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ABSTRACT

Human grasping still outshines its robotical counterpantgh
respect to accuracy, speed, robustness, and flexibilitgrittty-

ing to develop a robotical hand-eye system, it is therefary o
natural to examine the results of neuroscience. In this pape
examine the human hand-eye system concerning motion plan-
ning and control using robotical categories and strategig®m

the results, we derive a system concept for an anthroponorph
robotical hand-eye coordination.

1. INTRODUCTION

Using sensor information to control robots has become a very
popular field of research, since it promises to lead to thegdes
of autonomous robotdn contrast to their preprogrammed indus-
trial counterparts, autonomous robots must be able to diglal w
unexpected events such as obstacles or misplaced objdtits. T
is especially important fopersonal robotdbecause they operate

in an environment that is not adapted to the needs of machines

Nowadays, vision is by far the most commonly used sensor be-
cause CCD cameras are cheap and easy to use. Additionally,
vision is an important human sense, and, therefore, thenvgo

tion received by the robot's vision system is easier for tivaan
operator to understand.

In the field of visually controlled robot manipulators, raseh
has mainly focussed on the control part, circumventing tbep
lems of extracting and interpreting image features by uaitig
ficial features such as blobs or by selecting objects andriesit
manually. This resulted in a large number of impressiveerv
ing methods which cope very well with a specific problem (for a
survey see [8], for a collection of articles on state-of-#nere-
sults [23]). Yet, versatile hand-eye systems that coulcibeled
“autonomous” or “intelligent” still seem to be a distant oa

On the other hand, human grasping still outshines its reboti
cal counterparts with respect to accuracy, speed, rotasaral
flexibility. When trying to develop a robotical hand-eye sys
tem, it is therefore only natural to examine the results freaa-
roscience. Therefore, we started a joint research projébt w
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is to use information gained from the analysis of human reach
ing and grasping to design and implement a robotical haed-ey
system.

The principal idea is to use a set of modules, each speadahize
different phase or situation that occurs when reachingriasta
ject. In thevision partof the system, such modules are charged
with tasks such as object detection and recognition, pdsaas
tion, visual tracking, and motion prediction. This modwsamuc-
ture is supported by studies from the neurosciences thetides
selective disorders that result from accidents. Mai etaalek-
ample, describe the case of a patient suffering from atéxés,
inability to coordinate voluntary muscular movements, who-

not grasp stationary objects but can catch moving ones [28].
Goodale and Servos present evidence that visual mechafusms
perceiving and grasping an object are functionally andalsur
distinct [14].

Numerous neurological studies also suggest that objests ha
multiple cerebral representations that contain the in&irom
relevant for different tasks. In addition to the classicatidc-
tion between object identification (“what”) and the localibn

of an object (“where”) [30], Jeannerod gives evidence ferek-
istence of a “pragmatic representation” that encodestaibates

of an object that are necessary for controlling a movement to
wards it [26]. This principle shall be employed in our rolati
hand-eye system by using a hierarchical object data-base co
taining sensor- and task-specific information about theabjto
grasp [21]. This object data base providesrtiedel knowledge
necessary for hand-eye coordination together with inféiona
about the system’s configuration stemming from calibrapian
cesses.

In therobotical partof the system, which is responsible for mo-
tion planning and control of the robot manipulator, visudbi-
mation must be translated into suitable control sequerwdbé
manipulator. Here, two main approaches can be found in liter
ature: Open-loop systendetermine the object’s pose from the
visual input as accurately as possible and then move the robo
appropriately (“look-then-move”). On the other handsual
servoing systemsse a continuous feedback of visual informa-
tion to guide the robot (“look-and-move”). The common view i
that these two approaches are mutually exclusive. A closdr |
at the results from neuroscience reveals, though, thatrimahu
grasping both strategies are combined [37].

This lead us to propose a hybrid structure for the robotieal p
[20]: First, the object to grasp is identified (for exampleitsy
silhouette [2]) and its rough 3D position is determined. sThi



is used to generate a trajectory that brings the grippertheo
vicinity of the object. The remaining gap is closed by mirgmi

ing the distance between gripper and object in the image of a
free-standing camera.

In this paper, we will extend this concept. Sec. 2 contains a
survey of state-of-the-art robotical hand-eye coordoratind
formulates categories by which hand-eye systems can bs-clas
fied. These categories are then used in Sec. 3 to interprentur
knowledge about the human hand-eye system. In Sec. 4, these
results are integrated into a system concept for an anthropo

phic robotical hand-eye system as a first step towards ingriem
tation.

