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“The effort being made today to organize knowledge is also a way of participating

in the evolution of knowledge itself. In fact, the significance of attempting such

organization can be looked for in its ability not only to give information but also to

create know-how: it provides not only a collection of facts – a store of information –

but also a contribution to the evolution of knowledge. The fact is that splitting the

organization of knowledge from its production is completely arbitrary: actually,

knowledge organization is itself one way of doing research.”

— Handbook of Molecular Descriptors. (taken from the introduction)



Abstract

The graph structures of molecules can be a rich source of information about their

biological activity or chemical reactivity – however, very efficient methods are re-

quired for analyzing them. Due to its complexity, any representation of a chemical

database can only convey some characteristics of the whole graph corpus. Addi-

tionally, the interesting patterns emerge only from the whole set of graphs that

constitute the database, not from individual ones, which places a demand for time-

and memory-efficient algorithms.

A primary goal of graph mining is to find subgraphs that occur with a certain

frequency in a given dataset. The amount of such patterns is usually enormous

for chemical structure graphs, even when additional filters are employed, such as

restricting the result set to subgraphs that primarily occur in the toxic or non-toxic

compounds. Therefore, the patterns can often not be used directly for predictive

modeling, since they would overfit and/or place a high load on learning algorithms,

while at the same time provide a much too fine-grained information to experts.

More concise representations would have a significant value to the user, even if

more time was needed to calculate them.

Concise representations may be obtained, for example, by compression of the pat-

tern set, or lifted representations of molecular fragments. This work shows that

such representations may be obtained efficiently in practice, and that they can be

of considerable utility for predictive models. It presents a set of algorithmic tools

for the extraction of interesting subgraphs and subgraph patterns from molecular

databases, and reports on experiments that assess their utility in the context of

predictive models. For discovering the most expressive patterns, a combination

of structural and statistical constraints is employed. The structural constraints

make use of the partial order, in which subgraphs can be put, and on which

a refinement operator can be defined. The statistical constraints have the con-

vexity property, allowing for efficient search in combination with the structural

constraints. While the approaches are not restricted to chemical structures and

toxicological databases, I find the problem of graph mining particularly compelling

in this domain, because there has been a rapidly increasing need for efficient and

precise computational models in chemical risk assessment during the last decade.

v





Contents

Acknowledgements iii

Abstract v

1 Introduction 1

1.1 Molecular Modelling/Systems Biology . . . . . . . . . . . . . . . . . . 2

1.2 Expert Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Traditional QSAR models . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Data Mining Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6.1 Chapters 2 and 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6.2 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6.3 Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6.4 Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6.5 Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6.6 Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Tree and Graph Mining 11

2.1 Inductive Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Types of Constraints . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Hypothesis Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Graph Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Basic Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Frequent Item Set Mining . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Frequent Subgraph Mining . . . . . . . . . . . . . . . . . . . . . 16

2.2.4 Canonical Graph Representations . . . . . . . . . . . . . . . . 17

2.2.4.1 Pattern Matching Operators . . . . . . . . . . . . . . 17

2.2.4.2 Systematic Subgraph Enumeration . . . . . . . . . . 19

2.2.4.3 Depth Sequences for Rooted Trees . . . . . . . . . . 20

2.2.4.4 Algorithms for Mining General Graphs . . . . . . . . 21

2.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vii



3 From Patterns to Models 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Pattern Set Compression . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Correlated Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Statistical Metric Pruning . . . . . . . . . . . . . . . . . . . . . 30

3.3.1.1 Target Class Correlation . . . . . . . . . . . . . . . . 31

3.3.1.2 Stamp Points . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.2 Pattern Correlation and Statistical Learners . . . . . . . . . . 33

3.3.2.1 Target Value Correlation . . . . . . . . . . . . . . . . 33

3.3.2.2 Significance-Weighted Kernel . . . . . . . . . . . . . 33

3.3.2.3 Applicability Domain Estimation . . . . . . . . . . . 35

3.3.2.4 Significance-Weighted vs. Unweighted Kernel . . . . 36

3.3.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Common Materials and Methods 41

4.1 Types of Subgraph Patterns . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Molecular Graph Representation . . . . . . . . . . . . . . . . . . . . . 42

4.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Small and Medium-Sized Datasets . . . . . . . . . . . . . . . . 43

4.3.2 Large-Scale Datasets . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Backbone Refinement Class Mining 45

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.2 A New Class of Substructures . . . . . . . . . . . . . . . . . . . 49

5.1.3 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Backbone Refinement Class Mining . . . . . . . . . . . . . . . . . . . . 52

5.2.1 Structurally Defined Classes . . . . . . . . . . . . . . . . . . . . 52

5.2.2 Mining Representatives . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3.1 Induced Backbone Refinement Classes . . . . . . . . . . . . . . 54

5.3.2 Number of Backbone Refinement Classes . . . . . . . . . . . . 55

5.3.3 Number of Subtrees . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.4 Comparison of Backbone Refinement Classes and Tree Set
Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4 Coverage and Representativeness . . . . . . . . . . . . . . . . . . . . . 59

