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Abstract

This thesis investigates the performance limits of phase modulated and direct detected
WDM systems at 55.5 and 111 Gb/s with 50 GHz channel spacing. Particularly, we are
interested in identifying the parameters of the optical link that maximize the performance
of a certain transmission format and subsequently analyze different modulation schemes
and link configurations at their optimum operation points. For this purpose, a novel
optimization algorithm is proposed and extensively used for determining the optimum
parameters of the investigated scenarios.

Firstly, different “flavors” of DQPSK at 55.5 Gb/s are compared, such as return and
non-return-to-zero pulse shapes using single and dual-carrier implementations. Secondly,
we introduce optical DQPSK transmission using Nyquist pulses as a way of minimizing
the spectral occupancy of the signals. By means of spectral shaping we attempt to
increase the tolerance of the Nyquist signals to transmission impairments. And finally, the
transmission of 111 Gb/s encoding 3 bits per transmitted symbol is investigated. Because
of the broad spectrum of the signals and small channel separation, transmission suffers
from strong performance penalties due to WDM cross-talk and narrow-band filtering. We
justify using ASK-DQPSK as the modulation format for such scenario.

Transmission performance is quantified by means of simulations, which assess robust-
ness to narrow-band filtering, dispersion and non-linear tolerance, and propagation in
non-dispersion and dispersion managed links. The optimum dispersion map parameters,
launch powers and an estimation of the maximum transmission distance are given for each
of the considered transmission formats.





1
Introduction

Up until a few years ago, optical communication systems primarily employed on-off keying
(OOK) as the modulation format of choice. In such systems the transmitted data is
conveyed in the intensity of the optical carrier. Presently, the majority of the worldwide
installed optical fiber networks use OOK at 10 Gb/s and wavelength division multiplexing
(WDM) with channel separation of 50 GHz [Tel10], resulting in a spectral efficiency of
only 0.2 b/s/Hz. The steady increase in capacity requirements for the present and future
optical network has opened the way to more advanced and spectrally efficient modulation
formats, where not only the amplitude of the optical carrier is modulated but also the
frequency, phase and polarization state of the carrier can be used to transmit information.

In the past decade, interest in optical phase modulation re-emerged1 due to a number of
advantages over OOK for systems with data rates of more than 10 Gb/s. For example,
binary phase shift keying (PSK) has an inherent ∼3 dB advantage in receiver sensitivity
compared to OOK. This is due to the bigger separation of its constellation points, for
the same transmitted power. Without considering nonlinearities this advantage would
directly translate into doubling of the maximum transmission distance. Additionally,
phase modulated signals are expected to be more tolerant than OOK signals against
nonlinear effects. This results from the fact that the optical power in PSK is more evenly
distributed in time than in OOK: Power is present in every bit slot for PSK, which
effectively reduces bit-pattern-dependent nonlinear effects; and the optical peak power
is 3 dB lower for PSK than for OOK for the same average optical power [GW05]. All
these advantages have led phase modulation to be the format of choice for the second

1Optical systems using phase-shift keying were extensively studied in the late 1980s and early 1990s
mainly for single-span fiber-optic systems using coherent detection, as well as in free space optical com-
munication systems, where the sensitivity advantage of phase modulation could be exploited. With the
introduction of optical amplifiers, interest in phase modulation and coherent detection declined.
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generation of 40 Gb/s systems2 [Inf12]. In such systems direct detection is still used at
the receiver side, mainly due to its straightforward implementation compared to more
advanced coherent technologies.

The “mobile revolution” we have experienced in the last couple of years, characterized
by ubiquitous broadband connectivity and driven by wireless technologies such as Wi-fi,
UMTS/HSPA and LTE3, has brought a significant increase in the capacity requirements
for the existing and future optical networks. It has been envisioned for such advanced
networks to operate at 100 Gb/s bit rate per wavelength channel, delivering a spectral
efficiency of 2 b/s/Hz. At such high data rates, the bandwidth of binary PSK signals is so
broad that strong performance penalties due to WDM cross-talk and to optical filtering
are unavoidable. For this reason, multilevel modulation formats must be employed in such
transmission scenarios. For example, quadrature phase-shift keying (QPSK) retains the
abovementioned advantages of PSK over OOK and, by using four phase states, conveys
two bits per symbol effectively reducing the symbol rate and the spectral occupancy of
the optical signals.

Nevertheless, the spectral occupancy of QPSK signals at 100 Gb/s is still too high
for WDM systems using 50 GHz of channel separation. With this respect, polarization
division multiplexing (PDM) has proven an attractive alternative. In PDM the two po-
larization states of the optical carrier are used to transmit signals with only half of the
total data rate. The two tributaries are multiplexed using linear, but orthogonal states
of polarization (SOP) [vdB08]. They can be separated at the receiver side using a polar-
ization beam splitter (PBS) aligned with the incoming signal’s SOP. If direct detection is
employed, a feedback loop must be used to control the alignment of the PBS [WBO+09],
since the SOP of the signal changes randomly during propagation.

Still, the high symbol rate of QPSK at 25 GS/s per polarization greatly impacts the
tolerance to detrimental propagation effects, resulting in reduced transmission distances.
With this regard, and in the advents of ultra fast analog-to-digital converters [Inf12],
optical coherent detection using digital signal processing has positioned itself as a key
enabling technology for increasing the overall performance of an optical transmission link.
By mixing the incoming optical signal with a laser of similar optical frequency at the
receiver side, the full optical field (amplitude and phase) can be recovered. Not only
the receiver sensitivity is improved compared to direct detection, but subsequent digital
processing is able to compensate for all linear (and some nonlinear) detrimental effects
that the signal experiences before, during and after propagation such as chromatic and
polarization mode dispersion, transmitter IQ imbalance, PBS misalignment, etc.

Digital coherent detection is an important step towards increasing the capacity and
reducing the costs of core networks that require to transmit large amounts of data over
the longest possible distances (> 1000 km). On the other hand, and mainly due to
their straightforward implementation, lower power consumption, and thus reduced costs,

2The first generation was based on duobinary modulation.
3Wi-Fi is the wireless network technology based on the IEEE 802.11 standard [IEEa]. UMTS/HSPA

and LTE are cellular technologies standardized by the 3GPP group [3GP].
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direct detection systems at 100 Gb/s remain an attractive solution in scenarios where
capacity is required but transmission distances are shorter like, for example, regional and
metropolitan networks, which are typically composed of 300 to 1000 km long point-to-
point links.

This thesis investigates the performance limits of phase modulated and direct detected
WDM systems at 50 and 100 Gb/s with 50 GHz channel spacing. Particularly, we are
firstly interested in identifying the parameters of the optical link that maximize the per-
formance of a certain transmission format. In this way, we are able to analyze different
modulation schemes and transmission configurations at their optimum operation points
and thus, provide a fair comparison between them.

The thesis is organized as follows:

Chapter 2 introduces the theoretical foundations of the models used in this thesis.
Starting with Maxwell’s equations, the conditions for single-mode transmission are re-
viewed and the scalar nonlinear Schroedinger equation (NLSE) is derived. The NLSE
is used throughout this thesis to describe and simulate the propagation of the optical
signals within the fiber. Subsequently, the most important linear and nonlinear effects to
which the optical signals are exposed during propagation are discussed. Analytical and
numerical solutions of the NLSE are presented.

Chapter 3 is divided into three main parts. The first part mentions the most important
elements that compose the optical transmission systems considered in this thesis. In the
second part the criteria for the optimum design of such systems are reviewed. Special
relevance is given to the design of dispersion maps. The third part is dedicated to the
proper evaluation of the performance of an optical communication link. Firstly, the theory
of pseudo-random sequences is briefly reviewed. Secondly, a semi-analytical method for
the evaluation of the bit-error rate is described. Finally, the mathematical algorithm used
in this thesis for the global optimization of the investigated systems is introduced.

Using the models and tools described in chapters 2 and 3, chapter 4 investigates the per-
formance limits of directly detected WDM transmission systems using differential QPSK
(DQPSK) at 50 Gb/s. Firstly, a fundamental explanation of DQPSK in optical com-
munication systems is provided focusing in transmitter and receiver structures, spectral
characteristics and demodulation properties. Secondly, different “flavors” of DQPSK are
compared, such as return and non-return-to-zero pulse shapes, dual-carrier implementa-
tion and stereo multiplexing. Finally, the propagation of WDM signals after 1040 km with
optimum dispersion maps is thoroughly analyzed and maximum transmission distances
are estimated. The optimum link parameters are identified and the robustness of each
transmission format with respect to variations in the dispersion map is assessed. Addi-
tionally, in appendix D, an original mathematical framework is introduced that proves
helpful in analyzing direct detected frequency division multiplexed signals. It is used to
generalize stereo multiplexing for a higher number of sub-carriers.

In chapter 5, we introduce optical DQPSK transmission using Nyquist pulses as a
way of minimizing the spectral occupancy of the signals. By means of spectral shaping
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we attempt to increase the tolerance of the Nyquist signals to transmission impairments.
Finally we use the same propagation scenarios as in chapter 4 in order to assess the
performance of Nyquist pulses and compare them to the more classic (non) return-to-zero
pulses (NRZ and RZ).

Chapter 6 investigates the transmission of 100 Gb/s signals encoding 3 bits per trans-
mitted symbol. This scenario is radically different to the ones considered in chapters 4
and 5, because of the broad spectrum of the signals and small channel separation, which
translates into strong performance penalties due to WDM cross-talk and narrow-band fil-
tering. Firstly, we justify using ASK-DQPSK as the modulation format for such scenario.
Then, a thorough description of the transmitter and receiver architectures is given. As in
the previous chapters, the performance of the transmission format is assessed emphasizing
the difference between (N)RZ and Nyquist pulses.

Finally, chapter 7 summarizes the main contributions of this thesis and proposes pos-
sible directions for future research.

Some parts of this thesis have been already published in the following conference proceed-
ings [GCS+08, GCS+09, CGS+09, GCS+10, GHC+10, GCSH10a, GCSH10b, CGS+10,
GJC+11, GCSH11, AKJ+12] and journal papers [CGH09, GCS12, AJK+13].

Notes on general premises used throughout this thesis:

The following premises are taken as basis throughout this thesis:

⊲ 100 Gb/s is the net data rate of interest considered throughout this thesis. As in
most communication system, there is an overhead added to the information payload
that includes redundancy bits for error correction procedures. The standard error
correction used in today’s installed 10 and 40 Gb/s systems uses Reed-Solomon
codes RS(255, 239) with 7% overhead, which is able correct bit-error rates of up
to 2.2 × 10−3 [ITU09]. Additionally, it is envisioned for future generation optical
networks to use the Ethernet networking standard [IEEb] which adds an extra 4%
overhead. Thus, 111 Gb/s is the gross data rate of the signals investigated in the
following chapters.

⊲ In chapters 4 and 5, it is assumed that polarization division multiplexing is used
and, therefore, the data rate of the DQPSK signals is 55.5 Gb/s. However, polar-
ization effects are not taken into account in the simulations, which only focus on the
nonlinear interaction of the optical signals along propagation. Polarization effects
are discussed in more detail in chapter 2.8.1.

⊲ When simulating WDM transmission, seven uncorrelated co-polarized optical sig-
nals are considered. The channel separation is 50 GHz and the wavelength of the
center channel is 1550.52 nm, which corresponds to channel H33 of the International
Telecommunication Union (ITU) 50 GHz WDM grid [ITU02]. The performance
evaluations always refer to the center channel. Channel H33 is simulated as well in
single-channel scenarios.
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Table 1.1: Fiber parameters

SSMF DCF

Attenuation α 0.23 0.50 dB/km
Dispersion D 16.6 -103.4 ps/nm/km
Slope S 0.058 -0.200 ps/nm2/km
Nonlinearity γ 1.52 5.27 1/W/km

⊲ The fibers used to model the pre- and post-compensation stages are considered non-
attenuating and linear. In this way, the results presented in the following chapters
are independent of the technology used to manipulate the waveform before and
after propagation. Standard single-mode fiber and dispersion compensating fiber
with the parameters shown in Table 1.1 are considered for all simulations carried
out in this thesis. EDFAs have a noise figure of 6 dB.





2
Propagation of Light in Optical
Fibers

In this chapter, the theory that sustains the models used in this thesis is reviewed. Starting
with the Maxwell’s equations, the nonlinear Schroedinger equation (NLSE) is derived.
The NLSE governs the propagation of light in single-mode fibers and is extensively used
in the simulations carried out in this thesis. Subsequently, the most important linear
and nonlinear effects to which the optical signals are exposed during propagation are
discussed. Analytical and numerical solutions to the NLSE are described at the end of
the chapter.

2.1 The general wave equation

The propagation of light in the optical fiber, as any electromagnetic phenomena, can be
described by Maxwell’s equations:

∇× E =
∂B

∂t
, (2.1)

∇×H = J+
∂D

∂t
, (2.2)

∇ ·B = 0, (2.3)

∇ ·D = ρf , (2.4)

where E is the electric field vector, H is the magnetic field vector and D and B are their
respective flux densities. Since the optical fiber is a nonconductive medium without free
charges, the electric current density vector J and the electric charge density ρf equal zero.
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The flux densities relate to the field vectors through the material equations:

D = ε0E+P, (2.5)

B = µ0H+M, (2.6)

where ε0 and µ0 are the free space permittivity and permeability, respectively. P is
the electric material polarization and M is the magnetic material polarization that, for
nonmagnetic media such as optical fibers, equals zero.

By taking the curl of (2.1) and using (2.2), (2.5) and (2.6) we obtain

∇×∇× E = − 1

c2
∂2E

∂t2
− µ0

∂2P

∂t2
, (2.7)

where c = 1/
√
ε0µ0 is the speed of light in free space.

Equation (2.7) describes the temporal and spatial evolution of the electrical field prop-
agating along the optical fiber and is known as the general wave equation [Agr02].

2.2 Material polarization

An external electric field applied to a nonconductive material leads the atoms of the
material to react by creating dipole moments, which in turn, serve as a source of elec-
tromagnetic radiation [Sch04]. The field created as a consequence of the internal charge
distribution superimposes with the external applied field and propagates along the fiber.
This interaction between light and material is accounted in (2.7) through the material
polarization vector P.

In general P depends nonlinerly on E and can be written as a power series [Han95]

P(r, t) = P(1)(r, t) +P(2)(r, t) +P(3)(r, t) + . . . , (2.8)

where r = (x y z)T is the spatial vector with cartesian components.

P(n)(r, t) is related to E(r, t) through the nth order susceptibility χ
(n)(t) so that (2.8)

can be written:

P(r, t) = ε0

∞∫

0

χ
(1)(t− τ1) ·E(r, τ1) dτ1

+ ε0

∫∫ ∞

0

χ
(2)(t− τ1, t− τ2) :E(r, τ1)E(r, τ2) dτ1 dτ2

+ ε0

∫∫∫ ∞

0

χ
(3)(t− τ1, t− τ2, t− τ3)

...E(r, τ1)E(r, τ2)E(r, τ3) dτ1 dτ2 dτ3 . . .

(2.9)

The susceptibility is a measure of the polarizability of the material. In optical fibers,
due to the inversion symmetry of the silicon molecules, even-order χ(n)(t) are zero. The
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fifth and higher order susceptibilities are small and can be neglected for the power range
used in optical communication systems [Hel77]. As a result, only the linear and cubic
polarizations are the dominant contributions to the evolution of the electric field in the
fiber.

2.2.1 Linear material polarization

The linear susceptibility χ
(1) is a second rank tensor with frequency-dependent complex

elements, that relates the linear polarization with the strength of the electric field by the
linear term in (2.9). This relationship can be written in the frequency domain in matrix
form as

P̃(1)(r, ω) = ε0χ̃
(1)(ω) · Ẽ(r, ω). (2.10)

Equivalently, each component of the linear material polarization can be expressed in
summation form as

P̃
(1)
k (r, ω) = ε0

∑

l

χ̃
(1)
kl (ω)Ẽl(r, ω), (2.11)

where

χ̃
(1)
kl (ω) =

∞∫

−∞

χ
(1)
kl (t)e

−jωt dt (2.12)

are the Fourier-transformed elements of χ(1)(t) and k, l ∈ {x, y, z}.
The first-order material susceptibility gives origin to all linear fiber effects. These can
be separated from each other by expressing χ

(1) through the relative permittivity tensor
of the material

εr = I3 + χ
(1), (2.13)

where I3 is the 3×3 identity matrix . Concordantly, the elements of χ(1) can be expressed
as

χ
(1)
kl = (εr,r − jεr,i − 1) δkl +∆εr,kl, (2.14)

where δkl is the Kronecker delta function with δkl = 1 when k = l and δkl = 0 otherwise.

The term εr,r relates to the refractive index of the material by εr,r = n2(r, ω). Its fre-
quency dependence causes the effect of material dispersion that contributes the greatest
to chromatic dispersion. The imaginary part of χ

(1)
kl is associated with the linear atten-

uation of the fiber, and due to the homogeneity of the fiber in a large scale, it can be
considered independent of the spatial coordinates. ∆εr,kl models birefringence and mode
coupling that, ultimately, lead to the effect of polarization mode dispersion. Polarization
dependent loss can also be modeled if ∆εr,kl is allowed to have an imaginary part. All of
these effects cause the performance of a communication system to detriment and will be
treated in more detail later in this chapter.

In the derivations of this chapter, and in most of this thesis, the waveguide will be
considered perfectly cylindrical and isotropic, i.e., its optical properties at each point are
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independent of the direction along which the electrical field is applied. Therefore, ∆εr,kl
is always zero and χ

(1)
xx = χ

(1)
yy = χ

(1)
zz . Following this assumption, (2.10) can be written as

P̃(1)(r, ω) = ε0 χ̃
(1)
xx (ω) · Ẽ(r, ω). (2.15)

2.2.2 Nonlinear material polarization

The most relevant nonlinear effects that detriment the performance of an optical commu-
nication link originate from the third-order susceptibility χ

(3). Most notably, its real part
is responsible for the dependance of the refractive index on the intensity of the applied
electric field, generally known as the Kerr effect. This effect leads to degradations through
self-phase modulation, cross-phase modulation and four-wave mixing, all of which will be
described more thoroughly later in this chapter.

χ
(3) is a fourth rank tensor with 81 frequency-dependent complex elements, that relate

the cubic material polarization vector with the electric field by the last term in (2.9).
Conveniently, significant simplifications occur if Raman effects are neglected by consider-
ing the nonlinear response of the fiber instantaneous. This is true for the frequency range
and channel separation in which dense wavelength division multiplexing systems operate
[Goe10]. Following these assumptions, the cubic material polarization can be written as

P(3)(r, t) = ε0χ
(3) ...E(r, t)E(r, t)E(r, t), (2.16)

where the elements χ(3) are supposed real and constant.

Equivalently, each component of P(3) can be expressed in summation form as

P
(3)
k (r, t) = ε0

∑

lmn

χ
(3)
klmnEl(r, t)Em(r, t)En(r, t), (2.17)

where k, l,m, n ∈ {x, y, z}.
Due to material symmetries in the fiber, 21 elements of χ(3) are non-zero of which only
three are independent [Boy08]. In consequence, each element of χ(3) can be written as

χ
(3)
klmn = χ(3)

xxyyδklδmn + χ(3)
xyxyδkmδln + χ(3)

xyyxδknδlm. (2.18)

Inserting (2.18) into (2.17) we get that

P
(3)
k (r, t) = ε0

∑

l

χ(3)
xxyyEkElEl + χ(3)

xyxyElEkEl + χ(3)
xyyxElElEk

= ε0
∑

l

(
χ(3)
xxyy + χ(3)

xyxy + χ(3)
xyyx

)
EkE

2
l , (2.19)

where for simplicity of notation the time and space dependence of P(3) and E was dropped.
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Finally, noting from (2.18) that χ
(3)
xxxx = χ

(3)
xxyy+χ

(3)
xyxy+χ

(3)
xyyx, an expression for the cubic

material polarization is obtained:

P
(3)
k (r, t) = ε0χ

(3)
xxxx

∑

l

Ek(r, t)E
2
l (r, t). (2.20)

For example, consider a real horizontally polarized optical field propagating in the z
direccion

E(r, t) = x̂ · ℜ{Ex(r, t)} = x̂ ·
(
1
2
Ex(r, t) +

1
2
E∗x(r, t)

)
, (2.21)

where Ex(r, t) = Ex(r, t)e
jωct and Ex(r, t) is the complex slowly varying amplitude of the

field oscillating at the carrier frequency ωc. The induced cubic material polarization is
then obtained by inserting (2.21) into (2.20) and is given by

P (3)
x (r, t) = ε0χ

(3)
xxxx

(
1
2
Ex(r, t)e

jωct + 1
2
E∗x(r, t)e

−jωct
)3

= ε0χ
(3)
xxxx

(
1
8
E3
x(r, t)e

j3ωct + 3
8
|Ex(r, t)|2Ex(r, t)ejωct + c.c.

)

= 3
8
ε0χ

(3)
xxxx|Ex(r, t)|2Ex(r, t) + c.c. (2.22)

where the term “c.c.” stands for complex conjugate.

In deriving (2.22), the term oscillating at the third harmonic frequency of ωc is not
phase-matched and is generally negligible [Agr01].

Equation (2.22) and its frequency domain representation will be useful in chapter 2.4
when describing the nonlinear propagation of optical signals. Its Fourier transform can
be written using a double convolution integral, and is given by

P̃ (3)
x (r, ω) = 3

8
ε0χ

(3)
xxxx

∫∫ ∞

−∞

Ex(r, ωp)E
∗
x(r, ωq)Ex(r, ω − ωp + ωq) dωp dωq + c.c. (2.23)

2.3 Fiber modes and single-mode condition

A fiber mode refers to a specific solution of the general wave equation with the property
that its spatial distribution does not change with propagation. For a given transversal
profile of the refractive index and frequency ωc, the number of modes supported by the
fiber and their respective modal distribution and propagation constants can be calculated
[Agr01]. In the following section, the guiding properties of a single-mode fiber with step-
index profile are derived.

When discussing fiber modes, it is accustomed to observe that the main contribution
to the material polarization comes from εr,r, therefore, nonlinear effects and losses are
neglected at first and added later as perturbative terms.

By applying the Fourier transform to (2.7) and inserting (2.15) we obtain

∇×∇× Ẽ = ε̃r(r, ω) · k20Ẽ, (2.24)



12 Chapter 2 � Propagation of Light in Optical Fibers

Figure 2.1: Schematic of a step-index fiber structure and index profile. A circular core with re-
fractive index n1 is surrounded by a cladding with index nc < n1. A plastic coating encapsulates
the fiber.

where k0 = ω/c is the free space wave number and ε̃r(r, ω) = 1 + χ̃
(1)
xx (ω) is the scalar

version of the relative permittivity tensor defined in (2.13). For fibers with low losses and
small birefringence ε̃r(r, ω) ≈ n2(r, ω).

Further simplifications can be made to (2.24). In a step-index fiber (see Fig. 2.1) the
refractive index is independent of the spatial coordinates in the fiber’s core and cladding
implying that the gradient of the index is zero, i.e., ∇n = 0, and consequently, us-
ing (2.4), (2.5) and (2.15), that ∇ ·E = 0. This is used in the identity

∇×∇× Ẽ = ∇(∇ · Ẽ)−∇2Ẽ = −∇2Ẽ (2.25)

to obtain the homogeneous wave equation in the frequency domain [Agr02]

∇2Ẽ+ n2(ω)k20Ẽ = 0, (2.26)

whose analytical solution represents the spatial distribution of a finite number of guided
modes. To take advantage of the cylindrical symmetry of the fiber, (2.26) is written in
the cylindrical coordinates ρ, φ and z as

∂2Ẽ

∂ρ2
+
1

ρ

∂Ẽ

∂ρ
+

1

ρ2
∂2Ẽ

∂φ2
+
∂2Ẽ

∂z2
+ n2(ω)k20Ẽ = 0, (2.27)

where the refractive index is of the form

n =

{
n1 , ρ ≤ a
nc , ρ > a.

(2.28)

A similar equation can be stated for H̃. From all 6 components of the electric and the
magnetic fields, only two are independent. It is customary to solve for Ẽz and H̃z, and
obtain Ẽρ, Ẽφ, H̃ρ and H̃φ in terms of them.

Equation (2.27) can be easily solved for the z component using separation of variables,
resulting in the following general solution [Kei91, Agr01]:

Ẽz = E0(ω)F (ρ)e
jmφe−jβz, (2.29)



2.3 Fiber modes and single-mode condition 13

where β represents the frequency dependent propagation constant of the field; m is a
constant that, due to the periodic nature of the field in φ, is restricted to be an integer
value; E0(ω) is the field’s amplitude and F (ρ) represents the transverse distribution of
the field inside the fiber.

By inserting (2.29) into (2.27) we get

d2F(ρ)

dρ2
+
1

ρ

dF(ρ)

dρ
+

(

n2k20 − β2 − m2

ρ2

)

F (ρ) = 0. (2.30)

For simplicity of notation, the frequency dependence of the refractive index and of the
propagation constant has been dropped and is implicitly understood for the rest of this
section. Equation (2.30) is the well-known Bessel’s differential equation whose general
solution for core and cladding can be written as [Agr02]:

F (ρ) =

{
C1Jm(pρ) + C2Nm(pρ) , ρ ≤ a
C3Km(qρ) + C4Im(qρ) , ρ > a,

(2.31)

where Jm is the Bessel function, Nm is the Neumann function and Im and Km are the
modified Bessel functions of the first and second kind, respectively1. Ci with i = 1, 2, 3, 4
are constants that must be determined by the boundary conditions. The parameters p
and q are defined by

p2 = n2
1k

2
0 − β2, (2.32)

q2 = β2 − n2
ck

2
0. (2.33)

Observe that because p and q are always positive, the values that β can take are restricted
to kc ≤ β ≤ k1, where k1 = n1k0 and kc = nck0 are the wave numbers of the core and
the cladding respectively. Due to the singularity of Nm(pρ) at ρ = 0, for a meaningful
solution C2 must be zero. Additionally, the optical field should vanish at ρ → ∞ in the
cladding and that happens only if C4 = 0. E0 in (2.29) is then absorbed by C1 and C3

which form Â and B̂, so that the solution of (2.27) can be written as

Ẽz =

{
Â(ω)Jm(pρ)e

jmφe−jβz , ρ ≤ a

B̂(ω)Km(qρ)e
jmφe−jβz , ρ > a.

(2.34)

As it was previously mentioned, H̃ also satisfies (2.27), and thus, the same method can
be used to obtain Hz, that derives in the same solution, albeit with different normalization
functions:

H̃z =

{
Ĉ(ω)Jm(pρ)e

jmφe−jβz , ρ ≤ a

D̂(ω)Km(qρ)e
jmφe−jβz , ρ > a.

(2.35)

The other four components of the electric and magnetic fields can be expressed in terms
of Ez and Hz by using Maxwell’s equations (2.1)-(2.4) in the frequency domain with

1See appendix A for a definition of the abovementioned mathematical functions.
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cylindrical coordinates. After some algebraic detail we obtain for the core region:

Ẽρ = −
j

p2

(

β
∂Ẽz
∂ρ

+ µ0
ω

ρ

∂H̃z

∂φ

)

, (2.36)

Ẽφ = −
j

p2

(

β

ρ

∂Ẽz
∂φ

− µ0ω
∂H̃z

∂ρ

)

, (2.37)

H̃ρ = −
j

p2

(

β
∂H̃z

∂ρ
− ε0n

2
1

ω

ρ

∂Ẽz
∂φ

)

, (2.38)

H̃φ = −
j

p2

(

β

ρ

∂H̃z

∂φ
+ ε0n

2
1ω
∂Ẽz
∂ρ

)

. (2.39)

The same expressions can be used for the cladding region after replacing p2 by q2 and
n1 by nc. Â, B̂, Ĉ and D̂ can be obtained by applying boundary conditions at ρ = a,
conditioning the tangential components of E and H to be continuous between the core
and the cladding regions. Therefore, a set of four homogeneous equations is obtained
whose solution is nontrivial only if the determinant of the coefficient matrix is zero. This
leads to the eigenvalue equation:
(

1

p

J ′m(pa)

Jm(pa)
+
1

q

K ′
m(qa)

Km(qa)

)(

n2
1

p

J ′m(pa)

Jm(pa)
+
n2
c

q

K ′
m(qa)

Km(qa)

)

=

(

mβ

a

)2(
1

p2
+

1

q2

)2

, (2.40)

where the prime symbol represents derivation with respect to the argument.

Due to the oscillatory nature of Jm, (2.40) has multiple solutions of β for every value
of m. Each of these solutions represent the propagation constant of one specific mode
supported by the fiber. The nth solution of a certain value of m is designated HEmn or
EHmn depending on whether Hz or Ez dominates. When m = 0, HE0n and EH0n are
also denoted TE0n and TM0n respectively, since they correspond to transverse electric
(Hz = 0) and transverse magnetic (Ez = 0) modes of propagation.

Figure 2.2 shows the effective index, defined by n = β/k0 versus the normalized frequency
defined as V = k0a

√

n2
1 − n2

c . The single-mode condition is determined by the value of V
at which the TE01 and TM01 reach cut-off. It can be obtained by setting m = 0 in (2.40)
and n = nc or, equivalently, q = 0. As a result, the cut-off condition for both modes
is given by J0(V ) = 0. The smallest value of V that sets the Bessel function to zero is
V = 2.405. A fiber designed such that V < 2.405 supports only the fundamental mode
HE11.

In single-mode fibers where n1 − nc ≪ 1, the axial components Ez and Hz are small
and either Ex or Ey dominates. These fibers are usually called weakly guiding fibers. In
such case, the HE11 is approximately linearly polarized and sometimes denoted as LP01.
At the same time, the fiber supports a second linearly polarized mode in the orthogonal
direction. It is, therefore, possible to express these linearly polarized modes propagating
along the fiber as

Ẽ(r, ω) = x̂ · Ẽx(ω)F (x, y)e
−jβx(ω)z + ŷ · Ẽy(ω)F (x, y)e

−jβy(ω)z, (2.41)
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Figure 2.2: Effective index n vs. normalized frequency V for a few fiber modes (After [Agr02]).
When V < 2.405 only a single mode propagates through the fiber.

where the modal distribution is found to be [Agr01]

F (x, y) =

{
J0(pρ) , ρ ≤ a

√

a/ρJ0(pa)e
−q(ρ−a) , ρ > a,

(2.42)

and ρ =
√

x2 + y2. For practical reasons, the modal distribution is often approximated
by a Gaussian distribution of the form

F (x, y) ≈ e−(x
2+y2)/r2eff , (2.43)

where reff is a frequency dependent fitting parameter.

For ideal fibers with perfectly cylindrical core of uniform diameter the propagation con-
stants of the two orthogonal modes are equal, i.e., βx = βy. However, this does not
happen in real single-mode fibers as they exhibit considerable variation in the shape of
the core along the fiber, either because of fabrication issues or because of nonuniform
mechanical stress applied to it. For these reasons, fibers acquire birefringence that is not
constant along its length but changes randomly, leading to the effect of polarization-mode
dispersion.

2.4 Nonlinear wave propagation

For the practical analysis of the propagation of light in single-mode fibers, a simplified
equation known as the nonlinear Schroedinger equation (NLSE) is derived from the more
general wave equation (2.7). The propagation of an optical signal through a nonbirefrin-
gent fiber will be modeled. It is assumed that the frequency bandwidth of the signal
is much smaller than the carrier frequency at which it propagates. Raman effects are
neglected.
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Consider a horizontally polarized, real modulated optical field of the form

E(r, t) = x̂ · ℜ{Ex(r, t)} = x̂ ·
(
1
2
Ex(r, t) +

1
2
E∗x(r, t)

)
, (2.44)

The evolution of Ex(r, t) along the single-mode fiber is governed by the NLSE. In order
to derive it, it is more convenient to work in the frequency domain. This is, however, not
straightforward because of the intensity dependance of P. One approach is to assume that
P(3) is a small perturbation toP and that it varies instantly with E [Agr01]. Consequently,
for a birefringent fiber, the x-component of the nonlinear polarization can be approximated
by

P̃ (3)
x (r, ω) ≈ ε0εNL · ℜ{Ẽx(r, ω)}. (2.45)

where εNL represents a first-order perturbation constant.

Using (2.15), (2.25) and (2.45), equation (2.7) can be written in the Fourier domain for
the positive frequencies of (2.44) as [Agr01]

∇2Ẽx(r, ω) + ε̂rk
2
0Ẽx(r, ω) = 0, (2.46)

where ε̂r = ε̃r,r − jε̃r,i + εNL. An additional equation similar to (2.46) is obtained for the
negative frequency content of E, however, it does not provide any new information and
therefore, it will not be used in the following analysis.

Similar to the procedure shown in chapter 2.3, equation (2.46) can be solved by the
method of separation of variables by assuming a solution of the form

Ẽx(r, ω) = S̃(z, ω − ωc)F (x, y)e
−jβ0z, (2.47)

where

S̃(z, ω − ωc) =

∞∫

−∞

S(z, t)e−j(ω−ωc)t dt. (2.48)

S(z, t) is the complex slowly-varying amplitude of the modulated field oscillating at the
carrier frequency ωc with propagation constant β0 = β(ωc). Observe that, in contrast to
the amplitude term in (2.29), the amplitude in (2.47) is z-dependent due to the pertur-
bative effect of the nonlinearities and the losses.

Inserting (2.47) into (2.46) and recalling that εr,r = n2, we obtain

(
∂2F

∂x2
+
∂2F

∂y2
+ n2k20F

)

S̃ = −
(

∂2S̃

∂z2
− 2jβ0

∂S̃

∂z
− β2

0 S̃ − jε̃r,ik
2
0S̃ + εNLk

2
0S̃

)

F,

(2.49)
where the space and time/frequency dependance of the variables has been dropped for a
compact notation. The separation of (2.49) is valid if we assume that the perturbative
effect of εNL is small and does not affect the modal distribution F . With these assump-
tions, for equation (2.49) to hold, both sides must be equal to κ(ω)S̃F , where κ(ω) is a
separation constant that is independent of F or S̃. Thus, two equations are obtained:

∂2F

∂x2
+
∂2F

∂y2
+
(

n2k20 − κ(ω)
)

F = 0 (2.50)
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and
∂2S̃

∂z2
− 2jβ0

∂S̃

∂z
+

(
κ(ω)− β2

0

)
S̃ = jε̃r,ik

2
0S̃ − εNLk

2
0S̃. (2.51)

Equation (2.50) is equivalent to (2.30) for single-mode fibers (m = 0). Its solution
represents the modal distribution obtained in (2.42). Observe that the separation constant
has a physical meaning: it relates to the frequency-dependent propagation constant by
κ(ω) = β2(ω).

Some simplifications can be made to (2.51). Because the perturbed field’s amplitude
varies very slowly compared to the light’s wave oscillations, the term involving the second
derivative with respect to z can be neglected. This is usually referred to as the slowly-
varying wave approximation [Han95]. In addition, it is valid to approximate β2(ω)−β2

0 ≈
2β0 (β(ω)− β0). Consequently, (2.51) can be written as

∂S̃

∂z
+ j (β(ω)− β0) S̃ = −α(ω)

2
S̃ − j

2

k20
β0
εNLS̃, (2.52)

where the attenuation coefficient α(ω) = k20εr,i/β0 was introduced.

Since the bandwidth of S(z, t) is significantly smaller than the carrier frequency fc =
ωc

2π

that is in the order of hundreds of THz, several simplifications can be made to (2.52).
Firstly,

k20
β0
≈ ω2

c

β0c2
(2.53)

and α(ω) ≈ α(ωc). Furthermore, β(ω) can be expanded in a Taylor series around the
carrier frequency such that

β(ω) = β0 + β1 · (ω − ωc) +
1
2
β2 · (ω − ωc)

2 + 1
6
β3 · (ω − ωc)

3 + . . . , (2.54)

with βm = ∂mβ(ω)
∂ωm

∣
∣
ω=ωc

. Higher order terms are negligible under the abovementioned
assumption. The cubic term can be neglected in many practical cases as well, however,
it must be included when the signal propagates near the zero-dispersion wavelength, i.e.,
when β2 ≈ 0. With this approximations (2.52) can be written as

∂S̃

∂z
+ j

(
β1 · (ω − ωc) +

1
2
β2 · (ω − ωc)

2
)
S̃ = −α(ωc)

2
S̃ − j

2

k20
β0
εNLS̃, (2.55)

The term εNLS̃ in the right-hand side of (2.55) can be expanded by inserting (2.47) into
equations (2.45) and (2.23), which yields

∂S̃

∂z
+ j

(
β1 ·ω′ + 1

2
β2 ·ω′2

)
S̃ = −α(ωc)

2
S̃−

j
3

8

ω2
c

β0c2
χ(3)
xxxx|F |2

∫∫ ∞

−∞

S̃(ω′p)S̃
∗(ω′q)S̃(ω

′ − ω′p + ω′q) dω
′
p dω

′
q, (2.56)
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where the tilde sign indicates translation in angular frequency, i.e., ω′ = ω − ωc.

Applying the inverse Fourier transform to (2.56) results in the NLSE:

∂S

∂z
+ β1

∂S

∂t
− 1

2
jβ2

∂2S

∂t2
= −1

2
α(ωc)S − j

3

8

ω2
c

c2
χ
(3)
xxxx

β0
|F |2|S|2S. (2.57)

It is usually more convenient to describe the electromagnetic wave in terms of its power P .
For this purpose we define a normalized signal A(z, t) =

√
P ·S(z, t), such that |A|2 = P .

The power is defined as the product between the temporal mean value of the wave’s
intensity and the area within it propagates, i.e., P =

∫∫
I dx dy. The intensity I of an

electromagnetic wave of the form of (2.44) is given by [Sch04]

I =
1

2Zf
|Ex(r, t)|2, (2.58)

where Zf is the impedance of the medium, that relates to the free space impedance Z0

by Zf = Z0/n. Using (2.47), (2.58) and calculating the power, we obtain the normalized
signal

A(z, t) = S(z, t)

√

1

2Zf

∫∫

|F (x, y)|2 dx dy. (2.59)

Using (2.59), equation (2.57) can be written as

∂A

∂z
+ β1

∂A

∂t
− 1

2
jβ2

∂2A

∂t′2
= −α(ωc)

2
A− j

3

8

ω2
c

c2
χ
(3)
xxxx

β0

2Zf |F |2
∫∫
|F |2 dx dy |A|

2A. (2.60)

Equation (2.60) can be further simplified by reducing the model to that of an equivalent
plane wave propagating within an effective area. For this purpose it is multiplied by
the transversal field distribution |F |2 and integrated over the whole cross-section. The
resulting equation is written as

∂A

∂z
+ β1

∂A

∂t
− 1

2
jβ2

∂2A

∂t′2
= −α(ωc)

2
A− jγ|A|2A. (2.61)

where

γ =
3

4

ω2
c

c2
χ̃
(3)
xxxx

β0

Zf
Aeff

=
ωc
cAeff

· 3Z0χ̃
(3)
xxxx

4n2
1

︸ ︷︷ ︸

n2

(2.62)

is the nonlinear coefficient that is proportional to the nonlinear index coefficient n2; and
Aeff corresponds to the effective mode area [Agr01] defined as

Aeff =

(∫∫
|F (x, y)|2 dx dy

)2

∫∫
|F (x, y)|4 dx dy . (2.63)
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If the Gaussian approximation (2.43) is used, equation (2.63) becomes Aeff = π · r2eff . In
obtaining γ the approximation β0 ≈ ωc

c
n1 was used. Observe that, in practice, different

types of fibers are characterized by the nonlinear parameters γ, n2 and Aeff .

An additional simplification occurs in (2.61) by substituting

t′ = t− z/vg = t− β1z, (2.64)

which is equivalent to observe the signal propagation relative to a reference frame moving
through the fiber with the same speed as the signal’s group velocity vg. Using (2.64) in
(2.61) yields

∂A(z, t′)

∂z
− 1

2
jβ2

∂2A(z, t′)

∂t′2
= −α(ωc)

2
A(z, t′)− jγ|A(z, t′)|2A(z, t′). (2.65)

The time variable t′ is usually called the local time. From this point forward, the prime
sign will be dropped and the use of local time is implicitly understood.

Equation (2.65) can be solved analytically only in particular cases, when either attenua-
tion, dispersion or nonlinearities are neglected. In general, a close form solution does not
exist and numerical simulations are commonly used to model the evolution of the optical
signal along the fiber.

2.5 Length scales and propagation regimes

In analyzing the interaction between the linear and non linear effects that impact the
evolution of an optical pulse along the fiber, it is useful to define characteristic lengths in
order to identify various propagation regimes. Two length scales that give insights about
the dominance of dispersion over nonlinearities or viceversa are the dispersion length

LD =
T0
β2

(2.66)

and the nonlinear length

LNL =
1

γP
, (2.67)

where T0 is the pulse duration and P is the average signal power. The NLSE can be
written as a function of LD and LNL by means of the substitutions [Agr02]

A(z, t) = a(z, t)e−
α
2
z
√
P (2.68)

and

τ =
t

T0
, (2.69)

where a(z, t) represents a dimensionless unattenuated optical signal and τ is a normalized
time variable. Using equations (2.68) and (2.69) the NLSE (2.65) can be written as

∂a(z, τ)

∂z
− j

1

2LD

sgn(β2)
∂2a(z, τ)

∂τ 2
= −jγ e

−αz

LNL

|a(z, τ)|2a(z, τ). (2.70)
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The dispersion term in (2.70) is negligible for long dispersion lengths, i.e., from (2.66),
when either the pulse width is broad or the fiber dispersion is small. The nonlinear term in
(2.70) is negligible for long nonlinear lengths; from (2.67) this occurs when the nonlinear
parameter γ is small or when the average signal power is low. Generally, four propagation
regimes can be recognized for a fiber of length L [Sch04]:

⊲ If L≪ LD and L & LNL dispersion plays a minor role and nonlinearities dominate.
This is generally the situation for a system with a low bit rate such as 2.5 Gb/s or
less.

⊲ If L & LD and L & LNL both dispersion and nonlinearities have a strong impact on
the signal and their interaction must be considered. This is the typical situation for
10 Gb/s systems operating over standard single-mode fiber (SSMF). This regime is
beneficial for the generation of solitons (see ch. 2.9) and accordingly, it is sometimes
referred to as soliton regime [Xia08].

⊲ When L & LD and L ≪ LNL dispersion is the dominant effect and nonlinearities
can be treated in a perturbative manner. If LD ≪ LNL, large pulse spreading
occurs through dispersion, reducing the high peak power of individual pulses and,
therefore, limiting the effect of nonlinearities. This is usually referred to as pseudo-
linear regime of propagation [MM99, STM+98] since, similar to linear transmission,
the optimum residual dispersion for single-channel transmission is around 0 ps/nm.
This situation is generally met in optical systems with high bit rate, i.e., 40 Gb/s
and beyond.

⊲ If L≪ LD and L≪ LNL neither dispersion nor nonlinearities have a strong impact
on the propagation of the signal.

2.6 Propagation of WDM signals

In wavelength-division multiplexed (WDM) systems, the available bandwidth of the fiber
is used to propagate a comb of independently modulated optical signals at different optical
frequencies. Usually the spacing between dense WDM (DWDM) signals is equal and can
go from 100 GHz down to 50 GHz. The NLSE, derived in the previous section for a
single-channel case, can also be used to analyse the evolution of several optical signals
co-propagating along the fiber. This is done by assuming that the input field to an optical
fiber composed of K multiplexed signals is of the form

A(z, t) =
K∑

k=1

Uk(z, t)e
j∆ωkt, (2.71)

where Uk is the slowly varying envelope of the signal in channel k and ∆ωk = ωk − ωc is
the difference between the central frequency of channel k and the frequency of the center
channel of the WDM comb.
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The simulation of the propagation of such a signal along the fiber is usually referred
to as the total field approach. By using (2.71) as input to the NLSE, all linear2 and
nonlinear (Kerr) interactions between the WDM signals are accounted for. However,
because of the great bandwidth of the input signal, simulations using the total field can
take considerable effort. Firstly, a great number of points per symbol must be used to
comply with the Nyquist-Shannon sampling theorem [Sha49]. Furthermore, because of
nonlinear effects, new frequencies are created along propagation that enlarge the spectrum
and, in turn, increase the requirements for the simulation’s temporal resolution.

Secondly, as it will be discussed in the following section, the number of iteration steps
of the numerical algorithm used to solve the NLSE is directly proportional to the max-
imum instantaneous power of the signal, which tends to remain high in the case of a
total field approach. In the single-channel case, spikes in the instantaneous power occur
due to overlap of neighboring pulses. However, their amplitude decrease monotonically
with distance. By contrast, due to pulses from different channels rapidly passing through
each other, the peak power of the multi-channel system presents spikes irregularly dis-
tributed along the propagation length that do not necessarily decrease monotonically
in amplitude [SHZM03]. This translates into notoriously smaller steps when simulating
multi-channel in comparison to single-channel systems.

Due to the mentioned reasons, it is of interest to obtain a separate propagation equation
for each WDM channel. This is usually referred to as the coupled equations approach.
Moreover, additional insights can be gained regarding the nonlinear interaction between
WDM channels when deriving the coupled system of equations. For this purpose, it is
more convenient to analyze the linear and nonlinear parts of the NLSE separately. Observe
that, since the signals in the WDM comb experience walk-off, i.e., each one propagates
with a different group velocity, it is not appropriate to use (2.65) as a starting point but
(2.61) instead.

Consider the linear part of (2.61) written in the frequency domain as

∂Ã(z, ω)

∂z
= −α(ωc)

2
Ã(z, ω)− jβ̂(ω)Ã(z, ω), (2.72)

where
Ã(z, ω) =

∑

k

Ũk(z, ω −∆ωk) (2.73)

is the Fourier transform of A(z, t), k = 1, 2, . . . , K and

β̂(ω) = β1 ·ω + 1
2
β2 ·ω2 + 1

6
β3 ·ω3 + · · · . (2.74)

Inserting (2.73) into (2.72) and applying the superposition principle, we get a set of
linear equations, each describing one WDM channel, written as

∂Ũk(z, ω)

∂z
= −α(ωc)

2
Ũk(z, ω)− jβ̂(k)(ω)Ũk(z, ω), (2.75)

2Observe that the NLSE derived in chapter 2.4 models nonbirefringent fibers, and therefore polar-
ization effects are excluded from the linear interactions which are accounted for by using the total field
approach.



22 Chapter 2 � Propagation of Light in Optical Fibers

with β̂(k)(ω) = β
(k)
1 ·ω+ 1

2
β
(k)
2 ·ω2+ 1

6
β
(k)
3 ·ω3+· · · and β(k)

m = ∂mβ(ω)
∂ωm

∣
∣
ω=ωk

. The values that

βkm take for each WDM channel will be discussed in detail in chapter 3.2.2. Observe that
α(ωk) ≈ α(ωc) was assumed. This is true for the wavelength range of modern DWDM
systems.

