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Abstract

As scientific computing typically encompasses applications of computer simulation, numerical anal-
ysis and parallelized high-performance computing to solve various physical or technical problems
in diverse disciplines, adequate techniques are necessary for analyzing and interpreting the usually
very large resulting data sets. Therefore, suitable visualization algorithms are commonly used for
obtaining the necessary insight with respect to the intrinsic characteristics of such data sets.

As numerical simulations or physical computations often suffer from varying, erroneous or incom-
plete physical measurement input data or error sources in the used algorithm, the resulting data
sets are often neither deterministic, nor trustworthy. Therefore, one has to be aware that the
information contained in the data is affected by inherent uncertainty and cannot be regarded as
a reliable source for correct interpretations and assumptions. The data is often expected to help
answer questions on an initially defined problem and mathematical model formulation. However,
this can be done only by taking into consideration both the computed data and the derived uncer-
tainty measures. In order to allow a comprehensive interpretation of the data, uncertainty measures
and indicators have to be integrated into adequate visual representations. Due to the high impor-
tance of allowing reliable interpretations of data affected by uncertainty, uncertainty visualization
is regarded as one of the grand challenges in visual data exploration.

This PhD thesis provides significant contributions to this research direction. While introducing
several approaches for mathematically modeling uncertainty for visualization purposes, a variety of
algorithms is proposed, allowing a more comprehensive visualization and interpretation of multi-
dimensional uncertain scalar data sets. The thesis presents two novel concepts addressing the
problem of visualizing the positional and geometrical variability of prominent features like iso-
contours and iso-surfaces in 2D and 3D uncertain scalar data sets. Furthermore, a completely
new direction in uncertainty visualization is addressed: Novel visual algorithms are presented for
revealing relative uncertainties, i.e., possible data variations at different spatial points relative
to each other. Inferring such stochastic dependences allows analyzing variations of prominent
structures in the data. Two algorithms are presented for visualizing local and global correlations,
which serve as indicators for structural uncertainty in Gaussian distributed data sets. In addition,
a novel approach is discussed for analyzing the variability of derived higher-order quantities like
gradients in uncertain scalar data sets. The advantages of the proposed novel techniques are
demonstrated for several synthetic and real-world data sets in geophysical and weather forecast
scenarios.
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Zusammenfassung

Techniken der numerischen Computersimulation als auch des parallelisierten Hochleistungsrechnens
werden oft eingesetzt, um physikalische oder technische Probleme aus verschiedenen Disziplinen zu
lösen. Um die dabei generierten sehr großen Datensätze besser interpretieren zu können, sind
spezielle Analysemethoden notwendig. Dabei werden oft Visualisierungsalgorithmen verwendet,
um einen intuitiven Einblick in die spezifischen Eigenschaften eines Datensatzes zu erlangen.

Numerische Simulationen als auch physikalische Berechnungen basieren oft auf fehlerbehafteten
Messungen oder werden durch Fehlerquellen im Rechenprozess beeinflusst. Aus diesem Grund
sind die dabei gewonnen Daten oft weder deterministisch noch vertrauenswürdig. Des Weiteren
muss man sich bewusst sein, dass die in den Daten enthaltenen Informationen mit Unsicherheiten
behaftet sind und nicht als verlässliche Quelle für korrekt abgeleitete Annahmen oder Interpretatio-
nen dienen können. Nur die gleichzeitige Betrachtung von abgeleiteten Unsicherheitsgrößen und des
eigentlichen Datensatzes erlaubt eine verlässliche Beantwortung der dem Datengenerierungsprozess
zugrunde liegenden physikalischen oder mathematischen Fragestellungen. Dabei ist oft eine um-
fassende Interpretation der Daten nur dann möglich, wenn entsprechende Unsicherheitsgrößen oder
Indikatoren in die Visualisierung integriert werden. Aus diesem Grund wird die Unsicherheitsvisu-
alisierung als eine der zentralen Herausforderungen der visuellen Datenanalyse angesehen.

Die vorliegende Dissertation leistet mehrere signifikante Beiträge zum Forschungsgebiet der Un-
sicherheitsvisualisierung. Neben mehreren mathematischen Ansätzen zur Unsicherheitsmodelierung
werden vor allem neue Algorithmen vorgeschlagen, die eine umfassende Darstellung und Interpre-
tation von mehrdimensionalen unsicheren Datensätzen ermöglichen. Die Arbeit präsentiert dabei
zwei neue Konzepte zur visuellen Darstellung der positionellen und geometrischen Variabilität von
Iso-Konturen und Iso-Flächen in zwei- und drei-dimensionalen Datensätzen. Des Weiteren wer-
den neue Algorithmen zur Analyse von relativen Unsicherheitsgrößen präsentiert, die die visuelle
Darstellung der Datenvariabilität an verschiedenen Ortspunkten relativ zueinander zum Ziel haben.
Im Rahmen dieser komplett neuen Forschungsrichtung werden auch zwei neue Ansätze zur Visu-
alisierung von lokalen und globalen Korrelationswerten präsentiert, die als verlässlicher Indikator
für die strukturelle Unsicherheit in Datensätzen mit zugrundeliegender Gauss-Normalverteilung di-
enen können. Des Weiteren wird ein neuer Ansatz zur visuellen Darstellung der Variabilität von
Gradienten in unsicheren Datensätzen diskutiert. Die Vorteile der präsentierten neuen Methoden
werden anhand mehrerer synthetischer als auch realer Daten aus den Bereichen der Geophysik und
der numerischen Wettervorhersage erläutert.
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1
Introduction

In his 1962 book on numerical methods [Ham62], Richard Hamming stated his philosophy on
scientific computing: “The purpose of computing is insight, not numbers.” As scientific computing
typically encompasses applications of computer simulation, numerical analysis and parallelized
high-performance computing to solve various physical or technical problems in diverse disciplines,
adequate techniques are necessary for analyzing and interpreting the usually very large resulting
data sets. Therefore, suitable visualization algorithms are commonly used for gaining the necessary
insight into the intrinsic characteristics of such data sets.

As numerical simulations or physical computations often suffer from varying, erroneous, or incom-
plete physical measurement input data or error sources in the used algorithm, the resulting data
sets are often neither deterministic, nor trustworthy. Therefore, one has to be aware that the
information contained in the data is affected by inherent uncertainty and cannot be regarded as
a source for reliable interpretations and assumptions. The data is often expected to help answer
questions on an initial problem and mathematical model formulation. However, this can be done
only by taking into consideration both the computed data and the derived uncertainty measures.
In order to allow a comprehensive interpretation of data, uncertainty measures and indicators have
to be integrated into visual representations of the data.

Due to the high importance of a reliable interpretation of the data affected by uncertainty, uncer-
tainty visualization is regarded as one of the grand challenges in visual data exploration [Joh04].
The PhD thesis at hand provides significant contributions to this research direction: Besides intro-
ducing several approaches for mathematically modeling uncertainty for visualization purposes, a
variety of algorithms are proposed, allowing a more comprehensive visualization and interpretation
of multi-dimensional uncertain scalar data sets.

In this chapter, the data generation process with possible sources of uncertainty, as well as intrinsic
characteristics of uncertain data sets are covered in more detail. The term ‘uncertainty’ is defined
and classified with respect to a common topology. Furthermore, several approaches and possible
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1.1 Uncertain Data Sets

problems regarding uncertainty quantification and interpretation are discussed. This chapter also
contains an introduction to several application domains, where uncertainty analysis and its visu-
alization play a significant role. Finally, the contributions of this thesis are set into the context of
the current main challenges in uncertainty visualization.

1.1 Uncertain Data Sets

This section provides an overview on different types of numerical concepts and algorithms will be
provided, which typically produce data sets affected by inherent uncertainty. Furthermore, possible
uncertainty sources are discussed and the term ‘uncertainty’ is defined in this context.

Uncertain data sets often result from numerical simulations. Thereby, the term ‘simulation’ is
used according to its definition as the imitation of an operation of a real-world process or system
over time [BCN∗05]. Numerical simulations are commonly used for modeling complex natural
systems in engineering, chemistry, physics and biology. Although such systems can often be fully
described using adequate mathematical models, a closed-form analytic solution cannot be easily
derived in most cases. In such cases, numerical simulations substitute analytic solutions in order to
predict the behavior of the modeled (physical) system based on an initially given set of parameters,
observations or other conditions. The simulation problem of predicting the result of measurements
based on a complete description of a parameterized (physical) system is also known as the forward
problem [Tar05].

Typical applications for numerical simulations can be found in the domain of numerical weather
predictions. Such algorithms simulate the dynamic behavior of weather conditions (temperature
distribution, wind velocities, air pressure, etc.) based on complex mathematical models of the
earth’s atmosphere and oceans. Furthermore, current weather conditions are used as the initial
setup for the simulation process. This data can be obtained from a variety of different sources, like
terrain maps, radiosondes in weather balloons, as well as weather satellites [Ste07]. In addition to
measured initial weather conditions and mathematical models, certain meteorological processes are
represented by adequate parameterized models. The parameterization is used for physical phenom-
ena that are either too small-scale or too complex to be explicitly included in the mathematical
weather prediction model. For instance, the modeling of certain cloud formations on a local scale
can be done using appropriate parameter setups [NO07]. Based on the mathematical prediction
model, initial weather conditions and possible parameter settings, numerical weather prediction
simulations are able to compute a weather scenario for any future point in time.

Numerical forward simulations also have a strong impact on geophysical computations. Seismic
wave simulations model the propagation of seismic pressure and shear waves through the earth’s
mantle. Thereby, certain parameters characterizing the physical properties of geological subsurface

2 Tobias Pfaffelmoser



1.1 Uncertain Data Sets

structures (e.g., elasticity and material density parameters) are used as initial conditions for the
simulation run. In addition, the location and orientation of a wave source (e.g., earthquake epi-
center) has to be defined and included in the propagation model. Based on this setup, the (global)
wave propagation over time is computed using, for instance, finite differences or spectral element
methods [Gra96, KT99, KRT02].

Numerical simulations in weather prediction and seismic wave propagation are both based on the
setup of initial physical conditions and an eventual parameter setting. Therefore, simulation results
can be highly dependent on certain parameters and can also reveal a variation in spatial sensitivity
with respect to the initial conditions.

Another group of data sets, which are affected by uncertainty, result from inverse problems. Inverse
problems represent the complement of the simulation forward computations. For a given measurable
physical (dynamic) observation, an inverse problems asks for the parameters causing the observed
phenomenon. In general, an inverse problem framework converts the observed measurements to
obtain parameters characterizing the underlying (physical) object or system. A typical example
for inverse problems can be found in seismic tomography. For a given observation of seismic waves
(recorded seismograms), originating from earthquake epicenters, an inverse problem computes the
parameters describing the material characteristics of subsurface structures. Seismic waves are trav-
eling through these structures from the epicenter to the receivers on the earth’s surface. Compared
to the seismic wave simulation discussed above, this concept follows the exact opposite or inverse
direction, as parameters are derived from the wave propagation. A detailed introduction into the
inverse theory and its application in seismic tomography can be found in [Tar05]. The forward or
simulation problem usually has a unique solution in deterministic physics. However, for inverse
problems, the solution is often not unique and highly dependent on the amount and quality of the
measured and observed input data. Therefore, inverse problems are often modeled and resolved
using probabilistic theory and represent accordingly a class of data generation processes where
uncertainty plays a significant role during the computation and the interpretation phase.

1.1.1 Sources of Uncertainty

The previous section outlined that most data generation processes in simulation and inverse com-
putation rely on the initial setting of certain observed physical conditions or specific parameters
modeling critical parts of the computation process. As this information is often not deterministic
and affected by diverse types of errors, the resulting data of the computation process is also not re-
liable and should not be used for any type of analysis or interpretation without taking into account
the inherent uncertainties. This subsection will shed light onto different sources that can introduce
uncertainty in the already discussed types of data generation processes. In [PWL97, Pan08] sources
of uncertainty are classified in three groups: acquisition, transformation and visualization.

Tobias Pfaffelmoser 3



1.1 Uncertain Data Sets

The data acquisition process covers the generation of initial input data for the respective simulation
or inverse computation algorithm. For instance, in numerical weather prediction, the initial weather
conditions are obtained by physical measurements (e.g., temperature, air pressure, etc.) using
different kinds of sensors in the atmosphere. In seismic tomography, the acquisition process covers
the recording of seismic wave amplitudes and frequencies using seismometers all over the world.
In all acquisition scenarios, uncertainty can be introduced due to mis-calibrated instruments and
erroneous measurements. Furthermore, background noise can significantly influence the correct
recording of physical data. Apart from defective measuring instruments, a non-sufficient data
coverage can introduce a considerable amount of uncertainty in the acquisition stage. For instance,
if only a small number of seismic data is available for a certain part of the earth, e.g., due to a
small number of recorded earthquakes, the physical properties of subsurface structure cannot be
reliably resolved for the respective region, due to the ill-posed nature of the inverse problem. Note
that quantifying the uncertainty introduced by missing or incompletely input data is often even
more challenging than modeling the error range of instruments or the environmental background
noise corrupting the data during the measuring process.

After the acquisition stage, the obtained data is further processed according to the respective
simulation or inverse algorithm. During this transformation phase further uncertainties can be
introduced. The loss of reliability is often caused by the computational accuracy or different filtering
techniques applied to the original data, such as down-sampling, re-scaling, quantization, condition
effects or interpolation. The introduced amount and type of uncertainty is highly dependent on the
overall algorithm design. As the transformation of the original data follows strict deterministic rules,
the introduced error can be quantified more easily than during the acquisition stage. Therefore,
this type of error is also called systematic uncertainty [Pan08].

Both the acquisition and transformation stage introduce uncertainties, which directly affect the
resulting data of the respective algorithm. For analyzing and interpreting the results, a final
visualization stage is necessary. Although the visualization is generally meant to reveal hidden
information in often rather abstract data sets, it is important to note that applied visual algorithms
can even introduce uncertainties themselves. They often result from approximations (e.g., radiosity
algorithms in 3D illumination) or filtering stages like interpolation. Apart from errors at the data
level, the use of non-adequate rendering techniques (e.g., direct volume rendering vs. iso-surface
extraction in 3D) can also lead to false assumptions or misinterpretations.

Although all three stages can introduce different kinds of uncertainty, which can negatively influ-
ence the interpretation of the data, the transformation and visualization uncertainty are usually
negligible compared to the uncertainty introduced during the acquisition process. Therefore, only
this source is considered in the literature regarding uncertainty visualization. This thesis will not
differentiate between uncertainty sources and only consider the acquisition process for developing
adequate visual uncertainty representation techniques.
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1.1 Uncertain Data Sets

1.1.2 Typology of Uncertainty

Although the terms ‘uncertainty’ and ‘error’ have been used interchangeable throughout this thesis,
a clear definition is still missing. However, in general, the term ‘uncertainty’ is affected by a highly
ambiguous terminology and compasses different concepts, which are used for expressing certain
characteristics in different contexts [GS06]: Error expresses the deviation from a true values,
imprecision indicates the resolution of a value compared to the needed resolution, accuracy models
the size of an interval a value lies in, lineage is used for indicating if the data is provided at first
or second hand, subjectivity expresses the degree of subjective influence in the data, non-specificity
can be regarded as a lack of distinctions for objects and noise indicates undesired background
influence.

Furthermore, the National Institute of Standards and Technology (NIST) distinguishes four dif-
ferent concepts of uncertainty [TK94, PWL97]: Statistical uncertainty is represented by a mean
and standard deviation value, error indicates the difference between a correct true value and an
estimate, a range is used for expressing an interval in which the data must exist and scientific
judgment based on all relevant known general knowledge. Other definitions include reliability, ig-
norance, clearness, distinctivenes and many more. A more detailed overview on the typology of
uncertainty can be found in [THM∗05].

All definitions and classifications of ‘uncertainty’ have in common that they always express some
degree of imperfection of the user’s knowledge about the resulting data, the initial conditions or
the numerical process. In this thesis, the term ‘uncertainty’ is differentiated from ‘error’ following
the definitions given in [HG93, MRH∗05, DK97]: The deviation from a known true value is called
error. In this case, the inaccuracy is known objectively. However, uncertainty covers a broader
range of inaccuracy than error, as it refers to knowledge of possible deviations from the true
value, but without knowing either the exact value or the magnitude of the deviations. Therefore,
the concept of uncertainty does not allow any assumption on the exact true value. However,
uncertainty quantification techniques can determine intervals or distributions that provide hints on
the unknown exact value.

In addition to the more general notion of uncertainty, the term of probabilistic resolution is intro-
duced and used in this thesis several times. It is closely related to the idea of resolution of data
resulting from inverse problem solutions [Tar05]. Probabilistic resolution refers to the appearance
of certain pre-defined events in the data under uncertainty. A feature in the data (e.g., an iso-
contour, a critical point, a sharp transition, etc.) will be called well-resolved, if its appearance can
be guaranteed with a certain credibility or confidence based on the given uncertainty. Thereby, a
stochastic or statistic model of the underlying uncertainty is often necessary. Where uncertainty
describes the lack of knowledge at the data level, probabilistic resolution can be used to assess the
appearance of certain prominent features or structures in the data according to their reliability
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under uncertainty. This concept can directly influence the analysis and interpretation process of
the data by the respective user.

1.2 Uncertainty Analysis

The consideration of possible uncertainties in the interpretation process of data sets can help to draw
more reliable conclusions or even increase the degree of insight into the contained information. This
section will provide an overview on uncertainty quantification techniques and will present prominent
application areas where a profound uncertainty analysis can be of fundamental importance.

Scientific data sets, as discussed in section 1.1, serve typically one of two main purposes. The
first motivation for the data generation process could be the desire to gain new insights into a
pre-defined more abstract problem or a concrete physical phenomenon. In this case, the main
purpose of the data generation process is a desired increase in knowledge or the validation of a
pre-defined hypotheses. For uncertain data sets, the ignorance of the underlying uncertainty could
result in false assumptions or misinterpretations. This would result in an unreliable increase of
knowledge. A typical example would be the already discussed seismic tomography: the ignorance
of uncertainty data could result in false assumptions on the material and structural characteristics
of the earth’s interior. Wrong interpretations would also influence other research areas. This can
only be avoided by using a fundamental uncertainty analysis. As this examination would mainly
assess if the generated knowledge is reliable, it will be called reliability analysis.

Apart from the simple generation of new knowledge, data sets can be also used as a basis for
decision making processes. Complex problems in diverse disciplines often demand decision making
under conditions of uncertainty, lack of knowledge and ignorance by both engineers and scientists
[Ayy06]. As decisions based on uncertain information can have far more severe implications than the
simple generation of unreliable knowledge, an extensive uncertainty analysis is even more essential.
The numerical weather prediction, as well as the seimsic wave propagation can serve as examples.
Surface wave simulations are often run to examine the impact of earthquakes on certain areas on the
earth’s surface in order to identify potential high-risk regions. If certain actions are derived from
this information, their potential inherent risk is directly linked with the underlying uncertainty of
the data. Therefore, the uncertainty analysis for data sets, used for decision making processes, will
be classified as risk analysis.

1.2.1 Uncertainty Quantification

Understanding both the reliability of data and making sound decisions require the knowledge of
which parts of the data sets are affected by uncertainty and adequate quantitative computations
thereof [Ger98]. This can be achieved using suitable uncertainty quantification techniques.
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For simulation processes, the question to be approached is how uncertainties in the input data
(initial conditions, parameters, etc.) are propagated by the simulation algorithm to the final result.
If a complete mathematical description of the simulation process is available and if sensitivity
measures can be derived for all input variables without large computational efforts, the impact of
variability in the input on the output can be determined analytically. For this scenario, uncertainty
quantification is directly related to the area of sensitivity analysis, which focuses primarily on the
relation between input and output data [AH07]. However, in most scenarios, the overall problem
and the used algorithm are far too complex for an analytical sensitivity analysis. Then, the effect
of variations in the input on the output data has to be quantified by performing several simulation
runs. A typical example for uncertainty quantification in simulation processes is the generation of
ensemble data sets. It is assumed that the initial conditions or the parameter setting are affected by
uncertainty. This is typically the case for e.g., weather prediction simulations. The uncertain initial
setup is considered by performing multiple simulation runs for slightly changed initial parameters
or conditions. The resulting collection of simulated data sets is called ensemble. The local or global
variation of data present in the ensemble is directly related to the parameter uncertainty and the
sensitivity.

For inverse problems, the quantification of uncertainties via direct computations is far more complex
and mostly only possible for linear scenarios [FWA∗11, ABT12, Tar05, ZT07]. For non-linear or
large-scale problems (e.g., in seismic tomography), Bayesian frameworks and Markov Chain Monte
Carlo techniques (MCMC) are used for both the inverse computation and uncertainty quantification
[MS02, ABT12, GFWG10, GCN∗09, MT02, Tar05]. Opposite to simulation runs, inverse problems
ask for the initial parameter setting, which generates an observed data set (cf. 1.1). MCMC
techniques sample the parameter space, generate forward solutions and compare this data to the
given observation using a fitting function. They can generate an ensemble of parameter sets that
solve the inverse problem equally and result in the same final fitting error (cf. section on Monte
Carlo sampling in [Tar05]). The resulting ensemble data set and possible inherent data variations
directly represent the underlying uncertainty and can be further processed using either statistical
processes or stochastic models. Note that the number of ensemble members needed for a reliable
uncertainty quantification increases exponentially with the total number of parameters.

Apart from sensitivity analysis and Monte Carlo techniques, there are several other methods avail-
able for quantifying uncertainties in simulation or inverse processes. For instance, insight in un-
certain data structures can be obtained by comparing the results of the data generation process
with former results or common knowledge on the expected resulting information [TK94]. Further
approaches could include statistical hypothesis tests, which also try to ask and answer certain
questions on the data [SBSS06, PKRJ10] and interactive techniques where the user can make the
uncertainty quantification dependent on, e.g., spatial or temporal conditions. Common approaches
use concepts of information theory for quantitatively identifying uncertainties in data sets. Typ-
ically, information entropy is used for showing and analyzing uncertain structures in the data
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[WRL12, XLS10].

Although most uncertainty quantification techniques aim at analyzing the propagation process
between input and output data, the impact of the algorithm itself must not be ignored. In most
inverse computation algorithms, specific regularization techniques are applied in order ‘smooth out’
regions with low data coverage and to stabilize the overall numerical process [Tar05]. However,
regularization effects can have a strong impact on the propagation by suppressing the input uncer-
tainty and can lead to misinterpretations. Therefore, additional knowledge on the algorithm design
and possible side effects can significantly improve the overall uncertainty quantification and inter-
pretation process. Detailed information on regularization effects and prior vs. posterior uncertainty
concepts can be found in [FWA∗11, Tar05].

1.2.2 Application Domains

Uncertainty analysis is a crucial task in many application areas, where an adequate risk or reliability
assessment is necessary. In this subsection, a small selection of applications is presented.

This thesis will focus on the already introduced main application areas of uncertainties in weather
prediction and seismic tomography (cf. [SBSS06]) scenarios. Throughout the following chapters,
specific characteristics, interpretations, as well as challenges with respect to uncertainty quantifi-
cation in these areas will be discussed.

In general, uncertain information arises typically in environmental sciences and especially in sce-
narios involving natural hazards like wind, flood or earthquakes [Ayy06, Pan08, WFR∗10]. Such
scenarios often involve business or political decision-making processes based on an extensive risk
assessment [BAF08]. Furthermore, uncertain data can be found in other geo-statistical or cartog-
raphy and GIS domains, often based on vision operations or image processing [BFW02, Kyr03,
MRH∗05].

Further areas can comprise medical applications (e.g., MR spectroscopy [FKLTI10] or guided vol-
ume segmentation [PRH10]), architectural reconstructions [GS05], air quality studies [PdJB07],
astrophysics [LFLH07] and many more.

1.3 Challenges for Uncertainty Visualization

For making a comprehensive analysis and reliable interpretations of uncertain data sets possible,
adequate visualization techniques are necessary in order to communicate the relevant information
to data analysts or decision makers. Uncertainty visualization is still regarded as one of the grand
challenges in visual computing [Joh04], as most published techniques do not address a comprehen-
sive communication of uncertainty characteristics on a satisfactory level. Furthermore, the existing
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literature is inconsistent on the best approaches and concepts for specific problems in uncertainty
visualization [BAF08]. In the following, an overview of grand challenges in uncertainty visualization
is provided.

Reliable visualizations of uncertain data sets require suitable mathematical models for providing
necessary parameter values or probabilities as input for the rendering stage. However, most current
visualization techniques do not include sophisticated stochastic or statistic formulations of the
underlying uncertainty in scalar data sets. They often limit themselves to abstract indicators or
heuristic models without profound mathematical models. Using a correct and clear formulation
of uncertainty as basis for further rendering techniques does not only allow a more intuitive and
comprehensive interpretation of the generated visual uncertainty effects, but could even offer new
insight related to specific uncertainty structures (e.g., stochastic dependences).

Uncertainties in data sets are often modeled via specific probability distributions (e.g., Gaussian
distribution), which can either be used directly for visualization purposes or serve as a basis for
the derivation of certain uncertainty parameters (e.g., standard deviation). In this context, inter-
pretations of resulting visualizations would highly benefit from further research on the impact of
different distribution assumptions on the visual result. Furthermore, techniques have to be devel-
oped for both cases where uncertainty is represented as distribution or by derived parameters, as
both approaches have different pros and cons in different contexts. Reliable and comprehensive
uncertainty visualization frameworks have to take this into consideration.

Typically, uncertainty is given, or can be computed, as additional auxiliary information to the actual
resulting data of a simulation or inverse process. In order to allow a comprehensive interpretation, in
most cases both the actual data and the uncertainty information have to be integrated in one visual
representation. This is a challenging task due to a limited number of visualization channels (e.g.,
color, opacity, glyphs, etc.) or due to severe cluttering effects or artifacts. Uncertainty information
has to be linked to the actual data without overloading the final visual representation. This
challenge of a context-aware visualization could also include the correct uncertainty representation
with respect to further entities like spatial position and time.

Uncertainty information is typically integrated in visual representations at a data level. For in-
stance, parameters like standard deviation are mapped to color at certain spatial positions. How-
ever, in many approaches, data sets are visualized by the extraction of specific features. For
instance, 3D volume data can be visualized by an intermediate iso-surface representation. Visual-
izing uncertainty on a data level would not reveal any information on possible variations (e.g., in
position) of the iso-surface. Therefore, specific transformation models and algorithms are neces-
sary in order to derive uncertainty measures for multi-dimensional data features (e.g., iso-surfaces,
critical points, vortices, etc.) from the given data uncertainty model.

Current approaches only visualize uncertainties with respect to the actual data values at certain
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spatial positions of a data set. However, the effect of uncertainty on differential quantities like
gradients, Hessian data, curvature, etc. is neglected. In order to analyze the variability of certain
structures in the data or the geometric shape of features (e.g., surfaces), uncertainty visualization of
higher-order data entities would be necessary. Furthermore, auxiliary uncertainty parameters (e.g.,
covariance, correlation, etc.) could help to analyze stochastic dependences or structural instabilities
in the data with respect to its variability. For integrating this kind of information, new models
and techniques for both the uncertainty quantification, representation and rendering stage would
be necessary. This has not been addressed for scalar data sets in common uncertainty visualization
approaches.

The integration of uncertainty information in visualization algorithms could significantly increase
the overall data amount. Furthermore, additional visual effects could slow down the rendering
performance. Therefore, an efficient implementation (e.g., based on GPU computations), as well
as suitable data models, possible approximations and storage algorithms are necessary in order to
allow an interactive and comprehensive exploration of uncertain data sets.

1.4 Contribution

This thesis focuses on uncertain 2D and 3D scalar data sets, originating from simulation processes
and inverse problems. By introducing novel techniques for addressing several aforementioned chal-
lenges, the following chapters make a significant contribution to an improved and more intuitive
visualization and understanding of uncertain information. Furthermore, the presented techniques
address the main visualization challenges mentioned before.

In order to provide more accurate and reliable visualizations, all presented algorithms are based
on more sophisticated stochastic or statistic models. The extended integration of suitable mathe-
matical formulations does allow a more intuitive understanding of the presented visual effects and
provide additional insights with respect to the possible impacts of uncertainty on the actual data.

This thesis presents two novel concepts addressing the problem of visualizing the positional and
geometrical variability of iso-contours and iso-surfaces in 2D and 3D uncertain data sets. The first
framework introduces mathematical concepts for translating data- to positional iso-surface uncer-
tainty and suggests an incremental update scheme for efficiently integrating uncertainty information
into front-to-back volume ray-casting. Thereby, a Gaussian probability distribution is assumed for
modeling the underlying uncertainty. Although the positional variability of iso-surfaces has al-
ready been covered in the literature, the presented framework considers correlation structures and
therefore stochastic dependences in the data and accounts both for homogenous and anisotropic
correlation. The use of this auxiliary data results in a more accurate computation of the positional
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probability distribution of iso-surfaces. Furthermore, the update scheme and the correlation inte-
gration with the ray-casting process makes the visualization results independent of the ray-sampling
rate and allows for highly interactive frame rates.

The second novel algorithm focuses on the positional uncertainty of iso-contours in 2D ensemble
data sets. The presented approach introduces a statistical framework for deriving spatial prob-
ability density and distribution functions for arbitrary non-parametric iso-contour distributions
in uncertain 2D data sets. Furthermore, the technique is able to analyze the modality of posi-
tional contour distributions and allows assumptions on the iso-contour uncertainty topology in
the respective ensemble data sets. Although many uncertainty visualization approaches rely on
the more simple assumption of underlying parameterized Gaussian probability distributions, the
presented framework can be regraded as a first step into the direction of distribution-independent
non-parametric uncertainty visualizations.

Apart from uncertain iso-surfaces and iso-contours, this thesis address a complete new direction
in uncertainty visualization. Typical approaches take only local uncertainty measures (e.g., stan-
dard deviation) into consideration, which are related to one single entity, like a value at a discrete
spatial position in the data set. This thesis presents novel visual algorithms for revealing relative
uncertainties, i.e., possible data variations at different points relative to each other. Inferring such
stochastic dependences allows to analyze variations of certain prominent geometric structures (e.g.,
curvature, orientation, etc. of surfaces/lines). On the one hand, two algorithms are presented
for visualizing local and global correlations, which serve as indicators for structural uncertainty in
Gaussian distributed data sets. Furthermore, a comprehensive introduction to correlation struc-
tures and their importance for reliable uncertainty visualization techniques is provided. On the
other hand, a novel approach is discussed for analyzing the variability of higher-order quantities
like gradients in scalar data sets. As only uncertainty at the data level for single values has been
covered by many algorithms so far, the presented visualization framework introduces both suitable
mathematical models for deriving the necessary quantities and rendering techniques for displaying
variations in gradient magnitude and orientation for the first time. The resulting visualizations
allow a better assessment of the stability of certain features (e.g., contours, ridges, valleys, etc.) in
the uncertain data sets.

1.5 Outline

In the following chapter 2, diverse mathematical concepts are presented for modeling uncertain
data sets stochastically and for obtaining necessary parameters and indicators, which serve as
data basis for further uncertainty visualization algorithms. Chapter 3 provides an overview on a
selection of the most prominent methods and introduces the main concepts and principles with
regard to uncertainty visualization. Chapter 4 introduces several novel approaches for visualizing
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the positional and geometrical uncertainty of iso-contours and iso-surfaces in 2D and 3D uncertain
scalar data sets. In chapter 5, several novel techniques for visualizing the structural uncertainty of
specific features or data distributions in 2D and 3D scalar data fields are proposed. The presented
approaches make a significant contribution to the field of uncertainty visualization, as they clearly
show how the structural uncertainty analysis can reveal information about uncertain data sets that
cannot be obtained by traditional methods. Chapter 6 summarizes the main contribution presented
in this thesis and provides an overview on interesting directions for future research.
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2
Mathematical Foundations

For achieving reliable visualization result, a thorough mathematical modeling of inherent uncer-
tainties in data sets is essential. As stated above, suitable stochastic or statistic concepts can
both support the interpretation process and reveal novel information with respect to uncertainty
structures. In chapter 1 the term ‘uncertainty’ with respect to scalar data values was defined as
deviation of data samples from a true or assumed value without exact knowledge of its magnitude.
In the following, diverse mathematical concepts are presented for modeling uncertain data sets
stochastically and obtaining necessary parameters and indicators, which serve as data basis for
further uncertainty visualization algorithms.

In the following, it is assumed that uncertain scalar data sets are given as discrete sampling of
mapping from a continuous, bounded spatial domain S ⊂ R3 into R. The sampled domain is
represented by a finite set of n spatial points

Sn := {xi | xi ∈ S, i ∈ {1, 2, ..., n}} ⊂ S. (2.1)

Note, that for defining an uncertainty model no explicit assumption on the sampling structure of
the domain and the position of the sampling points xi is needed. For instance, it could represent
either regular or irregular grid types. Throughout this thesis, the discrete sampling Sn is mainly
identified with a regular Cartesian grid, but clarified in detail in the respective chapters.

The scalar output data of different generation processes (e.g., simulation, inverse computation, etc.)
can be modeled as data function

y : Sn −→ R, x 7−→ y(x). (2.2)

For each discrete spatial point x ∈ Sn, one data value y(x) is given. Simulation runs can Monte
Carlo methods can produce data ensembles which represent a certain variation in the output values.
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An ensemble Em with m ensemble members is defined as set of data functions

Em := {yi | yi : Sn −→ R, i ∈ {1, 2, ...,m}}. (2.3)

Each ensemble member yi represents one mapping from the discrete domain points in Sn to real
scalar values.

2.1 Uncertainty Modeling

For uncertain data sets, the mapping from the domain points in Sn to real numbers is non-
deterministic. Therefore, it is not possible to assign to each spatial domain point one fixed scalar
value, as the exact or true value is unknown. This section covers concepts for modeling this uncer-
tainty at different spatial points.

2.1.1 Random Variables

The uncertainty in assignment of scalar values to spatial points can be modeled by a random
function

Y : Sn −→ R, x 7−→ Y (x), (2.4)

where for each sampling point x the mapping Y (x) is considered as random variable. A random
variable represents a variable whose possible values are non-deterministic and subject to variation
due to uncertainty. Conceptually, it can take on different possible values, which can be assigned
to specific probability values. Note, that random variables are originally defined as mappings from
abstract stochastic events to real numbers. However, in the context of numerical data sets, the
stochastic ‘event’ at each spatial domain point is the assignment of a real value to this point.
Therefore, no differentiation is made between stochastic events and potentially assigned real values
and consequently the random variables directly represent the uncertainty of the data values.

Furthermore, the random variables may also represent the outcome variability of an uncertain
process. For instance, in this context, the random variable Y (x) can serve as representative of
a possible data ensemble y1(x), y2(x), ..., ym(x). Note, that random functions can be treated the
same way as deterministic functions. It is possible to derive higher-order quantities (e.g., gradients)
or to apply further transformations. However, the respective results are also non-deterministic and
therefore random variables.

Note, that random variables serve only as abstract model for the presence of uncertainty. They do
not refer to neither any information on the true value nor to any kind of prescribed distribution
function. Furthermore, a random function, defined on a discrete set Sn of spatial points, can be
interpreted as random vector Y with m components Yi := Y (xi). This random vector is also called
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multi-variate random variable, where ‘multi-variate’ expresses the aggregation of several single
random variables as components in one vector.

2.1.2 Probability Space

The introduced random variable concepts indicate that the scalar values at the spatial points are
uncertain and non-deterministic. As next step, a mathematical measure has to be introduced to
assess the probability of possible outcomes of a (multi-variate) random variable. For instance,
for numerical uncertain scalar data set with modeled uncertainty at the spatial domain points by
random variables, a suitable measure would indicate the occurrence probability of certain value
ranges among the real numbers for respective random variables.

In the following, the mathematical construct of a probability space is introduced, which quantita-
tively models a real-world process consisting of states affected by uncertainty. In the following,
the concept is applied to a random variable modeling real values at a specific spatial point affect
by uncertainty. The probability space is often also called probability triple (Ω,F ,P), consisting of
three parts [KMBR56]:

The sample space Ω is a set containing all possible outcomes of the modeled process. For a random
variable representing possible real scalar values, the setting Ω = R would hold true.

The σ-algebra F is a set containing all possible measurable stochastic events, which might be
considered for measuring their respective probability. An event is a subset of the sample space Ω.
If a real-valued random variable is measured, the σ-algebra contains, for instance, all possible open
and closed intervals in R. Note, that probability values according to chosen measure can be only
assigned to elements in F . For instance, by selecting an interval [a, b] ∈ F one could computes a
probability value that the random variable assumes a real value in this interval.

The probability measure P is function returning a probability value for a particular event. The
probability value is a real number between zero and one:

P : F −→ [0, 1], A 7−→ P(A) (2.5)

A probability measure must satisfy the two requirements P(Ω) = 1 and that the probability of the
union of several countable disjoint events in F is equal to the sum of the probabilities of each of
the respective events:

P
(⋃

i

Ai

)
=
∑
i

P(Ai), Ai ∈ F , Ai ∩Aj = ∅, i 6= j (2.6)

Thus, it is guaranteed that the definite event, that the value of the random variable is contained
in the sample space, is equal to 1 and the probability measure is countably additive.
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Note, that not necessarily every subset of Ω can be considered as measurable event in F . For
instance, for Ω = R, the event that a random variable assumes a irrational number is not measurable
and the respective probability would be zero. In general, only events with a non-zero Borel measure
(cf. e.g., [Wei74]) can receive a non-zero probability value. For instance, the typical Borel measure
µ for the real line Ω = R would be µ([a, b]) = b − a. Therefore, for the event that the random
variable Y assumes a particular value x in R, P(Y = x) = 0 holds always true, as µ(x) = 0. Note,
that the Borel measure coincides with the Lebesgue measure on every measurable set.