5.4.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4.1.1 Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . 60



5.4.1.2 Representativeness . . . . . . . . . . . . . . . . . . . . 63

5.4.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.5 Diversity in Structure and Occurrence . . . . . . . . . . . . . . . . . . 64

5.5.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5.1.1 Structural Diversity . . . . . . . . . . . . . . . . . . . 65

5.5.1.2 Co-Occurrence and Entropy . . . . . . . . . . . . . . 67

5.5.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.6 Runtime Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.6.1 Dynamic Upper Bound Pruning . . . . . . . . . . . . . . . . . 70

5.6.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.6.3 Example Session . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.6.4.1 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.6.4.2 Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.7 Classification Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.7.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.7.1.1 Evaluating Different Representations . . . . . . . . . 78

5.7.1.2 Validation Against Compressed Representations . . 78

5.7.1.3 Validation Against Supervised Selection . . . . . . . 81

5.7.1.4 Validation Against Large-Scale Data . . . . . . . . . 84

5.7.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Latent Structure Pattern Mining 87

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1.2 Mining Latent Structure . . . . . . . . . . . . . . . . . . . . . . 90

6.1.3 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.1.4 Stacking Features . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2 Latent Structure Pattern Mining . . . . . . . . . . . . . . . . . . . . . 93

6.2.1 Efficient Conflict Detection . . . . . . . . . . . . . . . . . . . . 93

6.2.2 Conflict Resolution . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2.3 Stopping Criterion . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2.4 Latent Structure Graph Calculation . . . . . . . . . . . . . . . 97

6.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3.1 Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3.2 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4 LAST-SMARTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4.1 Weighted Depth-First Parsing . . . . . . . . . . . . . . . . . . . 103

6.4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.5 Classification Accuracy and Runtime . . . . . . . . . . . . . . . . . . . 104

6.5.1 Classification Accuracy . . . . . . . . . . . . . . . . . . . . . . . 105



6.5.1.1 Validation Against Compressed and Elaborate Rep-
resentations . . . . . . . . . . . . . . . . . . . . . . . . 105

6.5.1.2 Validation Against Original QSAR Models . . . . . 107

6.5.2 Runtime Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7 Case Study: A Biological Dataset 111

7.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.3 Algorithms Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.6 Resources Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8 Conclusions and Future Work 119

8.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.2 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A LAST-SMARTS 133

B BBRC-Coverage 137

C Online-Resources 139

C.1 Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

C.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

C.3 Animated Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Bibliography 141

List of Figures 141

List of Tables 145

Andreas Maunz 147







Chapter 1

Introduction

Chemicals influence biological systems in a huge variety of interactions, mostly

on the cellular and molecular level. In toxicology, the aim is to understand the

biochemical mechanisms involved, and the degree to which the chemicals induce

toxic activity in living organisms, with respect to a well-defined endpoint, such as

mutagenicity, or carcinogenicity. In predictive toxicology, toxicological knowledge

about a set of chemical compounds (training compounds) is exploited in order to

predict the degree of activity of other compounds (query compounds). The train-

ing compounds are stored in databases together with their toxicological activity

values. Chemical fragments, and other descriptors are routinely used to describe

the compounds. Computational methods have been applied to such databases for

more than two decades [20].

This work investigates the utility of graph mining in the context of predictive

toxicology and proposes two new algorithms for the calculation of subgraph de-

scriptors from chemical structure graphs. The descriptors may serve to obtain a

mathematical model, describing the relationships between them and the toxicolog-

ical activity values. Such models are referred to as Quantitative Structure Activity

Relationships (QSAR). The most general mathematical form of a QSAR model is:

Activity = f(structural descriptors and/or physico-chemical properties) (1.1)

QSAR models can be classified as either statistical, or expert/rule-based ap-

proaches [47, 48]. Statistical approaches use general toxic endpoints and activ-

ity values gathered for a wide range of structures and are primarily driven by

information inherently present in the data, not from human expert knowledge.

Expert/rule-based approaches build QSAR generalizations from individual chemi-

cals to chemical classes based on prior knowledge, heuristics, expert judgement and

1
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Figure 1.1: Top-Down vs Bottom-Up Approaches in Predictive Toxicology.

chemical and biological mechanism considerations (see Fig. 1.1). The techniques

proposed here clearly fall in the statistical category.

1.1 Molecular Modelling/Systems Biology

The primary approach when trying to understand biochemical processes is to de-

velop mathematical models of the involved mechanisms (e.g. receptor interactions,

signalling pathways). Since there is a great variety of modes of action, this is only

suitable for single toxicological processes and only for simpler endpoints. Cur-

rent molecular modelling and systems biology approaches are limited to relatively

simple effects (modelling from first principles). A complete modelling of complex

toxicological effects is at present impossible. Fortunately, for most applications,

including predictive toxicology, a complete model is seldom required. Instead, the

current state of the art includes data-driven, statistical models, putting emphasis

on evidence from the data.