Now, consider the nonlinear part of (2.61) written in the time domain as

∂A(z, t)

∂z
= −jγ|A(z, t)|2A(z, t). (2.76)

Using the identity |A(z, t)|2 = A(z, t)A∗(z, t) and inserting (2.71) into (2.76) we obtain

∑

k

∂Uk
∂z

ej∆ωkt = −jγ
∑

l

∑

m

∑

n

UlUmU
∗
ne

j(∆ωl+∆ωm−∆ωn)t, (2.77)

where the spatial and temporal dependence has been dropped for a compact notation.
Equation (2.77) is not directly separable under the superposition principle because of the
terms that fall outside of the bandwidth of A(z, t) and that cannot be associated with
any frequency ωk, i.e., ωk 6= ωl + ωm − ωn. Fortunately, such terms are usually of small
energy for pseudo-linear systems and can be neglected [Agr01]. With this assumption,
(2.77) is written as a coupled system of equations

∂Uk
∂z

= −jγk
∑

l,m,n

ωl+ωm−ωn=ωk

UlUmU
∗
n, (2.78)

where γk = γ(ωk). From (2.62) it follows that γk = γrλr/λk, where γr is a reference value
of the nonlinear coefficient at a wavelength λr and λk is the wavelength of the k

th channel.

Note that each WDM signal propagates with a different propagation constant, therefore,
the appropriate phase shift must be added when writing the equations of each WDM
channel. This is done by substituting

Uk(z, t) = Ak(z, t)e
−jβ

(k)
0 z. (2.79)

Merging the nonlinear part (2.78) with the linear part (2.75) written in the time domain,
we obtain the following set of coupled equations:

∂Ak
∂z

+ β
(k)
1

∂Ak
∂t

− 1

2
jβ

(k)
2

∂2Ak
∂t2

= −α
2
Ak − jγk

∑

l,m,n

ωl+ωm−ωn=ωk

AlAmA
∗
ne
−j∆βlmnz, (2.80)

where ∆βlmn = β
(l)
0 + β

(m)
0 − β

(n)
0 − β

(k)
0 is called the phase matching coefficient.

Different inter-channel nonlinear effects can be identified in (2.80) by varying the indices
l,m and n. Self-phase modulation (SPM) in each WDM signal is accounted for by the
term given by ωl = ωm = ωn = ωk. Cross-phase modulation (XPM) occurs when (ωl =
ωn) 6= (ωm = ωk), or when (ωl = ωk) 6= (ωn = ωm). Note that SPM and XPM are always
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phase-matched, i.e., the phase matching coefficient is always zero. The set L of all other
combinations of l,m and n give raise to four-wave mixing (FWM). By expressing all these
effects explicitly in (2.80), we obtain

∂Ak
∂z

=− α

2
Ak

︸︷︷︸

attenuation

− β(k)
1

∂Ak
∂t

︸ ︷︷ ︸

walk−off

+
1

2
jβ

(k)
2

∂2Ak
∂t2

︸ ︷︷ ︸

chromatic dispersion

− jγk|Ak|2Ak
︸ ︷︷ ︸

SPM

− jγk · 2
∑

l 6=k

|Al|2Ak
︸ ︷︷ ︸

XPM

− jγk
∑

l,m,n∈L

AlAmA
∗
ne
−j∆βlmn

︸ ︷︷ ︸

FWM

. (2.81)

FWM is responsible for energy transfer between WDM channels, and its strength de-
creases with channel separation. It is, however, effectively suppressed by the phase mis-
match in WDM systems caused by chromatic dispersion. This is not true if fibers with a
low value of dispersion are used, e.g., dispersion shifted fibers.

Because XPM is always phase matched its strength, in principle, does not vary with
channel separation. Furthermore, from (2.81) it appears that the impact of XPM between
two channels is twice as large as that of SPM. However, the walk-off that the two channels
experience causes an averaging effect that reduces the strength of XPM [KK97a]. Thus,
the detrimental effect of XPM decreases when channel separation increases.

If the propagation of all channels is taken relative to the center channel, then (2.64) can
be used in (2.81). In the absence of FWM the coupled equations can be written as

∂Ak
∂z

+
(

β
(k)
1 − β1

) ∂Ak
∂t

− 1

2
jβ

(k)
2

∂2Ak
∂t2

= −α
2
Ak − jγk

(

|Ak|2 + 2
∑

l 6=k

|Al|2
)

Ak. (2.82)

As it will be shown later in this chapter, equation (2.82), in contrast to (2.81), can
be easily solved with numeric algorithms. However, (2.82) should not be used if the
channel separation relative to the bandwidth of the signals is small, as it does not take
into consideration the spectrum overlap of neighboring channels and it neglects FWM.
If channel separation is small, the total field approach given by (2.65) should be used
instead.

2.7 Inter- and intra-channel nonlinear effects

The nonlinear effects of SPM, XPM and FWM are accounted for by the nonlinear term
in the NLSE (2.65). They are defined in the frequency domain by the interaction between
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four discrete frequencies propagating through the fiber. In the context of WDM, XPM and
FWM effects are usually referred to as inter-channel effects and describe the interaction
between all signals in the WDM comb. On the other hand, the nonlinear effect of a WDM
signal onto itself, labeled SPM in equation (2.81), comprises all nonlinear interactions of
the spectral components of the signal through the intra-channel processes of SPM, XPM
and FWM. In this context, they are usually referred to as ISPM, IXPM and IFWM [Agr02,
EMR99].

The intra-channel effects are usually analyzed in the time domain by modeling the in-
teraction between the pulses of a signal in a way similar to the derivation of the WDM
coupled equations in chapter 2.6. Consider the signal A(z, t) composed of a train of K
pulses pk of duration T0:

A(z, t) =
K∑

k=1

pk(z, t− kT0). (2.83)

Inserting (2.83) into the NLSE (2.65), we obtain

∑

k

(
∂pk
∂z

− 1

2
jβ2

∂2pk
∂t2

+
α

2
pk

)

= −jγk
∑

l,m,n

plpmp
∗
n, (2.84)

where k, l,m, n = 1, 2, . . . , K. The triple sum at the right side of (2.84) includes all
intra-channel nonlinear effects. ISPM occurs when l = m = n. When dispersion is high,
due to the broadening of the pulse and the consequent reduction in peak power, ISPM
is considerably reduced. The term responsible for IXPM correspond to l = m 6= n and
l 6= m = n. Even though IXPM affects only the phase of each pulse, this phase shift is
time dependent and, therefore, affects the carrier frequency of the pulse. The resulting
frequency chirp leads to time jitter through fiber dispersion [MCS00]. The remaining
terms that do not correspond to ISPM and IXPM give origin to IFWM. Intra-channel
FWM is a nonlinear process where energy transfer between pulses can take place. For
example, in intensity modulated systems using on-off keying, it can create new pulses in
bit slots that represent 0’s and contain no pulse initially. Such IFWM-generated pulses
are usually referred to as ghost or shadow pulses and lead to additional errors if their
amplitude becomes substantial [EMR99].

The dominance of inter- or intra-channel effects in a transmission system is in general
dependent on the system design. For example, in the pseudo-linear regime, where signal
dispersion is kept high along propagation, the spreading of pulses belonging to different
WDM channels produces an averaging effect that reduces the inter-channel nonlinear
effects considerably [Agr02]. However, at the same time, the interaction between pulses
of the same channel produces intra-channel nonlinear effects that dominate and limit the
system performance. Quite the opposite occurs when dispersion is tightly controlled as,
for example, in dispersion-managed soliton systems, where inter-channel effects dominate
and seriously impair the performance of the transmission system [DDKB04].
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2.8 Other propagation effects

A handful of fiber effects were not taken into account in the derivation of the NLSE
and are not considered in the rest of the thesis. Polarization effects may be the most
important ones since they produce dispersion-induced inter-symbol interference and, at
the same time, affect the strength of the Kerr nonlinearities. The implications of not
considering these effects in the results of this thesis are subsequently addressed. Finally,
nonlinear phase noise and nonlinear scattering processes are briefly described.

2.8.1 Polarization effects

As discussed in chapter 2.3, two orthogonal fundamental modes are able to propagate in
a single-mode fiber. In deriving the NLSE, ideal fibers with perfectly cylindrical core of
uniform diameter were assumed such that both modes have identical propagation prop-
erties. In practice, however, this does not occur and the modes propagate with different
velocities and exchange power along the way. This is referred to as birefringence and
mode coupling, respectively. When a pulse excites both polarization components of the
fundamental mode it becomes broader as the two components disperse along the fiber due
to their different group velocities. In a short piece of fiber of length L, where birefrin-
gence can be considered constant, the broadening can be estimated from the time delay
∆τ between the two polarization components during propagation of the pulse. The time
delay ∆τ is usually referred to as differential group delay (DGD) and is given by

∆τ = L|β1,x − β1,y|. (2.85)

However, for real fibers, the birefringence changes randomly over time, frequency and
fiber length because of change in the shape of the core due to fabrication imperfections,
mechanical stress applied to the fiber, temperature changes, etc. As a result, polarization
mode dispersion (PMD) arises as a stochastic process where the DGD value is not constant
but changes randomly.

The expected DGD value is referred to as the PMD value E{∆τ} and is related to the
DGD as E{∆τ} = ∆τ , where ∆τ represents the mean DGD value. It has been shown that
the probability density function for the DGD follows a Maxwellian distribution [KK97a].
In a good approximation, in long fibers the PMD value increases with the square root
of the transmission distance, i.e., E{∆τ} = DPMD

√
L, where DPMD is called the PMD

coefficient with units of ps/
√
km. The PMD coefficient is a measure of the quality of the

fiber and it varies from ∼0.5 ps/
√
km for old fibers, to less than 0.1 ps/

√
km for new ones.

The impact of PMD scales with the symbol rate and becomes a limiting factor for
lightwave systems designed to operate over long distances at high data rates [Agr02]. In
such scenarios, and specially when using old fibers with high PMD coefficient, some kind of
PMD compensation scheme must be employed [vdB08]. It has been shown in [CGS+10]
that, regarding maximum transmission distance, PMD becomes the limiting effect in
systems using DPSK and DQPSK with symbol rates above 40 GSym/s.
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Additionally, changes in the light polarization due to mode coupling lead to a continuous
power exchange between the light wave’s orthogonal components, directly influencing the
strength of fiber nonlinearities. In [Han95, Goe10] it is shown that the varying polarization

state of the propagating field has an averaging effect on the cubic susceptibility χ
(3)
xxxx.

This leads to an effective nonlinear parameter γeff that varies between ∼ 8
9
γ and ∼ 2

3
γ,

depending if the frequency spacing of the interacting waves is small or large, respectively.

Furthermore, the impact of inter-channel nonlinearities is dependent on the relative
polarization states of the WDM signals. For example, consider the nonlinear induced
material polarization at a frequency ω1 produced by two real signals propagating at fre-
quencies ω1 and ω2. Firstly, let the two signals be co-polarized linearly in the x direction
so they can be written as

E‖(r, t) = x̂ · (E1(r, t) + E2(r, t)) . (2.86)

The resulting x-component of the cubic polarization vector oscillating with frequency ω1

is obtained by inserting (2.86) into (2.20) and can be written as

P
(3)
x,‖ =

3

8
ε0χ

(3)
xxxx

(
|E1|2E1 + 2|E2|2E1

)
+ c.c. (2.87)

The first and second terms at the right side of (2.87) are responsible for SPM and XPM,
respectively. The spatial and time dependence of the variables has been dropped for
readability. Now, for comparison, let the two signals be perpendicularly polarized linearly
in the x and y directions so they can be written as

E⊥(r, t) = x̂ ·E1(r, t) + ŷ ·E2(r, t). (2.88)

The resulting x-component of the cubic polarization at ω1 yields

P
(3)
x,⊥ =

3

8
ε0χ

(3)
xxxx

(

|E1|2E1 +
2

3
|E2|2E1

)

+ c.c. (2.89)

Clearly, in the perpendicular case, the impact of XPM is only one third compared to
the parallel case. This fact is used in polarization-interleaved WDM transmission sys-
tems [ZLL+01], where adjacent channels are polarized orthogonally to each other in order
to reduce the penalty associated with inter-channel XPM. In classic WDM systems, how-
ever, the real impact of XPM varies according to the relative polarization state of the
channels. Similarly for the impact of FWM, the strength of the resulting newly generated
wave depends on the polarization of the other three interacting waves [Sch04].

Because in the evaluation of WDM systems all channels are considered to be co-polarized,
the results presented in the following chapters may slightly overestimate the impact of
nonlinearities. More detailed information on the influence of polarization on the nonlinear
propagation of signals in fiber-optic systems can be found in [Han95, Coe10, Goe10, Agr01,
MMW97] and [MM06].
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2.8.2 Nonlinear phase noise

Nonlinear phase noise (NPN), also known as the Gordon-Mollenauer effect after [GM90],
results from the nonlinear interaction between the optical signal and the noise produced
by the optical amplifiers (see ch. 3). The power fluctuations induced by the noise onto
the signal are transformed to phase noise through interaction with the Kerr effect. It is,
therefore, of importance only for modulation formats that encode the information in the
phase of the optical carrier.

Several methods have been proposed to mitigate the impact of NPN, including optical
phase conjugation [LK97b, JvdBM+05] and semiconductor optical amplifiers based re-
generation [GSD+06]. In [HK04a] it has been shown that the variance of the NPN can
be reduced by a factor of four by using a compensator which rotates the received phase
proportional to the received optical power. This results into doubling the transmission
distance for systems limited by NPN.

The variance of phase fluctuations decreases as the dispersive effects become more dom-
inant [Kum05]. Since dispersion causes the pulses to spread, peak pulse power is reduced,
therefore, averaging out the nonlinear phase contribution. Moreover, the impairing effect
of NPN is indirectly related to the data rate. Transmission systems with higher bit rates
require lower amounts of accumulated noise along the link to deliver a certain bit-error
rate, compared to system using lower bit rate. Consequently, the power of the noise in
such systems is not large enough to make a significant contribution to the total nonlinear
phase shift and thus, NPN is not the limiting effect. For example in [CGS+10], it was
shown that regarding transmission distance, NPN is the limiting effect distance for DPSK
and DQPSK systems when symbol rates were below 40 and 30 GSym/s, respectively.

In this thesis, due to the relatively high symbol rate of the considered modulation for-
mats, it is assumed that the effect of NPN on the system performance can be neglected.
A more detailed description of the evaluation of the impact of NPN in phase modulated
systems can be found in [CMG+09, CGS+10] and [Coe10].

2.8.3 Nonlinear scattering effects

Apart from the Kerr based nonlinearities, two nonlinear scattering effects can take place
that may impair fiber-optic transmission systems, namely stimulated Raman scattering
and stimulated Brillouin scattering. They manifest themselves as an intensity dependent
attenuation of the optical signals.

Stimulated Raman scattering

Stimulated Raman scattering (SRS) is an interaction of the photons of an optical sig-
nal with the molecular vibrations of the transmission medium [Isl04]. Its effect on the
pulse propagation is accounted for by the imaginary part of the cubic susceptibility in
chapter 2.2.2. Observe that it was not considered in the derivation of the NLSE. Funda-
mentally, SRS occurs when a photon is incident on a molecule of the transmission fiber’s
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silica, and part of its energy is absorbed. The resulted scattered photon is of lower energy
and thus, of lower frequency than the incident one. This happens to a very small fraction
of the incident photons and under particular circumstances [Agr01].

In fiber-optic transmission systems, SRS must be considered for systems with high num-
ber of WDM channels. When co-propagating signals are present within the Raman band-
width, SRS can cause a power transfer from shorter to longer wavelengths channels result-
ing in unwanted crosstalk. The efficiency of the power transfer through SRS is dependent
on wavelength and can take place for channels placed up to 125 nm apart [Isl04]. Its
peak is at a frequency separation of ∼13.2 THz. This takes effect only for high optical
powers greater than 500 mW [Sei10]. Above this threshold, the amplification scales ex-
ponentially with the power of the shorter wavelength. This effect is used intentionally to
create Raman amplifiers.

In this thesis, since the bandwidth of the analyzed WDM signals is relatively small com-
pared to the Raman bandwidth, and since the total power is below the Raman threshold,
SRS is not considered.

Stimulated Brillouin scattering

Stimulated Brillouin scattering (SBS), similarly to SRS, results from the nonlinear inter-
action of an incident photon with the transmission medium, however, it is not described
by the cubic susceptibility tensor. SBS occurs when a pump wave generates acoustic waves
in the medium through the process of electrostriction [Boy08]. The acoustic wave, in turn,
modulates the refractive index of the medium effectively creating a moving reflection grat-
ing. The grating scatters the pump light through Bragg diffraction and downshifts it in
frequency due to the Doppler effect associated with the acoustic velocity of the moving
grating [Agr01].

In communication systems employing modulation formats with a strong optical carrier,
e.g., on-off-keying, SBS limits the maximum power that can be launched into the fiber.
The gain of SBS has a narrow bandwidth of around 20 MHz [Jan06]. Therefore, the
generation of SBS is significantly reduced by spreading the energy of the carrier signal
over a wider bandwidth. For modulation formats without a strong carrier, like those
analyzed in this thesis, SBS can be neglected.

2.9 Solutions of the nonlinear Schroedinger equation

The NLSE (2.65) derived in the previous sections is a powerful model for understanding
the propagation of light in the fiber and it is used extensively in order to simulate and
characterize the transmission systems investigated in this thesis. In the following section
some important analytical solutions of the NLSE are shown followed by a description of
the numerical algorithm generally used to solve it.
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2.9.1 Analytical solutions of the NLSE

Close form solutions of the Equation (2.65) exist only in special cases where nonlinearities,
chromatic dispersion or attenuation are neglected.

If nonlinearities are neglected (γ = 0), the NLSE can be written as

∂A(z, t)

∂z
=
1

2
jβ2

∂2A(z, t)

∂t2
− 1

2
α(ωc)A(z, t), (2.90)

whose solution can be directly written in the frequency domain as

Ã(z, ω) = Ã(0, ω) · exp
(

−α
2
z − j

β2
2
ω2z

)

. (2.91)

The term containing β2 in (2.91) produces dispersion of the group velocity of the signal.
This is usually referred to as group velocity dispersion (GVD) and is responsible of inter-
symbol interference (ISI).

If dispersion is neglected (β2 = 0), the NLSE can be written as:

∂A(z, t)

∂z
= −jγ|A(z, t)|2A(z, t)− 1

2
α(ωc)A(z, t). (2.92)

with the time domain solution written as

A(z, t) = A(0, t) · exp
(

−α
2
z − jγ|A(0, t)|2Leff

)

, (2.93)

where the effective length Leff is defined as Leff = (1 − e−αz)/α. The nonlinear term
gives rise to an intensity dependent phase shift, whereas the amplitude of the signal is
unchanged.

A noteworthy solution of the NLSE is obtained when attenuation is neglected. If the
anomalous dispersion regime is considered (β2 < 0), it is possible to obtain a solution of
the NLSE where the nonlinear chirp ideally cancels the broadening of a pulse caused by
dispersion, resulting in undistorted pulse propagation. Such a solution of the NLSE is
called a soliton. In order to obtain the waveform description of a soliton of peak power
Psol, it is useful to normalize (2.65) using ζ = z|β2|

T 2
0
, τ = t

T0
and

u(z, t) = A(z, t)

√

T 2
0 γPsol

|β2|
, (2.94)

where T0 is a measure of the pulse width. The normalized NLSE with zero attenuation
and anomalous dispersion is, therefore, written as [KA03]

∂u

∂ζ
+
1

2
j
∂2u

∂τ 2
= −j|u|2u. (2.95)
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Equation (2.95) is solved by the method of separation of variables, assuming a solution
of the form u(ζ, τ) = v(τ)ejφ(ζ). By doing the substitution in (2.95) we obtain

∂φ

∂ζ
= − 1

2v

∂2v

∂τ 2
+ v2. (2.96)

Equation (2.96) is separable, i.e., the right and the left sides must be equal to a constant
value K, so that φ(ζ) = K · ζ and

∂2v

∂τ 2
= 2v · (K − v2). (2.97)

This equation can be solved by multiplying it with 2∂v
∂τ

and integrating over τ . Subse-
quently, boundary conditions are applied so that v and ∂v

∂τ
vanish for |τ | → ∞; and v = 1

and ∂v
∂τ
= 0 for τ = 0 which, in sum, yields K = 1

2
. The resulting equation is then easily

integrated to give a solution of the form v(τ) = sech(τ), where the hyperbolic secant
function is defined as sech(τ) = 2/(eτ + e−τ ). The solution of (2.95) is then

u(ζ, τ) = sech(τ)ej
ζ

2 . (2.98)

The power of the soliton can be derived from (2.98) and the normalization variables ζ, τ

and u used to obtain (2.95). It results in a peak power Psol =
|β2|

T 2
0 γ
. The parameter T0 is

related to the full width, half maximum TFWHM of the soliton by TFWHM = 2T0ln(1+
√
2)

[KA03]. Observe that shorter soliton pulses need higher power in order to exist, compared
to pulses with longer duration. Alternatively, highly nonlinear fibers require less power
for solitons to form and propagate.

In general Equation (2.95) has infinite solutions called higher-order solitons, that in
contrast to the fundamental soliton obtained in (2.98), do change their amplitude while
propagating but return periodically to their original shape. Higher-order solitons can be
analytically obtained from (2.95) using the method of inverse scattering [KA03]. Using
inverse scattering, even soliton solutions for the normal dispersion regime (β2 > 0) can
be found. They are referred to as dark solitons because they appear as dark dips in a
uniformly lightened background.

The soliton solution is the optimum pulse shape to be used in an optical communication
system, as it does not change its shape while propagating. Unfortunately, the departure
from the ideal conditions assumed in (2.95), e.g., attenuation, strongly impact in the
complexity of soliton systems regarding practical implementation. A less complex alter-
native has prevailed in the realization of high capacity optical communication systems:
periodic dispersion management. By using fibers with opposite dispersion with respect to
the standard single-mode fiber, it is possible to counteract the pulse broadening caused
by dispersion. By carefully choosing the parameters of such a system, detrimental non
linear effects can be minimized so that a soliton-like transmission is achieved, i.e., the
transmitted pulse arrives undistorted at the receiver side. The design and optimization
of such systems is introduced in chapter 3 and is developed extensively in this thesis.
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2.9.2 The split-step Fourier method

As it was previously mentioned, Equation (2.65) does not have a closed-form solution if
attenuation, dispersion and nonlinearities are all taken into account. However, efficient
numeric algorithms exist that allow the evaluation of the propagation of an optical signal
of arbitrary shape along the fiber. The most commonly used algorithm is the split-step
Fourier (SSF) method .

The idea is to divide the total fiber length in multiple segments of length dz and assume
that linear and nonlinear effects act separately, so they can be evaluated using (2.91) and
(2.93) (see Fig. 2.3). The output signal is then the sum of all individual segments where
the SSF algorithm is applied. Therefore, equation (2.65) can be written as

∂A(z, t)

∂z
=

(

D̂(t) + N̂(z, t)
)

A(z, t), (2.99)

where the linear and nonlinear operators are respectively defined as

D̂(t) = −α
2
+
1

2
jβ2

∂2

∂t2
(2.100)

and
N̂(z, t) = −jγ|A(z, t)|2. (2.101)

The linear operator D̂ is usually evaluated in the frequency domain, whereas N̂ is directly
evaluated in the time domain. To improve accuracy, the nonlinear operator is placed in
the middle between two linear operators acting over segments of length dz/2. This is
usually referred to as the symmetric SSF. Consequently, (2.99) is solved as follows:

∂A

∂z
=

(

D̂ + N̂
)

A
∫
∂A

A
=

∫ (
1

2
D̂ + N̂ +

1

2
D̂

)

∂z

ln(A) =

∫ (
1

2
D̂ + N̂ +

1

2
D̂

)

∂z

A(z + dz, t) ≈F−1
{

exp

(
dz

2
D̂(ω)

)

·F
{

exp

(∫ z+dz

z

N̂(z′, t) dz′
)

·

F−1
{

exp

(
dz

2
D̂(ω)

)

·F{A(z, t)}
}}}

. (2.102)

In (2.102), F and F−1 represent the direct and inverse Fourier transforms, respectively,
the linear operator D̂ is evaluated in the frequency domain as D̂(ω) = −1

2
α− 1

2
jβ2ω

2 and
the integral term can be evaluated using the trapezoidal approximation

∫ z+dz

z

N̂(z′, t) dz′ ≈ dz

2

(

N̂(z + dz, t) + N̂(z, t)
)

. (2.103)



32 Chapter 2 � Propagation of Light in Optical Fibers

� � �
��

���� �� ���� ��

���� �� ��� � ��� ��

�� ����

Figure 2.3: Symmetric split-step Fourier method.

Because N̂(z + dz, t) depends on the unknown A(z + dz, t), an iterative procedure must
be used to evaluate (2.103) until a certain tolerated error is achieved.

The SSF method can also be used if the WDM coupled equations (2.82) are to be solved.
In such case the linear and nonlinear operators for the kth channel are written as

D̂k(t) = −
α

2
−

(

β
(k)
1 − β1

) ∂

∂t
+
1

2
jβ

(k)
2

∂2

∂t2
(2.104)

and

N̂k(z, t) = −jγk
(

|Ak(z, t)|2 + 2
∑

l 6=k

|Al(z, t)|2
)

. (2.105)

Subsequently (2.102) is evaluated for each channel. Observe that now, N̂k(z + dz, t) in
(2.103) depends on all the unknown channels Ak(z + dz, t). Algorithm 2.1 summarizes
the implementation of the SSF for both single-channel and total field (k = 1); and for the
coupled equations (k > 1).

Since the linear and nonlinear operators do not commute, the solution in (2.102) is an
approximation to the exact solution of the NLSE. It can be shown that the global error
accumulated over a fiber span is bounded by dz2 [SHZM03]. Therefore, the step-size dz
plays an important role in the accuracy and in the numerical efficiency of the algorithm.
There are a multitude of criteria to select the optimum distribution of the step-size and,
in general, it depends on the particular optical system to be analyzed.

If dispersion is the dominant effect in the link and nonlinearities play a second role, the
step size can be determined with the walk-off method. This method is particularly useful
in WDM systems in which the channels cover a broad spectrum and pulses in different
channels move through each other very quickly. The step size is chosen so that in a single
step two pulses in the two edge channels shift with respect to each other by a time which
is a specified fraction of the pulse width. In this way, all collisions between pulses in
different channels can be resolved. The step size is, therefore, constant and function of
the largest group velocity difference between channels. It is given by

dz =
C ·T0

|Dfλf −Dlλl|
, (2.106)
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Algorithm 2.1 Symmetrized split-step Fourier method

ǫ = 10−12, φmax
NL = 2.5 · 10−3, C = 0.5, z = 0

dzmax = C ·T0/(|Dfλf −Dlλl|)
for k = 1→ K do
D̂k = −1

2
α + j(β

(k)
1 − β1)ω − 1

2
jβ

(k)
2 ω2

end for
while z < L do
for k = 1→ K do
Pmax
k = maxt (|Ak|2)
dzk = φmax

NL /(γkP
max
k )

end for
dz = mink( dzk, dz

max), z = z + dz
if z > L then
dz = L− (z − dz), z = L

end if
for k = 1→ K do
AL1
k = F−1

{

exp
(

dz
2
D̂k

)

·F{Ak}
}

end for
for k = 1→ K do
N̂ ′
k = −jγk

(

|AL1
k |2 + 2

∑

l 6=k|AL1
l |2

)

ANL1
k = AL1

k · exp
(

dzN̂ ′
k

)

ANL1
k = F−1

{

exp
(

dz
2
D̂k

)

·F{ANL1
k }

}

errk = 1
end for
while maxk (errk) > ǫ do
for k = 1→ K do
N̂ ′′
k = −jγk

(

|ANL1
k |2 + 2

∑

l 6=k|ANL1
l |2

)

ANL2
k = AL1

k · exp
(

dz · 1
2

(

N̂ ′′
k + N̂ ′

k

))

ANL2
k = F−1

{

exp
(

dz
2
D̂k

)

·F{ANL2
k }

}

errk = maxt
(
|ANL1

k − ANL2
k |2/|ANL1

k |2
)

ANL1
k = ANL2

k

end for
end while
Ak = ANL2

k

end while
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where Df and Dl are the dispersion coefficients (see ch. 3.2.2) corresponding to the first
and last wavelengths λf and λl of the WDM comb, T0 is the pulse duration and C ∈ ]0, 1].
The walk-off method can also be used for single-channel transmission by choosing λf and
λl at the two edges of the signals spectrum.

One inconvenience of using a constant step size is that it is prone to produce numerical
artifacts. It has been shown [For97, Fra99] that, since four-wave mixing is a resonance
effect, the power of the four-wave mixing products can be greatly overestimated by a
constant step size method. If XPM and SPM are neglected, equation (2.81) can be
solved to obtain the power of the FWM products and its frequency dependent efficiency
η [SBW87]. Considering the interaction of four optical frequencies in a comb of WDM
signals along a piece of fiber of length L, the FWM efficiency can be written as

η =
α2

α2 +∆β2

(

1 +
4e−αL · sin2(∆βL)

(1− e−αL)2

)

, (2.107)

where ∆β = 4π2β2∆f is the phase-matching coefficient in the presence of only chromatic
dispersion and ∆f is the frequency separation between the spectral lines in Hertz.

In [BCC+00], an analytical expression for the FWM efficiency altered by the SSF method
was obtained. The FWM efficiency at the end of a fiber span of length L subdivided into
K generic sections of length dzn is

η′ =
1

(1− e−αL)2

∣
∣
∣
∣
∣

K∑

n=1

̺ne
jφn

∣
∣
∣
∣
∣

2

(2.108)

where ̺n =
(
1− e−α dzn

)
exp

(
−α∑n−1

i=1 dzi
)
and φn = −∆β

∑n
i=1 dzi.

Figure 2.4a depicts η and η′ when using the walk-off method for a typical scenario. The
altered FWM efficiency follows the theoretical value for small frequency separation. Still,
it starts to grow again, presenting several peaks at different frequencies. Whatever optical
power is at those spectral distances from a carrier, acts like an unrealistic pump for spuri-
ous tones. It is possible to choose the step size so that the first peak of η′ falls outside the
simulation bandwidth, yet, this results in prohibitively small steps. Bosco et al. propose
in [BCC+00] to use a logarithmic distribution for the step size to effectively suppress these
numerical artifacts. However, it is shown in [SHZM03] that this method performs rather
poorly in terms of accuracy for both single- and multi-channel transmission.

If nonlinearities play an important role in the system, the nonlinear phase rotation
(NLPR) method is commonly used. In this method, a variable step-size is used that
is inversely proportional to the instantaneous power of the signal. An upper bound on
dz can be obtained by limiting the nonlinear phase increment of the operator N̂ to a
maximum value φmax

NL . Consequently, the step-size can be written as

dz =
φmax
NL

γ ·maxt (|A(z, t)|2)
. (2.109)
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(b) NLPR
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(c) NLPR+Walk-off

Figure 2.4: FWM efficiency vs. channel spacing for a common transmission scenario with
parameters: L = 80 km, β2 = −21.1 ps2/km, α = 0.23 dB/km resulting in dz ≈ 60 m for the
Walk-off method; average power of 0 dBm, γ = 1.53 1/W/km and φmax

NL = 2.5 · 10−3 are used
for the NLPR method.

Usually φmax
NL ranges from 10−3 to 10−2 to keep the global error small. The altered FWM

efficiency using the NLPR method is plotted in Fig. 2.4b. Now, the efficiency follows the
theoretical value until approximately 1/K and departs randomly afterwards, maintaining
this value as statistical average. By using the nonlinear rotation method, the peaks in η′

are not present anymore and the SSF artifacts are effectively suppressed.

An upper limit in the step size derived from the NLPR method should be imposed and
determined by the walk-off method such that the collisions between pulses in different
frequencies can always be resolved. In such case, the altered FWM efficiency appears
random and has peaks, albeit of smaller amplitude compared to the peaks of the walk-off
method (see Fig. 2.4c).

A comparison between the three methods for the propagation of a WDM comb of 7
signals is shown in Fig 2.5, where the total number of steps vs. the length of a piece
of fiber is plotted. For 80 km of fiber and 0 dBm per channel, simulation of the total
field with the NLPR method requires 932 steps; with the walk-off method: 1327 steps;
and with the combined method: 1622 steps. Observe that for the abovementioned signal
power, the NLPR method is successful in resolving pulse collisions in WDM transmission
only for fiber lengths shorter than ∼ 20 km.

Recall that the number of steps is directly proportional to the simulation time. In
Fig 2.5 the number of steps required to simulate propagation of a single channel is also
shown for comparison. Using the NLPR method, the SSF method requires only 107 steps.
Assuming that the length of the vector representing the total field is equal to the length
of vectors representing individual channels, in this example WDM simulation using the
coupled equations would take ∼ 7 × 107 steps (=749), which translates into a ∼ 54%
reduction in simulation time compared to simulating the total field using the NLPR +
Walk-off method. This reduction is even larger when considering that vectors representing
the total field of a WDM comb usually require a larger number of samples than the vectors
representing the individual channels.
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Figure 2.5: Number of steps vs. length for different step-size distributions. Parameters are the
same as in Fig. 2.4.

2.10 Summary

In this chapter, the theory of propagation of light in single-mode fibers was thoroughly
reviewed. In summary, the main points of this chapter are the following:

⊲ Starting with Maxwell’s equations, the condition for single-mode propagation was
derived: fibers with normalized frequency V < 2.405 propagate a single mode per
polarization. With the assumption that the fiber is isotropic, the scalar NLSE
was derived. The NLSE governs the propagation of light in single-mode fibers and
models a handful of effects that the optical signals experience during propagation.

⊲ A system of coupled NLSE was also derived, which is useful in the analysis of the
interaction between co-propagating WDM signals. It is pointed out that the model
does not account for linear cross-talk between the signals and that it is valid only
when FWM can be neglected. The coupled system of equations is also useful in
order to reduce the simulation time of WDM systems.

⊲ The NLSE used in this thesis effectively models attenuation, chromatic dispersion
and Kerr nonlinear effects. Polarization effects are not included. Since random
polarization rotations reduce the cubic susceptibility to an effective value, and addi-
tionally decreases the effect of XPM, the nonlinear penalties presented in this thesis
can be regarded as worst-case scenario.

⊲ Nonlinear phase noise and polarization mode dispersion are not considered in the
derived models. Still, they should not be the limiting factors for the symbol rates
investigated in this thesis (assuming that fibers with low PMD coefficient are used).
Nonlinear scattering effects are also not considered in the derivation of the NLSE
since they are not relevant for the considered power range and modulation formats.
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⊲ Characteristic lengths were defined and shown to determine the regime of propa-
gation that the optical signals experience. Most of the systems investigated in this
thesis fall into the pseudo-linear regime of propagation.

⊲ The analytical solutions of the NLSE were presented. They show that chromatic
dispersion produces a frequency dependent group velocity dispersion which leads to
pulse broadening and, consequently, to inter-symbol interference. Kerr nonlinear
effects produce a power dependent phase shift which by itself does not cause signal
distortion in intensity modulated systems. In the presence of dispersion though, it
does lead to waveform distortion unless the power and shape of the pulses is such
that dispersion and nonlinear effects balance each other. Such pulses are referred
to as solitons and were shown to exist in the absence of attenuation.

⊲ The split-step Fourier (SSF) method was reviewed. This algorithm is used to solve
the NLSE numerically. It was shown that the step size is an important parameter
that influences the running time and the accuracy of the simulation. The walk-off
method is a common selection criterion for the step size. Its advantage is that it
allows to successfully resolve all pulse collisions between different WDM signals. On
the other hand, since it is a constant step size method, it overestimates the effi-
ciency of FWM. The nonlinear phase rotation method is another common selection
criterion. The step size is not constant and so the FWM efficiency is not overesti-
mated. But it is not successful in resolving all pulse collisions. A combination of
both methods is the correct approach.





3
Fiber-Optic Transmission
Systems

This chapter is divided in three main parts: The first part is devoted to describe the
most important elements that compose the optical transmission systems considered in
this thesis. In the second part, the criteria for the optimum design of such systems
are reviewed. Special relevance is given to the design of dispersion maps, which play
an important role in minimizing the detrimental effect of nonlinearities. The third part
of this chapter is dedicated to the proper evaluation of the performance of an optical
communication link. Firstly, the theory of pseudo-random sequences is briefly reviewed.
The impact of the length and the order of the sequences on the evaluation of the bit-error
rate (BER) is also addressed. Secondly, a semi-analytical method for the evaluation of
the BER is described. Finally, a mathematical algorithm for the global optimization of
the performance of a system is introduced.

3.1 System components

The following section outlines the most important components of the transmission systems
considered in this thesis. All components described here serve as the building blocks of
the optical link. However, carefully-designed systems must account for the restrictions
imposed by these components, as their transmission characteristics or deviation from
ideal behavior may cause loss in the performance of the system, for example, due to
nonlinearities, noise and bandwidth limitations.
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3.1.1 Optical sources

Most of the transmission systems based on single-mode fiber use semiconductor lasers1 as
light sources. In semiconductor lasers, the atoms of the direct band-gap semiconductor
material are taken to an excited state by absorbing energy from an externally pumped
electrical current. They return eventually to their normal ground state and emit light in
the process. Light emission can occur through two fundamental processes known as spon-
taneous and stimulated emission. The later is the dominant process in lasers. Stimulated
emission occurs when an already existing photon causes the decay of an atom from the
excited to the ground state, generating a second photon that matches the original photon
in energy (frequency), phase, direction and polarization state. Thus a narrow beam of
coherent light is generated and used as the optical carrier.

Ideally, the carrier is a light-wave with constant amplitude, frequency and phase, that
translates into zero laser spectral line-width. However, the process of spontaneous emis-
sion takes place along with stimulated emission, causing fluctuations in the intensity and
the phase of the signal which subsequently, results in broadening of the signal’s spectral
width.

The normalized electrical field of an optical carrier without intensity fluctuations can be
written in complex notation as

E(t) =
√
P · ej(2πfct+ϕ(t)) · e, (3.1)

where P and fc are the power and frequency of the optical carrier respectively, and e
is the polarization-state vector. The random variation of the phase ϕ(t) is denominated
laser phase noise and is caused by spontaneously emitted photons that do not match the
phase of the photons generated by stimulated emission. The evolution of the phase in a
time interval dt can be modeled as a random-walk process of the form

ϕ(t+ dt) = ϕ(t) + ∆ϕ, (3.2)

where the phase change ∆ϕ is a normally distributed random variable with zero mean
and variance σ2

PN given by
σ2
PN = 2π∆ν|dt|, (3.3)

where ∆ν corresponds to the laser linewidth defined as the full-width at half-maximum
bandwidth of the Lorentzian-shaped power spectral density of the optical field.

The requirements on the laser linewidth depend on the data rate and the modulation
format used to transmit data. For DQPSK systems it has been shown [Sei10] that a laser
linewidth to data rate ratio of ∼ 2 · 10−3 results in a penalty of 3 dB irrespective of the
pulse shape used for transmission. For systems at 55.5 Gb/s this translates into a laser
linewidth tolerance of more than 100 MHz. Commercially available distributed feedback
lasers (DFB) have linewidths in the order of 1-3 MHz [FNM+04], whereas external cavity
lasers (ECL) can have linewidths as low as 100 kHz [JMST09]. Therefore, phase noise is
not of concern for the systems investigated in this thesis.

1The term “laser” originated as an acronym for Light Amplification by Stimulated Emission of Radi-
ation.
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(a) Dual-drive MZM
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Figure 3.1: Structure of a dual-drive Mach-Zehnder Modulator and its transfer function (TF)
in push-pull configuration. The transition point (I) and quadrature point (II) of the nonlinear
transfer function are shown.

3.1.2 Optical modulation

Optical modulation is the process by which data, conveyed in an electrical signal, is con-
verted into an optical signal with the same information. One technique is the direct
modulation of the electrical current that drives a semiconductor laser. Direct modu-
lation is a simple and cost-effective technique, since it does not require any additional
optical component. However, the lasers modulation bandwidth is limited and high speed
modulation introduces unwanted frequency chirp. At bit rates of 5 Gb/s or higher, the
frequency chirp becomes large enough, that direct modulation of semiconductor lasers is
rarely used [Agr02]. Instead, external modulators are used to modulate the continuous
wave (CW) output of a laser.

The most widely used device for external modulation is the Mach-Zehnder modulator
(MZM), schematically depicted in Figure 3.1a. In a MZM, CW light with amplitude Ein

is split equally (ideally) into two branches. A waveguide material that exhibits strong
electro-optical effect is used, such as LiNbO3. The refractive index of the waveguide
material is changed by means of the applied voltages u1(t) and u2(t) in each branch re-
spectively, therefore, producing a phase shift in the optical field. If no voltage is applied,
the optical field in the two branches experience equal phase shift and interfere construc-
tively. If different voltages are applied to the arms of the MZM, constructive interference
no longer occurs, and the intensity of the light at the output of the MZM is reduced
proportionally to the phase difference between the two arms. When the phase difference
between the arms is π, destructive interference occurs and no light is transmitted.

According to the Pockels effect, the phase shift experienced by the light in each branch
due to the change in refractive index varies linearly with the applied voltage u(t) and

can be written as ∆ϕ = π u(t)
2Vπ

, where Vπ denotes the drive voltage necessary to produce
a phase shift of π between the two branches. Typical values for Vπ range between 3 to 6
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Volts. If the extinction ratio is assumed infinite and insertion loss is not considered, the
complex envelope of the light at the output of the MZM can be written as

Eout(t) = Ein · cos
(

π
u1(t)− u2(t)

4Vπ

)

· ejαcπ
u1(t)−u2(t)

4Vπ , (3.4)

where αc =
u1(t)+u2(t)
u1(t)−u2(t)

is the linear frequency chirp parameter.

Chirp-free modulation can be obtained if the MZM is driven in push-pull configuration,
by setting −u1(t) = u2(t) = u(t), resulting in the transfer function

Eout(t)

Ein

= cos

(

π
u(t)

2Vπ

)

. (3.5)

Intensity modulation is obtained by biasing the MZM at its quadrature point, i.e., when
the power transfer function Pout(t)/Pin = (Eout(t)/Ein)

2 equals 0.5 or equivalently, when
u(t) = ±Vπ/2, whereas amplitude and binary phase modulation are achieved by biasing
at the transition point, i.e., Eout(t)/Ein = 0 or equivalently, when u(t) = ±Vπ. The MZM
has a nonlinear transfer function (see Fig. 3.1b), however, it can be regarded as a linear
amplitude modulator around ±Vπ if the modulation voltage is small and the saturation
region is avoided.

In principle, arbitrary complex optical waveforms can be generated using a dual-drive
MZM. Nevertheless, in practice, optical IQ modulator are used. They consist of two paral-
lel MZM in push-pull configuration that are used for the signal’s in-phase and quadrature
components respectively, and a phase modulator that confers a phase shift of π/2 to the
output of the quadrature branch. The resulting transfer function can be written as

Eout(t)

Ein

=
1

2

(

cos

(

π
uI(t)

2Vπ

)

+ j · cos
(

π
uQ(t)

2Vπ

))

. (3.6)

Mach-Zehnder modulators are particulary suitable for long-haul transmission of high
data rates as they can have modulation bandwidths as high as 100 GHz [Nog07], high
extinction ratio (>20 dB), low insertion loss (∼4 dB) and are nearly wavelength indepen-
dent [vdB08]. In this thesis, MZM are regarded as ideal devices, albeit, with nonlinear
transfer function.

3.1.3 Optical amplification

In spite of the low attenuation of standard single-mode optical fibers (see ch. 3.2.1), trans-
mission systems with distances of over 100 km require the use of optical amplification.
Furthermore, the actual realization of WDM long-haul transmission systems is based on
the periodic concatenation of transmission spans composed of fiber and optical amplifiers
that are capable of compensating for the loss suffered by all WDM channels simultane-
ously.
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Most systems employ lumped erbium-doped fiber amplifiers (EDFAs) in which losses
accumulated over 60 to 80 km of fiber lengths are compensated using short lengths of
erbium-doped fibers [Agr02]. In EDFAs, the erbium ions (Er3+) are excited to a higher
energy state by means of a pump wave at a certain wavelength, usually 980 nm or 1480
nm, so that the incoming optical signal at around 1550 nm is coherently amplified by
stimulated emission.

Unfortunately, spontaneous emission of photons also occurs, leading to the generation
of an incoherent optical flux around the signal’s wavelength that becomes amplified upon
propagation along the doped fiber, a process known as amplified spontaneous emission
(ASE). ASE is the main source of noise in optically amplified lightwave communication
systems. The noise can be modeled as complex additive white Gaussian noise (AWGN),
with single-sided power spectral density (PSD) per polarization given by [GWL63]:

ΦASE = hfc(G− 1)nsp, (3.7)

where h is Planck’s constant, fc is the signal frequency and G is the amplifier’s gain. The
spontaneous emission factor nsp is related to the erbium ion population in the ground
state and in the higher states, such that when total population inversion is ideally achieved
nsp = 1. In general this does not occur and nsp > 1.

Since the spontaneous emission factor is not directly measurable, the noise figure param-
eter Fn is used to characterize the optical amplifier. It is defined, in analogy to electronic
amplifiers, as the quotient between the electrical signal-to-noise ratio of a photodetected
electrical signal before and after optical amplification. For an ideal photodetector with
unit quantum efficiency, no dark current and only limited by shot noise, the calculated
noise figure reads [Agr04]

Fn = 2nsp
G− 1

G
+

1

G
. (3.8)

In the high-gain limit (G ≫ 1) the noise figure approaches Fn = 2nsp. This indicates
that even an ideal amplifier with nsp = 1 has a noise figure of 3 dB. For most practical
amplifiers, Fn exceeds 3 dB and can be as large as 6 to 8 dB [Agr02]. The wavelength of
the pump laser has a direct impact on the noise figure. Laser pumps in the 980 nm region
achieve population inversion more efficiently, which in turn, effectively lowers the noise
figure of the amplifier. On the other hand, a laser pump at 1480 nm guarantees higher
output power, but with a consequent detriment on the noise-related characteristics of the
amplifier [KL02].

Inserting (3.8) into (3.7) and assuming G≫ 1, we obtain

ΦASE =
1

2
hfcGFn. (3.9)

In general, the gain of the EDFA depends on multiple parameters such as power and
wavelength of both signal and pump, as well as the length of the erbium doped fiber.
In the praxis, however, EDFAs can be regarded as devices with configurable gain or
configurable output optical power, that is independent of the signal wavelength within a
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certain frequency band. Furthermore, since the gain dynamics of the EDFAs are rather
slow, its gain responds to the average incident power and is, therefore, transparent to
variable data rates and modulation formats [KK97b]. Another important characteristic
of EDFAs is their low dependence on light polarization [DBDB02].

