
Ideas to Improve the Performance in Feasibility Testing for EDF

Alejandro Masrur Georg Färber
Institute for Real-Time Computer Systems
Technische Universität München, Germany

{Alejandro.Masrur, Georg.Faerber}@rcs.ei.tum.de

Abstract

In this paper, we prove analytically that it is possible
to improve the feasibility bound presented by Ripoll et al.
in [5] for the case where deadlines are less than or equal
to periods. The improvement with respect to Ripoll’s bound
consists in a factor that depends on the processor utiliza-
tion: the higher the processor utilization, the more signifi-
cant the improvement. Although this factor may be negligi-
ble for some task configurations—particularly for low pro-
cessor utilizations, we show by means of an example that
for some other task configurations, it does improve the per-
formance in feasibility testing for EDF.

1. Introduction

In [4], Liu and Layland showed that a feasibility test for
synchronous tasks scheduled under EDF can be performed
in polynomial time, when deadline (di) is equal to period
(pi) for all tasks. Posteriorly in [2], Baruah et al. proved that
this is also the case when di ≥ pi holds for all possible i.

When deadlines are allowed to be less than periods, the
complexity grows considerably. However, assuming the
processor utilization (U ) to be less than 100%, Baruah et
al. also proved that if a deadline is missed, this happens
before a maximum time upper bound known as feasibility
bound. This result allowed Baruah et al. to design a pseudo-
polynomial time algorithm for the case where deadlines are
not forced to be equal to periods.

Another pseudo-polynomial time algorithm for di ≤ pi

was presented by Ripoll et al. in [5]. Ripoll et al. pre-
sented two better feasibility bounds, which they combined
in an efficient algorithm. The first of them, referred as
Ripoll’s bound in this paper, has following expression:∑

n

i=1
(1−

di
pi

)·ei

1−U
, where ei is the execution demand of the i-

th task. It should be mentioned that this polynomial-time
feasibility bound was independently obtained by George et
al. [3], who also considered the case di > pi. The other fea-

sibility bound presented by Ripoll et al. is based on the busy
period analysis, whose calculation itself presents pseudo-
polynomial complexity. This latter pseudo-polynomial fea-
sibility bound was also independently obtained by Spuri [6].

The existing algorithms, including the one of Albers and
Slomka [1], enable an efficient feasibility testing for most
practical applications. Nevertheless, it remains interesting
to research into possibilities of improving the performance
in feasibility testing. A better performance might be useful
for those real-time systems where tasks are to be dynami-
cally accepted or mapped to processors.

In the following sections, we formally define the inverse
synchronous case and prove it equivalent to the well-known
synchronous case. On the base of the inverse synchroniza-
tion of tasks, we show that Ripoll’s bound can be improved
in a factor equal to 1

1−U
. This improvement is specially sig-

nificant for very high processor utilizations, however, as it
will be shown by means of an example, considering it might
be beneficial for practical processor utilization too.

2. Task model and notation

We consider a set τ of periodic real-time tasks, which are
fully preemptable and independent. Each task Ti is charac-
terized by its period of repetition pi, its relative deadline di

and its worst-case execution demand ei. Another parameter
of tasks is the initial release time or phase φi. If φi = 0
holds for all tasks in τ , the task set is called synchronous.
On the other hand, if any phase in τ is not zero, the task set
will be asynchronous.

In principle, a task Ti is an infinite succession of related
jobs Ji,l, which have common execution demand and rela-
tive deadline. Additionally, each job has a univocal absolute
deadline Di,l. In this paper as in [5], relative deadlines are
forced not to be greater than the respective periods, di ≤ pi

for all i ≤ n, where n is the number of tasks in τ .
The hyperperiod P of the task set is equal to the least

common multiple of all tasks’ periods and the processor
utilization is given by U =

∑n

i=1 ui, where ui = ei

pi
is

the processor demand of Ti.



3. The inverse synchronous case

DEFINITION 1 Given a set τ of periodic real-time tasks,
the inverse synchronous case is such, where for each task in
τ , the absolute deadline of the last job within the hyperpe-
riod P coincide at the end of the hyperperiod, i.e. at time
t = P .

Unlike the synchronous case, where all first jobs are re-
leased together at the beginning of the schedule t = 0, in
the inverse synchronous case, the absolute deadlines of all
last jobs within the hyperperiod coincide for each task at
t = P . In order to force the inverse synchronization of a
task set τ of n periodic real-time tasks, the phase of each
task Ti ∈ τ must be set to the value φi = pi − di for all
i ≤ n. A task set whose tasks’ phases are set according to
this will be referred as inverse synchronous task set.