1.2 Expert Systems

Expert knowledge is frequently used in predictive toxicology. Commercial systems

provide predictions for specific toxicological endpoints, for instance carcinogenic-

ity and mutagenicity. They build QSAR generalizations from individual chemi-

cals to chemical classes based on prior knowledge, heuristics, expert judgement

and chemical and biological mechanism considerations and are primarily geared

towards detection of actives (toxic molecules). Therefore, positive test results are
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often accepted as evidence for the toxic activity, whereas a negative result is not

regarded valid to rule out risks.

Expert systems have a long-standing tradition and are still in frequent use by

the industry and regulatory agencies. A prominent example is DEREK, a computer

program sold by Lhasa Ltd 1. Such systems make knowledge from their databases

explicit, for example in the form of reports: A user who inputs a chemical structure

is provided with a set of predictions about the chemical’s toxic behaviour and the

underlying rationale for each prediction, with references to literature. Thus, the

system aggregates expert knowledge and rationally combines the evidence (logic

of argumentation). Its databases are constantly updated and extended, and, in

the case of DEREK, customers can participate in this process.

In systematic assessments of predictive power, such as the Predictive Toxicology

Evaluation [58], however, expert systems have been performing rather badly, com-

pared to statistical models. A reason for their remarkable spread despite this

crucial deficiency may be that their logic closely mimics the line of argumenta-

tion of chemical experts, which may provide an intuitive familiarity and seeming

plausibility.

1.3 Traditional QSAR models

Traditional QSAR methods use linear regression to identify a relationship between

chemical descriptors and experimental activities. They rely on the idea that struc-

tural properties contribute in a linearly additive way to activity. Usually, critical

molar concentrations C are modeled. The classical approaches are:

Hansch-analysis Physico-chemical properties are used as descriptor values. The

formula is:

log(1/C) = a logP + b logP 2 + c E + d S + e,
where logP is the octanol-water partition coefficient, describing the ability of

the agent to reach the target site, and E and S are an electronic and a steric

term, respectively. Electronic properties relate to binding ability and steric

properties describe the bulk and shape of the compound. Descriptor values

can be drawn from literature or calculated by computer programs. Relatively

few descriptors are needed and they can be interpreted in biochemical terms.

1See http://www.lhasalimited.org/

http://www.lhasalimited.org/
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Free-Wilson-analysis Structural descriptors are used in a group contribution

approach (substituents). The formula is:

log(1/C) = ∑aixi + µ,
where xi denotes the presence of group i (0 or 1) and µ the contribution of

the unsubstituted compound. Predictions can only be made for substituents

already included in the training set. Therefore, a large number of compounds

is needed which yield a large number of descriptors.

The interpretation of linear QSAR models is done rather straightforward by in-

specting the most important descriptors (i.e. the ones with high coefficients). The

applicability of such models is restricted to congeneric series (i.e. compounds that

exhibit a toxicological effect by a similar mechanism). Another problem with tra-

ditional QSAR techniques is the selection of descriptors for endpoints that are

very complex and incorporate many different and potentially unknown biological

mechanisms. In this case it is very likely to miss important descriptors or to suffer

from the “curse of dimensionality”, if too many descriptors are selected.

1.4 Data Mining Methods

The need to accelerate the toxicological assessment of chemicals and the prospect

of using fewer lab animals and less expensive methods of analysis have spurred

the development of predictive toxicology, and especially the structure-based ap-

proaches. Not surprisingly, by providing automated methods for the extraction of

relevant knowledge from large and diverse databases, data mining methods have

become important tools for predictive toxicology. An additional goal is to provide

a certain degree of independence from human expert judgement by building on

statistical criteria instead.

Data mining is often applied to derive representations of data which serve in a

subsequent step as input to learning algorithms (feature mining). Feature min-

ing derives descriptors from large sets of diverse, previously unseen data. Such

techniques are the focus of this work.

The first feature mining method applied to chemical data was WARMR [34], which

mined chemical fragments of size up to three atoms from a database of compounds,

represented as 2-D structure graphs. Interest in feature mining started to increase,

and several algorithms with extended capabilities were published. MOLFEA was able



Chapter 1, Introduction 5

to mine linear fragments comprising up to 20 atoms, and, for the first time, the

resulting features were directly employed in QSAR modeling [36], employing the

WEKA [16] implementation of support vector machines. Also, the first general graph

mining algorithms – without a focus on chemical data – were published at that

time, such as AGM [30], and FSG [37] (see also chapter 2).

Nowadays, there is a variety of implementations of well-known statistical learning

algorithms for classification and regression available “off the shelf” [15]. Thus,

through the combination of feature mining and statistical learning, creating a

QSAR model has become a much more modular process compared to earlier times,

with the steps for descriptor calculation, descriptor selection, and model learning

being largely de-coupled [5]. Frequently, regularities and patterns are extracted

from the data, represented in a unified format and fed into a machine learning

algorithm (see chapter 3).

The process of building a QSAR model has also become much more flexible:

Data mining methods allow for the combination of different types of descriptors.