Other optical amplification technologies include Raman amplification and parametric
amplification that rely on the nonlinear effects of stimulated Raman scattering and four-
wave mixing in an optical fiber, respectively; and semiconductor optical amplifiers, that
amplify the signal using a semiconductor material and an electrical pump. Although at-
tractive due to their low noise figure and high bandwidth, Raman amplifiers are not yet
commercially successful since they have important drawbacks compared to EDFAs. The
most important one is that the pump power required by Raman amplifiers is significantly
higher than the power required in EDFAs [vdB08]. Semiconductor amplifiers and para-
metric amplifiers are found mostly in optical signal processing applications [Agr02]. Only
EDFAs will be considered in this thesis.

3.1.4 Photodetection

Photodetection is the process by which an optical signal is converted to an electrical
signal. A photodetector is usually composed of a photodiode and a receiver electronic
circuit. The current Iout generated by the photodiode is proportional to the incident
optical power, i.e.,

Iout(t) = R · |Ein(t)|2, (3.10)

where Ein is the incident normalized optical field in units of
√
W, as defined in (3.1);

and R is the photodiode’s responsivity (in A/W). The responsivity is proportional to
the quantum efficiency of the photodiode, defined as the quotient between the electron
generation rate and the photon incident rate.

Due to the particle nature of light, photodetection causes shot noise. Additionally,
the receiver electronic circuit produces thermal noise. Both noises can be neglected in
the analysis of optically amplified lightwave systems, in which ASE noise dominates.
Photodetectors are considered ideal devices in this thesis, i.e., without any bandwidth
limitation and R = 1 A/W.

3.1.5 Optical couplers

Optical couplers are used to split or combine optical signals as shown in the directional
coupler depicted in Figure 3.2. Directional couplers are four port devices where the
incident light in two ports is divided into two output ports according to the power splitting
ratio κ. For all optical couplers used in this thesis κ = 1

2
.

Optical Y-junctions can also be regarded as four ports directional couplers with either
only one input port when used as a power divider, or only one output port when used as
a power combiner, in which case the other port acts as the output of a radiation mode,
effectively modeling the inherent 3 dB power loss of optical combiners [INS82].
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Figure 3.2: Optical coupler.

The transfer function of an optical coupler can be written as [Agr04]

(
Ein,1(t)
Ein,2(t)

)

=

( √
κ j

√
1− κ

j
√
1− κ

√
κ

)(
Eout,1(t)
Eout,2(t)

)

. (3.11)

3.1.6 Optical and electrical filters

Optical filters are used in WDM systems mainly for multiplexing, demultiplexing and
noise filtering. Most systems employ filters based on fiber Bragg gratings, Fabry-Perót
interferometers or arrayed waveguide gratings [Agr02]. Their low pass equivalent transfer
function can be modeled as a Gaussian function of order no given by

Ho(f) = exp

(

− ln(
√
2)

(

2f

Bo

)2no

)

, (3.12)

where Bo is the two-sided 3 dB bandwidth.

Electrical filtering occurs naturally due to the bandwidth limitation of optoelectronic
components such as lasers, modulators and photodetectors. Also, electrical filters can be
used intentionally in digital transmitters as image rejection filters after digital-to-analog
conversion. At the receiver side, electrical filters are used in order to further filter noise
after photodetection.

Electrical filters are usually modeled as low-pass Bessel filters since they can be phys-
ically implemented, exhibit a linear phase response and an excellent step response with
minimal overshoot and ringing [Sei10]. In this thesis, 5th order Bessel filters are used with
normalized transfer function given by

He(s) =
945

s5 + 15s4 + 105s3 + 420s2 + 945s+ 945
, (3.13)

where s = jKf
Be
, Be is the one-sided 3 dB bandwidth and K = 2.42741070215263 is the

3 dB normalization constant.
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3.2 Link design

As detailed in chapter 2, the propagation of light in the fiber is exposed to several detri-
mental effects of linear and nonlinear nature. In the following section, the proper design
of a link will be discussed such that the most important impairments can be effectively
minimized.

3.2.1 Fiber loss management

Fiber loss

Since optical receivers need a minimum optical power for error-free detection, fiber loss
imposes a fundamental limit on the maximum reach of a transmission link. In equation
(2.65), fiber loss is accounted for by the fiber attenuation coefficient α, measured in units
of km−1. If dispersion and nonlinear effects are not considered in (2.65), the propagation
equation reduces to

∂A(z, t)

∂z
= −1

2
α(ωc)A(z, t), (3.14)

whose solution yields

A(z, t) = A(0, t)e−
α(ωc)

2
z. (3.15)

In terms of the instantaneous power P (z, t) of the signals, and recalling that P = |A|2,
equation (3.15) is equivalent to

P (z, t) = P (0, t)e−α(ωc)z. (3.16)

Equation (3.16) shows that due to fiber loss, the power of the signals decreases exponen-
tially along the fiber.

Observe that conventionally, the attenuation coefficient is expressed in units of dB/km
by

αdB =
10

ln(10)
α ≈ 4.343α. (3.17)

Figure 3.3 shows the typical attenuation of the standard single-mode fiber (SSMF) as
a function of the wavelength and frequency of the optical carrier, with a minimum of
0.2 dB/km at around 1550 nm. The two fundamental loss mechanisms that govern the
loss profile of an optical fiber are shown as well: Rayleigh scattering and infrared ab-
sorption. Rayleigh scattering results from local microscopic fluctuations in the material
density that lead to small variations of the refractive index on a scale smaller than the
optical wavelength λ [Agr02]. The Rayleigh scattering varies as λ−4 and is the domi-
nant loss mechanism at 1550 nm. Infrared absorption dominates for large wavelengths
(> 1650 nm). It is caused by vibrational resonances of the optical signal with the silica
molecules of the fiber. The peak in Fig. 3.3 results from the presence of impurities in
the fiber, specifically, due to absorption caused by water vapor ions (OH−). This is not a
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Figure 3.3: Fiber attenuation and chromatic dispersion profile. The linear approximations for
the dispersion of SSMF and DCF are depicted as well (adapted from [Ran05]).

fundamental loss mechanism and can be eliminated by reducing the concentration of OH
in the manufacturing process [TSGS00].

In order to establish a general framework for fiber-optic transmission systems, the
telecommunication section of the International Telecommunication Union (ITU-T) de-
fined six standard bands for transmission using single-mode fiber [Int03]. They are de-
picted in Fig. 3.3. Most commercial systems employ the conventional band (C-band),
from 1530 nm to 1565 nm, where the fiber loss is the lowest. If more bandwidth is re-
quired, transmission can take place in the long (L) or in the short (S) wavelength bands.
The extended (E) and the ultra-long wavelength (U) bands are of less interest due to their
relative high attenuation. The original band (O) was used in early long-haul transmission
systems and is used nowadays almost exclusively for the client interface in the access
networks [Jan06]. This thesis focuses on transmission in the C-band.

Loss compensation and optical signal-to-noise ratio

As discussed in chapter 3.1.3, fiber loss is compensated by periodic optical amplification.
In turn, this adds ASE noise to the optical signal. In such a system, the total noise
power accumulated at the end of the link is the sum of the noise powers produced by
each amplifier along the link. When all N spans have equal length Lspan and the EDFAs



48 Chapter 3 � Fiber-Optic Transmission Systems

compensate exactly for the loss in one span, the one-sided ASE noise PSD becomes

Φtotal
ASE =

1

2
hfcGFnN =

1

2
hfce

αLspanFn
Ltotal

Lspan

. (3.18)

Since the noise is a stochastic process, its total power per polarization at the end of a link
can be calculated by integrating, in the frequency domain, the response of the receiver
optical filter to a random input signal. In general, the noise power is given by

PASE =

∫ ∞

−∞

|Ho(f)|2Φtotal
ASE df. (3.19)

where Ho(f) is the low-pass equivalent transfer function of the receiver optical filter. Since
the ASE noise is white, equation (3.19) is equivalent to

PASE = Φtotal
ASEBo,eff . (3.20)

where Bo,eff =
∫∞

−∞
|Ho(f)|2 is defined as the effective optical filter bandwidth. It is

customary, however, to compare the power of the ASE noise and the power of the optical
signal before the receiver optical filter by means of a reference bandwidth Bo,ref usually
set to 12.5 GHz. The optical signal-to-noise ratio (OSNR) is consequently defined as

OSNR =
P

PASE

=
P

2Φtotal
ASEBo,ref

, (3.21)

where P is the average signal power. The factor 2 in (3.21) accounts for the noise power
in both polarizations.

The optimum span length to produce the minimum ASE noise is found by setting
∂Φtotal

ASE/∂Lspan = 0 in (3.18), which yields Lopt
span = α−1. For SSMF with αdB = 0.2 dB/km

this results in Lopt
span ≈ 21 km. This is, however, not practical from a cost point of view.

Following the ITU-T recommendations for terrestrial networks [Int98], span lengths of
80 km are considered in this thesis. An estimation of the degradation of the OSNR due
to the use of non-optimal span lengths can be obtained by computing the ratio between
Φtotal

ASE for a link with optimum span length and for one with an arbitrary span length. For
a link composed of SSMF and EDFAs with spans of 80 km in length, the OSNR is 6 dB
less than if using spans of optimum length. The fact that OSNR can be increased by
spacing EDFAs closer together is used in ultra long-haul transmission systems that have
to bridge transoceanic distances.

3.2.2 Dispersion management

Chromatic dispersion

Chromatic dispersion (CD) is the phenomenon by which different frequency components
of an optical signal travel with different group velocities along the single-mode fiber.
There are two kinds of contribution to CD: material and waveguide dispersion. Material
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dispersion originates from the frequency dependance of the refractive index (see ch. 2.2),
and it is the dominant contribution to CD in the C-band. Waveguide dispersion is caused
by the dependence on wavelength of the power distribution between core and cladding.
Its contribution to CD depends on fiber parameters such as core radius and the difference
in refractive index between core and cladding.

The effect of the dispersion on modulated signals can be described by considering the
propagation constant and its Taylor series expansion around the carrier frequency ωc.
Recalling (2.54):

β(ω) = β0 + β1 · (ω − ωc) +
1
2
β2 · (ω − ωc)

2 + 1
6
β3 · (ω − ωc)

3 + . . . , (3.22)

with

βm =
∂mβ(ω)

∂ωm

∣
∣
∣
ω=ωc

. (3.23)

In (3.22), β0 in km
−1 results in a constant phase shift and β1 in ps/km leads to a constant

group delay, or group velocity vg = 1/β1. Neither β0 nor β1 induce any signal distortions.
β2 in ps

2/km and β3 in ps
3/km represent the group velocity dispersion (GVD) and disper-

sion slope, respectively. They induce a frequency dependent group delay and, therefore,
lead to signal distortion.

In practice, it is more common to use the dispersion parameter D in ps/nm/km which
characterizes the change in group delay per unit distance [Agr02]. It is related to β2 by

D =
∂β1
∂λ

= −2πc
λ2

β2. (3.24)

The wavelength dependency of D in SSMF is shown in Fig. 3.3. It can be approximated
around a reference wavelength λr by the linear function

D(λ) = Dr + Sr · (λ− λr) (3.25)

where Dr = D(λr). The reference slope parameter Sr = S(λr), in ps/nm
2/km, is defined

as

S(λr) =
∂D

∂λ

∣
∣
∣
λ=λr

=
4πc

λ3r
β2 +

(
2πc

λ2r

)2

β3. (3.26)

Equations (3.24)-(3.26) can be used to calculate the values of β
(k)
1 , β

(k)
2 and β

(k)
3 intro-

duced in (2.75) which are used to model the propagation of WDM signals with the system

of coupled NLSEs (see equation (2.82)). Observe that β
(0)
m = βm. According to (3.24),

the value of β1 is obtained by integrating (3.25), which can be used to obtain

(β
(k)
1 − β1) = (Dr − Srλr) (λk − λr) +

Sr
2

(
λ2k − λ2r

)
, (3.27)

where λk is the wavelength of the k
th channel. β

(k)
2 is obtained by directly inserting (3.24)

in (3.25) resulting in

β
(k)
2 = − λ2k

2πc
(Dr + Sr · (λk − λr)) . (3.28)
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Figure 3.4: Schematic of in-line dispersion compensation with DCF and two-stage amplifier.

Since dispersion was approximated using a linear function, the slope is constant for all
channels and, therefore, β

(k)
3 = β3, ∀k. Combining (3.28) and (3.26) we obtain

β
(k)
3 =

λ3r
(2πc)2

(2Dr + λrSr) . (3.29)

The dispersion parameter for SSMF varies between D = 15 − 18 ps/nm/km in the
C-band. The dispersion slope is typically S = 0.06 ps/nm2/km. The zero dispersion
wavelength is present near 1320 nm [Neu88], and corresponds to the wavelength where
both material dispersion and waveguide dispersion have the same magnitude, but opposite
signs.

The waveguide dispersion can be manipulated by modifying the refractive index profile
of the fiber. This can be used to produce fibers with negative dispersion parameter in the
C-band, which are referred to as dispersion compensating fibers (DCF) and are widely
used in fiber-optic transmission systems to compensate for chromatic dispersion. The
approximate wavelength dependance of D in DCFs is shown in Fig. 3.3.

Dispersion compensation

In long-haul transmission systems with data rates over 2.5 Gb/s the accumulated disper-
sion must be compensated for. Many different methods have been proposed to compensate
for CD such as dispersion compensating fibers (DCFs) [GNWK+05], dispersion managed
cables [BMM+04], fiber Bragg gratings [Que87], electronic pre-distortion [KA85] and opti-
cal phase conjugation [YFP79]. Most commercial transmission links to date, however, are
realized using DCF modules for in-line dispersion compensation as shown in Fig. 3.4. Its
main advantage is the possibility to compensate simultaneously the dispersion of multiple
WDM channels. Modern DCF modules can be designed to be sloped-matched, i.e., the
slope of the DCF is inverse and equal in magnitude to the slope of the transmission fiber.

Due to the relatively high attenuation of the DCF (∼ 0.5 dB/km) and the high complex-
ity of cable installation, DCFs are not used as transmission fiber but coiled around a spool
for discrete dispersion compensation. Usually a two-stage EDFA structure with mid-stage
access for the DCF is used for compensating the loss of the DCF. In such configuration,
the input power into the DCF (PDCF) is an important design parameter. Because of
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Figure 3.5: DCF-induced penalty as a function of the SSMF-DCF power ratio Pr. Parameters
for the SSMF and DCF are those shown in Table 1.1. The compensation ratio is 1 and the noise
figure of the amplifiers is 6 dB.

the higher nonlinear coefficient of the DCF (γ =∼ 3-6 W−1km−1) than that of the SSMF
(γ =∼ 1.3-1.6 W−1km−1), the input power into the DCF is usually chosen several decibels
lower than that of the SSMF in order to reduce de DCF-induced nonlinearities.

A figure of merit for the nonlinearities induced by the fiber is the nonlinear phase-shift
which is defined as

φNL = γLeffP, (3.30)

where P is the power of the optical signal. Recall that the effective length Leff is defined
as Leff = (1 − e−αz)/α. Consequently, the DCF-induced increase in the total nonlinear
phase-shift can be written as [vdB08]

∆φNL,DCF =
φNL,SSMF + φNL,DCF

φNL,SSMF

= 1 +
γDCF ·LDCF

eff

γDCF ·LSSMF
eff ·Pr

, (3.31)

where Pr = PSSMF/PDCF is the power ratio. Clearly from (3.31), when the power ratio
between SSMF and DCF increases, the DCF-induced contribution to the total nonlinear
phase shift shrinks.

On the other hand, the power ratio influences the amount of noise produced by the two-
stage amplifier, therefore, modifying the accumulated OSNR at the end of the link. The
total noise figure of a two-stage amplifier can be calculated using Friis’s formula [GNWK+05]

Fn,total = Fn,1 +
eαDCFLDCF ·Fn,2 − 1

eαSSMFLSSMF/Pr

, (3.32)

where Fn,1 and Fn,2 are the respective noise figures of the two-stage amplifier. Evidently,
from (3.32), the total noise figure increases when Pr increases. This suggests that there
exists an optimum power ratio that balance the nonlinear effects and noise contributions of
the DCF. Figure 3.5 depicts equations (3.31) and (3.32) as a function of Pr. The combined
penalty suggest an optimum power ratio of 6.5 dB. This is, however, a very simplified
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analysis, since the effective penalty associated with the DCF-induced nonlinear effects is
dependent on variables other than just φNL such as local dispersion, modulation format,
pulse shape, etc. An important goal of this thesis is to identify the optimum power
difference between SSMF and DCF, for different modulation formats and transmission
scenarios.

3.2.3 Design of dispersion maps

There are several ways of compensating for dispersion using DCFs. Compensation can
take place either at the transmitter or receiver side, or periodically along the link. In the
absence of nonlinear effects it is not important which scheme is used, as long as the accu-
mulated dispersion at the end of the link is zero. In this scenario, the performance would
only be limited by the OSNR degradation induced by the ASE noise and, in principle,
such a link could be made arbitrarily long only by increasing the input optical power.
However, for long-haul transmission, nonlinearities are the limiting effect regarding maxi-
mum transmission distance. Because the strength of the nonlinear effects is dependent on
the time-waveform of the optical signal, different dispersion-compensation schemes will
lead to different system performances, i.e., the local dispersion determines the impact of
the nonlinear effects.

The course of dispersion along a transmission link can be visualized using a dispersion
map. Figure 3.6 shows the dispersion maps for non-dispersion managed (NDM) and
dispersion-managed (DM) links. In the former case, compensation is realized at the
receiver and/or at the transmitter side and the system performance is determined by the
set of parameters SNDM = {PSSMF,Dpre,Dpos}, where Dpre and Dpos are the amount of
pre-compensation and post-compensation, respectively. In DM links, the performance
of the link is determined by the set of parameters SDM = {PSSMF, PDCF,Dpre,Dres,Dacc},
where Dres is the residual dispersion per span and Dacc is the total accumulated dispersion
at the end of the link. The parameters Dpos and Dacc can be used indistinctively by noting
that, for NDM links, they relate by Dacc = Dpos +Dpre +N ·LSSMFDSSMF. Similarly, for
DM links, they relate by Dacc = Dpos +Dpre +N · Dres.

Pre-compensation is used in order to prechirp the pulses such that their path-averaged
width, over the effective length of a fiber section, is minimized. This results in less
overlapping of neighboring pulses in the high-power segments of the transmission sections
and thus, reduces the distortions due to intra-channel nonlinearities.

The residual dispersion per span is usually chosen different than zero in order to change
the amount of CD at the beginning of each subsequent span. This averages out the
interaction between the nonlinear phase shift and chromatic dispersion, as the signal’s
waveform is slightly different in each of the following sections. Additionally, it has been
shown [KSS97] that XPM is greatly reduced if Dres 6= 0, since the walk-off between WDM
channels slightly changes between subsequent spans, hence, producing an averaging effect.

Many engineering design rules have been developed that relate the amount of pre-
compensation with the residual dispersion per span, e.g., [KTMB00, FABH02, BSO08].
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Figure 3.6: Dispersion compensation schemes with dispersion maps. a) Non-dispersion-
managed links. b) Dispersion-managed links. Dispersion maps are not to scale.

They are based on the idea that an optimized pre-compensation minimizes the average
broadening of the pulses in the high power segments of the link, while making the disper-
sion map symmetric with respect to the zero dispersion point where, in turn, the pulse
width reaches its minimum. This translates into the well-known straight-line rule where
the pre-compensation value is chosen such that [KTMB00]

Dpre =
DSSMF

αSSMF

log

(
e−αSSMFLSSMF + 1

2

)

− N

2
Dres. (3.33)

In [Coe10], the straight-line rule was further refined by taking into consideration the non-
linear phase-shift induced by the DCFs. The resulting pre-compensation can be written
as

Dpre = −DSSMF · za −
N

2
Dres, (3.34)

where the length za is written as

za = −
1

αSSMF

log

(
e−αSSMFLSSMF + 1

2
+

γDCFPDCFαSSMF

2γSSMFPSSMFαDCF

(
1 + e−αDCFLDCF − 2e−αSSMFzb

)
)

,

(3.35)
and

zb =
DSSMF

DDCF

(za − LSSMF) + LSSMF. (3.36)

Observe that when γDCF = 0, equations (3.33) and (3.34) are equivalent. The straight-
line rule will be discussed further in the next section when estimating the maximum
transmission reach of a system.

Finally, Dpos is used to compensate for the remaining dispersion accumulated along
the link. Since the nonlinear and the dispersion-induced phase-shift have opposite signs
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when D > 0, a certain amount of accumulated dispersion (Dacc) can be left uncom-
pensated in order to partially reduce the net effect of SPM [EFS+00]. This is specially
effective in 10 Gb/s systems [BBB99]. On the other hand, when propagation falls un-
der the pseudo-linear regime the optimum value of Dacc is close to zero. The extensive
simulations conducted in [FB00] for pseudo-linear systems show that the optimum Dacc

depends linearly on the nonlinear phase shift φNL and does not seem to be influenced by
the shape of the dispersion map. These results suggest that it is possible to optimize
SDM = {PSSMF, PDCF,Dpre,Dres} for a fixed Dacc, e.g., equal to zero, and then use Dpos as
a fine-tuning parameter to further maximize the performance of the link.

Observe that in the rest of this thesis, the fibers used to model the pre- and post-
compensation stages are considered non-attenuating and linear. In this way, the results
presented in the following chapters are independent on the technology used to manipulate
the waveform before and after propagation.

The optimization of dispersion maps and input powers for WDM systems is subject of
intense research and has been reported in many theoretical and experimental studies,
e.g., [Car99, SMKT00, vdBJK+06]. Since there is no known analytical closed-form func-
tion that relates, for example, BER or maximum transmission distance with S, the global
optimization of an optical communication link must rely on very time-consuming simula-
tions, usually involving grid searches, where all possible combinations of parameters are
simulated and the one that performs the best is chosen as the optimum one. An alterna-
tive is to apply mathematical optimization algorithms as proposed in [GCS+08, CGH09].
This is thoroughly described in the next section and applied extensively in the following
chapters.

3.2.4 Maximum transmission distance

The maximum transmission distance is defined as the maximum number of spans Nmax

at which the OSNR margin is still positive, i.e, the accumulated OSNR is greater than or
equal to the required OSNR for a certain target BER. Usually, it is obtained by means of
a grid search, e.g., [HEG+04], where all possible combinations of a set of parameters are
simulated in order to find the one that delivers the longest transmission distance. Observe
that this method requires that, for each combination of parameters, the maximum number
of concatenated spans must be found.

An alternative method uses the nonlinear phase-shift (NLPS) criterion [ABF02]. It
assumes that, in DM links, the nonlinear signal distortion depends only on the total
amount of nonlinear phase-shift φtotal

NL , given that the dispersion map is chosen according
to the straight-line rule, i.e., (3.33) or (3.34). In other words, the required OSNR remains
constant with N , provided that φtotal

NL , Dpre and Dacc remain constant as well, and that
Dres varies according to the straight-line rule. Several studies have shown the validity of
the nonlinear phase shift criterion in SPM-limited systems, e.g, [ABF02, Vor07, CGS+10].

The NLPS criterion can be used to estimate the maximum transmission distance of DM
links as follows: Simulations are carried out in order to find the set of parameters Sopt

DM
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Algorithm 3.1 Maximum number of spans with NLPS criterion

P ∗SSMF, P
∗
DCF, D∗pre, D∗res, OSNR∗req, OSNR∗acc: optimum parameters for N∗ spans

Pr = P ∗SSMF/P
∗
DCF

∆N = 0
OSNR′acc = OSNR∗acc
while OSNR′acc > OSNR∗req do
∆N = ∆N + 1
Estimate D′res in (3.33) with Dpre = D∗pre and N = N∗ +∆N
Calculate L′DCF in (3.40) with Dres = D′res
L′′DCF =∞
while |L′′DCF − L′DCF| > 10−4 do
L′′DCF = L′DCF

Numerically obtain za in (3.35) with LDCF = L′DCF

Calculate D′res in (3.34) with Dpre = D∗pre and N = N∗ +∆N
Calculate L′DCF in (3.40) with Dres = D′res

end while
Calculate L′DCF

eff with L′DCF

From (3.37) P ′SSMF = P ∗SSMF
N∗

N∗+∆N

(
γSSMFL

SSMF
eff +γDCFL

∗DCF
eff /Pr

γSSMFL
SSMF
eff +γDCFL

′DCF
eff /Pr

)

Calculate OSNR′acc in (3.38) and (3.39) with PSSMF = P ′SSMF and LDCF = L′DCF

end while
Nmax = N∗ +∆N − 1

that maximizes the OSNR margin after an arbitrary number spans N ; thus obtaining,
at the same time, the required OSNR (OSNRreq) for a certain maximum total nonlinear
phase shift defined as

φtotal
NL,max = N ·

(
γSSMFL

SSMF
eff PSSMF + γDCFL

DCF
eff PDCF

)
. (3.37)

Equation (3.37) considers the pre- and post compensation stages linear. If φtotal
NL,max does

not change with N , the OSNRreq remains constant and, therefore, it is possible to estimate
the maximum transmission distance by finding the number of sections Nmax at which the
accumulated OSNR (OSNRacc) is equal to the OSNRreq. In calculating the OSNRacc for
subsequent number of spans, the ratio Pr = PSSMF/PDCF is kept constant; PSSMF is varied
according to N so that φtotal

NL,max remains constant; and Dres is varied according to N so
that Dpre remains constant by means of the straight-line rule.

Observe that OSNRacc for the DM link shown in Fig. 3.6b can be analytically calculated
according to (3.21) as

OSNRacc =
PSSMF

2Φtotal
ASEBo,ref

, (3.38)

where the total PSD of the ASE noise is given by

Φtotal
ASE =

1

2
hfcFnN

(
eαSSMFLSSMF + Pr · eαDCFLDCF

)
. (3.39)
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In (3.39), the attenuation of the pre-and post-compensation stages are not considered and
it is assumed that all EDFAs have the same noise figure. The length of the DCFs vary
according to the number of sections used to calculate the OSNRacc since it depends on
Dres and this one, in turn, varies with N by means of the straight-line rule. The DCF
length is given by

LDCF =
DSSMFLSSMF

DDCF

(

1− Dres

DSSMFLSSMF

)

. (3.40)

The term in brackets in (3.40) is usually referred to as the compensation ratio [HEG+04].
The procedure used to determine Nmax given Sopt

DM and OSNRreq based on the NLPS
criterion is summarized in algorithm 3.1.

This method will be used later in this thesis to estimate the maximum transmission
distance of several formats. Observe that the NLPS criterion resorts in carrying out a
grid search only over a single number of spans. This is, however, still very time-consuming.
Chapter 3.3.3 presents a mathematical algorithm that allows to find the optimum set of
parameters in a small number of iterations, so that a grid search is no longer needed.

3.3 System simulation aspects

Computer simulations are a cost-effective way of estimating the overall performance of a
transmission system before its actual implementation. In this section, relevant aspects of
the simulations conducted in this thesis are discussed. It covers the proper choice of test
sequences, the detection statistics and estimation of the bit-error rate and the description
of an algorithm for the global optimization of a transmission link.

3.3.1 Pseudo-random sequences and electrical signal generation

The evaluation of a communication system begins with the choice of a proper test sequence
that correctly models the nature of the data to be transmitted. In digital systems, the
data can be modeled as a random binary sequence of statistically independent ones and
zeros with equal probability of occurrence. Pseudo-random binary sequences are, however,
used in the praxis because of their reproducibility.

A pseudo-random sequence is a periodic sequence with an autocorrelation function that
resembles the autocorrelation function of a true random sequence over one period [JB00].
A 2r-ary sequence can be generated using a linear feedback shift register (LFSR) (Fig. 3.7)
and is usually represented by a generator polynomial in x over the finite field GF(2r)

G(x) = cns
xns + cns−1x

ns−1 + cns−2x
ns−2 + · · ·+ c2x

2 + c1x+ c0, (3.41)

where the maximum degree ns corresponds to the number of registers in the LFSR.

An output sequence has the maximum possible period Nseq = (2r)ns − 1 if G(x) is a
primitive polynomial over GF(2r). In such case, the output sequence contains all ns-
bit patterns except the all-zero, and is usually referred to as m-sequence. By adding
a 0 digit to the output sequence at a place where there are ns − 1 zeros a De Bruijn
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Figure 3.7: Galois implementation of a linear feedback shift register.

sequence is obtained, which contains all possible ns bit patterns and has a period of (2
r)ns .

Table B.1 in appendix B shows primitive polynomials in GF(2r) for different r and ns.
Alternatively, multilevel pseudo-random m-sequences can be generated by manipulating
(shifting and decimating) a binary m-sequence of degree ns · r, hence, avoiding the complex
implementation of arithmetic operations in higher-order finite fields [Gol67]. Moreover,
high-speed m-sequences can be implemented by time-multiplexing the output sequences
of several low-speed parallel LFSRs, as described in [Gue90].

It has been repeatedly shown, e.g.,[WEG+04, SOB07], that in systems limited by intra-
channel nonlinearities, the symbol pattern length ns plays a critical role in correctly
assessing the transmission impairments. In [WEG+04], for example, a rule for the mini-
mum pattern length is obtained by looking at the number of pulses that, due to dispersion,
interact at the high power segments of the link. The rule predicts a scaling of ns with
the square of the symbol rate. Alternatively, in [SOB07] a rule is derived for dispersion
managed systems using “optimized” dispersion maps., i.e., dispersion maps that follow
the straight-line rule. It results in ns to scale linearly with the symbol rate.

In [GAB10], the impact of the length of the sequences in NDM links was studied, where
a high number of pulses interact with each other due to big amounts of accumulated
dispersion. It concludes that pseudo-random sequences much shorter than the required
by the abovementioned rules can be sufficient for an accurate estimation of the BER.
Furthermore, it shows that even shorter truly random sequences may also be adequate
for a correct assessment of the performance of the system.

Systems employing binary modulation formats are habitually evaluated using pseudo-
random binary sequences (PRBSs), i.e., r = 1. If multilevel modulation is employed
(r > 1), it is usual to multiplex r PRBSs with a cyclic shift between them for decor-
relation. The resulting sequence, however, may fail to emulate all possible inter-symbol
interactions thus, leading to underestimate the penalty associated with nonlinearities. As
shown in [SX07, vdBKdWG07, RBF09], the use of multilevel pseudo-random sequences
is necessary, in order to properly model the quality impairments of a transmission system
subject to nonlinear and dispersive effects. Following the recommendations of [SX07],
multilevel pseudo-random sequences of at least 4096 symbols are used in this thesis when
characterizing the nonlinear propagation of an optical signal.

The pseudo-random sequences are imprinted in electrical signals that subsequently drive
the optical modulators. In this thesis, in order to properly model the non-zero rise and fall
times of the electrical signals, the ith output binary sequence of the bit-pattern generator
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is modeled as a train of non-return-to-zero, (NRZ) raised-cosine pulses given by [HK04b]

bi(t) =

(2r)ns

∑

k=1

di,k · g(t− kT0), (3.42)

where di,k ∈ {0, 1}, T0 is the symbol duration and

g(t) =







1 , T0
2
(1− βr) > |t|

1
2
− 1

2
sin

(
π

βrT0
(|t| − T0

2
)
)

, T0
2
(1− βr) ≤ |t| ≤ T0

2
(1 + βr)

0 , |t| > T0
2
(1 + βr),

(3.43)

where 0 ≤ βr ≤ 1 is the roll-off factor.

3.3.2 Detection statistics and evaluation of the bit-error rate

The bit-error rate (BER) is considered the most significant criterion for performance
characterization in digital transmission systems. Other figures of merit like required
OSNR or maximum transmission distance are usually defined for a certain target BER.

A common approach to the determination of the BER in optical systems resorts inMonte
Carlo simulations, where the propagation of a test sequence through the investigated
system is simulated and the bit errors are counted after detection. This method has
the advantage of being generally applicable to any arbitrary system while considering all
deterministic and stochastic degradation effects [Sei10]. On the other hand, the accuracy
of the estimated BER strongly depends on the length of the test pattern. As a rule of
thumb, at least 10/BER bits should be simulated in order to have a confident interval of
95% on the estimated BER [Jer84]. This makes the computational effort of estimating
very low BER (< 10−6) prohibitively high.

An alternative to Monte Carlo simulations is to estimate the BER by directly looking
at the probability density function (PDF) of the received signal. The BER is estimated
by integrating over the PDF, without having to simulate long runs of bits. Conven-
tional methods usually approximate the PDF of the photo-detected signal to a Gaussian
distribution. This is relatively accurate in OOK systems but it does not work well in
directly detected phase-modulated systems [BP04, GW05]. This is because the beating
between signal and noise, caused by the squaring function of the photo-detection, is a
nonstationary random process. As a result, the PDFs of each bit look different.

The exact detection statistics can be obtained by means of a semianalytic simulation
method based on the principle of Karhunen-Loéve-like series expansions., i.e., on finding
a set of orthonormal basis functions that make the expanded noise components Gaussian
and statistically independent [GW05]. The following analysis is based largely on the work
of [For00], [GW05] and [Coe10] .

Consider an arbitrary optical system as depicted in Fig. 3.8. The goal is to accurately
estimate the BER of a signal of arbitrary waveform impaired by additive, Gaussian, white
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Figure 3.8: Block diagram for signal transmission. Observe that A(z, t) is polarized in the
x-direction only, whereas the Gaussian noise is polarized in both x- and y-directions.

optical noise (AWGN). In this model the nonlinear interaction between the signal and the
noise is neglected, i.e., nonlinear phase noise is not considered; and the signal is linearly
polarized along the (arbitrarily chosen) x-axis. For this system, given a certain decision
threshold γth and a sampling time offset ts, the overall BER of a sequence composed of
Nseq pulses of duration T0 can be written as

BER(γth, ts) =
1

Nseq

Nseq∑

k=1

Pb(ek|{a0,k}), (3.44)

where Pb(ek|{a0,k}) represents the probability of an error ek at the sampling time tk = ts + kT0,
conditional upon the information sequence {a0,k}, and is given by

Pb(ek|{a0,k}) =
{
P(I(tk) < γth) , a0,k = 1
P(I(tk) > γth) , a0,k = 0,

(3.45)

where I(tk) is the received output decision variable as shown in Fig. 3.8. The probabilities
at the right side of (3.45) can be computed using pYk , that represents the PDF of Yk =
I(tk), by means of

P(I(tk) < γth) =

∫ γth

−∞

pYk(y)dy, (3.46)

P(I(tk) > γth) =

∫ ∞

γth

pYk(y)dy. (3.47)

In order to obtain to PDFs to insert in (3.46) and (3.47), the decision variable can be
written as

I(tk) = Ix(tk) + Iy(tk), (3.48)

where

I(x,y)(tk) =

∫∫ ∞

−∞

Ẽ∗(x,y)(f2)K(f1, f2)Ẽ(x,y)(f1)e
j2πtk(f1−f2)df1df2. (3.49)

In (3.49), Ẽx(f) and Ẽy(f) represent the Fourier transforms of Ex(t) = A(t)+nx(t) and
Ey(t) = ny(t), respectively (the spatial dependence of the electrical fields has been dropped
for readability). The noises nx(t) and ny(t) are complex random variables such that
nx, ny ∼ N (0, 2σ2

n), where σ
2
n =

1
2
Φtotal

ASEBo,ref is the variance of their real and imaginary
parts over a certain reference bandwidth Bo,ref . The Hermitian kernel function K(f1, f2)
depends exclusively on the receiver structure. In the next chapters, K(f1, f2) will be
derived explicitly for each modulation format considered in this thesis.
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For numerical convenience, (3.49) can be written as a double summation within the
discrete fourier transform grid, so that (3.48) yields:

I(tk) =
2M∑

m=1

2M∑

l=1

e∗x,mKmlex,l +
2M∑

m=1

2M∑

l=1

e∗y,mKmley,l, (3.50)

where 2M is the total number of samples and ex,m,ey,m and Kml are defined as

ex,m = Ẽx(fm)e
j2πfmtk

√

∆f, (3.51)

ey,m = Ẽy(fm)e
j2πfmtk

√

∆f, (3.52)

Kml = K(fm, fl)∆f, (3.53)

where ∆f = 1/(NseqT0) is the spacing between adjacent frequency points2 and fm =
(m−M − 1)∆f . In turn the signal and noise parts of the fields can be written explicitly
as ex,m = es,m + enx,m and ey,m = eny ,m where

es,m = Ã(fm)e
j2πfmtk

√

∆f, (3.54)

enx,m = ñx(fm)e
j2πfmtk

√

∆f, (3.55)

eny ,m = ñy(fm)e
j2πfmtk

√

∆f. (3.56)

Equation (3.50) can be written in matrix form as

I(tk) = eHxKex + eHyKey, (3.57)

where ex = es + enx
= (ex,1, ex,2, · · · , ex,2M)T, ey = eny

= (ey,1, ey,2, · · · , ey,2M)T and K is
the square 2M × 2M matrix whose (m, l)th element equals Kml. The eigendecomposition
of the Hermitian matrix yields K = QHΛQ, where Q is the square 2M × 2M matrix
whose ith column is the eigenvector qi of K and Λ is the diagonal matrix whose diagonal
elements are the corresponding real eigenvalues λi. Consequently, equation (3.57) can be
rewritten as

I(tk) = eHxKex + eHyKey
= eHxQ

HΛQex + eHyQ
HΛQey

= (s+ nx)
HΛ(s+ nx) + nH

yΛny
=

∑2M
i=1 λi|si(tk) + nx,i(tk)|2

︸ ︷︷ ︸

noncentral−X 2

+
∑2M

i=1 λi|ny,i(tk)|2
︸ ︷︷ ︸

central−X 2

,
(3.58)

where s = Qes is a column vector with deterministic elements si(tk) = qH
i es; whereas

nx = Qenx
and ny = Qeny

are column vectors with statistically independent random

2Evaluating the PDFs of all symbols at once is computationally intensive, since it requires to take the
2M-points DFT of the discrete version of A(z, t), sampled at intervals ∆t = NseqT0/(2M). Observe that
the total number of points 2M is chosen to be high enough to ensure that the Nyquist-Shannon [Sha49]
sampling theorem is fulfilled. However, in practice, it can be assumed that only a small fraction of the
signal around the kth symbol is relevant for the decision at each sampling instant. Hence, when evaluating
the PDF of each symbol, it is sufficient to consider only a subsequence of length Nsym ≪ Nseq around it,
provided that Nsym is long enough such that all ISI effects over the kth symbol are taken into account.
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elements nx,i(tk) = qH
i enx

and ny,i(tk) = qH
i eny

, respectively. It can be shown, e.g.,
in [Coe10], that nx,i(tk) and ny,i(tk) are zero-mean complex Gaussian random variables
with independent real and imaginary components, each with variance σ2

n
= 1

2
Φtotal

ASE∆f .

Thus, the decision variable I(tk) can be represented as a weighted sum of magnitude-
squared, complex Gaussian random variables of nonzero and zero mean, that result in
random variables obeying noncentral-X 2 and central-X 2 distributions, respectively; and
whose individual moment generating functions (MGFs) are well known [Sal78]. Since the
terms making up the sum in (3.58) are statistically independent, the total MGF is the
product of the individual MGFs and is given by [For00]

ΨI(tk)(ξ) =
2M∏

i=1

exp
(
λi|si(tk)|

2ξ
1−2λiσ2

n
ξ

)

(1− 2λiσ2
n
ξ)2

. (3.59)

The PDFs in (3.46) and (3.47) are obtained from the total MGF in (3.59) by its conju-
gate complex inverse Laplace transform, and the consequent integral is solved numerically
using the saddle-point integration method [Arf85]. Alternatively, the resulting probabil-
ities in (3.46) and (3.47) can be approximated with high accuracy by the saddle-point
approximation method [Hel78, Coe10] which yields

P(I(tk) ≷ γth) ≈ ±
exp

(
Θ(ξ±0 )

)

√

2π∂2ξΘ(ξ
±
0 )
, (3.60)

where ∂2ξ denotes a second order partial derivative with respect to ξ, evaluated at ξ
±
0 , and

Θ(ξ) is the function defined as

Θ(ξ) = ln(ΨI(tk)(ξ))− ln(ξ)− ξγth. (3.61)

The values ξ+0 and ξ−0 correspond to the positive and negative roots of the equation
∂ξΘ(ξ) = 0, respectively. They can be calculated numerically as shown, for example,
in [Coe10].

Finally, the mean and variance of I(tk) are given by [For00]

E{I(tk)} =
2M∑

i=1

λi
(
4σ2

n
+ |si(tk)|2

)
(3.62)

Var{I(tk)} =
2M∑

i=1

8λ2iσ
2
n

(
σ2
n
+ |si(tk)|2

)
. (3.63)

The method described in this section will be used extensively throughout the remaining
chapters, in order to accurately evaluate the BERs and, subsequently, the performance of
the analyzed transmission systems.
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3.3.3 Global optimization of optical communication systems

Optimization addresses the problem of finding the set of parameters that leads to the best
performance of the system. For example, dispersion map, filter bandwidths and launch
powers can be varied in order to optimize the receiver power sensitivity, the OSNR or the
transmission distance. In doing so, the usual approach is to carry out a grid search, in
other words, to simulate every possible combination of parameters and choose the one that
gives the best result. However, due to the long transmission distances and the extremely
large bandwidth of the signals, the simultaneous optimization of several parameters often
translates into prohibitive simulation times. In such scenarios advanced optimization
algorithms prove to be an attractive alternative to the conventional grid search.

A suitable algorithm for the optimization of an optical communication link must posses
certain characteristics: Since the objective function to be maximized3 is unknown, the
algorithm must resort on simulations; and because each simulation is extremely expensive
in terms of computational time, the algorithm needs to converge to the desired solution
using as few iterations as possible. Additionally, it should avoid getting trapped into local
maxima by performing a global search.

The optimization of an optical communication link using an algorithm that fulfills the
aforementioned requirements was first introduced in [GCS+08, CGH09]. It relies on mod-
eling the unknown objective function as if it was generated by a normally distributed
random process, i.e., a random walk [Kus62], and uses Bayesian inference to find the next
set of parameters that will most probably improve the currently best solution [Kus63].

Formally, we are concerned with the problem of finding x
∗ ∈ S such that f(x∗) ≥

f(x), ∀x ∈ S, where S is the search space, that is a compact subset of Rd. The objective
function f : S → R is defined as an unknown continuous function and x = (x1x2 · · · xd)T
is the vector of parameters to optimize. If the elements of x are lower and upper bounded,
the search space forms a hypercube of Nb = 2d vertices in R

d. Alternatively, the search
space can be entirely defined by the convex hull formed by anyNb points, whereNb ≥ d+1.

Initially, the algorithm simulates the vertices of the search space, then it divides it
into disjoint sub-regions. These sub-regions are obtained by using the Delaunay trian-
gulation [Eld92], where each of their d + 1 vertices corresponds to a simulated point.
Geometrically, each sub-region is a simplex (triangle for d = 2 or tetrahedron for d = 3).
As a result, f(x) is approximated over a bounded space by a set of simplexes.

In [Kus62], it was shown that the expected value of a one-dimensional unknown function
f(t), conditioned on all of the measurements taken, is a piecewise linear approximation of
f(t) itself, and that the conditional variance of the approximation is quadratic between
the observation points [Stu88]. [Eld92] extends this results to higher-dimensional random
walks. Consequently, each point x in the kth simplex Sk can be characterized with respect
to its vertices by a mean µf,k(x) = E{f(x)} and a variance σ2

f,k(x) = E{(f(x)− µf,k(x))
2}.

3In this work, the algorithm is used for maximization of an objective function f , but note that there
is no difference in maximizing f or minimizing −f .
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Since the unknown objective function f(x) is modeled as a sample function of a normally
distributed random process, the probability that x improves the currently best solution
x
∗ can be analytically calculated and written as

Pk(f(x) > f(x∗) + εi) = 1− Φ

(
f(x∗) + εi − µf,k(x)

σf,k(x)

)

, (3.64)

where Φ( · ) is the normal cumulative distribution function [AS64] and εi is a positive real
number at the iteration i.

The mean and variance are given by

µf,k(x) = aT
k ·

(
x

1

)

, (3.65)

σ2
f,k(x) =

(
x 1

)
·Ck ·

(
x

1

)

, (3.66)

where ak is a (d+1)×1 vector and Ck is a (d+1)×(d+1) symmetrical matrix of unknown
elements. They can be calculated as follows: the d + 1 vertices xv of Sk are sufficient
to calculate the elements of ak, since µf,k(xv) = f(xv). Equivalently, σ2

f,k(xv) = 0,
providing d + 1 conditions for calculating Ck. The additional conditions are obtained at
the midpoints xm of the 1

2
(d2 + d) edges of Sk by

σ2
f,k(xm) = ηi · ‖xp − xq‖, (3.67)

where ‖xp − xq‖ is the Euclidean distance between the vertices xp and xq and ηi is the
mean square variation in f(x) as x changes, at the ith iteration.

The algorithm searches within Sk the point xk with the highest probability of improve-
ment according to (3.64). For this purpose, it does not need to directly calculate the prob-
abilities but, since Φ( · ) is increasingly monotonic and, to avoid calculating the square root
of the variance, only requires to find the point that minimizes the square of its argument,
i.e.,

xk = argmax{Pk} = argmin{D2
k(x)}, (3.68)

where

D2
k(x) =

(f(x∗) + εi − µf,k(x))
2

σ2
f,k(x)

(3.69)

Since D2
k(x) is a convex function, there is only one point xk where Pk is maximum.

Observe that xk is independent of ηi, which can be arbitrarily chosen at each iteration or
numerically estimated, as explained later in this section. Finally, the point xk with the
highest probability of improvement Pk among all simplexes is the chose of parameters for
the next simulation.

Observe that the global convergence of the global optimization algorithm (GOA) is
guaranteed since, by minimizing D2

k(x), it balances the search in regions close to f(x∗)
where the mean is maximum, and unexplored regions of the search space where the



64 Chapter 3 � Fiber-Optic Transmission Systems

(a) (b)

Figure 3.9: (a) Block diagram of the optimization procedure and (b) scheduling of εi .

variance is maximum. However, the algorithm has no feedback regarding if it is spending
“too much time” searching near the current optimum, or whether its selections are indeed
finding what it “expects” to find at each new iteration. Additionally, the algorithm
relies on the normal distribution of the objective function at each point. Functions with
this property would tend to have similar excursions above and below the mean of the
function rather than, for example, functions with positive excursions and a floor, e.g.,
the maximum number of concatenated spans in a link. Therefore, using the normal
distribution assumes functions that may not be representative of typical functions that
are encountered in optical communication systems.

