
7th Symposium on Computer Aided Control Systems Design, Gent, Belgium, April 1997
FLEXIBLE REAL{TIME ALGORITHMS ADAPTING THEMSELVESTO ALTERNATING LOAD SITUATIONS 1Johann Pfe�erl � Georg F�arber �� Laboratory for Process Control and Real Time SystemsProf. Dr.{Ing. G. F�arberTechnische Universit�at M�unchen, Germanyfpfefferl,faerberg@lpr.e-technik.tu-muenchen.deAbstract. In many applications, approximate results are often su�cient to achieve anacceptable behavior of a real{time system. Imprecise calculations could be necessarydue to a transient overload situation caused by extraordinary events. To handle thisexceptional work as well as the normal tasks, it is possible to reduce temporarily thecomputation time of the normal jobs by applying a more intelligent and
exible formof algorithms. In this paper, algorithm structures are presented, which are suitableto implement the mentioned methods. The basic idea is to o�er multiple algorithmalternatives of di�erent complexities for solving a problem. Then one can decide withthe knowledge of the deadline and of the computation time which of the alternativescan be executed in time. These decisions will happen at runtime. To prove the ap-plicability of the proposed methods on a real system, the theoretical considerationsare devolved to a practical example consisting of a vehicle convoy. In this system,a normally realized control unit is substituted by an imprecisely working one. Thee�ects of this action are described and analyzed with regard to the normal implemen-tation. Therefore, a number of simulation results are presented. There exists also anexperimental setup for veri�cation in a real environment.Keywords. real{time algorithms, load adaptation, imprecise computationtechniques and resulting errors, control systems1. INTRODUCTIONIn the last few years, many advances in computer tech-nology have accelerated the development and the appli-cation of computer{based automation. Most advancedautomation systems utilize digital computers to supportimportant monitoring and control functions. Examples1 The work presented in this paper is supported by theVolkswagen{Stiftung, Hannover, Germany, as part of the interdis-ciplinary research project "Integration of distributed mechatronicsystems with special regard to real{time behavior".

include intelligent vehicle control, mechatronic applica-tions and process control.Such a system is only dependable, when the compoundof digital control unit and controlled environment are ro-bust and fault tolerant. These requirements imply, thatthe whole system shows only a slightly di�erent behav-ior in the case, when a transient, small disturbance in-terferes the normal operation. Most system designs arerealized in such a way, that the systems tolerate thesefaults. For example, these faults can be caused by sen-sor failures and the result could be a deviating trajec-

tory. Although the corrupted trajectory doesn't followthe desired, exact trajectory, the system performancemay nevertheless by adequate, when the error tends tozero or is within an acceptable bound after a speci�edamount of time.The e�ects of corruption of the system due to controlleror sensor failures are often accounted for by introduc-ing additive and multiplicative noises to the machinemodel or control device. For instance, the publication(Gundes, 1992) analyzes the internal stability of mul-tiple control systems in the presence of sensor and ac-tuator failures. The general aspects of robust stabilityand integrity are discussed in many books on controllerdesign (e.g. (Doyle et al., 1992)).This general robustness of most systems can be exploitedto implement a new and more
exible type of control sys-tem. All the control algorithms have to ful�ll real{timerequirements with regard to timeliness. A timing faultis said to occur, when a real{time process delivers its re-sult too late. To handle such situations correctly, a newapproach, called Imprecise Computation, was proposedrecently as a means to avoid these timing faults (Liuet al., 1987c; Liu et al., 1987b). This technique relieson making approximate results available at the dead-line, that are of poorer, but acceptable quality, insteadof aborting the system operation because of exceedingthe time limit. This strategy relies on the fact, that asystem does not leave the stable state by the occurrenceof short transient corruptions.This paper outlines an approach to avoid deadline vio-lations in real{time systems by implementing real{timetasks in a somewhat di�erent manner than usual. Somepossibilities will be presented in section 2. After describ-ing ways to implement real{time applications more
exi-ble, the theoretical concept will be veri�ed on a practicalexample of a vehicle convoy system in section 3.2. LOAD ADAPTIVE REAL{TIME ALGORITHMS2.1 Application modelMany real{time systems are used to control a machine,a mechatronic system or a speci�c process. For that rea-son, a multitude of the application tasks has to be acti-vated with a strict periodic scheduling policy. Of course,many systems also require a mechanism to handle spo-radic or aperiodic occurrences of external and internalevents. Therefore, this technique is often used to imple-ment speci�c system functions more e�ciently. Otheradvantages are the increasing
exibility and the abilityto realize more complex applications in an elegant way.