2.2 Probability Distributions

As this thesis focuses on uncertain numerical data sets, resulting from simulation or inverse pro-
cess, it can be assumed that the resulting data values at the given spatial points are real numbers.
Without loss of generality, it is assumed that the stochastic sample space for a data set, given
on a discrete spatial domain Sn, can be written as Ω = Rn for a multi-variate random vector
Y = (Y (x1), Y (x2), ..., Y (xn))>. Thus, each component Y (xi) has its own sample space Ωi = R.
Therefore, in the following, continuous probability distribution functions are introduced for char-
acterizing probability measures for stochastic events related to the real-valued random variables.

2.2.1 Distribution Functions

In general, a probability distribution P assigns to each Borel measurable event in F a probability
value according to Equ. (2.5). For a random variable with Ω = R, the σ-algebra contains all open
and closed intervals as well as disjoint unions of them on the real line. As the probability measure is
countably additive by definition, a probability value can be derived for every element in F by only
defining probabilities for all open intervals ]∞, a]. For instance, the probability for an arbitrary
closed interval [a, b] in R can be computed as

P(Y ∈ [a, b]) = P(Y ∈]∞, b])− P(Y ∈]∞, a]) (2.7)

The probability distribution of the random variable Y is completely characterized by the definition
of the cumulative distribution function (CDF)

FY (y) := P(Y ≤ y), y ∈ Ω = R. (2.8)

The cumulative distribution function expresses the probability that a real-valued random variable
Y assumes a value less than or equal to y.

Although it is possible to characterize the probability distribution for Y by defining a suitable
cumulative distribution function, typically the probability density function (PDF) fY is utilized for
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this purpose. The relation between the CDF and PDF is given by

FY (y) =
∫ y

−∞
fY (u) du. (2.9)

The probability for the random variable Y to fall within a certain range in R can be computed
by integrating the PDF over the respective range. In general, the density function describes the
relative likelihood for the random variable to take on a certain value in R. Note, that the single
likelihood values can be only used for a relative comparison of the probability weights or densities
between certain regions in the sample space. However, they do not express the probability that Y
takes on a specific single value in R. For this probability the equation P(Y = y) = 0 always holds
true as Borel or Lebesgue measure of the interval [y, y] in R is always zero.

Note, that probability density functions are typically utilized as initial characterization for the
probability distribution of a random variable. The cumulative distribution function is than derived
by using Equ. (2.9). As PDF every positive and integrable function can be used with the only
requirement ∫ ∞

−∞
fY (u) du = 1. (2.10)

So far, only cumulative distribution and density function have been introduced for the 1D sample
space ω = R. However, similar definitions exists for multi-variate random variable Y. For a given
n-dimensional PDF over the domain Ω = Rn, the respective cumulative distribution function is
obtained as

FY(y) = P(Y ≤ y) = P(Y1 ≤ y1, Y2 ≤ y2, ...) =
∫ y1

−∞

∫ y2

−∞
...fY(u1, u2, ...) du1 du2 ... . (2.11)

Note, that by integrating over all except one components of Y, one obtains again a probability
density function

fYi(yi) =
∫ ∞
−∞

...

∫ ∞
−∞

∫ ∞
−∞

...

∫ ∞
−∞

fY(u1, ..., ui−1, yi, ui+1, ..., un) du1 ...dui−1 dui+1 ...dun. (2.12)

This PDF is called marginal probability density and models the probability distribution of the
random variable Yi = Y (xi) at the single spatial domain xi.

2.2.2 Characteristic Values

The probability density function over the domain Ω = R provides the full information on the
probability distribution of a real-valued random variable Y . However, as in many cases handling the
full function is not feasible, certain critical values are utilized for describing the main characteristics
of the probability density:
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The probability density function returns likelihood values. For a continuous sample space, they are
not equal to probability values due to the zero Lebesgue measure of single real values (cf. 2.2.1).

The mode represents the value in Ω where the PDF reaches its global maximum. It is often also
called maximum likelihood value. Note, that the mode indicates the region in the sample space
where the most likely values are position but, however, is not necessarily equal to the stochastic
expected value.

The modality of a density function counts its number of local maximums. For instance, an uni-
modal distribution has one maximum and one major peak, a bi-modal desnity function two main
peaks and so on.

The expected value or mean represents the weighted average of the sample space values using
the probability density values as weight. For a given real-valued random variable Y with known
probability density function fY the expected value E(Y ) is defined as

E(Y ) :=
∫ ∞
−∞

ufY (u) du. (2.13)

The variance measures the spread or dispersion of a probability distribution and is defined as

Var(Y ) :=
∫ ∞
−∞

(u− E(Y ))2fY (u) du. (2.14)

It represents the mean squared distance between all sample space values and the expected value
E(Y ). The mean distance is given by the standard deviation which is defined as square root of the
variance

Std(Y ) :=
√
Var(Y ). (2.15)

Note, that the standard deviation is a direct indicator of the dispersion of the probability distribu-
tion and therefore of the data uncertainty modeled by the random variable.

The median represents the value in the sample space, which there is a probability of 0.5 that the
random variable takes on either a value above or below the median. The median m is defined by
the equation ∫ m

−∞
fY (u) du = 0.5. (2.16)

For multi-variate distributions, the covariance between two random variable or components of a
random vector is an important characteristic, whose impact on uncertainty analysis will be discussed
in more detail throughout the following chapters. The covariance Cov(Y,Z) between two random
variables Y and Z with given bi-variate probability density function fY Z is defined as

Cov(Y,Z) := E((Y − E(Y ))(Z − E(Z))) =
∫ ∞
−∞

∫ ∞
−∞

(u− E(Y ))(w − E(Z)) dudw. (2.17)
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Closely related to the covariance is the correlation between two random variables. The correlation
coefficient, also known as normalized covariance, is defined as

Corr(Y, Z) := Cov(Y,Z)
Std(Y ) Std(Z) . (2.18)

The importance of the correlation for the uncertainty analysis and possible significant contributions
for a more reliable uncertainty visualization is discussed in chapter ...

Note, that distribution functions can be characterized by diverse other parameters like skewness,
kurtosis, symmetry, etc. However, as these measures are not considered in the stochastic concepts
introduced in this thesis, they are not discussed in detail in this section.

2.2.3 Normal Distribution

Probability distribution functions are means for quantitatively describing the uncertainty modeled
by a certain (multi-variate) random variable. They directly reveal which values or ranges in the
sample space are more likely than others and allows a quantitatively measurement of certain events
by assigning probability values to them.

Different analytic probability density and respective cumulative distribution functions exist for
modeling probability distributions for diverse phenomena or processes in natural and social sciences.
In the context of uncertain data sets generated by simulation or inverse computation processes, as
introduced in 1.1, on the one hand, distribution functions are used for modeling the uncertainty with
respect to the initial conditions or the parameter setup. In this case, a priori knowledge is utilized
for selecting the correct probability density function, representing, for instance, the uncertainty
or error introduced by a measuring instrument. The chosen distribution functions are often only
represented by their characterizing parameters during the computation process, which are used for
propagating the input uncertainty to the output. On the other hand, distribution functions are
used for modeling the uncertainty in the output data of a generation process. Thereby, a concrete
probability density function is often only assumed or derived from the knowledge on the uncertainty
propagation and transformation process during the computation.

A popular distribution function for modeling errors in physical measurements, a priori parameter
setups or the underlying uncertainty in the resulting data set is the normal (or Gaussian) distribu-
tion. Its probability density g and cumulative distribution function G for the continuous real-valued
one-dimensional sample space is defined as

g(x) = 1
σ
√

2π
exp

(
−(x− µ)2

2σ2

)
, x ∈ R (2.19)

G(x) = 1
2

[
1 + erf

(
x− µ
σ
√

2

)]
, x ∈ R. (2.20)
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2.2 Probability Distributions

The parameters µ and σ represent the mean (expected value) and the standard deviation of the
distribution. For the special case µ = 0 and σ1, the Gaussian distribution is called standard normal
distribution and its function are denoted by

φ(x) = 1√
2π

exp
(
−x

2

2

)
, x ∈ R (2.21)

Φ(x) = 1
2

[
1 + erf

(
x√
2

)]
, x ∈ R. (2.22)

The Gaussian distribution is also defined for a multi-variate and multi-dimensional random variable
Y. The multi-variate probability density function is given as

g(y) = 1√
2π|Σ|

exp
(
−1

2(y− µ)>Σ−1(y− µ)
)
, (2.23)

with mean vector µ and covariance matrix Σ. The covariance matrix contains covariance values for
all component pairs of Y. Note, that for a given multi-variate Gaussian distribution for Y, also all
components and subsets thereof are Gaussian distributed.

Gaussian distributions are extremely important in statistics, uncertainty modeling and its quan-
tification. In particular, the error and the uncertainty in the measurement of physical phenomena
can very often be modeled correctly by a Gaussian distribution. One reason for this is the central
limit theorem: Under certain conditions, the mean of a sufficiently large number of independently
distributed random variables is approximately normal distributed [Sil86]. Thus, due to the fact that
uncertain physical quantities are often the sum of many independent erroneous processes, they have
a distribution very close to the Gaussian one. Therefore, normal distributions are often utilized
for modeling the initial conditions or physical parameters of a simulation or inverse computation
process.

Another reason for the popularity of Gaussian distributions in uncertainty modeling is that the
uncertainty propagation in the numerical process can often be derived even analytically and there-
fore more reliable models can be obtained for the final resulting data uncertainty. For instance,
for widely used linear inverse problems, the Gaussian distribution is invariant under linear trans-
formations: For normal distributed initial parameters or conditions the assumption of Gaussian
distributed uncertainties in the output data is valid.

Gaussian distributions are fully characterized by the mean and standard deviation (covariance)
parameters. In many applications, the user is only interested in these primary uncertainty indica-
tors. In this context, Gaussian distributions are often utilized as an assumption, especially when
the actual distribution of a random variable is unknown or its exact derivation is not desired or
necessary.
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2.3 Uncertainty Indicators

For analyzing uncertain data sets and especially for visualization purposes, so-called uncertainty
indicators are necessary for quantitatively assessing the degree of uncertainty and its distribution
over the spatial domain.

If multi-variate distribution functions or the marginals with respect to single spatial domain points
can be analytically derived or computed during the data generation process, they serve as most
comprehensive uncertainty indicator, as probability density functions directly reveal the likelihoods
of possible values in the sample space and indicate the spread over the whole sample domain. Fur-
thermore, the density function can reveal the distribution’s modality (e.g., one, two, or more
maximums) and possible outlier value ranges. If the distribution type is known beforehand or fol-
lows a specific assumption (e.g., Gaussian distribution), it is sufficient to only derive characterizing
parameters (e.g., mean and standard deviation).

2.3.1 Mean and Standard Deviation

The standard parameters, which are used for characterizing probability distributions, are the mean
and the standard deviation (square root of variance). The mean is often used as representative of the
distribution as it indicates the expected value by computing the sample space average weighted by
the probability values. However, using the mean can result is false assumptions. This is especially
the case for multi-modal distribution, where the mean is not positioned close to the maximum
likelihood region of the probability density. For instance, for a bi-modal probability density function
with two equally high main peaks, the mean is positioned between the peaks at a location with low
likelihood values. Therefore, the use of the mean as representative could be misleading, as it does
not represent a very likely result. The standard deviation, however, is a reliable direct indicator
for the uncertainty represented by a certain probability density function. It indicates the deviation
from the mean value and the dispersion of the probability distribution. A low or high standard
deviation represents a low or high degree of uncertainty.

The mean and standard deviation are often combined to obtain further uncertainty indicators.
Commonly used constructs are so-called confidence intervals. The confidence interval definition
used in this thesis describes an interval I(Y ) in the sample space for a random variable Y containing
all values, whose distance to the mean value µ(Y ) is less than the respective standard deviation
σ(Y )

I(Y ) := {y ∈ Ω = R | |y − µ(Y )| ≤ σ(Y )}. (2.24)

This definition can be re-written as

I(Y ) := {y ∈ Ω = R | MY (y) ≤ 1}, (2.25)
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by defining the so-called Mahalanobis distance [Mah36]

MY (y) := |y − µ(Y )|
σY

, y ∈ Ω = R. (2.26)

Both the confidence interval and the Mahalanobis distance can be defined for arbitrary (multi-
variate) random variables Y as

I(Y) := {y ∈ Ω = Rn | MY(y) ≤ 1}, (2.27)

MY(y) :=
√

(y− µ(Y))>Σ−1(y− µ(Y)), y ∈ Ω = Rn. (2.28)

Note, that the one-dimensional definition is equal to its multi-variate counterpart for n = 1. Con-
fidence intervals are commonly used as uncertainty indicator, especially for constructing so-called
box-plots in statistical analysis. If the probability distribution of a random variable is known or
assumed, the respective confidence interval defines a region in the sample space, in which the true
value is positioned with a certain probability. For instance, for a Gaussian probability distribution
P, one obtains P(I(Y )) = 0.68 for Ω = R.

For non-zero standard deviations, the Mahalanobis distance provides a well-defined metric on un-
certain data sets. It is commonly used in classification algorithms and cluster analysis for uncertain
data [DMJRM00]. For Gaussian distributed data sets, where the mean is equal to the maximum
likelihood point and the likelihood is exponentially decreasing with increasing distance from the
mean in the sample space, the Mahalanobis distance is a direct indicator for the likelihood given
by the probability density function.

2.3.2 Stochastic Dependence

So far, only the absolute uncertainty of data value at a particular spatial domain has been consid-
ered. The relative behavior of two random variables Y and Z with respect to each other can be
described by the concept of stochastic dependence. Stochastic dependence refers to any stochastic
relationship between two random variables. Two random variables are dependent when the prob-
ability distribution of one variable does dependent on a particular setting of the other random
variables. For instance, if Y and Z are stochastically dependent, the probability distributions on
Z are not necessarily equal for two different assumptions Y = y1 and Y = y2.

The stochastic dependence can be also described using the definition of the conditional probability.
For two random variables Y and Z the probability of a certain event EY ∈ FY under the condition
of the true event EZ ∈ FZ is

P(EY |EZ) = P(EY ∩ EZ)
P(EZ) . (2.29)
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2.3 Uncertainty Indicators

Figure 2.1: Three scatterplots for a bi-variate distributed random variable are shown. In (a) and
(b), the realizations follow a standard Gaussian distribution with a strong positive and
negative correlation. In (c), a strong non-linear stochastic dependence is illustrated.

For independent variable the equation P(EY ∩EZ) = P(EY )P(EZ) holds true which results in the
equality P(EY |EZ) = P(EZ). Therefore, the probability distribution on Y does not dependent on
any assumption on a true event on Z.

In this thesis, the stochastic dependence is classified into two different types: The linear depen-
dence indicates a high probability of a linear positive or negative relationship between two random
variables. On the contrary, also non-linear relationships between random variables are possible, re-
sulting in a non-linear dependence. Note that two bi-variate Gaussian distributed random variables
are either independent or linear dependent.

Fig. 2.1 shows three scatterplots for a bi-variate distributed two-dimensional random variable.
In (a) and (b), a bi-variate standard Gaussian distribution with a strong positive and negative
correlation between the two components of the random vector is illustrated, respectively. The two
scatterplots directly reveal the strong linear stochastic dependence between the component random
variables. In (c), the dependence between the components of the bi-variate random variable is highly
non-linear and therefore cannot be characterized by a correlation value.

The correlation, as introduced in Equ. (2.18) is a direct indicator for the linear stochastic depen-
dence between two random variables. Positive and negative correlation values represent positive
and negative linear relationships, respectively. For instance, for a positive relationship, a positive
deviation from a reference value (e.g., mean value) for one random variable is likely to result in
also a positive deviation for the other random variable.

2.3.3 Indicator Estimation

However, in most cases, the full probability distribution cannot be derived analytically. For in-
stance, this is not possible for ensemble data sets, where for each spatial point in the data domain
a collection of values is given (cf. Equ. (2.3)). If the probability density function for one random

Tobias Pfaffelmoser 23



2.3 Uncertainty Indicators

variable Y is only represented by an ensemble of m scalar values Em = {y1, y2, ..., ym}, these values
are called realizations of the probability distributions. The realization can be either used for deriv-
ing a discrete probability function, also called histogram, or for a direct estimation of the indicator
values discussed above.

The mean and the standard deviation can be obtained from the realizations in Em by applying the
unbiased estimators

µ(Y ) = 1
m

m∑
i=1

yi, (2.30)

σ(Y ) =

√√√√ 1
m− 1

m∑
i=1

(yi − µ(Y ))2. (2.31)

The correlation ρ(Y,Z) between the random variable Y and Z can be obtained by applying the
estimator

ρ(Y,Z) = 1
(m− 1)σ(Y )σ(Z)

m∑
i=1

(yi − µ(Y ))(zi − µ(Z)) (2.32)

to the respective realizations. Thereby, µ(Y ), µ(Z), σ(Y ) and σ(Z) represent the estimated mean
values and standard deviations.

The parameters are often estimated with respect to a certain level of significance, based on the
theory of statistical hypothesis tests. Therefore, the reliability of the estimation with respect to
the significance level is highly dependent on the number of realizations.

24 Tobias Pfaffelmoser



3
General Approaches to Uncertainty Visualization

Although the desire for a comprehensive analysis of errors and uncertainties in numerical simu-
lations, inverse problem computations or other numerical process has been present over several
decades, the importance of uncertainty visualization and its regard as one of the grand challenges
in visual computing [Joh04] has been realized only throughout the last 15 years. However, in the
young research field of uncertainty visualization several techniques have been proposed for visu-
ally representing uncertainty measures for diverse types of data sets. This chapter will provide an
overview on a selection of the most prominent methods and introduce the main concepts and prin-
ciples with regard to uncertainty visualization. The following chapters of this thesis will point out
specific challenges for visualizing uncertain data sets and propose suitable novel solutions. Related
work and supporting literature will be discussed there and is not part of this overview chapter.

One of the first publications, providing an overview on sources of uncertain data sets, general
challenges in uncertainty visualization and a classification of suitable techniques, can be in [PWL97].
This 1997 work has been followed by a variety of publications, introducing an updated overview on
more recent advances in this field and new concepts for approaching diverse challenges in uncertainty
visualization. For further details, the reader is referred to the introductory publications [GS05,
GS06, JS03, LPK05, LKP03, MRH∗05, Pan08, PRJ12, ZC06].

In the following, the presented visualization approaches are classified according to the chosen modal-
ity of visually communication uncertain data to the viewer. Therefore, the two classes of extrinsic
and intrinsic uncertainty visualization methods are used, as suggested i.e. in [HM96, BAF08].

An extrinsic approach introduces additional symbols or specific entities (e.g., color, texture, noise,
etc.) to the visualization to visually encode uncertainty information. Often the degree of uncer-
tainty is only communicated qualitatively to visually separate spatial regions in the data domain,
affected by lower and higher degrees of uncertainty. Extrinsic visualization do not allow any conclu-
sions on possible variations in the visual presentation of the data under uncertainty. For instance,
an extrinsic method could use a color map to encode the standard deviation of data values in 2D
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scalar data set. However, it could not reveal the positional spatial variation of an iso-contour in
the 2D domain. While extrinsic techniques are able to efficiently and intuitively communicate the
degree of the underlying uncertainty in scalar data sets on a more qualitative and global level, they
fail in visually describing the spatial (or temporal) variation of certain features (e.g., critical points,
iso-contours, surfaces, etc.) in the data set.

On the other hand, intrinsic visualization methods focus on visually indicating the variation of
certain objects or features in the data under uncertainty. They primarily reveal, how the under-
lying data uncertainty affect specific characteristics of the respective data. Intrinsic methods are
especially utilized for simultaneously integrating a suitable number of members of an ensemble
data set in one visualization to convey the data variation in certain parts of the spatial domain.
They allow to quantitatively analyze the spatial uncertainty of (local) features in the data, but are
suitable for revealing the uncertainty distribution over the domain to a much lesser extent. For
instance, intrinsic methods are used for visualizing the variability of streamlines in uncertain vector
fields, spatial confidence regions for uncertain iso-surfaces or directly show several members of an
ensemble data sets utilizing animation effects.

3.1 Extrinsic Methods

3.1.1 Color

The most common technique for encoding uncertainty information is the use of certain color effects.
Thereby, a suitable uncertainty indicator (e.g., standard deviation values for single data domain
points) is derived from the uncertain data set. This indicator is then mapped to a pre-defined
color range, used in an interactively specified transfer function or translated into other advanced
color effects. This mapping is then used for highlighting uncertainty information over the total
data domain (e.g., volume rendering) or only restricted to certain data features (e.g., coloring of
surfaces).

In [DKLP02], the visualization of uncertain information is integrated in standard 3D volume ren-
dering. Thereby, the uncertainty indicators are used as free parameter in the transfer function and
mapped to, e.g., opacity. Furthermore, 2D transfer function are used to classify domain regions
according to data values and uncertainty indicators. The degree of uncertainty is communicated
by color and opacity to the viewer. In addition, the authors suggest to use noise texture to qual-
itatively highlight uncertain regions in 3D volume rendering. Although the presented approaches
can provide a good first overview on the relative distribution of uncertainties over the 3D data
domain, they are not based on a mathematical uncertainty model and lack in providing qualitative
information on possible data or feature variations on the visual level.
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In [Hen03] and [HT06], for a 2D data domain, the data and uncertainty values are encoded into
the hue and saturation channel of the HSV color space. The resulting visualization shows different
colors over the 2D domain with varying saturation, caused by a varying degree of uncertainty.
Furthermore, the approach is also used for classification purposes of domain regions affected by
uncertainty Although this visualization technique is very intuitive and easy to communicate, it
suffers from the major limitation that data values and uncertainty information cannot be analyzed
separately from each other. In regions with maximum uncertainty, the saturation is almost equal
to zero and hue values cannot be seen any more.

In [KVUS∗05], color is used for visualizing statistical segmentation in MRI scans, based on fuzzy
classification techniques. Furthermore, a user controlled transfer function maps sensitivity values
to color in 3D surface visualization of the human skull. The presented techniques put a strong
focus on the user interaction with data, both for classification purposes as well as for the transfer
function design.

The integration of noise textures for indicating uncertainty is applied to uncertain flow fields in
[OB09]. Noise textures with varying frequency and amplitude are added to the visualization to
indicate uncertain regions in the LIC representation of 2D vector fields. Furthermore, color is
used to visualize the vector magnitudes. Similar to other approaches, the approach does provide
an intuitive overview on the relative uncertainties over the domain but lack in communicating
quantitative information on the effect of uncertainties on vector directions and magnitudes in the
field.

Further examples for mapping uncertainty indicator like standard deviation to color, attached
either to 3D surfaces or directly shown in the respective data domain, can be found in [PKJ08,
PWB∗09b, PWB∗09a]. Apart from integrating both uncertainty information and data values in
one visual representation, the presented scenarios also discuss the possibility of separating both
entities to individual view-ports and visualizations. Especially for highly interactive tools or for
scenarios with additional integration of further data (e.g., geographic data), this approach can be
regarded as valid option.

In [WRL12] and [XLS10], concepts of the field of information theory are used for revealing uncer-
tainty information in geological models and uncertain flow fields. Thereby, entropy measures are
used as main uncertainty indicators communicated using specific color effects. Information entropy
is a very abstract indicator and does not allow to directly analyze the variability of features or data
values on a quantitative level. However, they it can be easily computed, does often not have to
rely on a mathematical uncertainty model and can provide an intuitive first overview on the overall
uncertainty distribution in the data domain.
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3.1.2 Glyph Representation

Another option for adding uncertainty information to visualizations is the integration of specific
glyph or other objects, whose shape or coloring is directly related to uncertainty indicator values.
Although glyphs are commonly used for uncertain vector fields, they provide also certain advantages
for normal scalar data sets. For instance, if the data values are color coded in a 2D domain,
uncertainty information often cannot added easily due to a limitation of visualization channels.
By adding uncertainty glyphs to the data visualization, the degree of uncertainty in certain spatial
domain regions can be communication simultaneously to the data values. This allows an integrated
view on both entities and consequently a more comprehensive analysis.

In [BWE05], uncertain vector fields are visualized by applying Gaussian error diffusion and a
modifies LIC approach to small objected, displayed in the 2D data domain. The introduced par-
ticles/objects simultaneously reveal the vector field data (orientation and magnitude of vectors)
and local variations in uncertainty. By slightly varying the appearance of the objects, regions with
low and high vector uncertainty can be clearly identified. However, the visualization communi-
cates more qualitative information and does not allow to analyze the vector field topology under
uncertainty.

In [SCB∗04], box-, sphere- and arrow-glyphs are used for the visual representation of underwater
environmental uncertainty. Thereby, the glyphs placed placed in the vicinity of colored surfaces,
representing, for instance, the underwater ground level. In this context, the glyphs can represent
the uncertainty with respect the ground level depths but are not limited to this scenario. The
work shows, that glyphs can also be utilized for depicting uncertainty information with respect
to diverse entities. Multidimensional data is used for analyzing local oceanic effects like internal
waves, thermal currents or soil structures. Thereby, glyphs, colors and surface representations
interact with each other to create an integrated view on both data and uncertainty values in one
combined visualization.

In [CR00], deformable annotations are added to the color-based visualization of 2D scar fields.
The integrated objects are either straight lines or circular glyphs. Their shape is distorted (e.g.,
noise, sharpness, frequency, amplitude) according to the local degree of uncertainty. Although this
visualization allows an integrated view on both data values as well as uncertainty information,
the presented uncertainty representation is very coarse. Local variations in uncertainty strengths
cannot be displayed easily. Furthermore, no qualitative information on the data variability can be
derived.
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3.2 Intrinsic Methods

3.2.1 Uncertain Vector Fields

Intrinsic uncertainty visualization techniques display the variability of specific features in uncertain
data sets. Especially for vector field data sets, the visualization of features like streamlines, streak-
lines, critical points or vortices allows often an improved analysis of the data set’s most prominent
characteristics or topological structures. The visualization of the variability of such features in
uncertain data sets has been approached in several publications.

In [BFMW12], a GPU based Monte Carlo particle tracing is carried out in order to construct
so-called visitation maps for uncertain 3D vector fields, indicating envelopes enclosing particle
pathways with a certain percentage. The pathways envelopes are then visualized using means
of direct volume rendering. This approach clearly reveals the variability of particle trajectories
in uncertain vector fields and also allows to quantitatively derive probabilities for the occurrence
likelihoods of stream-, streak- and path-lines.

In [HLNW11], so-called flow radar glyphs are introduced for visualizing time-dependent uncertain
flow fields. The glyphs indicate ranges the orientation of a vector at a particular position in the
domain is positioned in with a certain probability. These angular confidence ranges are time-
dependent and displayed for each radial glyph with increasing distance from the glyph’s center.
The chosen visualization techniques allows a clear quantitative analysis of the local variations of
individual vectors in the domain. However, a global differentiation between regions with low and
high uncertainties is rather complicated as the confidence intervals are only shown locally.

The work in [OGHT10, OGT11a, OGT11b, OT12] presents visual methods for conveying how un-
certainties affect the topology of 2D and 3D vector fields. The main focus lies on the analyzes of the
positional distribution of features like critical points, sinks, sources and vortices. Furthermore, the
presented algorithms reveal the probability density of the vector field skeleton and therefore can
help analyzing the effect of uncertainties on the overall vector field topology. In addition, the intro-
duced techniques are based on a mathematical uncertainty formulation and a Gaussian assumption
on the underlying vector probability distributions. Therefore, uncertainties can be presented by full
probability distribution functions instead of abstract confidence ranges for individual vectors.

3.2.2 Ensemble Exploration

Apart from features in vector fields, intrinsic uncertainty visualization methods are also utilized
for conveying variations in data values among individual members of an ensemble data set. In this
context, the ensemble members are often directly used for visualization purposes instead of a prior
derivation of specific uncertainty indicators.
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In [AWH∗12], the technique of ensemble surface slicing is introduced for visualizing and identifying
spatial similarities among members of 3D surface ensemble data sets. Thereby, surfaces of all en-
semble members are displayed simultaneously in one visual representation. However, the rendering
of each surface is restricted to a certain spatial region. Therefore, the rendered object consists of a
collection of sliced ensemble member surfaces. The approach suffers from two main limitations: The
ensemble surface slicing does only allow a global analysis of surface variations. It is not possible to
analyze the variability of surface position and geometry on a local basis. In addition, the presented
approach is only suitable for a low number of ensemble members, as otherwise the surfaces slices
could not be visually separated from each other.

In [PPA∗12], members of 3D scalar ensemble data sets are also rendered simultaneously in one
image. However, the data in each single representation is represented by small objects in the 3D
domain. These objects are colored according to their membership number. Therefore, an integrated
view on all ensemble members is possible. Furthermore, a techniques is introduced which restricts
the rendering of the ensemble member to certain disjoint region of the screen space. Therefore, a
similar effect is achieved compared to the ensemble slicing algorithm discussed above. However,
this approach suffers from the same limitations.

In [BPFG11], an interactive visual approach is presented for the analysis of a sampled parameter
space with respect to a multi-dimensional target space. The suggested technique focus on the
uncertainty propagation and sensitivity between input parameters and target values. Thereby, the
user is guided interactively to interesting parameter regions with respect to specific target settings.
The inherent uncertainty is displayed as scalar ensemble simultaneously utilizing scatterplots and
parallel coordinates. The presented approach is highly suitable for an improved local sensitivity
analysis with respect to multiple target dimensions and for the interactive exploration of intersting
parameter regions.

Instead of showing all ensemble members in one image and restricting the rendering to certain
spatial regions or screen space areas, other approaches distribute members of scalar data sets along
the time axis. In [Bro04], the ensemble members are represented by single frames of a movie.
For instance, with advancing time, the viewer can observed visual vibrations of a surface, affected
by uncertainty. The degree of visual instability is directly related to the degree of uncertainty.
However, utilizing animation for representing individual members of an ensemble data set has a
severe drawback. As multi-dimensional ensemble members can be regarded as realizations of a
multi-variate random variable, they also represent a multi-variate probability distribution. The
quality of this representation depends highly on the number of ensemble members and the dimen-
sionality of the random variable. For increasing dimensions the number of needed realization is
growing exponentially. For instance, Monte Carlo algorithms typically generate several hundred
thousand ensemble members. Transforming this amount of data into frames of an animation, would
require a significant amount of viewing time for a complete analysis of the represented probability
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distribution. This is impracticable in most scenarios. In [ESG97], a special interpolation scheme
for ensemble data sets with low number of members is proposed, resulting in a much smoother
animation.

In [LLPY07], the technique of ensemble animation is used for stenosis assessment in medical volume
rendering. Thereby, the position and shape of a stenosis in a blood vessel is simulated over time.
The resulting data ensemble and the underlying uncertainty is presented to the analyst using an
animation of the stenosis. The single frames represent the ensemble members. Due to a low
number of realizations the probabilistic animation provides an intuitive intrinsic visualization of
the underlying data uncertainty with respect to the stenosis assessment.

Apart from the automatic visualization of all members in an ensemble using animation techniques,
other visualization tools allow an interactive exploration of the data sets by the user. In [PWB∗09b]
and [PWB∗09a], an ensemble exploration tool is presented for analyzing numerical weather forecast
data sets. Thereby, the user can flip through the individual ensemble members and interactively
analyze the variability of specific features in the data. A similar approach is utilized in the work by
[WFR∗10]. The presented technique allows a highly interactive visual exploration of flooding sce-
narios for varying parameter setups in a related simulation process. Thereby, the simulation results
can be mapped to various visual variables in order to highlight the most compelling solutions.

3.2.3 Confidence and Probability Analysis

Another area of application for intrinsic uncertainty visualization methods is the direct analysis of
probability distribution function or confidence regions modeling the variability of data values or
specific data features.

In [CBDT11], a new method is proposed to visualize uncertain scalar fields by integrating per-
ceptually adapted Perlin noise into a color scale visualization of the data values. The parameters
of the noise pattern is directly controlled by the underlying uncertainty information. The noise
perturbs the color presentation within in the local confidence intervals of the respective data val-
ues. Therefore, it is possible to simultaneously shown the data values and their uncertainty while
providing a hint on the respective confidence intervals due to the color noise pattern. However, the
presented technique can analyze scalar value uncertainties only locally and do not allow to derive
any assumptions on stochastic dependences between spatial regions in the data domain.

In [CCM09], several techniques are presented for integrating uncertainty analysis in visual analyt-
ics. A special focus is put on the uncertainty propagation in data transformation processes like
regression, principal component analysis and k-means clustering. The uncertainty information is
communicated using scatterplots and confidence regions for single data points.
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In [LFLH07], techniques are presented for the visualization of uncertainties in large-scale astrophys-
ical environments. A strong focus is put on the perception and comprehension of uncertainty across
different scale ranges. The introduced visual approaches include an ellipsoid model to represent the
positional uncertainty of certain astrophysical events and an ellipsoid envelope model for exposing
trajectory uncertainty. In both cases the spatial variability can be assessed quantitatively from the
displayed visualizations.

The idea of displaying confidence intervals for single data values has also influence the visualizations
in [PKR07] and [PKRJ10]. The presented techniques extend the canonical box plot concept to 2D
data. In addition, a new summary plot is suggested, incorporating a collection of descriptive
statistics to highlight specific features in the data. The techniques are primarily used for obtaining
a high-level overview on the data and its underlying uncertainty.

Apart from the visualization of confidence intervals as uncertainty indicators, sometimes the direct
display of the actual underlying probability distribution with respect to the data values is possible.
In [FKLT10], the integration of kernel density estimates for revealing probability density functions
in parallel coordinate displays and scatter plots is proposed. The related visualizations allow an
improved uncertainty-aware tumor segmentation in MR spectroscopy data sets. In [KLDP02], the
probability density function for data values in a 2D domain is integrated in the third dimension of
the visual representation. For interactively selected lines in the 2D domain the data distribution are
displayed an walls, position along the coordinate axes and perpendicular to the domain. This allows
a direct interactive analysis of the data uncertainty and characterizing distribution functions.
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Positional Feature Analysis

A common challenge for uncertainty visualization techniques is the visual analysis of the variability
of specific features in a data set. Such features can be critical points, contours, surfaces, streamlines,
etc. For obtaining reliable visualizations, specific mathematical models are necessary for describing
the transformation process between the data level uncertainty and the feature’s positional or oc-
currence uncertainty. Although uncertainty visualization is regarded as one of the grand challenges
in visual data exploration [Joh04], it is fair to say that standardized procedures for modeling and
visualizing the effect of uncertainty on features in multi-dimensional data are rare. This chapter
introduces several novel approaches for visualizing the positional uncertainty of iso-contours and
iso-surfaces in 2D and 3D scalar data sets.

The first section focuses on data sets where the underlying uncertainty can be modeled by a multi-
variate Gaussian probability distribution and can be characterized by standard parameters like
mean, standard deviations and correlation values. A novel computation scheme is presented for
obtaining probability values for crossing an iso-surface during a ray-casting process. The probability
values are then used as input for further opacity and color effects in a 3D visualization.

The second section covers data sets where no prior assumption on the uncertainty model can be
made and introduces techniques for the visualization of the iso-contour variability in arbitrary
distributed 2D scalar (ensemble) data sets. A novel computation scheme is proposed for deriving
positional iso-contour occurrence probabilities. A color scheme is presented for highlighting gradient
strengths and topological variabilities in the data set. Furthermore, a visual approach for analyzing
the iso-contour distribution modality is proposed.
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One of the recent approaches for visualizing the uncertainty of particular features in 3D scalar
data sets in [PH11] suggests to model the uncertainty stochastically, and to derive probability
distributions for particular events that correspond to relevant features, e.g., the crossing of iso-
surfaces in volume ray-casting. This allows quantifying the spatial distribution of uncertain features,
enabling a statistical analysis of the effect of uncertainties in the input data on the uncertainty of
these features.

Inspired by [PH11], the motivation behind the work, presented in this section, is twofold: Firstly,
it is aiming for the integration of data correlations into the stochastic uncertainty model to enable
a more reliable computation of iso-surface crossing probabilities along the view rays during the
ray-casting process. When ignoring correlation information in the data, a zero correlation between
very close sample points is assumed. This contradicts the assumption of local data continuity and
results in vastly overestimated probabilities with respect to certain stochastic events related to the
occurrence of features like iso-surfaces in the data.

The second goal is to develop new strategies for mapping uncertainty to optical properties in a way
that allows visualizing the positional and geometrical variability of features in the data domain
independently of the viewing direction. In this way, we are addressing the problem that positional
uncertainties of iso-surfaces can often be revealed only in 2D cross-sections or if the viewer is not
looking along the surface normal direction. If the iso-surface position varies along this direction, it
can be perceived clearly only when the viewing direction is orthogonal to the surface normal. To
overcome this limitation, an Euclidean distance measure is proposed that assigns to each possible
iso-surface position the spatial deviation from the mean surface. This measure is used in a novel
color mapping scheme to assess the uncertainty that is related to the shape of an iso-surface even
under viewing directions parallel to the surface normal.

In Fig. 4.1 (a), the mean iso-surface is shown for an uncertain atmospheric temperature forecast
data set. In (b), the novel visualization effects are shown for highlighting the confidence interval
with respect to the Gaussian distributed iso-surface in the 3D domain. The effect of the proposed
visual Euclidean distance variability encoding (c) is compared to an encoding that only considers
the deviation in probability space (d).