Both of the aforementioned drawbacks can be avoided, as proposed by [Per89], using
the rank transformation. Ranking the objective function evaluations allows the algorithm
to be unaffected by the location and scale of the function. All calculations described
before can be performed on the ranked objective function evaluations rather than on the
actual evaluations themselves and the statistical method’s validity no longer depends on
the normality of the data. Moreover, the search will give equivalent results for any mono-
tonic transformation of the objective function, e.g., when optimizing receiver sensitivity,
either in units of mW or dBm. By setting a predetermined number of iterations Ni, the
number of function evaluations at the end of the optimization procedure will be Nb+Ni.
Hence, after iteration i − 1, a vector with the function evaluations can be defined as
f = (f(x1) f(x2) · · · f (xNb

) · · · f(xNb+i−1))
T, where f(xNb+i−1) is the function evalua-

tion at the iteration i − 1. Ranking the vector f results in another vector fr of the same
size, where each element is a natural number between 1 and Nb + i− 1. The next set of
input parameters xi is obtained by using fr and the set of simplexes.

Furthermore, using the rank transformation allows for adaptive scheduling of search
mode, i.e., to automatically balance the time the algorithm spends searching globally and
locally by adjusting εi in each iteration. High values of εi will make the search global,
while low values local. By linearly scheduling εi = Ni− i+1, the algorithm first explores
the search space sparsely, then it focusses on regions of interest and finally refines the
search until εi = 1. The optimum time for the search to spend in global mode, i.e., the
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Algorithm 3.2 Global optimization algorithm

i = 1
Simulate the Nb boundary points → f
x
∗ = argmax{f}

while i < Ni do
Rank all simulated points → fr
Estimate ηi in (3.67) using (3.72)
Calculate εi with (3.73)
while k <Number of simplexes do
Calculate µf,k(x) and σ

2
f,k(x) using (3.65) and (3.66)

Find xk that minimizes D
2
k(x) using a grid search or an external local optimization

procedure
Calculate Pk with (3.64)

end while
For the simplex with maximum Pk: xi = xk and Pi = Pk
Evaluate f(xi)
if f(xi) > f(x∗) then x

∗ = xi end if
i = i+ 1

end while
Display x

∗ and f(x∗)

slope of the linear scheduling function, can be set automatically by including a feedback
loop for εi [Per89], as shown in Fig. 3.9a. Based on M previous iterations, εi can be set
according to the following equations:

RR(i) =
fr(Nb + i− 1)− 1

Nb + i− 2
(3.70)

MA(i) =

{
1
i

∑i
j=1RR(i− j + 1) , M ≤ i

1
M

∑M
j=1RR(i− j + 1) , M > i

(3.71)

εi = (Ni − i) ·MA(i) + 1, (3.72)

where RR is defined as the rank ratio and MA is a moving average to statistically forecast
the next rank ratio. RR(1) is defined as 1, RR(i) is equal 1, if fr(Nb + i− 1) = Nb + i− 1
and 0, if fr(Nb+ i−1) = 1. Consequently, εi will be near unity, if many new minima have
been found and near Ni − i+ 1, if many new maxima have been found. Fig. 3.9b depicts
an example of adaptive versus linear scheduling of εi.

Finally, by estimating the actual variance of the objective function, i.e., ηi in (3.67),
the probability of finding a new optimum with an extra simulation can be calculated and
also used as termination criterion or a measure of confidence on how successful the search
has already been. The maximum likelihood estimator (MLE) of the parameter ηi at the
iteration i is given by [Stu88]

η̂i =
1

(
Nt

2

)

Nt−1∑

p=1

Nt−p∑

q=p+1

(fr(p)− fr(q))
2

‖xp − xq‖
, (3.73)
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whereNt = Nb+i−1 is the total number of simulated points at iteration i. The probability
that the next simulation will improve the currently best result can be calculated using
(3.64) and (3.73).

The described global optimization algorithm (GOA) is summarized in Algorithm 3.2.
In [CGH09], its performance has been compared against state-of-the-art global optimiza-
tion algorithms over a standard set of test functions, delivering excellent performance in
terms of the number of iterations needed for convergence to the global optimum of the
test functions. The algorithm is used widely in the rest of this thesis for the optimization
of the transmission link parameters, as previously discussed in chapter 3.2.3.

3.4 Summary

In the first part of this chapter, the most important elements that compose the opti-
cal communication systems investigated in this thesis were described. The second part
reviewed the most important criteria in the design of a link. The third part was con-
cerned with three relevant simulation aspects for the correct evaluation of the system
performance: pseudo-random sequences, BER estimation and system optimization. In
summary, the main points are the following:

⊲ Lasers are the preferred optical sources since they are able to generate almost
monochromatic coherent light. The process by which coherent light is generated is
called stimulated emission. Spontaneous emission also occurs but at a much lower
rate. Nevertheless, it produces phase and intensity fluctuations. Modern lasers have
very low values of phase fluctuations, also known as phase noise, that do not affect
the performance of the differentially encoded modulation formats investigated in
this thesis. Intensity fluctuations were not considered.

⊲ Direct modulation of the optical sources is straightforward and cost-effective but, at
high data rates, it leads to performance degradation due to the limited bandwidth
of the lasers and induced chirping of the signals. At high data rates, external Mach-
Zehnder modulators (MZM) are commonly preferred. By using multiple MZMs and
phase modulators, different modulation formats can be achieved. In this thesis,
MZMs are regarded as ideal components (broadband, infinite extinction ratio and
zero insertion loss) albeit with nonlinear transfer function.

⊲ Erbium-doped fibre amplifiers (EDFA) are the most commonly used amplifiers in
deployed optical systems. At a system level, they can be regarded as black-boxes
with gain that is insensitive to the modulation format, data rate or polarization state
of the input signal. EDFAs produce optical noise that dominates over the thermal
and shot noises produced by the optical receiver, and ultimately sets a limit to the
performance of a system.

⊲ Other important system components were described such as photodiodes, optical
and electrical filters, and optical couplers.
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⊲ Attenuation is periodically compensated with EDFAs. Only considering the detri-
mental effect of optical noise, the optimum span length for typical standard single-
mode fiber (SSMF) is around 21 km. From a cost point of view this is not economical
and so spans of 80 km of fiber are more typical. There is a 6 dB sensitivity degra-
dation when using such length compared to the optimum span length.

⊲ Dispersion is an important detrimental effect that at high data rates, must be com-
pensated for. Usually it is preferable to describe the dispersion of a fiber with
the dispersion parameter D and the slope parameter S. The beta coefficients were
expressed as a function of D and S assuming that D varies linearly with wavelength.

⊲ Dispersion compensation is usually implemented using dispersion compensating
fibers (DCF) in a two-stage amplifier configuration. The input power into the SSMF
and the DCF are important design parameters that strongly affect the performance
of a system. A simple analysis considering the DCF-induced nonlinear phase shift
and the noise contribution of the two-stage amplifier concludes that 6.5 dB is the
optimum difference between SSMF and DCF input powers.

⊲ It was discussed that, in addition to the fiber’s launch powers, the optimum perfor-
mance of a system is also strongly influenced by the amount of pre-compensation
and span residual dispersion. The most important criteria in the design of disper-
sion maps were reviewed, such as the straight-line rule. It is assumed that since
propagation takes place in the pseudo-linear regime for the systems investigated in
this thesis, the optimum performance is achieved with zero total residual dispersion.

⊲ An algorithm is described that serves for estimating the maximum number of cas-
caded spans. It is based on the maximum nonlinear phase shift criterion and the
straight-line rule.

⊲ The theory of pseudo-random sequences is briefly described. The length of the
sequences is important in order to correctly estimate the BER. Several criteria exist
to determine the optimum sequence length. If multilevel modulation formats are
investigated, binary sequences may fail to correctly estimate the BER. Following the
recommendations of [SX07], pseudo-random quaternary and octonary sequences of
4096 symbols are used in this thesis. Raised cosine pulses with roll-off equal to 0.5
are used to model the electrical signals that convey the test sequences.

⊲ A semi-analytical method for the estimation of the BER is described. It is based
on the theory of Karhunen-Loéve series expansion. It is shown that the decision
variables follow central and non-central X 2 distributions whose exact probability
density functions (PDF) are known and can be analytically calculated. The error
probability is given by the integral of the PDF, which can be accurately approxi-
mated using the saddle-point approximation method.

⊲ An algorithm specially designed for the global optimization of the performance of op-
tical communication systems is introduced. It can be used, for example, to maximize
the reach of a link or to minimize the required OSNR after a certain transmission
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distance. It works by modeling the objective function as if it were generated by a
random Gaussian process. Then, it finds the next set of parameters that maximizes
the probability of finding a new optimum. Although the algorithm is computational
intensive, it is successful in minimizing the required number of iterations needed to
obtain the optimum with an arbitrary small error. The algorithm is as good as or
better than other state-of-the art optimization procedures.



4
DQPSK Transmission Systems
at 55.5 Gb/s

Differential quadrature phase-shift keying (DQPSK) is an attractive modulation scheme
because of its high spectral efficiency and consequent resilience to narrow-band filtering,
high tolerance to nonlinearities and relative simple transmitter and receiver implementa-
tion [WLR02, WSR03]. One alternative to implement 111 Gb/s per WDM channel is to
use two polarization-multiplexed DQPSK tributaries at 55.5 Gb/s. A thorough analysis
of the performance of DQPSK at such data-rate is investigated in the following chapter.

The chapter begins with a fundamental description of DQPSK in optical communication
systems, i.e., transmitter and receiver structures, spectral characteristics and demodula-
tion properties. It follows with the comparison of different “flavors” of DQPSK, such as
return and non-return-to-zero signaling; dual-carrier implementation, where two optical
signals are modulated at half the data rate and detected independently of each other;
and stereo multiplexing, where two modulated optical carriers are linearly combined and
received simultaneously. Finally, the propagation of WDM signals after 1040 km with
optimum dispersion maps is thoroughly analyzed. The optimum link parameters are
identified and the robustness of each transmission format with respect to variations in the
dispersion map is assessed.

4.1 Transmitter and receiver design

This section begins with a general description of the transmitter structure for the genera-
tion of optical DQPSK modulation. The synthesis and spectral properties of non-return-
to-zero (NRZ) and return-to-zero (RZ) pulses with different duty cycles are discussed.
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Figure 4.1: Block diagram of a DQPSK transmitter.

Figure 4.2: DQPSK Gray-coded constellation.

Afterwards, two alternatives to single-carrier transmission are presented: dual carrier and
stereo multiplexing. The optimum filtering bandwidths and tolerance to optical noise of
each format are compared in both, single-channel and WDM scenarios.

4.1.1 Differential encoding and modulation

Figure 4.1 depicts a block diagram of the transmitter for the generation of optical DQPSK
modulation. The information bits are imprinted onto the phase of the optical carrier by
means of a Mach-Zehnder-based optical IQ modulator. Due to the lack of an absolute
phase reference in direct-detection receivers, the information must be encoded differen-
tially, i.e., the data is conveyed in the phase difference of successive symbols and interfer-
ometric detection is employed at the receiver side.

The phases of the optical pulses output by the pulse carver are modulated by the electri-
cal signals b0(t) and b1(t), whose amplitude vary between 0 for a logical zero, and 2Vπ for
a logical one and that, in turn, depend on the differentially encoded sequences represented
by {d0,k} and {d1,k}. The transfer function of the electrical pulse shaping filter HRC(f)
corresponds to the Fourier transform of (3.43).

Figure 4.2 depicts the constellation diagram of a DQPSK signal. Table 4.1 shows the
resultant truth table for a precoder based on the previously depicted Gray-coded con-
stellation points. By rearranging it in Karnaugh maps it is possible to obtain the binary
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Table 4.1: Truth table of a DQPSK precoder

Present output Previous output Present input

d0,k d1,k φk d0,k−1 d1,k−1 φk−1 ∆φ a0,k a1,k

00 5 00 5 0 11
00 5 01 3 2 01
00 5 10 7 6 10
00 5 11 1 4 00
01 3 00 5 6 10
01 3 01 3 0 11
01 3 10 7 4 00
01 3 11 1 2 01
10 7 00 5 2 01
10 7 01 3 4 00
10 7 10 7 0 11
10 7 11 1 6 10
11 1 00 5 4 00
11 1 01 3 6 10
11 1 10 7 2 01
11 1 11 1 0 11

φk, φk−1 and ∆φ = φk − φk−1 are expressed in multiples of π/4

logical relations between the input and output bit sequences of the precoder. They are
given as

d0,k = ā0,kā1,kd̄0,k−1 + ā0,ka1,kd̄1,k−1 + a0,ka1,kd0,k−1 + a0,kā1,kd1,k−1 (4.1)

d1,k = ā0,kā1,kd̄1,k−1 + ā0,ka1,kd0,k−1 + a0,ka1,kd1,k−1 + a0,kā1,kd̄0,k−1 (4.2)

The optical signal at the output of the DQPSK transmitter is given by equation (3.6),
for an input to the IQ modulator of the form Ein(t) =

√
Pp(t)ejωct. Without considering

insertion loss, it can be written as

Eout(t) =

√
P

2
p(t) ·

(

cos

(

π
b0(t)

2Vπ

)

+ j · cos
(

π
b1(t)

2Vπ

))

· ejωct, (4.3)

where P is the average power of the input optical field, p(t) is the baseband representation
of a train of pulses with unitary amplitude and ωc is the angular frequency of the optical
carrier.

Less complex alternative implementations of a DQPSK transmitter are realized using
a Mach-Zehnder modulator in series with a phase modulator [WLR02] or by a single
phase modulator [OF04] driven by a four level electrical signal. Their drawback is that
since phase modulation does not occur instantly, the resulting modulated signal has a
high residual chirp which reduces the tolerance against both chromatic dispersion and
nonlinearities [SWR04, OF04]. Even more, any imperfections in the waveform of the
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Table 4.2: Parameters of the drive signal for pulse carving

Pulse Peak Drive Bias Phase
shape voltage Vp frequency fp voltage vbias φp

RZ-67% Vπ (2T0)
−1 Vπ −π/2

RZ-50% Vπ/2 (T0)
−1 Vπ/2 0

RZ-33% Vπ (2T0)
−1 0 0

electrical driving signals get directly mapped onto the phase of the optical carrier, thus
potentially causing further performance degradation [GW05].

4.1.2 Pulse carving

The shape of the generated optical pulses significantly affects the overall performance
of a communication system. The optimum pulse shape will depend on the transmission
scenario, e.g., available bandwidth, transmission distance and type of link.

The most straightforward implementation of a DQPSK system uses non-return-to-zero
(NRZ) pulses, where a pulse filling the entire symbol period is transmitted. Another
common pulse shape is known as return-to-zero (RZ), where the optical power goes to
zero in each symbol transition. RZ pulses are generated in the optical domain by means
of a MZM used as a pulse carver. An advantage of pulse carving is that it increases
the robustness of the system against imperfections in the transmitter. In high bit rate
optical transmitters this can help to reduce the stringent requirements on, for example,
the bandwidth of the modulator and driver amplifier voltage swing [vdB08]. Additionally,
pulse carving reduces the unwanted chirp that arises between successive symbols [Sei10].

The train of pulses in (4.3) is determined by the pulse carver in Fig. 4.1 and is given by
the expression

p(t) = cos

(
π

2Vπ
v(t)

)

, (4.4)

where v(t) is the sinusoidal driving voltage v(t) = Vp cos(2πfpt + φp) + vbias, with peak
voltage Vp, frequency fp, phase φp with respect to the clock driving MZM 2 and MZM 3
and bias voltage vbias. Typical values for such parameters and the resultant duty cycles
are listed in Table 4.2.

Observe that RZ-67% modulation also encodes a 180◦ phase shift between consecutive
symbols. It is, therefore, often referred to as carrier-suppressed return-to-zero (CSRZ).
Pulses with a duty cycle below 33% can be generated by cascading two pulse carvers with
a time offset between the driving signals [GRB+03].

Figure 4.3 shows a comparison of the different pulse shapes in time and frequency domain.
The pulses are generated at a symbol rate of Rs = 27.75 GS/s and have an average power
of 0.5 mW. For representation purposes the OSNR of the signals is set to 40 dB. The eye
diagrams of the transmitter optical signals are obtained without any optical filtering by
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Figure 4.3: Eye-diagrams before and after demodulation (only in-phase component) and optical
power spectra of DQPSK signals with different pulse shapes.

Table 4.3: Optical bandwidth (GHz) of DQPSK signals at 55.5 Gb/s

NRZ RZ-67% RZ-50% RZ-33%

3 dB 23.9 33.0 36.4 41.3
Main lobe 55.5 74.1 92.8 120.5

a photodiode with broad electrical bandwidth and ideal responsivity of 1 A/W, i.e, the
electrical current coincides numerically with the optical power. The intensity dips that
occur in NRZ pulses between symbol transitions due to the abrupt change in phase cause
a mild residual chirp. This is, however, not problematic since the optical power is not
significant at those instants [Sei10].

The smoothed1 power spectra of the modulated signals are shown as well in Fig. 4.3.

1The plots were obtained by convolving the magnitude-squared Fourier transform of the signals with
a 830 MHz-wide Gaussian window, which is equivalent to a 1.25 GHz-wide rectangular window.
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Figure 4.4: Block diagram of a DQPSK receiver using delay-line interferometers (DLI) and
balanced detectors (BD).

Table 4.3 lists the double-sided 3 dB optical bandwidth of the pulses, as well as the
spectral width of the main lobe. Narrower pulses have broader spectra thus making them,
in principle, unattractive for scenarios where low spectral occupancy is required. Later in
this section, the tolerance to narrow-band filtering of the pulses will be investigated.

4.1.3 Demodulation

The demodulation of DQPSK generally employs interferometric detection. The aim is
to make the optical signal interfere with a delayed replica of itself by using delay-line
interferometers. The delay is usually set to one symbol period T0. As long as the phase
of the optical carrier remains stable over two successive symbols, the transmitted signal
can be successfully demodulated.

Figure 4.4 depicts the block diagram of a DQPSK receiver. The output electrical
signals II(t) and IQ(t) before sampling can be calculated by following the input sig-
nal E(t) = A(t)ejωct through the two branches of the receiver using equations (3.10)
and (3.11). Without considering the optical and electrical filters, the electrical currents2

at the output of the photodiodes of the upper branch can be written as

(
II,u(t)
II,d(t)

)

=

∣
∣
∣
∣

1

2
√
2

∣
∣
∣
∣

2

·
(
|A(t− T0) + A(t)ejψI |2
|A(t− T0)− A(t)ejψI |2

)

=
1

8
·
(
|A(t− T0)|2 + |A(t)|2 + 2ℜ{A(t)A∗(t− T0)e

jψI}
|A(t− T0)|2 + |A(t)|2 − 2ℜ{A(t)A∗(t− T0)e

jψI}

)

, (4.5)

2“u” and “d” stand for up and down respectively.
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which delivers

II(t) = II,u(t)− II,d(t)

= 1
2
ℜ{A(t)A∗(t− T0)e

jψI}. (4.6)

Since A(t) = |A(t)|ejϕ(t), equation (4.6) can be rewritten as

II(t) =
|A(t)||A(t− T0)|

2
cos(∆ϕ(t) + ωcT0 + ψI), (4.7)

where ∆ϕ(t) = ϕ(t)−ϕ(t−T0). A similar expression can be obtained for IQ(t). The phases
ψI and ψQ can be controlled thermally (e.g., [AIM+96]). They are set to ψI = π/4−ωcT0
and ψI = −π/4− ωcT0. Thus, the decision currents are given by

II(t) =
|A(t)||A(t− T0)|

2
√
2

(cos(∆ϕ(t))− sin(∆ϕ(t))) , (4.8)

IQ(t) =
|A(t)||A(t− T0)|

2
√
2

(cos(∆ϕ(t)) + sin(∆ϕ(t))) . (4.9)

The in-phase component takes positive values when the phase difference ∆ϕ is equal
to 0◦ or −90◦, and negative values when ∆ϕ is equal to 90◦ or 180◦. The quadrature
component, on the other hand, take positive values when ∆ϕ is equal to 0◦ or +90◦,
and negative values when ∆ϕ is equal to 180◦ or −90◦. In this way all four symbols are
effectively retrieved by the depicted receiver. Figure 4.3 shows the eye-diagrams of the
demodulated in-phase components of different pulse-shaped DQPSK signals.

The peak amplitude of the demodulated eye-diagrams is, according to (4.8), given by
maxt{II(t)} = maxt{|A(t)|2}/(2

√
2), assuming that maxt{A(t)} = maxt{A(t−T0)}. Take

for example the RZ-50% pulse train shown in Fig. 4.3. Its peak optical power is 1 mW
and thus, the peak amplitude of the demodulated current is 0.001/(2

√
2) A= 0.35 mA. In

general, the optically and electrically filtered output currents will have a smaller amplitude
than the unfiltered case.

Next, the decision currents will be derived taking into account the optical and electrical
filters. In doing so, the receiver Hermitian kernel function K(f1, f2), previously mentioned
in chapter 3.3.2 and necessary for the semi-analytical calculation of the bit-error rate, will
be obtained. Consider the electrical fields at the input of the photodiodes located at the
in-phase branch of the receiver in Fig. 4.4:

EI,u(t) = AI,u(t)e
jωct, (4.10)

EI,d(t) = AI,d(t)e
jωct. (4.11)

Their complex amplitude AI,u(t) and AI,d(t) can be written in terms of the in-phase input
electrical field’s complex amplitude AI(t) as

AI,u(t) = j/2
(
AI(t− T0) + AI(t)e

jψI
)
, (4.12)

AI,d(t) = −1/2
(
AI(t− T0)− AI(t)e

jψI
)
. (4.13)
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In turn, AI(t) can be expressed in the frequency domain as a function of the optical filter’s
input signal by

ÃI(f) = j/
√
2Ho(f)Ã(f). (4.14)

Applying the Fourier transform to (4.12) and (4.13) and using (4.14) we obtain

ÃI,u(f) = Ho(f)HI,u(f)Ã(f), (4.15)

ÃI,d(f) = Ho(f)HI,d(f)Ã(f), (4.16)

where the transfer functions representing the upper and lower branch of the delay inter-
ferometer correspond to

HI,u(f) = −
√
2/4

(
e−j2πfT0−jωcT0 + ejψI

)
, (4.17)

HI,d(f) = −j
√
2/4

(
e−j2πfT0−jωcT0 − ejψI

)
. (4.18)

Now, consider the output currents of the balanced photodiodes in the in-phase compo-
nent of the receiver given by

ĨI,u(f) = ẼI,u(f) ⋆ Ẽ
∗
I,u(−f) = ÃI,u(f) ⋆ Ã

∗
I,u(−f), (4.19)

ĨI,d(f) = ẼI,d(f) ⋆ Ẽ
∗
I,d(−f) = ÃI,d(f) ⋆ Ã

∗
I,d(−f), (4.20)

where ⋆ represents convolution. The decision variable of the in-phase component can be
written in the time domain as

II(tk) = II,1(tk)− II,2(tk), (4.21)

where the sampled filtered currents II,1(tk) and II,2(tk) are given by

II,1(tk) =

∫ ∞

−∞

ĨI,u(f)He(f)e
j2πftkdf, (4.22)

II,2(tk) =

∫ ∞

−∞

ĨI,d(f)He(f)e
j2πftkdf, (4.23)

and He(f) is the transfer function of the electrical filter. Substituting (4.19) in (4.22) and
(4.20) in (4.23), and expanding the convolution we get

II,1(tk) =

∫∫ ∞

−∞

Ã∗I,u(−f ′)ÃI,u(f − f ′)He(f)e
j2πftkdf ′df, , (4.24)

II,2(tk) =

∫∫ ∞

−∞

Ã∗I,d(−f ′)ÃI,d(f − f ′)He(f)e
j2πftkdf ′df. (4.25)

Next, two substitutions will be made in the previous equations. Firstly, by defining
f2 = −f ′, we get df2 = −df ′. Since f2 varies from +∞ to −∞, the negative sign does
not need to be taken into account and only the variable change is performed. Secondly,
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we define f1 = f + f2, where f2 is constant, so that the expressions (4.24) and (4.25) can
be written as

II,1(tk) =

∫∫ ∞

−∞

Ã∗I,u(f2)He(f1 − f2)ÃI,u(f1)e
j2π(f1−f2)tkdf1df2, (4.26)

II,2(tk) =

∫∫ ∞

−∞

Ã∗I,d(f2)He(f1 − f2)ÃI,d(f1)e
j2π(f1−f2)tkdf1df2. (4.27)

Substituting (4.15) and (4.16) into (4.26) and (4.27), and the resulting expressions into
(4.21) delivers

II(tk) =

∫∫ ∞

−∞

Ã∗(f2)KI(f1, f2)Ã(f1)e
j2πtk(f1−f2)df1df2, (4.28)

where the Hermitian kernel function KI(f1, f2) is given by

KI(f1, f2) = He(f1 − f2) · (H∗
o (f2)H

∗
I,u(f2)Ho(f1)HI,u(f1)

−H∗
o (f2)H

∗
I,d(f2)Ho(f1)HI,d(f1)). (4.29)

Equivalently, the decision variable of the quadrature component can be written as

IQ(tk) =

∫∫ ∞

−∞

Ã∗(f2)KQ(f1, f2)Ã(f1)e
j2πtk(f1−f2)df1df2, (4.30)

with

KQ(f1, f2) = He(f1 − f2) · (H∗
o (f2)H

∗
Q,u(f2)Ho(f1)HQ,u(f1)

−H∗
o (f2)H

∗
Q,d(f2)Ho(f1)HQ,d(f1)), (4.31)

where the delay interferometer transfer functions are given by

HQ,u(f) = j
√
2/4

(
e−j2πfT0−jωcT0 + ejψQ

)
(4.32)

HQ,d(f) = −
√
2/4

(
e−j2πfT0−jωcT0 − ejψQ

)
. (4.33)

In conjunction with the semi-analytical method described in chapter 3.3.2, equations
(4.29) and (4.31) are used to calculate the bit-error rate of the in-phase and quadrature
components, BERI and BERQ, respectively. The aggregate bit-error rate is calculated as
BER = (BERI + BERQ)/2.

4.1.4 Receiver sensitivity and optical filter bandwidth optimiza-

tion

The best performance of any optical modulation format impaired only by AWGN is ob-
tained by using an optical receiver filter matched to the pulse shape and no post detec-
tion electrical filter [Hen89, PSPW02]. For such scenario, an analytical approximation
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Figure 4.5: Ideal BER curve for back-to-back DQPSK at Rs = 27.75 GS/s.

of the BER for DQPSK modulation with interferometric detection has been obtained
in [Pro00, SH04, Ho05] and is given by

Pb ≈ Q(a, b)−
(
I0(ab)

2
+
I1(ab)

8

(
b

a
− a

b

))

· exp
(

−a
2 + b2

2

)

, (4.34)

where

a =

√

ρs(1−
√

1/2), (4.35)

b =

√

ρs(1 +
√

1/2), (4.36)

ρs is related to the OSNR by ρs = 2Bo,ref/Rs ·OSNR with Rs equal to the symbol rate,
Im is the mth order modified Bessel function of the first kind and Q( · , · ) is the first order
Marcum’s Q-function3. Figure 4.5 depicts the BER vs. OSNR according to equation
(4.34).

It is accustomed to describe the performance of a a particular communication system
by the amount of OSNR (OSNRreq) required to achieve a certain BER. In the course
of this thesis, OSNRreq is always calculated for a target BER of 10−4 using a reference
bandwidth Bo,ref = 12.5 GHz. From Fig. 4.5, the back-to-back required OSNR for DQPSK
at Rs = 27.75 GS/s using an optical matched filter, interferometric detection and no
electrical post-detection filters corresponds to OSNRreq = 14.35 dB.

It is sometimes preferred to assess the performance of the transmission in terms of the
minimum received power Ps required to achieve a target BER. This is usually referred
to as receiver sensitivity. Assuming that the noise is produced by a single EDFA placed
before the receiver’s optical filter and according to (3.9) and (3.21), the receiver sensitivity
can be written in terms of the OSNRreq by Ps = hfcFnBo,ref ·OSNRreq. The minimum
receiver sensitivity P ∗s is obtained using an ideal EDFA with Fn = 2, which for the
curve depicted in Fig. 4.5 results in P ∗s = −40.6 dBm. It is also customary to express the

3See appendix A for a definition of the abovementioned mathematical functions.
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Figure 4.6: Tolerance to optical filtering of single-carrier single-channel DQPSK at 55.5 Gb/s.

ultimate performance of a modulation format in terms of the minimum number of photons
per symbol required on average at the receiver input for achieving a target BER. This is
usually referred to as the quantum limit of photodetection nph. It is related to the minimum
receiver sensitivity by nph = P ∗s /(hfcRs). For optical DQPSK at Rs = 27.75 GS/s
detected under the abovementioned conditions the quantum limit is nph = 25 photons
per symbol.

In practice, however, the received optical filter is usually not matched to the signal and
the photodiodes’ finite bandwidth induces post-detection electrical filtering. In this thesis,
a generic optical filter is modeled with the Gaussian transfer function of 2nd order given by
equation (3.12). The low-pass characteristic of the electrical components in the receiver
can be modeled as a 5th order Bessel electrical filter with transfer function given by (3.13)
and bandwidth Be = 0.75Rs.

The bandwidth of the optical filter can be varied in order to find the one that delivers the
lowest required OSNR in a back-to-back configuration, i.e., in absence of a fiber link. The
addition of optical noise is achieved by means of an attenuator in cascade with an EDFA,
both placed between transmitter and receiver. The transmitted and received powers are
fixed such that by increasing the attenuation, the optical gain increases accordingly and
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Figure 4.7: Tolerance to optical filtering in single-carrier WDM DQPSK at 55.5 Gb/s.

thus ASE noise is generated. This is equivalent as to vary the OSNR until a certain BER
is achieved. The optimum filter bandwidth is found when the performance degradation
induced by the residual unfiltered optical noise and by the signal distortion introduced
by the narrow-band filtering are balanced.

Figure 4.6 shows the results of the optimization for the single-channel case and for
each pulse shape, and Table 4.4 lists the optimum bandwidths, required OSNRs and the
2 dB penalties. It is remarkable that performance closely approaches the quantum limit,
although the assumed Gaussian transmission characteristic is not even nearly matched
to the optical pulse shapes. It is possible to observe that pulses with higher peak power
have lower back-to-back OSNRreq, RZ-33% being the closest to the theoretical limit.

The optimum receiver performance relies on a balance between noise and inter-symbol
interference (ISI) for NRZ transmission, while for RZ reception detection noise has to be
traded against filter-induced signal energy rejection [WPSL01]. This is clearly seen in the
shape of the resultant curves for RZ signals. At bandwidths lower than the optimum, the
power of the signal decreases more rapidly than the power of the electrical ASE-ASE-beat
noise, so that the influence of signal-independent electrical noise limits the performance
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Table 4.4: Optimum optical filter bandwidths and required OSNRs in single-channel and WDM
DQPSK at 55.5 Gb/s

Single-channel WDM

Ho,RX OSNRreq 2 dB Ho,TX Ho,RX OSNRreq

(GHz) (dB) penalty (GHz) (GHz) (GHz) (dB)

NRZ 34.69 14.62 24.53 47.18 34.68 14.63
RZ-67% 48.56 14.55 23.36 34.68 34.68 14.42
RZ-50% 56.89 14.43 23.60 34.68 30.52 14.43
RZ-33% 69.38 14.40 23.83 34.68 30.52 14.46

well before ISI sets in. Observe that the optimum bandwidth is inversely proportional to
the duty cycle.

On the other hand, NRZ pulses have a confined spectrum, and thus narrow bandwidths
effectively suppress the noise without affecting the signal, and the optimum performance
is solely limited by ISI. Consequently, NRZ is the pulse shape most robust to strong
filtering but, at the same time, is the less tolerant to ISI – observe in Table 4.4 that the
2 dB penalty occurs much earlier in NRZ than in RZ pulses. Filtering above the optimum
bandwidth delivers a stronger sensitivity degradation to NRZ pulses since, as opposed to
RZ, little signal power is allocated in the outer part of the spectrum.

The situation is different in the WDM case. The optimum receiver filter bandwidth
depends not only on the shape and width of the signal’s own optical spectrum, but also
on the spectrum width of the optical signals located in the adjacent channels, and on
the channel separation itself. If not properly filtered, any leakage from the neighboring
channels, commonly referred to as WDM cross-talk, will beat with the signal of inter-
est producing distortion and a noticeable degradation in performance, far stronger than
the degradation due to residual unfiltered noise. For this reason, the optimum receiver
bandwidths in WDM scenarios tend to be narrower than in single-channel, especially for
signals with wider spectrum such as RZ.

The control of cross-talk is done by proper optical filtering at the transmitter side. Fig-
ure 4.7 shows contour plots for the simultaneous optimization of transmitter and receiver
filter bandwidths for the WDM case. Observe that all plots have the same scaling. The
color gradient represents penalty with respect to the optimum required OSNR for each
pulse shape. Contour lines are depicted in steps of 0.25 dB and penalties of more than
3 dB are shown black. Table 4.4 lists the optimum bandwidths and required OSNRs.

The optimum regions are located in the lower left corner of each plot where optical
noise and cross-talk between channels are effectively suppressed. Notice that, although
the optimum filter bandwidths are much narrower than the ones shown in Table 4.4
for the single-channel case, the required OSNRs remain similar and no major penalty is
observed (RZ-67% performs even better with TX filtering). The reason for this is that
the optical power lost by the filter at the transmitter side is restituted before transmission
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Figure 4.8: Eye-diagram of a DQPSK NRZ signal after optimum optical filtering without (left)
and with optical noise (right).

and subsequent addition of noise. Thus, all the optical power of the signal is concentrated
in a much more confined spectrum and, by having a narrower bandwidth, the receiver
optical filter is able to reject the noise to a greater extent. Figure 4.8, left, depicts the
resulting eye-diagram of a demodulated NRZ signal (in-phase) from the center channel of
a WDM comb. The signal has a power of -3 dBm and is filtered with the values shown
in Table 4.4. The right plot of Fig. 4.8 shows the same signal with the OSNR required to
achieve a BER of 10−4.

4.1.5 Dual-carrier DQPSK systems

One solution to transmit high data rates while using low-bandwidth components is to
divide the bit stream into multiple sub-channels. The data in the sub-channels is con-
veyed by optical sub-carriers that are independently generated of each other and optically
multiplexed before transmission. At the receiver side, the sub-carriers are separated after
WDM demultiplexing via optical filters and demodulated independently of each other
with dedicated receivers.

Naturally, using M parallel sub-carriers translates directly into components with one
M th of the required bandwidth. Additionally, an increase in tolerance to impairments that
scale with the symbol rate, e.g., dispersion, is expected. On the other hand the number of
required components in the transmitter and receiver sides increases, therefore, increasing
the overall cost of the entire system4. Furthermore, a higher number of lasers and filters
must be properly aligned in frequency to avoid cross-talk between sub-channels thus, also
increasing the complexity of the transponders compared to a single-carrier solution. In
this thesis, DQPSK systems using two optical carriers within one WDM channel will be

4In standards such as synchronous optical network (SONET) or synchronous digital hierarchy SDH,
where the data rates per channel were periodically increased by four in each new generation, typically, only
a 2.5-fold increase in transponder costs was observed [WE06]. Thus, doubling the number of transmitters
and receivers with only half the bandwidth requirements would translate in an increase in the total cost
by 60%.
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Figure 4.9: Block diagram of a dual-carrier DQPSK system.

considered as an alternative to the single-carrier case.

Figure 4.9 depicts a block diagram of the dual carrier DQPSK system. Two transmitters
(shown in detail in Fig. 4.1) are used to independently modulate two optical carriers.
They are centered at frequencies f1 = fc − ∆fs/2 and f2 = fc + ∆fs/2, where fc is
the center frequency of the WDM channel and ∆fs is the frequency separation between
the carriers. The symbol rate of each sub-carrier is 13.875 GS/s which results in an
aggregate data rate of 55.5 Gb/s. The modulated sub-carriers are firstly filtered in order
to prevent any cross-talk between them, and subsequently amplified to half of the total
power of the resulting signal. At the receiver side, after WDM demultiplexing, the sub-
carriers are separated by optical bandpass filters centered at the respective frequencies
and subsequently demodulated, each by a dedicated DQPSK receiver (see Fig. 4.4).

Theoretically, the performance of dual-carrier DQPSK is identical to the single-carrier
case given that the frequency separation between sub-carriers is large (∆fs > 2Rs). In
general, the bandwidths of the transmitter filters, the WDM demultiplexer and the filters
used to separate the sub-carriers must be simultaneously varied in order to optimize
performance. Their optimum value is strongly dependent on the width of the spectrum
and the sub-carrier frequency separation. However, a global optimization procedure (as
described in ch. 3.3.3) reveals that the WDM demultiplexer (Ho,WDM) is redundant since
the sub-carrier separation filters (Ho,RX) perform the same task, i.e., filtering out unwanted
signals and optical noise. However, Ho,WDM is always present in a WDM system and,
therefore, imposes a limitation on the frequency separation between sub-carriers.

The bandwidths of the transmitter filters (Ho,TX), on the other hand, are much more
critical design parameters. The filters are responsible of shaping the sub-carriers’ spectra
in order to minimize cross-talk between them and to avoid any non-symmetrical filtering
caused by Ho,WDM. Similarly, the bandwidths of the sub-carrier separation filters Ho,RX

are chosen to balance performance degradation firstly due to noise and secondly, due to
signal distortion caused by the adjacent sub-carrier.

Figure 4.10 shows the optimum regions for Ho,TX and Ho,RX when a 47 GHz optical filter
is used as WDM demultiplexer. Only single-channel case is simulated. Three frequency
separation are shown for comparison: 2Rs = 27.75 GHz, 1.5Rs = 20.81 GHz and 1Rs =
13.875 GHz. Color gradient represents penalty with respect to the minimum required
OSNR (among all pulse shapes) when ∆fs = 2Rs. Contour lines are depicted in steps of



84 Chapter 4 � DQPSK Transmission Systems at 55.5 Gb/s

15 20 25 30

15

20

25

30

15 20 25 30

15

20

25

30

15 20 25 30

15

20

25

30

15 20 25 30

15

20

25

30

15 20 25 30

15

20

25

30

15 20 25 30

15

20

25

30

15 20 25 30

15

20

25

30

15 20 25 30

15

20

25

30

15 20 25 30

15

20

25

30

15 20 25 30

15

20

25

30

15 20 25 30

15

20

25

30

15 20 25 30

15

20

25

30

Figure 4.10: Tolerance to optical filtering of single-channel dual-carrier DQPSK at 55.5 Gb/s.

0.25 dB and penalties higher than 3 dB are shown black. The resulting optimum values
are listed in Table 4.5.

In the first row of plots in Fig. 4.10, when the separation between sub-carriers is wide, it
is possible to observe that cross-talk can be effectively suppressed either at the transmitter
or receiver side. As expected for NRZ, penalty due to noise increases more rapidly than
for RZ when enlarging the bandwidth of Ho,RX (see Fig. 4.6, NRZ).

When the frequency separation between the sub-carriers is reduced to ∆fs = 1.5Rs, the
contour plots resemble the WDM scenario shown for single-carrier in Fig. 4.7. Notice that
the optimum regions are in the left corner of the plot, i.e., cross-talk is minimized by tight
optical filtering at the transmitter side, and the receiver filter prevents the adjacent signals
to interfere with the signal of interest. In this scenario, no performance degradation is
observed.

On the other hand, when ∆fs = 1Rs, the sub-carriers must withstand strong narrow-
band filtering in order for cross-talk to be minimized. We observe a degradation in
performance of ∼ 0.5− 0.8 dB. This loss in performance makes such a narrow separation
between sub-carriers unattractive in a 50 GHz channel. However, if the width of the
WDM channel is reduced, sub-carriers with ∆fs = 1Rs suffer the lowest penalty.

The tolerances of WDM dual-carrier DQPSK to WDM filtering using NRZ and RZ-33%
are shown in Figure 4.11. The advantages of halving the symbol rate by using dual-
carrier DQPSK will become evident when analyzing the tolerance to dispersion and the
robustness of the dispersion maps in the following sections.
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Figure 4.11: Tolerance to WDM demultiplexer bandwidth in single-channel dual-carrier
DQPSK at 55.5 Gb/s.

Table 4.5: Optimum optical filter bandwidths and required OSNRs for dual-carrier DQPSK at
55.5 Gb/s

Single-channel ∆fs = 1Rs WDM ∆fs = 1Rs

Ho,TX Ho,RX OSNRreq Ho,TX Ho,RX OSNRreq

(GHz) (GHz) (dB) (GHz) (GHz) (dB)

NRZ 17.3 13.1 15.41 17.3 13.1 15.43
RZ-67% 13.1 13.1 15.12 13.1 13.1 15.13
RZ-50% 13.1 13.1 15.10 13.1 13.1 15.11
RZ-33% 13.1 13.1 15.07 13.1 13.1 15.08

Single-channel ∆fs = 2Rs WDM ∆fs = 2Rs

Ho,TX Ho,RX OSNRreq Ho,TX Ho,RX OSNRreq

(GHz) (GHz) (dB) (GHz) (GHz) (dB)

NRZ 29.8 19.4 14.66 25.6 17.3 14.85
RZ-67% 19.4 17.3 14.40 17.3 17.3 14.49
RZ-50% 17.3 17.3 14.40 17.3 17.3 14.63
RZ-33% 17.3 17.3 14.43 15.2 17.3 14.59

4.1.6 Stereo-multiplexed DQPSK systems

In [GCS+09], a technique has been proposed to simultaneously demodulate two optical
carriers using only one optical receiver. Using this technique it is possible to build a
system using components with low bandwidth, as in dual-carrier DQPSK systems, and
spare one DQPSK demodulator at the receiver side, therefore reducing costs. Instead of
transmitting two sub-carriers Aa(t) and Ab(t) using two independent optical frequencies,
[GCS+09] proposes to transmit a linear combination of the two sub-carriers (Aa(t)+Ab(t))
and (Aa(t)−Ab(t)) on each frequency. In such way, the intermodulation products caused
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Figure 4.12: Block diagram of a stereo-multiplexed DQPSK transmitter.

by the beating of the two carriers at output of the photodiode are effectively suppressed.
This is known as stereo multiplexing due to its resemblance to standard stereo broadcast
systems [DeV61].

The technique is compatible with phase modulation if the separation between sub-carriers
coincides with a multiple of the period of the delay-line interferometer’s (DLI) periodic
transfer function used for phase-to-intensity conversion. The intensity of the original
sub-carriers is subsequently recovered using an additional electronic demodulator.

Figure 4.12 shows an implementation of a stereo-multiplexed DQPSK transmitter. Firstly,
two phase-locked optical sub-carriers are generated by means of a MZM and a DLI. The
MZM can be operated as a linear optical mixer by carefully avoiding its saturation region.
Consider a sinusoidal electrical signal v0(t) = Vp cos(2π

∆fs
2
t)−Vπ that modulates an opti-

cal carrier E0 =
√
P · exp(jωct). If v0(t) is set to drive the MZM in the linear region and

assuming no optical loss, the input to the DLI can be written as Ein = A(t) · exp(jωct),
where

Ã(f) =

√
P

2

(

δ

(

f − ∆fs
2

)

+ δ

(

f +
∆fs
2

))

. (4.37)

The DLI acts as a filter that separates the sub-carriers from each other. This is done
by setting the delay constant to τ = 1/(2∆fs) and the phase to ψ = −2πτ∆fs/2 − ωcτ ,
which results in the DLI transfer functions given by:

Hu(f) =
Ãu(f)

Ã(f)
= jejψ · exp(−j2πτ(f −

∆fs
2
)) + 1

2
, (4.38)

Hd(f) =
Ãd(f)

Ã(f)
= −ejψ · exp(−j2πτ(f −

∆fs
2
))− 1

2
. (4.39)

Figure 4.13 depicts the transfer function of a DLI set to filter sub-carriers with ∆fs =
27.75 GHz. As a result, the optical sub-carriers can be written as Eu(t) = Au(t) · ejωct
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Figure 4.13: Transfer function of a DLI with τ = 1/55.5 ns.

and Ed(t) = Ad(t) · ejωct where by using (4.37)-(4.39) we obtain

Eu(t) =

√
P

2
· jejψ · ej2π

(

fc−
∆fs
2

)

t
, (4.40)

Ed(t) =

√
P

2
· ejψ · ej2π

(

fc+
∆fs
2

)

t
. (4.41)

Next, each sub-carrier is carved with va(t) and vb(t) and optically filtered to narrow
its spectrum. The resulting signals are recombined, modulated and recombined again to
form the stereo signal given by

Eout(t) =
1√
2

(
Aa(t)− Ab(t)

2
· ej2π∆fs

2
t +

Aa(t) + Ab(t)

2
· e−j2π∆fs

2
t

)

· jejψ · ejωct, (4.42)

where Aa(t) =
√
Ppa(t)e

jϕa(t) and Ab(t) =
√
Ppb(t)e

jϕb(t) are DQPSK modulated signals
with pulses pa(t) and pb(t), respectively. Consider that irrespective of the amount of
filtering, each sub-carrier is transmitted with a power equal to half of the total power of
the signal.

By multiplexing the sub-carriers as in (4.42), only one optical DQPSK receiver is needed
at the receiver side. In order to retrieve the transmitted bits encoded in the phase of Aa(t)
and Ab(t), the output electrical currents of the I and Q branches of the DQPSK receiver
must be further processed in the electrical domain, as shown in Fig. 4.14. According to
(4.6), the electrical currents5 are given by

II(t) =
1
2
ℜ{E(t)E∗(t− T0)e

jψI}, (4.43)

IQ(t) =
1
2
ℜ{E(t)E∗(t− T0)e

jψQ}. (4.44)

Without considering the receiver optical filter Ho(f) and after some algebraic detail6,

5Observe that the photodiodes of the DQPSK receiver should have a bandwidth larger than ∆fs.
6See appendix C.
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Figure 4.14: Block diagram of a stereo-multiplexed DQPSK receiver. DLI+BD stands for
delay-line interferometers with balanced detectors, as shown in Fig.4.4

inserting (4.42) into (4.43) and (4.44) yields

II(t) =
1
8

(
|Aa|2 cos(∆ϕa + π/4) + |Ab|2 cos(∆ϕb + π/4)

+
(
|Aa|2 cos(∆ϕa + π/4)− |Ab|2 cos(∆ϕb + π/4)

)
· cos(2π∆fst)

− (|AaAb| sin(∆ϕab + π/4)− |AaAb| sin(∆ϕba + π/4)) · sin(2π∆fst)
)
, (4.45)

IQ(t) =
1
8

(
|Aa|2 cos(∆ϕa − π/4) + |Ab|2 cos(∆ϕb − π/4)

+
(
|Aa|2 cos(∆ϕa − π/4)− |Ab|2 cos(∆ϕb − π/4)

)
· cos(2π∆fst)

− (|AaAb| sin(∆ϕab − π/4)− |AaAb| sin(∆ϕba − π/4)) · sin(2π∆fst)
)
. (4.46)

In equations (4.45) and (4.46) the time dependence of the variables was dropped for
compact notation and the following substitutions were carried out:

∆ϕa =ϕa(t)− ϕa(t− T0), (4.47)

∆ϕb =ϕb(t)− ϕb(t− T0), (4.48)

∆ϕab =ϕa(t)− ϕb(t− T0), (4.49)

∆ϕba =ϕb(t)− ϕa(t− T0). (4.50)

Observe that the variables of interest7, |Aa|2 cos(∆ϕa±π/4) and |Ab|2 cos(∆ϕb±π/4), are
summed in the baseband component of the electrical currents; and are subtracted in the
in-phase component of the electrical currents oscillating at f = ∆fs. The intermodulation
products, on the other hand, fall into the quadrature component of the electrical currents
oscillating at f = ∆fs.

