exact solution of the single cell model given by the Equation (4.24)

DL =

L∫
0

u(r) 4πr2dr

=

L∫
0

(u0 −
αL−1

γL2 + β

) L sinh
(√

(γL2 + β)/D r
L

)
sinh

(√
(γL2 + β)/D

)
r

+
αL−1

γL2 + β

 4πr2dr

=
4π

3

αL−1

γL2 + β
L3 +

(
u0 −

αL−1

γL2 + β

)
4πL

sinh
(√

(γL2 + β)/D
)
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·
L∫

0

sinh
(√

(γL2 + β)/D
r

L

)
rdr

=
4π

3

αL2

γL2 + β
+

(
u0 −

αL−1

γL2 + β

)
4πL

DL2

γ L2 + β

·
(√

(γ L2 + β) /D coth
(√

(γ L2 + β) /D
)
− 1
)
.

Substituting DL in Equation (4.26), we have

M(L) =
4πα

3
− β

L2
DL

=
4πα

3

(
1− β

γL2 + β

)

+
4πDαβ

(γL2 + β)2

(
1 + L

√
γ/D

)((√
(γ L2 + β) /D

)
coth

(√
(γ L2 + β) /D

)
− 1
)

(√
(γ L2 + β) /D

)
coth

(√
(γ L2 + β) /D

)
+ L

√
γ/D

.

Further, lim
L→0

M(L) is a constant and equal to

M =
4πα

β/D

(
1−

√
D/β tanh(

√
β/D)

)
.

So far, we have established the explicit solution to the rescaled single cell model u and
its possible approximation v. In the following we want to show that we have attained the
optimal approximate model for the single cell case. Therefore, we define w := u − v as a
difference between original and approximate solutions. We will show that this difference
is sufficiently small, i.e., it is possible to take the approximate model instead of the original
one for small L. We substitute u = w + v in Equation (4.19) and find

−D∆ (w(x) + v(x)) + γ (w(x) + v(x)) =

(
α

L3
− β

L2
(w(x) + v(x))

)
χ|x|≤L

⇔ −D∆w(x)−D∆v(x) + γw(x) + γv(x) =

(
α

L3
− β

L2
w(x)− β

L2
v(x)

)
χ|x|≤L

⇔ −D∆w(x) + γw(x) +M(L)δ0(x) = − β

L2
w(x)χ|x|≤L +

(
α

L3
− β

L2
v(x)

)
χ|x|≤L

⇔ −D∆w(x) + γw(x) +
β

L2
w(x)χ|x|≤L =

(
α

L3
− β

L2
v(x)

)
χ|x|≤L −M(L)δ0(x).

Thereby, we achieved a PDE in the form Aw(x) = f(x), where A is an elliptic operator and
f(x) =

(
α
L3 − β

L2 v(x)
)
χ|x|≤L −M(L)δ0(x). For this elliptic equation we are looking for a

weak convergence of w(x) ∈ H1
0

(
R3
)
, where φ(x) is a test function, i.e., φ(x) ∈ C∞0

(
R3
)
.
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Thus we have∫
R3

w(x)φ(x)dx =

∫
R3

(u(x)− v(x))φ(x)dx

=

∫
|x|≤L

(u(x)− v(x))φ(x)dx+

∫
|x|>L

(u(x)− v(x))φ(x)dx,

and we aim to achieve lim
L→0

w(x) = O (L).

Let us estimate first
∫
|x|≤L

(u(x)− v(x))φ(x)dx for small L,

∫
|x|≤L

(u(x)− v(x))φ(x)dx =

∫
|x|≤L

u(x)φ(x)dx−
∫
|x|≤L

v(x)φ(x)dx (4.27)

=

∫
|x|≤L

u(x) (φ(0) +O (|x|)) dx−
∫
|x|≤L

v(x) (φ(0) +O (|x|)) dx

=

∫
|x|≤L

u(x)φ(0)dx−
∫
|x|≤L

v(x)φ(0)dx

+

∫
|x|≤L

u(x)O (|x|) dx−
∫
|x|≤L

v(x)O (|x|) dx.

Using the previous calculation given by (4.26) we have

∫
|x|≤L

u(x)φ(0)dx =

L∫
0

u(r)4πr2φ(0)dr

=DLφ(0)

=L2
4πα

3 −M
β

φ (0) ≤ O
(
L2
)
.

Analogously, we obtain the error term while for a small L

∫
|x|≤L

v(x)φ(0)dx =

L∫
0

v(r)φ(0)4πr2dr

=

L∫
0

M

4πDr
e−
√
γ/Dr4πr2φ(0)dr

=
M

D
φ(0)

L∫
0

r
(

1−
√
γ/Dr +O

(
r2
))
dr

=
M

D

L2

2
(1− 2

√
γ/DL+O

(
L2
)
)φ (0) ≤ O

(
L2
)
.

58



4.2 A Single Cell Model in R3 with a Linear Source Term

On the other hand, we need to show that
∫
|x|≤L

u(x)O (|x|) dx → 0 as L → 0 and similarly,∫
|x|≤L

v(x)O (|x|) dx→ 0 as L→ 0. Recall that

∣∣∣∣∣∣∣
∫
|x|≤L

u(x)O (|x|) dx

∣∣∣∣∣∣∣ ≤
∫
|x|≤L

|u(x)| |O (|x|)| dx

and we have |O (|x|)| ≤ KL due to |x| ≤ L, where K is a constant. Thus we obtain

∫
|x|≤L

u(x)O (|x|) dx ≤ KLO
(
L2
)
.

Correspondingly, we achieve
∫
|x|≤L

v(x)O (|x|) dx ≤ KLO
(
L2
)
.

Substituting these estimates in Equation (4.27) we find that

∫
|x|≤L

(u(x)− v(x))φ(x)dx→ 0, (4.28)

as L→ 0.
Next, we deal with the weak convergence of the difference between the original and ap-
proximate solutions for L > r, i.e.,

∫
|x|>L

(u(x)− v(x))φ(x)dx. Knowing that w ∈ L2(R3) ,

we estimate

|u(x)− v(x)|2 =

∣∣∣∣u0
L

|x|
e−
√
γ/D(|x|−L) − M

|x|
e−
√
γ/D|x|

∣∣∣∣2
=

(
1

|x|
e−
√
γ/D|x|

(
u0Le

√
γ/DL −M

))2

=

(
1

|x|
e−
√
γ/D|x|

)2

L2e2
√
γ/DL

(
u0 −

M

L
e−
√
γ/DL

)2

≤ C
(

1

|x|
e−
√
γ/D|x|

)2

L2O (1)L2

≤ C
(

1

|x|
e−
√
γ/D|x|

)2

L4.
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We integrate both sides of the inequality over |x| > L,

∫
|x|>L

|u(x)− v(x)|2 dx ≤
∫
|x|>L

C

(
1

|x|
e−
√
γ/D|x|

)2

L4dx

= CL4 L

L2

∫
|x|>L

e−2
√
γ/D

|x|L
L

L2

|x|2
dx

L

= CL3

∞∫
1

e−2
√
γ/DθL 1

θ2
dθ

≤ CL3

∞∫
1

e−2
√
γ/DθL 1

θ
dθ

= CL3

∞∫
L

e−2
√
γ/Ds 1

s
ds

= CL3

 1∫
L

e−2
√
γ/Ds 1

s
ds+

∞∫
1

e−2
√
γ/Ds 1

s
ds


= CL3

1∫
L

1− 2
√
γ/Ds+O

(
s2
)

s
ds

= CL3
(
−2
√
γ/D +

(
2
√
γ/DL− lnL

)
+O

(
L2
))

≤ CL3 (− lnL) .

So, we find for |x| > L the following estimation∫
|x|>L

|u(x)− v(x)|φ(x)dx ≤ ‖u(x)− v(x)‖L2(|x|>L) ‖φ(x)‖L2(|x|>L)

= O
(
L2
√

ln(L)
)
,

analogously we have ∫
|x|>L

(u(x)− v(x))φ(x)dx→ 0, (4.29)

as L→ 0.