4.1.1 Related Work

Major efforts have been put on the intrinsic visualization of the variability of iso-surfaces in uncer-
tain 3D scalar fields. [PWL97, JS03] proposed to augment a mean surface by additional surfaces
that enclose areas around the mean surface of high confidence. Such techniques provide a good
first impression on the positional variability of the iso-surface. However, this impression is often
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Figure 4.1: (a) The mean surface for a temperature iso-value in the ATMOS data set is shown.
(b) The novel IFCP algorithm in combination with distance dependent color mapping
indicates the confidence volume. (c) The spatial distance variability is indicated inde-
pendently of the viewpoint by utilizing a specific novel color scheme. (d) Traditional
color mapping scheme based on stochastic distance is shown.

dependent on the viewpoint as no color indicate the variability in Euclidean distance around the
mean surface.

The use of opacity to show spatial contiguity and iso-surface confidence regions was demonstrated
in [ZWK10]. Flow-lines were introduced in [KWTM03] to visualize the uncertainty of material
boundaries. In [GR04] an iso-surface was modeled as a point set, and points were displaced from
their original position by an amount proportional to the local uncertainty. The animation of possible
iso-surface positions over time was demonstrated in [Bro04]. [RLBS03] uses an extrinsic approach
for indicating data uncertainty by mapping color and texture on iso-surfaces. Recently, [PH11]
presented a method for visualizing the positional variability around a mean iso-surface using direct
volume rendering. Based on probability theory, they introduced mathematical formulations for the
positional uncertainty of iso-surfaces and employed the concept of numerical condition for visually
presenting how errors in the input data are amplified during the iso-surface extraction.

Most methods do not utilize any mathematical model for describing the underlying positional
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iso-surface uncertainty or represent uncertainty indicators (e.g., confidence regions) or probability
values using only an abstract mapping to color or opacity effects. The techniques presented in
this section will extend such approaches by using a more sophisticated mathematical framework,
integrating also correlation information for obtaining more accurate results. Furthermore, an au-
tomatic mapping between color and opacity effects and computed positional probabilities will be
presented, allowing a more intuitive and less abstract visualization.

4.1.2 Stochastic Modeling of Uncertainties

In the context of 3D scalar data sets, by uncertainty one understands the mean deviation of the
data samples from a true or assumed value without precise knowledge of the magnitudes of these
deviations. The data samples are assumed to be attributed by parameterized uncertainty, which
will be considered in the visualization of the positional and geometrical variability of iso-surfaces
in the data.

Uncertainty Representation

The 3D scalar field is assumed a discrete sampling of a mapping from the continuous spatial domain
S ⊆ R3 into R. The sampling is represented by a finite set of n spatial points

Sn = {xi | xi ∈ S, i ∈ {1, 2, ..., n}} ⊂ S. (4.1)

The mapping and its uncertainty is modeled as a random function

Y : Sn −→ R, x 7−→ Y (x), (4.2)

where for each spatial point xi the mapping Y (xi) is considered as single random variable. As the
random function is defined on a finite set of discrete spatial points, it can be interpreted as random
vector Y with components Yi := Y (xi).

The random function is characterized by a n-dimensional probability density function f(y1, y2, ..., yn),
where yi is a realization or observed value of the random variable Y (xi). Throughout this section, f
is assumed a multi-variate normal (or Gaussian) probability density function (MNPDF). MNPDFs
are commonly used for modeling probability densities since they have often shown to adequately
represent random fluctuations in measured values of deterministic quantities (cf. 2.2.3).

In order to fully characterize f , for every sample point the mean value µi := µ(Yi) and the standard
deviation σi := σ(Yi) have to be known, and pair-wise correlations ρij := ρ(Yi, Yj) are required to
build the covariance matrix of a MNPDF. With given mean values and the respective covariance
matrix, the assumed Gaussian probability function is fully characterized.
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Notably, a MNPDF is completely characterized if the m-dimensional probability density function
f(y1, y2, ..., ym) is known for realizations yi at any points x1, x2, ..., xm ∈ S and any value of m
[Tar05]. Thus, as the data set is comprised of values at a discrete set of spatial points in Sn, one
only has to specify f for any m ≤ n points in Sn. For instance, this is the case if f is known for
m = n as all low-order marginals f(yt1 , yt2 , ..., ytp) with ti ∈ {1, 2..., n} and p < n are automatically
given by integration (cf. (2.12)). A MNPDF, in particular, can be completely described by its
2-order marginals [Tar05]. For uncertainty visualizations using correlations, this is in particular
appealing since the computation of these 2-order marginals can be incorporated directly into front-
to-back ray-casting.

Correlation

There are many ways to understand the meaning and effect of correlation [LRN88]. An overview
and further details have already been introduced in section 2.3.2. In the following, the correlation
is interpreted as a measure for stochastic dependence and as a modeling tool for smoothness and
continuity. For MNPDFs, correlation is specified in the form of a symmetric correlation matrix,
which contains correlation coefficients −1 ≤ ρ(Yi, Yj) ≤ 1 between two components of the multidi-
mensional random vector Y. These coefficients are a direct measure of the stochastic dependence
of two components of Y.

If Yi deviates positively from µi by the magnitude ∆µ, a large correlation value indicates that Yj
also deviates positively (ρij ≈ 1) or negatively (ρij ≈ −1) around ∆µ · σjσi from µj . For ρij ≈ 0 the
realizations of Yj are considered uncorrelated and stochastically independent from Yi.

Discrete samplings of a continuous mapping usually assume a certain local smoothness and at least
local continuity of the sampled quantity. To achieve this, random function correlation is described
by spatial distance dependent correlation functions [Tar05]. In the case of a MNPDF, one typically
uses the exponential correlation function (ECF)

ρ(Yi, Yj) = exp(−τ ‖xi − xj‖), xi,xj ∈ Sn, (4.3)

which assigns higher correlations to random variables of points with smaller Euclidean distance. If
the correlation strength τ is defined locally for each point in Sn, the ECF becomes

ρ(Yi, Yj) = exp(−0.5(τ(xi) + τ(xj)) ‖xi − xj‖). (4.4)

To model anisotropic correlations, the parameter τ can be made dependent on a specific direction.
For a unit vector r, the parameter τ at point xi in direction r is then given by

τ(xi, r) = r>T(xi)r, (4.5)
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Figure 4.2: Mean values of a seismic tomography model below Australia are shown. (a), (b) Strong
and weak correlation strengths between cross center points and other spatial points are
illustrated by thick and thin lines. (c) Anisotropic correlations strengths are represented
by 2D tensor ellipses.

where T is a rank-2 tensor that models the anisotropy. This tensor can either be derived from the
correlations in the data samples, or it can be specified based on prior knowledge. The six different
components of T can be obtained by solving an (overdetermined) linear system, utilizing correlation
values between Y (xi) and an 1-ring of neighboring random variables as input parameters.

For instance, if one assumes at every point xi different parameters τ1(xi), τ2(xi), and τ3(xi) along
the three major spatial directions, the tensor coefficients are given as Tkl = 0 for k 6= l and Tkk = τk.
The parameters τk can be computed by solving the linear equation system

τ1(xi)(xh1−xi1)2+τ2(xi)(xh2−xi2)2+τ3(xi)(xh3−xi3)2 = − log(|ρ(Yi, Yh)|) ‖xh − xi‖ , h ∈ {k, l,m}
(4.6)

for at least three neighboring points xk, xl, and xm of xi and correlation values ρ(Yi, Yk), ρ(Yi, Yl)
and ρ(Yi, Ym) usually given by the data as correlation matrix. In this formulation, xis denotes the
s-th component of vector xi. For a homogeneous correlation model, τ(xi) can be defined as the
mean of τ1(xi), τ2(xi), and τ3(xi). Note that only the magnitude of the local correlation is modeled
by the ECF.

In Fig. 4.2, mean values of a seismic tomography model below Australia are shown. The color
indicates velocity values for seismic pressure waves. Image (a) illustrates the anisotropic nature of
correlation information. The black crosses (1) and (2) indicate the correlation between the random
variables at the crosses’ center points and values in the respective two orthogonal direction. The
thin and thick black lines represent a low and high correlation strength in the respective directions.
This observation is also supported by the underlying mean data field. The data values in the
high correlation direction are much more similar to the cross center point than values in the low
correlation direction. In this case, the correlation anisotropy indicates the preferential orientation
of structures and features in the data set.

In (b), the distance dependence of correlation is illustrated. One can observe that values at spatial
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Figure 4.3: (a) Mean iso-contours for values in {−1.0,−0.9,−0.8, ..., 1.0} are shown for an uncertain
2D scalar data set. (b) Standard deviation values are color-coded over the 2D domain.
(c) SDF iso-contours for SDF values in {−1.0,−0.9,−0.8, ..., 1.0} are illustrated.

locations close to the center points of the crosses (1) and (2) are more similar and therefore higher
correlated (thick lines) than values at spatial points which are positioned more distant from the cross
centers (thin lines). This assumption is valid for most numerical simulation or inverse computation
data sets characterized by a certain local data continuity and smoothness.

In (c), 2D ellipses are shown at two spatial positions (1) and (2), illustrating the local anisotropic
correlation strengths, modeled by the 2-rank parameter tensors. For the given direction (green
arrow) and by using the tensor model, one obtains strong and low local correlation strengths for
the two spatial points at (1) and (2), respectively.

Stochastic Distance Function

To relate the possible occurrence of an iso-surface to the local uncertainty, the stochastic distance
function (SDF)

Ψθ(xi) := µi − θ
max(σi, σmin) , xi ∈ Sn, θ ∈ R, (4.7)

is often used. Here, θ refers to a specified iso-value, and a minimum standard deviation σmin is
assumed to avoid numerical problems.

The SDF corresponds to the 1-dimensional formulation of the Mahalanobis distance as introduce
in section 2.3.1 (cf. [Mah36, DMJRM00]), and it indicates at point xi the distance of the mean
value µi to the iso-value in number of σi. SDF fields are often used to depict the confidence volume
containing the level-θ iso-surface with a certain probability [ZWK10], or the SDF values are used
for color-coding uncertain iso-surfaces as in [PH11]. The presented novel algorithm computes the
SDF for all grid vertices on-the-fly and uses these values either for computing iso-surface crossing
probabilities or for determining probability gradient magnitudes.

In Fig. 4.3, the importance of the SDF for visualizing uncertain data is illustrated in an synthetic
example. Mean scalar values in the range [−1, 1] are given on a 2D domain. In (a), the mean data
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set is represented by iso-contours for iso-values θ in the equidistant set {−1.0,−0.9,−0.8, ..., 1.0}.
The iso-contours are colored according to the respective iso-value. In the following, the positional
uncertainty in the 2D domain of the θ = 0 iso-contour (green thick line in the middle) is analyzed.

In (b), the standard deviation values as primary uncertainty indicators are visualized in the 2D
domain, linearly ranging from low to high values from the left to the right part of the domain. Solely
by looking at the mean and the standard deviation values in (a) and (b), it is a hard challenge to
conclude on the positional uncertainty of the θ = 0 iso-contour.

In (c), the SDF field is shown for the 2D domain, using the respective local mean and standard
deviation values and θ = 0 as input. The SDF field is represented by discrete SDF-iso-contours
for SDF values in the setting {−1.0,−0.9,−0.8, ..., 1.0}. The colors represent the respective SDF
values. The illustrated SDF range [−1, 1] is directly related to a confidence region with maximum
deviation from a mean representation equal to the standard deviation (cf. 2.3.1). Image (c) shows
exactly this confidence region for the uncertain θ = 0 iso-contour. It is narrower and wider and
therefore more certain and uncertain in the left and right part of the domain, respectively.

For instance, at the left domain border, the standard deviation is equal to 0.1. This indicates a
data variability in the range of ±0.1. As the mean iso-contours in (a) are shown for a value spacing
equal to 0.1, it can be assumed that the θ = 0 iso-contours varies in the region between the upper
and lower neighboring contours for iso-values equal to 0.1 and −0.1 at the left domain border. This
assumptions is validated by the SDF field as the ±1 SDF region covers exactly this range at the
left domain border. Therefore, the encoding of SDF information in visualization algorithms is a
good first step towards a reliable uncertainty analysis.

4.1.3 Probabilistic Iso-surface Extraction

In the following, the novel approach for computing positional probabilities of iso-surfaces in uncer-
tain 3D scalar fields via volume ray-casting is described. A 3D grid structure is assumed, attributed
by a mean µi and a standard deviation σi at every grid vertex xi. For a given iso-value, this allows
computing per-vertex SDF values as described in 4.1.2. In addition, for every cell, a rank-2 tensor
is stored according to the ECF model as discussed in 4.1.2. The 6 distinct tensor values are stored
as per-cell attributes. The grid structure can be arbitrary but is supposed to be equipped with a
local cell-wise interpolation scheme to reconstruct SDF values at any point in the 3D domain.

Iso-surface ray-casing is performed by sampling the scalar field along the view rays in front-to-back
order. The presented approach for uncertainty visualization computes along each ray and in each
sampling interval the probability of crossing the iso-surface for the first time. The technique is
intertwined with the front-to-back traversal in that it provides an incremental update-scheme for
determining these probabilities solely based on local evaluations. Finally, a discrete probability
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Figure 4.4: An illustration for the iso-surface crossing probability in uncertain ray-casting is given.
The bar chart reveals crossing probabilities between a ray (black) and an iso-surface
(blue) for equidistant sampling intervals.

density function on the sampling intervals along each ray is obtained with respect to the stochastic
event that the iso-surface is crossed for the first time.

Fig. 4.4 provides a basic overview on the overall concept. A ray with discrete sampling points is
illustrated in the lower part of the image. The stochastic event of crossing an iso-surface (blue line
indicates an iso-contour) is shown in the last sampling interval. The introduced algorithm aims for
computing a discrete probability distribution along each ray through the volume, providing crossing
probability values for each sampling interval. This probability density is illustrated as green bar
chart in the upper part of Fig. 4.4. Note that the sum of all probability values for each ray has to
be less or equal to one. The probability values are then used for further rendering purposes.

Iso-surface Crossing Probability

The continuous volume S is sampled along each ray at equidistant discrete linearly ordered sam-
ple points {s1, s2, ..., sn} ⊂ S. At each point si a SDF value ψi is obtained via the respec-
tive interpolation scheme, and for two consecutive sample points si and si+1 a correlation value
ρi := ρ(Y (si), Y (si+1)) is computed as described in 4.1.2. From this data, the probability pi for
crossing the iso-surface in the sampling interval Ii = [si, si+1] is calculated.

Notably the probability pi cannot be computed by only considering the current interval. In this
case, the probability pi + pi+1 would also consider the event of crossing the surface in Ii and Ii+1.
The probability of crossing the iso-surface in an arbitrary interval is called local marginal crossing
probability. However, to guarantee a reliable positional probability estimation, the event of crossing
the iso-surface either in Ii or in Ii+1 has to be considered, i.e., based on a XOR combination of
disjoint crossing events. Therefore, the events

Y +
i : = (Y (si) ≥ θ) (4.8)

Y −i : = (Y (si) < θ), (4.9)
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Figure 4.5: The concepts of local marginal crossing probability (upper row) and first time crossing
probability (lower row) is illustrated. Sampling points with value lower and high than
the iso-value are marked red and green.

are introduced, which compare the value of the random variable Y at the sample points to the
iso-value. By using these events, the positive first crossing event

C+
i := Y −1 ∩ Y

−
2 ∩ ... ∩ Y

−
i ∩ Y

+
i+1 (4.10)

can be defined; it describes the incident that the iso-surface is crossed (from lower to higher values)
in interval Ii for the first time and no crossing has happened before this interval is reached. The
negative crossing event C−i is defined as

C−i := Y +
1 ∩ Y

+
2 ∩ ... ∩ Y

+
i ∩ Y

−
i+1. (4.11)

For simplicity, in the following, only the event C+ is investigated — all results apply in the same
way for C−.

In Fig. 4.5, the two concepts of the first time crossing probability and the local marginal crossing
probability are illustrated. Similar to Fig. 4.4, two rays with equidistant sampling points are shown.
The iso-surface is represented by blue iso-contours, which are crossed by the black sampling rays.

The upper illustration illustrates the stochastic event for the local marginal crossing probability,
where only the crossing in a specific interval is considered. The crossing event assumes that the
scalar values of two consecutive sampling points are below (red) and above (green) the specified iso-
value. Sampling points before and after the respective interval are not taken into consideration.

The lower illustrations illustrates the stochastic event for the first time crossing probability. This
event assumes that all scalar values before the respective interval are positioned below (red sampling
points) the specified iso-value and therefore no crossing has happened before the interval is reached.
Note that only the event C+ is illustrated.

The proposed event formulation guarantees that C+
i and C+

j for i 6= j are disjoint events that
cannot be both true at the same time, i.e., XOR combinations of crossing events are considered.
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Note that the local marginal crossing events are not disjoint as a crossing in two consecutive
sampling intervals is also possible. With a probability measure P, the total positive iso-surface
crossing probability along a ray can then be computed as ∑P(C+

i ). P(C+
i ), and respectively

P(C−i ), provide an indication of the positional variability around the most likely position of the
iso-surface. In the presented algorithm, the total first time crossing probability is set to

pi := P(C+
i ) + P(C−i ) (4.12)

to account for both positive and negative first time crossing events. Here, the fact is exploited that
C+
i and C−i are also disjoint stochastic events.

For computing the positive first time crossing probability

P(C+
i ) = P(Y (s1) < θ, Y (s2) < θ, ..., Y (si) < θ, Y (si+1) ≥ θ) (4.13)

efficiently, the fact is employed that the underlying probability density function of the random
function Y is assumed to be of MNPDF type (cf. 4.1.2). In general, one can evaluate the multi-
variate normal cumulative distribution function (MNCDF) of dimension i+ 1 for each interval Ii.
Since this is by far too costly, an efficient method is proposed for incrementally updating P(C+

i )
with a minimum of additional operations per interval. Furthermore, the presented work shows that
it is possible to compute P(C+

i ) using at most 2-dimensional MNCDFs and, thus, to avoid costly
evaluations of high-dimensional MNCDFs.

By using the theory of conditional probability, the probability P(C+
i ) can be rewritten in the

following way:
P(C+

i ) = P(Y −1 ∩ Y +
i+1|Y

−
2 ∩ ... ∩ Y

−
i )P(Y −2 ∩ ... ∩ Y −i ) (4.14)

For a MNPDF with the special requirement ρ(A,C) = ρ(A,B)ρ(B,C) on the correlation coefficients
the following rule applies:

P(A ∩ C|B) = P(A|B) P(C|B) (4.15)

Since an ECF (cf. 4.1.2) is utilized for the modeling of correlations, pair-wise correlations can be
written as

ρ(Y (si), Y (si+m)) =
i+m−1∏
j=i

ρ(Y (sj), Y (sj+1)). (4.16)

This means that the aforementioned requirement is met and Equ. (4.15) can be applied several
times to Equ. (4.14) to arrive at the following equation for P(C+

i ):

P(C+
i ) = P(Y −1 )

P(Y −i ∩ Y +
i+1)

P(Y −i )

i−1∏
j=1

P(Y −j ∩ Y −j+1)
P(Y −j )

. (4.17)

The high-dimensional MNCDF value P(C+
i ) can be expressed solely by 1- and 2-dimensional
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MNCDFs of random variables of consecutive sample points. Thus, P(C+
i ) can be computed in-

crementally by considering only consecutive sample points along a view ray. This incremental
algorithm will be subsequently called the isosurface-first-crossing-probability (IFCP) algorithm.

By introducing the negative no-crossing event N−i := Y −1 ∩ Y
−

2 ∩ ... ∩ Y
−
i , the following rule is

proposed for updating P(C+
i ) in interval Ii along a ray:

P(C+
i ) = P(N−i )

P(Y −i ∩ Y +
i+1)

P(Y −i )
, (4.18)

P(N−i+1) = P(N−i )
P(Y −i ∩ Y −i+1)
P(Y −i )

. (4.19)

Here, P(N−i ) can be computed in-place and P(N−1 ) = P(Y −1 ) applies. Keeping in mind that
P(Y −i ∩ Y +

i+1) = P(Y −i ) − P(Y −i ∩ Y −i+1), it is sufficient to compute the probabilities P(Y −i ) and
P(Y −i ∩ Y −i+1) for each interval Ii. This is done using the SDF values ψi and ψi+1, the correlation
ρi in interval Ii, as well as the uni-variate (Φ1) and bi-variate (Φ2) standard normal cumulative
distribution functions:

P(Y −i ) = Φ1(−ψi), (4.20)

P(Y −i ∩ Y −i+1) = Φ2(−ψi,−ψi+1; ρi). (4.21)

Probability Mapping

The iso-surface first time crossing probability pi is then mapped to opacity according to the following
considerations. In volume rendering an optical emission-absorption model for accumulating color
and opacity information along each ray of sight is employed. The overall opacity along a single ray is
written as α = 1−exp(−λ), where λ can be interpreted as the number of small opaque particles the
ray hits on its way through the volume. For each ray through the volume an interactively specified
maximum number of particles λmax is distributed among the sample intervals Ii according to their
probabilities pi. This results in the local and global opacities

α(Ii) = 1− exp(−λmaxpi), (4.22)

α

(
n−1⋃
i=1

Ii

)
= 1− exp

(
−λmax

n−1∑
i=1

pi

)
, (4.23)

where the global opacity represents the overall probability that the ray hits an iso-surface along its
way through the volume. While special attention has been put on the fact that only a linear relation
between pi and λi = λmaxpi is feasible. A linear relation between pi and αi is not possible as the
probabilities are accumulated in an additive manner whereas opacities are updated multiplicatively
along the ray.
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Figure 4.6: (a) Light absorbing particles are distributed along the ray according to crossing prob-
abilities. (b) Absorption strength for opacity effects is linearly related to crossing
probabilities.

The concept of relating opacity values at individual sampling intervals along the ray to iso-surface
crossing probabilities is illustrated in Fig. 4.6. Similar to Fig. 4.5, rays with sampling points
(black) as well as probability values (green bar charts) for the first time iso-contour crossing event in
individual sampling intervals are shown. In (a), the distribution of the specified maximum number
of particles λmax along the ray according to the crossing probability distribution is illustrated. In
(b), the individual number of particles λi in each sampling interval is transformed to the respective
opacity value utilizing Equ. (4.22).

Probability Types

An open question is whether the IFCP algorithm can also be applied when the ray hits two iso-
surfaces that have no stochastic dependence (e.g., because they are too far away from each other).
Let us assume that the ray hits an iso-surface with a significant probability (e.g., 0.5) in the sample
interval I = [si, si+u] and also in interval J = [sj , sj+v] with i+ u� j and ρ(Y (si+u), Y (sj)) ≈ 0.
The probabilities that are computed for all sub-intervals in J are all conditioned under the same
assumption that there was no crossing in I. Thus, relative to each other, all sub-probabilities for
J describe the positional variability in J . Furthermore, all values grow by the same factor if the
true crossing probability for I approaches 0.
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Figure 4.7: Crossing probabilities between ray and iso-contour are revealed for both probability
concepts in uncertain 2D data set, represented by a mean iso-contour (blue line) and a
confidence region (light blue). Crossing probabilities are shown for equidistant sampling
intervals and low (a) and high (b) local correlation. (c), (d) Realizations of contour
probability distribution are shown for data set (a) and (b), respectively. (e) Difference
in first time crossing probabilities for low and high correlation is shown.

The overall probabilities ∑i+u−1
k=i pk and ∑j+v−1

k=j pk for regions with low correlation between each
other are called probabilities of occurrence (PO). The sub-probabilities within regions of high cor-
relation (e.g., around the maximum likelihood position in I and respectively in J) will be called
probabilities of position (PP). The IFCP algorithm has the nice property that while computing the
PPs, it simultaneously combines the POs in the correct visibility order. It further guarantees that
the overall crossing probability along the entire ray never exceeds 1.

Fig. 4.7 illustrates the concept above, the difference between the first time crossing events and
the marginal probabilities and highlights the role of correlation values in an synthetic 2D example.
The sampling along a ray (black) in a 2D domain is shown. The iso-contour for a specified iso-
value is shown as continuous blue line. Its positional uncertainty is indicated by the blue area,
representing the respective confidence region. Domain points with lower and higher data values
than the iso-value are positioned above and below the iso-contour, respectively. The shown iso-
contour (blue) and the confidence interval represent the mean and the standard deviation of an
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synthetically generated ensemble of 2D data sets.

For (a) and (b), low and high local correlation values have been used during the generation process,
respectively. The red curves in (c) and (d) show iso-contours for two ensemble realizations of the
data sets used in (a) and (b). The low local correlation used for data sets (a) results in a significant
higher structural uncertainty of the iso-contour and a less smooth representation.

For the low (a) and high (b) local correlation case and for a ray traveling through the 2D domain
and equidistant sampling points (black line), the probability values are shown for the two stochastic
events of crossing the iso-contour for the first time (green) or of a local marginal crossing (blue)
(cf. Fig. 4.5) in the individual intervals. One can observe that the use of the local marginal
crossing events does not result in a crossing probability distribution along the ray, as the events for
the individual sampling intervals are not disjoint and therefore the total probability sum is larger
than one. Only the disjoint first time crossing events can provide a correct discrete probability
distribution for each individual ray.

In (e), the first time crossing probability distribution along the ray are compared for the synthetic
setting of zero and maximum local correlation strengths. If independence is assumed, the ray crosses
the iso-contour with much higher probability for the first time at an earlier stage compared to the
assumption of maximum correlation. It can be seen clearly that the IFCP values for the second
crossing are significantly lower if there is a high PO for the first crossing and vice versa. Secondly,
the PPs for each crossing do almost not change. The illustration also reveals the importance of
incorporating correlation information in the computation of probabilities for obtaining correct PP
and PO values.

4.1.4 Geometric Variability

A major problem in visualizing iso-surface variability is that the effectiveness of the visual per-
ception of the variability depends on the viewing direction. If the uncertainty only reflects in the
opacity variation, possible iso-surface displacements, in general, can be only visualized if the view-
ing direction is nearly orthogonal to the surface normal. Similarly, since the SDF does not contain
any information on the spatial distance variability, for a normal-parallel view the accumulation of
colors that are mapped from SDF values cannot reveal the spatial iso-surface variation in viewing
direction.

Thus, a method is required that preserves the positional uncertainty information independently
of the viewing direction. To achieve this, a measure of the spatial iso-surface variation due to
the uncertainty is proposed. This measure is then used for assigning colors that emphasize the
geometric surface variability.
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SDF Surfaces

To reveal the uncertainty that is related to the shape of an iso-surface, shading effects are incor-
porated into uncertainty volume rendering. Therefore, the vector pointing towards the direction
of maximum increase in iso-surface crossing probability is used. Except for the sign, this vector
is equivalent to the gradient ∇Ψθ(xi) of the stochastic distance function. Setting t = Ψθ(xi), this
gradient is located orthogonal to the set

ϑθ(t) := {x ∈ S : Ψθ(x) = t}, (4.24)

which contains all points having the same SDF value and, thus, the same stochastic distance from
the iso-value. This set is commonly referred to as SDF surface.

SDF surface rendering is a common approach for visualizing positional iso-surface uncertainty. For
instance, in [ZWK10] ϑθ(1) and ϑθ(−1) were used to indicate the spatial region that contains
the iso-surface with a probability of 0.68. In the presented novel algorithm the gradient ∇Ψθ is
computed on-the-fly from the SDF values at the grid points, and it is then used for revealing
the geometric variability of iso-surfaces via shading effects and for estimating Euclidean distances
between the mean surface and possible iso-surface positions.

Spatial Distance Estimation

The positional uncertainty can be perceived in normal-orthogonal viewing direction because the
opacity decreases with increasing spatial distance from the mean surface ϑθ(0). This distance
mainly varies orthogonal to the ray direction. In normal-parallel direction, however, the spatial
distance varies in viewing direction, requiring to use an additional visual representation to show
this variation.

To visually encode the spatial distance of a point on a SDF surface ϑθ(t) to the mean surface ϑθ(0),
first, have a measure has to derived that estimates this distance. Therefore, so called SDF normal
curves γxθ : R→ S are defined for a point x ∈ S using the differential equation

dγxθ
dt (t) = ∇Ψθ(γxθ (t)), γxθ (0) = x. (4.25)

Each normal curve crosses all SDF surfaces orthogonal. The magnitude of its derivative describes
the amount of change in SDF value for an infinitesimal change in the spatial domain. The distance
d(x) of point x ∈ ϑθ(t) for t 6= 0 from the mean surface is now defined as the length of the normal
curve γxθ between x and its intersection point with ϑθ(0) in 3D space.
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Figure 4.8: This illustration shows the mean iso-contour (green) of a 2D data set, as well as three
positive SDF contours. SDF normal curves (blue) are displayed for several points on
the ϑθ(3) contour. (a) Points on the SDF contours are color-coded with respect to the
respective SDF value. (b) Points on the SDF contours are color-coded with respect
to the length of their normal curve to the intersection point with ϑθ(0) — from green
(small distance) to red (large distance). The magnitude of the numbers on the axes
and on the color bar are related to Euclidean distances in the 2D domain.

The “length” of the curve in SDF space is actually the SDF difference |Ψθ(x)| between ϑθ(x) and
ϑθ(0). Thus, one obtains the equation

∫ d(x)

0
‖∇Ψθ(γxθ (t))‖ dt = |Ψθ(x)| . (4.26)

For simplicity, it is assumed that ‖∇Ψθ‖ is constant along the considered curve segment, which
means a linear increase/decrease in iso-surface crossing probability along the SDF normal curve.
Even though this assumption could be violated for large values of |Ψθ(x)|, it should be quite
reasonable for SDF surfaces close to the respective mean surface. Finally, the distance can be
estimated as

d(x) = |Ψθ(x)|
‖∇Ψθ(x)‖ , (4.27)

which provides a good indication of how strong a point x is deviated from the mean surface ϑθ(0).

The introduced concept of utilizing normal curve lengths for a spatial variability indication is
illustrated in Fig. 4.8. This illustration shows a flat mean iso-surface (green) of a 2D data set,
as well as three positive SDF surfaces. SDF normal curves (blue) are displayed in (b) for several
points on the ϑθ(3) surface.

In (a), a traditional color mapping scheme was used, assigning colors to SDF surfaces according to
the respective SDF value. The variability in iso-surface positioned can be only seen in orthogonal
viewing direction with respect to the mean surface normals. In normal viewing direction the color
order (red, orange, light green, green) is the same for all regions of the mean surface, independent
of the local spatial variability.

In (b), points on the SDF surfaces are color coded with respect to the length of their normal curve
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to the intersection point with ϑθ(0) — from green (small distance) to red (large distance). The
magnitude of the numbers on the axes and on the color bar are related to Euclidean distances in
the 2D domain. This visualization clearly highlights the region with the largest spatial variability
(red central part) — independent of the viewing direction.

4.1.5 Visualization

For visualizing the positional and geometrical variability of a particular iso-surface in an uncertain
3D scalar field, front-to-back volume ray-casting is used, while computing the opacity according to
the IFCP approach, in which the iso-value is interactively specified by the user using a slider. At
each sample point si, the spatial distance estimate d(si) is mapped to a HSV color value, with the
distance being encoded into the hue channel. Based on a user-defined maximum distance dmax, the
range [0, dmax] is linearly mapped to the color map [green→ yellow→ red], and values greater than
dmax are clamped to dmax. To integrate shading effects and, thus, to highlight the shape of the
SDF surface, the cosine between the ray direction and the SDF gradient ∇Ψθ is used to modulate
the value of the HSV color sample. Here a value reduction of at most 50% is allowed.

Color-coding the spatial distance from the mean surface along the SDF normal curves allows for
an intuitive perception of the iso-surface variability in normal-parallel viewing direction. However,
this approach has a drawback when the iso-surface is cut by a slicing plane. In this case the color
distribution is somewhat misleading since “color iso-contours” do not necessarily represent a single
SDF value. Therefore, on slicing planes a color scheme based on SDF related measures, e.g., as
proposed in [PH11], gives a better impression of the spatial variability.

In order to overcome this limitation, SDF iso-contours are displayed on slicing planes, indicating
its intersection with the SDF surfaces ϑ(0), ϑ(±1), ϑ(±2), etc. with a ±0.1 tolerance. The SDF
magnitude is encoded into the blue channel using the LCP value introduced in [PH11]. As illustrated
in Fig. 4.9, this gives a clear impression of the relation between SDF values and spatial distances
on slicing planes.

In section 4.1.3, the concept of probabilities of occasion and position were discussed. In order to
integrate this concept into the visualization, areas with high PO but low correlation to the mean
surface are desaturated. For each sample point, the spatial distance d(si) is used for computing
a correlation coefficient in ∇Ψθ direction using the ECF. This coefficient is linearly mapped to
saturation. Thus, areas with a high spatial distance and a low correlation to values on the mean
surface receive a lower saturation, indicating their independence and significance as PO area. In this
way the user can visually differentiate between possible iso-surface positions with high positional
distribution on the one hand, and regions which might contain an iso-surface but are stochastically
independent from those PP areas on the other hand.
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Figure 4.9: An uncertain 3D signed distance field to a 2D topographic height map is shown. Mul-
tiple instances to a randomly displaced height map were generated, and the mean and
standard deviations where computed from these instances. SDF iso-contours on slicing
planes indicate the set ϑθ(0) (blue) and the sets ϑθ(±i) with decreasing opacity and
saturation. Note the relation between converging iso-contours and low spatial distance
(green) in (1) and between diverging contours and high spatial distance (red) in (2).

In addition, SDF surfaces can be rendered as add-on to the IFCP approach. A SDF value can be
specified interactively by the user and the visualized surface can help to analyze stochastic geomet-
rical and topological changes or to visually link stochastic and spatial distances. Further interaction
mechanisms include the specification of the maximum opacity by controlling the respective number
of particles λmax (cf. 4.1.3) as well as the range [0, dmax] of the spatial distance, which is mapped
to the given color map.

4.1.6 Results and Analysis

In the following, the validity and effectiveness of the proposed IFCP algorithm is demonstrated in
combination with the uncertainty visualization methods that have been introduced in the last sec-
tions. Experiments have been performed on synthetic and real-world data sets given on tetrahedral
grids.
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Figure 4.10: Visualizations of iso-surface crossing probabilities in uncertain 3D scalar fields are
shown. (a) The novel IFCP algorithm accounts for correlations in the data (absorption
coefficient is proportional to probability, increasing distance from mean-surface is color-
coded from green to red). (b) If correlations are not considered, probabilities are
vastly overestimated. (c) The proposed color-coding reveals spatial distance along
normal curves to the mean surface (increasing distance is coded from green to red).
(d) Conventional color-coding does not respect spatial distance but stochastic distance
measured in number of standard deviations.

Synthetic Simulation Data Sets

The PLATE data set was generated by simulating a vibrating metal sheet, which was fixed at
one end. The plate was modeled as cosh-function with one degree of freedom. Several different
realizations of the plate were generated by assigning different random values to the free parameter.
The overall mean and standard deviations where estimated using all generated samples. In Fig.
4.10 (a) the PLATE dataset was visualized using the IFCP algorithm (including distance dependent
correlation) in combination with distance-based color coloring and additional SDF contours. In (b)
the same visualization is shown, but the data was supposed to be uncorrelated (ρ = 0). It can
be seen clearly, that in (b) the iso-surface crossing probability is strongly overestimated. This
result would have been achieved using a ray-casting approach with high sampling rate and distance
independent correlation. Only the correlation-aware IFCP algorithm allows a visualization of the
positional iso-surface uncertainty independent of the chosen sampling rate along the rays.

The TOPO data set consists of a 3D scalar field in which an implicit iso-surface represents a
height surface (topography) over a 2D domain. Multiple instances, in which the iso-surface was
randomly deviated, were generated, and the mean and standard deviations were computed from
these instances. Fig. 4.10 (c) shows a visualization of the TOPO data set using the IFCP algorithm
and spatial distance coloring. In (d) the same approach was used, but the SDF values were linearly
mapped to color. In both examples, the visualization of SDF iso-contours reveal the positional
variability of the iso-surface on the slicing planes. In the inner part and in more gradient-parallel
viewing direction the novel approach can clearly emphasize the amount of spatial deviation from
the mean surface in convex as well as concave areas. It is worth noting that methods which make
use only of the SDF values to determine confidence regions around the mean surface or use SDF-
related norms for color-coding cannot achieve a similar result, as the SDF contains no spatial
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Figure 4.11: (a) Direct volume rendering of the fuel injection data set. The green marked section
is analyzed regarding to iso-surface uncertainty. (b) Compared to (1), a higher spatial
deviation from the mean surface is revealed in the convex deflection (2). (c) The ϑθ(3)
SDF surface emphasizes topological uncertainty due to the separation of iso-surfaces.

distance information. Especially in gradient-parallel viewing direction such methods typically fail
in visualizing the uncertainty with respect to shape. The relationship between the SDF iso-contours
and spatial distance colors is illustrated in Fig. 4.9.

Fuel Injection Data Set

In this experiment, a specific part of the fuel injection data set [Ger] shown in Fig. 4.11 (a) is
analyzed. In particular, the visualization is meant to demonstrate the suitability of the presented
approach for detecting topology changes due to uncertainty. Fig. 4.11 (b) shows the iso-surface
crossing probability for the selected green part in (a), which results from applying a constant
standard deviation to all data points. The red-colored second convex deflection (2) reveals a
much stronger spatial deviation of the iso-surface from its mean position than the first deflection
(1). The reason for this difference can be deduced from (c), where the ϑθ(±3) SDF surfaces are
simultaneously visualized. As can be seen, the uncertainty in the surface topology results from the
separation of the iso-surface into two distinct structures. Thus, the proposed novel color mapping
scheme in combination with SDF surface rendering can be used effectively to indicate how reliable
an extracted iso-surface is.

Atmospheric Temperature Forecast Ensemble Data Set

The ATMOS data set shows a 3D temperature field in the exosphere above Europe and the North
Atlantic Ocean. It contains the mean values of multiple fields that were simulated by the European
Centre for Medium-Range Weather Forecasts (ECMWF) using different input parameters [Eur].