7See equation (4.7).
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As depicted in Fig. 4.14, the information of channels a and b can be retrieved in the
electrical domain. Firstly, the base-band component of the electrical currents is recovered
by means of a low-pass filter (He(f)) with bandwidth Be ≈ ∆fs/2. Secondly, the in-phase
component of the electrical currents oscillating at f = ∆fs is down-mixed to f = 0 by
means of a phase-locked electrical local oscillator and another low-pass filter (He(f)) with
bandwidth Be ≈ ∆fs/2. Subsequently, both signals at the output of the low-pass filters
are added to and subtracted from each other. Notice that the I and Q branches can be
processed in the electrical domain independently of one another.

Stereo multiplexing is a form of linearly pre-coded frequency division multiplexing where
the pre-coding matrix P = (p1 p2), with p1 = (1 1)T and p2 = (−1 1)T is equivalent
to two-point inverse discrete Fourier transform matrix. Therefore, the information can
also be recovered in the time domain, by sampling the currents II(t) and IQ(t) at time
intervals tk =

k
2∆fs

, with k ∈ N. However this is challenging since the sampling instant
would have to be carefully controlled in the absence of a well defined pulse.

In order to calculate the BER of a stereo-multiplexed signal with the technique described
in chapter 3.3.2, the hermitian kernel function K(f1, f2) should be derived. This has been
done in [Coe10], and consist in substituting the transfer function of the electrical filters
He(f1−f2) in (4.26) and (4.27) by the transfer function of the corresponding down-mixing
and summation/subtraction circuits Ha

e (f1, f2,∆fs, t) and H
b
e(f1, f2,∆fs, t) given by

Ha
e (f1, f2,∆fs, t) =He(f1 − f2) +He(f1 − f2 −∆fs) · e−j2π∆fst

+He(f1 − f2 +∆fs) · ej2π∆fst, (4.51)

Hb
e(f1, f2,∆fs, t) =He(f1 − f2) +He(f1 − f2 −∆fs) · e−j2π∆fst

−He(f1 − f2 +∆fs) · ej2π∆fst, (4.52)

so that (4.29) and (4.31) can be rewritten for stereo-multiplexed DQPSK systems as

Ka
I (f1, f2) =H

a
e (f1, f2,∆fs, t) · (H∗

o (f2)H
∗
I,u(f2)Ho(f1)HI,u(f1)

−H∗
o (f2)H

∗
I,d(f2)Ho(f1)HI,d(f1)), (4.53)

Ka
Q(f1, f2) =H

a
e (f1, f2,∆fs, t) · (H∗

o (f2)H
∗
Q,u(f2)Ho(f1)HQ,u(f1)

−H∗
o (f2)H

∗
Q,d(f2)Ho(f1)HQ,d(f1)), (4.54)

Kb
I(f1, f2) =H

b
e(f1, f2,∆fs, t) · (H∗

o (f2)H
∗
I,u(f2)Ho(f1)HI,u(f1)

−H∗
o (f2)H

∗
I,d(f2)Ho(f1)HI,d(f1)), (4.55)

Kb
Q(f1, f2) =H

b
e(f1, f2,∆fs, t) · (H∗

o (f2)H
∗
Q,u(f2)Ho(f1)HQ,u(f1)

−H∗
o (f2)H

∗
Q,d(f2)Ho(f1)HQ,d(f1)). (4.56)

In conjunction with the semi-analytical method described in chapter 3.3.2, equations
(4.53)-(4.56) are used to calculate the bit-error rate of the in-phase and quadrature compo-
nents for each sub-channel, BERaI , BER

b
I and BER

a
Q, BER

b
Q, respectively. The aggregate

bit-error rate is calculated as BER = (BERaI + BERbI + BERaQ + BERbQ)/4.

The possibility of extending this multiplexing technique to more than two sub-carriers is
thoroughly investigated in appendix D. It is shown that simultaneous demodulation using
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Figure 4.15: Tolerance to optical filtering of stereo-multiplexed DQPSK at 55.5 Gb/s.

direct detection of up to five sub-carriers is in principle possible, provided that the pre-
coding matrix has complex values, i.e., the amplitude and the phase of the sub-carriers
must be manipulated before multiplexing them. An example is given for a system using
three intensity-modulated sub-carriers.

As in dual-carrier DQPSK systems, careful design of the optical filters at the transmitter
and receiver sides must be carried out, in order to ensure the optimum performance of
the system. The transmitter filters shape the spectrum so that cross-talk between sub-
channels is minimized. Observe that this must be done before the modulation stage, since
one modulator imprints the information of a sub-channel simultaneously in both sub-
carriers. At the receiver side, the WDM demultiplexer filters out adjacent WDM channels
and unwanted optical noise. The sub-carrier separation is performed by electrical filters,
as shown in Fig. 4.14.

As it was previously mentioned, the separation between sub-carriers is limited to a multi-
ple of the symbol-rate so that one DLI can perform phase-to-intensity conversion simulta-
neously in both frequencies. Simulations show that for a tight separation of ∆fs = Rs the
transmitter optical filters are unable to prevent cross-talk between sub-carriers without
strongly distorting the signals. Any residual cross-talk between the sub-carriers at such
narrow frequency separation, directly affects the channel that is summed and subtracted
in both frequencies, in this case channel b, seriously compromising its performance. For
this reason, only the case ∆fs = 2Rs will be considered in the following analysis.

The simultaneous optimization of the bandwidths of Ho,TX, Ho and He shows that the
most critical parameter is the bandwidth of the electrical filters. A value of ∼ 10.4 GHz,
equivalent to approximately 75% of the symbol rate, was found to be close to the optimum
for all pulse shapes, provided that the bandwidth of the optical filters are also optimum. A
narrower bandwidth induces strong signal distortion, whereas a wider one fails to prevent
cross-talk between both baseband and passband components of the electrical signal.

Figure 4.15 shows contour plots with the performance of the system for various transmit-
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Table 4.6: Optimum optical filter bandwidths and required OSNRs for stereo-multiplexed
DQPSK at 55.5 Gb/s

Single-channel WDM

Ho,TX Ho,RX OSNRreq Ho,TX Ho,RX OSNRreq

(GHz) (GHz) (dB) (GHz) (GHz) (dB)

NRZ 23.5 43.0 15.48 23.5 34.7 15.96
RZ-67% 34.0 38.8 14.91 21.5 34.7 15.49
RZ-50% 23.5 38.8 14.98 19.4 34.7 15.44
RZ-33% 23.5 38.8 15.02 19.4 34.7 15.45

ter and receiver filter bandwidths. The contour lines depict penalties in steps of 0.25 dB
with respect to the optimum required OSNR for each pulse shape, and penalties of more
than 3 dB are shown black. Table 4.6 summarizes the optimum values for the bandwidths
and the required OSNRs. Observe that the required OSNRs are higher for stereo than for
the dual-carrier case. This penalty comes from the fact that the receiver optical filter for
stereo systems is unable to properly reject the optical noise in between the sub-carriers.
As expected, this penalty is higher for NRZ pulses. Referred to dual DQPSK, NRZ signals
require 1 dB higher OSNR, whereas RZ signals require only 0.5 dB more.

In order to properly reject any cross-talk from adjacent WDM signals, the receiver optical
filter needs to have a narrower bandwidth compared to the single-channel case. This
causes asymmetrical filtering between the sub-carriers, i.e., one sub-carrier suffers from
more attenuation in the higher part of its spectrum and the other one in the lower part
and, therefore, the bandwidth of transmitter optical filters should be accordingly reduced.
The effect of the narrower filtering in the WDM case, plus any residual cross-talk between
WDM signals translates into an additional penalty of ∼ 0.5 dB for all pulse shapes.
In summary, the gain of stereo multiplexing, in terms of reduction of the number of
components at the receiver side, comes at an expense in receiver sensitivity of about
∼0.5–1 dB.

4.2 Dispersion and nonlinear tolerances

In this section, fundamental characteristics of the three abovementioned formats are in-
vestigated. Firstly, back-to-back dispersion tolerances are discussed. Then, single-span
transmission is simulated in order to quantify nonlinear tolerances. The optimum filter
bandwidths shown in Tables 4.4, 4.5 and 4.6 are used in the rest of the simulations.

4.2.1 Dispersion tolerance

An important parameter in the performance evaluation of any optical transmission for-
mat is the tolerance to accumulated dispersion. As it was previously mentioned in chap-
ter 3.2.2, systems operating at high data rates must compensate for the dispersion that
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Figure 4.16: Tolerance to dispersion of DQPSK at 55.5 Gb/s.

Table 4.7: Dispersion tolerances (ps/nm) of DQPSK at 55.5 Gb/s – 2 dB penalties

Single-channel WDM

Single-carrier Dual-carrier Stereo Single-carrier Dual-carrier Stereo

NRZ 101 247 107 101 242 107
RZ-67% 91 257 109 96 243 119
RZ-50% 88 251 111 101 253 121
RZ-33% 82 254 105 100 248 121

the signal accumulates along the link. Furthermore, if transmission takes place in the
pseudo-linear regime, any residual dispersion at the end of the link is undesirable. For
this purpose, dispersion compensating fibers are used in a multitude of configurations
within the transmission system. However, because of changes in the chromatic dispersion
parameter of the fibers due to, e.g., temperature [Vor07], transmission formats should
have an inherent tolerance to uncompensated dispersion.

Using the optimum filter bandwidths derived in the last section, the required OSNRs for
a target BER=10−4 were simulated for single-carrier, dual-carrier and stereo-multiplexed
DQPSK systems using different pulse shapes. The simulations were carried out for single-
channel and WDM configurations by sending the signals over a dispersive single-mode
fiber. Other disturbing effects such as nonlinearities are neglected. Figure 4.16 depicts
the simulation results and Table 4.7 lists the 2 dB penalties of each format.
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Figure 4.17: Block diagram of a single-span transmission link.

Three conclusions can be drawn from the simulation results. Firstly, the dispersion
tolerance varies inversely with the bandwidth of the signals. This can be observed in
the single-channel and single-carrier case. NRZ pulses have the narrowest bandwidth
and therefore the highest tolerance, whereas RZ-33% pulses have the widest spectrum
and thus, the lowest tolerance. However, if the signals are properly filtered and have a
comparable bandwidth, as with the WDM single-carrier case, the tolerance to dispersion
is similar for all pulses. Notice that, due to the narrow filtering to which RZ signals are
exposed in a WDM scenario, the dispersion tolerances are comparable to those of NRZ
signals.

Secondly, it is clear that halving the symbol rate in dual carrier systems translates into
an enormous gain in dispersion tolerance. The tolerances are increased between 2.5 and
3 times compared to the single-carrier case. The signals have comparable bandwidths,
which in turn, results in similar dispersion tolerances.

Thirdly, stereo multiplexing has a similar dispersion tolerance as the single-carrier case,
although their symbol rate is reduced to half of it. The reason is that the sub-carrier that
conveys the sum of the channels suffers a slightly different distortion due to dispersion
than the sub-carrier that contains the difference of the channels. This is equivalent as if
the pre-coding condition was affected by dispersion and, due to the squaring operation
of the receiver, intermodulation products appear and interfere with the signals causing
performance degradation. Additionally, observe that the tighter filtering of WDM stereo
signals compared to the single-channel causes the tolerance to dispersion to increase.

4.2.2 Nonlinear tolerance

A straightforward approach to investigate the nonlinear properties of the abovementioned
modulation formats is to use the single-span set-up shown in Figure 4.17. The optical
signals are transmitted over 80 km of standard single-mode fiber. 100% of the accumulated
dispersion is compensated for by an ideal DCF, i.e., linear without attenuation. The
average input power to the SSMF is varied and the required OSNR for a BER of 10−4 is
calculated. Figure 4.18 depicts the simulation results. The 2 dB penalties, referred to the
back-to-back required OSNR are shown in Table 4.8. The optimum bandwidths obtained
in chapter 4.1 are used in the simulations. Propagation in the standard single-mode fiber
was simulated using the parameters shown in Table 1.1.

The single-channel single-carrier plot shows that, as expected, NRZ signals have the
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Figure 4.18: Tolerance to nonlinear effects in single-span transmission of DQPSK at 55.5 Gb/s.
Optimum filter bandwidths were applied.

worst tolerance to intra-channel nonlinear effects. Additionally, one can observe that RZ
signals improve their tolerance as their duty cycle decreases, showing the effectiveness of
pulse carving against intra-channel nonlinear effects. On the other hand, in the WDM
scenario8, all pulses have a similar tolerance. With WDM nonlinear penalties of 1.8 and
1.9 dB, respectively, NRZ and RZ-67% signals seem to be less affected by inter-channel
nonlinear effects than RZ-50% and RZ-33% signals, which show penalties of 4.9 and
5.6 dB.

The single-channel dual carrier case shows signals having a similar tolerance. The toler-
ance of RZ pulses is poorer than in the single-carrier case due to the the strong nonlinear
interaction between sub-carriers. On the other hand, NRZ pulses do not seem to be
strongly affected by the adjacent sub-carrier. In the WDM case dual-carrier signals suffer
a strong nonlinear penalty, albeit similar for all pulse formats. Notice that, in this case
all the signals have a similar bandwidth. The strong proximity of the sub-carriers in the
WDM case increases the effect of the nonlinear effects and produce an extra ∼ 2 dB
penalty compared to the single channel case.

Stereo-multiplexed signals, in turn, seem to be the least tolerant to nonlinearities. This
results from the fact that each sub-carrier becomes a different nonlinear chirp that distorts

8Recall that, as in the rest of this thesis, in the WDM scenario 7 co-polarized and uncorrelated WDM
channels with 50 GHz of frequency separation are simulated, and that performance measurements are
related to the center channel.
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Table 4.8: Single-span nonlinear tolerance (dB) of DQPSK at 55.5 Gb/s – 2 dB penalties

Single-channel WDM

Single-carrier Dual-carrier Stereo Single-carrier Dual-carrier Stereo

NRZ 14.5 15.3 10.5 12.7 10.8 8.0
RZ-67% 16.8 15.1 11.5 12.9 10.5 7.8
RZ-50% 17.6 15.0 11.6 12.7 9.8 8.0
RZ-33% 18.4 14.8 11.4 12.8 10.2 7.8

the pre-coding condition which, in turn, produces intermodulation products that add to
the penalty caused by the nonlinear effects themselves.

Observe that these conclusions may only prove useful for systems where dispersion is fully
compensated at the end of each span. The absence of dispersion in the high power regions
of the SSMF results in maximized iter-channel nonlinearities. In the praxis, however,
dispersion is used to minimize the FWM efficiency and to increase the walk-off between
WDM channels so that an averaging of the XPM occurs.

4.3 Optimum nonlinear transmission and dispersion

map robustness

In this section, the optimum transmission of 55.5 Gb/s in 1040 km of SSMF is investi-
gated. All transmission formats use the optimum bandwidths obtained in the previous
sections and shown in Tables 4.4, 4.5 and 4.6. For both, non-dispersion-managed (NDM)
and dispersion managed (DM) links the optimum transmission parameters are identified
and the robustness of the optimum is analyzed. Using the NLPS criterion discussed in
chapter 3.2.4, the maximum transmission reach of each modulation format is estimated.

4.3.1 Transmission in non-dispersion-managed links

In NDM links dispersion accumulates along propagation and is compensated either at
the transmitter, receiver or a combination of both. Due to their high attenuation and
nonlinearity, DCFs are not used in this type of links and normally, dispersion compensa-
tion is performed in the electrical domain. In the transmitter, this is usually done using
electronic pre-distortion [KWM+05] where the inverse transfer function of the fiber is
multiplied with the signal in the frequency domain, followed by a Fourier transform, in
order to obtain a time-representation of the signal to be transmitted. At the receiver side,
full optical field reconstruction [ME05] or coherent detection [vdBDF+07] can be used to
enable electronic dispersion compensation. As previously mentioned, in this thesis the
pre- and post- compensation of dispersion are performed in the optical domain using
ideal DCFs, i.e., linear and non-attenuating fibers, so that the results of the analysis are
independent of the method used for the compensation of dispersion.
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Figure 4.19: Block diagram of a non-dispersion-managed link.

The signals are sent through the link shown in Fig. 4.19 and the launch power and amount
of pre-compensation are varied in order to find the maximum OSNR margin (∆OSNR),
defined as the difference between the accumulated OSNR (3.21) and the required OSNR
for a target BER of 10−4. In order to simplify the analysis, it is assumed that optimum
transmission occurs when the residual dispersion at the end of the link is zero. The results
are shown in the contour plots of Fig. 4.20 and the optimum points are listed in Table 4.9.
The contour lines are in steps of 0.25 dB and express the penalty referred to the highest
∆OSNR for each format. Penalties of more than 3 dB are shown in black. Notice that
the plots of stereo signals are centered differently than the plots of single and dual carrier
signals.

The lack of in-line compensation results in highly dispersed optical waveforms propagat-
ing along the link. A high number of pulses within the signal overlap causing high power
peaks and therefore, strong signal degradation through SPM. Previous studies [Sav06]
have shown that for intensity modulated OOK systems the optimum strategy is to di-
vide the compensation of dispersion equally between transmitter and receiver. We ob-
tain the same conclusion in single-carrier DQSK systems. Observe that this is also in
agreement with the straight-line rule (SLR), previously discussed in chapter 3.2.3. The
SLR tends to make the dispersion map symmetrical around the middle which, for non-
dispersion-managed links, results in an optimum pre-compensation of 50% of the to-
tal accumulated dispersion. This result comes from substituting Dres = DSSMFLSSMF

into equation (3.33) and noticing that the last term of the right side dominates thus,
Dpre ≈ −NDSSMFLSSMF/2.

On the other hand, for dual-carrier the optimum lies closer to a pre-compensation of
80%. The difference can be justified by noticing that, additionally to SPM, XPM be-
tween sub-carriers further degrades the signal. Additional dispersion is required in order
to further decorrelate the sub-carriers so that the nonlinear chirp caused by XPM is av-
eraged out throughout the link. The opposite occurs for stereo signals. It seems that
excessive decorrelation causes nonlinearities to affect the pre-coding condition more than
the degradation to the sub-carriers due to SPM and XPM itself. As a result the optimum
pre-compensation lies around 35%.

For the WDM scenario we notice that optimum pre-compensation lies close to the 60%
in all cases. As in the dual-carrier case, the extra decorrelation seems to be beneficial
in order to minimize the effect of inter-channel XPM. For the WDM case, in general,
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Figure 4.20: Performance of DQPSK in a non-dispersion-managed link.
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Table 4.9: Optimum transmission parameters in non-dispersion-managed links. PR∗ represents
the optimum pre-compensation ratio (%) and P ∗SSMF is the optimum power launched into the
SSMF.

Single-carrier Single-channel WDM

PR∗ P ∗SSMF OSNRreq
∗ ∆OSNR∗ PR∗ P ∗SSMF OSNRreq

∗ ∆OSNR∗

(dBm) (dB) (dB) (dBm) (dB) (dB)

NRZ -0.5 1.9 16.29 8.06 -0.7 0.6 16.52 6.53
RZ-67% -0.5 3.1 16.25 9.23 -0.6 0.8 16.33 6.90
RZ-50% -0.5 3.4 16.27 9.59 -0.6 1.4 16.67 7.12
RZ-33% -0.5 3.8 16.19 10.0 -0.6 1.4 16.57 7.22

Dual-carrier Single-channel WDM

PR∗ P ∗SSMF OSNRreq
∗ ∆OSNR∗ PR∗ P ∗SSMF OSNRreq

∗ ∆OSNR∗

(dBm) (dB) (dB) (dBm) (dB) (dB)

NRZ -0.8 3.1 16.36 9.12 -1.0 1.6 16.68 7.30
RZ-67% -0.8 3.3 15.99 9.68 -1.0 1.8 16.33 7.83
RZ-50% -0.8 3.3 16.12 9.54 -0.6 1.4 16.34 7.45
RZ-33% -0.8 3.4 16.21 9.65 -0.6 1.4 16.41 7.38

Stereo Single-channel WDM

PR∗ P ∗SSMF OSNRreq
∗ ∆OSNR∗ PR∗ P ∗SSMF OSNRreq

∗ ∆OSNR∗

(dBm) (dB) (dB) (dBm) (dB) (dB)

NRZ -0.4 1.9 17.22 7.07 -0.7 0.5 17.86 5.12
RZ-67% -0.3 2.4 16.65 8.20 -0.8 0.3 17.20 5.59
RZ-50% -0.4 2.4 16.75 8.10 -0.7 1.1 17.39 6.15
RZ-33% -0.4 2.4 16.80 8.05 -0.7 1.1 17.43 6.11

the contour of the black region seems to vary rather rapidly with the amount of pre-
compensation. There is even a relatively high penalty when pre-compensating at ∼ 20%.
It seems that for the particular sequences used for the simulations and for some values
of dispersion, high power peaks form at some point in the propagation, inducing strong
nonlinear chirp and a consequent decrease in performance.

In terms of the relative performances between all investigated formats, one observes that
single- and dual-carrier perform very similar, whereas stereo is the least tolerant format
against nonlinearities. In all cases NRZ is the pulse most affected by nonlinearities.
The pulses that perform the best for each format are depicted in Fig. 4.21. Although
single-carrier performs slightly better than dual-carrier in single-channel transmission,
the opposite occurs in the WDM scenario. Stereo is only ∼ 1 dB worse than single-carrier
and ∼ 2 dB worse than dual carrier in the WDM case.

The equivalent of the NLPS criterion in non-dispersion-compensated links is the Pmax

rule [FSE+99]. It states that the nonlinear signal distortion only depends on the to-
tal amount of nonlinear phase-shift φtotal

NL = NγSSMFL
SSMF
eff PSSMF. Unlike in dispersion-
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Figure 4.21: Nonlinear tolerance in non-dispersion-managed links with optimum pulse shapes.
Solid line: single-channel (single-carrier: RZ-33%, dual-carrier: RZ-67%, stereo: RZ-67%),
dashed-line: WDM (single-carrier: RZ-33%, dual-carrier: RZ-67%, stereo: RZ-50%).

managed links, φtotal
NL does not depend on the amount of pre-compensation. Thus, if the

rule holds, it is possible to estimate the maximum transmission distance by finding the
number of concatenated spans at which ∆OSNR equals zero. In calculating the accumu-
lated OSNR for ∆N subsequent spans, the launch power PSSMF is lowered such that φ

total
NL

remains constant. If P ∗SSMF is the optimum power for N = 13, the optimum power for
N +∆N spans is given by

P ′SSMF =
N

N +∆N
P ∗SSMF (4.57)

and from (3.38), the accumulated OSNR is calculated as

OSNRacc =
PSSMF

2Φtotal
ASEBo,ref

=
P ′SSMF

hfcFn(N +∆N)eαSSMFLSSMFBo,ref

. (4.58)

Using the above equations the maximum number of spans for each modulation format
and pulse shape is calculated and listed in Table 4.10. All the obtained values were sub-
sequently confirmed by simulating the maximum number of sections Nmax with the same
optimum pre-compensation and verifying that ∆OSNR > 0. In some cases we observed
even a still positive OSNR margin of up to 0.8 dB. The values shown in Table 4.10 only
represent an estimation of the maximum transmission distance since pre-compensation
was not re-optimized for Nmax and thus, still some performance improvement may exist.

4.3.2 Transmission in dispersion-managed links

The behavior of the investigated modulation formats in dispersion-managed links is more
difficult to analyze due to the high number of parameters that influence the nonlinear
propagation of the signals. The model of the link is shown in Fig. 4.22. The signals are
first pre-compensated with a fraction (PR) of the accumulated dispersion per span, which
in this case amounts to LSSMFDSSMF = 1360 ps/nm. Subsequently, transmission takes
place in 13 spans (1040 km) composed of SSMF and DCF with dual-stage EDFAs. The
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Table 4.10: Maximum number of cascaded spans in non-dispersion-managed links

Single-channel WDM

NRZ RZ-67% RZ-50% RZ-33% NRZ RZ-67% RZ-50% RZ-33%

Single-carrier 32 37 39 41 27 28 29 29
Dual-carrier 37 39 39 39 30 32 30 30
Stereo 29 33 32 32 23 24 26 26

length of the DCFs is set to compensate only a fraction (CR) of the accumulated dispersion
per span. At the end of the link, any residual dispersion is brought back to zero with
the post-compensating fiber. The pre-and post- compensating fibers are assumed linear
and non-attenuating. Performance is measured in terms of the maximum OSNR margin
∆OSNR and is dependent on the set of parameters SDM = {PSSMF, PDCF,Dpre,Dres}. For
convenience, the results are expressed in terms of SDM = {PSSMF, PDCF,PR,CR} where
PR and CR relate to the amount of pre-compensated dispersion Dpre and the residual
dispersion per spanDres by PR = Dpre/(LSSMFDSSMF) and CR = (1−Dres/(LSSMFDSSMF)),
respectively.

For a fair comparison between the investigated modulation formats, the optimum per-
formance of the system is obtained with the global optimization algorithm (GOA) pre-
viously introduced in chapter 3.3.3. The boundaries of the search space are given by
PSSMF = [−3, 7], PDCF = [−8, 3], PR = [−1, 0] and CR = [0.7, 1.1]. The algorithm
is set to find the maximum OSNR margin ∆OSNR∗ and the optimum set of parameters
S∗DM = {P ∗SSMF, P

∗
DCF,PR

∗,CR∗} in 200 iterations, which correspond to only 2% simula-
tions of an equivalent grid search (assuming a “rough” grid of 10 points per parameter).
For convenience, granularities of 0.1 dBm for the input powers, 0.05 for PR and 0.01 for
CR were set.

The results of the GOA are shown in Table 4.11. The optimum power differences (∆P ∗)
between SSMF and DCF are very close to the previously estimated optimum of 6.5 dB
(see ch. 3.2.2). The power difference is higher for single-carrier (∆P

∗
= 7.2 dB) than for

dual-carrier and stereo (∆P
∗
= 6.2 dB and ∆P

∗
= 6.8 dB, respectively). The average

optimum power difference is 0.4–0.9 dB lower for WDM transmission than for the single-
channel case. Observe that for all formats, NRZ always perform the worst.

In order to further understand the behavior of the investigated formats a qualitative
robustness analysis is performed by exploring the regions around the optimum parameters.
For visualization purposes we take two 2-dimensional slices out of the 4-dimensional region
around the optimum. This is done by fixing the pair (PR∗, CR∗) and varying the input
powers (PSSMF, PDCF) in order to obtain a power plot ; or fixing (P ∗SSMF, P

∗
DCF) and vary

the pre-compensation and span compensation ratios (PR, CR), in which case we obtain
a dispersion plot.

Figures 4.23 and 4.24 show the power plots for each modulation format and pulse shape,
for the single-channel and WDM cases. The contour levels show penalties referred to the
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Figure 4.22: Block diagram of a dispersion-managed link.

Table 4.11: Optimum transmission parameters in dispersion-managed links

Single-channel WDM

Single- P ∗SSMF P ∗DCF PR∗ CR∗ ∆OSNR∗ P ∗SSMF P ∗DCF PR∗ CR∗ ∆OSNR∗

Carrier (dBm) (dBm) (dB) (dBm) (dBm) (dB)

NRZ 3.2 -4.2 -0.45 0.94 8.32 2.7 -5.4 -0.45 0.94 7.75
RZ-67% 4.7 -3.9 -0.05 1.02 9.78 2.9 -3.6 -0.55 0.93 8.48
RZ-50% 5.1 -2.7 -0.45 0.94 10.32 2.5 -3.3 -0.75 0.91 8.43
RZ-33% 4.8 -0.4 -0.80 0.90 10.68 2.4 -2.7 -0.75 0.91 8.38

Single-channel WDM

Dual P ∗SSMF P ∗DCF PR∗ CR∗ ∆OSNR∗ P ∗SSMF P ∗DCF PR∗ CR∗ ∆OSNR∗

Carrier (dBm) (dBm) (dB) (dBm) (dBm) (dB)

NRZ 6.2 -0.1 -0.45 0.94 11.39 3.8 -1.8 -0.85 0.86 9.23
RZ-67% 6.6 0.7 -0.60 0.92 12.20 3.8 -2.0 -0.90 0.86 9.51
RZ-50% 6.6 -0.1 -0.65 0.91 12.08 4.0 -2.0 -1.00 0.85 9.56
RZ-33% 6.2 0.2 -0.65 0.91 11.88 3.9 -0.8 -0.85 0.86 9.57

Single-channel WDM

Stereo P ∗SSMF P ∗DCF PR∗ CR∗ ∆OSNR∗ P ∗SSMF P ∗DCF PR∗ CR∗ ∆OSNR∗

(dBm) (dBm) (dB) (dBm) (dBm) (dB)

NRZ 0.7 -6.3 -0.80 0.75 5.09 -0.2 -6.2 -0.95 0.79 3.95
RZ-67% 1.5 -5.3 -0.75 0.75 6.51 0.3 -6.3 -1.00 0.77 4.76
RZ-50% 1.3 -5.4 -0.75 0.75 6.20 0.4 -6.2 -0.75 0.75 4.86
RZ-33% 1.3 -5.7 -0.60 0.75 6.16 0.4 -5.8 -0.95 0.75 4.88
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Figure 4.23: Robustness against variations in input powers, for optimum PR and CR, in
single-channel transmission.

maximum ∆OSNR of each case. Lines are in steps of 0.25 dB and penalties of more than
3 dB are depicted black. The plots can be qualitatively described in the following way:
formats with a good performance show a “hill” closer to the upper right corner of the
frame. The horizontal and vertical widths of the hill indicates robustness to variations in
the optimum SSMF and DCF input powers, respectively.

From Fig. 4.23 it is clear that dual-carrier perform the best and is the most tolerant9

9Observe that “tolerance” is referred to the position of the hills, i.e., it reflects the amount of detri-
mental effects that the signals are able to withstand, whereas “robustness” refers to the size of the hills,
i.e., it reflects how much deviation in the optimum parameters of the link the transmission format is able
to withstand. “Performance” is directly related to ∆OSNR.
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Figure 4.24: Robustness against variations in input powers, for optimum PR and CR, in WDM
transmission.

format against nonlinear effects, followed by single-carrier and stereo. All formats are
slightly more robust against variations in DCF input power than in SSMF input power.
And once again, NRZ seems to be the poorest format in terms of performance and ro-
bustness, specially in single-carrier signals.

Notice that, in spite of being in the pseudo-linear regime of propagation, where intra-
channel effects are the limiting effects on the performance of the systems, the reduction in
size of the hills indicate a loss in robustness due to the inter-channel nonlinearities. Dual-
carrier is specially affected by inter-channel nonlinear effects, as it is possible to observe by
comparing Fig. 4.23 with Fig. 4.24. The hills locate at ∼ 2.5 dB lower SSMF power than
the single-channel case. The difference is ∼ 2 dB and ∼ 1 dB for single-carrier and stereo,
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Figure 4.25: Robustness against variations in pre-compensation and span residual dispersion,
for optimum PSSMF and PDCF, in single-channel transmission.

respectively. Single-carrier NRZ signals, although having the poorest performance seems
to be less affected, in terms of robustness of the input powers, by WDM transmission
than the rest.

Figures 4.25 and 4.26 show the dispersion plots for each modulation format and pulse
shape, for the single-channel and WDM cases. The contour levels show penalties referred
to the maximum ∆OSNR of each case. For visualization purposes, this time the contour
lines are in steps of 1 dB and penalties of more than 10 dB are depicted black.

Although the input powers set the ultimate limit in performance, they must be set under
careful consideration of the dispersion map. The plots depict clearly an optimum region in
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Figure 4.26: Robustness against variations in pre-compensation and span residual dispersion,
for optimum PSSMF and PDCF, in WDM transmission.

diagonal form in shape of a “bridge” between the left lower corner and right upper corner
of the plots, just as predicted by the straight-line rule. In general the optimum regions
found by the GOA lie in the lower left corner of the plots, on the diagonal where pre-
compensation is negative and spans are slightly under-compensated just for the dispersion
map to be symmetrical with respect to the center point. Further to the lower left corner of
the plots the bridge starts to widen but at some point they begin to decrease in “height”.
Robustness is given by how broad the bridges are, specially close to the lower left corner.

From Fig. 4.25 one can observe that NRZ single-carrier signals are less robust to varia-
tions in the dispersion map than RZ signals. Although not particularly noticeable in the
plot, the optimum region starts widening more rapidly for RZ than for NRZ pulses. Dual-
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Figure 4.27: The straight-line rule.

carrier signals show a noticeable loss in performance of 3 to 5 dB close to (PR,CR)=(0,1).
This is where the average accumulated dispersion along the link is minimum and thus,
nonlinearities affect the signals the most. At this point the nonlinear interaction between
sub-carriers is maximized and a subsequent penalty appears. It is remarkable that mov-
ing away from this point towards the left corner of the plots (i.e., increasing dispersion)
immediately minimizes the penalty due to the nonlinear crosstalk between sub-carriers.
Furthermore, the optimum region stars widening at a higher rate than in the case of
single-carrier signals providing higher tolerance to variations in the optimum dispersion
map parameters and better nonlinear tolerance and system performance altogether. The
wide regions also appear in stereo signals but, interestingly, the detrimental effect due to
inter-carrier nonlinear crosstalk is not present. It seems as if the nonlinear chirp induced
by the sub-carriers in each other is effectively canceled in the demodulation process.

A similar behavior can be observed in the WDM case (Fig. 4.26). Close to the cen-
ter of the plots the nonlinear crosstalk between WDM channels is maximized and a
strong penalty occurs. In general, we notice that systems using two sub-carriers are
more robust to variations in the dispersion maps provided that they operate far from the
(PR,CR)=(0,1) point.

As previously mentioned, the straight-line rule (SLR) is successful in predicting the
diagonal shape of the optimum regions. Although it was developed with only the intra-
channel effects in mind, we observe from Figs 4.25 and 4.26, that it fits also the multi-
carrier signals and the WDM scenario. Notice the at least the slope of the straight-line fits
almost perfectly with all the investigated systems indicating that symmetric dispersion
maps are optimum.

Figure 4.27 shows the dispersion plot of NRZ single-carrier single-channel with the min-
imum points for each CR and its linear fit. Observe that Killey’s rule, written in equa-
tion (3.33), and the further refinement of the SLR in equation (3.34), hereafter referred
to as Coelho’s rule after [Coe10], are very close to the linear fit. Therefore, we attempt
to estimate the maximum transmission distance using the SLR in conjunction with the
NLPS criterion previously described in chapter 3.2.4.
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Table 4.12: Maximum number of cascaded spans and OSNR∗req (dB) in dispersion-managed
links

OSNR∗req Single-channel WDM

NRZ RZ-67% RZ-50% RZ-33% NRZ RZ-67% RZ-50% RZ-33%

Single-carrier 16.08 15.64 15.97 15.79 15.97 15.83 15.63 15.69
Dual-carrier 16.24 15.94 15.91 15.84 16.21 15.91 16.03 16.10
Stereo 17.14 16.55 16.68 16.65 18.20 17.07 17.16 17.17

Nmax Single-channel WDM

NRZ RZ-67% RZ-50% RZ-33% NRZ RZ-67% RZ-50% RZ-33%

Single-carrier 33 39 41 42 31 34 34 33
Dual-carrier 47 52 51 50 37 38 38 38
Stereo 22 26 27 25 20 21 21 22

The estimations were subsequently simulated in order to confirm them. In just a few
cases we noticed that the estimations and consequent system configurations given by the
NLPS criterion where not accurate. They occurred when the optimum points found by
the GOA did not lie close enough to the line predicted by the SLR. However, by applying
the GOA to those systems with the purpose to maximize the number of spans it can
concatenate, we could confirm that the estimations given by the NLPS criterion where
accurate (±1 span) and only the systems configurations where different. This indicates
that the premise of the NLPS criterion holds and that, independently of the number of
sections, a system is limited by the maximum nonlinear phase shift it can tolerate. This
is also valid for multi-carrier and WDM systems.

The maximum number of spans obtained for each format are shown in Table 4.12. The
results confirm that dual-carrier perform the best among all investigated systems with
a maximum transmission distance of 52 spans (4160 km) for single-channel transmission
and 38 spans (3040 km) for the WDM case.

By comparing Tables 4.12 and 4.10 it is possible to observe that careful control of the
nonlinearities via in-line dispersion compensation increases the maximum transmission
distance in dual-carrier systems up to 33% and 26% in the single-channel and WDM
cases, respectively. For single-carrier signals the increase is small (up to 5%) for single-
channel, whereas for WDM transmission in-line compensation can improve the reach of
the system up to 21%. On the other hand, stereo signals perform worse in DM links, with
degradation in the maximum reach of up to 20%.

Finally, the total residual dispersion after 1040 km is varied in order to find its optimum
value and tolerance. Figure 4.28 depicts the resulting curves showing the required OSNR
versus total residual dispersion. The system configurations are determined by the opti-
mum set of parameters found with the GOA shown in Table 4.11. Table 4.13 lists the
optimum points and 2 dB tolerances.
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Figure 4.28: Tolerance to residual dispersion of DQPSK at 55 Gb/s.

Observe that, unlike the linear case, the tolerance curves are not symmetrical around
zero. Some positive residual dispersion seems to be beneficial to combat the nonlinear
chirp that the signal acquires while propagating. Notice that, in general, signals are more
tolerant to positive than negative residual dispersion.

As expected for signals propagating in the pseudo-linear regime, the optimum residual
dispersion is very close to zero. It is possible to observe that for dual-carrier signals the
optimum residual dispersion is slightly higher than that of single-carrier signals. On the
other hand, stereo signals require very little residual dispersion, just enough to cancel some
nonlinear residual chirp, but not too much so that the pre-coding condition is affected.
Similar to the linear case, dual-carrier systems are far more robust than single-carrier
signals to uncompensated dispersion. Stereo on the other hand remains as tolerant as
single-carrier. WDM transmission does not seem to greatly impact the tolerance of the
signals to residual dispersion.

4.4 Summary

DQPSK modulation is a very attractive transmission format mainly due to its high spec-
tral efficiency and consequent robustness against narrow-band filtering, high tolerance
to nonlinearities and relative simple transceiver design. One alternative to implement
111 Gb/s per WDM channel is to use two polarization-multiplexed DQPSK tributaries
at 55.5 Gb/s and thus, a thorough analysis of the performance of this modulation format



4.4 Summary 109

Table 4.13: Tolerance to residual dispersion (ps/nm) of DQPSK at 55.5 Gb/s – 2 dB penalties

Single-channel Single-carrier Dual-carrier Stereo

D−acc D∗acc D+
acc D−acc D∗acc D+

acc D−acc D∗acc D+
acc

NRZ 72 7 72 129 0 145 72 15 60
RZ-67% 95 30 77 175 45 180 103 15 81
RZ-50% 78 15 83 191 45 176 95 15 70
RZ-33% 65 0 83 212 45 186 89 0 81

WDM Single-carrier Dual-carrier Stereo

D−acc D∗acc D+
acc D−acc D∗acc D+

acc D−acc D∗acc D+
acc

NRZ 64 7 73 192 60 153 70 0 70
RZ-67% 69 22 80 239 45 175 77 0 94
RZ-50% 68 15 83 198 30 193 70 0 85
RZ-33% 74 22 77 150 0 192 85 0 89

at such data-rate has been investigated. The contribution of this chapter can be resumed
in the following main points:

⊲ In DQPSK modulation, the information is conveyed by the phase difference of suc-
cessive symbols. Two bits per symbol are simultaneously transmitted in four phase
states of the optical signal. The most common transmitter implementation uses
a differential encoder for the quaternary data that modulates the in-phase and
quadrature components of the optical signal in a parallel manner. At the receiver
side, phase-to-intensity conversion is carried out with two delay interferometers with
balanced photodiodes. The mathematical equations that describe the whole trans-
mission system were derived, including the Hermitian kernels used for the BER
estimation.

⊲ By using an extra MZM at the transmitter side, it is possible to modify the shape
of the pulses that convey the phase information. Six pulses are investigated in this
chapter: NRZ and RZ with duty cycles of 67%, 50% and 33%. NRZ signals have
the narrowest spectrum of all. For RZ signals, the lower the duty cycle, the broader
is the spectrum.

⊲ The best performance of a system is achieved by using a matched optical filter at the
receiver and no post-detection electrical filter. In this case, DQPSK ideally requires
14.35 dB OSNR in order to achieve a BER of 10−4. This is equivalent to a receiver
sensitivity of -40.6 dBm or a quantum limit of 25 photons per symbol.

⊲ The optimum filter bandwidths and receiver performances have been obtained for
each pulse format. The optimum receiver performance relies on a balance between
noise and inter-symbol interference for NRZ transmission, whereas for RZ signals
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detection noise has to be traded against filter-induced signal energy rejection. In
WDM systems, a transmitter filter is used to minimize cross-talk between neighbor-
ing channels.

⊲ NRZ signals require the narrowest filter bandwidth to achieve optimum sensitivity,
but have the worst robustness against deviations of the optimum bandwidth. The
optimum receiver filter bandwidth of RZ signals gets wider and the required OSNR
gets lower as the duty cycle of the signals reduces.

⊲ DQPSK transmission using two optical carriers at half the symbol rate has been
investigated as well. By using dual-carrier DQPSK, it is assumed that not only the
bandwidth requirements of the transceivers is relaxed but also that the robustness
against some detrimental effects that depend on the symbol rate would be improved.
The performance of dual-carrier transmission is theoretically equal to single-carrier
transmission provided that the cross-talk between sub-carriers is minimized. The
optimum filter bandwidths and performances for different pulse shapes and sub-
carrier separations have been obtained.

⊲ Stereo multiplexing has been proposed as a way of detecting two carriers simul-
taneously using only one DQPSK modulator. Demultiplexing of the sub-carriers
is subsequently carried out electronically. The transmitter and receiver design has
been described in detail and the optimum filter bandwidths and performances for
different pulse shapes have been obtained. The gain of stereo multiplexing, in terms
of reduction of the number components at the receiver side, comes at an expense in
receiver sensitivity of about ∼0.5–1 dB.

⊲ A novel mathematical framework has been proposed and used to model the effect of
square-law detection in linearly pre-coded FDM signals. It is shown that the Stereo
multiplexing can be extended up to five sub-carriers only if complex pre-coding is
used. An explicit example using 3 sub-carriers is given. The framework is also useful
in analyzing other direct-detected multi-carrier modulation formats, e.g., OFDM.

⊲ The dispersion tolerance of the different pulse and transmission formats has been
investigated. Dispersion tolerance is higher for signals with narrower bandwidths.
The narrow-band filtering used in WDM systems to minimize cross-talk has the
side effect of increasing dispersion tolerance. As expected, dual-carrier DQPSK
provides approximately a 2.5-fold increase in tolerance to dispersion. On the other
hand, since dispersion alters the pre-coding condition of stereo signals, only a slight
increase in dispersion tolerance was observed for RZ pulses (∼ 20%).

⊲ The nonlinear tolerance of the different pulses and transmission formats was inves-
tigated as well. For this purpose, propagation in a single-span link was analyzed.
We observed that RZ carving is effective in reducing intra-channel nonlinear effects.
The lower the duty cycle, the better is the tolerance. On the other hand, no differ-
ence between the pulses was observed regarding tolerance to inter-channel effects.
Dual carrier and stereo perform worse than single-carrier.
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⊲ Propagation in non-dispersion-managed links was investigated. The optimum pre-
compensation ratios and launch powers were obtained for each format. The max-
imum number of cascaded spans was calculated using the Pmax rule. The longest
reach was achieved in the single-channel case by single-carrier RZ-33% signals with
41 spans. In the WDM case, dual-carrier RZ-67% achieved the maximum of 32
spans. Stereo reached 6 spans fewer than the best formats in both single-carrier and
WDM transmission.

⊲ Propagation in dispersion-managed links was investigated as well. The optimum
transmission parameters and performances were obtained using the global optimiza-
tion algorithm. Afterwards, a thorough analysis of the robustness of the investigated
formats to deviations of the optimum parameters was carried out. It was shown that
the straight-line rule is valid also for multi-carrier and WDM transmission. Using
the NLPS criterion and the straight-line rule, the maximum reach of each format
was estimated. In single-channel as in WDM dual-carrier RZ-67% achieved the
maximum number of cascaded spans, which equals 52 and 38, respectively. This is
∼ 20% and ∼ 10% more than the best single-carrier pulse and almost 50% more
than the best stereo signals for single-channel and WDM transmission, respectively.
Subsequently, the tolerance to residual dispersion was investigated. The optimum
residual dispersion is not far from zero ps/nm and only a very small performance
improvement was observed.





5
DQPSK Transmission at
55.5 Gb/s Using Nyquist pulses

In this chapter, we consider reducing the bandwidth of the optical signals by encoding the
transmitted symbols into spectrally efficient Nyquist pulses. The motivation to investigate
such pulses was triggered by the answer to the following question: Is it possible to linearly
pre-code orthogonal frequency division multiplexed (OFDM) signals so that they are
compatible with direct detection? We consider OFDM signals because of their minimal
spectral occupancy. Firstly, we show that the squaring operation of the photodiode at the
receiver side generates intermodulation products between the sub-carriers that interfere
with the signal of interest, unless the sub-carriers are linearly pre-coded with the discrete
Fourier transform matrix. Subsequently, it is shown that this is equivalent to serial
transmission of modulated symbols encoded in Nyquist pulses, specifically sinc pulses,
generated in the frequency domain. By means of spectral shaping we attempt to increase
the tolerance of the signals to transmission impairments. For this purpose, we introduce
raised cosine and Hamming pulses. Finally we use the same propagation scenarios as in
chapter 4 in order to assess the performance of Nyquist pulses and compare them to the
more classic (non) return-to-zero pulses.