2. ROBOTICAL HAND-EYE COORDINATION

Following to the taxonomy by Sanderson and Weiss [33], servo
ing architectures can be divided into four major categoaies
cording to two criteria:

e Visual information: The categories ofmage-basedcand
position-basedespectively concern the level of abstraction
of visual information that is used for robot control. In the
former, image features are used directly, while in the fatte
they are converted to information in Cartesian coordinates
(pose estimation).

e Control architecture: According to whether an internal
feedback loop for joint level control is present or not, sys-
tems fall into the categories dfynamic controlnddirect
control.

In order to establish a more detailed distinction betweardha
eye systems, we propose to use four additional criteria:

e Hand-eye configuration According to whether cameras
are mounted on the manipulator or not, we speakyefin-
handor free-standingcamera systems.

e Visual control strategy: Visual information can be used
for open-loop [pok-then-move or closed-loop control
(look-and-move

e Focus of attention While endpoint-open-loopsystems
only use visual information of the object to grasp,
endpoint-closed-loopystems observe both the target ob-
ject and the robot manipulator.

e Camera configuration: One can distinguisimonocular
andbinocularvision systems.

Hand-eye configuration

Robotic hand-eye systems can first of all be classified aecord
ing to their physical configuration: leye-in-hand camera sys-
tems, cameras are mounted on the robot arm. If the camera is
directly fixed to the manipulator tool its position relatitethe
end-effector is known and constant. If the camera is mounted
onto another limb of the robot arm, at least one joint is $é&da
between the camera and the tool. Hence, the position is geton
constant, but depends on the current angle of the interteedia
joints. Since the target object is automatically zoomedlevhi

the gripper is approaching it, the eye-in-hand camera syktes

the advantage of a continuously increasing resolutiors tmi
proving its accuracy. Disadvantages of this configuratiertlae
effects of perspective, mechanical vibrations of the malaipr,

and the problem that, in the final phase of reaching, thettatge
ject may leave the field of view of the camera. Furthermore, th
pose of the target relative to the camera changes while the ma
nipulator (with the camera) is moved. Therefore, evenatatiy
objects have to be tracked in the image. In recent yeard; ligh
weight video cameras have reduced the problem of additional
weight that changes the robot’s dynamics. Eye-in-hanceeyst
are employed for example in [12, 11, 7, 5, 38, 9, 10, 11, 3].

In free-standing camera systemgsee for example [17, 22, 25,
1]), cameras are usually fixed in the workspace, apart fram th
robot. Thus, the image of a stationary object is not alteeithé
movement of the manipulator. Contrary to the eye-in-ham-ca
era systems, the target object can easily be kept in the field o
view, yet the target may become occluded by the gripper. Pos-
sible extensions to this approach are, first, the use of @sner
with zoom lenses to zoom into the target object, or secondly,
to use cameras that are free-standing but not stationartheln
latter case, the cameras can be moved in a way that occlusion
is avoided and spatial resolution is improved (for examples
[39, 35].

Visual control strategy

In the field of visually controlled robot manipulators, twaim
approaches can be distinguished: The first approach prepose
sequential structure, with an open-loop between hand aed ey
The termlook-then-move signifies the separation between the
act of “looking” and the act of “moving” the gripper: first,eh
object’s position is determined from the visual input asuacc
rately as possible, then the robot is moved manipulatorappr
ately. This approach lends itself very well to integratiomman-
ufacturing, with the visual input replacing the knowleddmat
the exact position of the parts to handle. However, the acgur
of the operation depends heavily on the accuracy of the Visua
sensor, the manipulator, its controller, and on the sesattot
calibration. A classical look-then-move hand-eye systeifoi
example described in [3]; Allen et al. close the loop to traok
grasp a moving object, yet in the case of stationary objbeis t
system falls into the category look-then-move [1].

Most robotical hand-eye systems cited in the following ifiatib

the category oflook-and-move or visual servoing systems.
They use a continuous feedback of visual information to guid
the robot. In these systems, accuracy is increased not by us-
ing more refined and expensive subsystems but by closing the
control loop with visual information. This approach funtirere
promises to lead to calibration-free systems. Howevertaltiee
closed-loop control, the trajectory of the movement is matvikn

in advance. Thus, the target may become invisible in thessour
of the motion. For a introduction to visual servoing systaas
[24], recent examples can be found in [6, 9, 10, 17, 22, 25].

