
Implementation of a CAN Controller and Monitor Applicationon the Rapid Prototyping Platform REAR?Franz Fischer Thomas Hopfner Thomas KollochAnnette Muth Stefan PettersStefan Rudolph Georg F�arberLaboratory for Process Control and Real{Time SystemsProf. Dr.{Ing. Georg F�arberTechnische Universit�at M�unchenD{80290 M�unchen, GermanyPhone: +49{89{2 89{2 35 50, Fax: +49{89{2 89{2 35 55firstname.lastname @lpr.e-technik.tu-muenchen.deAbstract. Rapid Prototyping is used in embedded systems design as a means to reduce develop-ment time and costs. At an early stage in the development cycle, the speci�cation is implementedin a working protoype, which can be used to test the speci�cation and, in real-time systems, alsothe timing constraints. The REAR Rapid Prototyping Environment was built as an adaptabletarget platform for embedded real-time systems. It supports both the proof that the system meetsall its deadlines, and the automated translation of a system speci�cation into an executable proto-type. This paper presents a CAN controller and monitor application, which was implemented andevaluated on REAR as a �rst non{trivial real{world application with a wide range of timing andcoordination requirements towards the target architecture.Keywords: rapid prototyping, real{time, CAN, hardware software codesign, PCI, FPGA, Statemate1 IntroductionEmbedded hard real{time control systems show growing functional complexity as well as increasing de-mand for short response times and high computing performance. REAR was built as a target systemarchitecture suitable for implementing a working prototype of such a system at an early stage of de-velopment. Using a HW/SW{codesign methodology, the rapid prototyping design process starts with aimplementation independent speci�cation of the embedded system, followed by a classi�cation and par-titioning step. Including a schedulability proof, the design 
ow closes with HW/SW code generation. Inorder to test REAR, a CAN controller and monitor application | an example of a complex applicationwith high real{time demands | was implemented on the REAR rapid prototyping environment.Our target architecture REAR (Rapid Prototyping Environment for Advanced Real-Time Systems)was built based on the multiprocessor architecture framework presented in [4]. In this approach, real{time systems are analyzed and partitioned according to a task classi�cation model. Each class of taskscorresponds to a type of processor best suited in terms of performance and deterministic execution times.The resulting target architecture framework is a tightly coupled heterogenous multiprocessor systemconsisting of the following processing units:High Performance Units (HPUs) are based on standard computer architectures to bene�t fromthe technological advances regarding processing performance. In the actual con�guration the HPU is aPCI slot CPU with Intel pentium processor, large L2{cache and main memory. The impact of interruptsand context switches on predictability is limited by software means. Real{Time Units (RTUs) areoptimized for small tasks with short response times. They use a limited amount of high speed memoryto enhance predictability. The RTU was built using a MIPS R4600 based single board computer withPCI interface. Special Purpose Units (SPUs) are based on processing elements optimized for specialclasses of tasks. Examples include DSP{based SPUs for digital signal and image processing algorithmsor FPGA{based units for processing fast input and output tasks. Currently, REAR possesses one SPU:A Con�gurable I/O Processor (CIOP), consisting of one Xilinx FPGA and additional dual ported RAM.It serves two dedicated functions: It acts as a separate application speci�c processing unit for taskswith deadlines too short to be met in software and it provides a 
exible way of linking the prototypingarchitecture to the embedding process.? This work was supported with funds of the Deutsche Forschungsgemeinschaft under reference numberFa 109/11-1 within the priority program \Rapid Prototyping for Embedded Hard Real{Time Systems."