5.1 Direct detection of OFDM signals

OFDM signals are attractive, among other reasons, because of their very low spectral
occupancy. Such signals are composed of a sum of overlapping sub-carriers, each with a
very narrow spectrum. Since the sub-carriers are orthogonal to each other, no interference
is caused by the overlapping (see Fig. 5.1).
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Figure 5.1: Overlapping orthogonal sub-carriers.

The time domain baseband representation of an OFDM signal composed of Ns sub-
carriers can be written as1

A(t) =
∞∑

m=−∞

Ns/2−1∑

n=−Ns/2

xmnsn(t−mTs), (5.1)

where xmn is the information symbol of the n
th subcarrier sn at the m

th OFDM symbol
of duration Ts. The sub-carriers are of the form

sn(t) = ej2πfntΠ(t), (5.2)

where fn = n/Ts. The rectangular window Π(t) is inherent to transmitters that digitally
process the information symbols in block form, i.e., that in each OFDM symbol take into
account only a finite subset of information symbols from the whole information sequence.
It is analytically defined as

Π(t) =

{
1 , 0 < t ≤ Ts
0 , else.

(5.3)

Observe that the rectangular window gives each subcarrier its sinc (Tsf) shape in the
frequency domain2. It follows directly from the orthogonality property between any two
sub-carriers within an OFDM symbol, that the amplitude of the mth subcarrier is zero
when f = fn, ∀n except when n = m (as seen in Fig. 5.1). This can be mathematically
expressed as

1

Ts

∫ Ts

0

sns
∗
m = δnm, (5.4)

1The amplitude normalization factor is absent for simplicity of notation. In general, the amplitude
of the resultant digital signals must be properly normalized in order to match the dynamic range of the
digital-to-analog converters.

2The normalized sinus cardinalis function is defined as sinc (x) = sin(πx)/(πx).
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where ∗ denotes complex conjugation and δnm is the Kronecker delta function with δnm = 1
when n = m and δnm = 0 otherwise.

The OFDM signal described in (5.1) has a compact spectrum with bandwidth B ≈ Ns/Ts
when Ns is high, which makes it very attractive for systems where signals with low spec-
tral occupancy are required. However, multi-carrier signals are inherently incompatible
with direct-detection. This is because the squaring operation of the photodiodes causes
intermodulation products between the sub-carriers to appear and interfere with the sig-
nal of interest. Some techniques have been proposed to overcome this problem but the
trade off is either reduced spectral efficiency, by sending an optical carrier located far
distant in spectrum from the signal [LDA06], or reduced sensitivity, because of the high
power needed for the optical carrier [SSBP08]. In [GCS+10] it was shown that, by lin-
early pre-coding the sub-carriers with the DFT matrix, intermodulation products would
be effectively suppressed at the sampling instant.

Assume that the information bits are encoded in the phase difference between the suc-
cessive information symbols xn and xn−1 and, for simplicity, consider only one OFDM
symbol in (5.1). The information symbols in each OFDM symbol are linearly pre-coded
with the square matrix P and E(t) = A(t) · ejωct with

A(t) =

Ns/2−1∑

n=−Ns/2

pnxe
j2πfnt (5.5)

is the input field to the DQPSK receiver shown in Fig. 4.4. In (5.5), pn is the n
th row

of P and x = (x−N/2 . . . x0 . . . xN/2−1)
T. Using ψI = π/4− ωcT0, the output signal of the

in-phase branch can be written according to (4.6) as

II(t) =
1

2
ℜ







Ns/2−1∑

n=−Ns/2

pnxe
j2πfnt ·

Ns/2−1∑

m=−Ns/2

(pmx)
∗e−j2πfm(t−T0)ej

π
4






. (5.6)

The delay of the interferometer is set to T0 = Ts/Ns and the electrical signal is sampled
at a rate tk = kTs/Ns, with −Ns

2
≤ k ≤ Ns

2
− 1. For mathematical convenience, the

resulting decision variable can be expressed in matrix form as

II(tk) =
1

2
ℜ







Ns/2−1∑

n=−Ns/2

pnxe
j2π nk

Ns ·
Ns/2−1∑

m=−Ns/2

(pmx)
∗e−j2π

n(k−1)
Ns ej

π
4







=
1

2
ℜ
{(

rkΩ
−1Px

) (
rk−1Ω

−1Px
)T
ej

π
4

}

, (5.7)

where Ω corresponds to the Ns×Ns DFT matrix with elements ωmn = e−j2π
mn
Ns and rk is

the kth row of the Ns ×Ns identity matrix. Observe that in (5.7) the element containing
the original transmitted data in the kth sampling instant is given by the product of the
information symbols with subscripts n = k andm = k−1. All other terms cause unwanted
interference. However, if P = Ω, intermodulation products are effectively suppressed at
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Figure 5.2: Block diagram of a transmitter for the generation of Nyquist pulses in the frequency
domain.

the sampling instant and the in-phase and, analogously, the quadrature decision variables
reduce to

II(tk) =
1
2
ℜ{xkx∗k−1ej

π
4 }, (5.8)

IQ(tk) =
1
2
ℜ{xkx∗k−1e−j

π
4 }. (5.9)

5.2 Generation of Nyquist pulses in the frequency

domain

The DFT pre-coding operation described in the previous section is equivalent to perform-
ing digital signal processing over the information vector x in the frequency domain. The
resulting signal in (5.5) is a particular member of a broader family of signals that con-
vey the transmitted information symbols serially by means of spectrally efficient Nyquist
pulses.

Consider the transmitter shown in Fig. 5.2. A stream of modulated information symbols
is parallelized to form the vector x of Ns elements, which is then transformed to the
frequency domain by means of the DFT of size Ns.

The output vector x̃ with elements

x̃k =

Ns/2−1∑

n=−Ns/2

xne
−j2π nk

Ns , (5.10)

where −Ns

2
≤ k ≤ Ns

2
− 1, is cyclically extended to form the vector z̃ of elements

z̃k =







x̃k+Ns
, −Ns

2
− ∆Ns

2
≤ k ≤ −Ns

2
− 1

x̃k , −Ns

2
≤ k ≤ Ns

2
− 1

x̃k−Ns
, Ns

2
≤ k ≤ Ns

2
+ ∆Ns

2
− 1.

(5.11)



5.3 Spectral shaping 117

where −Ns

2
− ∆Ns

2
≤ k ≤ Ns

2
+ ∆Ns

2
− 1.

The additional ∆Ns samples (∆Ns < Ns) are related to the excess bandwidth of the re-
sulting signal ∆B = ∆Ns/Ns. Subsequently, z̃ is element-wise multiplied by a windowing
vector w̃ of size Ns + ∆Ns and elements w̃k, zero-padded and transformed back to the
time domain with the Ms-points (Ms > Ns + ∆Ns) inverse DFT matrix. The resulting
vector y has elements given by

yk =

Ms/2−1∑

m=−Ms/2

ỹme
j2πmk

Ms , (5.12)

where −Ms

2
≤ k ≤ Ms

2
− 1 and

ỹm =

{
w̃mz̃m , − Ns

2
− ∆Ns

2
≤ m ≤ Ns

2
+ ∆Ns

2
− 1

0 , else.
(5.13)

The serialized real and imaginary parts of y are digital-to-analog (DAC) converted at
a rate of fs = Ms/Ts and the resultant electrical signal is low-pass filtered and used to
modulate an optical carrier. The MZM-based IQ modulator should be properly driven to
avoid the saturation region. The resulting symbol rate is Rs = fsNs/Ms.

In the next section, it will be shown that the input samples to the DACs correspond to
the digital version of a waveform that convey the information symbols xk serially using
pulses g(k), i.e.,

yk =

Ns/2−1∑

n=−Ns/2

xn · g(k − n
Ms

Ns

) (5.14)

with −Ms

2
≤ k ≤ Ms

2
− 1. The pulses fulfill the Nyquist criterion of zero inter-symbol

interference [Pro00], i.e.,

g(n
Ms

Ns

) =

{
Ns , n = 0
0 , n 6= 0,

(5.15)

where −Ns

2
≤ n ≤ Ns

2
− 1.

Observe that the energy of a Nyquist pulse is not totally contained in the pulse slot
but spread among all Ns symbols within a block. The duty cycle dc can be calculated
numerically by solving the equation |g(kHWHM)|2 = |g(0)|2/2 for k > 0, where kHWHM is
the half-width at half-maximum sample. Since the pulse slot duration is Ms/Ns samples,
the duty cycle is given by

dc =
2kHWHM

Ms/Ns

× 100%. (5.16)

5.3 Spectral shaping

The selection of a windowing function will determine the spectral characteristics and
subsequent performance of the transmitted signals. In the following section, three types
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of Nyquist pulses will be analyzed. The most spectrally efficient of all is the sinc pulse.
Raised cosine and Hamming pulses are introduced as alternatives to sinc pulses since they
trade off very well spectral occupancy by increased horizontal eye opening and reduced
power fluctuations.

5.3.1 Sinc pulses

The most spectrally efficient pulse is obtained when ∆Ns = 0, or equivalently, when a
rectangular window of width Ns is applied (see Fig. 5.3). The window’s elements are
defined as w̃k = rect(k) where

rect(k) =

{
1 , − Ns

2
≤ k ≤ Ns

2
− 1

0 , else,
(5.17)

Combining equations. (5.10)-(5.13) with (5.17) yields the electrical signal with samples

yk =

Ns/2−1∑

m=−Ns/2

Ns/2−1∑

n=−Ns/2

xne
−j2π nm

Ns ej2π
mk
Ms

=

Ns/2−1∑

n=−Ns/2

xne
−jπNs

Ns−1∑

m=0

ej2πm(k/Ms−n/Ns)

=

Ns/2−1∑

n=−Ns/2

xne
jπ(Ns−1)(k/Ms−n/Ns)

sin (πNs(k/Ms − n/Ns))

sin (π(k/Ms − n/Ns))
. (5.18)

In obtaining (5.18), the mathematical identity

L−1∑

l=0

ej2πlx = ejπ(L−1)x
sin(πLx)

sin(πx)
(5.19)

was used and, since Ns is usually an even number, e
−jπNs = 1.

Equation (5.18) is equivalent as (5.14) with the base pulse g(k) given by

g(k) = e−jπ(Ns−1)k/Ms
sin (πNsk/Ms)

sin (πk/Ms)
. (5.20)

The sine-over-sine function in (5.20) is usually referred to as Dirichlet kernel [OS89] or
aliased sinc [SI07] since it is obtained by applying the fourier transform to a sampled
rectangular window. The linear phase term multiplying the aliased sinc comes from the
causal nature of the implementation shown in Fig. 5.2. In the rest of this thesis g(k)
in (5.20) will be simply referred to as sinc pulse. Observe that the sinc pulse fulfills (5.15)

In Figure 5.4, one isolated pulse is depicted with its amplitude in both, linear and
logarithmic scales. Additionally, the power spectrum3 of a DQPSK modulated signal using

3The plots were obtained by convolving the magnitude-squared Fourier transform of the optical signals
with a 830 MHz-wide Gaussian window, which is equivalent to a 1.25 GHz-wide rectangular window.
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Figure 5.3: Example of different windows with Ns = 16 (gray circles), ∆Ns = 8 (white circles)
and ZP=8 (crosses). For Hamming window4αH = 0.38.

sinc pulses is plotted. The pulses are generated at a symbol rate of Rs = 27.75 GS/s and
have an average power of 0.5 mW. For representation purposes the OSNR of the signals
is set to 40 dB in the spectrum plots. It is possible to observe that sinc pulses have the
narrowest attainable spectrum. The width of the spectrum is approximately equal to the
symbol rate when Ns is large. According to (5.16), the duty cycle of a sinc pulse is 88.6%.

The eye diagram of the received and demodulated in-phase component of a noiseless
sinc pulse is shown as well. It is obtained without any optical filtering by a photodiode
with broad electrical bandwidth and ideal responsivity of 1 A/W. Due to the relatively
high amplitude of the side-lobes, the horizontal opening of the eye diagram is rather
small. This is important if sampling at the receiver side is not carried out at the optimum
instant. Furthermore, high amplitude side-lobes will cause high power fluctuations in the
signal that are not desirable due to constraints in the dynamic range of the amplifiers and
DACs, linearity of the modulators and also, because of performance degradation through
the fiber’s nonlinear effects, e.g. see [GFCH08]. It is therefore worthwhile to look into
other pulse shapes, which can trade off some bandwidth occupancy against side-lobes
with lower amplitude.

5.3.2 Raised cosine pulses

Pulses with a raised cosine spectrum have been widely used in practical communication
systems [Pro00]. They give the designer a trade off between spectral occupancy and rate
of decay in the amplitude of the side-lobes of the pulse. Consider the case when ∆Ns 6= 0
and a raised cosine window is used. Its elements are given by

w̃k =







1 , (1−βr)
2

Ns > |k|
1
2
+ 1

2
cos

(
π

βrNs
(|k| − (1−βr)

2
Ns)

)

, (1−βr)
2

Ns ≤ |k| ≤ (1+βr)
2

Ns

0 , else,

(5.21)

4Strictly speaking, this window corresponds to the Fourier transform of the generalized Hamming
window, as defined in [Har78].
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Figure 5.4: Comparison between different Nyquist pulses. Raised cosine and Hamming pulses
have βr = 0.4. For Hamming pulses αH = 0.4. Observe that all pulses and signals have the
same average power. Eye diagrams depict 4096 data symbols.
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Figure 5.5: Duty cycle vs. excess bandwidth. αH is chosen so that the side-lobe power of the
Hamming pulses is minimized for each excess bandwidth.

where −Ms

2
≤ k ≤ Ms

2
−1. βr is the window’s roll-off that, similar to the excess bandwidth,

is defined as βr = ∆Ns/Ns. Fig. 5.3 depicts an example of a raised cosine window.
Analogously to the derivation of the sinc pulse and after extensive algebra, combining
eqs. (5.10)-(5.13) with (5.21) delivers

g(k) = e−jπ(Ns−1)k/Ms
sin (πNsk/Ms)

sin (πk/Ms)

cos (πβrNsk/Ms)

1− (2βrNsk/Ms)
2 . (5.22)

Figure 5.4, depicts the resulting pulse with βr = 0.4 and the optical spectrum and eye
diagram of a DQPSK signal at 55.5 Gb/s. It can be observed that the pulse’s side-lobes
decay much faster than the side-lobes of a sinc pulse. This translates into an eye diagram
with wider horizontal opening. Since the main-lobe of the pulses with a raised cosine
spectrum contains more power than that of the sinc pulses, the vertical amplitude of their
eye-diagram is wider as well. The duty cycle depends on the roll-off of the window. Using
equation (5.16) duty cycle vs. window roll-off is calculated and depicted in Figure 5.5.
For example, for βr of 20%, 40% and 60%, the approximate duty cycles are 87.7%, 85.3%
and 81.6%, respectively.

For simplicity, in the rest of this thesis, pulses with a raised cosine spectrum will be
referred to as raised cosine (RC) pulses5.

5.3.3 Hamming pulses

Further reduction of the pulse’s side-lobes can be obtained using the window given by

w̃k = αH · rect(k) + (1− αH) (rect(k − βrNs/2) + rect(k + βrNs/2)) , (5.23)

where −Ms

2
≤ k ≤ Ms

2
− 1 and rect(k) is defined in (5.17). This window correspond to the

Fourier transform of a generalized Hamming window [Har78] (see Fig. 5.3). It provides

5Pulses with a raised cosine spectrum should not be confused with the raised cosine time waveform of
the electrical signals defined in chapter 3.3.1.



122 Chapter 5 � DQPSK Transmission at 55.5 Gb/s Using Nyquist pulses

an additional parameter αH ∈[0,1] which can be varied in order to optimize the decay of
the pulse’s side-lobes for a given excess bandwidth. Again, analogously to the derivation
of the sinc pulse, combining eqs. (5.10)-(5.13) with (5.23) yields

g(k) = e−jπ(Ns−1)k/Ms
sin (πNsk/Ms)

sin (πk/Ms)
(αH + (1− αH) · 2 cos (πβrNsk/Ms)) . (5.24)

Equation (5.24) is hereafter referred to as Hamming pulse. Figure 5.4 depicts a Hamming
pulse with 40% excess bandwidth and αH = 0.4, and the optical spectrum and eye diagram
of a DQPSK signal at 55.5 Gb/s. Clearly, for the same excess bandwidth as the RC-pulses,
Hamming pulses deliver a wider horizontal and vertical eye opening. On the other hand,
for the same excess bandwidth, the width of the spectrum seems slightly wider than for
RC-pulses. This translates into smaller duty cycles. Figure 5.5 depicts the duty cycle
of hamming pulses vs. window roll-off. For each roll-off, αH is chosen so that the side-
lobe power of the resultant pulse is minimized (see ch. 5.4). For example, for the pairs
(βr, αH) equal (20%, 0.325), (40%, 0.5) and (60%, 0.6), the duty cycles are 85.1%, 78.2%
and 70.8%, respectively.

5.4 Horizontal eye-opening and IAPR

As previously discussed, the amplitude of the side-lobes of the pulses directly affects
the horizonal opening of the demodulated eye diagrams, which is important in order to
have robustness against deviations of the optimum sampling instant at the receiver. Fur-
thermore, the side-lobes directly contribute to the dynamic power range of the resultant
signals. Signals with large dynamic range are susceptible to nonlinear distortions when
they pass through analog components such as power amplifiers and modulators. Even
more, high peaks in the signal power during propagation contribute to signal distortion
due to the fiber’s nonlinearities.

It is therefore of interest to quantify and minimize the power contained in the side-lobes
of the investigated pulses. For a pulse g(k), with −Ms

2
≤ k ≤ Ms

2
− 1, the power of the

side-lobes is given by

Psl =
2

Ms

·
Ms∑

k=⌈Ms/Ns⌉

|g(k)|2. (5.25)

Observe that the side-lobe power in (5.25) depends on the oversampling factorMs/Ns, but
converges rapidly to a limit value. We observed that it is sufficient to choose Ms/Ns > 4
to achieve 99.9% of the limit value of Psl. The power of the side-lobes increases with
the size of the DFT, however, less than 0.5% of variation in Psl was found to exist when
Ns > 32.

Under the abovementioned conditions, Fig. 5.6 (left) shows a contour plot depicting the
power of the side-lobes of Hamming pulses relative to the total pulse power, for different
values of βr and αH. Sinc pulses are equivalent to Hamming pulses with αH = 0 which
deliver a rather high relative side-lobe power of 9.7%. A minimum of 1.8% is obtained
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Figure 5.6: Power of the side-lobes relative to the total power of a pulse – for Hamming pulses
(left) and comparison to raised cosine pulses (right).
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Figure 5.7: Complementary cumulative density function of the IAPR of different signals at
55.5 Gb/s (left) and tolerance to sampling offset (right).

when βr = 0.42 and αH = 0.52. Figure 5.7 (right) simply takes horizontal slices from
the left figure. It is possible to observe that for each βr, there exist a value of αH that
minimizes Psl. Additionally it depicts the relative side-lobe power of a raised cosine pulse.
Observe that for roll-offs of less than 50%, there is always a Hamming pulse which delivers
lower side-lobe power than a raised cosine pulse.

Minimizing the side-lobe power of the pulses directly translates into minimizing the
power fluctuation of the resultant signals. One metric used to characterize the power
fluctuation of a signal is the instantaneous-to-average power ratio (IAPR), defined for an
optical signal E(t) of duration T as

IAPR(t) =
|E(t)|2

E{|E(t)|2} , (5.26)

with t ∈ [0, T ]. Similarly, for a complex digital baseband signal y of length Nseq and
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Table 5.1: Tolerance to sampling offset (in % of pulse slot duration) – 2 dB penalties

Sinc RC-20% Hamming 20% RC-40% Hamming 40% NRZ RZ-50%

7.2 9.4 11.3 12.2 13.8 15.4 20.2

samples yk, it is given by

IAPRk =
|yk|2

1
Nseq

∑Nseq−1
l=0 |yl|2

, (5.27)

with 0 < k < Nseq − 1. As opposed to the more commonly used peak-to-average power
ratio6 (PAPR) [SD09] which normally characterizes multi-carrier signals and is measured
in a block-wise manner, IAPR is suitable to characterize single-carrier signals that are
generated in a per-symbol basis. It has been shown in [LMZW08] that if signals are
required to be able to tolerate certain amounts of nonlinear distortion (as in nonlinear
optical systems) the statistics of the IAPR become more meaningful than those of the
PAPR when addressing methods for the reduction of the signal’s power fluctuations.
Observe that since the IAPR is representative of all samples in a signal and not only the
worst sample of a block, the probability that it exceeds a particular value is lower than
the probability of the PAPR to exceed the same value.

Figure 5.7 (left) depicts the complementary cumulative distribution function (CCDF)
of the IAPR, which shows the probability of the IAPR to exceed a certain value. The
curves were obtained numerically. The CCDF for single-carrier DQPSK with RZ-50%
is shown as a reference. Observe that, as expected, there is a null probability that its
IAPR is higher than 3 dB. Additionally, the CCDF of an OFDM signal with 512 DQPSK-
modulated sub-carriers is depicted as well. For such signal, there is a probability of 10−3

that the IAPR exceeds ∼ 7.8 dB. Simply by pre-coding the OFDM signal with the DFT
matrix, i.e., using sinc pulses, results in a improvement of 2 dB at the same probability7.
Signals using RC-pulses with 20% excess bandwidth further reduce their IAPR in 1 dB
whereas Hamming pulses with the same excess bandwidth reduce it by 1.5 dB. Additional
20% of excess bandwidth translates into another 1 dB reduction in IAPR at 10−3.

We may expect that pulses with non-zero excess bandwidth have a better nonlinear
tolerance than sinc pulses and that, in turn, Hamming pulses are more robust to non-
linearities than RC-pulses for a given excess bandwidth. The nonlinear tolerance of all
pulses is investigated in chapter 5.6.2.

As previously mentioned, the minimization of the side-lobe power of the pulses directly

6The PAPR of the mth block of an optical signal E(t) composed of M blocks of duration Ts each, is
defined as PAPRm = max{|E(t)|2}/E{|E(t)|2}, with t ∈ [(m− 1) ·Ts,m ·Ts] and 1 < m < M .

7DFT pre-coding has attracted much attention as a way to reduce the nonlinear penalty of OFDM
signals in optical fiber systems [SD09]. The terms DFT-spread OFDM or single-carrier frequency division

multiple access (SC-FDMA) are as well used to describe the same concept. SC-FDMA has been chosen
as the standard uplink transmission format in the long term evolution (LTE) of the GSM/UMTS cellular
network [3GP] mainly due to the low power fluctuation of the transmitted signals, which in turn translates
into a direct improvement in energy efficiency of the power amplifiers in the user equipments.
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Figure 5.8: Tolerance to optical filtering of single-channel DQPSK Nyquist signals at 55.5 Gb/s.
Gray curves depict pre-emphasized signals.

translates into a more opened eye-diagram, specially in the temporal direction. This is
important if sampling at the receiver is not performed at the optimum instant. Figure 5.7
(right) depicts curves showing the degradation in required OSNR due to constant offset
of the sampling instant from the middle of the pulse, relative to the pulse width. Observe
that these simulations take into account the reduction in horizontal eye-opening due to
optical filtering, which is realized using filter bandwidths according to the optimization
procedure detailed in the next section. Table 5.1 summarizes the 2 dB penalties.

It is possible to observe that sinc pulses are extremely sensitive to errors in the sampling
instant, with a 2 dB penalty of around 7% of the pulse duration. That is approximately
half as robust as a NRZ pulse and one third of a RZ-50% pulse. Increasing the excess
bandwidth of the Nyquist pulses directly translates into an improvement in the tolerance
to sampling offset. Naturally, since Hamming pulses allocate less power in the side-lobes
than RC-pulses for a given excess bandwidth, they deliver higher tolerance to sampling
offset as well.

5.5 Optimum filtering

In this section, the optimum bandwidth of the receiver optical filter is identified for the
abovementioned Nyquist pulses. For this purpose, the receiver sensitivity of single-carrier
DQPSK signals at 55.5 Gb/s is considered. Sinc pulses are compared to RC and Hamming
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Table 5.2: Optimum optical filter bandwidths and required OSNRs of single-channel DQPSK
Nyquist signals at 55.5 Gb/s

wo/pre-emph. w/pre-emph.

Ho,RX OSNRreq Ho,RX OSNRreq

(GHz) (dB) (GHz) (dB)

Sinc 30.52 15.48 26.36 15.01
RC-20% 30.52 15.38 24.97 14.64
RC-40% 31.91 15.37 26.36 14.47
RC-60% 33.3 15.25 27.75 14.35
Ham-20% 33.3 15.44 27.75 14.55
Ham-40% 34.68 15.38 30.52 14.61

pulses with excess bandwidths of 20% and 40%, which can be regarded as a modest and a
moderate increase in transmitter complexity and spectral occupancy. A rather significant
excess bandwidth of 60% is also considered, but only using RC-pulses since, according to
Fig. 5.6 (right), they are clearly superior to Hamming pulses in terms of reduced side-
lobe power. Therefore a total of 6 pulses are investigated. A direct comparison can be
made with the four (N)RZ pulses used for single-carrier transmission considered in the
last chapter.

As in chapter 4.1.4, the transmitter shown in Fig. 5.2 is connected to the receiver depicted
in Fig. 4.4 and the required OSNR for a BER of 10−4 is calculated for different bandwidths
of the receiver optical filter. The filter is modeled with a second order Gaussian transfer
function as in (3.12). The low-pass characteristic of the electrical components in the
receiver are modeled as a 5th order Bessel electrical filter with transfer function given by
(3.13) and bandwidth Be = 0.75Rs.

One advantage of generating the transmitted signal digitally in the frequency domain, is
that it is relatively straightforward to pre-emphasize the signal in order to minimize the
distortion caused by the narrow-band optical filtering. Provided that the transfer function
Ho(f) of the filter is known beforehand, pre-emphasis is carried out by multiplying w̃mz̃m
in equation (5.13) with the inverse of the optical filter transfer function Ho(fm)

−1, at
frequencies fm = mRs/Ns.

Figure 5.8 depicts the simulation results for the single-channel case and Table 5.2 lists
the optimum bandwidths and required OSNRs. Firstly, it is possible to see that the shape
of the curves is similar to that of NRZ pulses in Fig. 4.6. The tightly confined spectrum
of Nyquist signal allows it to tolerate strong narrow-band filtering but, on the other hand,
causes the sensitivity degradation to increases rapidly when filtering above the optimum
bandwidth. Nyquist signals have less allocated power in the outer part of the spectrum
than NRZ signals and, therefore, the slope of sensitivity degradation is much steeper
(∼ 0.0705 dB/GHz vs. ∼ 0.0346 dB/GHz).

Secondly, without pre-emphasis the optimum bandwidths are proportional to the ex-
cess bandwidth of the pulses. Observe that Hamming pulses are less tolerant to filtering
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Figure 5.9: Tolerance to transmitter and receiver optical filtering of pre-emphasized WDM
DQPSK Nyquist signals at 55.5 Gb/s.

than RC-pulses for a given excess bandwidth: RC-60% pulses have the same optimum
bandwidth as Hamming with ∆B = 20%. Remarkably, pre-emphasis clearly helps in sup-
pressing ISI, further improving the tolerance to narrow-band filtering by 4–5.5 GHz; and
reducing the required OSNR by 0.4–0.9 dB. Pre-emphasis is seen to be specially effective
for RC-pulses, even driving the performance of RC-60% very close to the theoretical limit.

In the case of WDM systems, a transmitter optical filter is usually present to prevent
WDM cross-talk. However, since the compact spectrum of Nyquist signals already pre-
vents any interference between WDM channels to occur, a transmitter optical filter only
induces ISI when narrow filtering bandwidths are used. The ISI caused by the trans-
mitter filter can be effectively removed by means of pre-emphasis and, consequently, its
bandwidth has no influence in the performance of the system. Nevertheless, for the sake
of completeness, transmitter and receiver bandwidths are varied and the optimum band-
widths and required OSNRs are obtained. Figure 5.9 shows the optimization result. As
usual, the color gradient represents penalty with respect to the optimum required OSNR
for each pulse shape, the contour lines are depicted in steps of 0.25 dB and penalties of
more than 3 dB are shown black.

Notice that with Fig. 5.9, it is easy to qualitatively evaluate the robustness of the signals
to deviations of the optimum receiver bandwidth. For example, it is clear that Hamming-
20% is less robust than RC-20%.
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Figure 5.10: Dispersion tolerance of DQPSK Nyquist signals at 55.5 Gb/s.

Table 5.3: Dispersion tolerance (ps/nm) of single-channel DQPSK Nyquist signals at 55.5 Gb/s
– 2 dB penalties

Sinc RC-20% RC-40% RC-60% Ham-20% Ham-40%

129 128 113 105 109 100

5.6 Dispersion and nonlinear tolerance

In this section the six abovementioned pulse formats are investigated regarding dispersion
and nonlinear tolerances. Pre-emphasis and the optimum filter bandwidths shown in
Table 5.2 are used in the following simulations.

5.6.1 Dispersion tolerance

As in chapter 4.2.1, the required OSNRs for a target BER=10−4 were simulated for
the different pulse shapes. The simulations were carried out for single-channel and WDM
configurations by sending the signals over a dispersive single-mode fiber. Other disturbing
effects such as nonlinearities are neglected.

Since WDM cross-talk is absent already without using any extra filtering at the transmit-
ter side, the tolerance to dispersion in single channel signals is equivalent to that of WDM
signals. Figure 5.10 depicts the simulation results and Table 5.3 lists the 2 dB penalties
of each format. Clearly, the tolerance to dispersion is dependent on the bandwidth of the
signals. Sinc pulses are more tolerant than RC-pulses which, in turn, are more tolerant
than Hamming pulses. Recall that the dispersion tolerance of properly filtered (N)RZ
signal is ∼ 100 ps/nm/km (see Table 4.7). In comparison, Nyquist pulses bring up to
∼ 30% more tolerance to dispersion with sinc and RC-20% shaping, whereas RC-pulses
with larger excess bandwidths and Hamming pulses are only slightly more tolerant than
(N)RZ formats.
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Figure 5.11: Tolerance to nonlinear effects in single-span transmission of DQPSK Nyquist
signals at 55.5 Gb/s.

Table 5.4: Single-span nonlinear tolerance (dB) of DQPSK Nyquist at 55.5 Gb/s – 2 dB
penalties

Single-channel WDM

Sinc 9.9 8.7
RC-20% 10.8 9.7
RC-40% 12.3 12.0
RC-60% 13.8 13.4
Ham-20% 11.7 11.4
Ham-40% 12.6 12.5

5.6.2 Nonlinear tolerance

As in chapter 4.2.2, the tolerance of the different Nyquist pulses against nonlinear effects
is investigated using the single-span set-up shown in Figure 4.17. The optical signals are
transmitted over 80 km of standard single-mode fiber. 100% of the accumulated dispersion
is compensated for by a linear, non-attenuating DCF. The average input power to the
SSMF is varied and the required OSNR for a BER of 10−4 is calculated. Figure 5.11 depicts
the simulation results. The 2 dB penalties, referred to the back-to-back required OSNR
are shown in Table 5.4. Propagation in the standard single-mode fiber was simulated
using the parameters shown in Table 1.1.

As discussed in chapter 5.4, the IAPR of the signals directly correlates with their non-
linear tolerance. In this regard, sinc pulses suffer the most from nonlinear effects, whereas
shaping is effective in minimizing this penalty. As expected, Hamming pulses perform
better than RC-pulses for a given excess bandwidth. Note that the additional penalty
due to inter-channel nonlinear effects is only 1.2 dB for sinc pulses and is effectively min-
imized for signals with larger excess bandwidths, e.g., Hamming pulses with ∆B =40%
suffer only an additional 0.1 dB nonlinear penalty due to WDM nonlinear cross-talk.
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Compared to (N)RZ formats, Nyquist signals have a poor nonlinear tolerance if the
IAPR is not sufficiently reduced. For example, sinc pulses are 4 dB worse than the worse
(N)RZ pulse (NRZ) in the WDM scenario. Nevertheless, this difference can be kept to a
minimum of 0.2–0.4 dB for pulses using ∆B =40%. RC-60% pulses even show a 0.5 dB
advantage in nonlinear tolerance over the best (N)RZ pulse (RZ-67%).

5.7 Optimum nonlinear transmission and dispersion

map robustness

In this section, the optimum transmission of Nyquist pulses at 55.5 Gb/s in 1040 km
of SSMF is investigated. Pre-emphasis and the optimum filter bandwidths shown in
Table 5.2 are used in the following simulations. For both, non-dispersion-managed (NDM)
and dispersion managed (DM) links the optimum transmission parameters are identified
and the robustness of the optimum is analyzed. Using the NLPS criterion discussed in
chapter 3.2.4, the maximum transmission reach of each modulation format is estimated.
The optimum parameters and performances can be directly compared to those obtained
for single-carrier formats using (N)RZ pulses in chapter 4.3.

5.7.1 Transmission in non-dispersion-managed links

Similarly to chapter 4.3, the signals using Nyquist pulses are sent through the link shown
in Fig. 4.19 (1040 km) and the launch power and amount of pre-compensation are varied
in order to find the maximum OSNR margin (∆OSNR), defined as the difference between
the accumulated OSNR (3.21) and the required OSNR for a target BER of 10−4. In
order to simplify the analysis, it is assumed that optimum transmission occurs when the
residual dispersion at the end of the link is zero.

Using the digital transmitter shown in Fig. 5.2 it is straightforward to implement the
pre-compensation of dispersion by multiplying w̃mz̃m in equation (5.13) with the inverse
of the chromatic dispersion transfer function HCD(fm)

−1, at frequencies fm = mRs/Ns.
The transfer function is given by (2.91). Without attenuation and neglecting dispersion
slope it yields

HCD(fm) = exp

(

−j β2
2
(2πfm)

2 ·PR ·N ·L
)

, (5.28)

where N is the number of spans, L is the span length and PR is the dispersion pre-
compensation ratio.

However, since the transmitter generates the signals in a block-wise manner, the amount
of pre-compensation will still produce inter-block interference (IBI). The duration of the
interference of one block onto the next one is equal to the walk-off experienced by the outer
frequency components of the spectrum due to group velocity dispersion. For a certain
amount of pre-distortion Dpre = PR ·N ·L ·DSSMF, the walk-off ∆TCD can be written as

∆TCD = Dpre
c

f 2
c

Rs(1 + ∆B), (5.29)
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where c is the speed of light in vacuum and fc is the carrier optical frequency. Observe that
the term multiplying Dpre in (5.29) is simply the bandwidth of the signal in wavelength
units.

The effect of IBI is especially detrimental if it occurs often, i.e., if short blocks are
generated or equivalently, if the DFT size in the transmitter is small. Thus, if pre-
compensation is to be directly applied in the frequency domain, a guard interval should
be inserted between blocks. Even better, the multiplication with the inverse transfer
function of the fiber should be implemented using overlap methods such as overlap-add
or overlap-save over successive blocks [OS89]. According to (5.29), for a 13 span link with
DSSMF = 17 ps/nm, a 100% pre-compensation ratio would lead to IBI of duration equal
to ∼ 3929 ps, which amounts to 108 symbols at the investigated symbol rate. Such an
overlapping would have to occur in the transmitter in order to suppress IBI8.

So that the results of the analysis are independent of the method used for the compensa-
tion of dispersion, pre- and post- compensation of dispersion are performed in the optical
domain using linear and non-attenuating DCFs, i.e., no IBI occurs when dispersion is
totally compensated for.

The simulation results are depicted in the contour plots of Fig. 5.12 and 5.13, and the
optimum points are listed in Table 5.5. The contour lines are in steps of 0.25 dB and
express the penalty referred to the highest ∆OSNR for each format. Penalties of more
than 3 dB are shown in black.

For the single-channel case, the optimum pre-compensation is seen to lie, for all pulses,
close to 50% of the total accumulated dispersion. Similarly, for all pulses, the optimum
launch power is 1.6–1.8 dBm. Compared to single-carrier (N)RZ formats (see Table 4.9),
Nyquist pulses require slightly higher OSNR that is reached at lower launch powers, which
indicates lower nonlinear tolerances. The optimum power difference is only −0.3 dB for
sinc, compared to NRZ, but −1.5 to −2.2 dB for Nyquist pulses compared to RZ pulses.

TheWDM case shows that pre-compensation ratios of more than 93% are optimum. Very
likely, the high amount of pre-compensation is useful as a way of further decorrelating the
high power fluctuations of the Nyquist signals. The power penalty due to WDM nonlinear
cross-talk is between 1.2 and 1.5 dB for all pulses except Ham-40%, in which case only a
0.4 dB penalty is observed. Notice that these penalties are smaller compared to the ones
found in (N)RZ signals.

Using equations (4.57) and (4.58), the maximum number of concatenated spans for each
pulse shape is calculated and listed in Table 5.6. All the obtained values were subsequently
corroborated by simulating the maximum number of sectionsNmax with the same optimum
pre-compensation and verifying that ∆OSNR > 0. It is seen that the maximum number
of spans is 30–32 for all pulses in the single-channel case. In the WDM case the maximum
reach reduces to 25–30 spans. Clearly, since transmission is limited by nonlinear effects,
signals with low IAPR perform better.

8Observe that the low amounts of dispersion render IBI irrelevant in the dispersion tolerance tests
discussed in chapter 5.6.1.
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Figure 5.12: Performance of single-carrier single-channel DQPSK Nyquist signals at 55.5 Gb/s
in a non-dispersion-managed link.
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Figure 5.13: Performance of single-carrier WDM DQPSK Nyquist signals at 55.5 Gb/s in a
non-dispersion-managed link.
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Table 5.5: Optimum transmission parameters in non-dispersion-managed links

Single-channel WDM

PR∗ P ∗SSMF OSNRreq
∗ ∆OSNR∗ PR∗ P ∗SSMF OSNRreq

∗ ∆OSNR∗

(dBm) (dB) (dB) (dBm) (dB) (dB)

Sinc -0.57 1.6 16.68 7.30 -0.93 0.3 16.65 6.02
RC-20% -0.53 1.8 16.45 7.71 -0.93 0.3 16.20 6.46
RC-40% -0.53 1.8 16.29 7.88 -0.93 0.6 16.19 6.85
RC-60% -0.53 1.8 16.20 7.97 -0.95 0.8 16.03 7.19
Ham-20% -0.50 1.6 16.40 7.57 -0.93 0.6 16.32 6.72
Ham-40% -0.55 1.8 16.39 7.77 -1.00 1.4 16.53 7.26

Table 5.6: Maximum number of cascaded spans in non-dispersion-managed links

Single-channel WDM

Sinc 30 25
RC-20% 31 27
RC-40% 32 28
RC-60% 32 29
Ham-20% 31 28
Ham-40% 32 30

Notice that the maximum reach of (N)RZ signals in the WDM scenario is 27–29 spans.
So, regarding sensitivity, in NDM links with WDM transmission we do not observe any
important gain nor penalty by using Nyquist pulses. Naturally, the full advantage of
Nyquist pulses can be appreciated in a scenario were the signals are exposed to very
strong narrow-band filtering, as shown in the next chapter.

5.7.2 Transmission in dispersion-managed links

Next, the behavior of the abovementioned pulse formats is investigated in dispersion-
managed (DM) links. The model of the link is shown in Fig. 4.22. The signals are first
pre-compensated with a fraction (PR) of the accumulated dispersion per span. Subse-
quently, transmission takes place in 13 spans (1040 km) composed of SSMF and DCF with
dual-stage EDFAs. The length of the DCFs is set to compensate only a fraction (CR)
of the accumulated dispersion per span. At the end of the link, any residual dispersion
is brought back to zero with the post-compensating fiber. The pre-and post- compen-
sating fibers are assumed linear and non-attenuating. Performance is measured in terms
of the maximum OSNR margin ∆OSNR which is dependent on the set of parameters
SDM = {PSSMF, PDCF,PR,CR}.
The optimum performance of the system is obtained with the global optimization algo-
rithm previously introduced in chapter 3.3.3. The boundaries of the search space are given
by PSSMF = [−3, 7], PDCF = [−8, 3], PR = [−1, 0] and CR = [0.7, 1.1]. The algorithm
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Table 5.7: Optimum parameters in dispersion-managed links

Single-channel WDM

Single- P ∗SSMF P ∗DCF PR∗ CR∗ ∆OSNR∗ P ∗SSMF P ∗DCF PR∗ CR∗ ∆OSNR∗

Carrier (dBm) (dBm) (dB) (dBm) (dBm) (dB)

Sinc 1.5 -4.8 -1.00 0.86 6.21 0.9 -6.2 -1.00 0.80 5.76
RC-20% 2.0 -4.3 -0.85 0.90 7.20 1.8 -4.8 -0.60 0.93 6.84
RC-40% 2.8 -3.6 -0.60 0.93 8.20 2.1 -4.9 -0.85 0.89 7.75
RC-60% 3.1 -3.4 -0.50 0.94 8.60 2.6 -3.7 -0.60 0.93 8.23
Ham-20% 2.6 -4.3 -0.65 0.92 7.79 2.0 -3.5 -0.70 0.92 7.49
Ham-40% 2.6 -3.5 -0.65 0.92 7.93 2.2 -4.4 -0.50 0.94 7.65

is set to find the maximum OSNR margin ∆OSNR∗ and the optimum set of parame-
ters S∗DM = {P ∗SSMF, P

∗
DCF,PR

∗,CR∗} in 200 iterations. The results of the optimization
procedure are shown in Table 5.7.

Similarly to single-carrier (N)RZ signals (see Table 4.11), the optimum power differences
(∆P ∗) between SSMF and DCF are very close (±0.4 dB) to the previously estimated
optimum of 6.5 dB (see ch. 3.2.2). On the other hand, more variation in the optimum
power difference was found to exist in the WDM case: ∆P ∗ varies between 5.5 dB and
7.1 dB.

Next, extensive simulations were carried out in order to further investigate the robustness
of Nyquist pulses to deviations of the optimum parameters of the DM link. Simulation
results are depicted as power and dispersion plots in the following Figures. The contour
levels relate to penalties with respect to the maximum ∆OSNR of each case. For the
power plots, contour lines are in steps of 0.25 dB and penalties of more than 3 dB are
shown black. For the dispersion plots, contour lines are in steps of 1 dB and penalties of
more than 10 dB are shown black.

Figures 5.14 and 5.15 correspond to the power plots for the single-channel and WDM
cases, respectively. It is possible to observe that the hills “move” towards the upper-right
corner when the excess bandwidth increases, pointing out the increased tolerance towards
nonlinearities. The relatively similar size of the hills indicate that all formats are more or
less equally robust against variations in the optimum input powers.

With the exception of sinc and RC-20% pulses, the position as well as the size of the hills
vary only slightly when going from single-channel to WDM transmission. The high power
fluctuation of sinc and RC-20% signals clearly has a detrimental effect on the robustness
of their optimum.

More differences between the pulses can be seen in Figures 5.16 and 5.17, which depict
the dispersion plots for the single-channel and WDM cases, respectively. It is interesting
to observe that the optimum regions in the lower-left corner of the plots get wider as the
bandwidth of the signals decreases. On the other side, close to (PR,CR)=(0,1) nonlinear
effects become stronger and signals with higher power fluctuations, such as signals using
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Figure 5.14: Robustness against variations in input powers in single-channel transmission.
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Figure 5.15: Robustness against variations in input powers in WDM transmission.
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Figure 5.16: Robustness against variations in pre-compensation and span residual dispersion
in single-channel transmission.
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Figure 5.17: Robustness against variations in pre-compensation and span residual dispersion
in WDM transmission.
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Table 5.8: Maximum number of cascaded spans and OSNR∗req (dB) in dispersion-managed links

Single-channel WDM

OSNRreq
∗ Nmax OSNRreq

∗ Nmax

Sinc 16.82 26 16.60 24
RC-20% 16.28 29 16.36 28
RC-40% 16.03 33 15.71 31
RC-60% 15.90 34 15.82 33
Ham-20% 16.15 31 16.12 30
Ham-40% 16.17 32 15.93 31
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Figure 5.18: Tolerance to residual dispersion of DQPSK Nyquist signals at 55 Gb/s.

Table 5.9: Tolerance to residual dispersion (ps/nm) of DQPSK Nyquist signals at 55.5 Gb/s –
2 dB penalties

Single-channel WDM

D−acc D∗acc D+
acc D−acc D∗acc D+

acc

Sinc 95 -15 80 112 0 94
RC-20% 90 0 95 82 -15 96
RC-40% 80 15 87 89 15 110
RC-60% 72 22 72 73 22 83
Ham-20% 94 15 81 86 15 100
Ham-40% 81 15 73 67 22 73
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sinc pulses, degrade very rapidly. The same behavior can be observed for both single-
channel and WDM transmission.

Next, an estimation of the maximum number of concatenated spans is carried out using
the NLPS criterion previously described in chapter 3.2.4. The estimations were subse-
quently simulated in order to confirm that the OSNR margin was still positive. Table 5.8
lists the results.

For single-channel transmission, a maximum number of 34 spans is obtained by using
RC-60% pulses, which is 8 spans fewer than the maximum reach achieved with RZ-33%
signals (see Table 4.12). WDM transmission, on the other hand, does not suppose a big
difference (1–2 spans) in terms of the maximum number of spans reached using Nyquist
pulses. For example, RC-60% pulses achieve a maximum of 33 spans, which is only one
less than the best RZ format (34 for RZ-50%). Compared to transmission in NDM links,
Nyquist pulses in DM links perform slightly better, e.g., WDM RC-60% signals achieves
4 more spans in DM compared to NDM links.

Finally, the total residual dispersion at the end of the link is varied in order to find
its optimum value and tolerance. Figure 5.18 depicts the resulting curves showing the
required OSNR versus total residual dispersion. The system configurations are determined
by the optimum set of parameters shown in Table 5.7. The results are listed in Table 5.9.

As expected for signals propagating in the pseudo-linear regime, the optimum resid-
ual dispersion is very close to zero. Some small positive residual dispersion seem to be
beneficial to combat any residual nonlinear chirp that the signal acquires throughout the
propagation. And it is seen that the higher the bandwidth of the signals (or the lower their
IAPR), the higher is the optimal residual dispersion. Little difference is found between
single-channel and WDM transmission. Compared to (N)RZ formats (see Table 4.13),
Nyquist pulses seem to be slightly more tolerant to residual dispersion: 3–16 ps/nm in
average for single-channel and WDM respectively. This is due to the compact spectrum
of the signals using Nyquist formats.