Whereas descriptors were traditionally delivered with the compounds in the form of

tables, many can now be calculated from the molecular structure. Non-congeneric

datasets are now useful as training data for learning algorithms. Data of various

type can be combined and re-used, e.g. from different sources, or selected accord-

ing to different criteria. Many machine learning methods are also able to deal with

noisy or missing data. Moreover, much larger datasets may be processed with data

mining methods, since they require no or little human intervention.

Of course, flexibility comes at a price: Data mining methods are designed to find

non-trivial and previously unknown regularities within complex data. Complex

data is inherently hard to represent, and the success of data mining methods

crucially depend on adequate representations of the data. A molecule can, for

example, be represented as 2-D graph, as 3-D graph, or by its physico-chemical

parameters. Focusing on graph representations, again multiple representations

are conceivable in a computer’s memory: for example as adjacency list, or as a

relational construct. This again restricts the ways for reasoning about the data.

Models can also fail for other reasons. Consider for example the traditional Free-

Wilson model from the previous section: Since it can only model linear dependen-

cies, it will fail if important relationships in the data are non-linear. On the other

hand, non-linear models are able to fit more diverse data structures (in fact many

can fit arbitrary data), but they are more likely to fit intricacies of the training

data as well, due to their expressiveness, rather than the general regularities in the

data. Learning such models usually takes a long time and they often show poor
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generalization capability when applied to unseen data (overfitting). Of course,

there are also other, more general, obstacles for building QSAR models, such as

the data not being representative for the problem at hand.

These issues can be viewed from many different angles, accordingly the approaches

to solve them vary greatly. This work addresses feature mining, as it provides the

basis for data representations. Among the methods that derive symbolic repre-

sentations of the data, it gives special attention to substructural features: In this

setting, chemical compounds are represented as graphs, and relevant subgraphs

are extracted from the set of graphs to form a description that conveys basically

the presence or absence of any of the subgraphs (chemical fingerprints [23]). Since

most physico-chemical properties, such as molecular weight or solubility, can be

calculated from the molecular structure, it seems natural to directly use the struc-

ture for modeling. Structural representations also have intuitive and interpretable

appeal, and may be useful for predictive, as well as explanatory purposes.

1.5 Thesis

In view of the adverse properties of redundant, high-dimensional representations

for data mining in general, and in particular for learning algorithms, two graph

mining algorithms that compress the search space of subgraphs are proposed in

this work. Its hypothesis can be stated as follows:

Using the proposed graph mining algorithms, it is possible to efficiently extract

a sparse selection of subgraph descriptors (molecular fragments) that compactly

and diversely summarize possibly large databases of graphs (molecules). When

used as input to learning algorithms, theses descriptors yield QSAR models with

predictive power at least as good as the complete set of subgraphs from which

they were selected or derived, and perform on par with or even better than highly

optimized physico-chemical descriptors for complex biological endpoints.
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1.6 Chapter Overview

The following summarizes the contents of the individual chapters of this work:

1.6.1 Chapters 2 and 3

Some basics of inductive databases, queries, and constraints are introduced. The

special case of graph mining is explained, and the difference to item set mining

is emphasized. This work considers connected subgraphs (fragments) of the 2-D

structure graphs of chemical compounds. Search space representation, canonical

enumeration of subgraphs and computational costs of graph mining are discussed.

The stepwise approach to model building includes graph mining and feature se-

lection as consecutive, distinct pre-processing steps. However, a more integrated

approach to feature selection and data compression is proposed in this work, in-

volving structural and statistical constraints to be integrated in the graph mining

steps. A case study demonstrates the influence such constraints can have on model

building.

1.6.2 Chapter 4

Common notations, datasets, and material relevant for subsequent chapters are

presented. This avoids duplication, and allows for a uniform notation in the follow-

ing sections about algorithms. This includes names and conventions for subgraph

descriptors, molecular graphs, and datasets used in the experiments.

1.6.3 Chapter 5

Backbone Refinement Class Mining (BBRC), the first main algorithm of this work,

is introduced. The chapter motivates the approach with the necessity for feature

set compression and a review of related work. First, an intuitive account of the

BBRC approach, combining frequency, structural, and statistical constraints, is

given, then a formal representation is worked out. The compression potential of

BBRC descriptors is theoretically derived and proven. Empirical results confirm

the compression results in practice, while retaining good database coverage. More-

over, in the experiments, the structural constraints produce structurally diverse

features with low co-occurrence rates, as shown with a dedicated visualization
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method. BBRC descriptors compare favorably to other compressed representa-

tions in the context of classification models.

1.6.4 Chapter 6

Latent Structure Pattern Mining (LAST-PM), the second main algorithm, is in-

troduced. LAST-PM combines related subgraphs into a weighted edge graph and

mines elaborate patterns from this graph. More specifically, the process generates

ambiguities (fragments containing optional parts). Heavy components are ex-

tracted from the weighted edge graph by spectral analysis, which yields a tightly

condensed representation of the dataset. The results are expressed in a chemical

fragment query language that preserves the ambiguities. Existing approaches for

generalized subgraph mining are reviewed. The experiments involve classification

models and comparison to other optimized representations, including BBRC. A

concrete example shows how a chemical expert may interpret a pattern found by

LAST-PM.