Control architecture

Hand-eye systems can be further distinguished by theiralont
architecture Dynamic control systems use a hierarchical struc-



ture; the robot is internally stabilized with the help of @wed
control loop which employs encoder feedback from the rabot’
internal joint angle sensors. This separation of the visoal
troller from the robot kinematics and dynamics permits &wi
the robot as an ideal Cartesian motion device which is not af-
fected by problems like oscillations and singularities.other
words, the visual controller can assume idealized axis myna
ics, because of the high sampling rates of the internal fegdb
loop. This simplifies the control design problem considitab
Since many robots provide an interface for Cartesian inputs
incremental position commands, implementation is simplé a
portable.

Direct control systems have no hierarchical control architecture.
The visual servo controller takes over the job of the intemoiaot
joint controller, computing the state of the joints dirgdilom

the visual information. However, the relatively low samgli
rates of the vision process make direct visual control ofteto
end-effector an extremely challenging control problem.ugh
current hand-eye systems use a hierarchical control steict

Visual information

Having detected the target object in the video image, the-que
tion arises which visual information is to be used to contiel
robot. Theposition-basedapproach first estimates the position
of the target object relative to the camera in Cartesiandioor
nates, based on a geometrical model of the robot, its rebchab
work space (task space), and the target object. The ernaalsig
for the robot controller is therefore defined in Cartesianreo
dinates. As most robots provide a Cartesian interface and be
cause operating in 3D-space can be understood intuitiyetlyed
system designer, programming is facilitated. However,»an e
act determination of the pose of the object to grasp reldtve
the manipulator requires an accurate hand-eye (grippeec
calibration and a precise pose estimation. Look-then-nsgge
tems usually are position-based; position-based visuabse
systems can be found in [1, 10, 35, 38].

Inimage-basedalso calledeature-basedystems, the error sig-

nal is defined in terms of image features, and thereforeéstijyr
measured in the image coordinate system. Therefore, camput
tional costs are significantly reduced and the system besome
less sensitive to errors in camera calibration and systeit mo
elling. However, the computation of robot motion on the ba-
sis of image features takes place in a less intuitive prigject

of the task space, depending on the chosen image features and
the method determining the distance between the features. A
this process is non-linear and its parameters highly cated| it
presents a significant challenge to control design and leagpr

to be difficult to analyze theoretically. Pioneering worktire

field of image-based visual servoing stems from Weiss [36}; f

ther examples for image-based hand-eye systems can be found
in[12,7,9, 32,17, 22, 25].

Hybrid system which combine position-based and imageebase
control are described in [5, 6].

Focus of attention

Systems can be further classified regarding their focustehat
tion: Endpoint open-loop systems (EOL) only observe the tar-

get object and get no visual information of the actual positi
of the manipulator. Determining and controlling the pasitdf
the gripper is exclusively based on a combination of joirglan
sensors, internal knowledge of the end-effector kineraaditd
on the camera-object calibration. Thus, the positioniraieacy
of the system depends heavily on the accuracy of the cabbrat
Eye-in-hand systems usually employ this approach.

Endpoint closed-loopsystems (ECL) compensate hand-eye cal-
ibration errors by observing both the target object and thetr
end-effector. However, the simultaneous tracking of thigeta
and the gripper places constraints on the field of view of {ise s
tem. Visual servoing systems with free-standing camerastlyno
use this approach.

Note, that this categorization only applies to systems dloi-
ally grasp objects; in [9, 7, 10, 12, 11, 6], systems are desdr
that visually position a camera relative to an object.

Camera configuration

Finally, hand-eye systems differ with respect to the nundier
cameras employed. The principal problem when using only one
cameraihonocular system) is that depth information is lost due
to the projection of the scene onto the image plane. Therefor
additional information is needed to determine the pose @ftan
ject or to guide the manipulator in 3D. This information ctans
from a geometrical model of the object to grasp (see e.g5J3, 3
from other images taken at a different time (e.g. [10, 9])atoa
different place (e.g. [19, 31]. Eye-in-hand systems ugusth-
ploy only one camera because the additional weight on the ma-
nipulator changes its dynamics.