Fig. 4.1 (d) shows a visualization of an uncertain iso-surface in the ATMOS data-set using the
IFCP algorithm. SDF values were linearly mapped to color. In (c) the same approach was used,
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Figure 4.12: (a) The mean surface for a temperature iso-value in the ATMOS data set is shown.
(b) The IFCP algorithm in combination with distance dependent color mapping is
applied. (c) SDF surfaces ϑ(±2) emphasize the uncertainty in iso-surface shape.

but SDF values were mapped to color based on their spatial deviation from the mean surface along
normal curves. By visualizing SDF iso-contours on a slicing plane, the positional variability of
the iso-surface can be revealed locally in either case. Globally, and where the viewing direction
is parallel to the normal of the iso-surface, the novel color mapping approach (c) emphasizes the
strength of the spatial deviation from the mean surface in convex and concave regions. Since SDF
values do not contain any spatial distance information, the visualization in (d) fails in depicting
the uncertainty with respect to the shape of the mean surface.

The potential of the proposed uncertainty visualization techniques for analyzing the effect of uncer-
tainty on specific data features is demonstrated in Fig. 4.12. In (a), the surface for a given iso-value
is shown. In (b), the IFCP algorithm and the spatial distance coloring were used under the as-
sumption of homogeneous correlation (ρi = 1). The confidence volume containing the iso-surface
with a certain probability is enclosed by two stochastic distance surfaces in (c). The uncertainty
visualization highlights the region where the simulated temperature field is rather sensitive to the
input parameters of the simulation, indicating that the forecast for this region is not reliable. This
information suggests to improve either on the physical forecast model, the used initial conditions,
or the employed computational scheme to obtain a less sensitive and, thus, more reliable result.

Geophysics Data Set

This data set was generated by seismic tomography [K1̈0], where recorded seismic waves are used
for inferring structures in the earth’s mantle. In the visualization examples, the boundary surface
between two specific earth materials is analyzed. As the computations are performed on incomplete
and noisy data, the position of the iso-surface is affected by uncertainty.

Fig. 4.13 illustrates the difference between reliable (a) and overestimated (b) crossing probabilities
depending on whether correlation has been considered or not. Note that the visualization in
(a) turns into (b) if the sampling rate in the ray-casting approach is increased without using an
adequate distance dependent correlation model. Only the correlation-aware IFCP algorithm allows
a visualization of positional iso-surface uncertainty independent of the chosen sampling rate along
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Figure 4.13: (a) A seismic tomography data set is shown. (a) Reliable positional probabilities
for the crossing of iso-surfaces along the rays of sight are computed using distance
dependent correlations. (b) If correlations are not considered, crossing probabilities
are vastly overestimated. (c) The uncertainty related to shape is revealed by SDF
surface integration.

the rays. In (a), the lower probability of crossing an iso-surface in the red area is clearly visible
due to the assignment of lower opacity. The ϑθ(1) SDF iso-contour (violet) gives a good impression
of the geometrical shape of the related SDF surface. In (c), the perception of the geometrical
variability is enhanced by visualizing the ϑθ(2) SDF surface.

Fig. 4.14 shows the same data set from a different viewpoint and for a slightly different iso-value. In
(a), the IFCP algorithm and the spatial distance color mapping were applied under the assumption
of homogeneous correlation (ρ = 1). The visualization in (b) shows the same setting but using
an anisotropic correlation with a low ρ-value in a certain direction. In areas (1) and (2) an iso-
surface crossing is now detected with a much higher probability than in (a), clearly demonstrating
the benefit of using saturation to encode the correlation. Although a high crossing probability is
visualized, the low saturation indicates that this is caused by a low correlation in this area and,
therefore, high stochastic independence and high probability of occurrence (PO) but not a high
positional variability (PP).

An example which demonstrates the suitability of the presented approach for detecting possible
topology changes due to uncertainty is shown in the visualization of the GEO data set in Fig.
4.15. In (a), the mean iso-surface, separating subsurface structures with high and low seismic wave
velocities in the earth mantle below Australia, is visualized. If the geometric variability of the
separating surface due to uncertainty (constant correlation of ρi = 1) is visualized (b), additional
“bridging” structures occur with a certain probability (1). Notably these structures and their
geometrical appearance cannot be detected if uncertainty is ignored or only used to color the mean
surface. To facilitate an improved assessment of the uncertainty related to the shape of an iso-
surface, and to employ the possibilities of a surface structure for integrating shading effects, the
SDF surfaces ϑ(±2) are incorporated into the visualization in (c).

In (d), with respect to (b), an anisotropic correlation decrease is assumed. The result is a sig-
nificantly higher surface crossing probability along the view rays in area (2). In this example,
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Figure 4.14: A seismic tomography data set is rendered with IFCP opacity mapping and spatial
distance estimation (correlation of ρ = 1 is assumed). (b) An anisotropic correlation
distribution is assumed (with respect to (a) correlation decrease in one spatial direc-
tion). Higher crossing probability are determined in (1) and (2) compared to (a), but
correlation-based saturation reveals high local stochastic independence rather than
high local positional iso-surface variability as major cause.

saturation was chosen as an indication of high distance from the mean surface and low correlation.
Thus, the specific color-coding reveals high local stochastic independence rather than high local
positional surface variability as major cause of the crossing probability in (2).

This information is important for analyzing the relationship between uncertainty parameters, like
standard deviations and correlation structures. Especially in seismic tomography, high correlations
are assigned to areas with high uncertainty for regularization purposes, and these correlations are
then incorporated into a prior stochastic model. In this way, areas with high PO concurrency, like
in (d), can be avoided and uncertain data sets obtained, clearly showing the positional variability
like in (b). The visual analysis of the effect of such prior stochastic models is of great importance for
steering the tomography process towards reduced uncertainty. The visual integration of the PO/PP
concept, as discussed in 4.1.3, is another new strong benefit of the proposed methods, since it enables
differentiating between regions with high correlation and, therefore, high positional uncertainty, and
areas with high stochastic independence and, therefore, high occurrence uncertainty.

4.1.7 Implementation and Performance Details

All of the presented results were rendered into a 1K × 768 view-port using volume ray-casting
on the GPU as proposed in [Wei05]. Tetrahedral elements — represented by four indices to their
vertices — were stored in an element buffer. Each element was accompanied by a correlation tensor
and four additional links to their neighboring elements. Shared vertex buffers were used to store the
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Figure 4.15: (a) A separating iso-surface in a seismic tomography data set is shown. (b) The IFCP
algorithm in combination with distance dependent color mapping (homogeneous cor-
relation of ρi = 1) reveals a possible topological link in (1). (c) SDF surfaces ϑ(±2)
emphasis the iso-surface uncertainty with respect to shape. (d) An anisotropic cor-
relation decrease is assumed. Compared to (b), higher crossing probabilities are de-
termined in (2), but correlation based saturation reveals high stochastic independence
rather than high local positional iso-surface variability as major cause.

vertex coordinates as well as the mean values and standard deviations. View rays were traversed
with a given sampling distance by subsequently computing ray-cell intersections and following the
respective link to the next element. Barycentric interpolation was used to reconstruct a continuous
field, and early-ray termination was performed at an optical attenuation above 0.95.

When executing the IFCP algorithm, the update operations in Equ. (4.18) are performed at every
sample interval along the view rays. This requires evaluating and interpolating per-vertex SDF
values, and evaluating the probabilities P(Y −i ) and P(Y −i ∩ Y −i+1) as stated in Equ. (4.20). To
reduce the computations required for evaluating the distribution functions Φ1 and Φ2, and to avoid
precision problems caused by real number divisions in Equ. (4.18), function values Φ[a, b, ρ] =
Φ2(a, b; ρ)/Φ1(a) were pre-computed, e.g., as described in [AS64, DW90], and stored in a 2563

texture map with a, b ∈ [−5.08, 5.08] and ρ ∈ [0, 1]. This texture map is used at run-time as a lookup
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Figure 4.16: Three sample levels of 3D probability quotient lookup texture are shown for correlation
values ρ = 0 (a), ρ = 0.5 (b) and ρ = 1 (c).

table, resulting in an approximation error below floating point precision. In Fig. 4.16, three sample
levels of the 3D texture are shown, displaying in 2D maps the values Φ[a, b, ρ] = Φ2(a, b; ρ)/Φ1(a)
for correlation settings ρ = 0, ρ = 0.5 and ρ = 1.

On the used target architecture, a 2.83 GHz Core 2 Quad processor equipped with a NVIDIA
Quadro FX5800, the IFCP algorithm roughly doubles the visualization time per frame compared
to iso-surface ray-casting. For instance, the visualization of the iso-surface in the GEO data set
(3.3 million tetrahedral elements) requires 85 milliseconds (ms), while the IFCP algorithm takes
about 150 ms. 80 MBytes are required to store the mean values, the standard deviations, and the
correlation tensors, plus additional 65 MBytes consumed by the pre-computed 3D look-up table.
The loss of performance in the IFCP algorithm is mainly due to the enlarged memory footprint
for computing and interpolating SDF values and gradients on the fly, and for accessing the pre-
computed distribution functions.

4.1.8 Conclusion

In the preceding sections, a novel approach has been presented for computing reliable probabilities
of position and occurrence for iso-surface crossings in uncertain 3D scalar fields. This has been
achieved by incorporating distance dependent correlations into the suggested approach. An efficient
update-scheme allows integrating the proposed algorithm into front-to-back ray-casting. Due to
the integration of the distance dependent correlation model, the crossing probability computation
is independent of the specified sampling rate along the rays. A new measure for estimating the
distance between possible iso-surface variations and the mean surface has been developed. This
measure is used as input for a color mapping scheme, which allows for an effective visualization
of iso-surface variability independent of the viewing direction. It has been demonstrated that the
novel approach results in an intuitive understanding of the effect of uncertainty on iso-surfaces in
3D scalar fields.
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4.2 Arbitrary Distributed Ensemble Data Sets

Ensemble data sets consist of different instances of the outcome of an experiment. They can be pro-
duced by repeated simulations of a parameterized model using slightly modified parameter settings,
or by simply running multiple times a procedure which is affected by inherent randomness. When
the experiment generates outcomes over a spatial domain, each instance, or ensemble member,
captures the possible data values at all locations in space.

Analyzing ensemble data sets is important, because they give answers about the uncertainty of
the captured data, i.e., the degree of variation of that data. These answers are usually derived
by assuming a parametric uncertainty model, meaning that the instances are realizations of a
multi-variate random variable with a known probability distribution model. Most often a multi-
variate Gaussian probability distribution is assumed, for which the parameters like mean, standard
deviation, and correlation are estimated from the ensemble data set. For Gaussian distributed
random fields with well-defined parameters, a number of techniques can effectively visualize the
possible variations of specific features like iso-contours or critical points in such fields. Although
the assumption of a Gaussian distribution is often valid, various types of distributions can occur
in general. This asks for a methodology to a) test the hypothesis of a Gaussian distribution, and
b) estimate the variability of features for non-Gaussian, or, even more general, non-parametric
distributions.

It is clear, on the other hand, that an uncertainty visualization of any feature can always be
performed by simply overlaying plots of features in individual ensemble members. One popular
such approach is the so-called spaghetti plot, which shows simultaneously all iso-contours in the
members of a 2D scalar ensemble data set. Especially in meteorology and geoscience, such plots
have been positioned as a key uncertainty metaphor (cf. [PWB∗09b, SZD∗10]). In Fig. 4.17 (a)
and (d) the spaghetti plots of two different scalar ensembles are shown for the same iso-value θ.
The plots do not indicate any difference between the two data sets.

Images (b) and (c) show two instances of the first ensemble in (a). The data is color-coded from blue
(below θ) over white (equal to θ) to red (above θ). The iso-contour “jumps” from the right branch in
(b) to the left one in (c), and the data values increase from right to left in both instances. By looking
at all ensemble members, one would see that in the lower part of the domain the iso-contour is
positioned either in the left or in the right branch, but never in both. Thus, the contour distribution
is uni-modal in the upper part (one major peak) and bi-modal in the lower part. Images (e) and (f)
show two members of the second ensemble. Now, in all ensemble members, the iso-contour occurs
simultaneously in both the left and the right branch, as a v-shaped valley exists in the middle of
the domain. These examples make clear that visualizing features in individual ensemble members
in one image can be greatly misleading and does not allow for a reliable estimation of the feature
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Figure 4.17: Top row: Spaghetti plots of iso-contours for four ensemble data sets are shown. Bot-
tom rows: Two color-coded scalar ensemble members are shown for each of the four
ensemble data sets in the top row. For a specified iso-value θ, the data is color-coded
from blue (below θ) over white (equal to θ) to red (above θ).

uncertainty in general. These limitations are due to the fact that each individual feature is taken
out of the data without respecting any stochastic model of the feature distribution.

Furthermore, as shown by a further example in images (g), (h), and (i), a quantitative differentiation
of the local spatial probability density of the contours is not possible. In this example, the iso-
contour is twice as many times located in the left than in the right branch. It is clear, that the
little visible change in (g) becomes more and more subtle due to cluttering when more ensemble
members are used. Therefore, no quantitative analysis with respect to the contour distribution can
be made solely based on the spaghetti plot visualization in (g).

In image (j), the spaghetti plot for a similar data set like in (a) and (g) is shown. The iso-contour
permutes again between the right and left branch. However, the data gradient strengths are much
lower along the iso-contours in the right branch, as the transition in scalar value is much smoother
and shallower in the ensemble members, whose iso-contour position belongs to the right branch.
The difference between strong and weak gradient strengths is shown in the two ensemble members
(k) and (l), respectively.

This section presents a new visualization technique for iso-contours in 2D scalar ensemble fields
which overcomes the depicted limitations of spaghetti plots. It makes no assumption about a
stochastic uncertainty model, yet by computing a statistical summary of the ensemble over the
spatial domain it generates point-wise measures for the likelihood of occurrence of iso-contours.
The approach is similar in spirit to kernel density estimates (KDE). KDE is a non-parametric
approach for estimating a continuous probability density function (PDF) from a finite set of data
values [Ros56, Par62]. Instead of creating a PDF for scalar values in a 1D data domain, the
concept underlying KDE is used to obtain a PDF for iso-contours in a 2D spatial domain. In
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this novel approach, single iso-contours are represented by Gaussian kernels. However, instead
of modeling the kernels directly using the analytic KDE approach, the spatial PDF is obtained
indirectly using spatial derivatives of a cumulative distribution function (CDF). In this way, any
explicit computation and storage of point-wise data histograms can be avoided.

The novel technique is suitable for arbitrary ensemble data sets, and it can be used to identify
whether the contours follow a Gaussian-like or a multi-modal distribution. Furthermore, a visual
concept is introduced for depicting the modality of the iso-contour distribution and indicating in
which parts of the domain the uncertainty cannot faithfully be represented by a Gaussian-like
distribution. In combination with a special color scheme, the computed PDFs can be used to
enable a quantitative assessment of the iso-contour distribution as well as the variations in gradient
magnitude around these contours. Since the entire visualization is carried out on the GPU, the
approach allows the user to visually analyze even very large ensemble data sets at interactive
rates.

4.2.1 Related Work

The visual exploration of ensemble data sets has been discussed in several publications: [LPK05]
give an overview of general approaches on visualizing spatial multi-value data. In [BKS04], a
special clustering approach is used for reducing the information content in ensemble data sets.
This condensed data is then used for color-coding purposes. [PPA∗12] use a pairwise sequential
animation method and a screen space subdivision approach for visually analyzing ensemble data
sets. In [AWH∗12], the Ensemble Surface Slicing algorithm was introduced, which integrates several
3D surfaces simultaneously in one single-image view.

The visualization of uncertain iso-contours in 2D ensemble data sets was explicitly addressed in
[PWB∗09b]. Although no assumption on any distribution is made (e.g., Gaussian distribution),
they propose a framework for interactively flipping through the ensemble members. Iso-contours are
visualized using the spaghetti plot concept. This approach was improved in [SZD∗10]. The spaghetti
plots were enhanced by additional glyphs and confidence ribbons, highlighting the Euclidean spread
of the contour ensemble. However, the use of parameters like standard deviation and inter-quartile
ranges for describing the uncertainty indirectly assumes a certain stochastic probability model. In
[FKLT10], kernel density estimates are used for visualizing the contour density in parallel coordinate
plots. In [AOB08], uncertain contours in 2D scalar data sets are qualitatively visualized using visual
noise and fuzzy effects.
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4.2.2 Spatial Probability Distribution

In the following, the stochastic functions are introduced, which are required for characterizing the
spatial variability of iso-contours in uncertain scalar fields, i.e., the spatial CDF and PDF. Since
no parametric uncertainty model is assumed, first, a new concept is presented for deriving these
functions for iso-contours in scalar ensembles. These functions are then used to improve spaghetti
plots towards a more reliable visualization of uncertain iso-contours.

Spatial Distribution Functions

A discrete sampling of a continuous 2D domain S ⊂ R2 on a Cartesian grid structure with grid
points Sa,b = {xi,j : 1 ≤ i ≤ a, 1 ≤ j ≤ b} is assumed. However, since all computations are local
at each point and do not require any information about neighboring points, the grid type can be
arbitrary in principle. A Cartesian grid structure is chosen, so that the generated data can be stored
in a 2D texture map and rendered efficiently on the GPU. It is further assumed that an ensemble
has n members, the k-th member containing scalar values yk(xi,j) and gradients ∇yk(xi,j). At each
grid point, the data uncertainty is given by the variability of the n possible data values. The data
uncertainty can be modeled by assigning a random variable Y (xi,j) to each grid point xi,j .

In the following, it is assumed that iso-contours for a selected iso-value θ in the ensemble members
should be analyzed. Instead of drawing a spaghetti plot, one is interested in determining for every
grid point the probability that a contour is located exactly at this point. At a point xi,j , the
probability that the data takes on the value θ is P(Y (xi,j) = θ). Unfortunately, this probability
vanishes if the data is real-valued and smooth. This is due to the fact that a 1D contour (or
1-manifold) in a 2D domain has a zero Lebesgue (or Borel) measure, i.e. its area is zero (cf. 2.1.2).
Since a non-zero probability for the occurrence of a contour is only possible across a non-zero area,
it must hold that P(Y (xi,j) = θ) = 0.

Since it is not possible to directly compute probabilities of the occurrence of iso-contours at the do-
main points, a novel alternative is introduced. Instead of interpreting an iso-contour as a 1-manifold
embedded into the 2D domain, it is regarded as the boundary between the regions containing all
points with scalar values above and below the iso-value. These regions are called the superlevel
and sublevel sets, respectively, and have non-zero Lebesgue measures in general. They can thus be
used to derive probability measures.

For this purpose, the spatial CDF is introduced as

Ψθ(xi,j) := P(Y (xi,j) ≥ θ) = 1
n

n∑
k=1
Pk(Y (xi,j) ≥ θ), (4.28)
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Figure 4.18: (a) One ensemble member of the data set in Fig. 4.17 (d) is shown. (b) Spatial CDF is
shown for single ensemble member in (a) using the binary indicator transition function.
(c) Spatial CDF using the Gaussian transition function. (d) Spatial PDF as derivative
of the spatial CDF.

where Pk is a boolean indicator function 1k for each ensemble member k:

Pk(Y (xi,j) ≥ θ) = 1k(xi,j) :=

0 if yk(xi,j) < θ

1 if yk(xi,j) ≥ θ
(4.29)

The spatial CDF expresses the probability that the scalar value at a particular grid point is greater
than the chosen iso-value θ with respect to the data uncertainty at that point. It is defined for any
number n of ensemble members. In Fig. 4.18 (b), Equ. (4.29) was applied to the single ensemble
member shown in (a). A color table was used to map values in the interval [0, 1] to a color range
from blue to red.

Since a CDF is obtained by integrating the respective PDF, the spatial PDF can be computed via
differentiation as

ψθ(xi,j) := ‖∇Ψθ(xi,j)‖ . (4.30)

The following paragraphs will show for the spatial PDF that a) it can be computed at each grid
point by using only the ensemble data at this point, and b) it can be used directly to encode the
positional uncertainty of the iso-contours.

The concept of the spatial PDF and CDF is illustrated in Fig. 4.19. In (a), the spaghetti plot
for iso-contours in a 2D scalar ensemble data set is shown. The different colors of the contours

Tobias Pfaffelmoser 63



4.2 Arbitrary Distributed Ensemble Data Sets

Figure 4.19: (a), (b) Spaghetti plots are shown for an ensemble of iso-contours. Different contour
colors are used for different ensemble members in (a). (c) The confidence region for
the contour variability is shown in red. (d) Spatial CDF values are encoded from [0, 1]
to gray-scales from black to white. A normal curve (blue) is shown in (c) and (d).

represent the different ensemble members. In (b), only the single color black is used for all iso-
contours. This visualization shows that for an increasing number of contours a quantitative analysis
of the contour distribution becomes more and more difficult due to severe cluttering effects. Using
the estimation of traditional uncertainty indicators like and mean and standard deviation allows the
computation of a confidence region for the iso-contour distribution. This region (red) is illustrated
in (c). Although it provides a good indicator for the overall uncertainty strengths, a more detailed
analysis of the positional occurrence probabilities and the distribution modality is not possible.

The spatial CDF and PDF only model the distribution of the iso-contour along the so-called
normal curves of the CDF field (cf. Fig. 4.19 (d)). These normal curves can be obtained for any
spatial domain point, are always aligned orthogonally to the iso-contour distribution and oriented
in increasing spatial CDF value direction. The normal curve γx

θ : R→ S for a point x ∈ S is defined
using the following differential equation:

dγxθ
dt (t) = ∇Ψθ(γxθ (t)), γxθ (0) = x. (4.31)

Two normal curves (blue) are shown in (c) and (d).

Note that both the spatial PDF and CDF are defined on a 2D spatial domain and not on a 2D
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data or parameter domain like traditional 2D distribution functions. They model the contour
distribution along the 1D normal curves. For instance, according to the normal curve definition,
the spatial CDF values along a single curve can be obtained by integrating the spatial PDF values
along the respective curve in its positive direction.

Gaussian Contour Representation

The spatial PDF expresses the probability density of the iso-contours in the 2D domain. However, it
cannot be evaluated directly because the indicator function in Equ. (4.29) is neither continuous nor
differentiable. Thus, the same idea underlying KDE is used to obtain a smooth non-parametric PDF
from a discrete histogram: The binary indicator function is replaced by a function which generates
a smooth and differentiable transition between the sublevel and superlevel sets. In particular, a
function with a closed-form first derivative is chosen such that a closed form of Equ. (4.30) can be
obtained.

One possible choice is the well-known CDF Φ of the standard normal distribution, yielding

Pk(Y (xi,j) ≥ θ) = Φ
(
yk(xi,j)− θ

σs

)
. (4.32)

Since Φ is computed as an integral of the Gaussian PDF, it serves the requirements. For the
ensemble member in (a), Fig. 4.18 (c) shows the values of Pk for a small positive sharpness
parameter σs.

Due to the chosen smoothing function, with increasing/decreasing values yk(xi,j) above/below the
iso-value in one ensemble member k, one obtains Pk(Y (xi,j) ≥ θ) → 1 and Pk(Y (xi,j) ≥ θ) → 0,
respectively. The transition rate between the superlevel and sublevel region is controlled by the
sharpness parameter. For a fixed sharpness parameter, the spatial CDF has a strong gradient
magnitude in those regions along the contour where the data gradient is strong, too. Thus, it
provides a measure for the gradient strength along the contours.

By substituting the smoothing function Equ. (4.32) into Equ. (4.28) for one individual member
k, and using the resulting CDF in Equ. (4.30), we arrive at the spatial PDF for the selected
member:

pk (xi,j) = φ

(
yk(xi,j)− θ

σs

) ‖∇yk(xi,j)‖
σs

. (4.33)

Here, φ is the bell-shaped PDF obtained by differentiating the standard normal distribution func-
tion. Note that for each ensemble member k, Equ. (4.33) models a Gaussian “uncertainty region”
around each single iso-contour, but not for the distribution of the set of iso-contours. The degree
of this kind of “uncertainty” is directly related to the data gradient and can be interpreted as con-
dition indicator (cf. visual condition analysis of iso-contours in [PH11]). The sharpness parameter
σs can be interpreted as maximum allowed error for each ensemble member.

Tobias Pfaffelmoser 65



4.2 Arbitrary Distributed Ensemble Data Sets

Figure 4.20: Two histograms with 16 bins (a) and 3000 bins (b) are shown for a data set with 500
single scalar values. (c) A continuous histogram representation (3000 bins) is generated
by representing each scalar value as Gaussian probability density function (red).

Besides integrating the data gradient information, the novel Gaussian iso-contour representation
provides a second strong advantage. This is illustrated by using an example for an analogues
problem setting.

An ensemble of 500 single scalar values is assumed. The goal is to illustrate the value distribution
by plotting a 1D histogram. For plotting the histogram, the number of bins in a certain range
has to be defined. In Fig. 4.20 (a), the histogram for 16 bins is shown, indicating the number of
scalar values in the ensemble belonging to each bin. In (b), the histogram resolution is increased
to 3000 bins. For increasing bin numbers the distribution becomes more and more discontinuous
and its shape more fuzzy. However, the most significant problem for a high bin number appears,
when a probability value for an arbitrary point in the value range should be determined. In (b), it
could happen that one extracts a probability value of zero close to the maximum likelihood range
value around zero, as the histogram (b) is not continuous and has several gaps. This limitation can
be approached by representing each ensemble scalar value not as single point in the range but as
Gaussian probability density function around this point. This is shown for the value 2 in (b) as red
curve. These Gaussian representation are added up and divided by the number of ensemble values.
In (c), the result is shown for the same histogram resolution as in (b). The histogram becomes
smooth and continuous an no gaps exist any more. Now, it is possible to extract probability density
values for arbitrary points in the value range.

This consideration is exactly the same for iso-contours in 2D. Using only a geometric model of
crisp contours, one could not build any model which describes the local density of contours for
an arbitrary grid point in the 2D domain with arbitrary resolution. This would require a special
binning strategy. Using the Gaussian representation and the sharpness parameter, local iso-contour
probability density values can be easily obtained, independent of the domain resolution.

In Fig. 4.18 (d), for the ensemble member in (a), the values of pk are first transformed to [0, 1]
via 1− exp (−pk(xi,j)), and then to color. The color transition between blue and red allows clearly
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distinguishing between low and strong gradient regions along the iso-contour.

The spatial PDF modeling the probability density of the contours in the whole ensemble can now
be written as

ψθ(xi,j) =
∥∥∥∥∥ 1
n

n∑
k=1

φ

(
yk(xi,j)− θ

σs

) ∇yk(xi,j)
σs

∥∥∥∥∥ . (4.34)

The spatial PDF gives rise to a quantitative assessment of the local probability density of iso-
contours, which is caused by their positional variation in the ensemble. The distribution puts into
relation the strength of the spatial variations and is independent of the domain resolution. As
discussed in the following, the sharpness factor is fixed over the entire domain for the purpose
of a better visualization of the uncertainty. This is in contrast to KDE, where smoothing filters
of adaptive width — or bandwidth — are used to optimize the properties of the obtained non-
parametric distribution. In this way, the strength of the local iso-contour variations can be clearly
identified. It is worth noting, however, that the spatial PDF covers only the positional variation
of an oriented boundary contour. Variations in topology, e.g., flip of the superlevel and sublevel
regions across one and the same contour, are not taken into account. However, this is not the case
for most ensemble data sets, affected by moderate uncertainty.

Visualization

The following paragraph describes, how to visually incorporate the spatial CDF and PDF into the
standard spaghetti plot. Rather than representing iso-contours as separate geometric primitives,
the uncertainty information is encoded as color at each domain point.

The spatial CDF computes for every grid point the probability that this point belongs to the region
in which the scalar values are greater than the iso-value. These probability values range from 0
to 1, and they are mapped linearly to gray-scales from black to white. The resulting colors serve
as background colors Cb, which allow the user to distinguish between the sublevel and superlevel
regions, as well as the transition zone in between. It is worth noting here, that this is not possible
by just drawing a spaghetti plot.

Next, the color-coded spatial PDFs of all ensemble members are displayed simultaneously. Due
to the Gaussian representation, the color-coded contours appear wider and more diffuse in regions
showing low gradients, and more narrow and sharper in regions with strong gradients. By drawing
all spatial PDFs simultaneously, wider regions could completely hide narrower ones. Therefore,
instead of averaging the spatial PDF values of all members (cf. Equ. (4.34)), the largest value at
each domain point is always selected first. This results in a new variant of the spatial PDF:

ψmax
θ (xi,j) = max

k=1,2,...,n
pk (xi,j). (4.35)
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Figure 4.21: 2D color map for the parameters α and the spatial CDF Ψ.

Note that both ψθ and ψmax
θ range between 0 and ∞. These values are first mapped to [0, 1] using

the transfer function
α(xi,j) = 1− exp (−τ · T(xi,j)), (4.36)

where T(·) is either replaced by ψθ or ψmax
θ . The scaling parameter τ is used to control the color

contrast.

Both α and Ψ are used for color-coding the Gaussian contour representation. Ψ has already been
used for constructing a background color Cb. Furthermore, two foreground colors are constructed:
The first one, the lower color Cl, is obtained by linearly mapping Ψ (∈ [0, 1]) to the color map
[yellow → green → cyan]. The second one, the upper color Cu, is constructed by mapping Ψ to
[red→ magenta→ blue]. The final color at each grid point is obtained by linearly mapping α from
[0 → 0.5 → 1] to [Cb → Cl → Cu]. The terms lower color and upper color indicate relatively low
and high gradients along the iso-contours. The described mapping of the parameter pair Ψ and α
to color is illustrated in Fig. 4.21.

The color scheme allows the simultaneous encoding of the values of the spatial CDF — shows the
transition between the sublevel and superlevel sets — and the spatial maximum PDF — indicates
regions with high and low gradients.

In Fig. 4.22, the novel color scheme was applied to the ensemble data sets in Fig. 4.17. Regions
colored white/black contain those points which belong to the superlevel/sublevel region in all
ensemble members. In (a), a gray value of 0.5 indicates an equal number of ensemble members
in which the respective point is in the superlevel or sublevel set. Thus, from the location of the
gray region it can be concluded directly on a multi-modal distribution of the iso-contours, i.e. the
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Figure 4.22: Spatial CDF/PDF values for the 4 ensembles in Fig. 4.17 are visualized. Gray-scales
encode the point-wise probability (black=0 to white=1) that scalar values are greater
than a specified iso-value.

contours are positioned either left or right of the gray region. The color represents the spatial PDF.
The strong presence of Cu indicates almost constant gradient magnitude along the iso-contours and
no contrast between low and high gradient regions.

The visualization in (b) shows the ensemble data set in Fig. 4.17 (d)-(f). Now, the background
color indicates that there are no larger regions belonging either to the upper or lower iso-regions.
Compared to (a), no strong multi-modality in the iso-contour distribution can be concluded; black
and white regions reveal a clear separation between the superlevel and sublevel region. The presence
of Cl in the upper part of the domain indicates a much lower gradient strength than in the lower
part.

In (c), the data set in Fig. 4.17 (g)-(i) is visualized. The different ratios of the frequency of
occurrence of the iso-contours in the left and right branch can be slightly observed from the values
of the spatial CDF, i.e. the gray region is slighter darker in (c). To emphasize this difference more
clearly, an improved visualization approach will be presented in the following sections.

In (d), the data set in Fig. 4.17 (j)-(l) is visualized. The presence of the upper color Cu and lower
color Cl in the left and right branch, respectively, indicates the difference in gradient strengths
along the iso-contours in both branches (cf. Fig. 4.17 (k) and(l)).
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Figure 4.23: Visualization of spatial PDF values for ψmax
θ (a) and ψθ (b).

Fig. 4.23 illustrates the differences between using ψmax
θ and ψθ for visualizing the contour distri-

butions. (a) and (b) show the upper domain part of the data set in Fig. 4.17 (a), with ψmax
θ and

ψθ as probability measures, respectively. The individual contours can be visualized much more
effectively in (a), and the visual focus is always put on the contours along which the gradients
are most prominent. Due to the averaging of values in (b), contour points where several contours
intersect each other receive higher values than points where no crossing occurs. This results in a
shift of the visual focus from the contours to the intersection regions, and an increasing loss of the
contours’ shapes.

4.2.3 Statistical Modality Analysis

So far, the presented concepts build upon the stochastic distribution of iso-contours in scalar
ensembles, and they take into account the gradient strength to estimate the contours’ sharpness.
In the following, a closer look is taken at the shape of the spatial distribution of iso-contours. The
goal is to depict those regions where the distribution follows a uni-modal probability density, i.e. a
Gaussian-like density function with one prominent maximum probability contour, or is represented
by a multi-modal density function. In the context of the proposed 2D spatial PDFs, the mentioned
PDF modality in a certain spatial region is equal to the modality of the spatial PDF along a 1D
normal curve (cf. Equ. (4.31)) in this region.
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Gaussian Reference Distribution

To validate whether the contours follow a Gaussian-like distribution, the underlying data distri-
bution is assumed as such and the Gaussian probability density function is computed from the
ensemble. If the Gaussian assumption is wrong, the computed ensemble density function will show
a clear mismatch with it.

The Gaussian density function is computed by first deriving at every grid point the mean µ and
standard deviation σ from the ensemble data set:

µ(Y (xi,j)) = 1
n

n∑
k=1

yk(xi,j), (4.37)

σe(Y (xi,j)) =

√√√√( n∑
k=1

yk(xi,j)2

n− 1

)
−
(

n∑
k=1

yk(xi,j)√
n(n− 1)

)2

. (4.38)

The sharpness parameter in Equ. 4.32 is added to the standard deviation as an additional degree
of uncertainty:

σ(Y (xi,j)) =
√
σe(Y (xi,j))2 + σ2

s . (4.39)

The rational behind this is that the distribution of each separate iso-contour is modeled via a
Gaussian function, and, thus, the variance of this Gaussian function has to be added1.

By means of these parameters, a corresponding Gaussian spatial CDF (Γθ) and PDF (γθ) can be
computed at every point in the same way as in Equ. (4.28) and (4.30):

Γθ(xi,j) := P(Y (xi,j) ≥ θ) = Φ
(
µ(Y (xi,j))− θ
σ(Y (xi,j))

)
, (4.40)

γθ(xi,j) := ‖∇Γθ(xi,j)‖ . (4.41)

Since the Gaussian PDF reaches its maximum at its mean, the most likely position of the iso-
contours is at grid points where µ(Y (xi,j)) = θ. Thus, for Gaussian distributed contours the mean
contour is a good representation. However, along the mean contour, the Gaussian PDF does not
necessarily obey a constant value. The value is higher in regions where the spatial spread of the
contours is lower. This can be compared to a simple 1D Gaussian PDF, where the peak is also
narrower and higher if the standard deviation is lower.

As the presented concept seeks for an analysis of the modality of the Gaussian distribution and
not of its maximum height, all scaling factors are eliminated and a normalized version of the PDF
is used:

γNθ (xi,j) = exp
(
−(µ(Y (xi,j))− θ)2

2σ(Y (xi,j))2

)
. (4.42)

1The variance of the sum of two Gaussians equals the sum of the variances of each of them.
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The maximum value of this function is 1, and it is obtained at the maximum likelihood positions
of the contours where µ(Y (xi,j)) = θ. This normalized function will serve as reference density
function against which the actual distribution of the contours is compared.

Normalized Spatial Probability Density

For comparing the actual non-parametric contour distribution with the Gaussian reference dis-
tribution, the spatial PDF of the contour distribution is normalized, too. This is performed by
normalizing the spatial PDFs of the individual ensemble members (cf. Equ. (4.33)), i.e. by trans-
forming the individual distribution functions into the normalized versions

pNk (xi,j) = exp
(
−(yk(xi,j)− θ)2

2σ2
s

)
. (4.43)

The final total normalized spatial PDF is then obtained by averaging the individual spatial PDF
values as

ψNθ (xi,j) = 1
n

n∑
k=1

pNk (xi,j). (4.44)

This normalization process has two major advantages: Firstly, if the contours are Gaussian dis-
tributed in a certain region, then for a sufficiently large sharpness parameter σs, ψNθ becomes
uni-modal and almost equal to the normalized Gaussian reference distribution. By interactively
adjusting σs, the user can now test for which sharpness parameter the Gaussian assumption is valid.
However, this may be dependent on the spatial location. Secondly, as the normalized PDF in each
ensemble member has a maximum value of 1 and fades out with increasing distance from the con-
tour, the individual normalized Gaussian representations can be regarded as weighting functions.
By computing the average over all ensemble members, the total normalized spatial PDF value is
obtained. These values indicate the local probability of the occurrence of a contour with respect
to the chosen sharpness parameter.

Visualization

The normalized Gaussian reference PDF γNθ and the normalized total ensemble PDF ψNθ are visu-
alized in one image to provide a visual indication whether the assumption of a Gaussian contour
distribution can be justified. To be able to clearly distinguish between the two functions, different
mappings are used for either function. The Gaussian reference PDF is encoded by mapping values
linearly to the color table shown in Fig. 4.24.

In addition, the values of the distribution ψNθ are interpreted as a height field over the 2D domain,
and this height field is shaded based on a local diffuse illumination model. Therefore, at every grid
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Figure 4.24: Colormap for normalized spatial PDF values.

point a normal vector is computed analytically from the spatial PDF and the diffuse reflection of a
point light source is simulated. The obtained values determine the color intensity at the respective
position, creating the impression of a relief structure on the 2D domain. By scaling the slope of
the height field via a parameter ρ, the relief effect can be decreased or increased interactively. In
the visualization, the illumination values are 1 where the height field topography is orthogonal to
the viewing direction, and it approaches 0 in regions with very steep slopes. These values are used
to scale the color values of the Gaussian reference distribution.

