An off-line variable-size bin packing for EDF

Alejandro Masrur

Sebastian Drossler

Georg Farber

Institute for Real-Time Computer Systems
Technische Universitdt Minchen, Germany
{Alejandro.Masrur, Sebastian.Droessler, Georg.Faerber} @rcs.ei.tum.de

Abstract

This paper presents a bin-packing algorithmfor theallo-
cation of tasksto identical processors. For this purpose, we
consider the case of independent periodic real-time tasks
scheduled under EDF, whose deadlines may not be equal
to periods. The presented bin-packing algorithm combines
the feasibility condition of Devi [5] with the First Fit bin-
packing heuristic. Theresult is an off-line variable-size bin
packing which might deliver better results, asshownwith an
example, than the First Fit Decreasing heuristic on the base
of the density condition. Finally, we discuss some interest-
ing issues that rise in relation to the presented algorithm.

1 Introduction

In this paper, we focus on determining the number of
processors needed for a multiprocessor system to be fea-
sible. For this purpose, we make use of bin-packing
algorithms, which allocate tasks sequentially according
to a given heuristic criterion. There are many possible
bin-packing heuristics for allocating tasks to processors.
Among the most popular ones, we can mention the First
Fit (FF) and First Fit Decreasing (FFD) heuristics.

The FF heuristic consists in assigning tasks to the first
available processor that can guarantee their correct execut-
ing, i.e. without time overflow. Those processors, whose
capacity is still not completely assigned, will be considered
as available. These are verified in order of increasing index;
if none of them is able to feasibly execute the task being
currently allocated, a new processor will be necessary. This
process is repeated until all tasks are allocated.

A bin-packing algorithm based on the FF heuristic is re-
ferred as an on-line algorithm. This is because it does not
require any previous knowledge on tasks that are to be allo-
cated. In contrast, the FFD heuristic is an off-line heuristic,
because it does require previous knowledge on tasks. The
only difference between FF and FFD is that in the latter,

tasks must be sorted in non-increasing order of processor
demand, i.e. all tasks must be previously known.

The first possible approach for bettering these algorithms
is to improve the feasibility test used for the allocation pro-
cedure. Other possibility is to improve the allocation heuris-
tic itself. In this paper, we explore the first possibility for
tasks scheduled under EDF.

There are different ways to perform a feasibil-
ity test for for real-time tasks scheduled under EDF.
In [9], Liu proposes the following feasibility condition:
S neray < 1. Where d; is the relative deadline of
the i-th task, p; represents its period, e; the corresponding
worst-case execution demand, and n the number of tasks.
Only if d; > p; forall i < n, this inequality, known as den-
sity condition, will constitute a necessary and sufficient con-
dition for the feasibility of tasks scheduled under EDF [3].

If any deadline is less than the period of the correspond-
ing task, this inequality constitutes a sufficient but not nec-
essary condition. Another sufficient but not necessary con-
dition was presented by Devi in [5] for the case where d;
can also be less than p; for any 7 < n. Devi’s condition was
proven to be tighter than the density condition.

Finally, more complex algorithms will be necessary to
perform an exact feasibility test when d; is also allowed to
be less than p; [3]. Nevertheless, for the reason that allocat-
ing real-time tasks on multiprocessor systems is an NP-hard
problem [6], it is preferable to use sufficient but not neces-
sary feasibility conditions than exact feasibility tests. Other-
wise the resulting allocation algorithm will be impractical,
even if the allocation itself is performed by an approxima-
tion algorithm like a bin-packing algorithm.

Generally, when allocating real-time tasks scheduled un-
der EDF on multiprocessor systems, most approaches force
all deadlines to be equal to the corresponding periods. In
this way, the density condition becomes sufficient and nec-
essary and only the allocation heuristic itself would be eli-
gible to be bettered.

On the other hand, if d; < p; holds for any task T7;,
Devi’s condition outperforms this latter [5]. Consequently,
it would be logical to use Devi’s condition instead of the

density condition for allocating tasks to processors. Unfor-
tunately, Devi’s condition cannot be directly implemented
into a bin-packing algorithm and some manipulation will
be necessary.