CTRL

DPRAM

PCI

Ethernet
SCSI

CPU

DRAM

Cache

PCI

FPGA

Console

RTUCIOP

I/O other PCI device

SRAM

CPUPCI PCICPU

SRAM

global bus (PCI)

RTU

HPU

Send, Receive Send, Receive

SLIO 1 SLIO 2

LEDs
Switches Generator

Controller Area Network (CAN)

82 C 150 82 C 150

82 C 250 82 C 250

82 C 200

RTU

82 C 250

Function

CAN Status

HPU

CANview

REAR

CAN Controller Emulation

CANalyzer

82 C 200

82 C 250

CAN Status

82 C 250

CIOP

Fig. 1. (a) REAR hardware architecture and (b) CAN Bus LayoutThe nodes are tightly coupled by a global PCI{bus, which o�ers high throughput and low latency.Figure 1(a) and [2] give an overview of the target system architecture, which is mostly built from o�{the{shelf components.CAN [1] is a serial �eld bus which was developed for use in automobiles. The CAN bus runsa multi-master, message oriented bus protocol in CSMA/CA (Carrier-Sense Multiple Access/CollisionAvoidance) mode. Transmitting prioritized messages to all nodes, the bitwise arbitration is done, usingthe individual message IDs. Based on the message identi�ers, the receivers decide, whether they shouldprocess the message or not. Several cooperating error detection mechanisms guarantee fast system wideerror detection and recovery. CSMA/CA bus access, in combination with message priorities, the shortdata block length (max. 8 Byte) and data rates up to 1 Mbit/s lead to very short message latencies, thusposing challenging demands on the response times of the system, controlling and serving the CAN bus.The following section describes the CAN controller and monitor application developed for testing theREAR rapid prototyping environment. Section 3 provides details of the implementation. Results andexperiences are presented in Section 4, followed by conclusions in Section 5.2 CAN Controller and Monitor Application2.1 Application EnvironmentThe CAN bus environment as depicted in Figure 1(b) was built as a test bed for the application to beimplemented on REAR. Typically, a CAN bus application consists of several sensor and actor units, whichare connected to one or more control units via CAN. The cheapest and therefore often used componentsto connect sensors and actors to a CAN bus are Serial Linked I/O devices (SLIOs). SLIOs do notcontain the expensive high quality oscillators necessary to synchronize themselves to the bus frequency.Instead, they need to be continuously synchronized via regular synchronization messages by at least one\intelligent" bus node. These synchronization messages have to be received every 3800 to 8000 bit times,i.e. 30 ms to 64 ms at a bus frequency of 125 kHz, the highest one the SLIOs allow.For our application environment two exemplary SLIO{based CAN participants with digital and ana-log inputs and outputs were built. Both cards are based on the Philips 82C150 SLIO device. As aworking CAN bus needs at least two fully functional CAN devices (one sending messages and the otherone responding with acknowledgments), two commercial PC based CAN participants with monitor andanalyzing software were connected to the bus additionally. Details on the realized CAN environment canbe found in [8].2.2 Application Functions, Classi�cation and PartitioningController and monitor functions From the user's point of view, the application performs two functions:The CAN bus monitor allows the user to send, receive and �lter CAN messages, to monitor activity onthe CAN bus and additionally to control the other parts of the application (start, stop, initialization,. . . ).



The SLIO controller provides an interface to the SLIO cards. This includes monitoring the state of the\sensors" as well as the possibility to set new \actor signals". For both user level functions, the lowerlevels of the application have to route the CAN messages to and from the CAN monitor and the SLIOcontroller and have to ful�ll all functions of a complete CAN bus participant [6].Task Classi�cation The individual tasks to be processed can be classi�ed according to the task clas-si�cation model presented in [4]. In this model, the attributes deadline of the task and complexity ofthe function to be performed are used to allocate the tasks to the best suitable type of processing unit(here: HPU, RTU and CIOP). At message level, the complexity of the tasks | message identi�cationand message frame generation, CRC checksum generation, error protocol functions, data handling | ismedium to high. The timing constraint here is identical with the length of one CAN message, 44�108 �s(44 control and up to 64 data bits, at an assumed data rate of 1 Mbit/s). The controller tasks at bitlevel | transmission of the message bits, CRC checksum error detection, bit stu�ng and destu�ng |need to be �nished in the worst case before the start of the next message bit. This results in a timingconstraint of 1 �s. The complexity of these tasks is medium. Bitwise arbitration | i.e. transmission isstopped before the next message bit if a station sending a message with higher priority ID is detected onthe bus | and synchronization of the sample points while receiving the message bit stream (bit timing)are tasks with timing constraints below bit level. The complexity of these tasks is low to very low.Task Allocation The tasks at and below bit level, with timing constraints below 1 �s, can only beimplemented in hardware, on the Con�gurable I/O Processor. Tasks at message level (deadlines below1 ms) can be alternatively implemented on the RTU. In a �rst approach, the entire CAN controller (datalink layer and physical layer) was implemented on the CIOP. The message routing functions and theinterface to the CAN controller on the CIOP were implemented on the RTU, as well as the generationof the periodic SLIO calibration messages (one every 30 ms). SLIO controller and CAN monitor, whichincluded also graphical user interfaces, were implemented on the HPU (see Figure 2(a)).
global PCI busexpansion port
using theusing the RTU’s