1.6.5 Chapter 7

This chapter illustrates how BBRC and LAST-PM may be applied in practice

to a chemical dataset with a complex biological endpoint (human intestinal ab-

sorption). Besides descriptor type, pattern instantiation with binary or frequency

information, as well as the type of learning algorithm (SVM or nearest-neighbor

prediction), are validated.

1.6.6 Chapter 8

The results of all previous chapters are summarized. Consequences for feature

mining algorithms regarding running time, compactness, and interpretability of

descriptor sets, are described. Conclusions about strategies in graph mining ap-

plied to chemical databases are drawn and possible future work is outlined.
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1.7 Contributions

The main contributions of this work are described as follows:

� BBRC and LAST-PM, two new algorithmic approaches to mining compact

sets of descriptors in the search space of chemical structure graphs, are pro-

posed. Conceptionally, the former creates a sparse selection from the search

space of frequent and significant subtrees, based on structural and statisti-

cal constraints, while the latter “fuses” structurally and statistically related

patterns. Therefore, they combine feature generation and feature selection

into one step.

� Both approaches are scalable, since pattern set compression is achieved by

combining frequency, statistical, and structural (graph-intrinsic) constraints,

a novelty in graph mining. BBRC enables large-scale mining through a

dynamic pruning criterion, such that tens and hundreds of thousands of

chemical compounds can be processed in minutes. For LAST-PM, there

is a positive tradeoff between compression and runtime. Expensive post-

processing of the features is avoided.

� Detailed analysis shows that BBRC descriptors are structurally diverse, and

thus cover the structural space well. A lot of descriptors per compound are

produced, despite their absolute number being low, which is confirmed in

low co-occurrence rates. The set of all frequent and statistically significant

subtrees does much worse, despite containing much more descriptors. This

is attributed to the joint effect of convex statistical and structural selection

criteria employed in BBRC.

� LAST-PM descriptors are able to express ambiguities, i.e., any descriptor

may contain optional parts of variable size. These ambiguities are found by

structurally “aligning” subtrees and resolving conflicts by logical OR. This

process obviously elicits latent (or hidden) motifs that are available from

such a structurally organized view on several subtrees at once.

� In classification tasks with either nearest-neighbor or SVM (support vec-

tor machine) models, the accuracy of (models based on) BBRC descriptors

is on par with the complete set of frequent and significant subtrees, but

significantly better than that of other compressed representations. LAST-

PM descriptors perform even significantly better than the complete set from

which they were derived. They also outperform BBRC descriptors and highly
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optimized physico-chemical descriptor models from the literature in the clas-

sification of compounds for complex biological endpoints.

The next chapter describes the graph mining problem, which is foundational to

feature mining on chemical structure graphs.



Chapter 2

Tree and Graph Mining

2.1 Inductive Databases

An inductive database [28] is a database that can be queried for patterns within

the data that fulfill complex queries. The queries are formulated in a domain-

independent query language [11]. Thus, a general constraint-based mining problem

on an inductive database comprises the following components:

� A database r, constituted by a set of instances,

� An (usually infinite) hypothesis space of patterns L, defined on a finite al-

phabet Σ

� A constraint q(θ, r) containing specific criteria that a pattern θ should meet

with respect to the database.

The task is to find a theory of the data, i.e. the set

Th(r,L, q) = {θ ∈ L ∣ q(θ, r) = true} , (2.1)

referred to as the theory of q with regard to r, where θ is called a pattern [40]. This

learning setting can be generalized straightforwardly to more than one constraint

by intersecting the associated individual theories. Although such a formulation is

generic enough to be understood as a quite general learning problem, this work

addresses the search for discrete patterns within finite sets of discrete instances.

Therefore, also theories will be finite sets (often referred to as solution sets or

pattern sets). With different choices of r, L and q, different mining problems are

obtained.

11
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2.1.1 Types of Constraints

All patterns treated here obey a partial order, the so-called specialization relation,

denoted by “⪯.” A pattern θ1 is said to be more specific than (or a refinement of)

pattern θ2, if θ2 ⪯ θ1. We also say that θ2 is more general than θ1.

The specialization relation “⪯” gives rise to the notion of monotonic and anti-

monotonic constraints as follows:

Monotonic Constraints: A constraint is called monotonic, if any specialization

of a pattern that satisfies the constraint also satisfies the constraint, i.e. for

all r and θ2 it holds that if q(θ2, r) and θ2 ⪯ θ1, then q(θ1, r).
Anti-Monotonic Constraints: A constraint is called anti-monotonic, if any

generalization of a pattern that satisfies the constraint also satisfies the

constraint, i.e. for all r and θ1 it holds that if q(θ1, r) and θ2 ⪯ θ1, then

q(θ2, r).
We consider also:

Convex Constraints: A constraint is called convex, if there is a convex function

f that maps any pattern p to a real value and there is a user-defined thresh-

old u ∈ R, such that if f(p) > u then p fulfills the constraint. For convex

functions, anti-monotonic bounds can be derived. Convex constraints are

special cases of so-called boundable constraints.