In Fig. 4.25, the proposed visualization technique is applied to the 4 ensembles in Fig. 4.17. In
(a), the values of the normalized Gaussian reference PDF are maximal between the two branches
(white region). This is the Gaussian maximum likelihood region, where the mean iso-contour would
be positioned. By looking at the relief visualization, however, one sees that the ensemble does not
match the Gaussian assumption in the lower domain region. Here, the iso-contours exhibit a bi-
modal distribution around the Gaussian maximum likelihood region. Although the matching is
much better in the upper part, the high-frequent relief structure induced by strong gradients all
across the domain does not match with the smooth Gaussian reference distribution.

The situation is different for the second ensemble data set in (b). In the upper region, low gradients
result in a much smoother contour distribution, now clearly matching the Gaussian assumption.
In the lower part, the contours are still too sharp to allow assuming a uni-modal distribution.
However, because the contours are better aligned with the Gaussian mean/maximum likelihood
region, the strong bi-modality in (a) is not present any more.

In (c), the Gaussian reference density is slightly deviated towards the left branch, which indicates
the higher probability of the occurrence of iso-contours in the left branch.

The relief representation in (d) clearly reveals stronger gradients along the iso-contours in the
left branch compared to the right branch. Furthermore, the Gaussian maximum likelihood region
(white) is almost aligned with the left branch. Although the iso-contours occur equally in both
branches, ensemble members with iso-contours in the right branch are affected by significantly
lower gradients. Therefore, the multi-modal positional variability of left branch iso-contours is
much lower than for the more uni-modal distribution in the right branch.

Fig. 4.26 shows visualizations where only the normalized ensemble spatial PDF was used. In this
case, the function values were displayed using both the relief and the color mapping. In addition,
the sharpness value σs was significantly increased to “smear out” the contours and to concentrate on
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Figure 4.25: Visual modality analysis for ensemble data sets in Fig. 4.17. Normalized Gaussian
reference PDF is mapped to color, normalized ensemble PDF is mapped to the relief
representation.

the more coarse distribution. The strongest motivation for this visualization mode is shown in (c):
A linear re-scaling of the color map as shown in Fig. 4.24 was used so that white color is attached
to the ensemble maximum likelihood area where the two branches unite. This normalization results
in a red and green coloring of the maximum regions in the left and right branch. The color map
in Fig. 4.24 reveals that the values assigned to red and green have a numerical ratio of 2:1. This
matches exactly the ratio of the probabilities of the contour occurrences in the left and right branch
of the third ensemble data set (cf. Fig. 4.17 (g)-(i)).

4.2.4 Implementation

The presented visualization techniques can be implemented very efficiently because all computations
can be performed at every grid point in parallel. This gives rise to a highly efficient implemen-
tation on the GPU, with their particular design for massively parallel workloads. The ability to
simultaneously use many processing units is employed and the thread level parallelism is exploited
to hide latency operations in order to achieve the possibility to change all parameters affecting the
estimated distribution function and their visual representation interactively.

In the current implementation, the ensemble of 2D data sets is stored in a 2D texture array on
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Figure 4.26: Visual modality analysis for ensemble data sets in Fig. 4.17. Normalized ensemble
PDF is mapped to both color and relief representation.

the GPU. At each texel, one scalar value and two components for the respective data gradient are
stored. The algorithm uses a rectangular area in the screen-space for displaying the visualization
results. For each screen-space pixel the spatial CDF and PDF values are computed and mapped to
color as described. To do so, both scalar and gradient values are extracted from the texture array
and consecutively combined for all ensemble members. As the screen-space resolution is usually
higher than the data resolution, values between grid points of the data domain are obtained by
using bi-linear texture interpolation. All computations are performed for each individual pixel
in the screen-space using the introduced formulas. However, for computing the standard normal
cumulative distribution function Φ, the numerical approximation given in [AS64] is used.

The most time consuming computation is caused when changing the iso-value as well as the Gaus-
sian sharpness parameter. This requires a re-computation of both the spatial CDF and PDF values
at every grid point. Even for a very high resolution pixel raster of 1860 × 1040 and a 2D scalar
ensemble data set with resolution 1060 × 460 and comprised of 50 members this operation takes
below 20 ms on a NVIDIA GeForce GTX 660 Ti graphics adapter.
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Figure 4.27: Left column: ECMWF temperature ensemble A. (a) Spaghetti plot. (b) Spatial CDF
and PDF. (c) Visual modality analysis using normalized Gaussian reference PDF
(color) and ensemble PDF (relief). Right column: ECMWF temperature ensemble
B. (d) Spaghetti plot. (e) Spatial CDF and PDF. (f) Visual analysis for probabil-
ity ratio between bi-modal branches in iso-contour distribution. Normalized ensemble
PDF is mapped to color and relief structure.

4.2.5 Results

The novel approach is now applied to visualize uncertain iso-contours in two real-world ensembles.
Scalar temperature ensembles A and B, with 50 members each, generated by the European Center
for Medium-Range Weather Forecast (ECMWF) for two different forecast periods and pressure
levels above Europe. Several visualizations are shown in Fig. 4.27 and are put into a geo-spatial
context by integrating an overlay of the European coast-lines in gray. The user can change several
parameters interactively to control the visual results: The iso-value θ, the sharpness parameter σs,
the color contrast parameter τ and the relief scaling factor ρ.

In (a), temperature iso-contours are plotted using the standard spaghetti plot approach, with dif-
ferent colors being assigned to contours in different ensemble members. Although only 50 members
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are plotted, the visualization quickly becomes cluttered, and due to the aforementioned limitations
of spaghetti plots a detailed statistical analysis is difficult.

In (b), the spatial CDF and the maximum values of the spatial PDF are displayed. The gray-
valued background allows one to clearly segment the domain into regions with temperature values
above (white) and below (black) the selected iso-value. The “sharpness” of the iso-contours and
the presence of color Cu in region (1) identify a sharp temperature transition with low gradient
uncertainty towards the Greenland border. In region (2), the iso-contours have a smooth appearance
and do not show a clear preferential direction. Together with the presence of the lower color Cl this
indicates lower gradients and a much smoother temperature transition. These observations cannot
be made by just looking at the spaghetti plot in (a).

Image (c) gives hints on the statistical distribution of the iso-contours. The normalized values of
the spatial PDF ψNθ of the ensemble contours are visualized via the relief representation. Values
of the normalized Gaussian reference distribution are mapped to color according to the color map
in Fig. 4.24. One can observe a high-frequent relief structure in region (1), i.e. it has a huge
number of peaks. This indicates a highly multi-modal spatial iso-contour probability function in
this region. Thus, this region cannot be represented by a Gaussian distribution.

It can be further seen that, despite the reliable sharp temperature transition, the positional uncer-
tainty of the iso-contours is rather high. In 4.2.3, it was stated that the Gaussian representation for
each individual iso-contour can be regarded as conditional error bound depending on the gradient
strength. The visualization indicates that the spatial positional uncertainty of the iso-contour is
significantly higher than the conditional error bounds in the individual ensemble members. Thus,
in region (1) it would not make sense to represent the ensemble by a mean iso-contour, as the
distribution is highly multi-modal and no maximum likelihood region exists. However, in regions
(2) and (3) the relief structure matches with the colors of the Gaussian reference PDF. In (2), the
positional uncertainty is high but the individual gradients are rather low. In (3), the gradients are
stronger, but the positional uncertainty is quite low. In both cases the uncertainty can be modeled
by a Gaussian distribution and a representative mean iso-contour.

Image (d) shows the spaghetti plot for a different iso-value and pressure level in the second tem-
perature ensemble data set B. Compared to the first ensemble, the visualization in (e) reveals a
new statistical feature. In region (1) (also shown in Fig. 4.28 (a)), the iso-contours split up into
two branches, which indicates a bi-modal distribution. Both branches enclose a gray-valued back-
ground area. In addition, the presence of the upper color Cu indicates strong gradients in this
region, compared to, for instance, region (2).

Although the spaghetti plot in (d) cannot reveal the gradient strengths, the split of the iso-contours
into two branches in region (1) can be clearly observed from it. This works well for a low number of
ensemble members, but might be harder to observe for a larger number. However, the visualizations
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Figure 4.28: Magnifications of region (1) in Fig. 4.27 (e) and (f).

in (d) and (e) do not allow for a quantitative analysis of the iso-contour distribution. For instance,
the relative probability ratio between the two branches in region (1) cannot be communicated. To
achieve this, in image (f) the normalized ensemble distribution is encoded using colors and via the
relief representation. The color values have been rescaled so that the maximum value of the spatial
PDF is mapped to white. Now, one can observe that one branch is colored red and the other one
green (also shown in Fig. 4.28 (b)). This indicates that the iso-contour is present two times more
often in the left than in the right branch. Furthermore, the relief shows only two main branches,
but no sub-branches. Thus, the distribution can be assumed bi-modal. On the other hand, the high
frequent structure of the relief representation in region (2) indicates a high multi-modal distribution
and strong gradients in this region.

4.2.6 Conclusion

In this section, it has been shown how to derive probability distributions for iso-contours in scalar
ensemble fields, and how to visually convey this information to allow for an improved uncertainty
analysis. Instead of assuming a parametric uncertainty model, non-parametric spatial distributions
have been derived by computing statistical summaries and generating continuous distribution func-
tions thereof. It has been demonstrated how the novel technique can be used to improve standard
spaghetti plots towards a more reliable and quantitative uncertainty estimation. Furthermore, a
special color mapping scheme has been proposed for effectively analyzing probability distribution
modalities of the iso-contour uncertainty in different spatial regions.
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Most uncertainty visualization approaches do only consider the local absolute uncertainty of single
data values or specific features in a data set. Thereby, visual effects encode the variations of
scalar data values, critical points, iso-surfaces, etc. utilizing a mathematical model for describing
the underlying uncertainty at particular locations of the respective spatial domain. The relative
uncertainty, e.g., describing the relative variability of two or more random variables in the spatial
domain with respect to each other, is not considered at all in common uncertainty visualization
approaches. However, analyzing such relative variabilities can provide substantial insight into the
stability of certain structures or features in a data set.

This chapter introduces several novel techniques for visualizing the structural uncertainty of specific
features or data distributions in 2D and 3D scalar data fields. The presented approaches make a
significant contribution to the field of uncertainty visualization, as they clearly show how the
structural uncertainty analysis can reveal information about uncertain data sets that cannot be
obtained by traditional methods.

The first section of this chapter introduces correlation information as primary indicator for analyz-
ing stochastic dependences and therefore relative uncertainties in Gaussian distributed uncertain
data sets. Furthermore, a comprehensive introduction to the definition and interpretation of corre-
lation data is provided while illustrating the importance of its visual analysis for uncertain scalar
data sets. In a number of examples, some general conclusions, one can draw from correlation
information in uncertain data regarding its structural variability, are demonstrated. In addition,
a visualization approach for local and usually anisotropic correlation structures in the vicinity of
uncertain iso-surfaces in 3D data sets is presented.

The second section extends the previously introduced approach to the visualization of global correla-
tion structures and therefore to global stochastic dependences between random variables in distinct
regions of Gaussian distributed uncertain scalar data sets. A novel spatial clustering approach is
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presented for the visual analysis of both positive and inverse correlation relationships within and
between spatial regions.

The last section concentrates on the visualization of the variability of gradients in uncertain 2D
scalar fields. As gradients depend on the rate of change of data values, they are highly affected
by relative uncertainties between two or more random variables. Besides the analysis of the effect
of uncertainty on differential quantities like gradients, a mathematical framework is developed
for computing confidence intervals for both the gradient orientation and magnitude variability.
Furthermore, a novel color diffusion scheme and a special family of circular glyphs are introduced
for visually communicating these two separate entities of gradient uncertainty. The presented
methods are utilized for analyzing the stability of certain features in uncertain 2D scalar fields, with
respect to both local derivatives and feature orientations. In contrast to correlation visualization
algorithms, the visual analysis of uncertain gradients allows a more quantitative and less abstract
assessment of structural uncertainty.

5.1 Local Correlation Visualization

It is quite common to model the uncertainty at discrete spatial points xi in an uncertain scalar
field by a multi-variate random variable Y, i.e., a vector consisting of multiple scalar random
variables Y (xi). The uncertainty at a point xi is then given by a set of realizations of the random
variable Y (xi). The standard deviation of one of the random variables indicates the strength of
the deviation of possible realizations from their respective mean value, independently of the means
and deviations of random variables at any other point in the domain. Consequently, the standard
deviation describes the local uncertainty but does not allow inferring on possible variations at
different positions relative to each other.

For instance, let us assume that the mean and standard deviation values at two adjacent points are
identical, but the realizations of the random variables at both points are stochastically independent.
In this case, it cannot be predicted whether there is a positive, zero, or negative derivative of the
data between the two points, and consequently the values at these points relative to each other
cannot be resolved. This kind of uncertainty will be subsequently called structural uncertainty,
since it is associated with the occurrence of particular structures in the data which are affected by
the degree of dependence between the values at two or more data points. In particular, structural
uncertainty covers all variabilities of geometric features (e.g., orientation, curvature, etc.) of multi-
dimensional structures (e.g., surfaces). To avoid confusion, it should be noted here that in other
communities the term “structural uncertainty” is used to indicate the uncertainty in the structure
of a model.
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In the analysis of structural uncertainty it is thus necessary to first predict the stochastic dependence
between the random variables used to model the uncertainty, and then to analyze the possible
structural variations of features in this field taking into account these dependences. To achieve
this, the random variables used to model the uncertainty are assumed to exhibit a multi-variate
Gaussian distribution so that mean values and standard deviations exist, and the linear stochastic
dependence is given by the correlation. It is worth noting here, that non-linear dependences between
random variables are not present for multi-variate Gaussian distributions, and, thus, they are not
covered by the methods proposed in this work.

For two Gaussian distributed random variables X and Y the mutual stochastic dependence is
given by their correlation ρ(X,Y ), which ranges from −1 to 1 and characterizes the linear relation
between the two variables. It is computed as Cov(X,Y )/

√
Var(X)Var(Y ), where Var(X) and

Var(Y ), respectively, denote the variance of X and Y , and Cov(X,Y ) is the covariance between
X and Y . For a thorough discussion of the concepts of stochastic dependence and correlation, as
well as approaches to compute correlation values from given realization sets, the reader is referred
to section 2.3.2 and [Fel08, Geo08, LRN88].

A high positive correlation between two random variables indicates that realizations of both vari-
ables are likely to deviate into the same direction from their mean values. A strong negative or
inverse correlation indicates that a strong positive deviation for one realization is likely to result
in a strong negative deviation of the other realization, and vice versa.

In Fig. 5.1, the concept of relative uncertainty between two random variables is illustrated for a
strong positive correlation (upper row) and a strong inverse correlation (lower row). The confidence
intervals (green intervals along one-dimensional value axis) are shown for two random variables with
the same mean (small black line) and standard deviation values. For two correlation values, four
realizations are shown for each random variable, indicated by the red dots and linked with a red
line. The upper row shows the relative behavior of the realizations for a strong positive correlation
between the two random variables. The values always deviate in the same direction with respect
to the mean value. The lower row reveals the behavior for a strong inverse stochastic dependence
and correlation. The realizations deviate always in opposite direction with respect to the mean
value. For instance, compared to the positive correlation case, the derivative or slope between the
realizations is highly variable and therefore uncertain.

As the realizations of random variables in regions exhibiting very low correlation can be assumed
to be independent of each other, the effect of uncertainty on a mean structure in such a region
is to a large extent arbitrary. As a consequence, in such regions, a high structural variation is
caused by high uncertainty, and the resulting mean structures are not reliable. Contrarily, regions
exhibiting high correlations are affected by “smooth” structural uncertainty, meaning that the
uncertainty causes low frequent variations to occur more likely. Thus, high frequencies in the
mean structures are not affected strongly and one can argue that they are, therefore, stochastically
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Figure 5.1: The realizations of a bi-variate distributed random variable are shown for equal mean
values (horizontal lines) and confidence intervals (green) in both components. The
realizations were generated with a strong positive (upper row) and negative (lower row)
correlation setting between the components.

more stable. Correlation is thus a very important means to analyze the structural variability of
particular features in uncertain data fields, and this property of correlation forms the basis of the
investigations presented in this section.

The first goal is to demonstrate the use of correlation as an indicator for structural uncertainty.
For this purpose, a number of examples have been designed, ranging from rather simple to quite
complicated ones, which clearly show the inter-dependencies between (anisotropic) local correlation
structures and the variability of specific features in the data. These examples are utilized to
strengthen the awareness of the relevance of correlation analysis for estimating possible structural
changes of relevant features due to uncertainty.

The second goal is to investigate methods for visualizing the structural variability of iso-surfaces in
uncertain 3D scalar fields. To achieve this, a novel method is proposed for visualizing the correlation
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structures in the vicinity of such surfaces based on a local anisotropic correlation model. By
visually distinguishing between the local correlations between points on the surface and along the
surface’s normal directions, an improved understanding of the geometric and topological variability
of uncertain iso-surfaces is enabled. The proposed visualization techniques can be used in addition
to techniques which directly visualize the standard deviation [JS03, PWL97], and, thus, strive for
a comprehensive visualization of the full Gaussian covariance information.

The relevance of the presented work is demonstrated in synthetic and real-world examples us-
ing standard random distributions and ensemble simulations. To effectively show the influence
of correlation on the structural variability of features in multi-dimensional data sets, a number
of synthetic data sets have been generated, using specific random distributions to model uncer-
tainty. In addition, the proposed methods are used to visualize the structural uncertainty in an
ensemble of 3D temperature fields in the exosphere which was simulated by the European Centre
for Medium-Range Weather Forecasts [Eur]. The proposed technique for correlation visualization
allows concluding on the stochastic stability of the mean iso-surface in this field, revealing regions
which are strongly and weakly affected by structural uncertainty.

5.1.1 Related Work

So far, only very few approaches have explicitly addressed the visualization of data correlations due
to uncertainty. [JPR∗04] proposed a tool for the visualization of correlation between two 3D scalar
fields via color mapping and slicing. The use of glyphs for the visualization of local covariance
information was demonstrated in [KWL∗04]. However, in none of these approaches a correlation
model was considered, and the used glyphs were not adapted to particular surface structures in
3D data. The approach in [YXK13] suggests a numerical technique for visualizing covariance and
cross-covariance fields of 2-dimensional results of stochastic simulations. In [STS06], Multifield-
Graphs have been suggested to analyze correlations between several field data. In [SWMW09],
data clustering and segmentation techniques are used for identifying correlations in time-varying
multi-variate volumetric data sets.

5.1.2 Structural Uncertainty

In this paragraph, several examples show the inter-dependencies between correlation information
and the structural variability of features in multi-dimensional scalar fields. In particular, light is
shed onto the interpretation of (anisotropic) correlation structures and, thus, the importance of
correlation analysis is emphasized for the prediction of possible effects of uncertainty on features
in the data. These investigations demonstrate the importance of a correlation analysis and its
visualization for making reliable assumptions on the uncertainty of geometric properties of certain
features, e.g., position, orientation and curvature for surfaces.
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Figure 5.2: Illustration of the structural variability of a 2D curve (green) given by a set of points
(xi, yi), where each yi represents the mean of the realizations of a multi-variate normal
distributed random variable at xi. While the mean values vary for different xi, the
standard deviation remains constant. Blue dashed lines enclose the confidence region
around the mean curve. Three possible line realizations (red) are shown for very strong
(a) and weak (b) local correlation between random variables at adjacent points.

Experiment 1. Fig. 5.2 illustrates a first example using 2D curves that are affected by uncertainty
to demonstrate how correlation information can be used for analyzing structural uncertainty. In
this example, at every position xi in a set of equally spaced positions in the x domain, multi-variate
normal distributed random variables Y (xi) with smoothly varying means but the same standard
deviation were used to generate sets of y-values for every point xi. The green curve shows the
mean y-values at every xi. The confidence region for ±σ is enclosed by two blue dashed lines. The
red curves always show lines for three possible realizations of the y-values at the points xi for very
strong positive (a) and weak (b) local correlations between adjacent random variables Y (xi) and
Y (xi+1).

In region (1), the mean values of the normal distributions used to generate the y-values were chosen
such that the mean curve shows higher frequencies than in region (2). Due to the strong correlation
between the random values at adjacent positions, the three possible occurrences of curves in (a) show
the same structural behavior like the mean curve in (a), while in (b) these structures disappear
completely due to the low correlation. Strong correlation effectively keeps adjacent realizations
of the random variables used to model the curves close together, while they can occur rather
unconstrained with respect to each other in regions of low correlations. It should also be noted
here, that the knowledge of the mean and the standard deviation of the normal distributions alone
does not allow inferring on the structural behavior of the resulting realizations.

Experiment 2. The next example demonstrates the use of correlation analysis for predicting the
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Figure 5.3: In (a), (b) and (c), for two bi-variate normal distributed random variables Y(0) and
Y(1) the means (connected by a green line) and the confidence region (enclosed by
two blue dashed lines) are shown. Red lines show three realizations for correlations
-1, 0, and 1, respectively. In (d), (e) and (f) the Gaussian probability density for the
derivative between Y(0) and Y(1) is illustrated. (g) illustrates the relation between
correlation values and variance of the derivative distribution.

variability of the orientation of curves that are affected by uncertainty. In a first experiment, at
two points positioned at x = 0 and x = 1 on the x-coordinate axis a bi-variate normal distributed
random variable was used to compute sets of y-values. The green line in Fig. 5.3 (a), (b), and
(c) shows the linear interpolation between the mean y-values at the two points. The linearly
interpolated confidence region is enclosed by the blue dashed lines. The red curves always show
the linear interpolation between two possible realizations of the data values at the two points.
However, in (a), (b), and (c), respectively, random values were generated using a correlation of
ρ = −1, ρ = 0, and ρ = 1 between these values.

To analyze the variability of the orientation of the line connecting the values at x = 0 and x = 1,
Fig. 5.3 (d), (e), and (f) show the probability density functions of the derivative of this line for
the different correlation values. The probability density function was computed by taking the
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Figure 5.4: A mean iso-surface situated in the x-y-coordinate plane is shown in (a). For an assigned
constant standard deviation the confidence region around the mean surface is visualized
in (b). The structural variation, caused by the assigned correlation structure, is visible
in the surface realization shown in (c). Strong homogeneous correlation was assigned to
region (1). In (2) and (3) the correlation magnitude was lowered in x- and y- direction,
respectively. In region (4), low correlation in both tangential direction was applied.
Around (5), low correlation along the surface normal direction was modeled.

derivatives for all pairs of realizations at the two points and counting their occurrence. In (g), the
relation between the correlation and the variance of the distribution of the derivative is shown.
The maximum possible variation in the derivative is observed for ρ = −1 (inverse correlation), the
minimum for ρ = 1.

From the experiment above it becomes clear that the correlation has a strong impact on the
variability of structural properties of certain features in the data, such as a feature’s orientation.
The reason is that correlation describes the behavior of random variables at different sample points
relative to each other and, thus, constraints the amount of variation between the possible data
values at these points.

Experiment 3. The aforementioned considerations can easily be transferred to higher dimensions
to analyze the structural variability of iso-surfaces in 3D scalar fields. To demonstrate this, a further
experiment is pursued where at every vertex of a Cartesian 3D grid a set of random scalar values
was generated using a multi-variate normal distributed random variable with constant standard
deviation and linearly increasing mean (starting at 0) along the z- grid dimension. The random
values were generated with respect to a specific anisotropic correlation structure. The computed
mean values were then stored at the grid vertices and an iso-surface for a selected value was rendered
(cf. Fig. 5.4 (a)). In (b), the confidence volume containing all points that belong to the surface
with a certain probability is enclosed by two stochastic distance surfaces (transparent white). The
blue line represents the contour of the mean surface, the colors encode the distance from the mean
position in numbers of standard deviations σ — from 0σ (green) to ±1σ (red). For details on this
visualization mode, the reader is referred to paragraph 4.1.2. Notably, the visualization in (b) does
not allow inferring on the possible structural variations of the surface, but it can only tell in which
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region of the domain the surface can be expected with a certain probability.

In (c), the occurrence of the surface in (a) for one possible realization of the random values at the
grid points is shown. In region (1), the correlations between the random variables in x-, y- and
z-direction were all set to 1. Consequently, the structure of the mean surface is not changed (cf.
Fig. 5.2 (a)). In region (2), the correlation in x-direction was lowered with respect to region (1).
This results in oscillations of the surface in x-direction. As the correlation in y-direction is still 1,
the structure does not change along the y-direction and stiff ridges occur along this direction. The
same correlation setting was applied to region (3), but this time with a lower value in y-direction.
In region (4), the correlations along x and y were lowered simultaneously, but the correlation in
z-direction was kept at 1. This means that the surface can possibly oscillate, but since the values in
the 3D scalar field are still highly constraint to each other along the z-direction, the surface remains
connected. Moreover, the surface still indicates the exact location of the transition between scalar
values less and greater than the selected iso-value.

The surface structure changed completely when the correlation in z-direction was made significantly
smaller than the correlation in the other two directions. This is shown in region (5). The lower
correlation in the surface normal direction can result in several closely located but not necessarily
connected surfaces1, i.e., the transition surface becomes fuzzy and does not have the separating
property any more as it had before. The example shows that a visualization that is purely based
on uncertainty parameters like standard deviations (cf. confidence volume in (b)) does not allow
inferring on the geometric structures, which are likely to occur in realizations of the underlying
probability distribution.

Experiment 4. The last experiment outlines the importance of correlation analysis in the context
of inverse problems, e.g., 2D seismic travel-time tomography where physical measurements are
used to infer on the media through which seismic wave forms are traveling. In this experiment,
a geophysical setup is modeled, where receivers close to the earth’s surface measure the arrival of
pressure waves originating from earthquake sources with known positions in the earth’s interior.
The goal is to determine parameters describing the travel velocity of the waves in certain parts of
the interior, based on measured wave travel times between each source-receiver pair.

According to geophysical realities, the seismic travel-time inverse problem is non-linear, as seismic
waves do not follow straight paths in a heterogeneous medium and bend continuously as the velocity
parameters of the medium vary. For simplification, these real physical conditions are abstracted
and a linear inverse problem with straight pressure wave travel paths between source and receiver
is assumed. This abstraction complies with the interpretation of the inversion as a first-order
correction to a homogeneous medium. Thus, even though real non-linear physical conditions are

1The regular spherical surface structure results from the specific random number generation process that have been
used to assign anisotropic correlation structure.

Tobias Pfaffelmoser 87



5.1 Local Correlation Visualization

Figure 5.5: Travel-time tomography experiment. (a), (b) Emitter (red stars)-receiver (green dia-
monds) pairs and domain triangulation are shown. (c) Normalized standard deviations
to mean solution of inverse problem is mapped from [0, 1] to [blue→ red]. (d) Visualiza-
tion of correlation between adjacent grid points (line length corresponds to correlation
strength, green/red indicate positive/negative correlation). (e), (g) Two different pa-
rameter configurations (color-coded) used in a forward computation. (f), (h) Inverse
computation of parameters from the results of forward computation.

abstracted, the following considerations and interpretations can be adapted to every kind of inverse
process step where a linearization takes place.

Mathematically, the abstract problem can be formulated by the system of equations

Gm = d, (5.1)

were G represents the problem-specific linear operator, d is the linearized vector of measured data
(travel-times), and m is the linearized vector of unknown parameters. The goal is to compute m
for a given d.

In travel-time tomography, the inverse problem is often under-determined and does not have a
unique solution. For linear inverse problems and by using Bayesian probability theory, however, the
solution m can be described by a multi-variate normal probability density function. This function
is characterized by a mean m̄ and a covariance matrix Cm. For more details on the physical theory
and model setup, the reader is referred to [Nol08] and [Tar05].

Fig. 5.5 (a) shows a rectangular domain discretized by a triangular grid (shown in (b)), which mod-
els a cross section of the earth. The components of the parameter vector m are placed at the grid

88 Tobias Pfaffelmoser



5.1 Local Correlation Visualization

vertices. The parameters define for each vertex a slowness value (inverse of velocity: time/distance).
In the upper and lower part of the domain, respectively, 5 receivers (green diamonds) and 7 sources
(red stars) are placed. The travel paths are illustrated by black lines. The travel time for each
path is obtained by integrating the slowness parameters along the path (linear interpolation in each
triangle). As all parameters in m appear linear in the integrals (Simpson quadrature), the integrals
can be expressed by a matrix G representing the operator in equation (5.1). The vector d contains
the travel times for all paths.

Intuitively, one would expect that in regions which are covered by a large number of rays, e.g.,
in (1), there is a lower uncertainty in the computed slowness values than in regions which are
poorly sampled by rays, e.g., in (2), since less information is obtained from there. To confirm this,
first, the covariance matrix Cm from the given operator G is computed (for details, the reader is
referred to [Tar05]), and the standard deviation values are derived from the probabilistic solutions
for the slowness values from this matrix, i.e., the square roots of entries on the main diagonal
of the covariance matrix. In (c), these normalized standard deviations are color-coded via the
mapping [0, 1]→ [blue→ red]. The coloring clearly indicates that regions with higher ray density
are affected by lower uncertainty (close to zero).

To demonstrate the importance of correlation for the analysis of the uncertainty in the computed
results, the following experiment is performed: Firstly, two artificial slowness configurations mh

and mv with periodic horizontal and vertical change of slowness values are specified, respectively,
and forward computations are performed to obtain data vectors dh and dv. In (e) and (g), these
slowness parameters are color-coded. Secondly, with dh and dv two inverse problems are solved,
resulting in two probabilistic solutions for the slowness values. Their means, m̄h and m̄v, are color-
coded in (f) and (h) utilizing the same color mapping as in (e) and (g). As can be observed, only
m̄h is close to its initial distribution, while m̄v shows almost no similarity or relevant structure,
although the uncertainty (c) in both solutions is the same.

In order to understand this phenomenon, one has to look at the correlations between the values
at adjacent points, which are contained in the covariance matrix Cm. Therefore, in (d), the pair-
wise correlations between the values at every grid point and its one-ring neighbors are visualized.
Visualization is performed by drawing lines from the vertex to every adjacent vertices, where the
lengths of these lines are linearly related to the magnitude of the respective correlation value. For
|ρ| = 1 the lines on either side of an edge meet at the edge’s center. The lines are colored green
for ρ ≥ 0 and red for ρ < 0. The visualization clearly indicates strong positive correlations in
horizontal direction and strong negative correlations in vertical direction.

As discussed above, for strong positive correlations, high frequent structures in the data are better
resolved, as they are only affected by low frequent uncertainty. However, for inverse correlated
regions, no reliable assumptions can be made. Thus, the example clearly shows that only struc-
tural changes in horizontal direction can be resolved by the inverse computation. A variation of
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parameters in vertical direction cannot by “seen” by this tomographic setup. Thus, the correlation
visualization in (d) already provides a clear indication that the data set is affected by a strong
vertical but only a low horizontal structural uncertainty. This information is not revealed by visu-
alizing only absolute uncertainty values (cf. standard deviations in (c)). As a consequence, it can
be concluded that the consideration of correlation information and its visualization can significantly
help to avoid misinterpretations that would occur otherwise.

5.1.3 Correlation Visualization

In the previous section, the relevance of correlation for uncertainty analysis have been motivated. As
a consequence, the correlation visualization is believed to be a necessary ingredient in uncertainty
visualization to facilitate a more reliable prediction of the possible effects of uncertainty on specific
features in uncertain data. In this section, light is shed onto the particular requirements for
correlation visualization, and a correlation visualization technique is proposed that addresses some
of these requirements.

Requirements

In real-world applications, correlation data is often given as correlation matrices which can be either
computed directly (cf. Example 4 in section 5.1.2) or estimated from an ensemble data set. If the
data is given on a grid with n grid points, a correlation matrix would have n2 entries, of which
0.5n(n − 1) + n would be different. For large multi-dimensional grids, this O(n2) memory and
computational complexity has to be reduced significantly before correlation visualization becomes
feasible.

However, one difficulty in correlation analysis is that both local and global correlation effects have
to be considered and the anisotropic nature of correlation makes it difficult in general to represent
it with only a few values. By restricting the analysis to local effects, the first problem can be
addressed. A possible solution for the second problem builds upon the development of a correlation
model that can efficiently represent anisotropic structures, for instance, by trying to approximate
these structures via a suitable basis transformation into a compact representation. Such a model
can then be employed for the visualization of correlation, but additional requirements have to be
considered. In particular, the direction dependent differences in correlation strength have to be
depicted by an appropriate visual mapping. Such a mapping, besides being able to indicate the
correlation ratios into different directions, should also allow a comparison of the absolute correlation
strengths at different regions in the underlying domain.

Another challenge in correlation visualization arises from the general difficulty of finding a suitable
visual mapping for complicated multi-dimensional structures. Even without considering uncer-
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tainty, the creation of approaches for mapping such structures onto 2D pixel images in an intuitive
way is extremely difficult, and it is by far not clear how additional correlation structures can
be integrated into conventional uncertainty visualization approaches. Therefore, as it have been
demonstrated in the third experiment in section 5.1.2, one strategy is to restrict the correlation
analysis to specific features in the data, such as iso-surfaces in 3D scalar fields. In such a scenario,
one can restrict the analysis to the local correlations along and in close vicinity to the feature,
possibly augmented by contextual visualizations of the surrounding structures.

Distance Dependent Correlation

In the following, a local anisotropic distance dependent correlation model is introduced, which forms
the basis of the proposed visualization approach. This model has some specific advantages, and
it allows transforming correlations that are expressed in other models into this model straight
forwardly. It considers the strength of positive local correlations for analyzing a given data set with
respect to structural uncertainty as discussed in section 5.1.2.

A 3D Cartesian grid structure Cpqr = (x)ijk with 1 ≤ i ≤ p, 1 ≤ j ≤ q, 1 ≤ k ≤ r is assumed, which
is attributed by a mean value and mutual correlation values for neighboring vertices at every grid
vertex. This data can be linearly interpolated from values in any arbitrary grid structure. The grid
spacing can be specified interactively by the user in order to achieve different glyph resolutions.

This visualization approach is aiming for an analysis of correlation effects in 3D scalar data sets.
Usually, such data sets are assumed to be at least continuous and smooth up to a certain degree.
This requires that the closer two spatial points in the underlying domain are, the higher the
correlation should be between the random variables that are used to model the uncertainty at
these points. To achieve this, the correlation is often modeled by a spatial distance dependent
correlation function [Tar05]. One typically uses the exponential correlation function (ECF)

ρ(Y (xijk), Y (xlmn)) = exp(−τ ‖xijk − xlmn‖) , xijk,xlmn ∈ Cpqr, (5.2)

which assigns higher correlations to random variables of points with smaller Euclidean distance
and lower correlations to points which are more distant from each other. If the correlation strength
parameter τ is defined locally for each point in Cpqr, the ECF becomes

ρ(Y (xijk), Y (xlmn)) = exp(−0.5(τ(xijk) + τ(xlmn)) ‖xijk − xlmn‖). (5.3)

The ECF meets the intuitive assumption that scalar realizations behave more similar if the respec-
tive sample points are closer in Euclidean space. This is considered as a kind of local stochastic
continuity.
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The distance dependent correlation model assumes isotropic correlations at every grid point. To
model anisotropic correlations, τ can be made dependent on a specific direction. For a unit vector
r, the parameter τ at point xijk in direction r is then given by τ(xijk, r) = r>T(xijk)r, where T is
the rank-2 parameter tensor that models the anisotropy. This tensor can either be derived from the
correlations in the data samples, or it can be specified based on a priori knowledge. The adapted
correlation model becomes

ρ(Y (xijk), Y (xlmn)) = exp
(
−(xijk − xlmn)>T(xijk − xlmn)

‖xijk − xlmn‖

)
, (5.4)

T = 0.5(T(xijk) + T(xlmn)).

One advantageous use of the distance dependent tensor model is the possibility to transform correla-
tion data into this model and, thus, to avoid the explicit storage of a correlation matrix. Therefore,
at every grid point xijk in Cpqr a tensor is computed from the correlations to its (at most) 26
neighbors

N(xijk) := {xlmn ∈ Cpqr|xlmn 6= xijk,max (|i− l|, |j −m|, |k −m|) = 1}. (5.5)

If xijk is not a border point of the grid Cpqr, then for every point nh ∈ N(xijk) there exists an
opposing point n̂h ∈ N(xijk) such that xijk = 0.5(nh + n̂h). At most 13 such pairs of nh and n̂h
with h ∈ {1, 2, ..., 13} can be built.

In Fig. 5.6, the 26 neighbors of a non-border point xijk (red) are illustrated. Furthermore, two
opposing neighbor points nh and n̂h (green) are highlighted.

By using the correlation model (5.2) and averaging the correlation against opposing neighbors one
obtains 13 equations:

r>Tr = − log [0.5(|ρ(Y (xijk), Y (nh))|+ |ρ(Y (xijk), Y (n̂h))|)]
‖nh − xijk‖

, (5.6)

r = nh − n̂h
‖nh − n̂h‖

, nh ∈ N(xijk), h ∈ {1, 2, ..., 13}.

If xijk is a border point, not for every nh ∈ N(xijk) exists an opposing point. In this case, averaging
is not performed in (5.6) and only the logarithm log(|ρ(Y (xijk), Y (nh))|) is used. Note that only
the magnitudes of the correlations are used as the ECF only models the correlation strength. For
integrating inverse correlation, another (global) model would be necessary, which will be discussed
in section 5.2.

The entries of the 3 × 3 matrix T are denoted as tij . As T is symmetric and represents a rank-
2 tensor, only the 6 values t11, t22, t33, t12, t13, t23 have to be determined. These values appear
linearly in the 13 (or less if xijk is a border point) equations (5.6). So one can build a 13 × 6
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Figure 5.6: The 26-neighborhood of a chosen spatial grid point (red) is shown, highlighting two
opposite neighbor points (green).

over-determined linear system, which can be solved using a least squares approach and the normal
equation [Bjo96].

