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Abstract

This paper describes a vision system for obstacle detec-
tion in mobile robot navigation. The system uses an image
processing board equipped with an MPEG motion estima-
tion processor that calculates a robust optic-flow-like vector
field in real-time. This field is then evaluated by algorithms
running in software on the host PC. As the solutions to the
general problem of structure and motion from optic flow
are too instable for the use in this application, the typical
constraints of mobile robotics are exploited, i.e. a reduced
set of motion parameters and a known ground plane. Ego-
motion can then be reconstructed with robust one dimen-
sional methods. A new criterion for obstacles that copes
well with the noise properties of the motion field is intro-
duced. For vectors belonging to obstacles the 3D informa-
tion is reconstructed allowing not only qualitative detection
of obstacles but quantitative path planning.

1. Introduction

The work presented in this paper is part of a research
project toward the development of autonomous, vision
guided, mobile robots. Such robots must robustly sense
and avoid obstacles while driving through unknown envi-
ronments. One possible approach that is not impaired by,
but even exploits the movement of the camera is to use
the optic flow. 3D motion of the camera is projected onto
this 2D velocity field (or displacement field in the case of
isochronous sampling using standard video cameras) on the
image plane(x; y) (see Fig. 1).

If the displacement vectors are regarded to be equivalent
to the velocity vectors (an acceptable assumption for realis-
tic frame rates and velocities [1]) and the focal length of the
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Figure 1. Coordinate system and optic flow

camera is normalized to 1 (a mathematical convenience that
does not restrict generality), the optic flow can be expressed
by the following well known equation:��x�y� = 1Z �Tzx� TxTzy � Ty�+ !x � xyy2 + 1��!y �x2 + 1xy �� !z ��yx � (1)

Before reconstructing the 3D parameters, this 2D vector
field has to be estimated from the variation of brightness
patterns in an image sequenceIt. The classical solutions
to this problem include the evaluation of spatio-temporal
derivatives, the tracking of single feature points and the cor-
relation of small patches. The real-time optic flow calcu-
lation technique presented in section 2 is inspired by the
similarity of those correlation techniques to the block-wise
MPEG-1/2 motion compensation.

Many papers in the optic flow literature address the prob-
lem of the reconstruction of motion and depth parameters by
solving Eqn. (1) for a set of vectors, some even perform seg-
mentation of independently moving objects [1, 9, 10, 16].
Unfortunately, those complete solutions are computation-
ally expensive and numerically instable. Graphically, this
instability results from the similarity of optic flow fields
generated by rotation and lateral translation [15]. The dif-
ference between those two field contributions is often hardly
the magnitude of noise.



Common approaches used by robotic researchers [3, 4, 5,
12] include the assumption of constraints to the motion pa-
rameters, for example to mere translation. Also qualitative
detection without 3D reconstruction is proposed, avoiding
the need of exact knowledge of the ego-motion.

The method for obstacle detection presented in section 3
exploits the constraints of the mobile robot application too,
but works in presence of rotation, estimates the ego-motion,
and recovers the 3D information of objects. It uses robust
methods to cope with quantization noise and faulty vectors
which are occasionally produced during the optic flow cal-
culation.

Section 4 explains some important implementation de-
tails and section 5 shows the results of the obstacle detection
and exemplary navigation.

2. Real-time optic flow sensor

According to the MPEG-1/2 standards, reduction of the
temporal redundancy in an image sequenceIt is achieved
by replacing pixel information by reference vectors to other
images. For real-time encoding, specialized processors, so
calledMEPs (Motion Estimation Processors) have been de-
veloped, which calculate these reference vectors by block-
matching. A reference block (RB, 16�16 pel) from imageIrb is compared with a search window (SW, 32�32 pel) in
the imageIsw. For all possible offsets�; � 2 f�8 : : : 7g,
a correlation-like value calledSAD (Sum of Absolute Dif-
ferences) is calculated; the minimum designates the best
match, and its position defines the reference vector:SAD(�; �) =P7�=�8P7�=�8 jSW (�+ �; � + �)� RB(�; �)jSAD(�xpel;�ypel) = min�;�2f�8:::7g SAD(�; �) (2)

If consecutive images are compared (i.e.sw � rb = 1), the
resulting set of vectorsF = ff i : f = ��x�y� ; i 2 f1 : : : ngg
can be regarded as optic flow.