LEMMA 1 Given a task set τ , whose U ≤ 1, at least one
of the last jobs in the inverse synchronous schedule misses
its deadline at t = P , iif the synchronous schedule is not
feasible.

Proof: If di < pi for any task Ti in τ , not all phases will
be equal to zero in the inverse synchronous case. So, the
inverse synchronous case can be seen as an asynchronous
schedule of the task set. Consequently, if the synchronous
schedule is feasible, the inverse synchronous schedule will
also be feasible—see [7]. For this reason, we concentrate in
proving that if the synchronous schedule is not feasible, the
inverse synchronous schedule is neither feasible and one of
the last jobs misses its deadline at t = P .

We know from [4] that if a synchronous periodic task set
is not feasible under EDF, then a deadline is missed at a time
tmiss without idle time prior to it. Figure 1(a) illustrates
this latter situation—upgoing arrows indicate release times
whereas downgoing arrows indicate deadlines.

Now, we denote by Di,last the last absolute deadline
of any Ti within [0, tmiss]. If all tasks are shifted right
so that all Di,last coincide at tmiss, all jobs with abso-
lute deadline less than or equal to tmiss remain completely
within [0, tmiss]. By shifting tasks in this way, we have not
changed the amount of processor workload in [0, tmiss]. As
a consequence, a deadline is still missed at tmiss.

If the synchronous schedule begins at time t = P−tmiss

instead of t = 0, a deadline will be missed at t = P . Pro-
ceeding analogously to make all Di,last coincide this time
at t = P , we can conclude that a deadline continues to be
missed at t = P .

On the other hand, the inverse synchronous case forces
the absolute deadlines of the last jobs within the hyperpe-
riod to coincide at t = P . As all task in τ are periodic, the
inverse synchronous case contains the schedule of the previ-

T3

2T

T1

tmiss

D3,last

D1,last

D2,last

��

����������

������ ��

	�	�	
�
�


�� 
�

������

��

����������

����������
������ ����������

���������� ������������ ������������ ������������

t

t

t

No idle time0

Time overflow

(a) Synchronous case

T3

2T

T1

missP−t

����� � � !�!�!"�"�"

#$ %& '()*

+�+�+,�,�,

-.

/�/0�01�12�2 3�34�45�56�6 7�78�8

t

t

0 P

t

Hyperperiod

Time overflow

No idle time

(b) Inverse synchronous case

Figure 1. Deadline miss

ously described situation in [P−tmiss, P ] and the continua-
tion of it towards the origin in [0, P−tmiss), see figure 1(b).

For the case di ≤ pi, if no deadline is missed in the
interval [0, P ] of the synchronous case, no deadline will be
missed at all, i.e. tmiss ≤ P—see [5]. Consequently, the
inverse synchronous case will contain in the interval [P −
tmiss, P ] the same workload as the synchronous case in the
interval [0, tmiss]. The thesis follows.

COROLLARY 1 If a synchronous τ is not feasible under
EDF, there is a point in time ts = P − tmiss for the inverse
synchronous case, from which the processor never idles till
a deadline is missed at t = P .

4. Improving Ripoll’s feasibility bound

If a synchronous τ is infeasible, the inverse synchronous
τ is neither feasible. In this latter case, the processor does
not idle from ts—defined in corollary 1—till a deadline is
missed at t = P .

LEMMA 2 Suppose that a new task set τf is obtained by
adding a fictitious task Tf to τ , whose parameters are pf =
df = P , and ef = (1 − U) · P . τf is feasible under EDF,
iif the initial task set τ is also feasible.



Proof: The execution demand of Tf is equal to the total
idle time in [0, P ] when scheduling τ . Additionally, there
is only one job of Tf per hyperperiod because pf = P .
That is, the processor has enough idle time within [0, P ] to
execute this only job of Tf before its deadline at t = P . We
conclude Tf cannot affect the feasibility of τ .

THEOREM 1 If a synchronous τ is not feasible under EDF,
the processor idles within the interval [0, P ] when schedul-
ing the inverse synchronous τf of lemma 2.

Proof: As the total utilization of τf is Uf = U +
ef

pf
= 1,

if no deadline is missed, the processor will be the whole
time busy regardless of the synchronization case. Accord-
ing to lemma 1, if the synchronous case is not feasible, a
deadline is missed at t = P in the inverse synchronous case.
Now, if a deadline is missed at t = P , an amount of idle
time equal to the time overflow at t = P must be originated
in the interval [0, P ]. This latter is because Uf = 1, which
means that the workload generated by τf does not suffice to
busy the processor the whole time in [0, P ] and simultane-
ously to produce a time overflow at t = P . Notice that the
amount of time overflow is executed after t = P and that
the schedule begins at t = 0, so there is no pending backlog
at t = 0 that could fill this idle time up. In conclusion, the
processor idles in [0, P ] despite the presence of the fictitious
task Tf .