2 Task model and notation

For the purpose of this paper, we make use of the peri-
odic task model of Liu and Layland [8]. That is, we con-
sider a set T of periodic real-time tasks, which are fully pre-
emptable and independent. Like in [8], we assume that no
task may suspend itself and that all overhead, caused by the
scheduler and context switches, is negligible.

Each task T; is characterized by its period of repetition
p;, its relative deadline d; and its worst-case execution de-
mand e;. As already mentioned, relative deadlines are not
forced to be equal to corresponding task periods, d; < p;
as well as d; > p; may hold for all ¢ < n, where n is the
number of tasks in 7. The processor demand of any task T;
is given by u; = £. The so-called density of task 75 will be
given by m We assume that m < 1 holds
for every task T in 7, otherwise T; itself will be infeasible.

If k tasks are allocated to a processor P, the proces-
sor utilization of P, will be given by U,,, = Zle u;. AS
tasks are scheduled under EDF, which was proven to be op-
timal [4], U,,, cannot be greater than 1 for all possible m—
otherwise the allocation is not feasible.

Finally, we consider processors to be identical, i.e. all
processor have the same computing capacity. Consequently,
a task 7; will take the same time to run independently of the
processor on which it runs.

3 Préiminary discussion

The feasibility condition presented by Devi in [5] con-
sists in verifying the following inequality for all £ for which
1 < k < nholds:

k

. |
Zei+%z<w>.ei51
k .

im1 Pi im1 Di

Devi’s condition requires all tasks to be sorted in non-
decreasing order of relative deadlines. So if the index i is
less than j, the relative deadline d; will be less than or equal
to d;. This presorting requisite makes Devi’s condition in-
eligible for on-line allocation algorithm, however, it makes
possible to design an off-line algorithm on its base.

Reordering Devi’s inequality and replacing the subindex
k for last, we get the following expression:

last . last
1 P — iy O 2i
e KR e

dlast i—1 Pi i—1 Pi

For the purpose of simplifying next expressions, we rep-
resent the left and the right member of inequality 1 by L and
C respectively. Consequently, we can rewrite inequality 1
as follows:

L m < Cm (2)

Where the index m indicates the bin in the bin-packing
terminology, i.e. the processor where tasks are allocated.
For every processor P,,, whose capacity has still not been
completely allocated, it is necessary to keep the values L.,,,
Cm, and d;7,. This latter represents the deadline of the
last task that was allocated to processor P,,. A processor,
whose capacity has still not been fully allocated, will be
called open processor.

4 Theallocation algorithm

We term by T, the task that is to be allocated as next.
As we make use of the FF strategy for the packing algo-
rithm, T,,.... will be allocated to the processor with the low-
est index that can execute it without missing any deadline.
So all open processors will be inspected in increasing order
of index and T},...+ will be allocated to the first one of them
for which the following inequality holds:

m
Lm : dlast + Pnext * Unext

dnezt

S Cm — Unext (3)

Where prest = Prect —Min{prext, dnest }- 1f inequality
3 holds for processor P,,, the processor’s parameters must
be updated as follows:

Cm = Cm — Unext
m
Lm : dlast + Pnext * Unext
L,, :=
dnezt
m .
last Ca dnezt

Otherwise, if inequality 3 does not hold for any open
processor or there is no open processor at the time, a new
processor will be necessary. Each time a new processor is
added to the list of open processors, its parameters are set
according to the following:

Om = 1- Unext
Pnext * Unext
L, = —]/
dnezt
m «——
last dneﬂct

A processor will be closed, i.e. deleted from the open
processors’ list, whenever the right and the left member of
inequality 3 are equal.