The idea to use one of those extremely optimized MEPs
for the generation of optic flow is not new. In particular
Inoue et al. describe the integration of a MEP into their im-
age processing transputer network [8]. Resulting from their
work, a commercial version is available, and meanwhile is
used in various research projects [2, 7].

A problem that several researchers report is that the optic
flow generated by such a correlation processor can become
very noisy. This happens when the image structure inside
theRBs orSWs is ambiguous or completely missing. Then
the detection of a significant minimum according to Eqn. (2)
fails and faulty vectors are calculated. Fig. 2a illustrates
the problem. The flow was generated by a linear forward
movement of the camera, so all vectors should intersect in
a single point, theFOE (Focus Of Expansion). Due to local

lack of structure, many vectors point to completely different
directions. Unfortunately, this effect dominates in most in-
door environments. Further evaluation of such a flow field
is virtually impossible.

Figure 2. Optic flow, generated by a MEP:
a) complete, b) sifted.

To solve this problem, we augmented the MEP with
external circuitry that calculates an additional confidence
value for each vector. In the simplest case, this confidence
value can be tested against a fixed threshold to sift out the
faulty flow vectors Fig. 2b.
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Figure 3. System structure

Our prototype system consists of an ISA image process-
ing board containing the MEP, and a LINUX host PC (see
Fig. 3). A ring-buffer of three frame memories allows the



comparison of two images and simultaneous acquisition of
the next image into the third memory. Depending on the
utilization of the MEP internal pipeline, up to 525 vectors
can be calculated per frame (PAL, 25 Hz). To achieve the
highest possible flexibility, the coordinates ofRBs andSWs
can be randomly set by the software running on the PC for
each single matching operation. This feature is exploited
by the implementation described in section 4. For a more
detailed description of the hardware see [13].

3. Reconstruction of motion parameters and
depth

The approach pursued in this work is to simplify the
problem by allowing only two degrees of freedom for the
camera motion. In this case Eqn. (1) can be solved for each
vector individually, and robust one dimensional techniques
can be used for the determination of the ego-motion. This
simplification is possible in several applications, for exam-
ple fixed pan-tilt surveillance cameras. When the camera is
mounted on a mobile robot with non-holonomic kinemat-
ics the motion can also be decomposed into a translationT
along the trajectory of the vehicle and a rotation! around
the vertical axis. To keep the formulas simple, it is also
assumed that the camera is mounted with itsx-axis hori-
zontally and they-z-plane in parallel to the heading of the
vehicle. Describing the pitch-angle� of the camera by the
two trigonometric shorthands� = 
os(�) and� = sin(�)
Eqn. (1) is reduced tof = TZ e+ !h (3)

with e representing the “expansive” part of the field con-
tributed by translation andh representing the hyperbolic
part contributed by rotation:e = � �x�y + �� ;h = ��(x2 + 1)� �y�xy + �x �
This equation can be solved for each vector:! = �x�y � (�y + �)�x��y2 � �2y + �2y � �� (4)TZ = �x� !(�(x2 + 1)� �y)�x (5)

The first result! should correspond to the rotational ve-
locity of the vehicle and therefore be identical for each vec-
tor. Thus, the rotation could be estimated by a simple least
square fit over all!i as proposed e.g. in [4]. As even the
sifted flow field sometimes contains faulty vectors (for ex-
ample due to cyclic patterns in the images), this can yield
poor results in practice. Better performance is achieved by
using robust mode estimators with high breakdown points.
Theshortest half windowmode estimator (shorth, [11]) can
tolerate up to 50 % outliers and performs very well in the
experiments. Also it is computationally inexpensive:

�j : �j � �j+1; j 2 f1 : : : n� 1gÆj = (�j+bn2 
 � �j)Æm = minj2f1:::n�bn2 
g Æjshorth(�j) = 12 (�m + �m+bn2 
) (6)!̂ = shorth(!i) (7)

A foreground/background separation technique that can
be used to get an estimate for! even in the presence of large
moving objects (larger than 50% of the field) has already
been published in [14].