LEMMA 3 If the processor idles in [0, P ] when scheduling
the inverse synchronous τf defined in lemma 2, the idle time
can neither occur before the first job Jf,1 of the fictitious Tf

finishes executing nor after ts = P−tmiss from corollary 1.

Proof: the proof of this lemma is immediate. No idle
time can occur as long as Jf,1 (the only job of Tf in [0, P ])
has not finished executing, because Jf,1 would otherwise
keep the processor busy. Additionally, as the processor
never idles from ts till a deadline is missed at t = P , the
idle time can neither occur after ts.

LEMMA 4 If all task parameters are integers, and ef =
(1−U)·P +1, Jf,1 finishes executing before ts = P−tmiss

defined in corollary 1.

Proof: If all task parameters are integers, the minimum
possible time overflow will be 1, i.e. the idle time will be at
minimum also 1; see theorem 1. Consequently, augmenting
the fictitious execution demand in 1 time unit fills this mini-
mum possible idle time up and we get closer to the value of
ts, which follows the idle time; see lemma 3.

We know that if a synchronous τ is infeasible under EDF,
Jf,1, with an ef defined in lemma 4, finishes executing be-
fore ts in the inverse synchronous case. For this reason,

finding the point at which Jf,1 finishes executing allows us
to estimate the value of ts. Recall that in the inverse syn-
chronous case, the phase of any task Ti is set to φi = pi−di

for all i ≤ n. Now, supposing that Tr represents any pos-
sible real task from τ , we assume the following: (1) Jf,1

finishes executing when a job of Tr gets ready. (2) A job of
each other task gets ready simultaneously with this particu-
lar job of Tr.

Considering that ki represents the number of jobs of any
Ti till the fictitious Jf,1 finishes executing, we can mathe-
matically formulate our two assumptions as follows:

n∑

i=1,i6=r

ki · ei + kr · er + ef = kr · pr + φr, (1)

ki =
kr · pr + φr − φi

pi

. (2)

Replacing equation 2 in 1 we get the following expres-
sion of kr:

kr =
ef − φr +

∑n

i=1,i6=r(φr − φi) · ui

(1 −
∑n

i=1 ui) · pr

. (3)

According to our first assumption, the point in time at
which Jf,1 finishes executing will be given by:

tf = kr · pr + φr ≤ ts. (4)

LEMMA 5 Inequality 4 holds, even if our assumptions do
not hold, i.e. our two assumptions are pessimistic.

Proof: If our first assumption does not hold, Jf,1 fin-
ishes executing some time ∆f before a job of Tr gets
ready. The right member of equation 1 will be given by
k′

r ·pr+φr−∆f —a positive ∆f can be discarded because it
would imply that Jf,1 has still not finished executing. Now,
if the second assumption does not hold, the numerator in
equation 2 will be k′

r · pr + φr − φi ± ∆i. The sign of
∆i will be positive, if a job of Ti gets ready after the job
of Tr otherwise it will be negative. With help of figure 2,
we will analyze what happens when every ∆i is negative,
which would represent the most adverse configuration. This
latter is because not considering all negative ∆i, tf in equa-
tion 4 could be greater than the actually finishing time of
Jf,1. Consequently, we could commit an error in estimat-
ing ts. Here again, ∆i ≤ ∆f must hold for all i, otherwise
it would imply that Jf,1 has still not finished executing.

The expression for k′
r will be: k′

r =
ef−φr+∆f+(φr−φ1−∆1)·u1+(φr−φ2−∆2)·u2

(1−U)·pr
. So if our

assumptions do not hold, the finishing time of Jf,1 will be
given by: t′f = tf +

∆f−∆1·u1−∆2·u2

1−U
− ∆f .

Replacing ∆2 and ∆1 by ∆f , we get: t′f > tf +
(U−u1−u2)·∆f

1−U
. As U > u1 + u2 holds, tf < t′f also holds,

where tf is given by equation 4. The thesis follows.



2TT 1rT rT

f

1

2����������������������������
time

finishes executingf,1J

Figure 2. Our assumptions do not hold

To obtain a feasibility bound in terms of the normal
synchronous case, we use the fact that ts = P − tmiss.
So, we can estimate tmiss in the following way: tmiss =
P − ts ≤ P − tf , where tf is given by equation 4.
So, replacing ef for the value (1 − U) · P + 1 in equa-
tion 3 and proceeding as mentioned, we obtain: tmiss ≤

P−
(1−U)·P+1−φr+

∑
n

i=1,i6=r
(φr−φi)·ui

1−U
−φr. Recalling that

φi = pi − di, we finally get:

tmiss ≤

∑n

i=1(1 − di

pi
) · ei

1 − U
−

1

1 − U
. (5)

Clearly, the factor 1
1−U

will improve the performance in
feasibility testing for EDF only if the analyzed task set is
feasible. Otherwise, a time overflow will always be found
before the time upper bound given by equation 5.