Succinct Constraints: A constraint is called succinct, if it can be “pushed”

into the dataset, i.e. patterns matching succinct constraints can be found

by changing the way the dataset is represented.

2.1.2 Hypothesis Spaces

Monotonic and anti-monotonic constraints are transitive relations, thus they define

absolute borders in the search space beyond which those constraints cannot be

fulfilled. Conversely, they are guaranteed to be fulfilled on the other side of those

borders. Therefore, each such constraint yields a half space where all patterns fulfill

the constraint. This applies only to monotonic and anti-monotonic constraints,

and results in the intersection of the respective half spaces as the combined theory.
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Figure 2.1: Schematic depiction of the hypothesis space with S- and G-border.

The border implied by a conjunction of anti-monotonic constraints is denoted by

S. Specifically, it consists of all patterns θ, such that all generalizations of θ are

in the theory and none of the specializations of θ is in the theory. Analogously,

the border implied by a conjunction of monotonic constraints is denoted by G. It

consists of all patterns θ, such that all specializations of θ are in the theory and

none of the generalizations of θ is in the theory. Those elements of S that are in

the theory are called the positive border of the theory, a concept introduced by

Mannila and Toivonen [40]. Fig. 2.1 gives a schematic depiction.

2.2 Graph Mining

Databases that consist of graphs induce a very interesting and complex mining

problem due to the structured nature of both patterns and instances. This section

introduces graph mining as compared to itemset mining and presents some chal-

lenges in the domain of graphs, specifically on how to systematically and efficiently

enumerate all patterns of interest, as well as some approaches to solve them. First,

the domain of graphs is introduced and the necessary concepts are defined. Then,

frequent pattern mining is exemplified for itemsets and graphs.
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2.2.1 Basic Graph Theory

We assume a graph database R = (r,Σ, a), where r is a set of graphs, Σ ≠ ∅ is a

totally ordered set of labels and a ∶ r → {0,1} is a function that assigns a truth

value to every graph in the database (binary classification). Graphs with the same

classification are collectively referred to as target classes. Every graph r ∈ r is a

labeled, undirected graph, i.e. a tuple r = (V,E,Σ, λ), where V ≠ ∅ is a finite set of

nodes and E ⊆ V = {{v1, v2} ∈ {V ×V }, v1 ≠ v2} is a set of edges and λ ∶ V ∪E → Σ

is a label function. The set of all labeled, undirected graphs is referred to as G1.

An alignment of a graph r is a bijection φr ∶ (V,E) → P , where P is a set of

distinct, partially ordered, identifiers of size n = ∣V ∣+ ∣E∣, such as natural numbers.

Thus, the alignment function applies to both nodes and edges.

An ordered set of nodes {v1, . . . , vm} is a path between v1 and vm, if {vi, vi+1} ∈
E, i ∈ {1, . . . ,m − 1} and vi ≠ vj for all i, j ∈ {1, . . . ,m}. The length of a path is

defined as the number of edges it contains. We only consider connected graphs here,

i.e. there is a path between each two nodes in the graph. The graph r = (V,E,Σ, l)
is double connected or cyclic, if there exist two distinct paths between a pair of

nodes {vi, vj} ∈ E.

Assuming a graph with n nodes, then the graph is a tree if it has no more than

n−1 edges (due to the requirement of connected graphs, it must also have at least

n− 1 edges). Being a tree is equivalent to not being double connected. Obviously,

any path is a tree, but not vice versa. A rooted tree is an ordinary tree with a

designated root node. The depth of a node in a rooted tree is the length of the

path from it to the root (there can only be one such path). In an ordered tree, two

nodes at the same depth are called siblings. If a tree has no root, it is sometimes

also called free tree to emphasize the difference.

A node refinement is an addition of an edge and a node to a graph r. Given r has

at least two edges, a branch is a node refinement that extends r at a node adjacent

to at least two edges.

A subgraph r′ = (V ′,E′,Σ′, λ′) of r is a graph such that

� V ′ ⊆ V and E′ ⊆ E with V ′ ≠ ∅ and E′ ≠ ∅,
� r′ is connected, and

1In figures showing graphs, nodes and edges are sometimes identified with their labels.
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Figure 2.2: Some Graphs

� λ′(v1) = λ(v2) whenever v1 = v2, and λ′(e1) = λ(e2) whenever e1 = e2 for all

v1 ∈ V ′, v2 ∈ V , e2 ∈ E′, e2 ∈ E.

We say that r′ is subgraph-isomorphic to r. This work considers free, connected,

edge-induced subgraphs (and thus also subtrees) with those properties. Other

notions of subtrees include bottom-up subtrees and embedded subtrees, see the

overview by Chi et al. [7].