CAN Monitor

CAN Panel

CAN bus

Control & Status

Message Router

HPU

Physical Layer

CAN Application

Data Link Layer

CIOP

data transmission

RTU

data transmission

Transmit

Buffer

Buffer 1

Receive

Registers

Controller

Buffer 0

Receive

Panel

Monitor

CIOP RTU HPU

P2

P3

P4

CAN

CAN

LINUX

CAN

CAN

Panel

SLIO 2

SLIO 1

can_port_out

can_port_in

slio_control(0)

slio_control(1)

can_isr

can_send

can_control

slio_calibrate

can_info

Console

CAN

Panel

P1

DPRAM

RTEMS

XC4025E

Fig. 2. (a) Task allocation and communication; (b) CAN monitor tasksIn a second version, some CAN controller functions from the message level were moved to the RTU,while maintaining the ability to run the bus at 1 MHz. With a reduction of the bus frequency, the timingconstraints on the application can be scaled. This makes it possible to further explore the HW/SW{boundary.3 Implementation on REARAfter mapping the tasks identi�ed above on REAR's di�erent processing units, they were implementedusing a CASE tool chain for the hardware part, i.e. the tasks mapped on the CIOP, and handcoded Cprograms for the software parts, i.e. the tasks to be run on the RTU and the HPU. In this �rst approachthe main goal was to gain experience in implementing and debugging a distributed application derivedfrom a single speci�cation on REAR.



