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ABSTRACT

Human grasping still outshines its robotical counterpartswith
respect to accuracy, speed, robustness, and flexibility. When try-
ing to develop a robotical hand-eye system, it is therefore only
natural to examine the results of neuroscience. In this paper, we
examine the human hand-eye system concerning motion plan-
ning and control using robotical categories and strategies. From
the results, we derive a system concept for an anthropomorphic
robotical hand-eye coordination.

1. INTRODUCTION

Using sensor information to control robots has become a very
popular field of research, since it promises to lead to the design
of autonomous robots. In contrast to their preprogrammed indus-
trial counterparts, autonomous robots must be able to deal with
unexpected events such as obstacles or misplaced objects. This
is especially important forpersonal robotsbecause they operate
in an environment that is not adapted to the needs of machines.

Nowadays, vision is by far the most commonly used sensor be-
cause CCD cameras are cheap and easy to use. Additionally,
vision is an important human sense, and, therefore, the informa-
tion received by the robot’s vision system is easier for the human
operator to understand.

In the field of visually controlled robot manipulators, research
has mainly focussed on the control part, circumventing the prob-
lems of extracting and interpreting image features by usingarti-
ficial features such as blobs or by selecting objects and features
manually. This resulted in a large number of impressive servo-
ing methods which cope very well with a specific problem (for a
survey see [8], for a collection of articles on state-of-the-art re-
sults [23]). Yet, versatile hand-eye systems that could be labeled
“autonomous” or “intelligent” still seem to be a distant goal.

On the other hand, human grasping still outshines its roboti-
cal counterparts with respect to accuracy, speed, robustness and
flexibility. When trying to develop a robotical hand-eye sys-
tem, it is therefore only natural to examine the results fromneu-
roscience. Therefore, we started a joint research project with
the Neuropsychological Team for Skilled Motor Controlat the
Ludwig-Maximilians-Universität München, Germany. Our goal�The work presented in this paper is supported by theDeutsche
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is to use information gained from the analysis of human reach-
ing and grasping to design and implement a robotical hand-eye
system.

The principal idea is to use a set of modules, each specialized in a
different phase or situation that occurs when reaching for an ob-
ject. In thevision partof the system, such modules are charged
with tasks such as object detection and recognition, pose estima-
tion, visual tracking, and motion prediction. This modularstruc-
ture is supported by studies from the neurosciences that describe
selective disorders that result from accidents. Mai et al. for ex-
ample, describe the case of a patient suffering from ataxia,the
inability to coordinate voluntary muscular movements, whocan-
not grasp stationary objects but can catch moving ones [28].
Goodale and Servos present evidence that visual mechanismsfor
perceiving and grasping an object are functionally and neurally
distinct [14].

Numerous neurological studies also suggest that objects have
multiple cerebral representations that contain the information
relevant for different tasks. In addition to the classical distinc-
tion between object identification (“what”) and the localization
of an object (“where”) [30], Jeannerod gives evidence for the ex-
istence of a “pragmatic representation” that encodes all attributes
of an object that are necessary for controlling a movement to-
wards it [26]. This principle shall be employed in our robotical
hand-eye system by using a hierarchical object data-base con-
taining sensor- and task-specific information about the objects to
grasp [21]. This object data base provides themodel knowledge
necessary for hand-eye coordination together with information
about the system’s configuration stemming from calibrationpro-
cesses.

In therobotical partof the system, which is responsible for mo-
tion planning and control of the robot manipulator, visual infor-
mation must be translated into suitable control sequences for the
manipulator. Here, two main approaches can be found in liter-
ature: Open-loop systemsdetermine the object’s pose from the
visual input as accurately as possible and then move the robot
appropriately (“look-then-move”). On the other hand,visual
servoing systemsuse a continuous feedback of visual informa-
tion to guide the robot (“look-and-move”). The common view is
that these two approaches are mutually exclusive. A closer look
at the results from neuroscience reveals, though, that in human
grasping both strategies are combined [37].

This lead us to propose a hybrid structure for the robotical part
[20]: First, the object to grasp is identified (for example byits
silhouette [2]) and its rough 3D position is determined. This



is used to generate a trajectory that brings the gripper intothe
vicinity of the object. The remaining gap is closed by minimiz-
ing the distance between gripper and object in the image of a
free-standing camera.

In this paper, we will extend this concept. Sec. 2 contains a
survey of state-of-the-art robotical hand-eye coordination and
formulates categories by which hand-eye systems can be classi-
fied. These categories are then used in Sec. 3 to interpret current
knowledge about the human hand-eye system. In Sec. 4, these
results are integrated into a system concept for an anthropomor-
phic robotical hand-eye system as a first step towards implemen-
tation.