In the scenario investigated in this chapter (single-carrier DQPSK at 55.5 Gb/s), the
performance of Nyquist pulses in not radically different than the performance of (N)RZ
pulses. The advantage of using Nyquist pulses will be evident in the next chapter, when
very high spectral efficiency is required and the signals are impaired by strong narrow-
band filtering and WDM cross-talk.

5.8 Summary

In this chapter, we investigated the possibility of transmitting and directly detecting
highly spectrally efficient optical signals, such as those obtained using orthogonal fre-
quency multiplexing. It has been shown however, that the squaring operation of the
photodiode produces inter-modulation products to appear and interfere with the signal of
interest. In order to overcome this problem, linear pre-coding of the information symbols
was proposed. It was shown that only pre-coding with the DFT matrix was able to sup-
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press the inter-modulation products, and that this was equivalent to serial transmission
of the information symbols by means of Nyquist pulses. The contribution of this chapter
can be resumed in the following main points:

⊲ A thorough mathematical analysis of the generation of Nyquist pulses in the fre-
quency domain has been carried out. It was shown that cyclically extending the
output of the DFT pre-coding block and applying a windowing function before the
inverse DFT, the temporal and spectral characteristics of the resultant pulses can
be easily shaped.

⊲ It was shown that, although sinc pulses are the most spectrally efficient ones, they
are not robust enough to errors in the optimum sampling time at the receiver side.
Furthermore, sinc pulses present very high power fluctuations which are not desirable
due to constraints in the dynamic range of the amplifiers and DACs, linearity of
the modulators and also, because of performance degradation through the fiber’s
nonlinear effects.

⊲ Both issues are caused by the high side-lobe power of the pulses. As an alternative,
raised-cosine and Hamming pulses were proposed. It was shown that, for a given
excess bandwidth of less than 50%, Hamming pulses are more effective in reducing
the side-lobe power than raised cosine pulses. However, the narrow-band filtering
tolerances show that raised cosine pulses have a narrower bandwidth.

⊲ As expected, the optimum receiver filter bandwidths for signals using Nyquist pulses
is narrower than for signals using (N)RZ pulses. This in turn, translates into up to
30% more tolerance to dispersion than properly filtered (N)RZ signals in the WDM
scenario.

⊲ The nonlinear tolerance of signals using Nyquist pulses is directly correlated to
their IAPR. Nyquist signals with high IAPR (e.g., sinc and RC-20%) show a poorer
tolerance compared to (N)RZ signals. If the IAPR is sufficiently reduced, as in RC-
60% signals, the tolerance to nonlinearities can be up to 0.5 dB better than (N)RZ
signals.

⊲ Propagation in non-dispersion-managed links was investigated. The optimum pre-
compensation ratios and launch powers were obtained for all the investigated Nyquist
pulses. The maximum number of cascaded spans was calculated using the Pmax rule.
The longest reach was achieved in single-channel and WDM transmission by Ham-
ming pulses with 40% excess bandwidth where transmission in up to 32 and 30 spans
was possible, respectively. This is 9 spans fewer than the best of (N)RZ signals in
the single-channel case, but one span more than in the WDM case.

⊲ Propagation in dispersion-managed links was investigated as well. The optimum
transmission parameters and performances were obtained using the global optimiza-
tion algorithm. As with (N)RZ signals in the previous chapter, a thorough analysis
of the robustness of the investigated formats to deviations of the optimum param-
eters was done. Using the NLPS criterion and the straight-line rule, the maximum
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reach of each format was estimated. In the single-channel and WDM transmission
scenarios, RC-60% signals achieved the maximum number of cascaded spans: 34
and 33, respectively. For WDM transmission, this is only one less concatenated
span compared to the best single-carrier RZ format (RZ-50%). Subsequently, the
tolerance to residual dispersion was investigated. The optimum residual dispersion
is not far from zero ps/nm and only a very small performance improvement was
observed.

At this point, a summary of the investigated formats can be made. Figure 5.19 depicts
an overview of the estimated maximum number of concatenated spans for the investigated
formats in the different transmission scenarios. Clearly, dual-carrier signals perform the
best among all investigated formats. For single- and dual carrier formats, performance in
DM links is superior than in NDM links, provided of course that transmission takes place
in the optimum operation point. Observe that the opposite is true for stereo-multiplexed
signals.
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Figure 5.19: Maximum number of cascaded sections per transmission format. Single-channel
and WDM transmission are depicted in light and dark gray bars, respectively.





6
ASK-DQPSK Transmission at
111 Gb/s

In this chapter we investigate the transmission of 111 Gb/s signals in a WDM grid with
50 GHz of channel separation. Firstly, it is explained why ASK-DQPSK is an attractive
modulation format for this scenario. Then, a thorough description of the transmitter
and receiver architectures is given. As in the previous chapters, the performance of the
transmission format is assessed emphasizing the difference between (N)RZ and Nyquist
pulses. It will be shown that only Nyquist signals are able to cope effectively with the high
cross-talk that the signals are exposed to. (N)RZ signals on the other hand are unsuited
for WDM transmission at such narrow channel separation and high symbol rate.

6.1 Modulation formats for 111 Gb/s

Compared to the scenarios studied in chapters 4 and 5, now we are interested in trans-
mitting double as much data within the same bandwidth. It is easy to see why DQPSK
signals are not suited for the task. Since the WDM channel separation is only 50 GHz,
DQPSK signals with symbol rate of 55.5 GS/s would suffer strong sensitivity degrada-
tion either due to WDM cross-talk, or due to narrow-band filtering by optical filters with
bandwidths well below the symbol rate. Alternatively, modulation formats that convey 3
bits per symbol such as D8PSK and ASK-DQPSK may be considered. Then, the resultant
symbol rate would be only 37 GS/s.

Differential 8-PSK (D8PSK) is an extension of DQPSK, where optical signals with con-
stant amplitude and eight phase levels are used to convey three bits per symbol (see
Fig. 6.1). The multilevel nature of the signal allows for different transmitter and receiver
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Figure 6.1: Gray-coded constellations.

implementations. One transmitter implementation uses three optical phase modulators
serially concatenated [Sei10]. This type of transmitter adds chirp to the optical signal at
the symbol transitions which, in the presence of dispersion and nonlinearities, translates
into additional performance degradation. Another one, uses a DQPSK transmitter with
a phase modulator at the output which shifts the signal by π/4 depending on the binary
electrical input [OS05a, KL04].

Delay demodulation of a D8PSK signal generates electrical signals with four levels and
therefore, two possible receiver implementations exist: multilevel electrical decision using
two optical delay interferometers, or bilevel electrical decision using four optical delay
interferometers. It has been shown [OS05a] that bilevel decision has 3 dB sensitivity gain
over multilevel decision.

Amplitude-shift keying DQPSK (ASK-DQPSK) is a very simple variation of DQPSK
in which a third binary information stream is encoded in the intensity of the optical
DQPSK signal. Because of the shape of the resultant constellation diagram (see Fig. 6.1),
ASK-DQPSK is sometimes referred to as star 8-quadrature-amplitude modulation (star
8-QAM) [LK97a]. The transmitter consists of a DQPSK transmitter with a MZM at the
output which modulates the intensity of the signal. At the receiver side a photodiode
detects the intensity of the signal and a DQPSK demodulator recovers the information
conveyed by the phase of the signal.

The analytical expressions for the bit-error probabilities obtained in [NSY06] can be used
to estimate the ideal performance of the abovementioned modulation formats at 111 Gb/s.
Figure 6.2 depicts the results. Observe that for ASK-DQPSK firstly the optimum ratio
between the amplitude rings of the constellation must be found (see ch. 6.2.3).

The curves indicate that for ASK-DQPSK an OSNR of 19.27 dB is required for a BER of
10−4. D8PSK requires an OSNR of 21.05 dB. The relatively large implementation effort
of D8PSK in addition to its poor sensitivity makes it very unattractive in comparison
to ASK-DQPSK, specially in a transmission scenario where signals suffer important sen-
sitivity degradation due to strong narrow-band filtering and WDM cross-talk. For this
reason, only ASK-DQPSK will be further considered in the rest of the chapter.
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Figure 6.2: BER of modulation formats at 111 Gb/s. For ASK-DQPSK, the amplitude ratio
is optimally set to AR = 0.465.

Observe that the gain in spectral efficiency by using ASK-DQPSK, comes at the expense
of ∼ 1.9 dB in sensitivity, when comparing to DQPSK. As previously mentioned, this is
necessary if WDM signals separated by only 50 GHz are to be transmitted at 111 Gb/s and
no other form of multiplexing is utilized, e.g., polarization multiplexing. In the rest of the
chapter the generation, transmission and reception of 111 Gb/s ASK-DQPSK signals is
thoroughly investigated. The pulses introduced in the previous chapters will be compared
once again, this time in a scenario where spectral occupancy is a key aspect determining
the performance of the system.

6.2 ASK-DQPSK generation and demodulation

6.2.1 Transmitter design

Figure 6.3 depicts a block diagram of the transmitter for the generation of optical ASK-
DQPSK modulation using (N)RZ pulses. Two of the binary information streams are
imprinted onto the phase of the optical carrier by means of a Mach-Zehnder-based optical
IQ modulator. As in DQPSK, the data is conveyed in the phase difference of successive
symbols so that interferometric detection can be performed at the receiver. The differen-
tial encoder processes the information streams according to (4.1) and (4.2). The phases
of the optical pulses output by the pulse carver (see ch. 4.1.2) are modulated by the elec-
trical signals b0(t) and b1(t), whose amplitudes vary between 0 and 2Vπ and that, in turn,
depend on the differentially encoded sequences represented by {d0,k} and {d1,k}. Observe
that the waveforms of the electrical signals are determined by HRC(f) in Fig. 6.3. The
resulting pulse-shapes are given by (3.43).

The intensity of the resultant optical signal is modulated by the electrical signal b2(t),
whose amplitude varies between 0 and 2Vπ

π
arccos (AR), where AR ∈ [0, 1] is the amplitude

ratio. It is defined in this thesis as the ratio between the amplitudes of the inner and the
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Figure 6.3: Block diagram of an ASK-DQPSK transmitter.

outer constellation rings1.

The optical signal at the output of the ASK-DQPSK transmitter can be calculated
using equations 3.5 and 3.6. If the input optical field into the IQ modulator is of the form
Ein(t) =

√
Pp(t)ejωct, the output optical field can be written as

Eout(t) =

√
P

2
p(t) ·

(

cos

(

π
b0(t)

2Vπ

)

+ j · cos
(

π
b1(t)

2Vπ

))

· cos
(

π
b2(t)

2Vπ

)

· ejωct, (6.1)

where P is the average power of the input optical field, p(t) is the baseband representation
of a train of pulses with unitary amplitude given by equation (4.4) and ωc is the angular
frequency of the optical carrier.

ASK-DQPSK modulation can also be implemented using Nyquist pulses for improved
spectral occupancy, as described in chapter 5. Two differentially-encoded binary streams
of digital data and a third one are firstly combined to form the ASK-DQPSK symbol
and then digitally processed as shown in Figure 5.2 to obtain the electrical signals that
complexly modulate the optical field. The sampling rate is given by fs = RsMs/Ns, where
Rs is the symbol rate, Ns is the DFT size and Ms > Ns is the inverse DFT size.

6.2.2 Receiver design

The receiver is implemented as shown in Figure 6.4. Firstly, an optical coupler divides
the signal power equally into the ASK and DQPSK branches. The demodulation of the
DQPSK signal is carried out as described in chapter 4.1.3. The demodulation of the ASK
branch consist simply in detecting the intensity of the optical signal using a photodiode.
Thus, neglecting the effect of the optical and electrical filters, for an input optical field of

1Observe that in the literature, e.g., [OS05b, Coe10], the amplitude ratio is usually defined as the ratio
between the amplitudes of the outer and the inner constellation rings which, for optimization purposes,
may be numerically inconvenient since it would take values between 1 and ∞.
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Figure 6.4: Block diagram of an ASK-DQPSK receiver.

the form E(t) = A(t)ejωct, the decision currents can be written as

IA(t) =
|A(t)|2
2

, (6.2)

II(t) =
|A(t)||A(t− T0)|

4
(cos(∆ϕ(t))− sin(∆ϕ(t))) , (6.3)

IQ(t) =
|A(t)||A(t− T0)|

4
(cos(∆ϕ(t)) + sin(∆ϕ(t))) , (6.4)

where ∆ϕ(t) = ϕ(t)− ϕ(t− T0) is the phase difference between successive symbols.

The Hermitian kernels of the decision variables II and IQ are equivalent to the ones
derived in chapter 4 for DQPSK, but considering an additional optical coupler. The
kernel of IA can be easily derived in a similar way. They can be written as:

KI(f1, f2) =
1
2
He(f1 − f2) · (H∗

o (f2)H
∗
I,u(f2)Ho(f1)HI,u(f1)

−H∗
o (f2)H

∗
I,d(f2)Ho(f1)HI,d(f1)), (6.5)

KQ(f1, f2) =
1
2
He(f1 − f2) · (H∗

o (f2)H
∗
Q,u(f2)Ho(f1)HQ,u(f1)

−H∗
o (f2)H

∗
Q,d(f2)Ho(f1)HQ,d(f1)), (6.6)

KA(f1, f2) =
1
2
H∗
o (f2)He(f1 − f2)Ho(f1), (6.7)

where HI,u, HI,d, HQ,u and HQ,d are given by equations (4.17), (4.18), (4.32) and (4.33),
respectively.

The abovementioned equations can be used in conjunction with the semi-analytical
method described in chapter 3.3.2 in order to calculate the bit-error rate of the inten-
sity, in-phase and quadrature components, BERA, BERI and BERQ, respectively. The
overall bit-error rate is calculated as BER = (BERA + BERI + BERQ)/3.

Observe that when calculating the BER of the ASK branch, the decision threshold must
be optimized due to the dependence of the signal-ASE beating term on the received signal
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power. An expression for the optimum threshold is derived in [Mar90, NSY06] that can
serve as a starting point in the optimization procedure. For an input signal to the ASK-
DQPSK receiver with optical power representing a logical one P1, the optimum threshold
is given by

γth =

(
(1 + AR)

2

√

P1/2

)2

(6.8)

6.2.3 Amplitude ratio optimization

Notice that the term |A(t)||A(t−T0)| in equations 6.3 and 6.4 may assume three possible
values: K, K ·AR and K ·A2

R, where K is a constant. Therefore the DQPSK branch
outputs a 6-level eye diagram. Since they represent only two logical levels (determined
by ∆ϕ(t)), bilevel electrical decision is sufficient. Figures 6.5 and 6.6 depict the resultant
demodulated eye diagrams of the in-phase and intensity branches for a back-to-back sim-
ulation. NRZ, RZ-33%, sinc and RC-60% signals of 0.5 mW are shown for comparison.
For visualization purposes, the OSNR of the (N)RZ signals is set to 40 dB. For all signals,
broadband optical and electrical filters are used.

Observe that, as the amplitude ratio grows larger, so does the eye opening of the DQPSK
branch. However, at the same time, the eye opening of the ASK branch gets smaller. An
optimization procedure is therefore required in order to select the amplitude ratio that
properly balance the eye openings of both ASK and DQPSK branches in order to achieve
optimal performance. A straightforward way to do so is to use the analytical expression
for the BER obtained in [NSY06], which reads

Pb ≈
1

6

(

1−Q
(

2
√
θ, (1 + AR)

√
θ
)

+Q
(

2AR
√
θ, (1 + AR)

√
θ
)

+

Q

(

√

2θ(2−
√
2),

√

θ(2 +
√
2)

)

+Q

(

AR

√

θ(2−
√
2), AR

√

θ(2 +
√
2)

)

+

Q

(

√

θ(A2
R − AR

√
2 + 1),

√

θ(A2
R + AR

√
2 + 1)

)

− a− b− c

)

, (6.9)

where

θ = ρs/(1 + A2
R), (6.10)

a = 1
2
e−2θ · I0(θ

√
2), (6.11)

b = 1
2
e−2A

2
Rθ · I0(A2

Rθ
√
2), (6.12)

c = e−θ(1+A
2
R) · I0(θ

√

1 + A4
R). (6.13)

In (6.10), ρs is related to the OSNR by ρs = 2Bo,ref/Rs ·OSNR. Im is the mth order
modified Bessel function of the first kind and Q( · , · ) is Marcum’s Q-function of the first
order2. In obtaining (6.9), the threshold is set as in (6.8).

2See appendix A for a definition of Marcum’s Q-function.
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Figure 6.5: Eye diagrams of the demodulated signals at the DQPSK (in-phase) branch.
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Figure 6.6: Eye diagrams of the demodulated signals at the ASK branch.
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Figure 6.7: Amplitude ratio optimization using a matched filter.

Figure 6.7 depicts the BER vs. AR for several OSNRs using equation 6.9 which is valid
when a matched filter is used for reception. The optimum amplitude ratio of ∼ 0.465
is consistent with [OS05b], in which optimum amplitude ratios for different pulse shapes
were studied. Since little variation of the optimum AR was found to exist between NRZ
and RZ signals, in the rest of this chapter its value is fixed to AR = 0.465 for all pulse
formats. At the end of this chapter a short analysis is carried out in which AR is used
as a fine tuning parameter for further optimizing the quality of the transmission after
nonlinear propagation.

6.3 Optimum filtering, back-to-back required OSNR

and cross-talk

In this section, the optimum bandwidths of the optical filters and the receiver sensitivities
of the signals are identified. For the single-channel scenario, the transmitters shown in
Figures 6.3 and 5.2 are connected to the receiver depicted in Fig. 6.4 and the required
OSNR for a BER of 10−4 is calculated for different bandwidths of the receiver optical
filter. Pre-emphasis is used for Nyquist pulses. The optical filter is modeled with a
second order Gaussian transfer function as in (3.12). The low-pass characteristic of the
electrical components in the receiver are modeled as a 5th order Bessel electrical filter
with transfer function given by (3.13) and bandwidth Be = 0.75Rs. Figure 6.8 depicts
the simulation results and Table 6.1 lists the optimum bandwidths and required OSNRs.

The shapes of the curves are similar to the DQPSK case shown in Fig. 4.6 for (N)RZ
signals and Fig. 5.8 for Nyquist pulses. Again, the optimum performance of NRZ signals
is determined by a trade-off between collected ASE noise and ISI, whereas for RZ signals
it is between collected ASE noise and signal power loss. The optimum bandwidths are
far above the WDM channel separation, which indicates that in such scenario (N)RZ
signals would have to suffer strong filtering penalties in order to avoid WDM cross-talk.
Interestingly, we observe a second local optimum for RZ signals close to the symbol rate,
that gets more pronounced with smaller duty cycles. It is located at 40.7 GHz, 38.8 GHz
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Figure 6.8: Tolerance to receiver optical filtering of single-channel ASK-DQPSK signals at
111 Gb/s.

Table 6.1: Optimum optical filter bandwidths, required OSNRs and WDM cross-talk of ASK-
DQPSK signals at 111 Gb/s

Single-channel WDM

Ho,RX OSNRreq Ho,TX Ho,RX OSNRreq cross-talk†

(GHz) (dB) (GHz) (GHz) (dB) (dB)

Sinc 35.15 19.94 35.15 35.15 19.95 -38.90
RC-20% 33.30 19.60 35.15 35.15 19.60 -38.40
RC-40% 35.15 19.37 35.15 35.15 19.51 -24.20
RC-60% 37.00 19.34 35.15 40.78 20.03 -12.90
Ham-20% 35.15 19.53 35.15 35.15 19.73 -38.90
Ham-40% 40.00 19.56 35.15 46.25 25.41 -5.70

NRZ 51.80 19.94 62.90 40.70 25.84 -9.24
RZ-67% 72.15 19.73 40.70 40.70 23.71 -10.60
RZ-50% 81.40 19.46 40.70 40.70 22.45 -9.55
RZ-33% 91.40 19.41 40.70 40.70 22.35 -8.91
†The induced WDM cross-talk is defined as the power ratio between an
optical channel and its neighbor, at the neighbor’s center frequency.

and 37 GHz, for RZ pulses with duty cycles 67%, 50% and 33%, respectively. The
required OSNR penalties of filtering at those bandwidths, compared to the optimum are
respectively 0.34 dB, 0.91 dB and 1.44 dB.

Similarly to NRZ, signals using Nyquist pulses are optimally filtered just before ISI sets
in. Observe that the required OSNR decreases proportional to the bandwidth of the
shaped pulses. Sinc pulses are the exception, which may be due to the fact that the
amplitude ratio of the signals is not optimized for each filter bandwidth. Due to the
compactly allocated power in the spectrum of Nyquist signals, the penalty of filtering
above the optimum grows more rapidly than in the NRZ case.
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Figure 6.9: Tolerance to transmitter and receiver optical filtering of WDM ASK-DQPSK
signals at 111 Gb/s using (N)RZ pulses

Next, the optimum filtering in the WDM case is investigated. In order to do so, the
bandwidths of the transmitter and the receiver optical filters are jointly optimized. Recall
that the transmitter filter is in charge of shaping the signal so that WDM cross-talk is
avoided which, in turn, allows the receiver filter to take care of the rejection of ASE noise
only. Observe that the OSNR is not affected by the power loss caused by the transmitter
filter.

Simulation results are depicted in Figures 6.9 and 6.10. The color gradient represents
penalty with respect to the optimum required OSNR for each pulse shape. Because of the
very low robustness of the optima in (N)RZ signals, contour lines are depicted in steps of
1 dB and penalties of more than 10 dB are shown black. For Nyquist pulses contour lines
are in steps of 0.25 dB and penalties of more than 3 dB are shown black. Table 6.1 lists
the optimum bandwidths and required OSNRs.

From Figure 6.9, it easy to see that the high spectral occupancy makes (N)RZ signals
very unattractive for the transmission of 111 Gb/s in a dense WDM scenario. Observe
that the penalty due to ISI grows as rapidly as the penalty due to WDM cross-talk, and
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Figure 6.10: Tolerance to transmitter and receiver optical filtering of WDM ASK-DQPSK
signals at 111 Gb/s using Nyquist pulses
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Figure 6.11: Spectra of 7×111 Gb/s ASK-DQPSK WDM signals in a 50 GHz grid.
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therefore, the optimum regions are rather small. In addition, there is a big penalty in
sensitivity which indicates that large amounts of ISI must be tolerated in order to avoid
strong interference from neighboring channels. The compact spectrum of NRZ signals
provides higher robustness against variations in the optimum filtering bandwidths but,
since NRZ is specially affected by ISI, the sensitivity degradation of the optimum is much
stronger than that of RZ signals.

On the other hand, since Nyquist pulses have small bandwidths, WDM cross-talk can
be kept to a minimum without having to resort on strong optical filtering thus, keeping
ISI to a minimum as well. As previously mentioned in chapter 5.5, the signals can be
also pre-emphasize to take into account the effect of the transmitter optical filter. As it
will be shown, this can be helpful in order to increase the sensitivity of the signals, but
detrimental if it causes interference to the neighboring channels.

Since pre-emphasis is used, the performance depicted in Figure 6.10 is independent of
the bandwidth of the transmitter optical filter. Nevertheless, observe that it is easy to
qualitatively evaluate the robustness of the signals to deviations of the optimum receiver
bandwidth. For example, it is clear that Ham-20% is less robust than RC-20% and that
the robustness of raised cosine signals decreases with additional excess bandwidth.

Observe that the penalty between the single-channel and the WDM cases is minimum
for all pulses except for Ham-40% pulses which clearly suffer from strong interference from
the neighboring channel. The induced WDM cross-talk can be quantified by looking at
the power ratio between a channel and its neighbor, at the neighbor’s center frequency.
Results are shown in Table 6.1. Still, Ham-40% signals will be further considered in order
to investigate the impact of strong interference on other figures of merit such as dispersion
and nonlinear tolerances.

Figure 6.11 further illustrates the advantage of Nyquist pulses over RZ pulses regard-
ing spectral occupancy. It shows the spectra of 7 multiplexed ASK-DQPSK signals at
111 Gb/s. Optimally filtered RZ-33% and RC-60% are depicted. The optical power is
0.5 mW per channel and the OSNR is set to 40 dB. The smoothed plots where obtained by
convolving the magnitude-squared Fourier transform of the optical signals with a Gaussian
window of 830 MHz of bandwidth.

6.4 Dispersion and nonlinear tolerance

In this section, all the abovementioned pulse formats are investigated regarding dispersion
and nonlinear tolerances. Pre-emphasis and the optimum filter bandwidths derived in the
last section were used in the simulations.

6.4.1 Dispersion tolerance

The signals are sent over a dispersive single-mode fiber and the required OSNR for a target
BER=10−4 is calculated for different amounts of dispersion. Other disturbing effects such
as nonlinearities are neglected. Figure 6.12 depicts the simulation results and Table 6.2
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Figure 6.12: Tolerance to dispersion of ASK-DQPSK at 111 Gb/s.

lists the 2 dB penalties of each format. Observe that the amplitude ratio is fixed for all
pulses and all values of dispersion.

Although the symbol rate of ASK-DQPSK is only 4/3 times that of DQPSK, we observe
almost a four-fold degradation in tolerance to dispersion compared to the single-carrier
DQPSK signals investigated in the previous chapters. Surprisingly, the (N)RZ formats
with narrow bandwidths are the most affected by dispersion3. Furthermore, they appear
slightly more tolerant than Nyquist signals in the single-channel case. For Nyquist pulses
the opposite occurs: as in DQPSK modulation, the lower the bandwidth of the signals,
the more tolerant they become against residual dispersion.

Since no dramatic filtering occurs in the WDM case, Nyquist signals do not suffer any
penalty regarding dispersion tolerance. The tight filtering of (N)RZ pulses on the other
hand, translates not only into degraded sensitivity but also into a decrease in dispersion
tolerance.

The results suggest that residual dispersion can be a limiting factor at 111 Gb/s and

3This is in agreement with [OS05b], in which it is also shown that the amplitude ratio Ar can be used
as an optimization parameter in order to minimize the degradation caused by dispersion.
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Table 6.2: Dispersion tolerances (ps/nm) of ASK-DQPSK at 111 Gb/s – 2 dB penalties

Single-channel WDM

Sinc 33 33
RC-20% 32 32
RC-40% 29 30
RC-60% 28 26
Ham-20% 26 26
Ham-40% 24 20

NRZ 26 17
RZ-67% 36 18
RZ-50% 41 23
RZ-33% 41 23

should be addressed when designing the system. For example in [BBK08, GHC+10],
electronic post-processing is proposed as a method to increase the tolerance to residual
dispersion in direct detected communication systems.

6.4.2 Nonlinear tolerance

The tolerance of the different pulse formats against nonlinear effects is investigated using
the single-span set-up shown in Figure 4.17. The optical signals are transmitted over 80 km
of standard single-mode fiber. 100% of the accumulated dispersion is compensated for by
a linear, non-attenuating DCF. The average input power to the SSMF is varied and the
required OSNR for a BER of 10−4 is calculated. Figure 6.13 depicts the simulation results.
The 2 dB penalties, referred to the back-to-back required OSNR are shown in Table 6.3.
Propagation in the standard single-mode fiber was simulated using the parameters shown
in Table 1.1. The results regarding nonlinear tolerance of ASK-DQPSK modulation are
compared to those obtained for DQPSK modulation in Figures 4.18 and 5.11.

The relation between the curves of single-channel (N)RZ formats is similar in ASK-
DQPSK as to that of DQPSK. However, we observe a penalty difference between the two
modulation formats that vary between 4.3 to 4.9 dB, depending on the duty cycle of the
pulses. The penalty difference can be attributed to the multilevel nature of the amplitude
of ASK-DQPSK signals.

As in the DQPSK case, large penalty differences where found to exist in (N)RZ signals
due to inter-channel nonlinear effects. Compared to the single-channel case, differences
of 2.8 and 2.9 dB are observed for NRZ and RZ-67% formats, respectively, whereas RZ-
50% and RZ-33% suffer degradations in nonlinear penalty of 5.2 and 5.4 dB. Notice
that little variation was found between the nonlinear tolerance of WDM-(N)RZ DQPSK
signals (0.2 dB), whereas a variation of up to 2 dB between WDM-(N)RZ ASK-DQPSK
is observed.

Single-channel Nyquist signals have similar nonlinear penalties between them, with a
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Figure 6.13: Tolerance to nonlinear effects in single-span transmission of ASK-DQPSK at
111 Gb/s.

maximum variation of 1 dB, which is dependent on the IAPR of the signals. Because of
their high power fluctuation, in average, ASK-DQPSK Nyquist signals are 2.45 dB less
tolerant to intra-channel nonlinearities than signals using (N)RZ formats.

Compared to the DQPSK case, we observe penalty differences that, surprisingly, increase
when the IAPR of the signals decreases. The penalty differences range from 0.6–2.3 dB
which is less than the differences found in (N)RZ formats (4.3–4.9 dB), clearly suggesting
that the nonlinear penalty of Nyquist pulses is much more influenced by the high power
fluctuation of the signals, than by the multilevel nature of the amplitude of the ASK-
DQPSK modulation format.

Nyquist signals do not seem to be strongly affected by inter-channel nonlinearities, show-
ing differences in nonlinear penalties compared to the single-channel case of 0.1–0.8 dB.
A notable exception occurs with Ham-40% pulses, that suffer a degradation in nonlinear
tolerance of 2.6 dB. As expected, the high linear cross-talk that Ham-40% signals produce
to each other is strongly affecting their nonlinear tolerance.

In summary, for the WDM case, only RZ-67% signals perform as good Nyquist signals,
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Table 6.3: Single-span nonlinear tolerance (dB) of ASK-DQPSK at 111 Gb/s – 2 dB penalties

Single-channel WDM

Sinc 9.3 9.1
RC-20% 9.6 9.4
RC-40% 9.9 9.8
RC-60% 10.2 9.4
Ham-20% 9.6 9.3
Ham-40% 10.3 7.7

NRZ 10.2 7.4
RZ-67% 12.3 9.4
RZ-50% 13.0 7.8
RZ-33% 13.5 8.1

with still a 0.4 dB difference compared to the best Nyquist pulse (RC-40%).

6.5 Optimum nonlinear transmission and dispersion

map robustness

In this section, the optimum transmission of ASK-DQPSK modulation at 111 Gb/s is in-
vestigated. Due to the large required OSNR of ASK-DQPSK, only 7 spans are considered
for transmission in the SSMF (560 Km). The optimum filter bandwidths shown in Ta-
ble 6.1 are used for the simulations. Pre-emphasis is used in Nyquist signals as well. For
both non-dispersion-managed (NDM) and dispersion managed (DM) links the optimum
transmission parameters are identified and the robustness of the optimum is analyzed.
Using the NLPS criterion discussed in chapter 3.2.4, the maximum transmission reach of
each modulation format is estimated.

6.5.1 Transmission in non-dispersion-managed links

The signals are sent through the link shown in Fig. 4.19 (560 km) and the launch power
and amount of pre-compensation are varied in order to find the maximum OSNR margin
(∆OSNR), defined as the difference between the accumulated OSNR (3.21) and the re-
quired OSNR for a target BER of 10−4. In order to simplify the analysis, it is assumed
that optimum transmission occurs when the residual dispersion at the end of the link is
zero. Notice that pre- and post- compensation of dispersion are performed in the optical
domain using linear, non-attenuating DCFs.

Results for the single-channel case are depicted in the contour plots of Figures 6.14
and 6.15. The contour lines are in steps of 0.25 dB and express the penalty referred to
the highest ∆OSNR for each format. Penalties of more than 3 dB are shown in black.
The optimum points are listed in Table 6.4.

For the single-channel scenario, we notice that there are two optimum regions with less
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Table 6.4: Optimum transmission parameters in non-dispersion-managed links

Single-channel WDM

PR∗ P ∗SSMF OSNRreq
∗ ∆OSNR∗ PR∗ P ∗SSMF OSNRreq

∗ ∆OSNR∗

(dBm) (dB) (dB) (dBm) (dB) (dB)

Sinc -1.00 1.2 21.51 4.78 -1.00 0.06 21.57 3.59
RC-20% -1.00 1.4 21.15 5.33 -1.00 0.44 21.29 4.25
RC-40% -1.00 1.4 20.95 5.53 -1.00 0.25 21.02 4.34
RC-60% -1.00 1.6 20.96 5.70 -1.00 0.06 21.75 3.41
Ham-20% -1.00 1.4 21.04 5.44 -1.00 0.44 21.43 4.11
Ham-40% -0.93 1.8 21.10 5.76 – – – –

NRZ -0.90 1.8 21.5 5.35 – – – –
RZ-67% -0.22 2.9 21.44 6.54 – – – –
RZ-50% -0.90 3.1 21.04 7.13 – – – –
RZ-33% -0.90 3.4 20.96 7.58 – – – –
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Figure 6.14: Performance of single-channel ASK-DQPSK at 111 Gb/s using (N)RZ pulses, in
a non-dispersion-managed link.
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Figure 6.15: Performance of single-channel ASK-DQPSK at 111 Gb/s using Nyquist pulses,
in a non-dispersion-managed link.
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Figure 6.16: Performance of WDM ASK-DQPSK at 111 Gb/s using Nyquist pulses, in a
non-dispersion-managed link.
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Table 6.5: Maximum number of cascaded spans in non-dispersion-managed links

Single-channel WDM

Sinc 12 10
RC-20% 12 11
RC-40% 13 11
RC-60% 13 10
Ham-20% 13 11
Ham-40% 13 –

NRZ 13 –
RZ-67% 14 –
RZ-50% 15 –
RZ-33% 16 –

than 0.25 dB difference on required OSNR between them. For (N)RZ they lie around
pre-compensations of 30% and 90%, whereas for Nyquist pulses they lie around 20% and
100%. The influence of pre-compensation on the performance of the transmission starts
at ∼ 2 dB lower launch powers in Nyquist and NRZ signals, compared to RZ signals.

Unfortunately, the propagation in WDM scenario was only successful for signals that
were not strongly impacted by WDM cross-talk. These include all Nyquist pulses except
Ham-40%. (N)RZ and Ham-40% were so heavily distorted that it was impossible to
achieve a BER of 10−4. Nyquist pulses, on the other hand, did achieve the target BER.
Results are shown in Fig. 6.16. Differences of up to 1.6 dB were found to exist between
the optimum launch power in single-carrier and WDM.

Using equations (4.57) and (4.58), the maximum number of spans for each pulse shape
is calculated and listed in Table 6.5. All the obtained values were subsequently corrob-
orated by simulating the maximum number of sections Nmax with the same optimum
pre-compensation and verifying that ∆OSNR > 0. It is seen that the maximum number
of spans in the single-channel case is 12 to 13 for Nyquist pulses and 13 to 16 for (N)RZ
formats. In the WDM case the maximum reach reduces to 10–11 spans for the Nyquist
pulses that did withstand propagation.

6.5.2 Transmission in dispersion-managed links

Next, optimum transmission in dispersion-managed links is investigated. The model of
the link is shown in Fig. 4.22. The signals are first pre-compensated with a fraction
(PR) of the accumulated dispersion per span. Subsequently, transmission takes place
in 7 spans (560 km) composed of SSMF and DCF with dual-stage EDFAs. The length
of the DCFs is set to compensate only a fraction (CR) of the accumulated dispersion
per span. At the end of the link, any residual dispersion is brought back to zero with
the post-compensating fiber. The pre- and post- compensating fibers are assumed linear
and non-attenuating. Performance is measured in terms of the maximum OSNR margin
∆OSNR which is dependent on the set of parameters SDM = {PSSMF, PDCF,PR,CR}.
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Table 6.6: Optimum transmission parameters in dispersion-managed links

Single-channel WDM

Single- P ∗SSMF P ∗DCF PR∗ CR∗ ∆OSNR∗ P ∗SSMF P ∗DCF PR∗ CR∗ ∆OSNR∗

Carrier (dBm) (dBm) (dB) (dBm) (dBm) (dB)

Sinc 2.1 -4.1 -0.70 0.92 4.62 1.0 -4.6 -0.60 0.93 3.96
RC-20% 1.7 -4.7 -0.70 0.92 4.62 0.9 -5.0 -0.70 0.93 4.26
RC-40% 2.3 -4.3 -0.80 0.92 5.45 1.4 -4.3 -0.90 0.90 4.56
RC-60% 2.5 -4.2 -0.70 0.93 5.73 1.0 -4.3 -0.80 0.93 3.96
Ham-20% 2.4 -4.2 -0.80 0.92 5.46 1.5 -5.3 -0.90 0.90 4.49
Ham-40% 2.6 -3.8 -0.70 0.93 5.61 – – – – –

NRZ 1.9 -4.9 -0.80 0.92 4.78 – – – – –
RZ-67% 3.8 -2.4 -1.00 0.85 6.73 – – – – –
RZ-50% 4.2 -2.0 -0.85 0.90 7.33 – – – – –
RZ-33% 4.9 -1.9 -0.85 0.94 7.90 – – – – –

The optimum performance of the system is obtained with the global optimization algo-
rithm previously introduced in chapter 3.3.3. The boundaries of the search space are given
by PSSMF = [−3, 7], PDCF = [−8, 3], PR = [−1, 0] and CR = [0.7, 1.1]. The algorithm
is set to find the maximum OSNR margin ∆OSNR∗ and the optimum set of parame-
ters S∗DM = {P ∗SSMF, P

∗
DCF,PR

∗,CR∗} in 200 iterations. The results of the optimization
procedure are shown in Table 6.6.

Similarly to single-carrier DQPSK signals (see Tables 4.11 and 5.7), the optimum power
differences (∆P ∗) between SSMF and DCF are very close (±0.3 dB) to the previously
estimated optimum of 6.5 dB (see ch. 3.2.2). On the other hand, more variation in the
optimum power difference was found to exist in the WDM case: ∆P ∗ varies between 5.3
and 6.8 dB.

The robustness of the system to deviations of the optimum parameters is quantified with
power and dispersion plots4. The contour lines of the power plots are in steps of 0.25 dB
and penalties of more than 3 dB are depicted black. For the dispersion plots, contour
lines are in steps of 1 dB and penalties of more than 10 dB are depicted black.

The power plots of the single-channel case correspond to Figures 6.17 and 6.18. Observe
that the size of the hills of the RZ signals is quite similar, suggesting similar robustness
against deviations of the optimum input powers. But the position of the hills changes
towards the upper-right corner of the plots as the duty cycle of the pulses is reduced,
suggesting an overall better performance, i.e., higher ∆OSNRs. NRZ pulses on the other
side perform the worst regarding both robustness and performance.

A similar analysis can be made for the single-carrier Nyquist signals. It is seen that the
lower the duty cycle, the better is the performance and the robustness of the transmission.
Still, there is almost 1.5 dB average ∆OSNR difference between (N)RZ and Nyquist

4See chapter 4.3.2 for a detailed explanation of power and dispersion plots.
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Figure 6.17: Robustness against variations in input powers in single-channel transmission using
(N)RZ pulses.
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Figure 6.18: Robustness against variations in input powers in single-channel transmission using
Nyquist pulses.
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Figure 6.19: Robustness against variations in pre-compensation and span residual dispersion
in single-channel transmission using (N)RZ pulses.
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Figure 6.20: Robustness against variations in pre-compensation and span residual dispersion
in single-channel transmission using Nyquist pulses.
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Figure 6.21: Robustness against variations in input powers in WDM transmission using
Nyquist pulses.
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Figure 6.22: Robustness against variations in pre-compensation and span residual dispersion
in WDM transmission using Nyquist pulses.
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Table 6.7: Maximum number of cascaded spans and OSNR∗req (dB) in dispersion-managed links

Single-channel WDM

OSNRreq
∗ Nmax OSNRreq

∗ Nmax

Sinc 21.62 11 21.78 10
RC-20% 21.67 11 21.33 11
RC-40% 21.07 12 21.19 11
RC-60% 20.86 13 21.30 10
Ham-20% 21.09 12 20.98 11
Ham-40% 21.16 13 – –

NRZ 21.30 12 – –
RZ-67% 21.43 14 – –
RZ-50% 21.19 16 – –
RZ-33% 21.22 17 – –

signals.

The dispersion plots of the single-channel case are shown in Figures 6.19 and 6.20. We
observe the same slope of the optimum regions in all plots, and the same slope compared
to the DQPSK cases described in the previous chapters, confirming that the straight-line
rule is not dependent on modulation formats. However, we see that, with the exception
of NRZ, the optimum regions do not get noticeably broader in the lower-left corner of
the plots. This is, most probably, due to the poor nonlinear tolerance of the modulation
format. In addition, it is seen that Nyquist signals are less robust to deviations of the
optimum dispersion values than (N)RZ signals.

As in NDM links, signals heavily impacted byWDM cross-talk were not able to withstand
propagation over 7 spans in a WDM scenario. Only Nyquist pulses (except Ham-40%)
achieved the target BER. Table 6.6 lists the optimum parameters and robustness of the
optimum is depicted in Figures 6.21 and 6.22.

We observe a decrease in the optimum input power difference and a consequent reduction
in OSNR margin. The size of the hills in the power plots indicate that robustness is
maintained in the WDM case. The reduction in input powers also has the consequence
of increasing the robustness to deviations of the optimum dispersion values, compared to
the single-channel case.

Next, an estimation of the maximum number of concatenated spans is carried out using
the NLPS criterion previously described in chapter 3.2.4. The estimations were subse-
quently simulated in order to confirm that the OSNR margin was still positive. Table 6.7
lists the results.

For single-channel transmission, a maximum number of 13 spans is obtained by using
RC-60% pulses, which is 4 spans fewer than the maximum reach achieved with RZ-33%
signals. Clearly, the lower the duty cycle, the better is the performance. In the WDM case
the maximum reach of Nyquist pulses is reduced to a maximum of 11 spans. Interestingly,
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Figure 6.23: Tolerance to residual dispersion of ASK-DQPSK at 111 Gb/s

RC-60% pulses do not perform the best, very likely due to the strong linear WDM cross-
talk it suffers from neighboring channels (see Table 6.1). Remarkably, the maximum
number of spans is equal in NDM and DM links (see Table 6.5).

Subsequently, the total residual dispersion at the end of the link is varied in order to find
its optimum value and tolerance. Figure 6.23 depicts the resulting curves showing the
required OSNR versus total residual dispersion. The system configurations are determined
by the optimum set of parameters shown in Table 6.6. The results are listed in Table 6.8.

As expected for signals propagating in the pseudo-linear regime, the optimum residual
dispersion is very close to zero. Only (N)RZ signals show a slightly better performance
when a small amount of residual dispersion is left uncompensated. All pulse formats show
similar tolerances. The situation is almost identical for Nyquist signals propagation in
the WDM scenario. The tolerance to residual dispersion is slightly reduced.

Finally, the amplitude ratio of the signals is varied in order to asses its influence on the
performance after propagation. The optimum parameter listed in Table 6.6 were used for
the simulations. Figure 6.24 depicts the results. It is seen that, with the exception of NRZ
signals, the optimum amplitude ratio remains the same before and after propagation. For
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Table 6.8: Tolerance to residual dispersion (ps/nm) of ASK-DQPSK at 111 Gb/s – 2 dB
penalties

Single-channel WDM

D−acc D∗acc D+
acc D−acc D∗acc D+

acc

Sinc 29 -5 33 30 -5 26
RC-20% 25 -5 29 24 -5 25
RC-40% 22 0 26 24 0 21
RC-60% 22 0 21 23 0 25
Ham-20% 24 0 23 25 5 23
Ham-40% 19 0 22 – – –

NRZ 23 10 28 – – –
RZ-67% 34 0 28 – – –
RZ-50% 38 0 31 – – –
RZ-33% 37 0 32 – – –

NRZ, a new optimum amplitude ratio of 0.435 was found to achieve a 0.25 dB improvement
in required OSNR.

6.6 Summary

This chapter described the transmission of signals at 111 Gb/s with channel separation of
only 50 GHz. For this purpose DQPSK, ASK-DQPSK and D8PSK formats were initially
considered. It was shown that although DQPSK has the lowest OSNR requirement of all
(∼ 17.37 dB for a BER of 10−4) it would incur in a pronounced sensitivity degradation
due to narrow-band filtering. Since the other formats transmit at a lower symbol rate,
performance degradation due to filtering and/or cross-talk is within an acceptable range.
Regarding implementation effort, D8PSK requires a double amount of optical components
as DQPSK at the receiver side, whereas ASK-DQPSK only needs an extra photodiode. In
addition, D8PSK requires a higher OSNR than ASK-DQPSK to deliver the target BER
(21.05 dB vs. 19.27 dB). For these reasons, ASK-DQPSK was the modulation format of
choice for this chapter. In summary, the following are the main results:

⊲ The generation and demodulation of ASK-DQPSK signals was thoroughly described.
The transmitter consist of a DQPSK modulator with a MZM used as intensity mod-
ulator at the output. Equivalently, a digital transmitter can be used to generate
Nyquist pulses with ASK-DQPSK modulation. At the receiver side, a DQPSK de-
modulator is used to recover the information conveyed in the phase of the optical
signal, and a photodiode is used to recover the intensity. The equations describing
the generation and demodulation were obtained, including an estimate of the opti-
mum electrical decision threshold for the ASK branch. The Hermitian kernels for
the calculation of the BER were given as well.
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Figure 6.24: Optimization of the amplitude ratio for transmission in DM links with optimum
parameters

⊲ An important parameter in ASK-DQPSK signals is the amplitude ratio between the
constellation rings. An large amplitude ratio results in a largely opened eye diagram
in the DQPSK branch but translates in a small opening in the eye diagram of the
ASK branch, and vice versa. Therefore, an optimization procedure was carried out
to find the amplitude ratio that minimizes the BER. Using an analytical expression
for the BER, it was found that the optimum AR is 0.465. Later, it was shown that
this value is not strongly dependent of the pulse shape, and that its optimum value
remained unchanged (except for NRZ pulses) after propagation in DM links.

⊲ The optimum transmitter and receiver filter bandwidths were identified along with
the back-to-back required OSNR for each pulse shape. Nyquist signals perform
slightly better than (N)RZ signals, albeit at much narrower bandwidths. The broad
spectrum of the (N)RZ signals compared to the small WDM channel separation
causes a sensitivity degradation that increases rapidly with deviations of the opti-
mum transmitter and receiver filter bandwidths. The linear WDM cross-talk was
subsequently calculated. It was shown later on that linear cross-talk is very detri-
mental in the nonlinear propagation of WDM signals.



170 Chapter 6 � ASK-DQPSK Transmission at 111 Gb/s

⊲ Although the symbol rate of ASK-DQPSK is only 4/3 times that of DQPSK, we
observed almost a four-fold degradation in tolerance to dispersion compared to the
single-carrier DQPSK case. As opposed to DQPSK signals, (N)RZ formats with
narrow bandwidths are the most affected by dispersion. The contrary occurs with
Nyquist signals. The obtained results suggest that residual dispersion can be a
limiting factor at 111 Gb/s and should be addressed when designing the system.