Binocular systemsemploy two cameras, thus are able to recon-
struct the depth information which is lost in the projectiain
the scene on the image plane without the use of a geometrical
object model. Position-based systems can determine dépth v
triangulation; in image-based systems, depth informagan-
tegrated implicitely by driving the error signals in two iges

to zero. The disadvantage of binocular systems is thatreatu
extraction has to be performed for two images at a time; addi-
tionally, it must be assured that the features extracteldnwo
images correspond to the same physical features of thetobjec
Most free-standing hand-eye systems use two cameras.

3. HUMAN HAND-EYE COORDINATION

After formulating criteria by which hand-eye systems can be
classified, we now examine current models of the human hand-
eye system and try to fit them into the robotical categories. R
maining on a high level of abstraction helps to avoid the @b
that the human system cannot easily be copied at functianal o
even algorithmical level because of the different “hardatar

Hand-eye configuration

Regarding this criterion, obviously no literature surveyniec-
essary. The human hand-eye system employs a free-standing
camera system and makes use of active vision methods such as
vergence and focus control, visually guided saccades aadtbm
pursuit eye (and head) movements.



Visual control strategy

In 1899 already, Woodworth proposed that a reaching movemen
consists of two components: &imitial impulse propelling the
hand towards the targetand a“current control to home in on
the final position via successive approximatiofi37]. The for-
mer was found to be dependent on visual information only in
the beginning, to program the movement; the latter depends o
primarily visual feedback during motion. In robotical testis
means that both look-then-move and look-and-move stiegeqgi
are employed.

Woodworth’s results stem from experiments that analyzed th
accuracy of reaching movements with varying availabilityie
sual information. In contrast, Mai and Marquardt examirtes t
kinematical difference between what they call “automataai
“controlled” movements [27]: In an experiment originallg-d
signed to investigate writing disabilities, test persomesfast re-
quired to write the letter “a” for several times with normatitw
ing velocity. Then, the task is to redraw the letters. Und®¥ n
mal writing conditions, the acceleration profiles for eaettdr
are smooth, velocity profiles are bell-shaped; when redrgwi
the letter, though, the acceleration profile shows rectiaecel-
eration and deceleration phases corresponding to a madtiqul
velocity profile.

The notion that the required accuracy of a movement affects
the corresponding trajectory was supported by Milner [2Bbw
measured the trajectories of human subjects inserting af@n

a hole. For small holes and therefore high precision require
ments, the velocity profile showed small oscillations atehe
corresponding to a sequence of submovements. Burdet fsesen
a detailed model of reaching movements which explains these
experimental results [4].

Control architecture

As estimates of the human “visual reaction time”, that istifme
after which changes in a trajectory corresponding to visyait
appear, vary betwee)0ms and250ms, it is not surprising that
models for visually controlled arm movements propose alhier
chical control architecture, thus falling into the catggof dy-
namic control systems. In [4] for example, the internal fesrk
loop is explained by the visco-elasticity of the muscles.

Visual information

It is still an open question whether the human hand-eye syste
converts the visual information directly into motor progisgor
via an intermediate reference frame which is similar to €san
space. Many models of human reaching movements that suc-
cessfully explain measured trajectories assume that sualy
determined target location is given in Cartesian cooreémd],
thereby describing position-based systems. On the othet, ha
Stein presents evidence for image-based hand-eye cotodina
by describing a distributed system of transformation atgors
that directly convert sensor in motor information and vieesa
[34].

Focus of attention

Goodale et al. prooved that observation of the hand is not re-

quired to be able to adjust movements in the case of target dis
placements [15]. They also showed that one does not even need
to perceive the displacement. Yet, vision of the hand before
during motion significantly increases the accuracy of rearch
movements [13].

Camera configuration

When closing one eye and trying to grasp an object, everybody
will confirm that binocular vision is not a prerequisite farcs
cessful hand-eye coordination. However, Goodale and Servo
showed that the availability of binocular cues before oirtua
movement increases its accuracy and efficiency [16].

Summarizing, results from neuroscience indicate thatdondmn
hand-eye coordination both open-loop and dynamic closep-|
visual control strategies are employed, the latter beinmpitant

if a high endpoint accuracy is required. This also applieth¢o
criteria focus of attention and camera configuration: Theemo
complex alternatives endpoint-closed-loop and binocuikion
are not necessary but increase the efficiency and the predsi
movements. The question whether visual imformation isstran
formed into Cartesian coordinates is not answered comghgi
yet.