2. ROBOTICAL HAND-EYE COORDINATION

Following to the taxonomy by Sanderson and Weiss [33], servo-
ing architectures can be divided into four major categoriesac-
cording to two criteria:� Visual information : The categories ofimage-basedand

position-basedrespectively concern the level of abstraction
of visual information that is used for robot control. In the
former, image features are used directly, while in the latter
they are converted to information in Cartesian coordinates
(pose estimation).� Control architecture : According to whether an internal
feedback loop for joint level control is present or not, sys-
tems fall into the categories ofdynamic controlanddirect
control.

In order to establish a more detailed distinction between hand-
eye systems, we propose to use four additional criteria:� Hand-eye configuration: According to whether cameras

are mounted on the manipulator or not, we speak ofeye-in-
handor free-standingcamera systems.� Visual control strategy: Visual information can be used
for open-loop (look-then-move) or closed-loop control
(look-and-move).� Focus of attention: While endpoint-open-loopsystems
only use visual information of the object to grasp,
endpoint-closed-loopsystems observe both the target ob-
ject and the robot manipulator.� Camera configuration: One can distinguishmonocular
andbinocularvision systems.

Hand-eye configuration

Robotic hand-eye systems can first of all be classified accord-
ing to their physical configuration: Ineye-in-hand camera sys-
tems, cameras are mounted on the robot arm. If the camera is
directly fixed to the manipulator tool its position relativeto the
end-effector is known and constant. If the camera is mounted
onto another limb of the robot arm, at least one joint is situated
between the camera and the tool. Hence, the position is no longer
constant, but depends on the current angle of the intermediate
joints. Since the target object is automatically zoomed while

the gripper is approaching it, the eye-in-hand camera system has
the advantage of a continuously increasing resolution, thus im-
proving its accuracy. Disadvantages of this configuration are the
effects of perspective, mechanical vibrations of the manipulator,
and the problem that, in the final phase of reaching, the target ob-
ject may leave the field of view of the camera. Furthermore, the
pose of the target relative to the camera changes while the ma-
nipulator (with the camera) is moved. Therefore, even stationary
objects have to be tracked in the image. In recent years, light-
weight video cameras have reduced the problem of additional
weight that changes the robot’s dynamics. Eye-in-hand systems
are employed for example in [12, 11, 7, 5, 38, 9, 10, 11, 3].

In free-standing camera systems(see for example [17, 22, 25,
1]), cameras are usually fixed in the workspace, apart from the
robot. Thus, the image of a stationary object is not altered by the
movement of the manipulator. Contrary to the eye-in-hand cam-
era systems, the target object can easily be kept in the field of
view, yet the target may become occluded by the gripper. Pos-
sible extensions to this approach are, first, the use of cameras
with zoom lenses to zoom into the target object, or secondly,
to use cameras that are free-standing but not stationary. Inthe
latter case, the cameras can be moved in a way that occlusion
is avoided and spatial resolution is improved (for examplessee
[39, 35].

Visual control strategy

In the field of visually controlled robot manipulators, two main
approaches can be distinguished: The first approach proposes a
sequential structure, with an open-loop between hand and eye.
The termlook-then-movesignifies the separation between the
act of “looking” and the act of “moving” the gripper: first, the
object’s position is determined from the visual input as accu-
rately as possible, then the robot is moved manipulator appropri-
ately. This approach lends itself very well to integration in man-
ufacturing, with the visual input replacing the knowledge about
the exact position of the parts to handle. However, the accuracy
of the operation depends heavily on the accuracy of the visual
sensor, the manipulator, its controller, and on the sensor to robot
calibration. A classical look-then-move hand-eye system is for
example described in [3]; Allen et al. close the loop to trackand
grasp a moving object, yet in the case of stationary objects their
system falls into the category look-then-move [1].

Most robotical hand-eye systems cited in the following fallinto
the category oflook-and-move or visual servoing systems.
They use a continuous feedback of visual information to guide
the robot. In these systems, accuracy is increased not by us-
ing more refined and expensive subsystems but by closing the
control loop with visual information. This approach furthermore
promises to lead to calibration-free systems. However, dueto the
closed-loop control, the trajectory of the movement is not known
in advance. Thus, the target may become invisible in the course
of the motion. For a introduction to visual servoing systemssee
[24], recent examples can be found in [6, 9, 10, 17, 22, 25].

