
COMPENSATION OF TIME DELAYS IN TELEPRESENCEAPPLICATIONS BY PHOTO-REALISTIC SCENE PREDICTIONOF PARTIALLY UNKNOWN ENVIRONMENTSC. EBERST, N. O. ST�OFFLER, M. BARTH, and G. F�ARBERInstitute for Real-Time Computer SystemsTechnische Universit�at M�unchenD-80333 Munich, Germanystoffler@rcs.ei.tum.deABSTRACTA time delay in the visual feedback given to an op-erator, who is controlling a remote manipulator, no-ticeably impairs his performance. The use of predictivedisplays is an approach that has proven its suitabilityto compensate this e�ect. Most current implementa-tions employ simple computer-graphics for the predic-tion and require a well known remote environment.The presented work aims at increasing the overallimmersion of the operator on the one hand and the
exibility of the system on the other hand. The appli-cations should include maintenance and repair of ma-chines located in remote plant- or o�ce-type environ-ments. These kind of environments are typically non-static and a priori only partially known. Communica-tion media are high- and medium-bandwidth LANs andWANs inducing round trip delays varying from 0.2 to 2seconds. Also a su�cient bandwidth cannot be assuredduring the entire remote operation.The paper describes the concept of a predictivedisplay system achieving photorealism based on au-tonomously explored and updated scene models. Themodel acquisition task is performed with a binocularvideo system. Photorealism is obtained by using com-puter graphics techniques, especially the mapping oforiginal textures. Besides the concepts, an early stageof implementation and �rst experimental results arepresented.keywords: teleoperation, environmental modeling,predictive displays, surface reconstruction, computergraphics, texture mapping, image based rendering1 INTRODUCTIONAn old but still demanding problem in [8] are the de-lays between commanding an action and receiving thefeedback via a communication channel. A delay on thevisual feedback of 250 ms is recognized by a humanoperator, delays of about 1000 ms impair his perfor-mance tremendously. Beyond this delay time only the\move and wait" strategy [3] remains, complex manip-ulations become impossible. For coping with delays

in the haptic feedback, the classical position-controlcan be replaced for example by shared compliance con-trol [2, 13]. For the improvement of the visual feed-back, several variations of predictive displays have beensuggested, which superimpose simple [18] or complex[3, 14, 15] graphics on the camera images (augmentedreality), or completely replace it by a synthetic image(virtual reality)[12]. Those predictions are only possi-ble, if models of the geometry, kinematics and dynam-ics of the remote scene are locally available.The e�ciency of the operator also increases with therealism of the visual feedback. Simple visualizationsstill require training and do not support an easy esti-mation of depth. Stereo displays contribute a depthinformation for close objects. To make the estima-tion of longer distances possible, additional depth cuesare required, such as illumination, shading and motionparallax.One of the computer-graphics' key-technology tothe synthesis of photo-realistic images is texturemapping[7, 11]. Real-time capabilities are obtained bye�cient methods for the preprocessing of textures suchas summed area tables [6] andmip maps [21], optimizedarchitectures for texture memories [20] and hardware-based trilinear �lters [1].Autonomous, vision-based acquisition of scene-models is also a very active �eld of research. Relatedwork includes the video-based recognition and registra-tion of known objects [16, 19] and the reconstructionof an unknown background [4].The presented work combines the concept of predic-tive displays with the texture mapping technique to ob-tain photorealism and with computer vision methodsto acquire the scene models. The system is designed forpartially unknown environments incorporating a prioriknowledge with on-line exploration.Section 2 introduces the overall concept and the sys-tem structure. The acquisition of the scene-models isexplained in section 3, section 4 describes the predic-tion part. The paper closes with �rst results in section