A disadvantage of event driven system components isthe fact, that the occurrence of a single event or the com-bination of events is not predictable in advance withoutan exact process model (Gresser, 1993; Thielen, 1994).If such a model does not exist, but events should stillbe used as a powerful method, the described real{timealgorithms, which adapt themselves to the actual loadsituation, are a good alternative to guarantee timingconstraints.2.2 Classes and PropertiesA number of computations perform their operations insuccessive steps and phases (Dolev et al., 1982). Aftereach phase of computation the problem is solved with abetter accuracy then at the previous step. If this behav-ior is true, the algorithm is said to be monotone withregard to result quality. Therefore, as more computationtime is spent to problem solving, the more the result getscorrect.
0

20

40

60

80

100

0 2 4 6 8 10

Q
ua

lit
y

of
 R

es
ul

ts
 [%

]

Computation Time

t_m
continuous

cont. with offset
stepwiseFig. 1. The spent computation time and the type of real{time algorithm in
uence the quality of its resultThis fact corresponds to the continuous quality functionin Fig. 1. Often it is the case, that the precise or exactresult is reached not by linear but exponential conver-gence. The marked duration tm represents the minimumamount of time, which an computation scheme needs toproduct a �rst useful result. A third class of algorithmsbehaves more like the staircase function as shown inFig. 1. Each step in the �gure indicates the end of an-other block of computation or the �nishing of a previousiteration loop. These steps are called milestones in theterminology as used in (Liu et al., 1987a). The whole�gure should also express, that di�erent computationmethods could vary in multiple orders of time require-ments. For example, image processing needs much moretime than the calculation of digital �lters to obtain areasonable quality.

2.3 Computation variants2.3.1. Multi-phase approachThere exist a number of algorithms, which try to �nda solution for a problem by solving the correspondingequations with an iterative or recursive procedure (Basu,1980). Examples are calculations based on Taylor expan-sion (e.g. sinx) or Newton Raphson methods to get theroots of nonlinear equation systems. Another possibil-ity is, that the calculation is split in multiple separateblocks. The successive block uses the results of the pre-vious one to improve the quality of the already obtainedintermediate result.These structures can be used to react on timing restric-tions by truncating the execution at the transition fromone block (iteration) to the next one. The central idea isto record meaningful partial results obtained at speci�cpoints in the execution of a computation. In the eventthat no more work (phases) can be done due to dead-line appearance, the last recorded values are used as anapproximation of the exact result.In practice, the algorithm must be divided into a manda-tory and one or more optional parts to maintain a qual-ity, which is necessary to hold the system in a stableoperating mode.2.3.2. Selection methodMany problems can be solved by a number of di�erentways. The solutions may di�er concerning the quality oftheir results. A better quality is often correlated withmore computation time spent to solve the problem. Theexistence of di�erent strategies can be used to realize amulti{version formulation of an algorithm.if(RTSusableTime() >= RuntimeBlock1)Block1elsif(RTSusableTime() >= RuntimeBlock2)Block2elsif(RTSusableTime() >= RuntimeBlock3)Block3� � �else MinimalBlockFig. 2. Algorithm structure of an alternative computa-tion schemeDepending on the available computation time and theactual load situation on the computer node, a pertinentmethod is selected from the several alternatives avail-able. Refer to Fig. 2 to get an overview, how these al-

ternative algorithms can be merged together to estab-lish a single unit. As you can see, a special system callRTSusableTime() is invoked to get the available amountof execution time for the calling task. With the knowl-edge of the runtime of the di�erent alternatives, the taskis capable to decide which calculation can be performedin time. The information of the available computationtime has to be provided by an appropriate runtime sys-tem.
Precise states

x

k k+1 k+2 tk-1k-2

x(k)

x(k+2)

Imprecise states

Fig. 3. Substitution of the normal algorithm by a lesstime consuming variant
x(k+1)

k k+1 k+2 t

x(k+2)

x

Imprecise states
Precise statesFig. 4. Acceleration of computation by reusing the oldresultsFor example, a discrete algorithm, calculating the linearcontrol law x(� + 1) =Ax(�) +Bu(�) (1)y(� + 1) =Cx(�) +Du(�)can be subdivided into the following four alternatives.They are listed by decreasing complexity.Normal mode The complete algorithmwith all its fea-tures is calculated (I/O operations, matrix multipli-cations, . . .).Substitution mode The whole control law is computedin a di�erent, less time consuming manner. For exam-ple, an interpolation or prediction method replacesthe original one to approximate the next required re-sult. Refer to Fig. 3 to see, how this could be done.Reduced mode The calculation of the internal con-troller states is omitted. Instead, the previous states