Inequality 3 can also be reordered as follows, where
Zﬁ‘ff u; is processor utilization of P,,, i.e. only tasks allo-
cated to P, are summed up:

last

Z Ui + Uneat S 1-

i=1

Lm) dﬁst + Pnext * Unext

dnezt

(4)

As the right member of inequality 4 varies (decreases)
depending on T;,..;’s parameters, the resulting allocation
algorithm is a variable-size bin-packing algorithm. A sim-
ilar phenomenon can be also observed for fixed-priority
schedulings [9].

Figure 1 shows the pseudo code for the allocation algo-
rithm on the base of Devi’s condition. The algorithm’s out-
put is a listing of processors with the corresponding tasks
that were allocated to them. This latter was not explicitly
implemented in pseudo code, but it does not present a ma-
jor difficulty.

4.1 Complexity

Because of our assumption m < 1Vi < n, it
is possible for the needed number of processors m to be
equal to but not greater than the number of tasks n. Con-
sequently, the complexity of the algorithm from figure 1 is
O(n% -log n). AFF bin-packing algorithm based on the
density condition will present a complexity O(n?). Recall
that we pursue to determine an as small as possible number
of processors that guarantees the feasibility, i.e. the number
of processors is not fixed. On the other hand, if we were
to determine if the task set is feasible on a fixed number of
processors, the resulting complexity would be O(n) for FF
based on the density condition and O(n - log n) for FF
based on Devi’s condition.

Applying Devi’s condition together with the FFD bin-
packing heuristic, where tasks are sorted by non-increasing
order of density, will result in a complexity with the form
O(n?-log n). This latter is because sorting tasks accord-
ing to non-decreasing deadlines might not result in the same
sequence of tasks than sorting them by non-increasing den-
sity. As a consequence, each time T, is tried to be allo-
cated to an open processor P,,, all other task that were al-
ready allocated to P,, and whose deadlines are greater than
dnezt Must be afresh verified.

4.2 Example

In this section, we show by means of an example that the
algorithm from figure 1 may present a better allocation than
the FFD algorithm based on the density condition.

In figure 2, an exemplary task set is sorted by non-
increasing density. This corresponds the presorting requi-
site of FFD. For this case, the FFD packing needs three

for ¢ < 1
sort T; in non-decreasing order of d;
end

whil e SortedTasks # 0
get Tnezt;

whi | e QpenProcessors # 0
get Py;

|f N - d;zst‘i’/?nezt' Unext

dnezt < Cm — Uneat
update P,’s paraneters;

N - d% i +Pnext: Unext

el sei f
close P,;

= Cm — Unext

dneaxt

el seif last processor in OpenProcessors
add new processor;

i Pnext: Unext _

! f dnezt - 1 Unewt
cl ose Pn;

end

end

del ete There from SortedTasks;
end
end

Figure 1. Pseudo code

processors to feasibly allocate this task set. The resulting
allocation is shown in figure 3.

In contrast, the algorithm on the base of Devi’s condition
requires the presorting of figure 4. As shown in figure 5,
this latter algorithm needs only two processors to feasibly
allocate this exemplary task set.

Ti | ei | di | pi | e
T 7 10 | 20 0.7
Ts 2 5 8 0.4
T; 2 5 | 10 0.4

Ty |19 7 | 11 0.27
Ts 20 | 30 0.15
Ts 40 | 50 0.15

w

[=p}

Figure 2. Sorted by non-increasing density

5 Concluding remarks

We presented a bin-packing algorithm for allocating
tasks scheduled under EDF to identical processors. This
algorithm bases on Devi’s condition and on the First Fit
heuristic. Because of the presorting requisite of Devi’s
condition, combining this feasibility condition with the

Processor | Allocated tasks
Py T, T,
Py T5,T3,Ts
Ps Ts

Figure 3. FFD and density condition

Ti | ei | di | Pi | mmieran
Ts 2 5 8 0.4
T3 2) 10 0.4
T, 119 7 11 0.27
Ty 7 10 1 20 0.7
Ts 3 20 | 30 0.15
Ts 6 40 | 50 0.15

Figure 4. Sorted by non-decreasing deadline

FF bin-packing heuristic results in an off-line allocation
algorithm—even if the FF heuristic was initially intended
for on-line algorithms. The purpose of the presented algo-
rithm is to find an as small as possible number of processors
that guarantees the feasibility of a given task set. In other
words, the number of processors is not a fixed parameter.