We denote the subgraph relation by ⊑. If, for any two graphs r, r′, r′ ⊑ r, then

r′ is said to cover r. The subgraph relation induces a partial order on graphs, as

required in section 2.1.1: For any graphs r, r′, s,

r′ ⪯ r ⇔ r ⊑ s⇒ r′ ⊑ s. (2.2)

Example 2.1. Fig. 2.2 shows some graphs. Graphs 2.2 (b) and 2.2 (c) are

subgraphs of each other, thus they are subgraph-isomorphic to each other. Graph

2.2 (a) is a subgraph of 2.2 (a), 2.2 (b), 2.2 (c), and 2.2 (d).

The subset of r that a graph r covers is referred to as the occurrences of r, denoted

by occ(r, r), its size as support of r in r, denoted by supp(r, r). The graph r is

called open (closed), if for any graph s with occ(r, r) = occ(s, r) it holds that r ⊑ s
(r ⊒ s).
Graphs are partially ordered as follows: Let P ⊆ G be the set of paths and let

T ⊆ G be the set of trees. It holds that

P ⊂ T ⊆ G. (2.3)
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2.2.2 Frequent Item Set Mining

Frequent pattern mining is introduced with itemsets: Let the instances of r be sets,

and let L be the hypothesis space of sets. Then, if q is the minimum frequency

constraint:

q(θ, r)⇔ ∣ {d ∈ r ∣ θ ⊆ d} ∣ ≥minsup, (2.4)

where minsup is the user-defined minimum frequency, then the frequent item set

mining problem is obtained.

Example 2.2. Let the alphabet be Σ = { , , }.
� D1 = { , }
� D2 = { , }
� D3 = { , , }
� r = {D1,D2,D3}

Let minsup = 2, then Th(r,L, q) = {{ } ,{ } ,{ } ,{ , } ,{ , }}.
Let minsup = 3, then Th(r,L, q) = {{ }}.
Due to the anti-monotonicity of the minimum frequency constraint, the theory for

a given value of minsup can never be larger than the theory for any minsup′, such

that minsup′ <minsup. Moreover, the former is always a subset of the latter.

2.2.3 Frequent Subgraph Mining

Now, frequent pattern mining is applied to graphs: Let the instances of r be

(connected) graphs, and let L be the hypothesis space of (connected) graphs.

Then, if q is a minimum frequency constraint:

q(θ, r)⇔ ∣ {d ∈ r ∣ θ ⊑ d} ∣ ≥minsup, (2.5)

then the frequent subgraph mining problem is obtained (note the subgraph relation

“⊑” instead of the subset relation in Equation 2.5).

Example 2.3. Let the alphabet be again Σ = { , , }.
� D1 = { }
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� D2 = { }
� D3 = { }
� r = {D1,D2,D3}

Let minsup = 2, then Th(r,L, q) = { , , , }.
Let minsup = 3, then Th(r,L, q) = { }.
Note the additional constraints that the subgraph mining problem imposes by

requiring subgraphs to be connected, i.e. is not in the theory for minsup = 2
(same of course for minsup = 3). Also note that has a support of only 2,

although it occurs 3 times in total. This is because it occurs two times in D3 but

multiple occurrences (occurrences in the same instance) are ignored. However,

the subset relation of theories for growing m carries over from frequent itemset

mining.

2.2.4 Canonical Graph Representations

Itemset mining is essentially structureless: A set is simply a collection without

inherent organization. For example, it is easy to test two given sets for equality

(by testing if they are subsets of each other). The analogous situation for graphs

is much more difficult: Here, the test for equivalence is known to involve an NP-

hard problem, namely subgraph-isomorphism testing. This section discusses the

importance of this test for frequent subgraph mining and reviews the closely related

task of canonical enumeration of subgraphs, i.e. how to find all (interesting)

subgraphs without considering any subgraph twice, which is an important concept

in the implementation of efficient graph mining algorithms.

2.2.4.1 Pattern Matching Operators

Actually, there are well-known algorithms for subgraph-isomorphism testing, but

all of them require exponential time. More specifically, it has been shown that

subgraph-isomorphism testing is NP hard [10]. Thus, given a pair of arbitrary

graphs in G, there has no algorithm yet been found that tests whether one is a

subgraph of the other in polynomial time. If no such algorithm exists (which is

unknown), an exact solution is not generally feasible.
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Subgraph Enumeration
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Figure 2.3: Example search space of subgraphs. Join operations are indicated
by dashed edges.

The efficiency of subgraph isomorphism testing seems essential for graph mining,

because such a pattern matching operator allows to check for redundant graphs

in the result set and prune them2. However, databases composed of graphs of

bounded treewidth (a proper subset of G containing cyclic graphs) allow for efficient

(in polynomial time) frequent connected subgraph mining, by using a specialized

matching operator, while the general pattern matching operator remains NP hard

[24]. Similar results have been obtained for another cyclic subset of G, the class of

outerplanar graphs [25]. For databases composed of non-cyclic graphs, such as T ,

efficient graph mining algorithms and pattern matching operators do also exist.

