
Using the RECOMS Architecture for Controlling a Radio Telescope ∗

Alexander von Bülow Jürgen Stohr Georg Färber
Institute for Real–Time Computer Systems

Prof. Dr.–Ing. Georg F̈arber
Technische Universität München, Germany

{Alexander.Buelow,Juergen.Stohr,Georg.Faerber}@rcs.ei.tum.de

Peter Müller Johann B. Schraml
Max–Planck Institut f̈ur Radioastronomie, Bonn, Germany

{peter,jschraml}@mpifr-bonn.mpg.de

Abstract

General purpose computer systems are not designed to act as
real–time systems. They are optimized to deliver a good
performance in the average case, real–time constraints are
not considered. Nevertheless these computer systems are
cheap in price, offer a huge computing power and single
components are usually downwards compatible. The
RECOMS project deals with the task to make the computing
power of general purpose computer systems available for
real–time applications. In this paper we present the
experiences we gained using a Dual–Xeon computer for
controlling a radio telescope. This work evolved from a
cooperation with the Max–Planck Institut für
Radioastronomie. We describe the technical requirements of
this application, the implementation using the RECOMS
Software Architecture and the results of the studies we made
on this system.

1. Introduction

General purpose computer systems are equipped with very fast
processors like the Intel Pentium or AMD Athlon and with
large and fast mass storage systems. They are very flexible
in design and can be easily extended by a great variation of
general purpose hardware. But they are not designed to act as
real–time systems, they are optimized to deliver best perfor-
mance in the average case. Worst case scenarios which are of
great importance for real–time systems are not considered at
all.

Nevertheless there are some aspects that make those gen-
eral purpose computer systems interesting for use as real–time

∗The work presented in this paper is supported by theDeutsche
Forschungsgemeinschaftas part of a research programme on “Real-
time with Commercial Off-the-Shelf Multiprocessor Systems” under
Grant Fa 109/15-1.

systems: They have a great computing power, can be designed
individually for a special application and they are most of all
downwards compatible, so often you can improve the comput-
ing power of your system by simply changing a few compo-
nents without modifying your software. Furthermore they are
cheap in price and there exist well known tool chains for de-
veloping software.

The RECOMS project [4] deals with the task to research the
real–time capabilities of general purpose multiprocessorsys-
tems. The intention of this project is to study the runtime be-
havior of those systems and to develop new methods for using
the computing power for the purposes of a real–time system.

In this paper, we present the use of a general purpose
computer system for controlling a radio telescope. This task
evolved from a cooperation from our institute with theMax–
Planck Institut für Radioastronomiein Bonn, Germany. The
idea behind this cooperation is to replace the so far used con-
tolling system based on a VAX/VMS architecture by a general
purpose computer system based on Linux. The main require-
ments are the lossless transfer of measurement data at a con-
stant time rate over a long period and the reliable storage ofthe
data on a hard disk within a dedicated span of time. This task
is implemented using a Dual Intel Xeon processor computer
together with Linux and the RECOMS Software Architecture
developed by us.

This paper is organized as follows: Section 2 describes in
short the characteristics of the RECOMS Software Architec-
ture. In section 3 the scenario and the requirements of the
application are described. Section 4 presents the results and
experiences we made. In section 5 we summarize the paper
and give a short view to future work.

2. RECOMS

Figure 1 gives an overview of the RECOMS Software Archi-
tecture. The system is separated into one processor called
the GPU (General Purpose Unit, used for Linux exclusively)



Kernel
RTAI

Linux

Kernel

InterruptsDMAI/O
DMA
RT−

I/O
RT−

Kernel
RTAI

RT−
Task

Task
RT−Idle

Task

Interrupts
RT−

blocking

S
up

er
vi

si
on

C
on

tr
ol

configure

DataData

control

Peripheral Devices

Non−RT Applications

a priori configuration

I/O DMA Interrupts

GPU RTU

Figure 1: The RECOMS Software Architecture

and one ore more RTUs (Real Time Units, used for real–time
tasks exclusively). This makes it possible to use standard
Linux tasks and real–time tasks concurrently. The RECOMS
Software Architecture enhances the RTAI [1] architecture by
adding more options to the real–time operating system (RTOS)
to control concurrent accesses to hardware. It is importantto
be able to route interrupts to different CPUs. This offers the
option to route interrupts that are not used by any real–time
components (e.g. keyboard) exclusively to the GPU so the
RTUs are not burdened with that.

Another capability are the fine grained facilities to control
accesses to I/O ports or I/O regions [3]. To control them is very
important for accesses to hardware connected via the PCI–Bus
from a real–time task. Those accesses can cause tremendous
and nearly unpredictable blocking times when concurrent to
those of the RTU. The RECOMS Software Architecture en-
ables the user to synchronize them in a way that a real–time
task is never blocked when accessing hardware connected to
the PCI–Bus.