Fig. 5. Experimental setup of the vehicle convoy systemare passed to the actual ones without changes. Fig. 4illustrates this action. The calculation of the outputsis done with the normal equations.Exception mode The complete calculation is canceledbecause of very sparse available time. All results of theprevious step are utilized.Another application example for the proposed selectionmethod is statistical programming which handles a greatnumber of input data. When time is concise, the size ofthe input data set can be reduced.3. EFFECTS OF ADAPTIVE COMPUTATIONTo study the in
uence of imprecise computations onreal applications, a practical example is chosen. Thisexample is part of an actual research project (Richert etal., 1994). One aspect of this project is to apply controlsystem design methods to develop mechanical modelsand suitable controller designs. Another aim is to exam-ine new real{time concepts. The vehicle convoy system,as shown in Fig. 5, acts as a platform to devolve andevaluate the theoretical results on a real system.3.1 Simulation EnvironmentThe concept of a real{time algorithm, which adapts one-self to the actual load situation of the control computersystem, is applied to the problem of a concatenated con-voy of two road vehicles. These two vehicles are con-nected by a rigid tow bar. The front vehicle is drivenby a human person. The rear vehicle is equipped with asteering actuator.To allow an e�cient system veri�cation, the completeconvoy was modeled in a suitable modeling language(MATLAB). The model itself is composed of a num-ber of modules. The resulting mathematical descriptioncan be used to simulate and examine the convoy dy-namics. More informations about the development of

the model and the identi�cation of the system parame-ters can be retrieved from the publications (R�ukgauer etal., 1995a; R�ukgauer et al., 1995b; Slama and R�ukgauer,1995; Raste and M�uller, 1995).The whole convoy model takes into account 10 degreesof freedom and 14 nonlinear di�erential equations rep-resent the dynamics. This multi{body system serves asa realistic representation for simulation purposes.3.2 Modi�ed controller structureThe steering actuator is connected to a control unitwhich tries to minimize the track deviation of the twocars automatically.
Fig. 6. Simpli�ed description of the vehicle convoyInputs to the controller are the two tow bar angles �1and �2 (see Fig. 6). The controller forwards the esti-mated steering angle to the corresponding actuator.

y_actual

1/z

x(n)
+
+

x(n+1) sw2

C

A

1

out_y
Overload Event

Generator

+ + yd

OUT

B

Mux

IN

in_µ1

2

1

in_µ2

1/z

y_old sw1

D

Fig. 7. Controller for the simulation of load adaptivealgorithmsThe control structure consists of a linear discrete sys-tem as described by equation (1) with 7 states and a

sampling rate of 500Hz. This structure was extended bya unit which allows to simulate the occurrence of tran-sient overload situations with adjustable duration andperiod (Fig. 7). The implemented imprecise calculationstrategy is "Exception mode" as mentioned in section2.3.2.3.3 Simulation resultsThe maneuver chosen to investigate the impact of loadadaptive algorithms on the system behavior is a ISOlane change at a velocity of 20ms .
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

−50 0 50 100 150 200

y1
,y

2
[m

]

x1,x2 [m]

x−y trajectory (exact): OLd=004 Olp=0500

{x,y}1
{x,y}2

Fig. 8. Precisely controlled convoy
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

−50 0 50 100 150 200

y1
,y

2
[m

]

x1,x2 [m]

x−y trajectory (imprecise): OLd=004 Olp=0500

{x,y}1
{x,y}2

Fig. 9. Imprecisely controlled convoyFig. 8 respectively 9 shows the behavior of the systemwith a precise respectively imprecise control law. Theimprecise calculation is activated every 500ms for a du-ration of 4ms (2 consecutive control loops).The resulting deviations of the y{position (with a max-imum of 6mm) and the internal controller states aredisplayed in Fig. 10 and Fig. 11. The vertical spikes inFig. 11 indicate a new corruption due to reduced con-trol computation. From the state fault diagram (Fig. 11)one can derive, that the controller tries to recapture the

normal operating states. A while after a spike the errorfunction shows a falling behavior.All results presented above concern to a single overloadsituation (4ms duration with a period of 500ms). Fig. 12shows the context between the duration of a disturbanceand the expected average error of the location y of therear vehicle. The error shown is the averaged deviationover the full simulation period. The resulting error pos-sesses an approximately linear dependence. The propor-tion of imprecise to precise calculation ranges from 0:8%(4ms) to 44% (220ms). The obtained results with a du-ration� 100ms are irrelevant for practical use but proveanyhow that the loss of quality obeys always the samerules regardless what corruption length is injected.
−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0 1 2 3 4 5 6 7 8

y2
−

y2
’ [

m
]

t [s]

abs. error of y2: OLd=004 Olp=0500

Fig. 10. Absolute error of the y{position of the rear ve-hicle
0

0.005

0.01

0.015

0.02

0.025

0.03

0 1 2 3 4 5 6 7 8

||x
−

x’
||

t [s]

Vector norm ||x−x’||: OLd=004 Olp=0500

||x−x’||

Fig. 11. Error k Xp �Ximp k of control states4. SUMMARYIn this paper, a possibility is proposed to design a real{time system more
exible and dependable by applyingthe discussed algorithm structures. The approaches pre-sented are not di�cult to implement and do not involve