The Equations (4.28)-(4.29) explain that the difference between the solutions of the orig-
inal model and the approximate model for a single cell is sufficiently small and vanishes
for L→ 0, so that we can utilize the approximate model instead of the original model.
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4.3 A Population Model in R3 with a Linear Source Term and a
suitable Approximate Model

In this section we generalize the model in Subsection 4.2.3 for a single cell to the case of
the population model of N cells. For a first approach, we introduce a simple model which
is reduced to a population consisting of two identical cells, centered at the positions x1

and x2 with radius L. In the following, we present this two cells model analogously to the
scaled model given by the Equations (4.19) and (4.20),

−D∆u1(x) + γu1(x) =
(
α1L

−3 − β1L
−2 (u1(x) + u2(x))

)
χ|x−x1|≤L, (4.30)

−D∆u2(x) + γu2(x) =
(
α2L

−3 − β2L
−2 (u2(x) + u1(x))

)
χ|x−x2|≤L, (4.31)

where u1(x) and u2(x) denote the AHL concentrations of the corresponding cells, respec-
tively. We consider that the new approximate model should be similar to the single cell
model, which we examined in Subsection 4.2.3. Thus, we reformulate the model (4.19)
with suitable choice of coefficients for two cells,

−D∆ũ1(x) + γũ1(x) =
(
(C1 + LF1)L−3 −B1L

−2 (ũ1(x))
)
χ|x−x1|≤L, (4.32)

−D∆ũ2(x) + γũ2(x) =
(
(C2 + LF2)L−3 −B2L

−2 (ũ2(x))
)
χ|x−x2|≤L, (4.33)

where ũ1(x) and ũ2(x) represent the approximate AHL concentrations to the correspond-
ing cells, respectively. We expect to have an insight about the typical interactions consid-
ering the model from the side of the cell centered at at x1. So, the related solution to the
approximate model (4.32) reads

ũ1(r) =


(
ũ0 − (C1+LF1)L−1

γL2+B1

) L sinh
(√

(γL2+B1)/D r
L

)
r sinh

(√
(γL2+B1)/D

) + (C1+LF1)L−1

γL2+B1
, if r ≤ L,

ũ0 Le
√
γ/DL e−

√
γ/Dr

r , if r > L,

(4.34)

where ũ0 is given by

ũ0 =
(C1 + LF1)L−1

γL2 +B1

 √
(γL2 +B1)/D coth

(√
(γL2 +B1)/D

)
− 1√

(γL2 +B1)/D coth
(√

(γL2 +B1)/D
)

+ L
√
γ/D

 .

In order to find the suitable coefficients for the approximate solution, we define the differ-
ence between the original solution and approximate solution for two cells by w1 := u1− ũ1

and w2 := u2 − ũ2. Then, we substitute u1 = w1 + ũ1 and u2 = w2 + ũ2 in the model given
by Equation (4.30) and obtain

−D∆ (w1(x) + ũ1(x)) + γ (w1(x) + ũ1(x))

=
(
α1L

−3 − β1L
−2 (w1(x) + ũ1(x) + w2(x) + ũ2(x))

)
χ|x−x1|≤L.

61



4 Spatial Structure of Cells and their Effect on the AHL Concentration

So, we have the following elliptic PDE for the cell located at x1

−D∆w1(x) + γw1(x) + β1L
−2 (w1(x) + w2(x)) (4.35)

=
(
α1L

−3 − β1L
−2 (ũ1(x) + ũ2(x))

)
χ|x−x1|<L −

(
(C1 + LF1)L−3 −B1L

−2ũ1(x)
)
χ|x−x1|≤L.

Considering Aw(x) = fL(x) represents the Equation (4.35), where A is an elliptic operator,
we define the associated bilinear form of the operator A by B and recall the Lax-Milgram
Theorem 4.7 below:

Theorem 4.7 (Lax-Milgram Theorem)[4]
Let H be a Hilbert space and consider a bilinear functional B : H ×H → R. If there exist C <∞
and α > 0 such that

|B(w, v)| ≤ C ‖w‖ ‖v‖ , for all (w, v) ∈ H ×H,

|B(w,w)| ≥ α ‖w‖2 , for all w ∈ H,

then for every f ∈ H−1 (the dual space of H), the equation

B(w, v) = (f, v)H−1,H1

has a unique solution
w ∈ H.

Remark 4.8 According to the Lax Milgram Theorem we have

α ‖w‖2H1 ≤ B(w,w) = (f, w)

⇔ α ‖w‖2H1 ≤ ‖f‖H−1 ‖w‖H1 .

So, we obtain for every α > 0,
α ‖w‖H1 ≤ ‖f‖H−1 .

Therefore, we claim that a suitable estimation for ‖f‖H−1 lead us to the conclusion

w = |u− v| → 0

as L→ 0.

The following theorem shows that we can find a suitable estimation for ‖f‖H−1 under
special circumstances.

Theorem 4.9 Let L > 0 and fL(x) ∈ L2(R3)∩L∞(R3) such that there are constants C1, C2 > 0

and α ∈ (0, 1) with

1. supp(fL) ⊆ {|x| < L}
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2. |L−3
∫
R3

fL(x) dx| ≤ C1 L
−1/2−α

3. ess infx∈R3 |fL(x)| ≤ C2 L
−3/2−α

then

‖fL‖H−1 = O(L1−α).

Proof 4.10 We use the H−1-norm of fL, as defined by

‖fL‖H−1 = sup
φ∈H1, ‖φ‖H1≤1

| (fL, φ) |,

with the inner product (., .) on R3, [62]. Let us fix φ ∈ C1 ∩H1 and assume that ‖φ‖H1 ≤ 1. For
a fixed y ∈ R3, |y| < L, we find

| (fL, φ) | =

∣∣∣∣∣∣
∫
R3

fL(x)φ(x) dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫
|x|<L

fL(ρ)(φ(ρ)− φ(y) + φ(y)) dρ

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫
|x|<L

fL(ρ)(φ(ρ)− φ(y)) dρ+

∫
|x|<L

fL(ρ)φ(y) dρ

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫
|x|<L

fL(ρ)(φ(ρ)− φ(y)) dρ+ φ(y)

∫
|x|<L

fL(ρ) dρ

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∫
|x|<L

fL(ρ)(φ(ρ)− φ(y)) dρ

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣φ(y)

∫
|x|<L

fL(ρ) dx

∣∣∣∣∣∣∣
≤ ‖fL‖∞

∫
|x|<L

|φ(xρ)− φ(y)| dρ+ |φ(y)|

∣∣∣∣∣∣∣
∫
|x|<L

fL(ρ) dρ

∣∣∣∣∣∣∣
≤ C2 L

−3/2−α
∫
|x|<L

|φ(ρ)− φ(y)| dρ+ C1 L
5/2−α |φ(y)|,

according to the assumptions 1 and 2 of the Theorem 4.9.
Now we integrate both sides of the inequality with respect to τ over the region {|y| < L} and divide
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both sides by 4π L3/3. So, we have∣∣∣∣∣∣
∫
R3

fL(x)φ(x) dx

∣∣∣∣∣∣ ≤ C3

(
L−9/2−α

∫
|y|<L

∫
|x|<L

|φ(ρ)− φ(τ)| dρ dτ

+L−1/2−α
∫
|y|<L

|φ(ρ)| dρ
)
.

The second term on the right hand side of the inequality can be estimated by using the Hölder’s
inequality and the assumption ‖φ‖ ≤ 1 as follows:

L−1/2−α
∫
|y|<L

|φ(τ)| dτ = L−1/2−α
∫
|y|<L

|φ(τ)| 1 dτ

≤ L−1/2−α

 ∫
|y|<L

|φ(τ)|2 dτ


1/2  ∫

|y|<L

1 dτ


1/2

≤ C4 L
−1/2−α‖φ‖L2L3/2

≤ C4‖φ‖H1L1−α

≤ C4L
1−α.