The ECF model provides several advantages, amongst others also for visualization purposes. First
of all, using a local approach reduces the memory requirement for storing correlation information to
some extend: If the correlation grid has m = |Cpqr| = pqr entries, the respective correlation matrix
has to store m2 local and global correlation values. If only local values are stored, approximately 13
values per point in Cpqr would be needed for the 26-element neighborhood system described above.
This amounts to a total of 13m correlation values. The rank-2 tensor model halves this amount
to a total of 6m values. This meets the proposed requirement from section 5.1.3 for a memory
consumptions of O(m).

An additional reason for using the ECF model is its integration of Euclidean distances. To under-
stand this, let us assume that instead of the local τ tensor, the local correlation values are used at
every grid vertex. In this case, the local correlation in every direction depends on the resolution of
the correlation grid Cpqr, and if this grid has a high resolution, the correlation between neighboring
points would approach 1 everywhere. Notably, the computation of T is independent of the grid
resolution, as the Euclidean distances to the neighbors are taken into account for computing T.
Thus, correlation is set in relation to Euclidean distances. Furthermore, using the parameter tensor
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allows the computation of correlations for a user-specified distance (cf. next paragraph). With a
stored correlation tensor for a fixed distance this would not be possible.

Anisotropic Correlation Glyphs

The rank-2 correlation tensors are always positive semi-definite and symmetric. Thus, they can be
decomposed into three orthonormal eigenvectors, which point into the directions of the first, second
and third principal axes of the associated correlation ellipsoid. Regarding the model described in
(5.2), the eigenvalues give the values taken by τ in the respective eigen-direction. The decomposition
can be written as

T = VSV>, (5.7)

with matrix V containing the orthonormal eigenvectors (principal components of the ellipsoid) in
the columns and the diagonal matrix S containing the eigenvalues on the diagonal.

As the eigenvectors are not related in general to an iso-surface structure in the data, the tensor T
is not directly suitable for analyzing the structural uncertainty of iso-surfaces. To overcome this
limitation, a basis transformation T = V̂S̃V̂> is performed first. The tensor T(xijk) at grid point
xijk is expressed using the normalized data gradient g(xijk) and two orthonormal vectors w1(xijk)
and w2(xijk). These two vector are elements of unit vectors in the respective tangent plane

T(xijk) := {w ∈ R3|w>g(xijk) = 0, ‖w‖ = 1}. (5.8)

The vectors g, w1, and w2 form the columns of V̂ and represent the new basis. It is worth noting
here, that the new matrix S̃ is not diagonal.

With the fixed vector g there is still one degree of freedom for the orientation of the orthonormal
pair w1 and w2 in the tangent plane at point xijk. By definition, w1 and w2 should point into the
direction of maximum and minimum τ in the tangent plane:

w1(xijk) : = arg max
w∈T(xijk)

(
w>Tw

)
, (5.9)

w2(xijk) : = arg min
w∈T(xijk)

(
w>Tw

)
. (5.10)

In Fig. 5.7, a tangent plane (green) for a particular point xijk on an iso-surface (red) is illustrated.
The tensor T(xijk) is represented by a 3D ellipsoid (blue). The maximum and minimum τ -directions
are shown as magenta and cyan lines in the tangent plane. The orthogonal gradient direction is
illustrated by a yellow line.
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Figure 5.7: The tangent plane (green) for a particular point on an iso-surface (red) is shown. The
correlation strength tensor is illustrated by a 3D ellipsoid (blue). The maximum and
minimum τ -directions are shown as magenta and cyan lines in the tangent plane. The
orthogonal gradient direction is illustrated by a yellow line.

In order to compute w1 and w2, first, two arbitrary orthonormal vectors n1 and n2 are defined,
which span the tangent plane at xijk, as follows:

n1 := (g2,−g1, 0)>√
g2

1 + g2
2

, n2 := g× n1. (5.11)

Here, gi denotes the i-th component of the normalized gradient g. The two spanning vectors are
put into the columns of the 3 × 2 projection matrix N := [n1|n2]. The tensor T is projected into
the tangent plane by N>TN. A singular value decomposition of the resulting matrix results in two
2D orthonormal singular vectors s1 and s2. The vectors w1 and w2 can now be obtained as

w1 = Ns1, w2 = Ns2. (5.12)

The values of τ into the three directions are obtained as

τg = g>Tg, τ1 = w>1 Tw1, τ2 = w>2 Tw2. (5.13)

The setting is such that w1 is pointing into the direction of maximum τ . According to (5.2), this
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Figure 5.8: (a) The used correlation glyph is shown. Absolute correlation strengths are mapped
from [0, 1] to [red → green] for surface normal (1), first (2) and second (3) principal
tangential correlation directions in three zones. (b) Geometry of zone (2) visualizes
the correlation ratio between the two tangential direction. (c) Glyph for high contrast
tangential correlation values 0.9 (2) and 0.1 (3) is shown. (d) Glyph for low contrast
tangential correlation values 0.09 (2) and 0.01 (3) is shown.

is the direction of minimum correlation. Vector w2 is pointing into the direction of maximum
correlation. These two tangent vectors, together with g and the parameters τg, τ1, and τ2 are used
for visualizing the anisotropic correlation relations as well as their absolute strengths.

To visualize anisotropic correlation structures, at every grid point a correlation glyph is constructed
from the distinct 3D orientation given by the iso-surface normal g and the two vectors w1 and w2.
This glyph is then used to visualize the correlation ratio in the tangent plane (anisotropy) as well
as absolute correlation values for the three directions.

To construct the correlation glyphs, first, correlation values along the three directions g, w1 and
w2 have to be derived. Therefore, the user selects a specific Euclidean distance d interactively from
the interval [0, dmax], and at every grid point the correlation values are computed as

ρg = exp(−τgd) , ρ1 = exp(−τ1d) , ρ2 = exp(−τ2d). (5.14)

So each glyph visualizes the correlation distribution around its center for the radius d. For the
construction of the glyph, at every grid vertex a circle is centered at this vertex and aligned with
the respective tangent plane. To avoid overlapping glyphs, the circle’s radius is set to half the grid
spacing.

Within each circle a glyph is placed as shown in Fig. 5.8 (a). Each glyph consists of three zones,
where each zone receives a color from the range [red → green], indicating an absolute correlation
magnitude value from 0 to 1. The mentioned color map is utilized in order to enhance the contrast
for absolute correlation values and to relate “stable” regions to “green” and more “unstable” or
independent regions to “red”.
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Zone (1) is a circle with an interactively adjustable radius r1. Its color represents the correlation ρg
in surface normal direction. The colors of zone (2) and (3) encode the values ρ2 for maximum and
ρ1 for minimum correlation in the tangent plane. Zone (3) forms always a circle with a fixed radius
r3. Zone (2) is an ellipse, which is oriented along the maximum correlation axis w2 and has an
radius in this direction always equal to r3. The radius in direction w1 is equal to (1− ρ1

ρ2
)r1 + ρ1

ρ2
r3.

So the alignment of the ellipse with respect to the radii r1 and r3 directly visualizes the correlation
ratio in the tangent plane. Compare the ellipse variations in Fig. 5.8 (b). Note that if ρ1 = ρ2,
then zone (2) fully covers zone (3).

The introduced correlation glyphs have several strong advantages, oriented on the requirements
presented in 5.1.3. First of all, it is possible to show the correlation anisotropy in the tangent plane
as well as absolute correlation values (coded in color in the three zones) simultaneously in one
picture. Showing only correlation ratios would not be sufficient. For instance, the two correlation
values 0.9 and 0.1 have a ratio of 9:1, but 0.09 and 0.01 would also have a ratio of 9:1. As the user
is predominantly interested in ratios where the absolute difference between both values is also large
(0.8 compared to 0.08 in our example), the second case is not really interesting.

The two cases are shown with the glyph-visualization in Fig. 5.8 (c) and (d). In both cases, the
geometry and the radii of the elliptic zone (2) are the same, but due to the lower color contrast in
(d) (colors indicate correlations 0.01 and 0.09), the ellipse is almost vanishing. So the anisotropy
is only visible in regions, where |ρ1 − ρ2| is considerable large and the user’s focus is not distracted
by glyphs indicating high ratios of very low correlation values. This is a strong advantage in
comparison to other tensor-glyph visualization approaches.

Furthermore, the user is able to adjust the radius r1 of zone (1) between 0 and r3. For r1 = 0
the elliptic zone (2) has the largest range of variations. This is best for illustrating the correlation
anisotropy in the tangent plane. For r1 = r3 zone (1) covers zone (3) completely, zone (2) is
not perceivable any more and only the absolute correlation value in surface normal direction is
visualized. So, while interactively changing the radius r1, the user has the possibility of putting
the focus either on the analysis of the correlation anisotropy along the surface or the strengths in
normal direction — or a mixture of both.

If the structural variability of an iso-surface in a 3D scalar field for a particular iso-value θ has to
be analyzed, not for every grid vertex a correlation glyph should be visualized. Instead, the visual-
ization should be restricted to only those glyphs close to the surface. Therefore, the visualization
of a glyph is made dependent on the mean value µ(xijk) at the respective grid vertex: The glyph
at position xijk is rendered if

θ ≥ min({µ(xijk), µ(xi±1jk), µ(xij±1k), µ(xijk±1)}), (5.15)

θ ≤ max({µ(xijk), µ(xi±1jk), µ(xij±1k), µ(xijk±1)}).
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Figure 5.9: Top view on correlation visualization on mean surface from example in Fig. 5.4. Strong
local correlations in (1) indicate low structural uncertainty. Glyph geometries reveal
high anisotropic correlation difference for regions (2) and (3). High contrast between
strong correlation strengths in normal direction and lower ones in tangential directions
are shown in (4). Region (5) is affected by low normal correlation, indicated by red
glyph center zones. The images on the right show magnifications of four regions.

This rule was chosen to reduce the overlapping of glyphs. The regular placing of the glyphs at the
vertices of the 3D grid facilitates the visual perception of anisotropic correlation contrasts compared
to approaches where the glyphs have variable distances between each other.

Discussion

To validate the effectiveness of the proposed novel visualization technique for analyzing the struc-
tural variability of iso-surfaces in uncertain 3D scalar fields, two experiments using different data
sets have been conducted: A stochastically simulated data set with a synthetic setting (cf. Fig.
5.4) and a real-world data set comprised of an ensemble of simulated weather forecasts.

Fig. 5.4 demonstrates the structural variability of an iso-surface depending on different correlation
settings. Fig. 5.9 shows the visualization of the assigned correlation structures using the glyph-
based visualization approach. Here, the glyph geometry clearly reveals the correlation ratios.
The four images on the right show magnifications of four interesting regions. In region (1), the
glyphs indicate an isotropic correlation distribution. In (2) and (3), the directions along which
the correlation is high can be clearly perceived. In region (4), the occurrence of glyphs having
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Figure 5.10: (a) A mean temperature iso-surface in a 3D scalar ensemble weather forecast data set is
shown. (b) Correlation glyphs reveal anisotropic correlation structures in the surface’s
vicinity. (c) Close-up view on rectangular region shows region with low tangential
correlation (red outer glyph zones) and strong normal correlation values (green inner
zone). (d) A region with strong homogeneous correlation and low structural uncer-
tainty thereof (2) is visually separated from low and anisotropic correlation structures
in (1) and (3). (e) Additional correlation values in surface normal direction are coded
in color in glyph center zones.

green center zones surrounded by red zones indicates a high ratio between the correlations in x-
/y-direction (tangent plane, low correlation) and surface normal direction (high correlation). The
reverse behavior is visualized in region (5), i.e., low correlation along the normal direction.

The visualization in Fig. 5.10 shows a 3D temperature field in the exosphere above Europe and
the North Atlantic Ocean in spherical coordinates. It contains the mean values of multiple fields
that were simulated by the European Center for Medium-Range Weather Forecasts using slightly
different input parameters. The image (a) shows an iso-surface in the mean temperature field. In
(b), the glyph-based correlation visualization is used to depict structural variation effects. In (c),
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a close-up view on the region marked by the white rectangle is shown. The green glyph center and
the red outer zones indicate a high ratio between the correlation strengths in tangential and normal
directions. In such regions, a higher stochastic independence between points in the tangential plane
can be concluded. The surrounding regions, which are covered by homogeneous green glyphs, are
much less likely affected by structural uncertainty.

Fig. 5.10 (d) and (e) reveal the interplay between correlation ratios and color-based coding of
correlation strengths. In (d), only the correlation anisotropy in the tangent planes is visualized,
but the correlation in normal direction is ignored. For a tongue-shaped region around (2), strong
homogeneous local correlation close to 1 and low structural uncertainty is indicated by uniformly
colored green glyphs. In region (1), a high contrast between the two glyph zones (green and red)
indicate a strong correlation anisotropy (almost 1 for the first tangential direction (green) and
almost 0 for the second tangential direction (red)). Although the glyph geometry reveals the same
correlation ratio as, for instance, in region (3), the color contrast between the two glyph zones
emphasizes the absolute correlation differences. In (e), the interior glyph zones for the absolute
correlation values in normal direction are shown. One can observe that there is very low correlation
along the normal direction around the stable homogeneous region (2), indicated by the red center
zones. This low correlation in normal direction indicates rather high stochastic instability, meaning
that iso-surfaces in these regions are very likely to separate into multiple disconnected parts (cf.
region (5) in Fig. 5.4 (c)).

From the given examples some general advantages of the proposed glyph-based approach (based
on the anisotropic correlation model) for correlation visualization can by concluded:

• The local distance dependent correlation model, used to parameterize the glyph shape and
color, allows for a memory reduction to O(n) correlation/tensor values for n grid points.

• The correlation parameter tensor model accounts for the anisotropic nature of local correlation
strengths.

• The glyph geometry clearly indicates correlation ratios in the surface tangent planes and
effectively emphasizes the predominant correlation direction.

• The color mapping scheme intuitively reveals the absolute correlation values in surface nor-
mal and the two tangential directions. It further allows differentiating between interesting
anisotropic correlation regions (low and high correlation in tangent plane) and less interesting
regions where the correlation in both directions is low, which however could have the same
ratios (cf. Fig. 5.8 (c) and (d)).

• Since the glyph design (variable radius for normal correlation zone) can be changed inter-
actively, the user can flexibly change the focus between a visualization, more concentrated
on the anisotropic structures in the tangent planes or on anisotropic structures between the
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tangent plane and the surface normal direction. So the structural uncertainty can be assessed
interactively for different spatial directions.

Despite the advantages, however, the presented approach also suffers from some limitations and
leaves several open questions and requirements:

• The approach does not show any absolute uncertainty information like standard deviation,
which is mandatory for a more comprehensive uncertainty analysis. Here a thorough analysis
of an adequate visualization channel (color, opacity, etc.) would be necessary, as a straight-
forward merge with an intuitive uncertainty visualization approach is often not possible.

• The glyph-based approach is based on a local correlation model and, thus, can only show
the correlation to regions close to the position where a glyph is placed. Global correlation
structures are ignored.

• Inverse correlation structures cannot be visualized, as the chosen correlation model only
accounts for correlations strengths (magnitudes). Here, a global correlation model and a
different color scheme would be necessary.

• Both the glyph geometry and the color-coding refer to the correlation between the values in
a certain distance to each other. Even though this distance can be selected interactively and
arbitrarily, it does not appear in the visualization.

From the analysis of the advantages and limitations of the glyph-based approach for correlation
visualization it can be concluded that the design of techniques allowing for an intuitive and ef-
fective correlation visualization is not straightforward. The integration of correlation information
into visualizations of complicated multi-dimensional structures is extremely challenging due to the
limited number of visualization channels (e.g., color, opacity, geometry, etc.). Although the pre-
sented approach cannot fulfill all requirements on a correlation visualization technique, it can be
seen as a first step towards such an integration and is meant to stimulate further research into this
direction.

5.1.4 Conclusion

In this section, basic insights into the concept of correlations in uncertain scalar fields are pro-
vided. Furthermore, the importance for integrating correlation data into uncertainty visualization
approaches is stressed in order to make more reliable assumptions on the structural uncertainty of
features and to get a more comprehensive understanding of the effects uncertainty exerts on the
underlying data set. In addition, an overview on important features, which should be integrated
into a correlation visualization concept, is provided.
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In order to approach some of the proposed requirements, a glyph-based correlation visualization
approach is presented. Therefore, a tensor-based distance dependent correlation model is suggested
for modeling local anisotropic correlation strengths. This model was used for generating glyphs,
specially adapted to iso-surface structures and indicating correlation ratios among tangential and
between tangential and normal surface directions. A color mapping scheme was introduced, allow-
ing an interactive perception of absolute correlation strengths in various spatial directions. In a
synthetic and one real-world data set, the effectiveness of the approach for identifying regions with
high and low structural uncertainty is revealed.

5.2 Global Correlation Visualization

After the introduction of novel approaches for visualizing local anisotropic correlation structures,
the following sections address the challenge of visualizing global correlation structures, indicating
stochastic dependences between random variables at distant spatial points in multi-dimensional
data domains.

In a discrete spatial scalar field, the uncertainty can be modeled by a multi-variate random variable
Y with scalar-valued components Y (xi), where each component models the uncertainty at the
respective domain point xi. In the following, it is assumed that the random variables exhibit a
multi-variate Gaussian distribution, so that the uncertainty at a point xi is indicated by a standard
deviation σi. The standard deviation is often visualized directly, for instance, via confidence regions,
uncertainty glyphs, or specific color or opacity mappings.

Besides analyzing the possible local variations of a quantity via the standard deviation, it is also
interesting to investigate the possible variations at different points relative to each other. This
analysis allows inferring on the possible occurrences of structures, which are determined by the
data values at two or more points. The variation of a structure’s shape is not only affected by the
data values, but also by the degree of stochastic dependence between these values. The property
of a structure to vary in shape due to uncertainty is denoted by structural variability.

For instance, an uncertain 2D height field is considered, where the variability of height values is mod-
eled via Gaussian distributed random variables. For two such variablesX and Y the mutual stochas-
tic dependence is given by their correlation ρ(X,Y ), which ranges from −1 to 1 and characterizes
the linear relation between the two variables. It is computed as Cov(X,Y )/

√
Var(X)Var(Y ),

where Var(X) and Var(Y ) denote the variances of X and Y , while Cov(X,Y ) is the covariance
between X and Y .

In this example, if the random variables have significantly different standard deviations, the shape
of the height field is very likely to change from one realization to another. If the variables have a
constant standard deviation, however, it cannot be concluded directly on the probability of shape
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variations. In this case, if the random variables have a high positive correlation, i.e., the height
values are very likely to either go all up or all down simultaneously, there is low probability that
the shape of the height field is strongly affected by the uncertainty. This means that the structural
variability is low, even though the entire height field might shift up or down. Contrarily, in regions
exhibiting very low or even inverse correlation, the height values can change arbitrarily with respect
to each other. In this case, uncertainty can have a strong effect on the height field’s shape, causing
a high structural variability. Correlation is thus a very important means to analyze the structural
variability in uncertain data fields, and this property of correlation forms the basis of the following
investigations.

In the following sections, a new approach for visualizing positive and inverse correlation structures in
uncertain 2D scalar fields is introduced, where the uncertainty is modeled via multi-variate Gaussian
distributions. The approach allows for a local and global analysis of the structural variability of a
2D scalar field. By visualizing the uncertain scalar field as a height field, the correlation information
can be mapped to the color of surface points and simultaneously integrate common visualizations
of the standard deviation on 3D structures.

Since the amount of memory that is required for storing all correlation values is quadratic in the
number of spatial sample points, a novel approach is proposed for filtering the correlation infor-
mation. It seeks for the most prominent spatial correlation structures and represents them as
individual clusters. Therefore, so-called correlation neighborhoods are introduced and their size is
utilized as a new measure for the degree of dependence of a random variable on its local and global
surroundings. Correlation neighborhoods are build via spatial clustering of random variables based
on mutual correlation strengths. To simultaneously visualize local and global correlations, a sub-
division scheme is proposed for breaking clusters indicating long-range dependences into clusters
showing ever shorter, yet stronger interactions between their member variables. Since the visual-
ization works solely on the generated clusters, the memory requirement of the novel visualization
approach is linear in the number of spatial domain points.

The proposed correlation clusters are associated with random variables at certain spatial positions
and their spatial surroundings. Thus, they can be embedded directly into visualizations of the
spatial data itself. Fig. 5.11 (a) shows color-coded mean values of an uncertain 2D scalar field,
representing a temperature ensemble of data sets that were simulated by the European Center for
Medium-Range Weather Forecast (ECMWF). The mean data values are rendered as height surface
over the 2D domain in (d). The standard deviations of the ensemble data set are visualized in
(b). Although standard deviation values are direct indicators for the underlying uncertainty, they
cannot reveal global stochastic dependences described by positive (blue) and inverse (magenta)
correlations as illustrated in (c). In (e), color-coded correlation clusters are visualized on the same
mean surface. A visualization showing the subdivision of clusters into sub-clusters of ever higher
correlation strength and the extrusion of clusters according to standard deviation is shown in (f).
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Figure 5.11: (a) Mean height values are color-coded for a temperature iso-surface in an uncertain 2D
temperature ensemble data set. (b) Standard deviations are color-coded. (c) Global
positive (blue links) and inverse (magenta links) stochastic dependences between dif-
ferent spatial regions are illustrated. (d) Height surface is shown for mean values in
(a). (e) Disjoint clusters contain surface points where the uncertainty has a correlation
higher than ρ1 = 0.4 to the uncertainty at the cluster centroids (black dots). (f) Clus-
ters are subdivided using ρ2 = 0.9 and extruded along the third dimension according
to the standard deviation at the member points.

5.2.1 Related Work

Only very few approaches have explicitly addressed the visualization of data correlations. For
instance, a tool for visualizing correlations between two scalar fields via color mapping and slicing
was proposed in [JPR∗04]. For a similar purpose, [STS06] employed correlation fields and multi-
field graphs. Glyph-based visualization of local covariance structures was presented in [KWL∗04].
In [SWMW09], correlations in time-varying data have been investigated, and [YXK13] suggests a
numerical technique for visualizing (cross-)covariance fields of stochastic 2D simulation results. A
sampling scheme for analyzing temporal correlations in 3D time-varying volume data was presented
in [CWMW11].

Especially in machine learning applications, correlation clustering as introduced in [BBC04] has
been employed to group objects for which pair-wise probabilities about their memberships to com-
mon categories are given. Correlation clustering operates on weighted graphs and tries finding a
partition of nodes such that the weights of cut positive edges and uncut negative edges is minimized.
Since the problem is NP-complete, approximation algorithms using random and local pivoting for
selecting cluster centroids have been proposed in [BBC04, ACN08, Zim08, BKKZ04, KKZ09].
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Figure 5.12: (a) Positive correlation neighborhoods (magenta) are shown for three specified cluster
centers (black dots) over the ECMWF ensemble mean values. (b) Cardinal numbers
of correlation neighborhoods are color-coded for all domain points.

5.2.2 Positive Correlation Clustering

In the following, an uncertain 2D scalar field is assumed. The scalar values are given at the vertices
of a 2D grid structure C. At every vertex xi ∈ C, the mean µi and the standard deviation σi of
Y (xi) are known, as are the correlation values for every pair (Y (xi), Y (xj)).

To avoid storing the correlation values for every vertex pair during visualization, the correlation
information is filtered in a pre-process so as to keep the most relevant correlation structures, but
significantly reduce the memory requirements. Therefore, a correlation-based importance measure
is introduced, which forms the basis of a novel clustering algorithm.

Correlation Strength Model

For each vertex xi, the number of vertices xj , at which the random variables Y (xj) have a higher
correlation to Y (xi) than a pre-defined threshold ρ1, is computed. The set

ηρ1(xi) := {xj ∈ C | ρ(Y (xi), Y (xj)) ≥ ρ1} (5.16)

is called the correlation neighborhood of xi for level ρ1 ≥ 0, and |ηρ1(xi)| the cardinal number of
this neighborhood. For a given level and vertex xi, the cardinal number indicates the degree of
dependence between the random variable Y (xi) and its local and global spatial surroundings, as it
counts the most prominent “correlation partners” of xi, independently of their position in C.

In Fig. 5.12 (a), correlation neighborhoods (magenta) for three different vertices are shown for the
temperature ensemble data set introduced in Fig. 5.11. The size of the respective neighborhoods
is directly described by the cardinal numbers shown for all domain points in (b). Note that,
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for instance, in the region with the smallest neighborhood, the cardinal numbers are very low,
indicating also a very low local correlation strength.

The particular choice of the proposed measure is motivated by the assumption of a distance depen-
dent correlation model [Tar05]. It is quite common in many applications to assume correlations to
be higher/lower between random variables at points with smaller/larger Euclidean distance. For
instance, the Gaussian Correlation Function (GCF)

ρ(Y (xi), Y (xj)) = exp(−τ ‖xi − xj‖2) (5.17)

models this kind of distance dependent correlation decrease.

The GCF controls the correlation strength by the parameter τ , and, by assigning to each vertex
xi a specific τ(xi), a particular correlation strength between each Y (xi) and its surroundings can
be modeled. However, the distance dependent correlation model assumes an isotropic correlation
decrease around each vertex and cannot easily be used to account for anisotropic correlation struc-
tures. Therefore, instead of assuming a distance dependent correlation decrease and estimating for
every vertex a specific τ as proposed in section 5.1, the size of the correlation neighborhood for a
given threshold, i.e., the cardinal number, is utilized to measure the local correlation strength of
each random variable.

Clustering Algorithm

The cardinal numbers impose an ordering on the vertices that is employed to filter the correlation
information. Therefore, the vertices are first ranked in descending order of their cardinal numbers.
From this ordered sequence Sρ1 , the algorithm selects the vertex with the largest cardinal number. If
and only if the intersection between the correlation neighborhood of this vertex and the correlation
neighborhood of any previously selected vertex is empty, the vertex is inserted into a new sequence
Ψρ1 and removed from Sρ1 . Simultaneously, all vertices belonging to the correlation neighborhood
of this vertex are removed from Sρ1 . The algorithm is then applied recursively to the remaining
vertices in Sρ1 . This process generates the sequence

Ψρ1 := {c0, c1, ...} ⊂ C, (5.18)

which consists of the selected vertices ci in descending order of theri cardinal numbers. These
vertices are the centroids of the correlation clusters that contain all vertices in the corresponding
correlation neighborhoods.

The clustering algorithm computes |Ψρ1 | clusters, each cluster containing vertices with a correlation
to the centroid that is larger than the selected correlation level. The requirement of not allowing
intersecting clusters guarantees that every vertex either belongs to exactly one cluster, or does not
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Figure 5.13: Positive correlation clusters for ρ1 = 0.3 (a), ρ1 = 0.4 (b), ρ1 = 0.5 (c) and ρ1 = 0.7 (d)
are visualized on the ECMWF mean surface. The clustering for ρ1 = 0.7 (d) indicates
strong local correlation in regions (1) and (2), and weak local stochastic dependence
in regions (3) and (4).

belong to any cluster. Each cluster gets assigned a unique color using the algorithm proposed in
[Hol11] for generating the N perceptually most distinguishable colors. The coloring ensures that
also disconnected clusters, indicating so-called bridging correlations, can be identified. Fig. 5.13
(a) shows the clusters for ρ1 = 0.3 in the ECMWF data set. The pink clusters show long-range
bridging correlations.

The strategy to select the centroids in descending order of cardinality has the preferable property
that the largest clusters are always selected first. Correlation clustering algorithms using random or
local pivoting strategies for centroid selection, such as the randomized 3-approximation algorithm
proposed in [ACN08], cannot achieve this. In addition, a region with strong mutual correlations
between the contained points is represented by one single cluster using the presented novel approach,
while a randomized algorithm might split up this cluster into multiple ones.

Since the proposed selection strategy represents regions of high and low local correlation by large
and small clusters, respectively, it also allows a clear distinction between these regions in the
visualization. Furthermore, in the novel approach, the size of a cluster and its expansion in different
directions is directly related to the local correlation strength and the correlation distribution in the
respective region. A random or local selection of cluster centroids and a complete partitioning of
the domain cannot guarantee this and lets the cluster sizes be dependent on the selection order
rather than the correlation strength.
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Multilevel Clustering

To enable the user to interactively analyze clusters at different correlation levels, multiple sets
of clusters are pre-computed for different values of ρ1. With increasing ρ1, in regions with low
correlation strengths the clusters quickly shrink and the number of clusters increases. Where
clusters remain spatially extended, they indicate strongly correlated regions. Fig. 5.13 (b), (c) and
(d) show these effects for the initial clusters in (a) and ρ1 = 0.4, ρ1 = 0.5 and ρ1 = 0.7.

For large values of ρ1, the clusters provide a good impression of the local correlations in the
data. For smaller correlation levels, the clusters tend to cover ever larger regions. Although
this provides a better focus on global correlation structures and large-range interactions, local
correlation structures, as well as the distribution of the correlation structure within the clusters,
increasingly disappear.

By providing the user with the possibility to interactively increase and decrease the correlation
level, and to examine the evolution of the clusters over multiple levels, these internal structures of
spatially extended clusters become apparent.

Cluster Subdivision

To allow the visualization of local correlations within a global context, a subdivision scheme is
introduced, splitting the initial clusters at a certain level into disjoint sub-clusters. This is performed
by applying the proposed clustering algorithm separately to every initial cluster. For a cluster with
centroid ci, this generates sub-clusters with centroids

Ψci
ρ1ρ2 := {ci0, ci1, ...} ⊂ ηρ1(ci). (5.19)

All sets of sub-clusters are created for a correlation level ρ2 > ρ1 according to:

ηρ1ρ2(cij) := {xk ∈ ηρ1(ci) | ρ(Y (cij), Y (xk)) ≥ ρ2}. (5.20)

By increasing the level ρ2 for a fixed level ρ1, the initial clusters are subdivided into ever smaller
sub-clusters. Here, the requirement ρ2 > ρ1 has to be met, because no subdivision will be performed
otherwise.

The proposed two-stage approach allows for a simultaneous view on both global correlation struc-
tures (selected by ρ1) and local correlation distributions within these structures (controlled by ρ2).
The sub-clusters indicate in which regions of the initial clusters the random variables are more or
less stochastically independent. This effect is shown in Fig. 5.14, were positive correlation clusters
for ρ1 = 0.4 in (a) were subdivided using ρ2 = 0.9 in (b). Compared to region (1), the sub-clusters
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Figure 5.14: Clusters for ρ1 = 0.4 (a) and corresponding sub-clusters for ρ2 = 0.9 (b) show isotropic
and anisotropic correlation structures in (1) and (2), respectively. Severe cluster
shrinkage indicates low local correlation strength in (3).

in region (2) indicate strong local anisotropic correlation structures with clear preferential direc-
tions. In region (3), the severe shrinkage of the clusters indicates a sudden drop in local correlation
strength.

Anisotropy Coloring

The proposed clustering algorithm can be used effectively to show the sets of points at which the
random variables have a correlation to the random variable at the respective centroid that is larger
than a selected correlation level. However, due to the uniform coloring of all points belonging to
the same cluster, it can not be seen which sub-regions of a cluster are correlated stronger or weaker
to the centroid.

This problem can be approached by mapping the correlation values at every correlation level to
color via a specific color table, e.g., as shown in Fig. 5.15 (a). Especially for large clusters the
coloring clearly indicates high correlation values around the center points and a distance dependent
correlation decrease. For example, the large cluster in the center has significantly lower correlations
to points in sub-region (2) than to points in sub-region (1).

However, the used coloring does not pronounce the specific correlation anisotropy within a cluster
very well. To overcome this problem, a color mapping scheme is introduced that emphasizes inner-
cluster anisotropy.

Note that at every vertex xj , the correlation to the respective cluster centroid, as well as the
Euclidean distance to the centroid are known. This information is used to classify a vertex regarding
its correlation decrease from the centroid per unit distance. To this purpose, the GCF in Equ. (5.17)
is employed, which controls the correlation strength by the parameter τ . The known correlation
and Euclidean distance are used in Equ. (5.17) to rearrange for the unknown τ :

τ(xj) := − log(ρ(Y (ci), Y (xj)))
‖ci − xj‖2

, xj ∈ ηρ1(ci). (5.21)
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Figure 5.15: (a) Correlation between cluster points and centers is mapped from [ρ1, 1] to the rainbow
color map [blue→ red]. (b) CHVD is mapped from [0, δmax] to the rainbow color map
[blue→ red]. High correlation anisotropy around the center point is shown in (3). In
(4), high anisotropy is only present close to the center point, while correlation is more
isotropic with increasing distance.

From the value of τ it can be concluded on a) a more isotropic correlation structure around a cluster
center, i.e., points on concentric circles around the center have the same value, b) an anisotropic
correlation structure, i.e., the values along a certain direction have a significantly stronger or weaker
decrease, or c) bridging correlations, i.e., isolated groups of points with the same correlation, but
at different distance from the center.

Unfortunately, τ has no unit, which prohibits an intuitive interpretation and comparison of different
grid points. To alleviate this problem, the correlation half-value distance (CHVD)

δ(τ) := log(2)
τ

, (5.22)

is introduced, indicating the distance after which the correlation drops below 0.5. The CHVD
is computed for every point in a cluster (except the centroid), and is then mapped linearly and
clamped to a selected range [0, δmax], and finally mapped to a specific color table.

In Fig. 5.15 (b), the effectiveness of the proposed color mapping for distinguishing between isotropic
and anisotropic correlation structures is demonstrated. In region (3), strong anisotropy can be
observed for several radii around the center point. In region (4), anisotropic correlation structures
are only present in the vicinity of the centroid. For larger radii the correlations are much more
isotropic. In contrast to (a), directions along which the correlation is higher or lower can now
clearly be perceived.

5.2.3 Inverse Correlation Clustering

So far, the discussion was restricted to the visualization of clusters where the correlations between
the random values at the member points and the cluster centroids exceed a selected positive value. In
the following, the construction and the visualization of inverse correlated clusters are addressed.

110 Tobias Pfaffelmoser



5.2 Global Correlation Visualization

Linear inverse correlation between two random variables indicates that the realization of one ran-
dom variable deviates positively from its mean when the realization of the other variable deviates
negatively, and vice versa. In inverse correlation clustering, one tries to find clusters that consists
of two inverse partners, i.e., the clusters covering the regions that are inverse correlated to each
other.

As for positive correlation clustering, one defines

κρ̂(xi) := {xj ∈ C | ρ(Y (xi), Y (xj)) ≤ ρ̂} (5.23)

as the inverse correlation neighborhood of a point xi for a negative correlation level ρ̂. The cardinal
number |κρ̂(xi)| serves again as an indicator for the degree of inverse dependence of a random
variable Y (xi) to a spatial region. This region, however, is not necessarily a direct spatial neigh-
borhood.

In inverse correlation clustering, one seeks for the most prominent pairs of centroids of inverse
partners

Φρ̂ := {(a0,b0), (a1,b1), ...} ⊂ C× C, (5.24)

ordered by descending cluster size. These pairs are called inverse centroids, and are defined recur-
sively as follows:

a0 : = arg max
xj∈C

|κρ̂(xj)|, (5.25)

b0 : = arg max
xj∈κρ̂(a0)

|κρ̂(xj)|, (5.26)

ai : = arg max
xj∈C,κρ̂(xj)∩

⋃
k<i

(κρ̂(ak)∪κρ̂(bk))=∅
|κρ̂(xj)| , (5.27)

bi : = arg max
xj∈κρ̂(ai),κρ̂(xj)∩

⋃
k<i

(κρ̂(ak)∪κρ̂(bk))=∅
|κρ̂(xj)| . (5.28)

The clustering algorithm works much the same way as the one used to construct positive correlation
clusters, but now it is necessary to look at two centroids simultaneously in order to create one single
cluster κρ̂(ai)∪κρ̂(bi). Since it always holds that bi ∈ κρ̂(ai) and ai ∈ κρ̂(bi), every inverse partner
contains exactly one centroid that is inverse correlated to the other partner and vice versa. Clusters
are computed for different negative levels ρ̂i.

In inverse correlation clustering, the coloring of clusters is important to separate pairs of inverse
partners from each other. This is accomplished by assigning to each inverse partner κρ̂(ai) and
κρ̂(bi) of a cluster a unique distinct color.

It can happen, however, that the partners κρ̂(ai) and κρ̂(bi) each split up into multiple disconnected
sub-regions (cf. region (1) in Fig. 5.16 (a)). In this case, the visualization has to indicate that the
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Figure 5.16: Positive clusters are shown in gray, inverse clusters for ρ̂ = −0.3 (a) and ρ̂ = −0.5
(b) are color-coded. Clusters with the same color but different stripe orientation are
inverse correlated.

sub-regions belonging to the same partner are inverse correlated to the respective other partner, but
not to each other. This is achieved by hatching the clusters using different patterns. In particular,
vertical and horizontal stripes are used for hatching, uniquely colored to emphasize the cluster.
The sub-regions are hatched in the same style than the partner they belong to.

In Fig. 5.16, inverse clusters (in color) are visualized for ρ̂ = −0.3 (a) and ρ̂ = −0.5 (b) in relation
to the positive clusters (in gray) for ρ1 = 0.4. Each color represents one inverse correlation pair,
and the stripe orientation indicates the respective inverse partners within each pair. Note that the
size of the inverse clusters are shrinking with decreasing negative correlation level ρ̂ and only the
most prominent inverse pairs remain present.