This bin-packing algorithm on the base of Devi’s condi-
tion requires three parameters to be kept for each bin or pro-
cessor. We called these parameters L,,, C,, and dj,. This
differs from known bin-packing algorithms, where only the
remaining capacity is needed to be kept for each proces-
sor or bin. Additionally, the size of bins, i.e. the available
processor capacity, varies depending on T7,..;’S parameters,
what leads to a variable-size bin packing. We have termed
by T),c: the task that is to be allocated as next.

The resulting complexity is degraded from O(n?) of
the original FF bin packing to O(n? - log n), where the
number of processor is limited from above by n, i.e. by
the number of tasks—this latter is because —r—— <
1vi < n. Moreover, applying the FFD bin-packing strat-
egy will result in a even higher complexity with the form
O(n?® - log m). This latter is because it is not possible to
guarantee that sorting tasks as required by Devi’s condition
also satisfies the presorting requisite of the FFD strategy.

The algorithm presented in this paper opens some issues.
For example, it would be interesting to thoroughly com-
pare the FFD bin-packing algorithm based on the density
condition with the one presented in this paper. In princi-
ple, both algorithms have the same complexity and both are
off-line algorithms. Nevertheless, the FFD bin packing is
known to guarantee an asymptotic worst-case performance
ratio R, p ~ 1.22, whereas the one of FF bin packing is
known to be R%, ~ 1.7 [7]. This performance ratio ex-
presses how far from optimum the worst-case allocation is

Processor | Allocated tasks
P Ty, T3,Ty
Py T1,T5,T6

Figure 5. FF and Devi’s condition

as the number of tasks tends to infinity. It would be interest-
ing to analyze for which task configurations the FF strategy
combined with Devi’s feasibility condition delivers better
results than the FFD strategy based on the density condi-
tion.

Finally, Albers and Slomka proved in [2] that Devi’s con-
dition is a particular case of their superposition approach
presented in [1]. Albers and Slomka presented an approx-
imate feasibility test in [1], which verifies the first k£ dead-
lines of each task in 7. This number & of deadlines that are
verified can be adjusted. A small & results in a simpler but
less accurate feasibility test. In contrast, if & is large, the
resulting feasibility test is more complex but more accu-
rate. The question is which benefits could be obtained im-
plementing bin-packing algorithms on the base of this latter
feasibility test. It would be also interesting to research into
methods to adjust this trade-off parameter & for particular
task sets.

References

[1] K. Albers and F. Slomka. An event stream driven approx-
imation for the analysis of real-time systems. Proceedings
of the 16th Euromicro Conference on Real-Time Systems,
pages 187-195, June 2004.

[2] K. Albers and F. Slomka. Efficient feasibility analysis for
real-time systems with edf scheduling. Proceedings of the
Date 05 Conference, March 2005.

[3] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling
hard-real-time sporadic tasks on one processor. Proceedings
of the Real-Time Systems Symposium, pages 182-190, De-
cember 1990.

[4] M. Dertouzos. Control robotics: The procedural control of
physical processes. Proceedings of the IFIP Congress, pages
807-813, 1974.

[5] M. Devi. An improved schedulability test for uniprocessor
periodic task systems. Proceedings of the 15th Euromicro
Conference on Real-Time Systems, 2003.

[6] M. Garey and D. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman &
Co., 1979.

[7]1 D. Johnson. Near-Optimal Bin Packing Algorithms. PhD
Thesis, Massachusetts Institue of Technology, USA, 1973.

[8] C. Liu and J. Layland. Scheduling algorithms for multipro-
gramming in hard real-time environments. Journal of the
Association for Computing Machinery, 20(1):40-61, 1973.

[9] J. Liu. Real-Time Systems. Prentice Hall, 2000.