Although the factor 1
1−U

might be negligible for low pro-
cessor utilizations, there are practical cases for which it is
not. The example for U ∼ 88% illustrated in figure 3 should
make this latter clear. In figure 3, Ripoll’s bound and the
busy-period feasibility bound are indicated by I and Ibusy

respectively. For this example, considering the factor 1
1−U

makes possible to avoid the verification of two deadlines.
Finally, let us consider the following task set: p1 = 75,

d1 = 70, e1 = 15, p2 = d2 = 668, e2 = 334, p3 = 180,
d3 = 178 and e3 = 54. This task set presents a total pro-
cessor utilization of 100%, however, it is still feasible. As
U = 1 holds for this example, it will be impossible to cal-
culate equation 5, since denominators will be zero. Conse-
quently, we will not be able to provide an upper bound for
the feasibility test and all deadlines within [0, P ] must be
verified [5]. Now, if we consider that e2 = 333 holds in the
previous example, U < 1 will also hold. For this latter case,
Ripoll’s bound will be I ∼ 1069 while I − 1

1−U
∼ 401,

which is less than a half of Ripoll’s bound.

5. Conclusions

In this paper, we proved that Ripoll’s feasibility bound
for the case di ≤ pi can be improved in a factor equal to

1
1−U

. This factor grows hyperbolically as the processor uti-
lization nears 100%, which makes its consideration espe-
cially convenient in case of high processor utilizations. As
task sets with U = 100% can theoretically be feasible, task

0 5 10 15 20 25 30 35 40 45 50

2
e=8;

2
d=10;

2
p

=210;
4

p =2
4

e

�� ��

���	�	=200;


�
�
���

�����
�
�


4
d

������������

=10
1

e ������������
I=28.32 =48busyI

=20;
1

d=25;

���
�

p

1I− =19.66
1−U

time

=3
3

e

�������� ������ ���������� ������

�������������������� ����������
������

=35;
3

d=40;
3

p

=4

1

Figure 3. Example for U ∼ 88%

sets with processor utilization infinitesimally close to 100%
can also be feasible. For these theoretical cases, the im-
proved feasibility bound should be considered.

Additionally, we showed an example with U ∼ 88% for
which the improved feasibility bound presents little but not
negligible advantage with respect to the others. When the
processor utilization tends to 0, the factor 1

1−U
tends to 1.

However, its calculation does not present much more com-
putation cost and might still be advantageous.

It should be noticed that equation 5 was obtained on the
base of lemma 4, which assumes that all task parameters are
integers. If real numbers are considered, the improvement
proposed in this paper will be given the factor 10−k

1−U
, where

k is the maximum number of decimal places allowed. All
conclusions taken before are still valid. For example, con-
sider the task set derived from the previous one: p1 = 7.5,
d1 = 7, e1 = 1.5, p2 = d2 = 66.8, e2 = 33.3, p3 = 18,
d3 = 17.8 and e3 = 5.4. For this case, Ripoll’s bound will
be I ∼ 106.9 while I − 0.1

1−U
∼ 40.1, which is still less than

a half of Ripoll’s bound.

References

[1] K. Albers and F. Slomka. Efficient feasibility analysis for
real-time systems with edf scheduling. Proceedings of the
Date 05 Conference, March 2005.

[2] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling
hard-real-time sporadic tasks on one processor. Proceedings
of the Real-Time Systems Symposium, December 1990.

[3] L. George, N. Rivierre, and M. Spuri. Preemptive and non-
preemptive real-time uniprocessor scheduling. Rapport de
Recherche RR-2966, INRIA, 1996.

[4] C. Liu and J. Layland. Scheduling algorithms for multipro-
gramming in hard real-time environments. Journal of the As-
sociation for Computing Machinery, 20(1):40–61, 1973.

[5] A. Ripoll, I. Crespo and A. Mok. Improvement in feasibility
testing for real-ttime tasks. Real-Time Systems, 11(1):19–39,
Jul 1996.

[6] M. Spuri. Earliest Deadline Scheduling in Real-Time Systems.
PhD Thesis at Scuola Superiore S. Anna, Italy, 1995.

[7] J. Stankovic, M. Spuri, K. Ramamritham, and G. Buttazzo.
Deadline Scheduling for Real-Time Systems: EDF and Re-
lated Algorithms. Kluwer, 1998.