4. SYSTEM CONCEPT

The former sections showed that human strategies for hgamd-e
coordination can be described in robotical terms. Unfately,

two facts prevent us from directly copying the human system:
First, some questions remain open, such as the form of visual
information used for motion control; in these cases, we a fre
to choose a suitable robotical strategy. Secondly, dueetdith
ference in “hardware”, parts of the human hand-eye systeyn ma
not be realizable on a robot. This leads to decisions baséueon
current state of technology.

Hand-eye configuration

In order to mitigate the problem of different hardware wenpla
to implement and test algorithms on the robot system depicte
in Fig. 1, which consists of a 6DOF arrarfiteg and a pan-tilt
head with two colour cameraRYVI stereo vision systgm

Visual control strategy

A look at the human hand-eye system shows that the classical
look-then-move strategy is very useful for moving the hamd t
wards the object to grasp. As standard robot manipulatdgs on
provide a two-finger gripper, the question of endpoint aacyr
cannot be neglected, thus visual feedback is necessaigsaite

the final phase of the reaching movements to correct modellin
and measurement errors. Yet, numerous results of neunascie
show that visual information is also incorporated into tighty
automated and preplanned reaching movement. Thus, the clea
division into a reaching and a grasping phase as proposejn [
cannot be maintained. Instead, a trajectory generatioanseh
encompassing both phases has to be designed. An addittbnal a
vantage of this hybrid structure is that the look-then-noagc-

tory can be planned in such a way that the target remaindeisib
throughout the movement.



Figure 1: Hand-eye systeMinERVA

Control architecture

Due to the relatively slow visual feedback rates, in bothithe
man hand-eye system and state-of-the-art robotical omestdi
visual control is not feasible (yet).

Visual information

Concerning this criterion, the literature in neuroscierccam-
biguous. Therefore, we are free to select robotical stiegddat

can be realized on our robot system. Because the target posi-
tion for the look-then-move trajectory does not need to bg ve
accurate, it can be computed using a standard pose estinaétio
gorithm combined with a coarse Cartesian hand-eye calilorat

For the fine positioning in the vicinity of the target, poséraa-

tion without the help of image processing hardware is towslo
thus, image-based methods such as the one proposed by Hager
[18] are more suitable.

Focus of attention

To plan and control a movement that brings the manipulator in
the vicinity of the target, the current position of the erifi:etor

can be computed from the joint angles. Errors in the kinemnati
model of the robot can be compensated by the visual servoing
process. For the latter, vision of the hand is necessaryldw al
image-based control.

Camera configuration

In the human hand-eye system, binocular vision is neceésary
achieving high endpoint accuracy. Fortunately, Hager i8]
Hollinghurst [22] demonstrated that binocular vision carshc-
cessfully employed for image-based visual servoing wige{r
standing cameras, without the need for image processirdy har
ware. For the initial estimation of the target position, momar
vision is sufficient if an object model is available.

Summarizing, we propose to use a dynamic position-based
endpoint-open-loop look-then-move control module to gene
ate a trajectory that brings the manipulator into the vigini

of the object to grasp, with a superimposed dynamic image-
based endpoint-closed-loop visual servoing control tomam
sate modelling and image processing errors in the final phase

of the movement. Cartesian coordinates of the target paositi
are to be provided by a monocular model-based pose estimatio
module, while the visual servoing is to use a binocular camer
system.

5. CONCLUSION

The goal of the work described in this paper was to develop a
concept for an anthropomorphic robotical hand-eye system.
achieve this, we first gave a short survey of the state-chthe

of robotical hand-eye coordinations and formulated detéry
which robotical hand-eye systems can be classified. We then a
alyzed human strategies for hand-eye coordination and esthow
that they can easily be described in robotical terms. Uuofort
nately, two facts prevent us from directly copying the human
system: First, some questions such as the form of visual in-
formation used for motion control, remain open; here, ferth
research is necessary. Secondly, due to the differenceand-'h
ware”, strategies found in the human hand-eye system, may no
be realizable on a robot. Thus, our concept for an anthropomo
phic hand-eye system is to be seen as a specification that must
be continuously refined and adapted in the progress of i@sear

Further work will concentrate on the implementation antings

of our system concept on our robinERVA which provides

an anthropomorphic hand-eye configuration. For the dedign o
the hybrid motion planning and control module, we will exam-
ine the current models of human reaching and compare them to
visual servoing methods, with the goal of developing a commo
control module for both strategies.
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