3. The Application

The objective is to replace a VAX/VMS based computer sys-
tem which is used to control a radio telescope by a general
purpose computer system based on Linux. The requirements
are as follows:

• All tasks must run with accurate timing constraints.

• Measurement data has to be stored on hard disk together
with an accurate time stamp obtained from the hardware.

• The real–time system should run for a long period of time
(e.g. a few weeks) and no measured value must be lost.

Chipset

GPU RTU

L i n u x

D
a

ta

PCI−BUS

A/D−Converter

ISRRT−Task

FSB

General Purpose Computer System

Controller
IDE

Hard Disk
(Real Time)

Hard Disk
(Linux)

Timer Board

Figure 2: The application scenario

Figure 2 shows the application scenario. The measurement
data is delivered from the backend of the antenna and must
be converted by an analog-to-digital converter. Afterwards the
data has to be stored on hard disk together with the refresh-
ment time. It is essential that no measured value gets lost. One
hard disk is used exclusively for the storage of the measure-
ment data delivered from the analog-to-digital converter.The
hardware and software structure is described in the following.

Hardware. For this case study we used a Dual Intel Xeon
computer system with 2 GHz clock speed, FSB 533, 512 kb
second–level cache and 512 MB DDR–RAM. The computer
is equipped with two hard disks, one for Linux and one for
the storage of the measurement data, both connected to the
same IDE–Controller. The “real–time” hard disk has a size of
120 GB, 2 MB cache and a speed of 5400 RPM.

The timer of the computer system is realized by a Da-
tum BC635 board. This board is connected to the PCI–Bus
(33 MHz) and is able to produce an accurate time rate (PCI–
Bus interrupt) up to a period of 100 ns. The timer can be
synchronized with an external IRIG-B signal or can run in a
battery-backed mode without any external synchronization. A
time stamp can be obtained from the board by reading several
registers.



Furthermore a PCI-AD/DA Analogue I/O board from
Kolter Electronic is connected to the computer. This board
comes with 16 AD/DA channels with a resolution of 12 bits,
respectively. The time needed for converting one channel is
about 25 microseconds. This converter is not able to deliver
an interrupt signal when the conversion has finished so soft-
ware needs to poll a status flag.

Software. For testing the run time behavior of the computer
system, the following software structure was implemented:

• An interrupt service routine (ISR): This routine is trig-
gered by the timer board and is used to measure the re-
sponse time of the interrupt and to trigger a real–time
task.

• A real–time task: This task reads one channel from the
analog-to-digital converter, gets the time stamp from the
timer board and stores this data on the hard disk. It must
have completed its task until the next interrupt arrives.
The period of this task is 100 microseconds.

The real–time task is implemented using the standard
RTAI–API [1] [2]. The whole application (ISR and task) is
implemented as a Linux kernel module. The drivers for the
timer board, the analog-to-digital converter and the IDE hard
disk were written by us to be able to guarantee a predictable
real–time behavior of the driver API (especially for the hard
disk).

4. System Analysis

To verify the real–time properties needed for the application
described in section 3 we considered the following items:

• The interrupt response time for the timer interrupt trig-
gered by the timer board when the computer system is
not fully loaded and when it is working under full load.

• The response time for accesses to the analog-to-digital
converter.

• The time needed by the hard disk to store the data.

First of all, let us consider the interrupt response times weob-
served.

Interrupt Response Time. The interrupt response time
is the span of time when the interrupt source raises its edge
until the first instruction of the corresponding interrupt service
routine (ISR) is executed. To determine this span of time, the
timer board is triggered by an external event. The point of time
when the external signal arrives is held on in event time regis-
ters of the timer board. The first instruction of the ISR latches
the refreshment time, then the time registers are read. The
difference between the value obtained from the time registers
and the value obtained from the event registers is the interrupt
response time. The next instruction reads the timer register

again, so we get the time needed for reading the registers as
difference to the the time stamp read just before. For this span
of time we measured 1.8 microseconds. The interrupt response
time was calculated as 6.9 microseconds.

Furthermore we were interested in how the period of the
real–time task varies. This real–time task runs on behalf of
the ISR. That means, the ISR triggers the real–time task which
should run just after the ISR has finished on the RTU (see sec-
tion 3). The period of the real–time task was varied and we
measured the span of time from when the period should begin
to when the real–time task actually starts by reading the time
from the timer board. The average value we got was 7.7 mi-
croseconds and the maximum value we obtained was 8.3 mi-
croseconds.

The values mentioned above apply to the unstressed case,
that means that no extra work was added to the system. This is
the situation the system should work when deployed for con-
trolling the telescope. We made the same tests when the sys-
tem was under a heavy work load. We observed that the worst
case interrupt response time growed up to 13 microseconds.

We also studied the interrupt response time when using two
interrupt sources in parallel. We used the external interrupt
source as described above and a periodic internal interrupt
source on the timer board. We observed no interference be-
tween these two interrupts.