5 and a conclusion in section 6.2 CONCEPT AND SYSTEMOVERVIEWFigure 1 depicts the structure of a teleoperation sce-nario incorporating the predictive display. The actionsof the human operator, such as motions of its handand head are measured by pose-tracking devices and adata-glove.
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Figure 1: Teleoperation scenario including a predictive dis-play.These actions are mapped on commands that aretransmitted over the communication network and exe-cuted by the robot. This �rst transmission inducesa delay between the generation of a command and itsexecution due to the latency of the network. The trans-mission time of the command itself due to bandwidthlimitations can be neglected, as commands typicallyconsist of very small sets of data. The video imagesshowing the execution of the commands then are sentback over the network to the operator. This secondtransmission again adds a delay time, consisting of thelatency of the network and the transmission time ofthe image data.In order to have immediate visual feedback the localscene model is continuously modi�ed according to thecommands. Based on this model a synthetic image isgenerated and presented to the operator via a head-mounted display (HMD) with virtually no time delay.In parallel, the scene model is updated by the sensorinformation acquired by the teleoperator.Photorealism is accomplished by using the delayedreal images for the generation of the textures in thepredicted images. To keep the prediction as accurateas possible and cope with changes of illumination in theremote scene, the textures also have to be continuouslyupdated and veri�ed.3 ACQUISITION OF THE SCENEMODELFor the generation and update of the scene modelthe teleoperator is equipped with a binocular video sys-tem which is also employed to send the images to theoperator. The model generation is divided into therecognition and registration of known objects and the

reconstruction of a description of the unknown back-ground. Typically, known objects include the objectthat has to be manipulated and the manipulator it-self. While the localization of the object must be pre-cise enough for manipulation, the description of thebackground is only employed to support the operatorsoverall orientation.Both image interpretation tasks are currently usingpreprocessed images, i.e. lists of line segments. Linesegmentation is accomplished by a fast contour follow-ing algorithm [17], which is cost e�cient by focusingall processing on regions in the images that containssigni�cant grey level gradients.3.1 OBJECT RECOGNITIONThe recognition and registration of known objects isperformed by modules which were developed in formerprojects concerning autonomous robots. Line-basedrecognition and localization of objects uses the systemMORAL (Munich object Recognition and Localization)[16]. It closely interacts with the modeling softwareGEM (Generalized Environmental model) [10]. The de-scriptions of a priori known object are provided by theclass layer of GEM. Recognized objects are fed backto the object layer as an instance of their class. Alsoarticulated objects are recognized and their state canbe determined. Details can be found in [9, 10, 16].An approach for the reconstruction of three dimen-sional polygons, which can be fed to the backgroundlayer of GEM, is presented in the next chapter.3.2 BACKGROUNDRECONSTRUCTIONThe reconstruction of the background is based on amulti stage surface recognition from sequences of stereovideo images (see �gure 2).First, line segments are extracted by an edge de-tector. Detected line segments are corrected for radialdistortions and deviations of the focal point of eachcamera. In order to form a virtually parallel orientedcamera pair, the extracted line segments are shiftedand rotated according to the deviations in the externalcamera parameters pan, tilt, and roll, and according tothe in
uence of these parameters on the non-centric fo-cal point of the image [5]. Figure 2 (left) shows thesecorrections. The resulting line segment description isnormalized by the pixel size and the focal length. Thiscorrection simpli�es further application of matchingconstraints and the reconstruction. Very short line seg-ments are then rejected and cluttered ones are mergedbefore processing.Second, polygon chains in the images are deter-mined by searching vertices, T-junctions and elonga-tions in line segment constellations. Therefore line seg-ments are compared whether they are lying close in theimage plane. If several of these line couples have onesegment in common, the most convex combination ischosen, in order to focus on simple bordered planar



Figure 2: Polygon-chain-based surface reconstruction. The left and middle images show the binocular sensor view and thepreselected line segments. The right image shows the reconstructed surfaces after one sensor reading. A double of matching2D polygons and the boundary description of the reconstructed 3D surface are highlightedsurfaces. The remaining couples are then successivelycombined to more complex polygon chains and sortedcounterclockwise. This procedure simpli�es the follow-ing matching of the resulting convex polygon chains ofboth images. Next, the virtual intersection points ofthe polygons' line segments are computed. All typesof 2D intersection points are termed junctions in thefollowing.Third, the polygon chains of both images arematched against each other. The determination of cor-respondences applies multiple cues in order to increasethe robustness and to restrict the in
uence of thresholdtuning. Line-segment-based and junction-based cuesare thereby applied. As there may be di�erences of howmuch of the boundary of a surface is seen in the leftand right image, the number of junctions that can beassigned depends on the completeness of the two poly-gon chains. To determine correct assignments, a fea-ture with approximately equal length and angle in theleft and right polygon chain is searched. To evaluatethe correspondence between two preselected polygonchains, the following cues are applied. The �rst con-straint to be ful�lled by a pair of possibly matchingjunctions is that the horizontal disparity is higher thana minimum positive value which corresponds to themaximum range that the sensor system can reliably re-solve. Then, the slopes of the two line segments at eachpossibly matching junction of both polygon chains arecompared in two ways: the deviation of the slope mustbe below threshold ((�l� �r) � �), and the slopes mustbe consistent with the epipolar constraints, i.e. thedisparity must be positive also for the distant parts ofthe line segments. The later test is only applied if theslope itself is above threshold, to avoid that noisy linesegmentation leads to erroneous rejection of matchingcouples. Next, the epipolar constraint is evaluated forpossibly matching junctions. Due to the precorrectionof line segments according to a virtually parallel cam-era arrangement, the test simply evaluates the verticalposition of the polygons' junctions in the images. Iftwo polygon chains are not completely matching, itssubparts are tested for correspondences. This allows