Then, we estimate the first term:

L−9/2−α
∫
|y|<L

∫
|x|<L

|φ(ρ)− φ(τ)| dρ dτ

=L−9/2−α
∫
|y|<L

∫
|x|<L

∣∣∣∣∣∣
1∫

0

d

dθ
φ(ρ+ θ(τ − ρ)) dθ

∣∣∣∣∣∣ dρ dτ
≤L−9/2−α

1∫
0

∫
|y|<L

∫
|x|<L

∣∣∣∣ ddθφ(ρ+ θ(τ − ρ))

∣∣∣∣ dρ dτ dθ
=L−9/2−α

1∫
0

∫
|y|<L

∫
|x|<L

|∇θ φ(ρ+ θ(τ − ρ)) (ρ− τ) | dρ dτ dθ

≤L−9/2−α
1∫

0

∫
|y|<L

∫
|x|<L

|∇θ φ(ρ+ θ(τ − ρ))| |(ρ− τ) | dρ dτ dθ

≤2L−7/2−α
1∫

0

∫
|y|<L

∫
|x|<L

|∇θ φ(ρ+ θ(τ − ρ))| dρ dτ dθ
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≤2L−7/2−α
1∫

0

∫
|y|<L

 ∫
|x|<L

|∇θ φ(ρ+ θ(τ − ρ))|2 dρ


1/2 ∫

|x|<L

1 dρ


1/2

dτ dθ

≤CL−2−α
1∫

0

∫
|y|<L

∫
R3

|∇θ φ(ρ+ θ(τ − ρ))|2 dρ

1/2

dτ dθ

≤CL−2−α
1∫

0

∫
|y|<L

∫
R3

|∇θ φ(ρ̃)|2 dρ̃ (1− θ)−1

1/2

dτ dθ

≤CL−2−α‖φ‖H1

1∫
0

∫
|y|<L

(1− θ)−1/2dτ dθ

≤CL1−α‖φ‖H1 .

According to the assumptions, φ ∈ C1 ∩H1 and ‖φ‖H1 ≤ 1, we find

sup
φ∈C1∩H1, ‖φ‖H1≤1

| (fL, φ) | ≤ CL1−α.

As C1 ∩H1 is dense in H1, this inequality carries over to all φ ∈ H1, ‖φ‖H1 ≤ 1 and thereby we
achieve

‖fL‖H−1 = O(L1−α).

�

Corollary 4.11 If we choose α = 1/2 in Theorem 4.9, we find in particular that

1. supp(fL) ⊆ {|x| < L}

2. |L−3
∫
R3

fL(x) dx| ≤ C1 L
−1

3. ess infx∈R3 |fL(x)| ≤ C2 L
−2

which imply

‖fL‖H−1 = O(
√
L).

Thanks to the Corollary 4.11 we will achieve the estimation ‖fL‖H−1 = O(
√
L) to our

case, where we defined

fL(x) =
(
(α1 − C1 − LF1)L−3 − (β1 −B1) ũ1(x)L−2 − β1ũ2(x)L−2

)
χ|x−x1|<L.

In the following we show that fL fulfills the assumptions in Corollary 4.11:

65



4 Spatial Structure of Cells and their Effect on the AHL Concentration

1. fL(x) is defined with the characteristic function χ|x−x1|<L, which enforce fL(x) to
have its support in the same domain, i.e.,

supp (fL(x)) ⊂ {|x− x1| < L} .

2. Let us estimate the error of the integral
∫
R3

fL(x)dx below:

∫
R3

fL(x)dx =

L∫
0

(
(α1 − C1 − LF1)L−3 − (β1 −B1) ũ1(r)L−2 − β1ũ2(r)L−2

)
4πr2dr

= (α1 − C1 − LF1)L−3 4πL3

3
− (β1 −B1)L−2

L∫
0

ũ1(r)4πr2dr

− β1L
−2

L∫
0

ũ2(r)4πr2dr

= (α1 − C1 − LF1)
4π

3
− (β1 −B1)L−2I1(L)− β1L

−2I2(L),

where I1(L) :=
L∫
0

ũ1(r)4πr2dr and I2(L) :=
L∫
0

ũ2(r)4πr2dr. Here, we evaluate the

integrals, I1(L) and I2(L) using the explicit solutions of the approximate model given
by the Equation (4.34), respectively.

I1(L) =4π

L∫
0

((
ũ0 −

(C1 + LF1)L−1

γL2 +B1

)L sinh
(√

(γL2 +B1)/D r
L

)
r sinh

(√
(γL2 +B1)/D

)


+
(C1 + LF1)L−1

γL2 +B1

)
r2dr

= 4π

(
ũ0 −

(C1 + LF1)L−1

γL2 +B1

)
L

sinh
(√

(γL2 +B1)/D
)

·
L∫

0

sinh
(√

(γL2 +B1)/D r
L

)
r

r2dr + 4π
(C1 + LF1)L−1

γL2 +B1

L3

3

= 4π

(
ũ0 −

(C1 + LF1)L−1

γL2 +B1

)
L

sinh
(√

(γL2 +B1)/D
) L2D

γL2 +B1

·

√
γL2+B1

D∫
0

sinh (r) r dr +
4π

3

(C1 + LF1)L2

γL2 +B1
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=
4πL3D

γL2 +B1

(C1 + LF1)L−1

γL2 +B1

·

 √
(γL2 +B1)/D coth

(√
(γL2 +B1)/D

)
− 1√

(γL2 +B1)/D coth
(√

(γL2 +B1)/D
)
− L

√
γ/D

− 1


·
(√

(γL2 +B1)/D coth
(√

(γL2 +B1)/D
)
− 1
)

+
4π

3

(C1 + LF1)L2

γL2 +B1

= −4π
(C1 + LF1)DL2

(γL2 +B1)2

(
1 + L

√
γ/D

)

·

√
(γL2 +B1)/D coth

(√
(γL2 +B1)/D

)
− 1√

(γL2 +B1)/D coth
(√

(γL2 +B1)/D
)

+ L
√
γ/D

+
4π

3

(C1 + LF1)L2

γL2 +B1
,

and then,

I2(L) =
4πL3

3
ũ2(x1) +O(L4)

=
4πL3

3
ũ0(x)

L

|x1 − x2|
e−
√
γ/D(|x1−x2|−L)

=
4πL3

3

(C2 + LF2)L−1

γL2 +B2

 √
(γL2 +B2)/D coth

(√
(γL2 +B2)/D

)
− 1√

(γL2 +B2)/D coth
(√

(γL2 +B2)/D
)

+ L
√
γ/D


· L

|x1 − x2|
e−
√
γ/D(|x1−x2|−L)

=
4π

3

(C2 + LF2)L2

γL2 +B2

 √
(γL2 +B2)/D coth

(√
(γL2 +B2)/D

)
− 1√

(γL2 +B2)/D coth
(√

(γL2 +B2)/D
)

+ L
√
γ/D


· L

|x1 − x2|
e−
√
γ/D(|x1−x2|−L).

As a result, the boundedness of

( √
(γL2+B2)/D coth

(√
(γL2+B2)/D

)
−1

√
(γL2+B2)/D coth

(√
(γL2+B2)/D

)
+L
√
γ/D

)
as L → 0

leads the error estimations I1(L) < O(L2) and I2(L) < O(L3). Choosing β1 = B1

and analogously β2 = B2, we have∣∣∣∣∣∣
∫
R3

fL(x)dx

∣∣∣∣∣∣ = (α1 − C1 − LF1)
4π

3
− β1L

−2I2(L).

Further, we take α1 = C1 and then we find∣∣∣∣∣∣
∫
R3

fL(x)dx

∣∣∣∣∣∣ = LF1
4π

3
+ β1L

−2I2(L).
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Thus, F1 = − 3
4πβ1L

−2I2(L) appears and the second assumption of the Theorem 4.9
is satisfied, i.e., ∣∣∣∣∣∣

∫
R3

fL(x)dx

∣∣∣∣∣∣ ≤ CL2.

3. Here we estimate the error term for ess infx∈R3 |fL(x)| according to the chosen con-
stants. We have

fL(x) = F1L
−2

− β1
(C2 + F2L)L−3

γL2 +B2

 √
(γL2 +B2)/D coth

(√
(γL2 +B2)/D

)
− 1√

(γL2 +B2)/D coth
(√

(γL2 +B2)/D
)

+ L
√
γ/D


· L
r
e−
√
γ/D(r−L).( √

(γL2+B2)/D coth
(√

(γL2+B2)/D
)
−1

√
(γL2+B2)/D coth

(√
(γL2+B2)/D

)
+L
√
γ/D

)
is bounded for L→ 0 and so we obtain

|fL(x)| ≤ F1L
−2 + β1

(C2 + F2L)L−2

γL2 +B2

· 1

r
e−
√
γ/Dr

(
1 + L

√
γ/D +O(L2)

)
.

Eventually, we have
ess infx∈R3 |fL(x)| < O

(
L2
)
,

which fulfills the third hypothesis of the Theorem 4.9.

Since the three assumptions of the Theorem 4.9 are fulfilled, we conclude

‖fL‖H−1 = O
(√

L
)
,

as in Remark 4.11. Moreover, according to Remark 4.8 we acquire

‖w‖ ≤ O
(√

L
)
.