Control architecture

Hand-eye systems can be further distinguished by their control
architecture.Dynamic control systems use a hierarchical struc-



ture; the robot is internally stabilized with the help of a second
control loop which employs encoder feedback from the robot’s
internal joint angle sensors. This separation of the visualcon-
troller from the robot kinematics and dynamics permits to view
the robot as an ideal Cartesian motion device which is not af-
fected by problems like oscillations and singularities. Inother
words, the visual controller can assume idealized axis dynam-
ics, because of the high sampling rates of the internal feedback
loop. This simplifies the control design problem considerably.
Since many robots provide an interface for Cartesian inputsor
incremental position commands, implementation is simple and
portable.

Direct control systems have no hierarchical control architecture.
The visual servo controller takes over the job of the internal robot
joint controller, computing the state of the joints directly from
the visual information. However, the relatively low sampling
rates of the vision process make direct visual control of a robot
end-effector an extremely challenging control problem. Thus,
current hand-eye systems use a hierarchical control structure.

Visual information

Having detected the target object in the video image, the ques-
tion arises which visual information is to be used to controlthe
robot. Theposition-basedapproach first estimates the position
of the target object relative to the camera in Cartesian coordi-
nates, based on a geometrical model of the robot, its reachable
work space (task space), and the target object. The error signal
for the robot controller is therefore defined in Cartesian coor-
dinates. As most robots provide a Cartesian interface and be-
cause operating in 3D-space can be understood intuitively by the
system designer, programming is facilitated. However, an ex-
act determination of the pose of the object to grasp relativeto
the manipulator requires an accurate hand-eye (gripper-camera)
calibration and a precise pose estimation. Look-then-movesys-
tems usually are position-based; position-based visual servoing
systems can be found in [1, 10, 35, 38].

In image-based, also calledfeature-basedsystems, the error sig-
nal is defined in terms of image features, and therefore is directly
measured in the image coordinate system. Therefore, computa-
tional costs are significantly reduced and the system becomes
less sensitive to errors in camera calibration and system mod-
elling. However, the computation of robot motion on the ba-
sis of image features takes place in a less intuitive projection
of the task space, depending on the chosen image features and
the method determining the distance between the features. As
this process is non-linear and its parameters highly correlated, it
presents a significant challenge to control design and has proven
to be difficult to analyze theoretically. Pioneering work inthe
field of image-based visual servoing stems from Weiss [36]; fur-
ther examples for image-based hand-eye systems can be found
in [12, 7, 9, 32, 17, 22, 25].

Hybrid system which combine position-based and image-based
control are described in [5, 6].

Focus of attention

Systems can be further classified regarding their focus of atten-
tion: Endpoint open-loopsystems (EOL) only observe the tar-

get object and get no visual information of the actual position
of the manipulator. Determining and controlling the position of
the gripper is exclusively based on a combination of joint angle
sensors, internal knowledge of the end-effector kinematics and
on the camera-object calibration. Thus, the positioning accuracy
of the system depends heavily on the accuracy of the calibration.
Eye-in-hand systems usually employ this approach.

Endpoint closed-loopsystems (ECL) compensate hand-eye cal-
ibration errors by observing both the target object and the robot
end-effector. However, the simultaneous tracking of the target
and the gripper places constraints on the field of view of the sys-
tem. Visual servoing systems with free-standing cameras mostly
use this approach.

Note, that this categorization only applies to systems thatactu-
ally grasp objects; in [9, 7, 10, 12, 11, 6], systems are described
that visually position a camera relative to an object.

Camera configuration

Finally, hand-eye systems differ with respect to the numberof
cameras employed. The principal problem when using only one
camera (monocular system) is that depth information is lost due
to the projection of the scene onto the image plane. Therefore,
additional information is needed to determine the pose of anob-
ject or to guide the manipulator in 3D. This information can stem
from a geometrical model of the object to grasp (see e.g. [3, 35]),
from other images taken at a different time (e.g. [10, 9]), orat a
different place (e.g. [19, 31]. Eye-in-hand systems usually em-
ploy only one camera because the additional weight on the ma-
nipulator changes its dynamics.

Binocular systemsemploy two cameras, thus are able to recon-
struct the depth information which is lost in the projectionof
the scene on the image plane without the use of a geometrical
object model. Position-based systems can determine depth via
triangulation; in image-based systems, depth informationis in-
tegrated implicitely by driving the error signals in two images
to zero. The disadvantage of binocular systems is that feature
extraction has to be performed for two images at a time; addi-
tionally, it must be assured that the features extracted in the two
images correspond to the same physical features of the object.
Most free-standing hand-eye systems use two cameras.