3.1 CIOPAs mentioned above, two versions of the CAN controller were realized and tested on the CIOP. The �rstdesign includes all the basic CAN functions (transmission and reception of complete message frames,message frame handling, error handling, CRC check, acceptance check) and is similar to the 82C200stand{alone basic CAN controller [6] regarding functionality as well as programming model. Addition-ally a limited design was developed to further explore the hardware/software design space. In the lattercase CRC check and generation as well as message frame generation are moved to software. Both imple-mentations are tested successfully on a CAN bus at the maximum bit rate of 1 Mbit/s.In the automated design process for the HW{part the CAN controller was speci�ed and simulatedusing Statemate. This tool also generated the VHDL{Code, which was synthesized into Xilinx netlistsusing Synopsis and then �tted into the target technology FPGA using Xilinx XAct.CAN Controller Structure The CAN controller was designed in accordance with the \Basic CAN" spec-i�cation. Hence, it provides one send and two receive bu�ers, in combination with acceptance checks formessage �ltering. The main functions of the implemented CAN controller are distributed in three layers.Physical Layer The physical layer essentially ful�lls the bit timing, synchronization and bit stu�ng.Using the bit timing parameters and the clock dividing coe�cient, the length of a bit interval andtherefore also the transmission frequency of the CAN bus is de�ned. This layer is controlled by the datatransmission layer via several control 
ags. The message data is transferred bitwise (serially) from thedata transmission layer to the physical layer. Finally the physical layer generates three error 
ags whichinform the data transmission layer that a synchronization, stu�ng or con�guration error has occurred.Data Transmission Layer The modules of the data transmission layer are the central control unit, cal-culation of the position in the message frame, error handling and CRC check. The central control unitswitches the state according to each of the transmission conditions - i.e. send, receive, idle and error. Itperforms the arbitration, the format conversion, i.e. the handling of frame bits and the CRC sequence inthe bit stream, and controls the physical and the communication layer. As the data transmission layer�lters all information not relevant for the host controller, the exchange of data to the upper layer isreduced to the message identi�cation, the remote request bit, the data length code and the data.Communication Layer This layer implements the user and the message interface. The user interface usesfour registers for command and status information and for con�guration data. In the message interfacethe data is read from the message bu�ers, which are located in the DPRAM, serialized, sent to the datatransmission layer and vice versa. Additionally a control unit sets the message related 
ags accordinglyand also performs acceptance �ltering.Reduced CAN Controller In the limited design of the reduced CAN controller, the data transmissionlayer does not insert nor remove frame bits, contains no CRC handling, indicates no errors and does notcope with the acknowledgment of messages. Frame bit and CRC handling were transferred to software,the rest of the missing functions are neglected by now.3.2 RTUThe tasks to be implemented on the RTU were message routing, programming the CAN controller onthe CIOP, and sending the SLIO calibration messages. The RTU runs the real-time operating systemRTEMS. The tasks were hand coded in C as threads running on top of RTEMS, communicating viamessage queues. The task structure implemented on the RTU is shown in Figure 2(b).The CAN controller signals the arrival of a new message with an interrupt, which is caught by the in-terrupt service routine can isr. The can isr reads the message from the DPRAM, frees the correspondingmessage bu�er and writes the message to the received messages queue. The task can port out receivesthe message at this message queue and passes it to the ports P2, P3 and P4, using the IPC{functionsdescribed in 3.4. Messages to be sent over the CAN bus are bu�ered in a second queue, placed there byseveral tasks: The task slio calibrate, which is periodically activated by the RTOS, sends the SLIO cali-bration messages. The tasks can port in and slio controlf0,1g receive their messages to be sent at portsP2 resp. P3 and P4 of the IPC. The task can control starts, con�gures and resets the CAN controllerusing the control registers of the FPGA, while the task can info regularly outputs information from theCAN controller's status registers on the RTU's console.



3.3 HPUThe CAN monitor application and theSLIO control panels are implemented onthe HPU. As there are no hard real{time requirements to be met for display-ing data, in this case no real{time oper-ating system is necessary and Linux wasused as operating system. Both applica-tions read and write messages from andto the already mentioned IPC ports. Inthe CAN monitor GUI (Fig. 3), the en-tire CAN application can be initialized,started and stopped. All received CANmessages can be displayed or �ltered, ifthe monitor is con�gured correspondingly,and CAN messages can be sent. The SLIOcontrol panels display and control the con-tents of all SLIO registers, as well as thestate of the switches and LEDs. Fig. 3. CAN Monitor GUI3.4 Interface and CommunicationA uniform IPC layer providing support for inter and intra unit communication is currently being developed[3] in order to simplify partitioning and distribution of application threads to di�erent processing units.The basic idea for the implementation of inter unit message queues is to use a shared memory area fora message bu�er pool and the send and receive queues. In order to send a message, the application taskallocates a message bu�er, prepares the message and enqueues the message bu�er in the receivers receivequeue (Fig. 5(a)). The receiving task in turn then processes the message and afterwards deallocates thebu�er, which then is available for allocation again. This communication scheme is based on the followingproperties of the processing units (PU) and the global bus system of the REAR target architecture:{ Most units can be master on the global bus in addition to their function as slaves (targets).{ On the global bus all units share a common physical address space.{ At least a portion of a processing unit's memory is accessible to other bus masters.{ A PU can generate interrupts on a remote unit by accessing prede�ned addresses on the global bus.{ If the global bus or some units on it do not support an atomic \test{and{set" operation (which isusually the case), at least one unit1 should provide an e�cient spinlock or semaphore mechanism toavoid excessive synchronization e�ort when accessing shared communication data structures.In this example, inter node communication between RTEMS threads and Linux processes on the HPUwas based on a simple IPC module as presented below. For local IPC on the RTU RTEMS message queueswere used, while communication with the CIOP threads was realized by reading and writing registersand regions of the dual ported RAM as described in the following subsection.Communicating with the CIOP For this application the CIOP's interface to the RTU's 32 bit wide localbus was used (Fig. 1(a)). It allows word access to a maximum of 32 registers implemented within theFPGA and to one side of the dual ported RAM, organized as 8K� 32bit. The other side is accessible bythe FPGA as 16K� 16bit.The CAN controller's communication layer implements four registers for con�guration, control andstatus information. To receive a message from the CAN bus, the software side has to wait for one ofthe receive message 
ags to be set by the controller either by polling or by use of interrupts. Afterwardsthe message can be copied from the according receive bu�er (within the dual ported RAM), which isfreed by setting the respective release bu�er 
ag. When sending a message, the completion of a previoustransmission has to be awaited before the transmit request 
ag can be reset. After the controller hasgranted access to the transmit bu�er, the new message can be copied to the transmit bu�er and thetransmission request can be set.1 on the Real{Time Unit a CPLD implements 8 hardware spinlocks with a single read access being equivalent tothe \test{and{set" and a write access clearing (freeing) the spinlock again