5.2.4 Uncertainty Integration

The use of correlation as an indicator for the structural variability in uncertain data sets is only
meaningful in regions where a significant standard deviation is present. For instance, if the random
variables at two points show a strong inverse correlation, but their standard deviation is low, the
effect of the structural variability is also low. Contrarily, a strong effect is very likely if the standard
deviation at the two points is high. Consequently, a combined visualization of both the standard
deviation and the correlation structures is necessary.

Since in this work uncertain scalar fields over a 2D domain are modeled stochastically via multi-
variate Gaussian distributions, stochastic distance functions (SDF) can be used to visualize the
standard deviation. A SDF is defined as (cf. Equ. (4.7))

ϑ(v,xi) := v − µ(xi)
max(σ(xi), σmin) . (5.29)

It assigns to every grid vertex xi the distance in stochastic data space between the selected scalar
value v and the mean value µ(xi) in number of standard deviations σ(xi). For further details, the
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Figure 5.17: (a) Positive, subdivided correlation clusters are shown for ρ1 = 0.5 and ρ2 = 0.9. (b)
Cluster extrusion until a selected SDF level reveals low positional variability in (1)
and strong positional variabilities in (2) and (3).

reader is referred to paragraph 4.1.2. The region enclosed by the SDF values |ϑ(v,xi)| ≤ 1 forms
the confidence region for ±σ.

To visualize the standard deviation, the user first selects a SDF level ϑ∗. Then, all clusters are
extruded along the third dimension, both in positive and negative direction, until their height is
equal to the selected SDF level at the cluster centroid. The side walls and caps of these “towers”
have the same color as the clusters, but, along the side walls, the saturation is decreased by a factor
of 0.5 for every second integral change in SDF value.

The integration of standard deviation into correlation visualization is demonstrated in Fig. 5.17.
In (a), positive correlation clusters for ρ1 = 0.5, including subdivision for ρ2 = 0.9, are shown.
These cluster are extruded to the confidence level ϑ(v,xi) = 1 in (b). The small towers in region
(1) indicate significantly lower standard deviations compared to regions (2) and (3). Fig. 5.17
shows extruded inverse clusters for ρ̂ = −0.5.

5.2.5 Implementation and Visualization

The clustering algorithm is performed using a parallelized MATLAB implementation on a shared
memory system with two quad-core Opteron 2.6 GHz CPUs. The algorithm has a run-time com-
plexity that is quadratic in the number of grid vertices. For the ECMWF data set that is given on
a Cartesian grid of size 185×425, the cluster generation for all levels takes about 19h. The current
implementation is relatively unoptimized, as the correlations for many pairs of random variables
are re-computed multiple times. This is due to memory limitations, prohibiting the pre-storage of
the full correlation matrix. With all correlation data available beforehand, the pre-process would
require about 3h.
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Figure 5.18: Inverse cluster partners for ρ̂ = −0.5 are shown. Cluster extrusion until a selected
SDF level reveals strong inverse positional surface variability between region (1) and
(2).

After the pre-process is completed, the resulting data is stored in 3D textures on the GPU. Two
textures store the data required to represent the positive correlation clusters. Their (u, v) texture
size is the same as the size of the 2D domain over which the height field is given. Thus, every
row along the third texture dimension represents the values associated with a particular domain
point. The w texture size is equal to the number of possible (ρ1, ρ2) pairs, and every texel stores
the cluster IDs for exactly one pair. Since ρ1 and ρ2 are both ∈ {0.1, 0.2, ..., 0.9}, and because
ρ2 > ρ1, 36 pairs have to be stored. Every (ρ1, ρ2) tuple gets assigned a unique index at which
it is stored in the respective texture row. For every index and every 2D vertex, the IDs of the
initial clusters (computed for ρ1) and corresponding sub-clusters (computed for ρ2) are stored in
the first and second 3D texture, respectively. The IDs are stored in the red color channel, and the
correlation and CHVD values to the respective cluster centroids are stored in the green and blue
color channels, respectively.

A third texture stores the data computed by inverse correlation clustering. As these clusters are
not subdivided, for m negative correlation levels, the texture size along the third dimension is m.
For each grid vertex and level a cluster ID is stored. The cluster ID is attributed by a sign which
indicates which of the respective two inverse partners the grid vertex belongs to. In an additional
texture, the positions of the centroids of all clusters are stored. The cluster IDs that are stored in
the 3D textures are chosen such that they can be used directly to reference the respective centroids
in this texture. Overall, the memory requirement of the algorithm at run-time is linear in the
number of grid points.
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For the visualization of the standard deviation, a fourth 3D texture stores the SDF field with
respect to the mean and standard deviation in the data. The (u, v) texture size is equal to the size
of the 2D domain. The size of the texture in the third dimension was set heuristically depending
on the data resolution. Each texture slice along the third dimension is associated to a height value
h, ranging from mini(µi)−maxi(σi) to maxi(µi) + maxi(σi) in m steps. For each grid point xi in
the (u, v) texture domain and each height layer hj , a SDF value ϑ(hj ,xi) is stored in the red color
channel.

Rendering the correlation clusters in a 2D height field is performed via parallel ray-casting on the
GPU. Rays are cast through the 3D SDF field until an intersection with the level-0 iso-surface in
this field, i.e., the mean surface, is determined. The projection of the intersection point into the 2D
domain and the selected (ρ1, ρ2) combination are used to look-up the cluster ID in the pre-computed
3D textures. This ID is then used to color the corresponding pixel. The stripe patterns, indicating
the membership to the inverse correlation clusters, are generated procedurally in a pixel shader.
For rendering the cluster towers, it is tested at every sampling point along the rays whether the ray
has already entered into the selected SDF confidence region. In this case, ray traversal is stopped
as soon as the ray enters into a cluster. At the intersection point, the cluster color is looked up and
the height dependent saturation is computed. Normals for shading are computed on-the-fly from
the SDF field.

5.2.6 Analysis and Discussion

First, the plausibility of the proposed correlation clustering approach is validated using a simple
synthetic data set (see Fig. 5.19 (a)). As input for a simulation process, a set of seismic pressure
sources are positioned at the grid vertices of a 2D Cartesian grid (white lines) on the earth ground
(green plane). Each source generates pressure waves traveling into the earth along the black lines.
The waves are reflected from a material discontinuity (red structure at the bottom) and registered
at the source locations. The red surface is broken at three fault lines where a discontinuous change
between two depth layers is perceivable. By making assumptions on the wave speed and measuring
the travel-time, one can estimate the discontinuity’s depth at every grid position.

Since the material in-between the source and the discontinuity (second layer) introduces errors in
the assumed wave speed, the estimated depth of the discontinuity is uncertain. In the presented
model, the “error layer” is subdivided into 34 zones (uniquely colored), each of which introduces a
Gaussian distributed zero mean error that are stochastically independent from each other. Within
the three quadrants (1), (2), and (3), the error model has the same standard deviation. In quadrant
(4), the standard deviation is significantly lower.

Based on the probabilistic error model, 100 possible solutions were computed. Positive correlation
clusters in the ensemble field are color coded on the mean surface in Fig. 5.19 (b). It can be seen that
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Figure 5.19: (a) Geophysical setup to determine the depth of a material discontinuity (red) in
the earth’s interior by measuring travel times of artificial pressure waves (emitted
along black lines). A material layer between emitters and discontinuity structure
simulates a Gaussian error distribution in wave velocities. (b) Correlation clusters are
color coded on the mean surface in the simulated data ensemble. (c) Visualization of
standard deviation shows equally strong uncertainty in quadrants (1), (2), (3) and low
uncertainty in (4). (d) One possible solution (realization) of the depth structure. High
structural variability is seen in quadrant (3), which is indicated by low correlations
and high standard deviations in (b) and (c).

the independent error structures shown in (a) are correctly grouped by the clustering algorithm. In
(c), clusters are extruded to visualize the standard deviation. A significantly lower error is shown
in quadrant (4). In (d), one of the possible solutions (realizations) is shown. The faults in (1)
and (2) can be well resolved, because correlations are high in both regions, i.e., large correlation
clusters exist. The fault between (1) and (2) cannot be resolved, because there is no correlation
between (1) and (2). In quadrant (4), the correlation is low, but the fault can be well resolved,
because the standard deviation is low, too. In region (3), however, correlation clustering reveals
highly uncorrelated sub-regions and high standard deviations. Consequently, the fault cannot be
resolved here, because of high structural uncertainty. This example illustrates that an integrated
visualization of uncertainty and correlation is very important, as the single, detached visualization
of each of them could result in false interpretations.

For the ECMWF data set, the proposed correlation visualization is used to conclude on the following
peculiarities: Fig. 5.11 (d) and (e) show a long ridge-like surface structure covered by the large red
cluster. This shape feature can be assumed to be stable, because it resides in a highly correlated
region, indicated by large clusters even for increasing correlation levels (cf. Fig. 5.13). Furthermore,
cluster subdivision in Fig. 5.14 and anisotropy coloring in Fig. 5.15 (b) clearly show the alignment
of the prominent correlation direction with the ridge orientation, meaning that the structural
variability is low along the ridge. In Fig. 5.13 (d), small clusters in region (4) indicate low
correlation strength (see also region (3) in Fig. 5.14 (b)). It can be concluded that this area is prone
to structural variability, and that the particular occurrence of the mean surface is stochastically
unstable.

Inverse correlation visualization reveals very interesting long-range dependences between data val-
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Figure 5.20: (a) Mohorovičić discontinuity below Australia is shown. (b) Strong correlation clus-
ters close to the domain boundaries indicate strong regularizations in the simulation
algorithm. (c) Close-up view reveals high and low uncertainties, respectively, at the
boundaries and in the center, as well as high local correlations at (1) and (2). (d)
Inverse clustering shows that strong inverse correlation takes place on a local rather
than a global scale.

ues in the ECMWF data set. Fig. 5.18 shows multiple inverse correlated cluster pairs. In com-
bination with the uncertainty towers, the red clusters turns out to be the most prominent. The
visualization shows a strong stochastic dependence between spatial locations over long distances.
For instance, a temperature decrease in region (1) is likely to cause a temperature increase in region
(2), and vice versa.

In a third example, correlation visualization is used to analyze the Mohorovičić discontinuity —
the boundary surface between the Earth’s crust and mantle — below Australia (see Fig. 5.20
(a)). The data was acquired using a similar geophysical setup as described in the first example.
Positive correlation clusters in (b) show a rather homogeneous correlation distribution in the domain
interior and high correlation strengths at the boundaries. A close-up view in (c) also reveals high
standard deviation in the outer parts. The reason is that less measurements were performed
in these regions and, thus, the data coverage is too low to allow resolving high frequencies in
the data. As a consequence, such regions are automatically regularized (smoothed) by the data
generation algorithm, resulting in high correlations and standard deviations. In (1) and (2), the
same uncertainty and dependence structures are visualized. Correlation visualization supports
domain experts in discovering whether smooth structures arise from the real physical material
characteristics in the discontinuity or are due to regularization effects.

Besides the visualization of positive correlations, domain experts in geophysics are interested in
the location of inverse correlated regions. From this information, one can conclude on regions
that cannot be resolved against each other and have a rather uncertain relative position. The
visualization in (d) shows that inverse correlated regions are located close to each other. Large-
range inverse correlations do not seem to exist. This indicates that strong structural variabilities
are restricted to small spatial regions. Note that this is completely different to the situation in the
ECMWF data set, where inverse correlated clusters are far more distant to each other and cover
significantly larger regions.
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Figure 5.21: The setup for a synthetically generated 2D ensemble data set is illustrated. (a) The
height surface for constant mean values over a 2D domain is shown. (b) The confi-
dence volume around the mean surface is visualized for a setting of constant non-zero
standard deviation values for all domain points. (c) The synthetic correlation setting
for all domain points is illustrated. Grid points within the same blue cell are strong
positive correlated. Points between different blue cells are not correlated. The two
upper left blue cells (and their member domain points) are inverse correlated with
respect to each other.

As final proof of concept, a validation example is presented for demonstrating that the proposed
algorithm is able to generate correct results with respect to revealing prior synthetically designed
correlation structures. Therefore, first, a synthetic ensemble data set is generated. The data is
given on a regular Cartesian 2D grid. At all grid points, a constant value is used as mean of the
respective random variables. The standard deviations are also fixed to a certain non-zero value.
The height surface of the mean values over the 2D domain is shown in Fig. 5.21 (a). In (b), the
respective confidence volume around the mean surface is rendered by mapping SDF values to color
and opacity. Furthermore, correlation values are defined between the respective 2D grid points.
This setup is illustrated in Fig. 5.21 (c). The 2D grid is shown as the black lines. Correlation
values between grid points within a blue cell are strong positive. Grid points between different blue
cells have zero correlation. The random variables at grid points in the upper left two blue cells are
inverse correlated.

The defined mean, standard deviation and correlation values are used as input for a multi-variate
Gaussian random number generator, which is used for generating an ensemble data set of scalar
values at the different spatial grid points. Eight ensemble members are show in Fig. 5.22. The scalar
values from low to high are mapped to the rainbow color map from blue to red. For obtaining scalar
values between the grid points, a bi-linear interpolation scheme has been utilized. The realizations
show a high structural uncertainty in the lower left region where the grid points are not correlated
with respect to each other. The oblong features in the upper right and left part of the ensemble
members directly reflect the respective positive correlation structures shown in Fig. 5.21 (c).

The 2D ensemble data set is used as input for the novel correlation clustering algorithm. The
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Figure 5.22: Ensemble members (realizations) are shown for the synthetic 2D ensemble data set
introduced in Fig. 5.21. Height values are mapped from low to high to the rainbow
color map from blue to red.

results are presented in Fig. 5.23. The clustering in (a) directly reveals the synthetically defined
correlation structures in Fig. 5.21 (c). The fuzzy borders of the individual clusters are caused by
the used interpolation scheme and its impact on the clustering process. The cluster extrusion in
(b) illustrate the constant standard deviation values over the 2D domain. The inverse clustering
approach in (c) correctly identifies the inverse correlated regions in the upper left part of the
domain.

This example reveals that the proposed novel correlation clustering approach is able to correctly
visualize correlation structures in a 2D domain. Note that this additional information helps to
better predict the degree of structural uncertainty for diverse spatial regions. Structural variability,
as illustrated by the ensemble members in Fig. 5.22, cannot be visually communicated by just using
standard methods based on traditional uncertainty indicators like mean and standard deviation (cf.
confidence visualization in Fig. 5.21 (b)).

5.2.7 Conclusion

The contribution to the field of uncertainty visualization, presented in this section, is a new approach
for visualizing positive and inverse global correlation structures in uncertain 2D scalar fields. The
novel correlation clustering algorithm is built upon the concept of correlation neighborhoods and
their cardinal numbers. The organization of data points into groups takes into account a selected
correlation strength, giving rise to an interactive visual analysis of short- and long-range stochastic
dependences in the data. The cluster representation which is build in a pre-process requires an
amount of memory that is only linear in the number of initial data points.
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Figure 5.23: The results of the clustering algorithm applied to the synthetic ensemble data set
are shown. (a) Algorithm identifies positive correlation clusters at the correct spatial
domain regions. (b) Clusters are extruded within the constant confidence volume. (c)
Inverse correlated regions are identified at the correct spatial positions.

5.3 Gradient Uncertainty Visualization

Scalar ensemble fields consist of different scalar instances of the outcome of an experiment. They can
be produced by repeated simulations of a parameterized model using slightly modified parameter
settings, or by simply running a procedure that is affected by inherent randomness multiple times.
When the experiment generates outcomes over a spatial domain, each instance captures possible
data values at all locations in space. If the variation of instances can be described stochastically,
each instance can be assumed a realization of a multi-variate random variable.

In scalar ensemble fields, standard deviations are primary indicators for the degree of variation of
the values. Thus, standard deviations are a means to classify the confidence in the data values,
and, to this purpose, are often visualized directly, for instance, via confidence regions, uncertainty
glyphs, or specific color or opacity mappings [JS03, PWL97].

The standard deviation by itself, however, does not allow a rigorous analysis of uncertain data,
because it does not allow inferring on the relative variability of data values at different points. This
means, in particular, that the effect of uncertainty on quantities that depend on the rate of change
of the data, such as differential quantities, cannot be analyzed. Such quantities, however, play
a major role in data analysis, for instance, to indicate the location and orientation of important
geometric features, such as object boundaries or iso-contours.

In the following, the effect of uncertainty on the variability of gradients in 2D scalar ensemble fields
is analyzed, with respect to both magnitude and orientation. Such an investigation helps answer
primary questions on the stability of features in such fields. For instance, if a feature classifier
depends on the gradient magnitude and a point has been classified as belonging to the feature,
a low variability of the gradient magnitude indicates with a high level of certainty the point’s
membership to the feature. Then, a low variability in gradient orientation shows that the shape
of the iso-contour passing through the respective spatial point is very likely to remain unchanged,
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even if the standard deviation shows a high spread in the data values. On the contrary, a high
uncertainty in gradient orientation indicates a likely change in the orientation of the contour, even
though a low standard deviation might be observed.

Assessing the variability of gradients can therefore reveal the stability of features and their geometric
structures in scalar fields. It is, however, considerably more complicated than determining the
data variability via the standard deviation, because no stochastic model describing the spread in
magnitude and orientation is available initially. Thus, one first has to derive the random variations
of both quantities due to the uncertainty in the data, before techniques for analyzing these variations
can be developed.

The novel concepts presented in the following section take a first step into this direction: Based on
the stochastic modeling of uncertainty via multi-variate random variables, uncertainty parameters,
such as the mean and the covariance, are derived for gradients in uncertain scalar fields. Thus, the
presented work supplements previous uncertainty visualization techniques by providing a means to
analyze the effects of uncertainty on derived quantities that depend on data values at more than
one spatial point. It is worth mentioning that no assumption are made about the distributions of
the random variables used to model the uncertainty and only the computation of the statistical
entities mean and covariance is required.

Building upon the uncertainty parameters, a mathematical framework is developed to analytically
derive confidence intervals for the strength of the derivative in any prescribed direction and the
gradient orientation. The confidence intervals are utilized because they can be computed solely from
the uncertainty parameters, making the introduced approach independent of any assumed initial
probability distribution. This is the first time that analytic expressions for confidence intervals
of gradients in uncertain scalar fields have been derived. In case that the data uncertainty is
modeled via Gaussian distributed multi-variate random functions, even analytical expressions of
the distributions of the gradient magnitudes and orientations can be derived.

In the following, novel visualization techniques are presented for qualitatively assessing the gradient
variability in uncertain 2D scalar fields. For visualizing the derivative strength uncertainty, a novel
approach is introduced using color diffusion in addition to color to simultaneously show the data
values and the gradient’s variations. The basic idea is to continually diffuse the colors of a base
pattern, revealing the variation of data values in the initial field, with preselected colors representing
different degrees of uncertainty. By controlling the diffusion strength via the degree of derivative
uncertainty, a clear differentiation between geometric features of high and low stability is obtained.
For the latter, a special family of circular glyphs is proposed, where a glyph’s pattern and color
convey the spread in direction and the uncertainty degree, respectively.

In summary, the main contributions of the presented concepts are:
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• A derivation of uncertainty parameters such as mean and covariance for gradients in uncertain
scalar fields given on discrete grid structures.

• Analytic expressions of the confidence intervals quantifying the variation of the gradients’
magnitude and orientation in uncertain scalar fields.

• A visualization technique using color diffusion to indicate the stability of the slope along the
gradient direction in 2D scalar fields.

• A family of patterned and colored glyphs to quantitatively depict the uncertainty in the
orientation of iso-contours in 2D scalar fields.

To validate the proposed techniques, they are applied to visualize the gradient uncertainty in
a number of data sets. A synthetic data set is used to illustrate how the approaches convey
additional information that cannot be obtained from the mean and standard deviation values
alone. Furthermore, by using several real-world data sets, the strength of the presented approaches
to analyze important geometric features with respect to their possible changes due to uncertainty
is confirmed.

5.3.1 Related Work

Several visualization techniques have been developed to represent uncertainty in magnitude and
orientation of the individual vectors in vector fields generally. Different glyph techniques are pre-
sented in [WPL96], where the authors experiment with various arrow glyphs that use the width
of the arrow head to indicate uni-modal angular uncertainty and additional arrow heads for the
range of possible magnitudes. Rectangular glyphs, together with additional less emphasized lines
to encode the uncertainty, are used for bidirectional vector fields in [ZDG∗08].

In the tractography domain, [Jon03] introduces a so-called “cone of uncertainty” 3D glyphs to
visualize the orientation and corresponding uncertainty of brain fibers. The directional information
is approximated by the principal eigenvector of the diffusion tensor, while the associated uncertainty
is estimated via bootstrap methods. [SJK04] combines patterns with glyphs to map an anisotropic
reaction-diffusion model to vector magnitude and orientation, by producing spot patterns of various
shapes, sizes, orientations, and densities, where uncertainty in orientation can be qualitatively
incorporated in the amount of anisotropy that gives the shape of the spot.

[BWE05] uses cross-advection and error diffusion in a texture-based flow visualization, where uncer-
tainty in flow direction arising during data acquisition is revealed by changing the spatial frequency
orthogonal to the flow direction. Distributions of directions are used in [XLS10] to quantitatively
measure the information content in the input flow field and then generate streamlines that appro-
priately represent the vector field. Uncertainty is modeled here by a random variable having the
directions of all vectors in the flow field as components.
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A modified LIC approach is presented in [OB09], to convey uncertainty in 2D steady flow fields.
Here, the magnitude and direction of vector fields are taken to be described by presumably exis-
tent probability density functions. Probabilistic numerical integration in uncertain vector fields is
also performed in [OGHT10, OGT11b], where the vector fields are assumed to be Gaussian dis-
tributed. The normal distribution supposition, however, does not extend to the vector magnitude
and orientation, and no distinction is made between the two quantities. The methods are extended
to detect closed orbits in 2D uncertain vector fields in [OGT11a]. Then, in [OT12], the authors
introduce an approach for vortex structures in Gaussian distributed vector fields. The method uses
derived uncertain vector fields, but the derivations lead to product distributions that are no longer
Gaussian and for which there are typically no closed-form solutions.

In [PPH12], the local distribution functions of uncertain vector quantities are computed via Monte
Carlo sampling, the stochastic properties being derived from a set of realizations of the uncertain
vector data via a computationally expensive process. These methods differ from the presented
approach, in that it analyzes the local variations of vectors via an analytical mathematical derivation
of the probability density functions and distinguish between vector magnitude and orientation.

5.3.2 Gradient Uncertainty

This section introduces the mathematical foundations necessary to define gradients in uncertain
scalar fields, along with their statistical parameters that are required to model the associated
uncertainties in magnitude and orientation.

In the following, a discrete sampling of a 2D domain on a Cartesian grid structure is assumed with
grid points Sm,n = {xi,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n}. The data uncertainty is modeled by a multi-
variate random variable Y, i.e., a random vector with scalar-valued components Y (xi,j), based
on a linearized order of the elements in Sm,n. It is not assumed that the random variables follow
any particular distribution, but only that the mean values µ(Y (xi,j)), the standard deviations
σ(Y (xi,j)), and the correlation values ρ(Y (xi,j), Y (xk,l)) between any pair of random variables
can be computed. For example, if the underlying data uncertainty is represented by an ensemble
of scalar data values at all spatial points in Sm,n, the mean values, standard deviations, and
correlations can be derived using standard statistical estimators (cf. [Fel08]).

Uncertainty Parameters

In an uncertain scalar field, the variation of the scalar values causes a probability distribution of the
gradient. The confidence intervals for the gradient uncertainty are derived by first approximating
the gradients from the given random variables via a linear operator, and then using this operator to
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approximate the uncertainty parameters, i.e., the means and covariance matrices of the gradients,
from the uncertainty parameters of the random variables.

The gradient at a particular point xi,j can be approximated via central differences (one-sided
differences at the domain boundaries) on the random variables as

∇Y (xi,j) = As(xi,j). (5.30)

Here, the 4-element stencil s contains the random variables

s(xi,j) = [Y (xi+1,j), Y (xi−1,j), Y (xi,j+1), Y (xi,j−1)]>, (5.31)

and the 2× 4 matrix A contains the inverse point distances

A1,1 = ‖xi+1,j − xi−1,j‖−1 ,A1,2 = −A1,1,

A1,3 = A1,4 = A2,1 = A2,2 = 0,

A2,3 = ‖xi,j+1 − xi,j−1‖−1 ,A2,4 = −A2,3.

The stencil s(xi,j) forms a 4-component subset of the multi-variate random variable Y. In order
to quantify the gradient’s variation, the mean gradient µ∇ and the covariance matrix Σ∇ of ∇Y
are computed. From Equ. (5.30), these quantities relate to the mean and covariance values of the
random variables via

µ∇(xi,j) = Aµs(xi,j), (5.32)

Σ∇ = AΣsA>, (5.33)

where the k-th component of µs(xi,j) contains the mean of the k-th component of s(xi,j), i.e.,
(µs(xi,j))k = µ(s(xi,j)k), and the components of the covariance matrix Σs of the random stencil
vector are (Σs(xi,j))m,n = σ(s(xi,j)m)σ(s(xi,j)n)ρ(s(xi,j)m, s(xi,j)n). The derivation of Equ. (5.32)
and (5.33) follows the standard linear transformation rule for mean vectors and covariance matrices.
For further details, the reader is referred to, e.g., [Fel08].

The derivation of the gradient mean vector and the covariance is also possible for irregular grid
structures. An irregular grid structure Im = {xi : 1 ≤ i ≤ m} is assumed, where each grid point
is connected to a set of neighboring grid points N(xi) via edges. The data uncertainty at every
point is modeled in exactly the same way as described for the regular case. For a given point xi,
the derivatives along the edges in the random field are approximated by one-sided differences, and
they can also be expressed by the projection of the (unknown) gradient at xi onto the edges

∇Y (xi)>
xj − xi
‖xj − xi‖

= Y (xj)− Y (xi)
‖xj − xi‖

, xj ∈ N(xi). (5.34)
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For a vertex with n neighbors this can be written as a linear system

R∇Y (xi) = b, (5.35)

R = [r1|r2|...|rn]> , rj = xj − xi
‖xj − xi‖

, (5.36)

bj = Y (xj)− Y (xi)
‖xj − xi‖

. (5.37)

Because in a d-dimensional grid the gradient has d components, d neighbors are required to solve
for the gradient. However, as in a d-dimensional grid, every grid point has typically more than d
neighbors, so that the system is over-determined, i.e., it is not guaranteed that a gradient exists
that solves the equations for all neighbors. Thus, the system is solved using the least squares
approach and the respective normal equation

R>R∇Y (xi) = R>b, (5.38)

∇Y (xi) =
(
R>R

)−1
R>b = Ãb. (5.39)

As the random variables at the grid points appear linearly in b, and Ã is a linear operator, the
mean vector and the covariance matrix for ∇Y (xi) can be obtained in more or less the same way
as described in Equ. (5.32) and (5.33).

Since the statistical parameters describing the gradient’s variation indicate the spread in both
magnitude and orientation, in the following, these two properties are separated, and then, analytic
expressions of the confidence intervals for each of them are derived. These intervals are then used
to visualize the gradient uncertainty.

Uncertainty in Derivative

Because the derivative at a spatial point xi,j in a 2D scalar field is dependent on direction, first, a
suitable direction v(xi,j) has to be selected into which to estimate the uncertainty of the derivative.
Since the following approaches concentrate on the uncertainty analysis of features in the mean
data set, without loss of generality, the mean gradient direction v(xi,j) = µ∇(xi,j)

‖µ∇(xi,j)‖ is chosen.
This choice is particularly beneficial for the cases where the data uncertainty can be modeled via
multi-variate distributions for which the derivative is most likely maximum in the mean gradient
direction, such as Gaussian distributions. For arbitrary distributions, however, other directions
might better serve the purpose of uncertainty analysis. For instance, if a multi-modal distribution
of the gradient direction can be assumed, the preferential directions are those corresponding to the
observed peaks.
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The uncertainty of the derivative in the mean gradient direction can itself be modeled by a scalar
random variable, by projecting ∇Y (xi,j) onto the mean gradient direction

D(xi,j) := v(xi,j)>∇Y (xi,j). (5.40)

D(xi,j) describes the random variation of the directional derivative along the mean gradient direc-
tion. Because D is obtained by applying a linear operator to ∇Y , the mean and standard deviation
of D are given by

µD(xi,j) = v(xi,j)>µ∇(xi,j) = ‖µ∇(xi,j)‖ , (5.41)

σD(xi,j) =
√

v(xi,j)>Σ∇v(xi,j). (5.42)

Thus, the mean derivative in the mean gradient direction is the magnitude of the mean gradient.
The standard deviation indicates the variability of the derivative and serves as an uncertainty in-
dicator. This uncertainty is subsequently called the derivative uncertainty. The confidence interval
of the derivative uncertainty is defined as [µD − σD, µD + σD].

Uncertainty in Orientation

In the following, confidence intervals for the uncertainty in gradient orientation are derived, i.e.,
intervals describing the spread of the angular variation around the mean gradient direction. The
goal is to project the gradient uncertainty — given by the covariance matrix Σ∇ — onto the unit
circle, in order to obtain an angular standard deviation θσ around the angle θ∇ between the mean
gradient direction µ∇ and the x-axis. This is illustrated in Fig. 5.24, where Σ∇ is represented by
the corresponding covariance ellipse.

To project the gradient uncertainty onto the unit circle, the covariance information is transformed
to polar coordinates, and then the gradient magnitude is separated from the gradient direction.
However, unlike the projection in Equ. 5.41, this transformation is not linear and, thus, no closed-
form formulae can be derived. This problem is approached by employing an auxiliary 2D probability
density function parameterized by the given gradient mean µ∇ and covariance matrix Σ∇. This
function can then be transformed to polar coordinates. In polar coordinates, the gradient magnitude
can be separated from the orientation, so that the marginal probability of the angular variations
around the mean vector can be computed by integrating over the magnitude, and then used to
derive confidence intervals.

A Gaussian distribution is chosen as probability density function, because it can be easily pa-
rameterized by µ∇ and Σ∇ to yield a 2D random variable with exactly the prescribed stochastic
properties. Furthermore, it is integrable and can be transformed to polar coordinates analytically.
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Figure 5.24: Red: Mean gradient µ∇ and angle θ∇ it takes with the x-axis. Blue: Covariance
ellipse and standard deviation of derivative along the mean gradient direction. Green:
Angular confidence interval given by the two equal angles θσ. Probability density p↔
of the gradient orientation in the first quadrant mapped to opacity (dark blue).

Notably, the selected density function only serves the purpose of transferring the covariance ellipse
characterizing the gradient uncertainty to the unit circle, and bears no relevance to the actual
probability distribution of the gradient. Since confidence intervals are computed instead of prob-
ability density functions for the gradient orientation, any other distribution characterized by the
gradient mean µ∇ and covariance matrix Σ∇ could have been assumed. Nonetheless, the Gaussian
distribution has been chosen due to the mentioned benefits.

For a given vector g, the bi-variate probability density function of ∇Y is defined as

p∇(g) = 1
2π
√

det Σ∇
exp (−0.5(g− µ∇)>Σ−1

∇ (g− µ∇)), (5.43)

the equation representing both the uncertainty in direction and the derivative uncertainty. To
isolate the uncertainty in direction, a coordinate transformation from Cartesian to polar coordinates
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is performed:

p∇(θ, r) = r exp (E(θ, r))
2π
√

det Σ∇
, θ ∈ [0, 2π], r ∈ [0,∞[, (5.44)

E(θ, r) =
(
−1

2h(θ, r)>Σ−1
∇ h(θ, r)

)
,

h(θ, r) = r

(
cos θ
sin θ

)
− µ∇.

For every angle θ, a probability density value can be obtained by integrating the bi-variate gradient
distribution over all possible magnitudes, i.e., by evaluating the θ-marginal

pθ∇(θ) =
∫ ∞

0
p∇(θ, r) dr, θ ∈ [0, 2π]. (5.45)

To derive the formula for the distribution of the gradient direction, first, the θ-marginal is expressed
by the integral of the product of a first order polynomial with an arbitrary Gaussian function

pθ∇(θ) = C

∫ ∞
0
r exp

(
−(ar2 + 2br + c)

)
dr, (5.46)

with variables

C = 1
2π
√

det Σ∇
, a = H(cos θ, sin θ), b = t

√
a, and c = H(µ∇x, µ∇y), (5.47)

and the auxiliary terms

H(x, y) = 1
2(1− ρ2

∇)

(
x2

σ2
∇x

+ y2

σ2
∇y
− 2ρ xy

σ∇xσ∇y

)
, (5.48)

t =
−µ∇xσ2

∇y cos θ − µ∇yσ2
∇x sin θ

2 det Σ∇
√
H(cos θ, sin θ)

(5.49)

+ ρ∇σ∇xσ∇y(µ∇x sin θ + µ∇y cos θ)
2 det Σ∇

√
H(cos θ, sin θ)

. (5.50)

It follows that

pθ∇(θ) = C

∫ ∞
0
r exp

(
−(ar2 + 2br + c)

)
dr = (5.51)

= C exp
(
b2

a
− c
)∫ ∞

0
r exp

(
−
(√

ar + b√
a

)2)
dr, (5.52)
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where the change of variables
√
ar + b/

√
a = u gives

pθ∇(θ) = C

a
exp

(
b2

a
− c
)∫ ∞

b√
a

(
u− b√

a

)
exp (−u2) du = (5.53)

= C

2a exp
(
b2

a
− c
)(

exp
(
−b

2

a

)
− 2b√

a

∫ ∞
b√
a

exp (−u2) du
)

= (5.54)

= C exp (−c)
2a

(
1−
√
π
b√
a

exp
(
b2

a

)(
1− erf

(
b√
a

)))
. (5.55)

This can then be re-written to yield

pθ∇(θ) = exp (−H(µ∇x, µ∇y))
(
1−
√
π t exp (t2) (1− erf(t))

)
4π
√

det Σ∇H(cos θ, sin θ)
, (5.56)

with the auxiliary terms

H(x, y) = 1
2(1− ρ2

∇)

(
x2

σ2
∇x

+ y2

σ2
∇y
− 2ρ xy

σ∇xσ∇y

)
, (5.57)

t =
−µ∇xσ2

∇y cos θ − µ∇yσ2
∇x sin θ

2 det Σ∇
√
H(cos θ, sin θ)

(5.58)

+ ρ∇σ∇xσ∇y(µ∇x sin θ + µ∇y cos θ)
2 det Σ∇

√
H(cos θ, sin θ)

.

Here, µ∇x and µ∇y are the components of the mean gradient vector µ∇, σ∇x and σ∇y are the
standard deviations of the gradient components (square roots of the diagonal entries of Σ∇), and
ρ∇ = Σ∇xy/(σ∇xσ∇y) is the corresponding correlation value. These values can be computed at
every grid point (cf. Equ. (5.32) and (5.33)).

Equ. (5.56) expresses the probability density function of the gradient direction. But, since one is
interested in using the probability density for assessing the stability of the orientation of geometric
structures in the data, e.g., the orientation of an iso-contour at a certain location, the probability
of occurrence of angle θ should include the probability of occurrence of θ+π. Thus, the probability
density function of the gradient orientation is used instead of the gradient direction, and the
respective interval of length 2π, centered at the mean gradient direction θ∇ is considered. The
probability density function

p↔(θ) = pθ∇(θ) + pθ∇(θ + π), θ ∈ [θ∇ − π/2, θ∇ + π/2], (5.59)

serves this purpose, because it adds the two probability densities of the positive and negative
gradient direction around the mean direction.

The one-dimensional continuous probability density function p↔(θ) can now be parameterized by
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mean θ∇ and standard deviation θσ, where θσ is computed as

θσ =
√∫ θ∇+π/2

θ∇−π/2
(θ − θ∇)2p↔(θ) dθ. (5.60)

The standard deviation is used to define the symmetric confidence interval for the orientation
uncertainty, centered at the gradient mean direction and with an arc length equal to twice the
standard deviation (cf. also Fig. 5.24, where, unlike the probability density, the derived confidence
interval is symmetric around the mean).

For a low orientation uncertainty of the gradient, θσ approaches zero. The angular standard devia-
tion reaches its maximum at θσ = π/2. For a high orientation uncertainty, however, the distribution
p↔ tends to become uniform and the normalized standard deviation θNσ := 2

πθσ approaches the
standard deviation of the uniform distribution, σu = 1/(

√
3) ≈ 0.58, values higher than σu be-

ing possible only for multi-modal probability density functions of the gradient orientation. The
parameter θNσ acts as a normalized symmetric indicator of the spread in gradient orientation.

5.3.3 Visualization of Derivative Uncertainty

The goal is to provide a visualization that allows to analyze simultaneously the shape of iso-
contours in the mean values (which gives important contextual information regarding the gradient
orientation), the mean gradient magnitude µD, and the absolute derivative uncertainty σD at every
point in the domain. In addition, a visualization is presented, showing the significance of the
absolute uncertainty, which is indicated by the relative width of a confidence interval with respect
to the mean value. Only by analyzing this relative uncertainty, can the stability of the slope along
the gradient direction be revealed. For instance, if µD − σD is close to zero or negative, a gradient
is likely to disappear or even to invert.

To allow classifying points according to the relative uncertainty, the measure

ε(xi,j) := 1− µD(xi,j)
µD(xi,j) + σD(xi,j)

∈ [0, 1] (5.61)

is defined for this uncertainty. For the special case µD(xi,j) = σD(xi,j) = 0, ε(xi,j) = 1 is set.
Values of the relative uncertainty approach 0.5 wherever the absolute uncertainty becomes equal
to the mean gradient magnitude, and range within [0.5, 1] for the critical case σD > µD.