So, we have determined that the difference between approximate and original solutions
tends to zero when L → 0, i.e., we have found a suitable approximate solution to our
model. If we extend the idea of the two cells model to a population model with N cells we
obtain the following model and its corresponding approximation:

−D∆ui(x) + γui(x) =

αiL−3 − βiL−3

 N∑
j=1
j 6=i

ui(x), uj(x)


χ|x−xi|≤L,

−D∆ũi(x) + γũi(x) =
(
(αi + LFi)L

−3 − βiL−3ũi(x)
)
χ|x−xi|≤L,
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where Fi = −βi 4π
3
αj
βj

(√
βj/D coth

(√
βj/D

)
−1

√
βj/D coth

(√
βj/D

)
)

e
−(
√
γ/D|xi−xj|)
|xi−xj | . The approximate solution to

the model reads analogously to the case with two cells:

ũi(r) =


(
ũi0 −

(αi+LFi)L
−1

γL2+βi

)(L sinh
(√

(γL2+βi)/D
r
L

)
r sinh

(√
(γL2+βi)/D

)
)

+ (αi+LFi)L
−1

γL2+βi
, r ≤ L,

ũi0
L
r e
−
√
γ/D(r−L), r > L,

(4.36)

where ũi0 is given by

ũi0 =
(αi + LFi)L

−1

γL2 + βi

 √
(γL2 + βi)/D coth

(√
(γL2 + βi)/D

)
− 1√

(γL2 + βi)/D coth
(√

(γL2 + βi)/D
)

+ L
√
γ/D

 .

4.4 A Single Cell Model in R3 with a Lipschitz Continuous
Source Term

In this section we generalize the model which includes a linear source term given by Equa-
tions (4.19)-(4.20) into a model with a non-linear source term (see Equations (4.38)-(4.39)).
In Table 4.3 the parameters which we need during the Sections 4.4 and 4.5 can be found.

Table 4.3: Parameters used for the models with a Lipschitz continuous source term in Sec-
tions 4.4 and 4.5.

Parameter Description
D Constant diffusion rate of AHL
a Constitutive AHL production rate within the cell
b (Positive) feed-back correlated AHL

production rate within the cell
α Scaled AHL production rate
β Scaled (positive) feed-back correlated AHL

production rate within the cell
γ Abiotic AHL degradation rate in whole domain

Athresh (Scaled) threshold of AHL concentration for the start of
positive feed-back within the cell

We aim that this new model satisfies the essential biological expectations, therefore we
describe the source term with a simple Hill function,

f(uL) = a+ b
uL

Athresh + uL
,
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which fits to the transcriptional regulation in the QS system, [45]. This non-linear source
term characterizes the finite production of AHL via a positive feedback loop, where a
represents the constitutive production rate and b corresponds to the production parameter
due to the positive feedback loop. Athresh determines the activation threshold of a cell. As
the cells are tiny organisms, we take the mean value of AHL concentration in the cell uL
instead of the position dependent (spatially described) AHL concentration u(x). Assuming
that the single cell is located at x = 0 we define the mean value of AHL concentration by

uL :=
1

4π
3 L

3

∫
|x|<L

u(x)dx. (4.37)

Thus, we present the following model with a non-linear source term for a single cell cen-
tered at x = 0:

−D∆u(x) + γu(x) =

(
a+ b

uL
Athresh + uL

)
, |x| ≤ L, (4.38)

−D∆u(x) + γu(x) = 0, |x| > L. (4.39)

The mathematical structure of this model is exactly the same as we have already discussed
for the previous model (4.19)-(4.20), when we suppose that the scaled value of b, i.e., β = 0.
The Lipschitz continuity of the source term guarantees the existence of solutions to the
Equations (4.38)-(4.39), [14]. Thereby, we obtained the radially symmetric solutions to the
model assuming to have a constant uL

u(r) =


(
u0 − 1

γ

(
a+ b uL

Athresh+uL

)) L sinh
(√

γ/Dr
)

r sinh
(√

γ/DL
) + 1

γ

(
a+ b uL

Athresh+uL

)
, r ≤ L,

u0 Le
√
γ/DL e−

√
γ/Dr

L , r > L,

where

u0 =
1

γ

(
a+ b

uL
Athresh + uL

) L
√
γ/D coth

(√
γ/DL

)
− 1

L
√
γ/D coth

(√
γ/DL

)
+ L

√
γ/D

 .

Using the solution u(r), we can compute a new uL given by Equation 4.37. Thus, we are
looking for a fixed point uL. For a small cell radius L, we can apply contraction principle
and thereby, we have such a fixed point uL. So, we can use it for the radially symmetric
solution U(r). The biological assumption 0 <

√
γ/D < 1 is sufficient to preserve the

positivity of solutions.

4.4.1 Suitable Scaling for the Single Cell Model with a Nonlinear Source Term

We seek the appropriate scaling for the parameters a, b, Athresh and further, for the mean
value of AHL concentration uL, which is supposed in this context to be a parameter. Taking
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into account the boundedness of the Hill function, i.e.,

0 ≤ uL
Athresh + uL

≤ 1,

we assume that it has no effect on the scaling of the parameters a and b. Let us evaluate
the total production of AHL within the cell:

L∫
0

(
a+ b

uL
Athresh + uL

)
4π r2dr =

(
a+ b

uL
Athresh + uL

)
4π

3
L3.

Thus, suitable scaling for a and b yields a = αL−3 and b = βL−3. Further, we scale the
mean value of AHL concentration uL appropriately,

1
4π
3 L

3

L∫
0

u(r)4π r2dr (4.40)

= 3L−3

(
u0 −

1

γ

(
a+ b

uL
Athresh + uL

)) L

sinh
(√

γ/DL
)


·
L∫

0

sinh
(√

γ/Dr
)
r dr +

1

γ

(
a+ b

uL
Athresh + uL

)

= 3L−3 1

γ

(
a+ b

uL
Athresh + uL

)(
1 +

√
γ/DL√

γ/DL coth(
√
γ/DL) +

√
γ/DL

)

· L

sinh
√
γ/DL

√γ/D
3

L3 +

(√
γ/D

)3

5 · 3!
L5 +O

(
L7
)+

1

γ

(
a+ b

uL
Athresh + uL

)

= 3L−3 1

γ

(
a+ b

uL
Athresh + uL

) 1 +
√
γ/DL√

γ/D
(

cosh(
√
γ/DL) + sinh(

√
γ/DL)

)


·
√
γ/D

3
L3

(
1 +

3 γ/D

5 · 3!
L2 +O

(
L4
))

+
1

γ

(
a+ b

uL
Athresh + uL

)
= −1

γ

(
a+ b

uL
Athresh + uL

)(
1 +

√
γ/DL

)
e−
√
γ/DL

(
1 +

γ/D

10
L2 +O

(
L4
))

+
1

γ

(
a+ b

uL
Athresh + uL

)
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=
1

γ

(
a+ b

uL
Athresh + uL

)
·

(
1−

(
1 +

√
γ/DL

)(
1−

√
γ/DL+

γ

D

L2

2!
−
(√

γ/D
)3 L3

3!
+O

(
L4
))

·
(

1 +
γ/D

10
L2 +O

(
L4
) ))

=
1

γ

(
a+ b

uL
Athresh + uL

)

·

1−
(

1 +
√
γ/DL

)1−
√
γ/DL+

6 γ/D

10
L2 −

8
(√

γ/D
)3

30
L3 +O

(
L4
)


=
1

γ

(
a+ b

uL
Athresh + uL

)(
1−

(
1− 2 γ/D

5
L2 +

(γ/D)1/3

3
L3 +O

(
L4
)))

=
1

γ

(
a+ b

uL
Athresh + uL

)(
2 γ/D

5
L2 − (γ/D)1/3

3
L3 +O

(
L4
))

.