Communication between the HPU and the RTU For communication between RTEMS threads on the RTUand Linux processes on the HPU, a simple module for message based IPC provides services to establisha communication port and to send messages to and receive messages from the port.The port encapsulates information concerning the sender and receiver threads or processes and point-ers to a pair of FIFO queues for the messages. The queues are located within the RTU's DRAM, whichis accessible by the HPU via PCI bus. A queue consists of the in and out indices and a con�gurable �xednumber of message bu�ers.int port_sndmsg(port_t *p, msg_t *m){ while (!queue_putmsg(p->sq, m))PORT_WAIT(p, NOT_FULL);PORT_SIGNAL(p, NOT_EMPTY);return(SUCCESS);}
int port_rcvmsg(port_t *p, msg_t *m){ while (!queue_getmsg(p->rq, m))PORT_WAIT(p, NOT_EMPTY);PORT_SIGNAL(p, NOT_FULL);return(SUCCESS);}Fig. 4. Simple port send and receive functionsThe basic algorithm for receiving messages is as follows: queue_getmsg() checks whether a message isavailable and if so, copies the message from the queue's to the thread's message bu�er and returns TRUE.A receiving thread will wait for a message to arrive and then notify the remote side of the receive queuebeing not full by triggering an interrupt. queue_putmsg() performs the same function vice versa. On theRTU, the queue ISR handles the noti�cations from the HPU side and propagates them as RTEMS eventsto any waiting thread, which in turn is unblocked and re{checks its receive or send queue. On the HPU,access to the queue memory area as well as triggering and handling noti�cation interrupts is supportedby a UNIX device driver. Results from a �rst performance evaluation are discussed in Section 4.2.

rp_port_sendmsg rp_port_rcvmsg

rp_port_sendmsgrp_port_rcvmsg

rp_port_sendmsg

rp_port_sendmsgrp_port_rcvmsg

rp_port_rcvmsg

Shared Memory

Applikation n

Applikation 1

special file

data via device

access to queue

"read ready"

file to become

Queue Area

causes device special

per port

Side

RTEMS

from

Interrupt

side

Linux

from

Interrupt

Task 1

Task n

ISR
rp_port

RTEMS Linux

one queue pair

events "queue not full",

"queue not empty"

#n-1

out

in
out

in

#0

#0

#n-1

ISR forwards Interrupts

as RTEMS-events to

waiting tasks

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250

ex
ec

ut
io

n 
tim

e 
[µ

s]

message user data length [bytes]