⊲ The multilevel nature in the amplitude of ASK-DQPSK was found to have a signifi-
cant impact on the nonlinear tolerance. At the same time, the high power fluctuation
of the Nyquist signals negatively influences their tolerance to intra-channel nonlin-
earities compared to (N)RZ signals. On the other hand, Nyquist signals do not seem
specially affected by the nonlinear cross-talk between WDM channels, as opposed
to (N)RZ signals. As expected, signals affected by strong nonlinear cross-talk see
their nonlinear tolerance reduced.

⊲ The propagation of ASK-DQPSK signals in NDM links was investigated. The op-
timum pre-compensation ratios and launch powers were obtained for all the inves-
tigated Nyquist pulses and the maximum number of cascaded spans was calculated
using the Pmax rule. For the single-channel case, Nyquist signals were not able to
achieve more than 13 concatenated spans, whereas (N)RZ signals achieved up to
16. On the other hand, (N)RZ did not withstand WDM propagation at all, whereas
Nyquist signals achieved up to 11 concatenated spans.

⊲ Propagation in dispersion-managed links was investigated as well. The optimum
transmission parameters and performances were obtained using the global opti-
mization algorithm. The robustness of the investigated formats to deviations of the
optimum parameters was investigated. Using the NLPS criterion and the straight-
line rule, the maximum reach of each format was estimated as well. For the single-
channel case and as in NDM links, Nyquist signals were not able to achieve more
than 13 concatenated spans, whereas (N)RZ signals achieved up to 17. Again, as
in NDM links, (N)RZ did not withstand WDM propagation at all, whereas Nyquist
signals achieve up to 11 concatenated spans.

⊲ Subsequently, the tolerance to residual dispersion was investigated. The optimum
residual dispersion is not far from zero ps/nm and only a very small performance
improvement was observed. Additionally, it was shown that the optimum AR re-
mained similar to the one obtained in the back-to-back ideal case, for all pulse
shapes except NRZ. For NRZ, a new optimum amplitude ratio of 0.435 was found
to achieve a 0.25 dB improvement in required OSNR after propagation in DM links.

Figure 5.19 depicts an overview of the estimated maximum number of concatenated
spans for the investigated formats in the different transmission scenarios. As it was
previously mentioned, it is possible to observe that (N)RZ signals perform better than
Nyquist signals in the single-carrier case. Their broad spectrum however, prevents them
to be used at all for the WDM scenario. Observe that there is little difference between
the NDM and the DM cases.



6.6 Summary 171

4 6 8 10 12 14 16 18

Figure 6.25: Maximum number of cascaded sections per transmission format. Single-channel
and WDM transmission are depicted in light and dark gray bars, respectively.





7
Conclusions

The goal of this thesis was to investigate the performance limits of multilevel phase-
modulated and direct detected WDM systems at 100 Gb/s with 50 GHz channel spacing.
Particularly, we were interested in comparing different transmission formats at their opti-
mum operation points. We focused on the difference in tolerance to propagation impair-
ments and overall performance of single- and dual-carrier formats, using different pulse
shapes, in single-channel and WDM scenarios. The main contributions of this work can
be summarized as follows:

⊲ The fundamental theory of propagation of light in single-mode optical fiber was
thoroughly reviewed. The nonlinear Schroedinger equation (NLSE) was obtained
and used throughout this thesis to simulate the investigated scenarios. Subsequently,
a system of coupled NLSEs was derived which is helpful in the analysis of the
nonlinear interaction of propagating WDM signals. Practical aspects regarding the
numerical solution of the NLSE were given, particularly regarding the selection of
a suitable step size for the simulations.

⊲ Theoretical and practical considerations were given regarding the modeling and
simulation of the different components of the transmission systems investigated in
this thesis. Additionally, the proper evaluation of the performance of an optical
communication link was reviewed: Firstly, the theory of pseudo-random sequences
is briefly discussed and secondly, a semi-analytical method for the evaluation of the
BER is described.

⊲ A special focus of this thesis was put into the optimum design of dispersion maps and
the selection of fiber launch powers in dispersion managed links. Firstly, a review
of the existing engineering rules was given such as the straight-line rule (SLR). It
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was found that the SLR is valid regardless of the modulation format or number
of sub-carriers of the optical signals, and irrespective of wether single-channel or
WDM transmission takes place. Subsequently, a method based on the SLR and
the nonlinear phase shift criterion was presented which successfully estimates the
maximum transmission distances achieved by the investigated formats.

⊲ Although the SLR is successful in predicting the optimum dispersion map of dis-
persion managed links, the overall optimum performance is given by the proper
selection of suitable fiber launch powers. A mathematical algorithm was specially
designed for the global optimization of the performance of an optical communica-
tion system. It was used to maximize the OSNR margin after a certain transmission
distance. Although the algorithm is computational intensive, it is successful in min-
imizing the required number of iterations needed to obtain the optimum with an
arbitrary small error. By using the algorithm, it was possible to compare the in-
vestigated transmission formats at their optimum operation points. Furthermore,
it was possible to evaluate the robustness of the investigated formats to deviations
of their optimum parameters.

⊲ Using the abovementioned models and simulation tools, we were able to compare
the overall performance and robustness of different transmission formats to detri-
mental fiber effects. Particularly we focused on DQPSK signals at 55.5 Gb/s using
(non) return-to-zero pulses with different duty cycles. The propagation of single-
channel and WDM transmission were considered. Signals using single-carrier and
dual-carrier configurations were compared in a handful of different scenarios: Firstly,
back-to-back generation and demodulation was analyzed with the purpose of opti-
mizing transmitter and receiver optical filter bandwidths and find the minimum
required OSNRs of the investigated formats. Secondly, dispersion tolerances were
assessed. Thirdly, a single-span configuration was used to evaluate the tolerances
to nonlinear effects. And finally, the transmission in 1040 km of SSMF in disper-
sion and non-dispersion managed links was investigated. The optimum transmission
parameters were identified and, as previously mentioned, the robustness of the in-
vestigated formats to deviations of their optimum parameters was evaluated.

⊲ Stereo multiplexing has been proposed as a way of detecting two carriers simulta-
neously using only one DQPSK modulator. The transmitter and receiver design
was described in detail. The gain of stereo multiplexing, in terms of reduction of
the number components at the receiver side compared to dual-carrier transmission,
comes at an expense in receiver sensitivity of about ∼ 0.5 − 1 dB. Additionally,
a novel mathematical framework is presented that models the effect of square-law
detection in linearly pre-coded FDM signals. It is used to show that stereo multi-
plexing can be extended up to five sub-carriers only if complex pre-coding is used.
The framework is also useful in analyzing other direct-detected multi-carrier mod-
ulation formats, e.g., OFDM.

⊲ We introduce Nyquist pulses as a way of minimizing the spectral occupancy of the
signals. Firstly, the generation of the pulses in the frequency domain was described.
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Secondly, spectral shaping was introduced and successfully used to increase the
robustness of the Nyquist signals to transmission impairments. Thirdly, the perfor-
mance of the signals was quantified within the same scenarios used for characterizing
(non) return-to-zero signals.

⊲ Finally, this thesis investigates the transmission of 111 Gb/s signals encoding 3
bits per transmitted symbol. This scenario is characterized by the strong WDM
cross-talk and narrow-band filtering to which the signals are exposed, because of
their broad spectrum and small channel separation. ASK-DQPSK is used as the
modulation format for such scenario. As in the previous chapters, the performance
of the transmission format is assessed emphasizing the difference between (N)RZ and
Nyquist pulses. It was shown that only Nyquist signals are able to cope effectively
with the high cross-talk that the signals are exposed to and that, (N)RZ signals are
unsuited for WDM transmission at such narrow channel separation and high symbol
rate.

There is still a number of interesting topics that remain open for future research. Among
others:

⊲ A natural extension of this work is to include polarization effects and quantify the
penalty that the systems incur with respect to different PMD values. The power
exchange between polarizations affects the intensity of the nonlinear effects and
therefore small deviations of the optimum parameters may occur. This is specially
interesting for WDM scenarios: the initial state of polarization of the WDM signals
may not only affect the values of the optimum parameters but also, it could even
be considered as an extra parameter in the optimization procedure.

⊲ One other possible research topic could be the joint optimization of transmission
systems where different modulation formats and data rates coexist. For example,
the optimization algorithm could be used to determine the optimum launch powers
and dispersion maps of 10 Gb/s signals in the presence of 100 Gb/s signals.

⊲ Finally it would be interesting to extend this work in order to include digitally
coherent detected systems. Not only the optimization algorithm could be used to
determine the optimum transmission performance of such systems, but also, Nyquist
signals could be used in scenarios where WDM cross-talk is an issue. Additionally,
spectral shaping should be considered as a way to reduce the power fluctuations of
multi-carrier signals such as OFDM1.

1Initial work has already been undertaken in this subject in [AKJ+12, AJK+13].





A
Definition of Some
Mathematical Functions

The following mathematical functions are used in this thesis:

⊲ The Bessel function [AS64]:

Jm(z) =
(z

2

)m
∞∑

k=0

(−z2/4)k
k!Γ(m+ k + 1),

(A.1)

with z ∈ Z and m ∈ R. Γ is the gamma function defined as

Γ(x) =

∫ ∞

0

e−ttx−1dt, (A.2)

with x ∈ R.

⊲ The Neumann function [AS64]:

Nm(z) =
Jm(z) cos(mπ)− J−m(z)

sin(mπ)
(A.3)

with z ∈ Z and m ∈ R. Jm(z) is the Bessel function in (A.1).

⊲ The modified Bessel function of the first kind [AS64]:

Im(z) =
(z

2

)m
∞∑

k=0

(z2/4)k

k!Γ(m+ k + 1),
(A.4)

with z ∈ Z and m ∈ R.
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⊲ The modified Bessel function of the second kind [AS64]:

Km(z) =
(π

2

) I−m(z)− Im(z)

sin(mπ)
(A.5)

with z ∈ Z and m ∈ R. Im(z) is the modified Bessel function of the first kind in
(A.4).

⊲ Marcum’s Q-function of the first order [Shn89]:

Q(a, b) =

∫ ∞

b

x exp

(

−(x
2 + a2)

2

)

I0(ax)dx, (A.6)

where a, b ∈ Z ≥ 0. I0(z) is the modified Bessel function of the first kind with
m = 0 in (A.4).



B
Generator Polynomials of
Pseudo-random Sequences

Table B.1 lists the generator polynomial coefficients that can be used to generate pseudo-
random sequences up to order 25, as explained in chapter 3.3.1. A detailed discussion on
the generation and properties of pseudo-random sequences can be found in [MS76, Gol67].
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Table B.1: Primitive polynomial coefficients (c0 · · · cns)

Degree (ns) Coefficients GF2 Coefficients GF4

2 111 112
3 1011 1123
4 10011 11333
5 100101 113202
6 1000011 1000113
7 10000011 11230312
8 101100011 112211103
9 1000010001 1010213013
10 10000001001 10113013233
11 100000000101 101021210223
12 1000010011001 1000001001113
13 10000000011011 10103020013013
14 101100000000011 101030200120133
15 1000000000000011 1000011110303132
16 10000000000101101 10010031120102023
17 100000000000001001 100010102100013023
18 1000000000010000001 1000110120212210032
19 10000000000001100011 11221101032030010223
20 100000000000000001001 113310122221001211003
21 1000000000000000000101 1123020033303101100232
22 10000000000000000000011 10113113301303022210103
23 100000000000000000100001 110103121020322330130223
24 1000000000000000000011011 1000100020112110102222012
25 10000000000000000000001001 11330131301331332120121302

Degree (ns) Coefficients GF8 Coefficients GF16

2 165 17B
3 1434 1D5A
4 14514 16727
5 104412 11DB1E
6 1411453 1CEAB43
7 16716035 111194FE
8 102671777 11A183FE7
9 1411077155 1166248FE7
10 10006046723 1A1254957BB
11 161725255752 1C84D9899209
12 1256437353477 1D87EB7AEEAF5
13 10006246316747 10C15A4C45745E
14 161747620012627 11BAF48705F0F05
15 1656655116503744 17733278DF0C73DA
16 12112337764707775 1A6A58F71BB67F2F5
17 121320413751241053 17DDC8CAFDCFC6D47A
18 1270252454760330226 1171954BEF2C737247E
19 16153344340650534534 110CF2859573C7337387
20 121517405426344507037 1CE77CA3A0734CF0F7529
21 1000206210562176313043 1DE4C0368A9D2CCC3E63E5
22 14365275745177026067204 1D4B3B7632A1BB6332E59D3
23 127203402072501456254202 1CF1CF889712A67ACE2B9FCA
24 1004205135673603116470662 111133EE01F85D138909D9E4B
25 16342306345523706035535143 1170F3EEBD5C4A2B54D1E07FA3



C
Demodulation of
stereo-multiplexed DQPSK
signals

The following appendix details the algebraic procedure used to obtain equations (4.45)
and (4.46). For this purpose, we recall equations (4.43) and (4.44), which represent
the electrical currents at the output of the photodiodes of the in-phase and quadrature
branches of the DQPSK receiver. In general, they can be written as:

Ii(t) =
1
2
ℜ{E(t)E∗(t− T0)e

jψi}. (C.1)

Observe that ψi = φi − ωcT0, where φi = π/4 when i represents the in-phase branch of
the receiver and φi = −π/4 when i represents the quadrature branch of the receiver.
For a more compact notation, the following variables are introduced:

Aa = Aa(t), (C.2)

Ab = Ab(t), (C.3)

A′a = A∗a(t− T0), (C.4)

A′b = A∗b(t− T0) (C.5)

which, in addition to equation (4.42), yield the following expressions for E(t) and E∗(t− T0)
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respectively:

E(t) =
1√
2

(
Aa − Ab

2
· ej2π∆fs

2
t +

Aa + Ab
2

· e−j2π∆fs
2
t

)

· jejψ · ejωct, (C.6)

E∗(t− T0) =
1√
2

(
A′a − A′b

2
· e−j2π∆fs

2
(t−T0) +

A′a + A′b
2

· ej2π∆fs
2

(t−T0)

)

· je−jψ · e−jωc(t−T0).

(C.7)

Notice that ∆fs = 2Rs = 2/T0 and therefore e
±j2π∆fs

2
(t−T0) = e±j2π

∆fs
2
t.

Observe that the product E(t)E∗(t− T0) in (C.1) gives rise to three main contributing
terms to the electrical current Ii(t), one located at f = 0 and the other two oscillating at
f = ±∆fs. We introduce therefore the baseband complex signals A0(t), A+(t) and A−(t),
which are related to the output electrical current by

Ii(t) =
1
16
ℜ{A0(t)ejφi + A+(t)ej(2π∆fst+φi) + A−(t)e−j(2π∆fst−φi)}, (C.8)

and are given by

A0(t) = (Aa − Ab)(A
′
a − A′b) + (Aa + Ab)(A

′
a + A′b)

= 2(AaA
′
a + AbA

′
b), (C.9)

A+(t) = (Aa − Ab)(A
′
a + A′b)

= AaA
′
a + AaA

′
b − A′aAb − AbA

′
b, (C.10)

A−(t) = (Aa + Ab)(A
′
a − A′b)

= AaA
′
a − AaA

′
b + A′aAb − AbA

′
b. (C.11)

The real part of the terms in equations(C.9)-(C.11) which multiply the complex expo-
nential waves at frequencies f = 0 and f = ±∆fs in (C.8) can be stated explicitly as
follows:

Firstly, for f = 0,

ℜ{AaA′aejφi} =|Aa|2 cos(∆ϕa + φi), (C.12)

ℜ{AbA′bejφi} =|Ab|2 cos(∆ϕb + φi). (C.13)
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Secondly, for f = +∆fs,

ℜ{AaA′aej(2π∆fst+φi)} =|Aa|2 cos(2π∆fst+∆ϕa + φi)

=|Aa|2 cos(∆ϕa + φi) cos(2π∆fst)−
|Aa|2 sin(∆ϕa + φi) sin(2π∆fst), (C.14)

ℜ{AbA′bej(2π∆fst+φi)} =|Aa|2 cos(2π∆fst+∆ϕb + φi)

=|Aa|2 cos(∆ϕb + φi) cos(2π∆fst)−
|Aa|2 sin(∆ϕb + φi) sin(2π∆fst), (C.15)

ℜ{AaA′bej(2π∆fst+φi)} =|AaAb| cos(2π∆fst+∆ϕab + φi)

=|AaAb| cos(∆ϕab + φi) cos(2π∆fst)−
|AaAb| sin(∆ϕab + φi) sin(2π∆fst), (C.16)

ℜ{A′aAbej(2π∆fst+φi)} =|AaAb| cos(2π∆fst+∆ϕba + φi)

=|AaAb| cos(∆ϕba + φi) cos(2π∆fst)−
|AaAb| sin(∆ϕba + φi) sin(2π∆fst). (C.17)

And finally, for f = −∆fs,

ℜ{AaA′ae−j(2π∆fst−φi)} =|Aa|2 cos(−2π∆fst+∆ϕa + φi)

=|Aa|2 cos(∆ϕa + φi) cos(2π∆fst)+

|Aa|2 sin(∆ϕa + φi) sin(2π∆fst), (C.18)

ℜ{AbA′be−j(2π∆fst−φi)} =|Aa|2 cos(−2π∆fst+∆ϕb + φi)

=|Aa|2 cos(∆ϕb + φi) cos(2π∆fst)+

|Aa|2 sin(∆ϕb + φi) sin(2π∆fst), (C.19)

ℜ{AaA′be−j(2π∆fst−φi)} =|AaAb| cos(−2π∆fst+∆ϕab + φi)

=|AaAb| cos(∆ϕab + φi) cos(2π∆fst)+

|AaAb| sin(∆ϕab + φi) sin(2π∆fst), (C.20)

ℜ{A′aAbe−j(2π∆fst−φi)} =|AaAb| cos(−2π∆fst+∆ϕba + φi)

=|AaAb| cos(∆ϕba + φi) cos(2π∆fst)+

|AaAb| sin(∆ϕba + φi) sin(2π∆fst). (C.21)

In equations (C.12)-(C.21), the trigonometric identity cos(α + β) = cosα cos β − sinα sin β
was used. Observe that it is assumed that |Aa|2 = |A′a|2 and |Ab|2 = |A′b|2. Additionally,
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the following substitutions were carried out:

∆ϕa =ϕa(t)− ϕa(t− T0), (C.22)

∆ϕb =ϕb(t)− ϕb(t− T0), (C.23)

∆ϕab =ϕa(t)− ϕb(t− T0), (C.24)

∆ϕba =ϕb(t)− ϕa(t− T0). (C.25)

In conclusion, it is possible to observe that the output electrical current Ii(t) has a
base band component IBB

i (t) and an intermediate frequency component I IFi (t) that, us-
ing (C.12)-(C.21), can be written as

IBB
i (t) = 1

16
ℜ{A0(t)ejφi}

=1
8

(
|Aa|2 cos(∆ϕa + φi) + |Ab|2 cos(∆ϕb + φi)

)
, (C.26)

I IFi (t) =
1
16
ℜ{A+(t)ej(2π∆fst+φi) + A−(t)e−j(2π∆fst−φi)}

=1
8

( (
|Aa|2 cos(∆ϕa + φi)− |Ab|2 cos(∆ϕb + φi)

)
· cos(2π∆fst)

− (|AaAb| sin(∆ϕab + φi)− |AaAb| sin(∆ϕba + φi)) · sin(2π∆fst)
)
. (C.27)

Thus, Ii(t) = IBB
i (t) + I IFi (t) which, in turn, corresponds to (4.45) when φi = π/4 and

to (4.46) when φi = −π/4.



D
Square-law Detection of
Pre-coded FDM Signals

Stereo multiplexing has been proposed as a way to simultaneously detect and demodulate
two optical carriers. It is based on the linear pre-coding the information symbols of the
sub-carriers. So naturally, it is of interest to determine if such a technique can be used
with a higher number of optical carriers. Particularly, the following appendix presents
a novel mathematical framework which is useful to model the intermodulation products
that result from the nonlinear operation of a square-law detector over linearly pre-coded
frequency division multiplexed (FDM) signals.

D.1 Intensity modulation with real pre-coding

A frequency division multiplexed optical signal composed of M linearly pre-coded sub-
carriers can be written as

x̂(t) =
M−1∑

m=0

pmxe
j2πm∆fst, (D.1)

where x = (x0(t), x1(t), · · · , xM−1(t))T is a column vector composed of intensity-only
modulated signals, i.e., xm(t) = |xm(t)|. The 1 × M vector pm is the mth row of the
square matrix P. The FDM signal in(D.1) can be written in matrix form as x̂ = Px. The
mth row of x̂ represents the modulation of theM th subcarrier, separated in frequency from
the first sub-carrier by m∆fs. Firstly, assume P as a real-valued matrix with non-zero
rows and columns.

After some algebraic details, the resulting electrical signal after square-law detection
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y(t) = |x̂(t)|2, can be written as

y(t) = xTH0x+ 2
M−1∑

m=1

xTHmx cos(2πm∆fst), (D.2)

with
Hm = PTHmP, (D.3)

where Hm is an M ×M matrix () with elements

hm,ij =

{
1 , i = j −m
0 , else.

(D.4)

Take for example the case where M = 2 and no pre-coding is applied, i.e., P is the
identity matrix. The resultant matrices are given by

H0 =

(
1 0
0 1

)

,H1 =

(
0 1
0 0

)

, (D.5)

which, according to (D.3) results in

H0 =

(
1 0
0 1

)

,H1 =

(
0 1
0 0

)

. (D.6)

Using (D.6) and dropping the time dependence of the variables for compact notation,
(D.2) yields

y(t) = x20 + x21 + 2x0x1 cos(2π∆fst). (D.7)

Clearly, intermodulation terms appear in the pass-band component of y(t). The principle
of stereo multiplexing is to choose a suitable matrix P such that intermodulation between
sub-carriers does not occur. This is true when Hm fulfills Hm +HT

m = Dm, ∀m, where
Dm is a diagonal matrix. Using (D.3), this condition can also be written as

PT
(
Hm +HT

m

)
P = Dm. (D.8)

Take, for example, a stereo-multiplexed signal. The pre-coding matrix in this case is

P =
1√
2

(
1 1
1 −1

)

. (D.9)

Equation (D.3) yields the matrices

H0 =

(
1 0
0 1

)

,H1 =
1

2

(
1 1

−1 −1

)

, (D.10)

which fulfill (D.8). The resulting electrical signal is thus,

y(t) = (x20 + x21) + (x20 − x21) cos(2π∆fst). (D.11)
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Observe that, since both matrices in (D.10) comply with (D.8), the resulting photo-
detected signal in (D.11) is free of intermodulation products. There are M2 elements in
P and M2(M − 1)/2 conditions to fulfill in (D.8). Therefore, the maximum size of the
pre-coding matrix capable of diagonalizing Hm +HT

m, ∀m yields M ≤ 3.

However, it is easy to show that for M = 3, such a pre-coding matrix does not exist.
Equation (D.8) implies that P should, at least, simultaneously diagonalize the matrices
Hs,1 = H1 +HT

1 and Hs,2 = H2 +HT
2 . This is only possible if these two matrices share a

common eigenspace, in which case P correspond to the matrix of common eigenvectors.
This condition is fulfilled only if Hs,1 commutes

1 with Hs,2, which is not the case.

D.2 Intensity modulation with complex pre-coding

If P is allowed to have complex elements, i.e., P = U + jV with U,V ∈ R
M×M , then,

the received electrical signal has power in both, in-phase and quadrature components. In
this case, it can be written as

y(t) = xTHI,0x+ 2
M−1∑

m=1

xTHI,mx cos(2πm∆fst) + xTHQ,mx sin(2πm∆fst), (D.12)

where

HI,m = UTHmU+VTHmV, (D.13)

HQ,m = VTHmU−UTHmV. (D.14)

Now, two matricesU andV can be used in order to diagonalizeM of the 2M−1 resulting
matrices HI,m +HT

I,m and HQ,m +HT
Q,m. By doing so, the intermodulation products will

fall in the remaining frequency/quadrature components.

For example, take the complex pre-coding matrix

P =
1√
8





1 1 1
0 0 2

−1 −1 1



+
j√
8





−1 −1 −1
−2 2 0
−1 −1 1



 (D.15)

Equations (D.13) and (D.14) yield: HI,0 equals to the identity matrix and

HI,1 =
1

2





1 0 0
0 −1 0
0 0 1



 ,HQ,1 =
1

2





1 0 0
0 −1 0
0 0 −1



 , (D.16)

HI,2 =
1

2





0 0 0
0 0 0
0 0 0



 ,HQ,2 =
1

4





1 1 −1
1 1 −1
1 1 −1



 . (D.17)

1Two matrices A and B are said to commute if AB = BA.
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Observe that, by pre-coding with (D.15),HI andHQ, representing the baseband and first
pass-band respectively, fulfill (D.8). On the other hand, HQ,2 does not, which results in
one intermodulation product x0x1 to appear in the quadrature component of the electrical
signal located at f = 2∆fs. Additionally, the pre-coding deprives the in-phase component
at this frequency of electrical power.

The use of three sub-carriers in combination with complex pre-coding is cumbersome
in practice since careful control of the amplitude and phase of three phased-locked FDM
optical signals should be guaranteed. Notice that a complex pre-coding matrix offers
2M2 elements to fulfill M2(M − 1)/2 conditions thus, increasing the maximum size of a
potentially effective pre-coding matrix to M ≤ 5. Because of its complexity and since
it falls out of the scope of this thesis, the simultaneous diagonalization of a subset of M
matrices HI,m +HT

I,m and HQ,m +HT
Q,m, when M equals four and five, is left as an open

problem for the sake of mathematical interest.

D.3 Quadrature-amplitude modulation with complex

pre-coding

If the phase and the amplitude of the FDM sub-carriers are modulated, a general ex-
pression for the received photo-detected current can be obtained by expressing the FDM
optical signal in matrix notation as

x̂ = PΦx, (D.18)

where P = U + jV with U,V ∈ R
M×M , x is a column vector with real elements rep-

resenting the amplitude of the sub-carriers and Φ is a diagonal M × M matrix with
elements in the main diagonal representing the phase information of the sub-carriers, i.e.,
Φ = D{(ejφ0 , ejφ1 , · · · , ejφM−1)T}. In rectangular form the phase modulation matrix can
be rewritten as Φ = C + jS with C,S ∈ R

M×M , such that, according to (D.18), x̂ can
be expressed as a symbol-wise complex pre-coded intensity modulated signal:

x̂ = (U+ jV)(C+ jS)x (D.19)

= ((UC−VS) + j(US+VC))x, (D.20)

and, therefore, equations (D.12)-(D.14) can be used to obtain the photo-detected current

y(t) = xTĤI,0x+ 2
M−1∑

m=1

xTĤI,mx cos(2πm∆fst) + xTĤQ,mx sin(2πm∆fst), (D.21)

with

ĤI,m = CTHI,mC+ STHI,mS+CTHQ,mS+ STHQ,mC, (D.22)

ĤQ,m = CTHQ,mC+ STHQ,mS−CTHI,mS+ STHI,mC, (D.23)

where HI,m and HQ,m are defined by (D.13) and (D.14), respectively.
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For quadrature-amplitude modulated (QAM) signals, the information is encoded on the
vectors xI = Cx and xQ = Sx, and unless phase-to-intensity conversion is performed be-
fore photo-detection (as in stereo DQPSK systems, see ch. 4.1.6), strong mixing between
xI and xQ occurs and the original information cannot be retrieved. In such a case, it
is accustomed to generate and transmit one unmodulated carrier within the whole FDM
signal, and to deprive some sub-carriers of optical power, see [LDA06, AL06]. The un-
modulated carrier acts as a local oscillator (LO) when photo-detection occurs allowing xI
and xQ to be coherently detected. The unwanted intermodulation and intensity products
between the rest of the sub-carriers fall in unused frequency slots of the received electrical
signal. Such a system can be conveniently modeled and analyzed using (D.21).

In other systems, e.g. [Hew07], all sub-carriers of an FDM signal contain optical power
and are modulated, except for one that acts as LO. Unwanted intermodulation terms
appear as interference to the (self-) coherently demodulated xI and xQ, but the power ratio
between signal and interference is enlarged by increasing the power of the unmodulated
sub-carrier. In turn, this deteriorates the tolerance to noise. The expression derived in
(D.21) can be used to calculate analytically the power of the intermodulation products
for a certain pre-coding matrix, and to choose P such that the signal-to-interference ratio
is optimized. This falls out of the scope of this thesis and is, therefore, left as an open
problem.





E
Notation, Symbols and
Abbreviations

Mathematical notation

⋆ convolution
· vector dot product
× vector cross product
∇ nabla operator
( · )T transpose of a vector
‖x‖ Euclidean distance
H−1 inverse of a matrix
D{x} diagonal matrix with vector x in the main diagonal
ℜ{x} real part of argument
ℑ{x} imaginary part of argument
x∗ conjugate of argument
ln(x) natural logarithm
log(x) logarithm to base 10
sgn (x) sign of x
sinc (x) sinus cardinalis, sinc (x) = sin(πx)/(πx)
δkl Kronecker delta function
δ( · ) Dirac delta function
|x| absolute value of argument
⌈x⌉ ceiling of argument



192 Appendix E � Notation, Symbols and Abbreviations

F{x(t)} Fourier transform
F−1{x(t)} inverse Fourier transform
Jm Bessel function with order m
Nm Neumann function with order m
Im modified Bessel function of the first kind with order m
Km modified Bessel function of the second kind with order m
Q( · , · ) first order Marcum’s Q function
Γ gamma function
Φ( · ) normal cumulative distribution function
E{x} expectation of a random variable x
Var{x} variance of a random variable x
P(x) probability of occurrence of event x
pYk probability density function of variable Yk
x ∼ N (µ, σ2) the random variable x is Gauss distributed with mean µ and variance σ2

Physical constants

c speed of light in free space 2.99792458 · 108ms−1

e base of the natural logarithm 2.718281828
ε0 free space permittivity 8.8541878 · 10−12AsV−1m−1
h Planck constant 6.62606896 · 10−34Ws2

j imaginary unit
√
−1

µ0 free space permeability 4π · 10−7V sA−1m−1
π 3.14159265

Z0 impedance of free space
√

µ0/ε0 ≈ 376.73 Ω
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List of Symbols

α attenuation m−1 or dB / km
αc MZM linear frequency chirp parameter
αDCF DCF attenuation m−1 or dB / km
αH Hamming pulse/window tuning parameter
αSSMF SSMF attenuation m−1 or dB / km
β propagation constant m−1

βm mth order coefficient in Taylor series expansion of β(ω)
at ω = ωc

smm−1

β
(k)
m mth order coefficient in Taylor series expansion of β(ω)

at ω = ωk

smm−1

βr roll-off factor
βx, βy propagation constant in x/y polarization m−1

∆β phase matching coefficient m−1

γ nonlinear fiber parameter W−1m−1

γDCF DCF nonlinear fiber parameter W−1m−1

γk nonlinear fiber parameter at wavelength λk W−1m−1

γr nonlinear fiber parameter at reference wavelength λr W−1m−1

γSSMF SSMF nonlinear fiber parameter W−1m−1

γth decision threshold A
εi positive real number at iteration i of the GOA
εNL first order perturbation constant
εr relative permittivity tensor
ε̃r relative permittivity (frequency domain)
ε̂r perturbed relative permittivity (frequency domain)
ζ normalized length variable
η FWM efficiency
η′ FWM efficiency altered by SSF method
ηi mean square variation of f as x changes, at iteration i
η̂i maximum likelihood estimator of ηi
κ coupler splitting factor
κ(ω) separation constant m−2

λ wavelength m
λf , λl first and last wavelength within a WDM comb m
λk wavelength of kth channel within a WDM comb m
λr reference wavelength m
µf,k(x) mean of f in simplex k at x
∆ν laser linewidth Hz
Π(t) rectangular window (time domain)
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ρ radial cylindrical coordinate m
ρf free charge density A sm−3

σ2
PN phase noise variance
σ2
n AWGN variance W
σ2
f,k(x) variance of f in simplex k at x
τ delay of delay line interferometer s
τ normalized time variable
∆τ differential group delay s
φ angular cylindrical coordinate
ΦASE single-sided PSD per polarization of ASE noise WHz−1

Φtotal
ASE accumulated ΦASE after N spans WHz−1

φk phase of kth symbol
φNL nonlinear phase shift

φmax
NL maximum nonlinear phase increment due to N̂(t) for

NLPR method in SSF method
φtotal
NL,max maximum total nonlinear phase shift
φp phase of pulse carver driving voltage with respect to

clock
∆ϕ random phase variation due to phase noise
∆ϕ phase difference between consecutive symbols
χ

(1) linear material susceptibility tensor (time domain) s−1

χ̃
(1) linear material susceptibility tensor (frequency domain)

χ
(1)
kl element of linear material susceptibility tensor (time do-

main)
s−1

χ̃
(1)
kl element of linear material susceptibility tensor (fre-

quency domain)
χ

(3) cubic material susceptibility tensor (time domain) m2V−2 s−3

χ
(3)
klmn element of cubic material susceptibility tensor (time do-

main)
m2V−2 s−3

χ
(n) nth order material susceptibility tensor

ψI , ψQ phase shift of delay line interferometer
ΨI(tk)(ξ) moment generating function (ξ is the Laplace variable)
ω angular frequency variable Hz
ω′ translated angular frequency variable Hz
ωc angular frequency of optical carrier Hz
ωk angular frequency of kth channel within a WDM comb Hz
ωmn element of Ω (DFT matrix)
∆ωk angular frequency separation of kth channel with respect

to center frequency of a WDM comb
Hz
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Ω DFT matrix
a fiber core radius m
ai,k kth bit of ith data sequence
ak vector of coefficients for mean of simplex k
a(z, t) dimensionless optical signal
Aeff effective mode area m2

AR amplitude ratio between constellation rings in ASK-
DQPSK

Â, B̂, Ĉ, D̂ normalization functions
A(t) general base band signal (time domain)

Ã(f) Fourier transform of general base band signal (frequency
domain)

A(z, t) normalized complex envelope of modulated optical field
(time domain)

√
W

Ã(z, ω) normalized complex envelope of modulated optical field
(frequency domain)

√
Ws

Ak(z, t) normalized complex envelope of the kth modulated opti-
cal field in a WDM comb with kth propagation constant
(time domain)

√
W

Ãk(z, ω) normalized complex envelope of kth modulated optical
field in a WDM comb with kth propagation constant
(frequency domain)

√
Ws

bi(t) MZM driving ith data signal V
B Magnetic flux density V sm−2

Be one-sided 3-dB bandwidth of electrical filter Hz
Bo two-sided 3-dB bandwidth of optical filter Hz
Bo,eff effective optical filter bandwidth Hz
Bo,ref reference optical filter bandwidth Hz
∆B excess bandwidth
Ck symmetrical variance coefficients matrix of simplex k
d dimension of search space
dc duty cycle
di,k differentially encoded kth bit of ith sequence
D dispersion parameter ps nm−1 km−1

DSSMF SSMF dispersion parameter ps nm−1 km−1

DDCF DCF dispersion parameter ps nm−1 km−1

Df , Dl dispersion parameters of first and last wavelengths
within a WDM comb

ps nm−1 km−1

Dr dispersion parameter at reference wavelength λr ps nm−1 km−1

Dpre amount of pre-compensation of dispersion ps nm−1
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Dres amount of residual dispersion per span ps nm−1

Dacc amount of accumulated dispersion at the end of the link ps nm−1

Dpos amount of post-compensation of dispersion ps nm−1

D̂(t), D̂k(t) linear operator of the SSF method (for kth channel in a
WDM comb) (time domain)

m−1

D̂(ω), D̂k(ω) linear operator of the SSF method (for kth channel in a
WDM comb) (frequency domain)

m−1 s

DPMD PMD value ps
√
km

−1

D Electric flux density A sm−2

Dm diagonal matrix
e polarization state vector
ek bit error at sampling instant tk
E Electric field (time domain) Vm−1

Ẽ Electric field (frequency domain) V sm−1

Ek element of electric field (time domain) Vm−1

Ẽk element of electric field (frequency domain) V sm−1

Ex, Ey complex slowly-varying envelope of x/y component of
electric field (time domain)

Vm−1

Ẽx, Ẽy complex slowly-varying envelope of x/y component of
electric field (frequency domain)

V sm−1

E0(ω) amplitude of electric field (frequency domain) V sm−1

Ein, Eout input/ouput normalized electrical fields
√
W

EI, EQ in-phase and quadrature incident normalized electrical
fields

√
W

Ex(t), Ey(t) normalized received electrical fields in x/y polarizations
√
W

f frequency variable Hz
fc frequency of optical carrier Hz
fn frequency of nth subcarrier Hz
fp pulse carver driving frequency Hz
fs sampling rate Hz
∆f frequency separation Hz
f vector of functional evaluations
fr ranked vector of functional evaluations
F modal distribution
Fn noise figure ∅ or dB
Fn,total total noise figure ∅ or dB
g(t), g(k) pulse
G gain ∅ or dB
G(x) generator polynomial in x over GF(2r)
H magnetic field (time domain) Am−1
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H̃ magnetic field (frequency domain) A sm−1

Hk element of magnetic field (time domain) Am−1

H̃k element of magnetic field (frequency domain) A sm−1

He(f) electrical filter transfer function
Ho(f) optical filter transfer function
Ho,TX(f), Ho,RX(f) transmitter and receiver optical filter transfer functions

or bandwidths
Hz

Ho,WDM(f) WDM demultiplexer transfer function or bandwidth Hz
HI(f), HQ(f) delay line interferometer transfer functions
HRC(f) electrical raised-cosine pulse shaping filter
HCD(f) chromatic dispersion transfer function
I intensity Wm−2

I(t) photocurrent (time domain) A
I(tk) sampled photocurrent (time domain) A
In n× n identity matrix
J electric current density Am−2

k0 free space angular wave number m−1

k1 fiber’s core angular wave number m−1

kc fiber’s cladding angular wave number m−1

K(f1, f2) Hermitian kernel function
Kml element of Hermitian matrix
K Hermitian matrix
L fiber length km
Leff effective length m
LD dispersion length m
LNL nonlinear length m
Lspan fiber length per span km
LSSMF SSMF fiber length per span km
LDCF DCF fiber length per span km
Lopt
span optimum fiber length per span km

Ltotal length of fiber link km
Ms inverse DFT points
MA(i) moving average at iteration i
M magnetic polarization V sm−2

n refractive index
n normalized refractive index
n0 order of optical Gaussian filter
n1 fiber’s core refractive index
nc fiber’s cladding refractive index
n2 nonlinear index coefficient m2W−1
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ns number of shift registers
nph number of photons per symbol
nsp EDFA’s spontaneous emission factor

nx(t), ny(t) AWGN noise signals in x/y polarizations
√
W

N number of concatenated spans in a multi-span transmis-
sion link

Nb number of boundary points for the GOA
Ni number of iterations set for the GOA
Nmax maximum number of concatenated spans in a multi-span

transmission link
Ns number of subcarriers / DFT points
Nseq length of sequence
Nt total number of functional evaluations at iteration i

N̂(t), N̂k(t) nonlinear operator of the SSF method (for kth channel
in a WDM comb) (time domain)

m−1

N̂(ω), N̂k(ω) nonlinear operator of the SSF method (for kth channel
in a WDM comb) (frequency domain)

m−1 s

∆N increment in number of spans
p(t) dimensionless train of pulses

pk(z, t) kth modulated pulse within a train of pulses
√
W

P power W or dBm
P1 optical power of a logical one W or dBm
PASE average ASE noise power W or dBm
Pr power ratio
Ps receiver sensitivity W or dBm
Psl power of the side-lobes of a Nyquist pulse W or dBm
Psol soliton peak power W or dBm
PSSMF SSMF input power W or dBm
PDCF DCF input power W or dBm
∆P power difference dB

∆P
∗

mean optimum power difference dB
P linear pre-coding matrix
pn nth row of linear pre-coding matrix
P material polarization (time domain) A sm−2

P̃ material polarization (frequency domain) A s2m−2

Pk kth element of material polarization (time domain) A sm−2

P̃k kth element of material polarization (frequency domain) A s2m−2

Pb bit error probability
Pk probability to find a new optimum within simplex k
reff effective fiber core radius m
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r position vector m
rk kth row of the Ns ×Ns identity matrix
R responsivity of photodiode AW−1

Rs symbol rate S/s
RR(i) rank ratio at iteration i
sn nth subcarrier within one OFDM symbol
S dispersion slope parameter ps nm−2 km−1

Sr dispersion slope parameter at reference wavelength λr ps nm−2 km−1

S(z, t) complex slowly-varying envelope of modulated optical
field (time domain)

Vm−1

S̃(z, ω) complex slowly-varying envelope of modulated optical
field (frequency domain)

V sm−1

S parameters search space
Sk kth simplex
t time variable s
t′ local time s
tk sampling instant s
ts sampling time offset s
T signal duration s
T0 symbol/pulse duration s
Ts OFDM symbol duration s
∆TCD chromatic dispersion induced walk-off s
u(t), u1(t), u2(t) MZM driving voltage signals V
u(z, t), u(ζ, τ) dimensionless optical signal

Uk(z, t) normalized complex envelope of the kth modulated op-
tical field within a WDM comb (time domain)

√
W

Ũk(z, ω) normalized complex envelope of kth modulated optical
field within a WDM comb (frequency domain)

√
Ws

vg group velocity m s−1

v(t) pulse carver driving signal V
vbias pulse carver biasing voltage V
V normalized frequency
Vπ MZM driving voltage to produce a phase shift of π V
Vp pulse carver peak driving voltage V
xmn information symbol of the nth subcarrier at the mth

OFDM symbol
xn nth information symbol
x, y, z cartesian coordinates m
x information vector
x̂, ŷ, ẑ cartesian unit vectors



200 Appendix E � Notation, Symbols and Abbreviations

x vector of parameters to optimize
xv vertices of simplex
x
∗ optimum vector of parameters
dz step size of the SSF method (constant) m
dzn step size of the SSF method (variable) m
Zf wave impedance Ω

List of abbreviations

AM amplitude modulation
ASE amplified spontaneous emission
ASK amplitude-shift keying
AWGN additive white Gaussian noise
BD balanced detector
BER bit-error rate
c.c. conjugate complex
CCDF complementary cumulative distribution function
CD chromatic dispersion
CR span compensation ratio
CSRZ carrier-suppressed return-to-zero
CW continuous wave
D8PSK differential 8-PSK
DAC digital to analog converter
DCF dispersion-compensating fiber
DFB distributed feedback (laser)
DFT discrete Fourier transform
DGD differential group delay
DLI delay line interferometer
DM dispersion managed (links)
DPSK differential phase-shift keying
DQPSK differential quadrature phase-shift keying
DWDM dense wavelength division multiplexing
ECL external cavity laser
EDFA erbium-doped fiber amplifier
FDM frequency division multiplexing
FEC forward error correction
FM frequency modulation
FWHM full width at half maximum
FWM four-wave mixing
GF Galois field
GOA global optimization algorithm
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GVD group velocity dispersion
Ham Hamming pulse
HSPA high speed packet access
HWHM half width at half maximum
I in-phase
IAPR instantaneous-to-average power ratio
IBI inter-block interference
IEEE Institute of Electric and Electronic Engineers
IFWM intra-channel four-wave mixing
IM/DD intensity modulation / direct detection
ISI inter-symbol interference
ISPM intra-channel self-phase modulation
ITU International Telecommunication Union
ITU-T telecommunication section of the ITU
IXPM intra-channel cross-phase modulation
LFSR linear feedback shift register
LO local oscillator
LTE long term evolution
MGF moment generating function
MLE maximum likelihood estimator
MZM Mach-Zehnder modulator
NDM non-dispersion managed (links)
NLPR nonlinear phase rotation (method)
NLPS nonlinear phase shift (criterion)
NLSE nonlinear Schroedinger equation
NPN nonlinear phase noise
NRZ non-return-to-zero
OFDM orthogonal frequency division multiplexing
OOK on-off keying
OSNR optical signal-to-noise ratio
∆OSNR optical signal-to-noise ratio margin
OSNRacc accumulated optical signal-to-noise ratio
OSNRreq required optical signal-to-noise ratio
PAPR peak-to-average power ratio
PBS polarization beam splitter
PDF probability density function
PDM polarization division multiplexing
PMD polarization mode dispersion
PR pre-compensation ratio
PSD power spectral density
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PSK phase-shift keying
Q quadrature
QAM quadrature amplitude modulation
QPSK quadrature phase-shift keying
RC raised cosine
RX receiver
RZ return-to-zero
SBS stimulated Brillouin scattering
SC single-carrier
SDH synchronous digital hierarchy
SLR straight-line rule
SONET synchronous optical network
SOP state of polarization
SPM self-phase modulation
SRS stimulated Raman scattering
SSF split-step Fourier (method)
SSMF standard single-mode fiber
TF transfer function
TX transmitter
UMTS universal mobile telecommunications system
WDM wavelength division multiplexing
XPM cross-phase modulation
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Wellenlängenmultiplex bei 160 Gbit/s Kanaldatenrate. PhD thesis,
Technische Universität Berlin, Berlin, Germany, May 2005.



Bibliography 213

[RBF09] P. Ramantanis, H. Badaoui, and Y. Frignac. Quaternary sequences com-
parison for the modeling of optical DQPSK dispersion managed trans-
mission systems. In Optical Fiber Communication - incudes post deadline
papers, 2009. OFC 2009. Conference on, pages 1 –3, march 2009.

[Sal78] B. Saleh. Photoelectron Statistics. Springer Verlag, Berlin, 1978.

[Sav06] S.J. Savory. Optimum electronic dispersion compensation strategies for
nonlinear transmission. Electronics Letters, 42(7):407 – 408, march 2006.

[SBW87] N. Shibata, R. Braun, and R. Waarts. Phase-mismatch dependence of
efficiency of wave generation through four-wave mixing in a single-mode
optical fiber. Quantum Electronics, IEEE Journal of, 23(7):1205 – 1210,
jul 1987.

[Sch04] T. Schneider. Nonlinear optics in telecommunications. Springer, Berlin,
2004.

[SD09] W. Shieh and I. Djordjevic. OFDM for Optical Communications. Elsevier
Science, 2009.

[Sei10] M. Seimetz. High-order modulation for optical fiber transmission.
Springer, 2010.

[SH04] S. Savory and A. Hadjifotiou. Laser linewidth requirements for optical
DQPSK systems. Photonics Technology Letters, IEEE, 16(3):930 –932,
march 2004.

[Sha49] C.E. Shannon. Communication in the presence of noise. Proceedings of
the IRE, 37(1):10 – 21, jan. 1949.

[Shn89] D.A. Shnidman. The calculation of the probability of detection and the
generalized marcum q-function. Information Theory, IEEE Transactions
on, 35(2):389–400, 1989.
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