The second solution to Eqn. (3),TZ , still depends on the
depth of the corresponding 3D point and thus has an individ-
ual value for each vector (it is the reciprocal value of the so
calledTime To Collision, TTC). To get also an estimate for
the translationT , additional assumptions have to be made.
In the case of a camera mounted on a mobile robot, beside
the pitch angle also the heighth of the camera above the
ground plane is known. If the robot moves on an infinite
ground plane without any obstacles, theZ coordinate can
be calculated for each point in the image plane:Z = h�y + � (8)

Of course this postulate cannot be made for a system
which is intended to detect obstacles. But as a vehicle al-
ways has a minimum braking distance, it is reasonable to
assume the absence of obstacles in the area directly in front
of the robot. This area is calledground windowin the fol-
lowing and the set of vectors inside this window isG.

By inserting Eqn. (8) into Eqn. (5) one could get a valueT for each vector. But, using this method, the influence
of the pixel quantization would vary over the image plane.
Also remaining faulty vectors pollute the estimation. There-
fore, we propose a different technique: First, the optic flow
field is derotated usinĝ!:d = f � !̂h (9)

Each derotated vectord should then coincide with an epipo-
lar line through theFOE and thus be collinear withe. In
practice it deviates a little from this epipolar line due to the
quantization error, or completely in case of a faulty vector.
The first category of errors should be corrected as good as
possible, the second category should be detected and elim-
inated fromF . For the first purpose, the projection of each
vectord on its epipolar line is used for the calculation ofTZ :TZ = e>dkek2 (10)

For the detection and elimination of faulty vectors the
distance of the vector from the epipolar line can be calcu-
lated and thresholded:F� = ff i : je> � 0 1�1 0�dkek j < � ^ TZ > 0g (11)



ThenT̂ is determined using theshorthestimator again,
which allows up to 50% obstacles even inside the ground
window: T̂ = shorth( e>i dikeik2 Zi);di 2 G \ F� (12)

Now Z could be calculated for each vector and the dis-
tance from the ground plane could be used to detect ob-
stacles. Another criterion would be the ratio between the
vector length and the length of a predicted ground vector, as
proposed in [5]. Both approaches have the drawback, that
the impact of pixel quantization is stronger for short vectors.
Again, a better criterion for obstacles isO = ff i : ei>dikeik � T̂Zi keik > �g (13)

Both criteria according to Eqn. (11) and Eqn. (13) calcu-
latedistances in image coordinates, which can be compared
to fixed thresholds� and � in the magnitude of the pixel
quantization.

To get rid of single bogus detections which have passed
sifting and elimination, we also apply a simple morphologi-
cal operation toO. For the remaining vectorsf 2 O finally
theZ-coordinate is calculated to get a 3D obstacle point.

4. Implementation

As a standard video camera is used, only fields (not
frames) can be evaluated due to the interlacing problem.
Additional considerations have to be made when imple-
menting an algorithm according to section 3 using the optic
flow sensor presented in section 2.

4.1. Placement

Placing theRBs along a regular grid in the image plane
would result in detailed surveillance of the area close in
front, but only few information in the distance. Besides,
the calculation ofTZ according to Eqn. (10) becomes insta-
ble for small values ofkek. Thus,RBs should not be placed
inside an area below a threshold forkek, which results in
a practically blind spot in the upper middle of the image
plane (that graphically can be considered the intersection
of a cone around theFOE with the image plane). Fig. 4
shows the chosen optimized placement of the vectors and
the position of the ground window. Unfortunately this non-
regular placement of theRBs prevents the optimal use of
the MEPs internal pipeline, reducing the number of possi-
ble vector calculations to 350 (and even a little less in prac-
tice due to the latencies of the LINUX operating system).
Also morphological operations become more complicated
but can be accelerated by a precalculated lookup table con-
taining neighborhood information.
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Figure 4. Optimized placement of the vectors

4.2. Biasing

As the vector length generated by realistic motion of the
robot significantly exceeds the maximal vector length that
can be calculated by the MEP, the positions of theSWs
have to be biased against the positions of theRBs. This
is achieved by using the current motion estimates(!̂; T̂ ) to
predict the field for the next operation cycle using Eqn. (3).
EachSW is then centered around the center of the corre-
spondingRB plus a bias vectorb = f(!̂; T̂ ) (see Fig. 5).
This biasing technique transforms the limitations on the ve-
locities to limitations on the accelerations.

Figure 5. Search window bias

4.3. Rate control

Another problem is, that at realistic velocities the trans-
lational componentTZ e of most of the vectors is too short
to significantly exceed the pixel quantization error. Unfor-
tunately it is not possible to just skip(r � 1) images in or-
der to reduce the frame rate to1r , which would increase the
vector length. The reason is, that the field is dominated by
the rotational component!h, which has to be estimated at
maximal rate.