Substituting the appropriate scaling for a = αL−3 and b = βL−3 enforces to scale uL by L.
For simplicity, we do not change the notation for scaled uLL. Thus, the scaled model for a
single cell located at x = 0 reads

−D∆u(x) + γu(x) = L−3

(
α+ β

LuL
Athresh + LuL

)
, |x| ≤ L, (4.41)

−D∆u(x) + γu(x) = 0, |x| > L. (4.42)

Moreover, the radially symmetric solution to the scaled model is

u(r) =



(
u0 − 1

γL
−3
(
α+ β LuL

Athresh+LuL

)) L sinh
(√

γ/Dr
)

r sinh
(√

γ/DL
)

+ 1
γL
−3
(
α+ β LuL

Athresh+LuL

)
, r ≤ L,

u0 Le
√
γ/DL e−

√
γ/Dr

r , r > L,

(4.43)

where

u0 =
1

γ
L−3

(
α+ β

LuL
Athresh + LuL

) L
√
γ/D coth

(√
γ/DL

)
− 1

L
√
γ/D coth

(√
γ/DL

)
+ L

√
γ/D

 .
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4.4.2 A Suitable Approximate Model for a Single Cell with a Lipschitz
Continuous Source Term

The approximate equation for the AHL concentration reads

−D∆v(x) + γv(x) = L−3Mχ|x|≤L

where we are interested in the appropriate M . The explicit solution to the approximate
model is calculated as the solution of the original model Equation (4.43),

v(r) =


(
v0 − 1

γL
−3M

) L sinh
(√

γ/Dr
)

r sinh
(√

γ/DL
) + 1

γL
−3M, r ≤ L,

v0 Le
√
γ/DL e−

√
γ/Dr

r , r > L,

(4.44)

where

v0 =
1

γ
L−3M

 L
√
γ/D coth

(√
γ/DL

)
− 1

L
√
γ/D coth

(√
γ/DL

)
+ L

√
γ/D

 .

Analogously to the original model we define the mean value of the approximate AHL
concentration by vL = 1

4π
3
L3

∫
R3

v(x)dx. Further, we scale it by L, which enables to have a

first order error term of L through Taylor expansion, i.e., according to the calculation in
Equation (4.40), we have

LvL =
L

4π
3 L

3

∫
R3

v(x)dx (4.45)

= 3L−2

L∫
0

v(r)r2dr

= 3L−2

L∫
0

(v0 −
1

γ
L−3M

) L sinh
(√

γ/Dr
)

r sinh
(√

γ/DL
) +

1

γ
L−3M

 r2dr

=
M

γ
L−2

(
2 γ/D

5
L2 − (γ/D)1/3

3
L3 +O

(
L4
))

= M
(
µ1 + µ2L+O

(
L2
))
,

where the coefficients are µ1 = 2
5D and µ2 = − 1

3 γ2/3D1/3 .
Let us define a difference function between original and approximate solutions w :=

u − v and its correspondent mean values wL := uL − vL. Substituting u = w + v and
uL := wL + vL in the Equation (4.41) we obtain

−D∆w(x) + γw(x) =

(
L−3

(
α+ β

L (wL + vL)

Athresh + L (wL + vL)

)
− L−3M

)
χ|x|≤L. (4.46)
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Integrating Equation (4.46) over R3 we achieve

∫
R3

(−D∆w(x) + γw(x)) dx =

L∫
0

(
L−3

(
α+ β

L (wL + vL)

Athresh + L (wL + vL)

)
− L−3M

)
4πr2dr

=
4π

3

(
α+ β

L (wL + vL)

Athresh + L (wL + vL)
−M

)
.

ChoosingwL = 0, we gain ‖w(x)‖L2 → 0 whileL→ 0 whereM = α+β
M(µ1+µ2L+O(L2))

Athresh+M(µ1+µ2L+O(L2))

accordingly to the Equation (4.45). To be precise, we claim that there exists an approximate
M̃ which satisfies ∣∣∣M − M̃ ∣∣∣ < O (L) .

In the following, we show that M̃ = α + β M̃(µ1+µ2L)

Athresh+M̃(µ1+µ2L)
is a suitable approximation

for M :∣∣∣M − M̃ ∣∣∣ =

∣∣∣∣∣α+ β
M
(
µ1 + µ2L+O

(
L2
))

Athresh +M (µ1 + µ2L+O (L2))
− α− β M̃ (µ1 + µ2L)

Athresh + M̃ (µ1 + µ2L)

∣∣∣∣∣
=

∣∣∣∣∣β
(

M
(
µ1 + µ2L+O

(
L2
))

Athresh +M (µ1 + µ2L+O (L2))
− M̃ (µ1 + µ2L)

Athresh + M̃ (µ1 + µ2L)

)∣∣∣∣∣
=

∣∣∣∣∣∣β
Athresh

(
µ1M + µ2ML+O

(
L2
))
−Athresh

(
µ1M̃ + µ2M̃L

)
(Athresh +M (µ1 + µ2L+O (L2)))

(
Athresh + M̃ (µ1 + µ2L)

)
∣∣∣∣∣∣

≤

∣∣∣∣∣∣β
Athresh

(
µ1M + µ2ML+O

(
L2
))
−Athresh

(
µ1M̃ + µ2M̃L

)
A2
thresh

∣∣∣∣∣∣
=

∣∣∣∣∣∣β
µ1

(
M − M̃

)
+ µ2

(
M − M̃

)
L+O

(
L2
)

Athresh

∣∣∣∣∣∣
≤ β
|µ1|

∣∣∣M − M̃ ∣∣∣+ |µ2|
∣∣∣M − M̃ ∣∣∣L+O

(
L2
)

Athresh
.

Consequently, we find∣∣∣M − M̃ ∣∣∣− β |µ2|
Athresh − β |µ1|

∣∣∣M − M̃ ∣∣∣L+O
(
L2
)
≤ 0,

for (Athresh − β |µ1|) > 0, i.e., we achieve the desired estimate∣∣∣M − M̃ ∣∣∣ ≤ O (L) .

Thereby, we have seen that M̃ = α+ β M̃(µ1+µ2L)

Athresh+M̃(µ1+µ2L)
is a suitable approximation for

M and we can replace M by M̃ in the approximative solution (4.44). Let us determine the
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explicit value of M̃

M̃ =
−d±

√
d2 + 4αAthresh (µ1 + µ2 L)

2 (µ1 + µ2 L)
, (4.47)

where d = (Athresh − α (µ1 + µ2 L)− β (µ1 + µ2 L)) .

4.4.3 Numerical Simulations for a Single Cell

All parameters we need for the simulations in Chapter 4 can be found in Table 4.4. Since
we originally have the AHL production rates α and β per cell, we need to convert them to
production per volume. So, we supposed to have a volume per cell which is directly ’ac-
cessible’ for the AHL production, i.e., a typical ’free space’ around the cells (very roughly
estimated from [40]). Therefore, we assume to have the volume of 100 cells that is reason-
able for some biofilm-volume around the cells.

Numerical simulations in Figures 4.2, 4.3, 4.4 and 4.5 show an application of the approx-
imate solution (4.44) of a single cell for a unique value of approximate AHL production M̃
computed by (4.47). Here, the single cell is assumed to be located at x = 0 and has the cell
radius L = 0.6203µm correspondent to a single cell volume given in Table 4.4. The red as-
terisks in Figures 4.2 and 4.3 represent the original cell radius and the black dotted lines in
Figures 4.2 refer to the ’shrinking’ cell radius L that assumed to manage the approximate
AHL concentration accordingly to the approximate solution (4.44). In Figure 4.2 can be
seen the AHL concentrations for a ’shrinking’ cell, i.e., the approximate AHL concentra-
tions are simulated as the cell radius L → 0. We observe that reducing the cell radius to a
point administrates a larger concentration of AHL within the cell. This is necessary, as the
smaller cell volume should still have the same influence on the extracellular space. There-
fore, choosing a cell as a point source does not cause any loss of AHL concentration which
supports our approximative approach given in Subsection 4.4.2. Furthermore, Figure 4.3
includes plots for four different size of L together for an expanded interval of the radial
coordinate r to remark the changing scale of AHL concentration within the ’shrinking’ cell
and its vanishing behavior in the medium. A zoom in of this figure is shown in Figure 4.4
in an interval of r ∈ [30, 50] to understand better that the outer AHL concentration of a
single cell converges to zero while r → ∞. Since the approximate AHL concentration on
the boundary between intra-extracellular space of a cell is given by v(L) = v0(L) we show
the behavior of v0(L) which can be found in Figure 4.5 in a logarithmic plot.
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Table 4.4: Parameters used for numerical simulations in Chapter 4.

Parameter Description Values Reference

α Basal AHL production rate 2.3× 10−12
[
nmol
µm3×h

]
1

β Induced AHL production rate 2.3× 10−11
[
nmol
µm3×h

]
1

D Diffusion rate of AHL 3232542
[
µm2

h

]
2

V Volume of a single cell 1× 10−15 [l] 3

Athresh Induction threshold of AHL 70× 10−15
[
nmol
µm3

]
1

1 correspondent to [16].
2 diffusion rate in water correspondent to [24].
3 correspondent to [40].