To convey the basic shapes of the iso-contours in the mean scalar field, as well as the spatial
differences in the mean derivative, patterns are used that are oriented according to the iso-contours
and vary with a frequency indicating the derivative strength. First, the range of mean values is
partitioned into a number of N equally spaced intervals, every interval having a width of (µmax −
µmin)/N , where µmin and µmax are the smallest and largest mean value, respectively. Then, each
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Figure 5.25: (a) The data range of the scalar field is partitioned into equally-spaced intervals,
colored in black and white. The thickness of the resulting bands corresponds to the
local gradient magnitude. The blue normal curve is everywhere tangential to the
gradient field. (b) The gradient magnitude for the same 2D scalar field is now also
encoded into color diffusion (high and low diffusion in regions with low and high
gradient magnitudes, red and blue diffuse into the black and white bands, respectively).

interval is assigned either 0 or 1, in alternating order. The mapping of the data value at a grid
point xi,j is performed via

κ(xi,j) :=
⌊

µ(xi,j)N
µmax − µmin

⌋
mod 2, (5.62)

where µ(xi,j) is the mean value at the point. Fig. 5.25 (a) illustrates a mapping of the κ values
to black and white. In regions where the derivative in mean gradient direction is low, the white
and black bands are stretched, narrowing with increasing derivative. The principal shape of the
iso-contours reflects in the shape of the bands. The resulting image is called the contour map.

It is clear that the shape of the iso-contours and the gradient magnitudes can also be visualized
directly by color-coding the initial mean data values. However, by using the proposed banding
structure, the use of colors can be left for the visualization of the derivative uncertainty. Further-
more, the transition regions between the different bands provide an additional visual clue that can
be used effectively to encode the uncertainty.
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Absolute Uncertainty

To visually encode the confidence intervals [µD −σD, µD +σD], a diffusion-like process is proposed
that transports a diffusion color across the bands, and blends this color with the color of the bands.
The initial color of the bands is called the background color. For the sake of clarity, for now it is
assume that a band’s background color is either black or white, and that the same diffusion color
is used for all bands with the same background color. Different diffusion colors are used for the
black and white bands. The diffusion is simulated in such a way that the diffusion color is injected
at a band’s boundary and transported into its interior. Thus, over time a band’s background color
mixes increasingly more with the diffusion color, taking on this color in the limit.

The confidence interval at every domain point is encoded by mapping the interval’s width to the
diffusion time, which results in a spatially varying diffusion strength. To illustrate this effect and
to exemplify the dependency of the diffusion strength from the encoded values, in Fig. 5.25 (b)
the gradient magnitude — also shown in the underlying contour map — is mapped to the diffusion
time. The diffusion color was set to red and blue, respectively, for bands having black and white
background colors. Later in this section, it will be shown how this technique can be extended to
also encode the relative uncertainty, i.e., the spatial differences in the significance of uncertainty,
by making the background and diffusion colors dependent on the relative uncertainty.

At each spatial point, a color diffusion is simulated that takes place along the normal curve, i.e.,
the curve passing through the point and oriented along the gradient direction. A normal curve
crosses the boundary between two bands orthogonally (cf. blue curve in Fig. 5.25 (a)).

The diffusion process changes the color at a point from its initial background color to a mixture of
the background and the diffusion color. The diffusion value, i.e., the mixing ratio of the two colors,
is determined by simulating how much of the diffusion color has been transferred to the point along
the normal curve, starting at the boundary of the band containing the point. The time over which
the diffusion is simulated is made dependent on the absolute derivative uncertainty, resulting in
stronger diffusion in more uncertain regions. The diffusion value ranges from 0 (full diffusion and
dominating diffusion color) to 1 (no diffusion and dominating background color).

The color c(xi,j) at a point is determined by first computing the diffusion value d(xi,j) at the point,
and then using this value for blending the diffusion color cd with the background color cb:

c(xi,j) = (1− d(xi,j))cd(xi,j) + d(xi,j)cb(xi,j). (5.63)

Instead of simulating a physical diffusion process at run-time, a 2D diffusion texture T is pre-
computed, and the actual diffusion value is looked up at a point and for a certain diffusion degree
in this texture. The texture T is parameterized over the relative position u of a point between the
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two boundary lines of the band containing this point (from 0 to 1), and the degree of diffusion v
(from 0 to 1).

T is obtained in two steps: First, an intermediate 2D texture τ is created, parameterized over the
diffusion time vτ from 0 to a selected maximum vτmax , and over the relative point position (uτ = u).
The values of τ at the texture coordinates (uτ , vτ ) are computed by solving the following classical
1D heat equation with given boundary values and initial conditions

∂τ

∂vτ
(uτ , vτ ) = ∂2τ

∂u2
τ

(uτ , vτ ), uτ ∈ [0, 1], vτ ∈ [0, vτmax ], (5.64)

τ(0, vτ ) = τ(1, vτ ) = 0, vτ ∈ [0, vτmax ], (5.65)

τ(uτ , 0) = 1, uτ ∈]0, 1[. (5.66)

The heat equation models the diffusion in the 1D domain uτ ∈ [0, 1] over the diffusion time vτ .
The initial condition in Equ. (5.66) models the situation where no diffusion takes place and only
the background color is visible. The boundary condition in Equ. (5.65) enforces the diffusion from
both boundaries of a band towards its interior.

The heat equation can be solved using a Fourier approach, giving the solution

τ(uτ , vτ ) =
∞∑
k=1

2
kπ

(1− cos(kπ)) sin(kπuτ ) exp(−k2π2vτ ). (5.67)

These are the diffusion values stored in T . Since the summands become ever smaller for increasing
k, the summation can be terminated after a sufficiently large number of terms have been added.
In practice, the number of summands for an error below, e.g., single precision, is dependent on the
resolution of the texture T .

The next step performs a parameter transformation, so that the v texture coordinates are ∈ [0, 1]
instead of ∈ [0, vτ max]. This is achieved via the mapping

λ(vτ ) =
∫ 1

0
τ(uτ , vτ ) duτ , (5.68)

which is strictly monotonic from 1 to 0 for vτ ∈ [0, vτ max]. Because one needs to map from
v ∈ [0, 1] to vτ ∈ [0, vτ max], the inverse function λ−1 is needed. While this does not have a closed
form, it can be obtained using a back-mapping strategy between the domain [0, vτ max] and its
image λ([0, vτ max]). The values in the diffusion texture T (see Fig. 5.26) are then computed as

T (u, v) = τ(u, λ−1(v)), u ∈ [0, 1], v ∈ [0, 1]. (5.69)

To finally make the texture coordinate u depend on the relative position of a point between the
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Figure 5.26: The diffusion texture T . Diffusion values from 0 to 1 are mapped to a grayscale
color map. The x-axis represents the relative position u of a point between two band
boundaries. The y-axis represents the degree of diffusion v.

band boundaries, and v on the absolute derivative uncertainty, the following linear mappings to
[0, 1] are performed:

u(xi,j) = µ(xi,j)N
µmax − µmin

−
⌊

µ(xi,j)N
µmax − µmin

⌋
, (5.70)

v(xi,j) = σD(xi,j)
σmax
D

. (5.71)

The color at a point xi,j is then computed by using T (u, v) as the diffusion value d(xi,j) in Equ.
(5.63).

Relative Uncertainty

The following paragraphs introduce the use of different background and diffusion colors to simul-
taneously encode the absolute and relative derivative uncertainty into the contour map. Therefore,
a color map is selected to encode ε ∈ [0, 1] (cf. Equ. (5.61)) into colors cr. Even though this
color map can be arbitrary in general, it must adhere to some requirements in the current scenario:
Firstly, different hues are expected to allow separating different “key-regions”, such as the regions
around 0, 0.5, and 1, as well as the regions in between. Thus, one seeks for a color map with
at least three major identifiable key colors. A two-color or gray-scale color table cannot achieve
this with an acceptable color contrast. Secondly, the color map must contain only colors with
maximum saturation and intensity, and it should not contain white or black. This is because the
absolute uncertainty is encoded into the saturation/intensity of colors in HSV color space, similar
to [Hen03], which is performed by blending ε (encoded into hue) with either black or white in
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Figure 5.27: 25 cutouts of two neighboring contour bands are illustrate for different combination of
absolute (vertical axis) and relative (horizontal axis) derivative uncertainty values.

the diffusion process. Consequently, color maps which let the color go over white or black (e.g.,
[Mor09, BPC∗10, KVUS∗05]) cannot be used, because they cannot always distinguish between the
absolute and relative uncertainty.

In this work, the rainbow color map [blue→ cyan→ green→ yellow→ red] (cf. Fig. 5.27 color map
in uppermost row) is utilized as an example for encoding the relative uncertainty, though this may
not be an optimal design. The hue range is used from blue to red over green (instead of magenta),
to increase the color contrast and allow a better visual differentiation of the key-regions.

In the presented model, different background and diffusion colors are used for the black and white
bands in Fig. 5.25 (a). The RGB background colors for the bands in Equ. (5.63), initially white
and black, respectively, is set to c1

b = (1, 1, 1) and c2
b = cr. The diffusion colors are set to c1

d = cr

and c2
d = (0, 0, 0), respectively. Consequently, in regions where the absolute uncertainty is low,

only the background colors are visible, color-coding the strength of the relative uncertainty. With
increasing absolute uncertainty, black diffuses into the colored bands and cr diffuses into the white
bands. Where the absolute uncertainty is high, the white bands are completely covered by cr and
the other bands are covered by black.

Fig. 5.27 illustrates the proposed diffusion scheme through 25 cutouts of two neighboring contour
bands for different combinations of absolute and relative uncertainty values. The horizontal axis
represents relative uncertainty values ε ∈ [0, 1], mapped to the chosen rainbow color map. Along
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Figure 5.28: Visualization of the uncertainty in gradient derivative in an ensemble data set com-
prising four regions with different means, absolute, and relative uncertainties.

the vertical axis, the normalized absolute uncertainty value (cf. Equ. (5.71)) increases linearly
from zero to one. For each combination, the respective color diffusion in two neighboring bands is
shown. It can be noticed that combining the diffusion scheme and the color mapping allows the
simultaneous visualization of both uncertainty entities. Furthermore, due to the cross-over diffusion,
the relative uncertainty color is visible independently of the degree of absolute uncertainty.

In Fig. 5.28, the proposed diffusion scheme was applied to an ensemble data set comprising four
well-separated regions with different absolute and relative uncertainties in gradient magnitude. A
more detailed description of the process used to generate this data is given at the beginning of the
results section.

As indicated by the underlying contour maps, the mean values in all four regions show a radially
symmetric change in value with different slopes towards the center of the respective 2D sub-domain.
In the upper examples, almost no diffusion takes place and only white and colored bands are visible.
This indicates low absolute derivative uncertainty. In the lower examples, the colored and white
bands turn into black and color, respectively, due to significant diffusion. Here, the gradients are
affected by strong absolute uncertainty. In the upper left example, the blue color indicates very low
relative uncertainty. The cyan color in the upper right example indicates a ratio of approximately
3 : 1 between the mean derivative magnitude µD and the derivative uncertainty. In the lower left
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Figure 5.29: (a) 2D domain for Gaussian probability density of a vector quantity is shown. The
red arrow and green covariance ellipse indicate the mean vector and confidence region,
respectively. The gradient direction probability pθ∇(θ) for an angle θ is obtained by
integrating the 2D probability density function along the blue line from 0 to ∞. (b)
Triangle-based glyph representation is shown. Each off-center vertex at angle θi is
assigned a transparency according to the probability density function p↔ of the angular
orientation. The color is constant for all vertices and determined by the standard
deviation of p↔.

example, the green color (ε ≈ 0.5) shows that σD is as large as µD. Therefore, the strong mean
derivative indicated by the band structure is highly uncertain. The orange color in the lower right
example represents a ratio of approximately 1 : 7 between µD and σD.

5.3.4 Visualization of Orientation Uncertainty

To visualize the uncertainty in orientation, the standard deviation θσ (cf. Equ. (5.60)) around
the mean gradient direction θ∇ is encoded into a circular glyph representation. Each glyph is
represented by a triangle fan, comprising a number of equally-sized triangles that are arranged
around the glyph center-point (cf. Fig. 5.29). The gradient uncertainty parameters µ∇ and Σ∇,
which are assumed to be constant for the entire glyph, are computed at the data point at which
the glyph is centered. For each triangle, color and transparency values are assigned to the two off-
center vertices, while the center vertex is assigned the mean color and transparency of these vertices.
Starting with θ0 = 0 at the east vertex, each off-center vertex i is assigned an angle θi = 2π(i/N)
in counterclockwise order, where N is the number of off-center vertices. This ordering is illustrated
in Fig. 5.29 (b).

All vertices of a glyph have the same color, which encodes the degree of uncertainty. The color
of a glyph is obtained by mapping the normalized standard deviation at the glyph center point,
θNσ = 2θσ/π, to color, via a pre-defined color map, as shown in Fig. 5.30. The color of the glyphs
goes from green over blue to magenta, as the uncertainty in the gradient orientation varies from low
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Figure 5.30: Color map for normalized orientation standard deviation θNσ .

to high. The highest uncertainty, corresponding to a continuous uniform orientation probability
density, has a normalized standard deviation of 0.58. Normalized standard deviations higher than
0.58 occur for multi-modal probability densities, the color of such glyphs tending to red.

To allow the user to distinguish between points at which the orientation distribution is more or
less uniform, the transparency of the glyphs is modified accordingly. Thus, the transparency value
for each off-center vertex is either one or close to zero, depending on whether the angle of the
vertex falls within the angular confidence interval around the mean angle θ∇ or not. The opacity
for points outside the angular confidence interval is set to a value slightly higher than zero, so that
the individual glyphs are well-separated.

For the particular case of a Gaussian distribution of the scalar fields, where the gradients are also
Gaussian distributed, the visualization method also includes the orientation probability density
(cf. Equ. (5.59)) for the transparency, the color of the glyph remaining unchanged. An orientation
probability density value is computed at every off-center vertex by evaluating Equ. (5.59) at the
assigned θi for θ∇− π/2 ≤ θi ≤ θ∇+ π/2 and, for angles θi outside this range, at those angles that
lie within the range and make an angle of π with the vertices θi. To show the individual distribu-
tions per glyph, the transparency of a vertex can be set directly to its corresponding orientation
probability density value, normalized by the mode of the local probability density:

α(θ) = p↔(θ)
maxθ∈[θ∇−π/2,θ∇+π/2] p↔(θ) . (5.72)

The latter assignment of probability density values to transparency is more revealing than the
general one of confidence intervals. As illustrated in Fig. 5.31, however, the difference is typi-
cally insignificant, except in the case of (almost) uniform distributions: While glyphs having the
transparency display orientation probability density values become fully opaque, this does not hold
true for glyphs where the transparency shows confidence intervals. In the latter case, uni-modal
distributions cannot have a standard deviation greater than 0.58 — the standard deviation for
uniform distributions, corresponding to maximum uncertainty, which means that only about 60%
of the glyph is opaque, due to the confidence interval. Asymmetries around the mean value are also
not shown by the confidence intervals technique. However, the latter method does emphasize the
multi-modal distributions better, as such glyphs stand out as always colored within the magenta-
red range, irrespective of how narrow or large the spreads around their modes are. Nevertheless,
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Figure 5.31: 2D gradient distributions and corresponding circular glyphs. A black line within the
glyph encodes the mean gradient orientation, while lines around the mean gradient
orientation, in the same color as the glyphs, but brighter, show the angular confi-
dence intervals. (a) High gradient magnitude and low orientation uncertainty. (b)
Multi-modal probability distribution. Two orientations are equally likely, the mean
orientation is very unlikely and therefore unstable. (c) Asymmetric spread of the ori-
entation. (d) Almost zero mean gradient, but strong likelihood of a vertical gradient
orientation.

both glyph representation methods benefit similarly of varying transparencies, which causes a clear
color contrast between orientations with high and low likelihoods. Note that the confidence inter-
vals representation cannot be applied as is when the mean gradient is zero, because there is no
specific direction defined around which to compute the confidence interval. This case is nonetheless
infrequent, especially since glyphs are placed at discrete locations.

Fig. 5.31 shows four examples of bi-variate gradient distributions and the corresponding uncertainty
glyphs. The mean gradient µ∇ is shown as a red vector, the green ellipse, related to Σ∇, indicates
the 2D confidence area around the mean vector, and the black line within the glyph represents
the mean orientation of the vector. The glyphs are colored according to the color map for the
confidence intervals, while the transparency is set to the probability density function of the gradient
orientation. Confidence intervals are shown by the thick lines around the mean orientations and
have the same color as the glyphs, but brighter.

In (a), the orientation uncertainty is low, because the gradient variation mainly alters the magni-
tude. In (b), there is a significant uncertainty in orientation. The color and transparency mapping
further indicate a multi-modal orientation distribution, i.e., two significant different orientations
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are equally likely. Note that the orientation of the mean vector has a low likelihood and is, there-
fore, unstable. The multi-modality cannot be shown just via the transparency for the confidence
intervals. In (c), the zero correlation between the gradient’s components in (a) and (b) was changed
to a negative value. This resulted in an asymmetric orientation distribution with respect to the
mean vector, which is also not displayed by the confidence intervals. In (d), the mean gradient is on
the x-axis, close to the zero vector. Although the glyph indicates a strong uncertainty, it becomes
apparent that the gradient is most likely directed vertically. The confidence intervals, however, are
drawn around the horizontal mean gradient orientation and miss thus the likely vertical orientation
of the gradient. It becomes apparent that, while confidence intervals do not correspond entirely to
the orientation probability density functions, they nonetheless give a good approximation of the
orientation variability of the gradient in most cases.

Because the user is interested in the orientation stability of the gradients, the mean data set is
displayed as a contour representation. A user-specified number of iso-lines is displayed for iso-
values equidistantly positioned within the data range.

A glyph-based visualization, such as the one in Fig. 5.34 (b), facilitates a rapid understanding of
the way uncertainty affects the orientation of the gradients, especially in the regions with lower
uncertainty, where the glyphs become less opaque and the geometry of the iso-contours can be
visualized concurrently with its uncertainty. This happens irrespective of the placement of the
glyphs, because the pattern of the glyphs is typically orthogonal to the iso-contours of the scalar
field, making the contours clearly discernible. An alternative would be to consider the orientation
uncertainty of the tangent line, rather than that of the gradient, but this would not only produce
no new information, it would also lower the contrast in coverage of the iso-contours between low
and high uncertainty regions.

5.3.5 Results and Discussion

First, the proposed techniques are applied to a synthetic 2D scalar ensemble, which was designed
specifically to demonstrate the additional insights these techniques can provide (cf. Fig. 5.32). A
2D domain was divided into 2 × 2 quadratic cells, and each cell was triangulated (cf. transparent
grid lines in (a)). Random scalar values at the corner and center vertices were modeled via a
multi-variate Gaussian random variable H. The first component, H1, with mean values µ(H1) = 0,
models cell corners values, while four other components H2, H3, H4, and H5, with means µ(H2) = 1,
µ(H3) = 1, µ(H4) = 0.3, and µ(H5) = 0.3, model the values at the center vertices in the upper and
lower cells, respectively. C1-interpolation was performed between the values at the vertices inside
each cell and triangle. Fig. 5.32 (a) shows the mean data values, linearly mapped to color via
the color map indicated below the images. As shown in (b), all random variables have a constant
standard deviation σ(Hi) = 1. A strongly positive correlation was modeled between the random
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Figure 5.32: (a) Mean values in a synthetic 2D ensemble data set are shown. Data values at ver-
tices of a triangular grid are generated via a multi-variate Gaussian distributed random
variable with components Hi. Barycentric interpolation is used in between. (b) The
standard deviation of each variable is constant over the entire domain, but different
correlations were enforced between the variablesHi. (c) One particular ensemble mem-
ber (realization) shows vastly different data distributions — and gradient variations
thereof — in the four square regions. (d) Color encoding of the absolute derivative
uncertainty—mapped from [0, σmax

D ] to the given color map — in the contour map.

variables H1 and H2, and between H1 and H4. All other pairs are uncorrelated (zero pairwise
correlation). An ensemble of realizations for H was generated at the corner and center vertices via
a multi-variate Gaussian random number generator.

One realization (ensemble member) of H is shown in (c). The strength of the derivative into the
mean gradient direction can vary significantly in the lower cells, due to the smaller correlation
present there. For instance, there is a significant decrease and increase, respectively, in the left and
the right cell. Note that the possible variations of the derivative cannot be observed by looking
only at the data mean values and standard deviations in (a) and (b).

Fig. 5.32 (d) shows the absolute derivative uncertainty σD. The black points in the underlying
contour map were colored based on σD, by mapping the interval [0, σmax

D ] to color via the color map
displayed below the image. Although the visualization helps to differentiate regions with low and
high absolute derivative uncertainty, the significance of this uncertainty with respect to the mean
values cannot be judged. As shown in Fig. 5.28, the presented novel approach can help reveal such
information effectively, by using diffusion and color to encode the absolute and relative uncertainty
in one single representation.

In the next example, the introduced novel techniques are demonstrated in a geophysics ensemble
data set, comprising material variations at a certain depth in the earth’s crust. The data set was
obtained using seismic tomography and contains an ensemble of relative velocity values for shear
waves, originating from earthquake source locations. For details on how the data was acquired
and the information it contains, the reader is referred to [MCD∗12]. Fig. 5.33 (a) and (b) show
the mean value and standard deviation at each point in the covered 2D domain, with values
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Figure 5.33: Mean values (a) and standard deviations (b) in an ensemble of 2D seismic tomography
shear wave velocity variations. Two circular features with very similar occurrences can
be distinguished. Two members (realizations) of the ensemble are shown in (c) and
(d).

mapped linearly from blue (negative) to red (positive). Two important circular features can be
observed in the mean values, but the standard deviations in both regions are almost constant.
An uncertainty analysis using only mean values and standard deviations cannot thus reveal any
significant differences between the two features.

Color diffusion was applied to the data set in Fig. 5.34 (a) to visualize the derivative uncertainty in
the geophysics ensemble data set. The diffusion of black indicates high absolute uncertainty, which
can be perceived especially in region (1). The coloring, however, indicates a high variation of the
derivative in mean gradient direction across the left circular feature: the green color represents a
relative uncertainty of ∼ 0.5 (µD ≈ σD). The derivatives in this region have thus to be assumed
unstable. This conclusion is supported by the visualization of two ensemble members in Fig. 5.33
(c) and (d). The realization in (c) shows strongly positive gradients towards the center in the right
feature, but negative gradients in the left feature, i.e., the slope of the left feature is more or less
inverted. The blue color of the right circular feature in 5.34 (a) indicates a relative uncertainty value
of ε ≈ 0 and, consequently, significantly more stable derivatives towards the feature’s center.

Fig. 5.34 (b), on the other hand, illustrates a quite stable gradient orientation across both circular
features. Thus, even though both features have a circular structure, the gradient magnitude can
only be assumed stable for the right feature. The values in the left circular region may decrease
towards the feature center.

From an application point of view, the visualization helps to identify regions where significant ma-
terial anomalies are present with respect to the surrounding structures. In the presented example,
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Figure 5.34: Visualization of the gradient uncertainty in the ensemble shown in Fig. 5.33. a)
The two circular features can be classified as stable (right feature) and unstable (left
feature) with respect to their derivative uncertainty, i.e., strong relative uncertainty
(green color for µD ≈ σD) in the left region. b) Glyph-based visualization conveys
high stability of the gradient orientation for the left and right features. In contrast,
the small circular feature in the bottom left part is significantly affected by orientation
uncertainty, indicating a very likely change in the orientation of iso-contours passing
through this region.

the data contains relative velocity values for earthquake shear waves, which are characteristic for
certain material structures in the earth’s crust. The user is interested to identify local and global
maxima and minima of the relative velocity values, because they can serve as indicators for material
anomalies (e.g., minerals, sediments, ores, oil, etc.) in the earth. Since seismic tomography data
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sets are always affected by uncertainty, the user is interested in analyzing the respective critical ar-
eas (e.g., maxima, minima, strong gradients, etc.) with respect to their stability. As demonstrated,
the techniques proposed in this work can effectively enable such an analysis.

In a third example, uncertainty visualization is utilized to identify stable features in the mean
values of an ensemble of temperature fields. The ensemble was simulated by the European Center
for Medium-Range Weather Forecast (ECMWF) for two different forecast periods and pressure
levels above Europe. Mean temperature values, as well as standard deviations and correlations,
were computed from the ensemble members.

The mean temperature is shown in Fig. 5.35 (a), with values linearly mapped from blue to red
(cold-to-warm mapping). In (b), the standard deviation is shown in temperature units, linearly
mapped from blue (low) to red (high). The diffusion coloring and the glyph-based visualization of
the orientation uncertainty are shown in (c) and (d).

A first observation is that the strong temperature incline in region (1) appears highly stable. This
is indicated by the high-frequent bluish band structure in (c), i.e., strong gradient magnitude and
ε ≈ 0, as well as by the green glyph pattern in (d). Thus, the temperature difference between the
blue and cyan regions in (a) is well-resolved, affected by a relatively low uncertainty and significantly
different from zero. Interestingly, the standard deviation is relatively strong in this region (cf. (b)).
Consequently, the standard deviation does not necessarily allow drawing any conclusion on the
variability of the derivative strength, which is also affected by correlation effects. By analyzing
in Fig. 5.35 (c) the transition zone between cyan and red, as shown in Fig. 5.35 (a), only the
derivatives in (2) and (4) are observed to be stable. Although region (3) exhibits a similar mean
derivative, the strong presence of green (ε ≈ 0.5) indicates a high probability that the derivative
becomes zero. Reliable assumptions on the temperature difference can only be made for those
regions where strong derivatives are present, i.e., regions (1), (2), and (4).

Uncertainty glyphs colored according to the circular variance are shown in (d). The orientation of
the gradients (and therefore the iso-lines) is stable in regions (1), (2), and (4). Although in region
(3) a similar gradient strength and a clear orientation can be perceived in the mean data (a), the
gradient orientation is affected by higher uncertainty and the structure of the transition zone is not
well-resolved.

The fourth example presents another ECMWF temperature forecast ensemble, which was simulated
over a shorter forecast period and at a different air pressure level. Fig. 5.36 (a) shows the mean
data. The uncertainty visualizations in (c) and (d) reveal a prominent structure in region (1),
which is stable with respect to the derivative strength and gradient orientation, and which cannot
be easily identified using only the mean and standard deviation. Another interesting region is the
transition zone between blue and red in (2), where the standard deviation in (b) shows a significant
uncertainty in the data values. This uncertainty strongly affects the uncertainty in the derivatives,
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Figure 5.35: Mean values (a) and standard deviations (b) of a temperature ensemble forecast. Dif-
fusion coloring is shown in (c). Strong mean gradients with low derivative uncertainty
are identified in regions (1), (2), and (4). Green color reveals a strong relative deriva-
tive uncertainty in (3). The visualization of the uncertainty in gradient orientation
(d) reveals stable orientations of iso-contours in (1), (2), and (4).
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Figure 5.36: Visualizations of mean values (a), standard deviations (b), derivative uncertainty (c),
and orientation uncertainty (d) for an ensemble of temperature forecasts. A promi-
nent structure with strong mean gradients and low uncertainty can be identified, for
example, in (1). In (2), a strong standard deviation and, therefore, uncertainty in
derivative is shown by the green relative uncertainty color in (c). The green narrow
glyphs in (d) indicate, nonetheless, that the derivative uncertainty does not affect the
gradient orientation significantly. The orientation of the iso-lines is stable in (2), while
in (3), (4), and (5), a significant variability in orientation and structure is emphasized.
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the confidence region around the strong mean derivative almost going down to zero and resulting
in a cyan to green color (ε ≈ 0.4). Interestingly, the uncertainty in gradient orientation is nearly
unaffected in region (2). The orientation of the transition zone is, despite the quite high derivative
uncertainty, stable. For the structures in regions (3), (4), and (5), the glyphs indicate a strong
orientation variability. Moreover, the presence of color green indicates a high relative derivative
uncertainty in region (3) (ε ≈ 0.5 and σD ≈ µD).

In particular in the context of weather forecasts, the proposed visualizations can help to identify
regions where significant and stable climate changes are present. The resulting benefits are two-
fold: Firstly, since weather forecast centers usually combine simulation results from different sites
into a single forecast, the presented methods can help determine in which region a particular site is
most reliable. This information can then be used for a region-specific selection of sites. Secondly,
the uncertainty information can be used to re-parameterize a numerical forecast simulation, for
instance, to reduce or even eliminate the observed instabilities in the predicted features. Such
an analysis strives for the use of uncertainty for sensitivity analysis, and, herewith, the tuning of
simulation technologies towards more reliable and stable outputs.

5.3.6 Conclusion

Two methods for illustrating the variability of gradients in 2D uncertain scalar fields were presented:
A color diffusion model for visualizing the absolute and relative derivative uncertainty, and a glyph-
based approach for the uncertainty in gradient orientation. Uncertainty parameters for gradients
in uncertain discrete scalar fields have been derived, and then the mathematical basis has been
introduce to derive confidence intervals for the gradient magnitude and orientation. Throughout
the presented derivations, no assumption has been made on the probability distribution modeling
the underlying uncertainty. The proposed methods allow a quantitative analysis of the gradient
variability, which is required to assess the stability of geometric structures like iso-contours.

One future challenge will be the extension to 3D scalar fields. Although the mathematical foun-
dations are still valid in 3D, the visualization of the resulting intervals is nonetheless difficult,
because the presented approaches cannot be transferred straightforwardly to 3D. For example, the
color diffusion technique cannot be embedded directly into a volume rendering approach, since,
due to blending and occlusions, the band pattern cannot be perceived anymore. The glyph-based
approach for visualizing the orientation uncertainty could introduce several problems in 3D: 3D
glyphs have a spatial extent and occlude each other, limiting the number of glyphs that can be
shown concurrently. This problem could be solved by showing glyphs only at certain spatial re-
gions, but an interactive guidance functionality would then be needed to emphasize the interesting
regions. Furthermore, the entire probability distribution encoded in one glyph cannot be seen from
a specific viewpoint, requiring a view-independent mapping of the entire spherical distribution.
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6
Conclusion and Future Work

This thesis introduced a number of techniques for the visual analysis of the positional and structural
variability of features like iso-contours and iso-surfaces in multi-dimensional uncertain data sets. A
novel approach has been presented for computing reliable probabilities of position and occurrence
for iso-surface crossings in uncertain Gaussian distributed 3D scalar fields. An efficient update-
scheme allows integrating the proposed algorithm into front-to-back ray-casting. Furthermore, it
has been shown how to derive probability distributions for iso-contours in scalar 2D ensemble fields,
and how to visually convey this information to allow an improved uncertainty analysis. Instead
of assuming a parametric Gaussian uncertainty model, non-parametric spatial distributions have
been derived, by computing statistical summaries and generating continuous distribution functions
thereof. In addition, various techniques have been proposed for analyzing the structural variability
of features in uncertain data sets, by incorporating information on correlation data or varying
gradients into the uncertainty visualization approach.

Apart from diverse novel visual effects, this thesis focused primarily on the development of so-
phisticated mathematical models and algorithms for deriving specific characteristic parameters or
indicators from uncertain scalar data sets. The proposed derivations make two prominent contri-
butions: First, they allow a more reliable computation of uncertainty measures and an improved
interpretation of derived uncertainty visualizations. Several introduced techniques significantly
improve traditional approaches on visualizing uncertain data. For instance, the integration of a
correlation-based uncertainty model allows the computation of iso-surface crossing probabilities
independently of the sampling rate in a 3D ray-casting approach. Secondly, the introduction of
certain mathematical concepts allows a significant increase in efficiency of the respective uncertainty
visualization approaches. For example, the development of a sophisticated front-to-back probabil-
ity update scheme based on a distance dependent correlation model allows interactive frame rates
during the ray-casting process in uncertainty-aware iso-surface extraction. Compared to traditional
methods, no costly pre-computations are necessary and uncertainty measures can be derived and
further processed in real-time.

Tobias Pfaffelmoser 149



The examination of visual methods for analyzing stochastic dependences, correlation structures
and the underlying structural uncertainty can be regarded as one of the main contributions of this
thesis. For the first time, the importance of integrating information on correlation or stochastic
dependence structures in visualization techniques for uncertain scalar data sets has been introduced
to the uncertainty visualization community. Furthermore, several specific algorithms have been
proposed for visualizing local and global correlation data, as well as for revealing the variability
of higher-order structural indicators like gradients in multi-dimensional scalar data sets. Apart
from increasing the reliability and efficiency of traditional uncertainty visualization approaches,
the integration of information on stochastic dependences and relative uncertainties can help gain
additional insight in uncertain data. This is often not possible with traditional approaches using
only simple indicators like mean and standard deviation values.

The advantages of the proposed novel techniques have been demonstrated for several synthetic
and real-world data sets. It has been shown how they can be utilized for analyzing structural and
topological variations in geophysical scenarios. Furthermore, the proposed approaches can help
analyze the reliability of the occurrence of prominent material structures in seismic tomography
data sets. In addition, it has been demonstrated how the novel techniques can be used for assessing
the reliability of spatial temperature structures in uncertain atmospheric forecast ensemble data
sets.

Although the presented novel approaches address several prominent challenges in uncertainty visu-
alization, they can still serve as a basis for future research in various directions. In the following,
several areas of possible future work are pointed out:

• Probability Distributions. Several uncertainty visualization techniques for scalar data
sets assume a Gaussian distribution characterizing the underlying uncertainty. This thesis
introduced several algorithms for the feature analysis in both Gaussian and arbitrary dis-
tributed data sets. Future work could address the challenge of extending these approaches
towards a framework where the distribution assumption can be interactively specified by the
user, resulting in different uncertainty visualizations. A respective flexible approach would
allow to interactively explore the impact of the probability distribution assumption on the
resulting visualization. Furthermore, future work could focus on the direct integration of dis-
tribution probability values into the resulting visualization, instead of displaying less accurate
and more abstract uncertainty indicators like standard deviations and confidence intervals.

• Integrated Visualization. One critical challenge in uncertainty visualization is the com-
bination of different numerical entities like mean data, uncertainty indicators, correlation
information, etc. in one integrated visualization. This is complicated, as usually only a very
limited number of visual channels (e.g., color, opacity, glyphs, etc.) are available. This thesis
presented separate approaches for different uncertainty visualization directions like iso-surface
variability or correlation structures. For instance, future work could address the challenge
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of combining a probabilistic iso-surface extraction method with the display of global or local
correlation structures in 3D. This could significantly improve the overall interpretation of the
uncertainty information.

• Dimensionality. The global correlation clustering algorithm, as well as the gradient un-
certainty visualization both address only 2D scalar data sets. Future work could extend
such algorithms to 3D data sets. This is in particular challenging as, for instance, highly
optimized algorithms for large amounts of data (correlation clustering) have to be found
or strong cluttering effects due to the use of 3D glyphs (gradient uncertainty) have to be
approached. Nonetheless, the visualization of global correlation structures or gradients in un-
certain 3D scalar data sets would be highly beneficial for the reliability analysis of prominent
3-dimensional features.

• Feature Analysis. This thesis presented several approaches for analyzing the variability
of iso-contours and iso-surfaces in 2D and 3D scalar data sets. The next step would be an
extension of the used mathematical concepts for examining the variability of other scalar
data features like critical points, local and global maximums/minimums, saddle points, etc.
with respect to their occurrence and spatial position. Therefore, further mathematical mod-
els would be necessary for describing the uncertainty of higher-order entities like gradients,
Hessian data, curvature, etc. The integration of uncertainty information on differential geo-
metrical quantities would allow an improved analysis of the topological variability in uncertain
scalar data sets.

• Stochastic Dependence. This thesis stressed the importance of integrating information
on stochastic dependences into uncertainty visualization algorithms. Therefore, correlation
has been used as the main structural uncertainty indicator. However, this is only possible
for Gaussian distributed data sets with linear dependences between random variables at
different spatial domain points. For arbitrary distributions with even non-linear dependences,
correlation cannot be used as a reliable indicator for structural uncertainty. For extending
the analysis of structural uncertainty to arbitrary distributed data sets, novel mathematical
models would be necessary for deriving, representing and visualizing non-linear dependences
in uncertain scalar data sets.

• Statistical Analysis. Uncertain data is often given as ensembles of data sets. Uncertainty
indicators are derived from such data sets and transformed to specific visual effects. However,
most visualization approaches ignore the number of ensemble members and therefore the
reliability of the derived uncertainty measures. For instance, in this context, it could be
important to know if an uncertainty indicator (e.g., standard deviation) was derived from 1000
or only 10 ensemble members. This information could be beneficial for the interpretation stage
and is directly linked to the field of statistical analysis. Furthermore, visual hypothesis tests
are an interesting research direction, as they could help answer specific questions about the
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data for a pre-defined confidence level. Such statistical tests are typical means for analyzing
ensemble data sets.

• Sensitivity Analysis. In the introduction of this thesis, it was stated that uncertain data
sets are often caused by uncertain input parameters used in a simulation process. For ex-
ploring the impact of input on output uncertainty of a simulation process, an analysis would
be beneficial, clearly stating which parts of the resulting data set and the respective degree
of uncertainty are affected by which input parameters. In this context, a comprehensive sen-
sitivity analysis could help identify the cause of uncertainties. The integration of sensitivity
information into traditional uncertainty visualization approaches could allow the analysis of
the degree of uncertainty, its impact on the data, as well as its origin in one integrated (inter-
active) visualization. This could significantly improve the interpretation of the uncertain data
in the context of the respective generation process and its dependency on initial conditions
or parameters.

Although uncertain data sets can be analyzed using different visual techniques based on various
motivations and mathematical concepts, an intuitive and even interactive visualization approach
should always be the ultimate goal in order to allow an efficient, reliable and comprehensive in-
terpretation of the data by the user. This is not only important for a better understanding of a
physical problem or process, but can have a significant impact on further decision processes.
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