3. HUMAN HAND-EYE COORDINATION

After formulating criteria by which hand-eye systems can be
classified, we now examine current models of the human hand-
eye system and try to fit them into the robotical categories. Re-
maining on a high level of abstraction helps to avoid the problem
that the human system cannot easily be copied at functional or
even algorithmical level because of the different “hardware”.

Hand-eye configuration

Regarding this criterion, obviously no literature survey is nec-
essary. The human hand-eye system employs a free-standing
camera system and makes use of active vision methods such as
vergence and focus control, visually guided saccades and smooth
pursuit eye (and head) movements.



Visual control strategy

In 1899 already, Woodworth proposed that a reaching movement
consists of two components: an“initial impulse propelling the
hand towards the target”and a“current control to home in on
the final position via successive approximations”[37]. The for-
mer was found to be dependent on visual information only in
the beginning, to program the movement; the latter depends on
primarily visual feedback during motion. In robotical terms this
means that both look-then-move and look-and-move strategies
are employed.

Woodworth’s results stem from experiments that analyzed the
accuracy of reaching movements with varying availability of vi-
sual information. In contrast, Mai and Marquardt examined the
kinematical difference between what they call “automated”and
“controlled” movements [27]: In an experiment originally de-
signed to investigate writing disabilities, test persons are first re-
quired to write the letter “a” for several times with normal writ-
ing velocity. Then, the task is to redraw the letters. Under nor-
mal writing conditions, the acceleration profiles for each letter
are smooth, velocity profiles are bell-shaped; when redrawing
the letter, though, the acceleration profile shows recurrent accel-
eration and deceleration phases corresponding to a multi-peaked
velocity profile.

The notion that the required accuracy of a movement affects
the corresponding trajectory was supported by Milner [29] who
measured the trajectories of human subjects inserting a pininto
a hole. For small holes and therefore high precision require-
ments, the velocity profile showed small oscillations at theend
corresponding to a sequence of submovements. Burdet presents
a detailed model of reaching movements which explains these
experimental results [4].

Control architecture

As estimates of the human “visual reaction time”, that is thetime
after which changes in a trajectory corresponding to visualinput
appear, vary between100ms and250ms, it is not surprising that
models for visually controlled arm movements propose a hierar-
chical control architecture, thus falling into the category of dy-
namic control systems. In [4] for example, the internal feedback
loop is explained by the visco-elasticity of the muscles.

Visual information

It is still an open question whether the human hand-eye system
converts the visual information directly into motor programs or
via an intermediate reference frame which is similar to Cartesian
space. Many models of human reaching movements that suc-
cessfully explain measured trajectories assume that the visually
determined target location is given in Cartesian coordinates [4],
thereby describing position-based systems. On the other hand,
Stein presents evidence for image-based hand-eye coordination
by describing a distributed system of transformation algorithms
that directly convert sensor in motor information and vice versa
[34].

Focus of attention

Goodale et al. prooved that observation of the hand is not re-

quired to be able to adjust movements in the case of target dis-
placements [15]. They also showed that one does not even need
to perceive the displacement. Yet, vision of the hand beforeor
during motion significantly increases the accuracy of reaching
movements [13].

Camera configuration

When closing one eye and trying to grasp an object, everybody
will confirm that binocular vision is not a prerequisite for suc-
cessful hand-eye coordination. However, Goodale and Servos
showed that the availability of binocular cues before or during a
movement increases its accuracy and efficiency [16].

Summarizing, results from neuroscience indicate that for human
hand-eye coordination both open-loop and dynamic closed-loop
visual control strategies are employed, the latter being important
if a high endpoint accuracy is required. This also applies tothe
criteria focus of attention and camera configuration: The more
complex alternatives endpoint-closed-loop and binocularvision
are not necessary but increase the efficiency and the precision of
movements. The question whether visual imformation is trans-
formed into Cartesian coordinates is not answered convincingly
yet.

4. SYSTEM CONCEPT

The former sections showed that human strategies for hand-eye
coordination can be described in robotical terms. Unfortunately,
two facts prevent us from directly copying the human system:
First, some questions remain open, such as the form of visual
information used for motion control; in these cases, we a free
to choose a suitable robotical strategy. Secondly, due to the dif-
ference in “hardware”, parts of the human hand-eye system may
not be realizable on a robot. This leads to decisions based onthe
current state of technology.

Hand-eye configuration

In order to mitigate the problem of different hardware we plan
to implement and test algorithms on the robot system depicted
in Fig. 1, which consists of a 6DOF arm (amtec) and a pan-tilt
head with two colour cameras (RWI stereo vision system).