the determination of surfaces in the presence of noise,failed detection, and occlusion. In this case the bound-ary lines of the resulting surface are not completelyspeci�ed.Fourth, for all matching junctions of the two poly-gons, the 3D information is recovered. The face para-meters are reconstructed in two redundant ways. The�rst method calculates the coordinates of the vertices(X;Y; Z) of a face using equation 1 from [5] (withxl;r ; yl;r being the coordinates in the image planes andBl � Br being the baseline's length of the stereo sys-tem).Z = Bl +Brxl � xr ; Y = Bl � (xl �Z); X = �yl �Z; (1)By connecting the reconstructed 3D points, the non-planar boundary description of the polygon is ob-tained. The face orientation is calculated for each en-closed vertex by the cross product of the connecting3D lines. All edges that show a consistent depth andorientation are fused into one 3D polygon hypothesis.Please note that this method cannot identify appar-ent polygons that arise from occluding constellationsof independent faces.Redundant to this surface determination, the orien-tations of the 3D boundary lines (�X;�Y;�Z) are de-termined from the orientation of the 2D line segments( �xl;r; �yl;r) in the image for each vertex of the faceaccording to equation 2. Application of this methodis limited on line segments that are not horizontal, i.e.not parallel to the epipolar lines.�Z = (Bl+Br)�(�xr��xl)(xl�xr)�((xl+�xl)�(xr+�xr)) ;�Y = �(�xl � Z)� (xl ��Z)� (�xl ��Z);�X = �(�Z � �yl)� (Z � �yl)� (yl ��Z); (2)Due to the higher accuracy of the virtual intersec-tion points, the point to point method usually yieldsmore precise results than the line-based method, butis only applicable on restricted aspects of non-closedpolygon chains. In case that both methods can be ap-plied, the redundancy is exploited to detect apparent



polygons. Deviation in the depth estimation indicatesthat a surface is hidden by another one. If the hidingface and the hidden face can be identi�ed by depthcues of adjacent 3D polygons or of the 3D polygon it-self, the two resulting 3D polygons are reconstructedseparately. Otherwise, the polygon is split into twoor more overlapping ones. The plausibility of thesepolygons is set below a threshold. The faces that arereconstructed based on these polygons are eventuallycon�rmed or ruled out by fusion with faces that arereconstructed from a di�erent point of view, thus re-ducing the in
uence of occlusions.Next, planar faces are obtained by fusing depth andorientation cues of both reconstruction methods foreach enclosed, non-contradictive vertex and line seg-ment of the 3D polygons. The planar boundary de-scription is obtained by projecting the polygon ontothe newly reconstructed face.Finally, surface hypotheses are fused versus imagesequences in order to improve the accuracy of the sur-faces' description and to remove incorrect plane hy-potheses from ambiguous or wrong correspondences byapplying rule-out mechanisms on inconsistent arrange-ments of surfaces. Faces that are to be fused are identi-�ed by evaluating the normal vectors of the faces, theirnormal distance, and their overlapping regions.4 SCENE PREDICTIONFor optimal performance of the operator the pre-diction of synthetic images should run continuously atvideo frame rate. For the rendering of the next pre-dictive image Ip the current commands issued by theoperator and the delayed real image Ir can be takeninto account.In a �rst step, the state of the local scene model attime tp has to be estimated. This is achieved by con-tinuously modifying the model according to the issuedcommands: Movements of the hand-controller changethe position of the manipulator, motion of the heada�ects the point of view on the model.In the next step the image Ip is rendered by feedingthe polygons of the scene model into a standard com-puter graphics pipeline, which does the coordinate sys-tem transformations, visibility calculations and scanline conversions.Photorealism is accomplished by texture mapping.4.1 TEXTURE MAPPINGA texture can be regarded an image, which is or-thogonally projected onto a polygon. The pixels ofthis image are called texels. Each vertex (X;Y; Z) of apolygon is augmented by the texture coordinates (u; v)that de�ne its position in the texture image, thus itsposition in texels. In the case of a rectangular polygonand a texture image of the size w � h that is coveringthe polygon completely, the four texture coordinates