AD/DA Converter. The analog-to-digital converter is
connected to the PCI–Bus just as the timer board. It has 16
channels with a resolution of 12 bits, respectively. The focus
of our interest was the time needed for the conversion itself
(hardware dependent) and the time needed to read the con-
verted value (PCI–Bus access). Our converter is not able to de-
liver an interrupt when the conversion has finished, so software
must poll a status flag to determine the end of conversion. So
the interesting time span is the time needed from start of con-
version until the result is read. We measured a time of about
37 microseconds for that, without nameable variation. From
these 37 microseconds about 25 microseconds were needed
for the conversion.

Hard Disk Accesses. To store the gathered data we use a
standard IDE hard disk. This hard disk is used by the RTU ex-
clusively (see figure 2). It is connected to an IDE–Controller
which is connected to the central PCI–Bus. The hard disk
is invisible for Linux when the system is in real–time mode.
The IDE–driver from Linux is not suitable for real–time pur-
poses so we implemented our own driver. This driver only
supports low–level data transfers and speaks directly withthe
IDE–Controller. This justifies our demands, we need no file
system or other features because the evaluation of the stored
data is made offline with standard Linux software. Remem-
ber that the hard disk is fully accessible from Linux when the
system is not in real–time mode.



Hard disks can be accessed with small transfers of a few
bytes, or, much better, with blocks of data, usually 4 kbytes.
The implementation of our real–time driver is as follows: We
have two regions of memory, each region has a size of 4 kbytes.
The API–function provided by the driver writes to one of these
two regions until this area is full. Then the next write access
from software is deligated to the second memory region. In the
meanwhile, the full memory area is written with a fast burst
write to hard disk.

The advantage of this method is that following write ac-
cesses are not blocked because they are buffered in memory.
Of course one has to take care of the frequency the data to
be written comes in. If the data rate is too high, the second
buffer runs full before the first is written to hard disk. For our
application the data rates were far beyond this danger.

The storage of the data is performed by the real–time task.
One run of this task reads one channel of the analog-to-digital
converter, gets the time stamp from the timer board and saves
the data to hard disk which is equivalent to a data rate of
12 bytes per run. The intended period of the real–time task
is 100 microseconds so we get a data rate of about 120kb

s
.

The access times we measured for writing one block of data to
hard disk ranged from 40 microseconds to 50 microseconds.

5. Conclusions

The intention of the work presented in this paper is to evaluate
the real–time properties of a general purpose computer system
running Linux together with RTAI and the enhancements of
the RECOMS Software Architecture. The application in mind
is to use such a computer system to control a radio telescope.
For this purpose we made a case study with a Dual–Xeon com-
puter which was equipped with an AD/DA–Converter and a
timer board. We wanted to know if such a system running
with RTAI and RECOMS would be able to satisfy the real–
time constraints.

The experiments we made show that a general purpose com-
puter system can act as a real–time system with the help of
a suitable operating system. The most important issue is the
strict separation of Linux and RTAI/RECOMS. This includes
the distribution to different processors (GPU and RTU), the
routing of interrupts, the separation of the main memory be-
tween Linux and RTAI/RECOMS and the fine grained setting
to control hardware accesses.

The time values we measured for the interrupt response time
and the time needed for hard disk accesses showed that the
computer system we used is able to satisfy the real–time con-
straints of our technical process. We are encouraged to con-
tinue our work to make the computing power of general pur-
pose computer systems available for real–time applications.

In future, we will extend the real–time task we presented
in this paper to do some astronomical calculations needed for
the controlling, so the execution time of the software running
on the RTU and therefore the processor architecture becomes

more important. Furthermore the sending of control data to an-
other computer via ethernet with real–time constraints should
be investigated. Futher and deeper studies of the real–timebe-
havior and the effect of certain arrangements to improve the
predictability will be made.

References

[1] DIAPM, Dipartimento di Ingegneria Aerospaziale Po-
litecnico di Milano.A Hard Real Time support for LINUX,
2002.

[2] Lineo, Inc. RTAI Programming Guide 1.0, September
2000.

[3] Jürgen Stohr, Alexander von Bülow, and Georg Färber.
Controlling the Influence of PCI DMA Transfers on Worst
Case Execution Times of Real–Time Software. InPro-
ceedings of the 4th International Workshop on Worst Case
Execution Time Analysis in conjunction with the 16th Eu-
romicro Conference on Real–Time Systems, Catania, Italy,
June 2004.

[4] Jürgen Stohr, Alexander von Bülow, and Georg Färber.
Using State of the Art Multiprocessor Systems as Real-
Time Systems – The RECOMS Software Architecture. In
Proceedings of the 16th Euromicro Conference on Real-
Time Systems – Work in Progress Session, Catania, Italy,
June 2004.