4.5 A Population Model in R3 with a Lipschitz Continuous
Source Term

From now on we aim to generalize the single cell model to a population model of N cells.
We first consider the case of two cells so that the source term does not only include the
self produced AHL but also the AHL which is produced by the other cell. We assume
that these two identical cells have the radius L and they are located at x1, x2 ∈ R3, respec-
tively. Furthermore, we suppose that their AHL concentrations are given by u1 and u2.
In the Hill-type source term, u1,L,x1 refers to the mean value of AHL concentration which
is produced by the cell located at x1 whereas u2,L,x1 represents the mean value of AHL
concentration which is produced by the cell located at x2 but transported by diffusion into
the cell located at x1. More general, we say ui,L,xj describes the mean value of the self
produced AHL concentration within the cell for i = j and the mean value of the AHL
concentration produced by the other cells for i 6= j. Under these assumptions, the model
of two cells reads

−D∆u1(x) + γu1(x) = L−3

(
α+ β

L (u1,L,x1 + u2,L,x1)

Athresh + L (u1,L,x1 + u2,L,x1)

)
χ|x−x1|≤L, (4.48)

−D∆u2(x) + γu2(x) = L−3

(
α+ β

L (u2,L,x2 + u1,L,x2)

Athresh + L (u2,L,x2 + u1,L,x2)

)
χ|x−x2|≤L (4.49)

We consider the approximate model which has to be similar to the single cell model, i.e.,

−D∆v1(x) + γv1(x) = L−3M1χ|x−x1|≤L, (4.50)

−D∆v2(x) + γv2(x) = L−3M2χ|x−x2|≤L.

Using again the previous idea for the current case, we define a difference function by
w1 := u1 − v1 and substitute u1 = w1 + v1 into Equation (4.48). Similarly, we define
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(f) L = 0.0005µm

Figure 4.2: Numerical simulation of the approximate solution for a single ’shrinking’ cell:
initial cell radius L = 0.6203µm, [40]. As L→ 0, the AHL concentration makes
a peak at the center of the cell.
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Figure 4.3: Numerical simulation of the changing scale of AHL concentration within the
’shrinking’ cell and its extracellular behavior.
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Figure 4.4: Numerical simulation of the vanishing extracellular AHL concentration for a
single cell as r →∞. This figure is the zoom in of the Figure 4.3.
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Figure 4.5: Numerical simulation of the AHL concentration on the boundary between
the intra-extra cellular spaces for different values of L in the interval of
(0, 0.6203]µm as a logarithmic plot.

w1,L,x1 := u1,L,x1 − v1,L,x1 and w2,L,x1 := u2,L,x1 − v2,L,x1 . Thus, we achieve the following
equation which explains the model from the side of the cell located at x1,

−D∆w1(x) + γw1(x)

= L−3

(
α+ β

L (w1,L,x1 + w2,L,x1 + v1,L,x1 + v2,L,x1)

Athresh + L (w1,L,x1 + w2,L,x1 + v1,L,x1 + v2,L,x1)
−M1

)
χ|x−x1|≤L. (4.51)

Recall that we have defined before the approximate production within the cell by

v1,L,x1 =
1

4π
3 L

3

∫
|x−x1|<L

v1(r)4πr2dr,

further the scaled form is

Lv1,L = M1

(
µ1 + µ2L+O

(
L2
))
.

Since the cell located at x1 sense the AHL production of the cell located at x2 via diffusion,
we describe it by the approximate solution outside of the cell

v2,L,x1 =
1

4π
3 L

3

∫
|x−x1|<L

v2(x1)4πr2dr = v2(x1) +O (L) .
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Let us determine the scaled form of the outer production, i.e.,

Lv2,L,x1

= L (v2(x1) +O (L))

= L

(
v0 Le

√
γ/DL e

−
√
γ/D|x1−x2|

|x1 − x2|
+O (L)

)

= L

1

γ
L−3M2

 L
√
γ/D coth

(√
γ/DL

)
− 1

L
√
γ/D coth

(√
γ/DL

)
+ L

√
γ/D

Le
√
γ/DL e

−
√
γ/D|x1−x2|

|x1 − x2|
+O (L)


=

1

γ
L−2M2

L
√
γ/D cosh

(√
γ/DL

)
− sinh

(√
γ/DL

)
L
√
γ/D

(
cosh

(√
γ/DL

)
+ sinh

(√
γ/DL

))Le√γ/DL e−√γ/D|x1−x2|
|x1 − x2|

+O (L)

=
1

γ
L−2M2

L
√
γ/D cosh

(√
γ/DL

)
− sinh

(√
γ/DL

)
√
γ/D

e−
√
γ/D|x1−x2|

|x1 − x2|
+O (L)

=
1

γ
L−2M2

1√
γ/D

e−
√
γ/D|x1−x2|

|x1 − x2|

·


(
L
√
γ/D

)3

2
+

(
L
√
γ/D

)5

4!
−

(
L
√
γ/D

)3

3!
−

(
L
√
γ/D

)5

5!
+O

(
L7
)

=
1

γ
L−2M2

1√
γ/D

e−
√
γ/D|x1−x2|

|x1 − x2|

(
L
√
γ/D

)3

3

1 +

(
L
√
γ/D

)2

10
O
(
L4
)

= M2

(
1

3D

e−
√
γ/D|x1−x2|

|x1 − x2|

)
L+O

(
L2
)

= M2µ3 L+O
(
L2
)
,

where µ3 =
(

1
3D

e−
√
γ/D|x1−x2|

|x1−x2|

)
consist of the distance between two cells.

Thus, the right hand side of the Equation (4.51) is interpreted for two unknown variables
and written more general as below

A
→
w = F (w1,L,x1 , w2,L,x1) (4.52)

= f(w1,L,x1 , w2,L,x1)χ|x−x1|<L

where A is an elliptic operator and F is a function represents the right hand side of the
Equation (4.51), i.e.,

F :R2 → L2,

~h =

(
w1,L,x1

w2,L,x1

)
7→ f(

→
h)χ|x−x1|<L.
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Let us define the function

Φ : L2 → R2,

~g =

(
w1

w2

)
7→ ~h =

(
w1,L,x1

w2,L,x1

)
.

Thereby, we have the composition of functions (F ◦ Φ) (~g) = F (Φ (~g)). The solution oper-
ator A−1 to the Equation (4.51) denotes

A−1 : L2
(
R3
)
→ H1

0

(
R3
)
,

A−1 (F (Φ (~g))) = ~w.

Banach’s fixed point Theorem 4.12 guarantees the existence and uniqueness of fixed points
to the self-map

T : L2
+

(
R3
)
⊂ L2

(
R3
)
→ L2

(
R3
)

T = A−1 (F (Φ (~g))) .

Theorem 4.12 (Banach Fixed Point Theorem)[4]
Let K be a complete metric space in which the distance between two points P and Q is denoted by
d (P,Q). Let T : K → K be a contraction; i.e., there exists a constant C ∈ (0, 1) such that for all
P,Q ∈ K, then

d (T (P ), T (Q)) ≤ C d (P,Q) .

T has a unique fixed point, i.e., there exists a unique x∗ ∈ K such that T (x∗) = x∗.

According to Theorem 4.12, we write

‖T (~g1)− T (~g2)‖L2 =
∥∥A−1 (F (Φ (~g1)))−A−1 (F (Φ (~g2)))

∥∥
L2

=
∥∥A−1 (F (Φ (~g1))− F (Φ (~g2)))

∥∥
L2

≤ ‖F (Φ (~g1))− F (Φ (~g2))‖H−1

=
∥∥∥(f (~h1

)
− f

(
~h2

))
χ|x−x1|≤L

∥∥∥
H−1

≤
∣∣∣f (~h1

)
− f

(
~h2

)∣∣∣ ∥∥χ|x−x1|≤L∥∥H−1

where ~h1 =

(
w1,1,L,x1

w2,1,L,x1

)
and ~h2 =

(
w1,2,L,x1

w2,2,L,x1

)
. Recall that wL,x1 = 1

4π
3
L3

∫
|x−x1|≤L

w(x)dx.