RTEMS receive
RTEMS send

Linux receive
Linux send

Fig. 5. (a) simple message queue implementation and (b) performance of implementation4 Results4.1 Resource UsageTo give an impression of the complexity of the CAN application, this section describes the characteristicsof the CIOP utilization and code and data sizes of the RTU software implementation.As mentioned above, two di�erent solutions of the HW part of the CAN application were implemented.The smaller one, called \RULIM" (because of its limited functionality) reached a FPGA chip utilizationof about 61% (631 of 1024 maximum available XC4025E CLBs). It was possible to implement \RULIM"



using the smaller XC4013E FPGA chip, with a maximum capacity of only 576 Con�gurable Logic Blocks(CLBs).The fully featured CAN controller implementation (called \RUCAN") reached an overall chip utiliza-tion of about 88% of the CLB resources (909 of 1024 available CLBs), although only 479 of the 2048available CLB 
ip 
ops (23%) were used. The reason for this is the coarse structure of the can controllersystem model. Implementing the physical, data link and communication layer in only three main ac-tivities, Statemate is forced to synthesize three main VHDL processes. These huge state machines areresulting in very complex state transition conditions, which were mapped to the function generators inthe CLBs. A further drawback of this solution is, that most of the CLB resources were needed to routethe connections between the three main VHDL entities.These numbers indicate, that a more �ne granular system structure (activity chart structure in State-mate) would be easier to place and route and therefore would free some chip resources for further appli-cation features. Further overhead is caused by the ine�cient tri{state register implementation. A handoptimization of often reused model components would be worth while, because these system componentscould be reinstantiated in future designs. Nevertheless, comparing the Xilinx XC4000 FPGA series withthe newer XC4000E, the chip utilization reached is near to the optimum | achievable with an automatedtranslation of a system speci�cation to a FPGA con�guration �le.The current CAN controller implementation uses only 3� 16 Bytes of the DPRAM for the messagebu�ers. However, the DPRAM could be used to store additional CAN bus debugging information, or toimplement more elaborate, table based message �ltering. The application threads on the RTU compiledto 14 KByte program code (text segment) and less than 4 KByte initialized and uninitialized data (dataand bss segments). Linked with the necessary RTEMS modules (52 KByte text) and the C library(43 KByte)2, the executable �le included 109 KByte text, 13 + 11 KByte data and used 224 KByteRTEMS workspace during execution for RTEMS objects, thread stacks (8 KByte each) and the heap(64 KByte).Taking into account the size of the RTU's SRAM (512 KByte), this means that already this handcoded, medium size application almost �lls the available fast memory. The planned automated codegeneration usually results in even larger code and data sizes. Consequently, a resource optimization ofRTEMS has to be considered and/or the size of the SRAM has to be increased.4.2 IPC performanceFor a �rst evaluation of IPC performance, the port functions described above were instrumented towrite time stamps to a memory bu�er.3 The timing test application included one Linux process to send amessage to a RTEMS thread, which after being unblocked and receiving the message, sent the unmodi�edmessage back to the now blocked Linux process. I.e. the receive operations on both sides were blockingand involved processing an interrupt and a context switch, while the send could be performed without thesender being blocked. Figure 5(b) shows the measured (average) execution times of the port_sndmsg()and port_rcvmsg() calls on RTEMS and Linux, respectively.The graph indicates clearly that the nonblocking send call on RTEMS includes nearly no overheadexcept for the copy operation, while the send on the Linux side involves even in the nonblocking caseone ioctl system call. The system call takes approximately 16 �s. Due to interrupt and context switchoverhead the blocking receive functions take much more time than the nonblocking sends. The timefrom the noti�cation interrupt to the end of the receive call involves in both cases interrupt processing,unblocking the waiting thread (by rtems_event_send()) or process (wake_up_interruptible() withinthe rapid driver) and the context switch to the receiving thread or process.The next implementation will take into account these results. E.g. one system call could be saved inthe receive operation on Linux by moving IPC functionality into the driver. This is also necessary formutual exclusion if more than one process is allowed to access a port.2 this included functions like printf(), which were used only for debugging purposes3 The time stamps were taken from the RTU's MIPS Orion Processor (R4600), which includes a counter registerincrementing at half the pipeline clock frequency (50 MHz in our case); the overhead of writing the time stampto DRAM is below 0:2 �s (10 system clock cycles).