would be(u; v)i;i2f0:::3g 2 f(0; 0); (0; h); (w; h); (0; h)g :During the rendering of the polygon its vertices areprojected onto the image plane. The resulting imagecoordinates for each vertex are (x; y)i. For all posi-tions (x; y) inside the polygon, the corresponding texelcoordinates (u; v)! (x; y)can be calculated, either by inverting the projectionor as an approximation, by linear interpolation. Forthe actual rendering we use OpenGL and a hardwareaccelerator to achieve satisfying frame rates. Polygonsare handed to the GL rendering engine together withtheir texture coordinates and a texture image. Cur-rent implementations vary in how many texels around(u; v) are taken into consideration for the calculationof the color of pixel (x; y) and what kind of �lteringis done. All techniques supported by todays hardwareare approximations to the actual, perspective mappingof the texels, but in practice, the results are su�cient.4.2 TEXTURE EXTRACTIONIn standard computer graphic applications, the tex-ture images are assigned to their polygons during thebuilding of the model, thus are known a priori. In ourcase, those textures have to be reconstructed from thedelayed real images Ir .For this purpose, a second model prediction, re
ect-ing the state at tr is generated. The coordinates of theprojected vertices then match the corners of the cor-responding faces in the image Ir. By inverting thetexture mapping to (x; y)! (u; v)the color of each texel could be calculated by �lteringthe pixels around (x; y). When doing this texture ex-traction continuously for each transmitted real image,not only spatial �ltering but also temporal �ltering hasto be applied. A strategy for replacing old texture in-formation by more current one is under development.At the moment, we only consider the most recent realimage for texture extraction. The drawback of thismemory-less approach is of course, that no texture in-formation is available for polygons, which were hiddenin this single image.But as a big advantage on the other hand, the twoprojection steps(x; y)r ! (u; v)! (x; y)pcan be combined to one single projection. The real im-age itself is used as texture image and (x; y)r � (u; v).No further storage or management of the textures isnecessary, the single image is just passed to the ren-derer together with all polygons and their texture co-ordinates.



Figure 3: Model-update by object recognition. From left to right: image, superimposed (recognized) object, predicted scenebased on the movements of the operator, predicted scene with mapped textures.

Figure 4: Model-update by background reconstruction. Left: real image with overlayed polygons for the extraction of textures.Right: synthetic image from di�erent viewpoint (note the black parts of some faces where no textures from the real imagewere available).

Figure 5: Model-update by registration of an a priory known background model. Left: real image with overlayed polygonsfor the extraction of textures. Right: synthetic image5 RESULTSUp to now, the system has been tested withoutHMD and without magnetic trackers. For the experi-ments motions of head and arm have been controlledby a space-mouse.The exemplaric scene predictions in �gure 3 - 5 arealready showing the feasibility of the approach and thegain of realism by the use of texture mapping.While the model acquisition is still tested o�-line,the prediction part has already a �rst closed-loop im-plementation using a lowest-cost \Voodoo"-graphicsaccelerator with very limited texture resolution. As
the results look promising, we are currently portingthe system to high-end graphics hardware.A major advantage of the texture mapping besidesproviding the details of the scene that are required fore�cient teleoperation, is the e�ective concealment ofinaccuracies. In the above experiments, the pose es-timation yielded an average error in the magnitude of1� 3cm. This accuracy would not permit autonomousmanipulation tasks. But it showed to be su�cient forrealistic image generation, as long as the perspectiveof the synthetic image is similar to that of a real one.
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