Assuming x1 = 0 for simplicity, we have wL = 1
4π
3
L3

∫
|x|≤L

w(x)dx. Since f is a globally

Lipschitz continuous, bounded function on R+ we have∣∣∣f (~h1

)
− f

(
~h2

)∣∣∣ ≤ C ∣∣∣~h1 − ~h2

∣∣∣ .
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Thereby, we find

‖T (~g1)− T (~g2)‖L2

≤ C
∥∥χ|x|≤L∥∥H−1 (|w1,1,L − w1,2,L|+ |w2,1,L − w2,2,L|)

= C
∥∥χ|x|≤L∥∥H−1

 1
4π
3 L

3

∣∣∣∣∣∣∣
∫
|x|<L

(w1,1(x)− w1,2(x)) dx

∣∣∣∣∣∣∣+
1

4π
3 L

3

∣∣∣∣∣∣∣
∫
|x|<L

(w2,1(x)− w2,2(x)) dx

∣∣∣∣∣∣∣


≤ C
∥∥χ|x|<L∥∥H−1

 1
4π
3 L

3

∫
|x|<L

|w1,1(x)− w1,2(x)| dx+
1

4π
3 L
−3

∫
|x|<L

|w2,1(x)− w2,2(x)| dx



≤ C
∥∥χ|x|<L∥∥H−1

1
4π
3 L
−3

 ∫
|x|<L

1 dx


1/2

 ∫
|x|<L

(|w1,1 (x)− w1,2 (x)|)2 dx


1/2

+

 ∫
|x|<L

(|w2,1 (x)− w2,2 (x)|)2 dx


1/2


≤ C
∥∥χ|x|≤L∥∥H−1 L

−3/2
(
‖w1,1 (x)− w1,2 (x)‖L2 + ‖w2,1 (x)− w2,2 (x)‖L2

)
= C

∥∥χ|x|≤L∥∥H−1 L
−3/2 ‖~g1 − ~g2‖L2 .

We then state and prove the following theorem which gives an estimate to
∥∥χ|x|≤L∥∥H−1 .

Theorem 4.13
Let φ(x) ∈ C∞0 be a test function with theH−1 norm (as given in [62]), then we have the following
estimate

‖φ(x)‖H−1 ≤ 4L5/2 ‖φ‖H1 .

Proof 4.14 According to the definition of the H−1 norm (as given in [62]) we have

‖φ(x)‖H−1 = sup
φ∈H1(R3),‖φ‖H1≤1

∣∣∣∣∣∣∣
∫
|x|<L

φ(x)dx

∣∣∣∣∣∣∣ .
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Using the divergence theorem∣∣∣∣∣∣∣
∫
|x|≤L

φ(x)dx

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫
|x|≤L

(∇x1) (e1φ(x)) dx

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫
|x|=L

x1e1φ(x)
→
do −

∫
|x|<L

x1∇x1 (e1φ(x)) dx

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∫
|x|=L

x1e1φ(x)d
→
o

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
∫
|x|<L

x1∇x1 (e1φ(x)) dx

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣L
∫
|x|=L

φ(x)d
→
o

∣∣∣∣∣∣∣+

∫
|x|<L

|x1| |∇x1 (e1φ(x))| dx

≤

∣∣∣∣∣∣∣L
∫
|x|<L

div φ(x)dx

∣∣∣∣∣∣∣+ L

∫
|x|<L

|∂x1φ(x)| dx

Using Hölder inequality

∫
|x|<L

∂x1φ(x)dx ≤

 ∫
|x|<L

1


1/2 ∫

|x|<L

(∂x1φ(x))2 dx


1/2

≤ L3/2 ‖∂x1φ(x)‖L2

≤ L3/2 ‖φ(x)‖H1

then ∣∣∣∣∣∣∣
∫
|x|<L

div φ(x)dx

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫
|x|<L

∂x1φ(x)dx+

∫
|x|<L

∂x2φ(x)dx+

∫
|x|<L

∂x3φ(x)dx

∣∣∣∣∣∣∣
≤ 3L3/2 ‖φ‖H1

So, we can write ∣∣∣∣∣∣∣
∫
|x|<L

φ(x)dx

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫
|x|<L

(∇x1) (e1φ(x)) dx

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣L
∫
|x|<L

div φ(x)dx

∣∣∣∣∣∣∣+ L

∫
|x|<L

|∂x1φ(x)| dx
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≤ 3L5/2 ‖φ‖H1 + L5/2 ‖φ‖H1

= 4L5/2 ‖φ‖H1

�

Thus, we conclude

‖T (~g1)− T (~g2)‖L2 ≤ 4L5/2 ‖φ‖H1 L
−3/2 ‖~g1 − ~g2‖L2

= 4L ‖φ‖H1 C ‖~g1 − ~g2‖L2

and it shows that the operator T is a contraction. According to the Banach’s fixed point
theorem 4.12 there exists an unique solution ~w to (4.52). Moreover, it is a fixed point
T (~w) = ~w.

Choosing w1,L = w2,L = 0 gives us the appropriate M1, i.e.,

M1 = α+ β
L (v1,L,x1 + v2,L,x1)

Athresh + L (v1,L,x1 + v2,L,x1)

= α+ β

(
µ1M1 + µ2M1L+ µ3M2L+O

(
L2
))

Athresh + (µ1M1 + µ2M1L+ µ3M2L+O (L2))
.

Similarly, M2 reads

M2 = α+ β
L (v2,L,x2 + v1,L,x2)

Athresh + L (v2,L,x2 + v1,L,x2)

= α+ β

(
µ1M2 + µ2M2L+ µ3M1L+O

(
L2
))

Athresh + (µ1M2 + µ2M2L+ µ3M1L+O (L2))
.

Let us define an approximate M̃1 = α + β
(µ1M̃1+µ2M̃1L+µ3M̃2L)

Athresh+(µ1M̃1+µ2M̃1L+µ3M̃2L)
and estimate the

error function for
∣∣∣M1 − M̃1

∣∣∣. So,∣∣∣M1 − M̃1

∣∣∣
=

∣∣∣∣∣β
(
µ1M1 + µ2M1L+ µ3M2L+O

(
L2
))

Athresh + (µ1M1 + µ2M1L+ µ3M2L+O (L2))
− β

(
µ1M̃1 + µ2M̃1L+ µ3M̃2L

)
Athresh +

(
µ1M̃1 + µ2M̃1L+ µ3M̃2L

)∣∣∣∣∣
=

∣∣∣∣∣∣β
Athresh

(
µ1

(
M1 − M̃1

)
+ µ2

(
M1 − M̃1

)
L+ µ3

(
M2 − M̃2

)
L+O

(
L2
))

(Athresh + µ1M1 + µ2M1L+ µ3M2L+O (L2))
(
Athresh + µ1M̃1 + µ2M̃1L+ µ3M̃2L

)
∣∣∣∣∣∣

≤ β
µ1

∣∣∣M1 − M̃1

∣∣∣+ µ2

∣∣∣M1 − M̃1

∣∣∣L+ µ3

∣∣∣M2 − M̃2

∣∣∣L+O
(
L2
)

Athresh
.

Thus we find∣∣∣M1 − M̃1

∣∣∣− βµ2

Athresh − βµ1

∣∣∣M1 − M̃1

∣∣∣L− βµ3

Athresh − βµ1

∣∣∣M2 − M̃2

∣∣∣L+O
(
L2
)
≤ 0
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where Athresh > βµ1. Analogously, we have∣∣∣M2 − M̃2

∣∣∣− βµ2

Athresh − βµ1

∣∣∣M2 − M̃2

∣∣∣L− βµ3

Athresh − βµ1

∣∣∣M1 − M̃1

∣∣∣L+O
(
L2
)
≤ 0.

Thus, we achieve the error estimates
∣∣∣M1 − M̃1

∣∣∣ ≤ O (L) and
∣∣∣M2 − M̃2

∣∣∣ ≤ O (L). Hence

we showed that M̃1 is a suitable approximate for M1, as well as M̃2 for M2. Finally, we
have the following nonlinear algebraic equation system

M̃1 = α+ β
µ1M̃1 + µ2M̃1L+ µ3M̃2L

Athresh + µ1M̃1 + µ2M̃1L+ µ3M̃2L
,

M̃2 = α+ β
µ1M̃2 + µ2M̃2L+ µ3M̃1L

Athresh + µ1M̃2 + µ2M̃2L+ µ3M̃1L
.