5 ConclusionsWith the CAN controller and monitor application it was shown that it is feasible to implement, in a shortspan of time, a working prototype of a complex real{time application on the target architecture REAR.The implemented system met all the requirements posed by the planned CAN controller and monitorapplication. Of particular interest in the context of real{time systems are guaranteeable response times:The CAN application on REAR met all the deadlines of the CAN protocol and was therefore able tocommunicate with the commercial CAN bus participants at bus frequencies up to the CAN bus maximumof 1 MHz without message loss. It was possible to integrate the SLIO components and to keep them activeby periodic calibration messages at the SLIO maximum frequency of 125 kHz. The RTU running RTEMSproved its �tness to guarantee deterministic sending intervals of these messages, in this case exactly 30 ms.Future work will concentrate on the one hand on improving the actual design, to further explorethe characteristics and limitations of the di�erent hardware/software layers, e.g. adding more messagebu�ers, using a DPRAM table for message �ltering, providing access to the physical layer and a bit timecounter for more detailed monitoring functions.On the other hand it proved to be a time consuming task to model the CAN controller's registers aswell as to code the software connecting the higher level application tasks to that programming interface.This overhead results from the completely separated development of hardware and software and willbe inherently avoided in the planned rapid prototyping development process, which starts from onespeci�cation for the entire system. The fundamental prerequisite for this to work will be the availabilityof e�cient reusable IPC components realizing also the communication between tasks implemented inhardware and in software.AcknowledgementsThe authors want to thank the graduates and students Christian M�uhlbauer [5], Robert Pinzinger [7],Gunnar Larisch and Andreas Michael for their great personal e�ort. We greatly appreciate the supportof Softing GmbH, M�unchen, in contributing the CANalyzer soft{ and hardware.References1. Konrad Etschberger et al. CAN Controller{Area{Network, Grundlagen, Protokolle, Bausteine, Anwendungen.Hanser Verlag, 1994.2. Franz Fischer, Thomas Kolloch, Annette Muth, and Georg F�arber. A con�gurable target architecture forrapid prototyping high performance control systems. In Hamid R. Arabnia et al., editors, Proceedings of theInternational Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA'97),volume 3, pages 1382{1390, Las Vegas, Nevada, USA, June 30 { July 3 1997.3. Franz Fischer, Annette Muth, and Georg F�arber. Towards interprocess communication and interface synthesisfor a heterogeneous real{time rapid prototyping environment. In Proceedings of the 6th International Workshopon Hardware/Software Co{Design | Codes/CASHE '98, pages 35{39, Seattle, Washington, USA, 15{18 March1998. IEEE, IEEE Computer Society Press.4. Georg F�arber, Franz Fischer, Thomas Kolloch, and Annette Muth. Improving processor utilization with atask classi�cation model based application speci�c hard real{time architecture. In Proceedings of the 1997International Workshop on Real{Time Computing Systems and Applications (RTCSA'97), Academia Sinica,Taipei, Taiwan, ROC, October 27{29 1997.5. Christian M�uhlbauer. Konzeption und Implementierung einer Schnittstellenkarte mit programmierbaren Logik-bausteinen zur Erweiterung einer Rapid{Prototyping Plattform, 1996. Diplomarbeit (masters thesis) amLehrstuhl f�ur Prozessrechner, Technische Universit�at M�unchen.6. Philips Semiconductors, Eindhoven, The Netherlands. PCA82C200, Stand{alone CAN Controller, ProductSpeci�cation, 1992.7. Robert Pinzinger. Speichersubsystem und 
exible Proze�anbindung f�ur einen Rechnerknoten eines Rapid{Prototyping{Systems, 1997. Diplomarbeit (masters thesis) am Lehrstuhl f�ur Prozessrechner, Technische Uni-versit�at M�unchen.8. Stefan Rudolph. Modellierung und Realisierung eines CAN{Bus Controllers als Testszenario der Rapid Pro-totyping Umgebung REAR, 1997. Diplomarbeit (masters thesis) am Lehrstuhl f�ur Prozessrechner, TechnischeUniversit�at M�unchen.