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 50 100 150 200 250

A
bs

. a
ve

ra
ge

 e
rr

or
 [m

]

Corruption duration [ms]

Period in [ms]
0500
0900
1100
1500
1700
1900

Fig. 12. Average error 1N NP�=1 j�y� j of the y{trajectoryas a function of the corruption durationmuch temporal overhead. Instead of viewing errors asspecial case, one can suggest that an error is a type ofinaccuracy which can be tolerated in many applications.This is especially true, when a system is highly dynamicwith regard to aperiodic, sporadic events or the avail-ability is more important than the accuracy. Of course,there exist applications which require an absolute exactresult to operate correctly and the use of the proposedmethods is not recommended. For the future, it will benecessary to verify the proposed structures on additionalalgorithm types to con�rm a global applicability.In the second chapter of the paper, the imprecise controlmechanism has been applied to a practical example. Thesimulation results prove that the proposed concepts canbe used to solve real{time problems where the load ofthe executing instance is not known a priori. More de-tailed simulations, which were not presented here, havealso shown that too many occurrences of overload situ-ations or too long durations of them make the systemunstably. But this would be the consequence of a design,which is dimensioned by nature with to less computationresources.To apply the proposed algorithms in a real system it isnecessary to equip it with a run{time system supportingrequests about the time which can be consumed by aspeci�c task. Considerations to this theme exist alreadyfrom di�erent research groups and are also part of thecurrent investigations of the project.5. REFERENCESBasu, S. K. (1980). On development of iterative pro-grams from function speci�cations. IEEE Transac-tions on Software Engineering SE{6(2), 170{182.Dolev, D., M. Klawe and M. Rodeh (1982). AnO(n logn) unidirectional distributed algorithm for

extrema �nding in a circle. Journal of Algorithms3, 245{260.Doyle, J., B. Frabcis and A. Tannenbaum (1992). Feed-back Control Theory. Macmillian Publishing Com-pany.Gresser, Klaus (1993). An event model for deadline ver-i�cation of hard real{time systems. In: Proc. FifthEuromicro Workshop on Real Time Systems. IEEE.Oulu, Finland. pp. 118{123.Gundes, A. (1992). Stability of feedback systems withsensor or actuator failures. International Journal ofControl 56(4), 735{754.Liu, Jane W. S., K.-J. Lin and S. Natarajan (1987a).Imprecise results: Utilizing partial computations inreal{time systems. In: Proc. 8th Real{Time SystemsSymposium. IEEE. San Jose, CA. pp. 210{217.Liu, Jane W. S., K.-J. Lin and S. Natarajan (1987b).Scheduling real{time, periodic jobs using impreciseresults. In: Proc. 8th Real{Time Systems Sympo-sium. IEEE. San Jose, CA. pp. 252{260.Liu, Jane W. S., K.-J. Lin, S. Natarajan andT. Krauskopf (1987c). Concord: A system of im-precise computations. In: Proc. COMSAC. IEEE.Tokyo. pp. 75{81.Raste, T. and P.C. M�uller (1995). Modelling and con-trol of mechatronic systems by decentralized de-scriptor systems. In: Proc. Third Conference onMechatronics and Robotics (J. L�uckel, Ed.). Teub-ner, Stuttgart. Paderborn, Germany. pp. 432{445.Richert, J., A. R�ukgauer, U. Petersen, V. Hadwich,T. Raste, K. Gresser and J. Pfe�erl (1994). Integra-tion verteilter Systeme der Mechatronik mit beson-derer Ber�ucksichtigung des Echtzeitverhaltens. In-terdisciplinary Research Report Az.: I/67975-9. Uni{GH Paderborn. Fachbereich 10 Automa-tisierungstechnik Prof. Dr.-Ing. J. L�uckel.R�ukgauer, A., U. Petersen and W. Schielen (1995a).Lateral dynamics of towed vehicles. In: Proceedingsof the 2nd ROVA International Conference (C.O.Nwagboso, Ed.). Bolton, England.R�ukgauer, A., U. Petersen and W. Schielen (1995b).Mechatronic steering of a convoy vehicle. In: Proc.Third Conference on Mechatronics and Robotics(J. L�uckel, Ed.). Teubner, Stuttgart. Paderborn,Germany. pp. 403{416.Slama, L. and A. R�ukgauer (1995). Dynamic modelsfor simulation studies of the power steering of roadvehicles. Engineerings Mechanics 2(5), 309{318.Thielen, Herbert (1994). Automated design of dis-tributed computer control systems with predictabletiming behaviour. In: Proc. 12th IFAC Workshopon Distributed Computer Control Systems (J. A.de la Puente and M. G. Rodd, Eds.). IFAC. Toledo,Spain. pp. 47{52.