The auxiliary results for the case of two cells can be extended for a population of N cells.
So, the model of N cells reads

−D∆ui(x) + γui(x) = L−3

α+ β

L
N∑
j=1
i 6=j

uj,L,xi

Athresh + L
N∑
j=1
i 6=j

uj,L,xi

χ|x−xi|≤L,

where the approximate model has to be similar to the model of two cells, i.e.,

−D∆vi(x) + γvi(x) = L−3M̃iχ|x−xi|≤L. (4.53)

Further, the nonlinear algebraic equation system for a population of N cells can be written
as

M̃i = α+ β

µ1M̃i + µ2M̃iL+ L
N∑
j=1
i 6=j

µd(j)M̃j

Athresh + µ1M̃i + µ2M̃iL+ L
N∑
j=1
i 6=j

µd(j)M̃j

. (4.54)

where µd =

(
1

3D
e
−
√
γ/D|xi−xj|
|xi−xj |

)
is dependent on the distance between two cells. The im-

plicit function form of M̃i yields

Fi(M̃1, M̃2, ..., M̃N , L) = 0.

Thanks to the implicit function theorem the above nonlinear algebraic equation system
may be solved for M̃i, [25]. Thus, the solution to the approximate model (4.53) for suitable
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M̃i reads

vi(r) =


(
v0,i − 1

γL
−3M̃i

) L sinh
(√

γ/Dr
)

r sinh
(√

γ/DL
) + 1

γL
−3M̃i, r ≤ L,

v0,i Le
√
γ/DL e−

√
γ/Dr

r , r > L,

(4.55)

where

v0,i =
1

γ
L−3M̃i

 L
√
γ/D coth

(√
γ/DL

)
− 1

L
√
γ/D coth

(√
γ/DL

)
+ L

√
γ/D

 .

Similar to the approximate solution of a single cell (4.44) we determine here that the radial
direction r starts with the center of i-th cell for each cell, repeatedly.

4.5.1 Numerical simulations for N cells

We present the numerical simulations for the results of Chapter 4.5. All simulations are
based on the approximate solution (4.55) with the explicit values of M̃i given by the Equa-
tion (4.54). We find all M̃i via the Symbolic Math Toolbox of Matlab [36] for the algebraic
equations system (4.54). All parameters we need for the simulations are taken as in Sub-
section 4.4.3 and we use the cell radius L = 0.6203µm for each plot. Recall the simulations
for a single cell where the AHL concentration for one cell with radius L = 0.6203µm was
4× 10−20nmol/µm3. (See Figure 4.2 for the single cell case.)

First, we assumed to have two cells in the system and one of them was supposed to have
a fixed location. We consider the change of the approximate AHL production within the
’fixed’ cell, i.e. M , as the other one is assumed to getting closer. Figure 4.6 shows how the
interaction between two cells is dependent on the distance, i.e., the closer the cells are, the
higher the AHL production there is.

The simulations for AHL concentrations of 5 , 10 , 25 , 50 , 75 cells can be found in Figure
4.7. Here, we aim to plot the approximate AHL concentration in a random cell distribu-
tion; for that we generate normally distributed random numbers for the cell positions in
x and y ( a vector of size 75). As our model distinguishes between the AHL concentration
produced by cells 1, 2, · · ·N , we sum up these ’single’ AHL concentration to get the final
total AHL concentration. Please note the different scales of AHL concentration in each
simulation.

• The exemplary simulations of AHL concentration for 5 and 10 cells are almost equal
to the single cell concentration 4× 10−20nmol/µm3 and far away from the induction
threshold of AHL 70× 10−15nmol/µm3.

• While the AHL concentration of 25 cells in the given spatial distribution approaches
to the induction threshold, we observe that the case of 50 cells has already exceeded
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Figure 4.6: Numerical simulation of AHL production for two cells. It is shown that the
total amount of AHL production is dependent on the distance between two
cells.

it. Thus, we guess around the population size of the 50 cells is possible to reach to
the induction threshold. However, a smaller colony may also reach to the induction
threshold for all other spatial structures where the cells are distributed closer to each
other.

• Once the population exceeds the threshold, the AHL concentration increases notice-
able as shown in the 75 cells case.
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(b) AHL concentration for 10 cells.
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(c) AHL concentration for 25 cells.
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(d) AHL concentration for 50 cells.
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Figure 4.7: Numerical simulation of AHL concentration for N cells with an identical cell
radius L = 0.6203µm. It is shown that the AHL production is dependent on the
distance between cells.

4.6 Conclusions

In this chapter, we investigated the influence of the spatial structure of a bacterial com-
munity on the QS coordinated by AHL molecules. We developed a mathematical model
describing the AHL concentration based on a system of non-linear RDEs. We assumed
that each cell is able to produce AHL and these AHL molecules freely diffuse through the
cell membrane. The reaction term in our model explains the AHL production within the
cell which is affected by the available AHL molecules in the cell. The spatially scattered
structure of cells causes heterogeneity in the extracellular AHL concentration. For this
complex system, analytical solutions are not available in the case of N cells. A necessary
fine discretization around each tiny cell may cost a high computational effort for numerical
solutions. Therefore, we looked for another possibility and used an approach of the math-
ematical shrinking of the tiny bacteria to point-size, [45]. This approach enabled us to find
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some analytical approximate solutions in the steady state. We also investigated the error
between the approximate solution and the exact solution for the single cell case and ex-
tended this idea for the N cells case. As expected, the approximate solutions to the steady
state complex system show that the interaction of cells are highly dependent on the dis-
tance between each other, i.e., a cell efficiently produces AHL, when there exist many cells
close to it. Consequently, our analytical results are supported by numerical simulations.

As a future work we are interested in evolving our model in two different directions.
First, a flow effect on this spatially scattered cell system may influence the AHL accu-
mulation and increase/decrease the interaction between cells. The analysis of the flow
conditions would allow us to examine the response of the bacteria to the changing envi-
ronmental conditions. Moreover, a model for interacting cells in non-steady state can be
formulated by a delay equation, where the delay represents the time needed for sensing
the AHL production from the other cells, [44]. This approach can be adapted to our RDE
model and finding analytical approximate solutions would help understand the spatio-
temporal QS system better.
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5 Discussion

In this thesis we have introduced two different approaches for understanding the QS sys-
tem in Gram-negative bacteria better. We assumed to have a single QS process that can be
considered in several levels for mathematical modeling. For example, in the following we
summarize in three levels:

• The QS process has a gene regulatory system that includes two essential components:
the inducer protein I, (e.g LuxI) synthesizes the autoinducer molecules AI and the
transcriptional regulator protein R, (e.g. LuxR) interacts with the AI molecules, (e.g.
AHL) and forms a complex.

• Bacterial growth causes AI accumulation. AI diffuses freely through the cell mem-
brane and outspread spatially. The R-AI complex binds to the promoter of the pro-
tein I operon on the DNA to trigger the positive feed-back loop for an increasing
production of AIs.

• The R-AI complex does not only activate the positive feed-back of the QS system, but
also other gene expressions, which leads to phenotypic changes in bacteria.

We only focused on the last two levels in our modeling approaches: The phenotypic varia-
tion of single cells in a bacterial population and AI diffusion and their spatial distribution.

The phenotypic variation of single cells is interesting, because it is diffucult to detect
AI production of each cell from experiments, individually, even if it has a strong effect
on the phenotypic changes. We have investigated the role of the AI concentration on the
phenotypical changes in our model, so that we take into account the positive feedback
loop that causes an increasing production of AIs in the activated cells. We described the
phenotypic change (from the inactive to the active state) stochastically, as it is the case in
reality, in combination with a deterministic AI production dependent on the phenotype of
the cells. So, we have achieved a model predicting the phenotypic variation on single cell
base in a growing bacterial population which was supported by experimental results.

Subsequently, we have needed to understand the AI diffusion and its accumulation bet-
ter, which actually causes the phenotypic variations. Experimentally, it is not easy to mea-
sure the spatially heterogeneous AI concentration in a bacterial colony, but one can e.g. ex-
pect that the distance between cells respectively their local density may play an important
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5 Discussion

role in AI production and distribution due to the QS process. Indeed, the spatial struc-
ture of our model has provided to support this expectation quantitatively and predicted
the approximate concentration of AIs in the heterogeneous medium. We have achieved
this result with an analytical approximation to the spatially heterogeneous AI concentra-
tion taking each tiny cell as a point-source of AI. This allows for using a much simpler
mathematical model, e.g. also very useful for more realistic simulations.
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