Our solution is to vary the lengthl of the hardware ring-
buffer (Fig. 3): Irb is repeatedly “frozen” and compared to
the nextr images according to Fig. 6. Using this method,
no image is lost and it is possible to estimate!̂ with every
frame, but determinêT and obstacles at a randomly chosen
lower rate.
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Figure 6. Rate control

5. Obstacle avoidance

Fig. 7 shows some snapshots from the experiments.
Vectors corresponding to the detected obstacle points are
marked with black squares, the image in the middle shows
a rotation! � 30Æ=s.

Figure 7. Obstacle detection examples

To generate a local 2D obstacle map for robot navigation,
the 3D points are transformed into the robot coordinate sys-
tem. Fig. 8 corresponds to the bottom image of Fig. 7; ob-
stacle points belonging to the chair and the railing can be
seen. The magnitude of the accuracy of 3D reconstruction
is 10 cm, which is by far sufficient for obstacle avoidance.

Also a short history of obstacle sets is fused to increase
accuracy and robustness. This is achieved by transforming
older sets of obstacle points into the current robot coordi-
nate system. The parameters�xrobot;�yrobot;�'robot for
this transformation are calculated from the optic flow by in-
tegrating the estimated motion parameters!̂; T̂ . Obstacles

x

y
T

w

v i s i b l e  a r e ao b s t a c l e
p o i n t s

r o b o t

r o b o t

Figure 8. Obstacle map in 2D robot coordi-
nates

are then fused by increasing probabilities in an occupancy
grid.
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Figure 9. Trajectory and heading of the robot

Robot control is currently performed by a very sim-
ple navigation algorithm inspired by the dynamic window
approach [6], which periodically (typically every200ms)
chooses the best trajectory in terms of distance to obsta-



cles and closeness to the next way point. For fast evalu-
ation the set of possible trajectories (circular lanes of the
robots width) is precalculated for each possible turn radiusR = T! and the set of corresponding map elements is stored
in lookup tables. Fig. 9 depicts the result of the navigation
experiment, from which the bottom snapshot of Fig. 7 was
taken. The “way point” was fixed atxrobot = 5m andyrobot = 2m, providing an “unreachable goal” on the left
side. Together with the obstacles in the occupancy grid this
results in the behavior to follow a wall on the left.

At the beginning of this experiment, the robot followed
the bow of the railing. After approximately7m it detected
the chair, rounded it, and then returned to the railing again.
The figures show the absolute position of the robot in the
world coordinate system as well as the heading' over time.
Both plots compare values calculated by the odometry with
values calculated by integrating the motion parameters from
optic flow. The drift is small enough to use the optic flow
values for local calculations like the history fusion.

6. Conclusion

Figure 10. MARVIN

We have presented a
real-time vision system
consisting of a MEP-
based optic flow sen-
sor and a set of robust
evaluation techniques to
do obstacle detection for
a mobile robot. The
robot MARVIN (Mo-
bile Autonomous Robot
with Vision-based Navi-
gation, see Fig. 10) cur-
rently uses the system
for navigating through
the corridors of our lab-
oratory at speeds ofT =0:4m=s and !max =30Æ=s. The typical
pitch-angle of25Æ deliv-
ers obstacles from a minimal distance of1:5m to a maximal
distance of3:5m in the central area and8m in the periph-
eral areas.

In similar robotic systems, only qualitative scene de-
scriptions are derived from optic flow, which allow only
qualitative navigation approaches [2, 3, 4, 12]. Since the
result of our obstacle detection approach is a local occu-
pancy grid, standard robot navigation techniques can be im-
plemented.

References
[1] G. Adiv. Determining Three-Dimensional Motion and

Structure from Optical Flow Generated by Several Moving
Objects. IEEE Trans. on Pattern Analysis and Machine In-
telligence, 7(4):319–336, July 1985.

[2] G. Cheng and A. Zelinsky. Real-Time Visual Behaviours for
Navigating a Mobile Robot. InProc. IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS’96), pages 973–980,
Osaka, J, Nov. 1996.

[3] D. Coombs, M. Herman, T. Hong, and M. Nashman. Real-
time obstacle avoidance using central flow divergence and
peripheral flow. InProc. 5th Int. Conf. on Computer Vision,
pages 276–283, Cambridge, MA, USA, June 1995.
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