Visual control strategy

A look at the human hand-eye system shows that the classical
look-then-move strategy is very useful for moving the hand to-
wards the object to grasp. As standard robot manipulators only
provide a two-finger gripper, the question of endpoint accuracy
cannot be neglected, thus visual feedback is necessary at least in
the final phase of the reaching movements to correct modelling
and measurement errors. Yet, numerous results of neuroscience
show that visual information is also incorporated into the highly
automated and preplanned reaching movement. Thus, the clear
division into a reaching and a grasping phase as proposed in [20]
cannot be maintained. Instead, a trajectory generation scheme
encompassing both phases has to be designed. An additional ad-
vantage of this hybrid structure is that the look-then-movetrajec-
tory can be planned in such a way that the target remains visible
throughout the movement.



Figure 1: Hand-eye systemMinERVA

Control architecture

Due to the relatively slow visual feedback rates, in both thehu-
man hand-eye system and state-of-the-art robotical ones direct
visual control is not feasible (yet).

Visual information

Concerning this criterion, the literature in neuroscienceis am-
biguous. Therefore, we are free to select robotical strategies that
can be realized on our robot system. Because the target posi-
tion for the look-then-move trajectory does not need to be very
accurate, it can be computed using a standard pose estimation al-
gorithm combined with a coarse Cartesian hand-eye calibration.
For the fine positioning in the vicinity of the target, pose estima-
tion without the help of image processing hardware is too slow;
thus, image-based methods such as the one proposed by Hager
[18] are more suitable.

Focus of attention

To plan and control a movement that brings the manipulator into
the vicinity of the target, the current position of the end-effector
can be computed from the joint angles. Errors in the kinematic
model of the robot can be compensated by the visual servoing
process. For the latter, vision of the hand is necessary to allow
image-based control.

Camera configuration

In the human hand-eye system, binocular vision is necessaryfor
achieving high endpoint accuracy. Fortunately, Hager [18]and
Hollinghurst [22] demonstrated that binocular vision can be suc-
cessfully employed for image-based visual servoing with free-
standing cameras, without the need for image processing hard-
ware. For the initial estimation of the target position, monocular
vision is sufficient if an object model is available.

Summarizing, we propose to use a dynamic position-based
endpoint-open-loop look-then-move control module to gener-
ate a trajectory that brings the manipulator into the vicinity
of the object to grasp, with a superimposed dynamic image-
based endpoint-closed-loop visual servoing control to compen-
sate modelling and image processing errors in the final phase

of the movement. Cartesian coordinates of the target position
are to be provided by a monocular model-based pose estimation
module, while the visual servoing is to use a binocular camera
system.

5. CONCLUSION

The goal of the work described in this paper was to develop a
concept for an anthropomorphic robotical hand-eye system.To
achieve this, we first gave a short survey of the state-of-the-art
of robotical hand-eye coordinations and formulated criteria by
which robotical hand-eye systems can be classified. We then an-
alyzed human strategies for hand-eye coordination and showed
that they can easily be described in robotical terms. Unfortu-
nately, two facts prevent us from directly copying the human
system: First, some questions such as the form of visual in-
formation used for motion control, remain open; here, further
research is necessary. Secondly, due to the difference in “hard-
ware”, strategies found in the human hand-eye system, may not
be realizable on a robot. Thus, our concept for an anthropomor-
phic hand-eye system is to be seen as a specification that must
be continuously refined and adapted in the progress of research.

Further work will concentrate on the implementation and testing
of our system concept on our robotMinERVA which provides
an anthropomorphic hand-eye configuration. For the design of
the hybrid motion planning and control module, we will exam-
ine the current models of human reaching and compare them to
visual servoing methods, with the goal of developing a common
control module for both strategies.
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sually Servoed Gripping of a Used Car Battery. InProc.
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS’97), pages 49–54, Sept. 1997.

[36] L. Weiss. Dynamic Visual Servo Control of Robots: an
Adaptive Image-Based Approach. PhD thesis, Carnegie-
Mellon University, 1984.

[37] R. Woodworth. The accuracy of voluntary movement.Psy-
chological Review, 3:1–114, 1899.

[38] P. Wunsch and G. Hirzinger. Real-Time Visual Tracking of
3D Objects with Dynamic Handling of Occlusion. InProc.
IEEE Int. Conf. on Robotics and Automation (ICRA’97),
pages 2868–2873, Apr. 1997.

[39] J. Y. Zheng, Q. Chen, and S. Tsuji. Active camera guided
manipulation. InProc. IEEE Int. Conf. on Robotics and
Automation (ICRA’91), pages 632–638, 1991.


