Influence of Cathode Material Surface Area on Thermal Stability of Li-Ion Batteries

Jan Geder¹, Harry Hoster¹, Andreas Jossen³, Denis Y.W. Yu^{1,2} ¹TUM CREATE Centre for Electromobility, Singapore ²Energy Research Institute at Nanyang Technological University, Singapore ³Institute for Electrical Energy Storage at Technische Universität München, Germany

Motivation

Centre for Electromobility

Singapore

Shortening of the diffusion path for Li⁺ ions Increased rate capability Reducing the particle size of cathode materials Larger surface area — Higher probability of surface reactions — Reduced thermal stability

Methodology

Bulk commercial LiCoO₂

Ball milled LiCoO₂

Charging / de-lithiation

FESEM image of pristine (left) and 5 h ball-milled (right) material under 33,000x magnification

Electrochemical

- Coating of cathode with LiCoO2 (80%), acetylene black (10%) and PVDF (binder, 10%)
- Assembly into a LiCoO₂ | Li half-cell
- Delithiation by charging to equivalent of $Li_{0.5}CoO_2$

Chemical:

- $LiCoO_2 + \frac{1}{4}K_2S_2O_8 \rightarrow Li_{0.5}CoO_2 + \frac{1}{4}K_2SO_4 + \frac{1}{4}Li_2SO_4$
- Stirring at 60°C in $K_2S_2O_8$ solution for 48 h

Cathode Thermal Stability

Thermogravimetric analysis (TGA) of charged cathode – 25 to 400°C at 5 K/min, held 1 h at 400°C. Performed under Argon atmosphere. Evolved gases were analysed by mass spectroscopy

Material	Onset	Total mass loss
Chemically delithiated	260°C	4.22%
Pristine	225°C	8.59%
1 h milled	224°C	10.24%
2 h milled	222°C	11.80%
3 h milled	194°C	12.37%
5 h milled	194°C	13.54%

Cathode Decomposition Kinetics

Assumed reactions:

- Decomposition: $Li_{0.5}CoO_2 \rightarrow \frac{1}{2}LiCoO_2 + \frac{1}{6}Co_3O_4 + \frac{1}{6}O_2$
- Burning of acetylene black: $C + O_2 \rightarrow CO_2$
- Binder decomposition (not known exactly)

Conversion (α) is proportional to mass loss ($\Delta m/m_0$)

Reaction rate equation:

$$\frac{d\alpha}{dt} = k \cdot f(\alpha) \to \beta \cdot \frac{d\alpha}{dT} = k_0 \cdot \exp(\frac{E_a}{RT})$$

- TGA at different rates ($\beta = 1,3,5,7,9$ K/min) yields same conversion at different \bullet temperatures
- Activation energy (E_a) can be calculated at various values of conversion

100°C 200°C 300°C 400°C

- Higher surface area leads to lower onset temperature
- Total amount of decomposed mass increases with surface area
- Oxygen followed by carbon dioxide detected from decomposition of pristine cathode
- O_2 reacts with acetylene black in cathode
- No oxygen from milled particle cathodes, earlier detection of CO₂
- Mass loss higher than theoretical, therefore binder decomposes too

Calculation independent from reaction model ($f(\alpha)$) \bullet

Activation energy as function of decomposed mass fraction

No dependance of reaction kinetics on surface area can be ssen

Stability of Cathode-Electrolyte System

Accelerating Rate Calorimetry (ARC) of 32 mg charged cathode + 16 μ l electrolyte (1M LiPF₆ in 1:1 EC/DMC)

Material	Onset	Max rate	Time to max rate
Pristine	306°C	3.2°C/min	6 min 36 s

- Single exotherm with slow onset for pristine cathode
- Very steep reaction onset for cathode of milled particles
- Two reaction exotherms in case of milled LiCoO2

Conclusions

- Higher surface area reduces thermal stability of LiCoO₂ cathode \bullet
- In case of milled particles, all released O₂ reacts in the cathode to form CO2 •
- Cathode-electrolyte system is thermally less stable with higher LiCoO₂ surface area

Prospects

- Alternative ways of surface area increase (synthesis from precursors)
- Comparison with other cathode materials, electrolytes and additives
- Investigation of anode materials