For a comprehensive introduction to this setting see the review by Chi et al. [7].

Thus, there is no direct relationship between general pattern matching and graph

mining. Nevertheless, no efficient algorithm for mining all frequent connected

subgraphs from a database of arbitrary graphs has been identified. Moreover, this

problem cannot be easier to solve than subgraph isomorphism: construct a graph

database from the graph r and the subgraph candidate r′. Consider frequent

subgraph mining with minsup = 2. The presence of a subgraph with the same

number of nodes and edges as r′ in the theory decides subgraph isomorphism.
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2.2.4.2 Systematic Subgraph Enumeration

A näıve approach to frequent subgraph mining would be to (a) enumerate all

possible refinements of a candidate subgraph, and (b) check whether the generated

subgraphs satisfy the constraints, then iterate the process using each generated

subgraph in turn as candidate until all subgraphs have been generated [65]. In a

postprocessing step (or already during the search) filter out duplicate subgraphs

by testing for subgraph isomorphism against the already generated subgraphs.

Given the efficiency of subgraph isomorphism testing just discussed, it seems clear

that the näıve approach must fail in practice.

As an example, Fig. 2.3 shows the search space of subgraphs for the graph given

at the bottom. Obviously, the näıve approach can be enhanced in several ways

(non-exhaustive list):

� Instead of generating all possible refinements from each graph, preferably

join subgraphs already generated on the same level to form a new subgraph

on the next level. If a subgraph does not occur (frequently), such as all

graphs containing Y-Z in Fig. 2.3, then, apart from the most general one

(which is Y-Z here), none of them will be generated further down in the

search space. Conceptually, all subgraphs can be generated using joins, but

this requires breadth-first search across the levels.

� Often, it is easy to avoid duplicate subgraphs by adopting a canonical rep-

resentation for subgraphs. For example, consider the case of paths and

specifically X-Y vs Y-X, which are subgraph-isomorphic to each other. By

only creating lexicographically ordered sequences, Y-X would not have been

generated, since it is not in order, as shown in Fig. 2.3.

The next section discusses canonical representations for trees, a tool that allows

to implement both optimizations (and more) in a graph mining algorithm. In the

context of systematic subgraph enumeration, the partial order that the subgraph

relationship induces is often referred to as refinement relation.

In particular, the class of algorithms emerging from implementing the above op-

timizations recursively (a) refines new candidate patterns from existing patterns,

and (b) checks if the candidates fulfill all constraints. Since the search process

is guided by refining patterns and bound by anti-monotonic constraints, such as

2In the case of itemset mining this test is indeed efficiently performed by subset testing.
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minimum frequency, this class of algorithms falls into the category of branch-and-

bound algorithms.

2.2.4.3 Depth Sequences for Rooted Trees

In his study, Zaki [69] treats the enumeration of subtrees occurring in a database

of rooted trees, but in a specialized setting compared to our definition (see section

2.2.1): the database trees and the subtrees are ordered, i.e. given two sibling nodes,

the order that they appear in at the same depth matters. In the paper, he adopts

an adjacency list representation for rooted trees, where the lists are encoded as

strings. The adjacency list takes the form of a depth-first search (DFS) run through

a rooted tree. The encoding maintains the invariant that, for any refinement of a

rooted tree, the tree’s DFS code is always a prefix of the refinement’s DFS code3.

The paper by Nijssen and Kok [43] treats the enumeration of unordered rooted

subtrees by generalizing Zaki’s approach to databases of unordered rooted trees.

They assign any unordered rooted tree to a specific ordered rooted tree, namely

the equivalent one in so-called ordered normal form, thereby reducing the problem

to the setting treated by Zaki before.

We will elaborate on this approach, starting with paths: Let p = {v1, . . . , vm} ∈ P
be a path, then its sequence is defined as the string λ(v1) . . . λ(vm), obtained by

concatenating node labels along the path (edge labels neglected here for brevity).

Obviously, either the sequence or its reverse yields a lexicographically lower se-

quence. On the other hand, no other sequence can possibly represent the same

path. Therefore, by convention, the lexicographically lower sequence uniquely

identifies the path, inducing a total order on paths.

The concept of representing a structure canonically by adopting a linear string

representation can be generalized from ordered to unordered rooted trees. In con-

trast to a path sequence, however, each node is augmented with depth information.

The procedure works “bottom-up”, starting at the nodes:

1. Assume a total order on the node labels. Together with node depth, this

induces

2. A total order for so-called depth tuples (conjunction of node label and node

depth), which in turn induces

3The term DFS code was coined by Yan and Han [66] for the gSpan algorithm. It is used here
more generally to denote any canonical encodings of DFS runs.
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Figure 2.4: Ordered rooted trees and rightmost path refinements.

3. A total order on DFS codes, obtained by concatenating depth tuples in the

order the nodes are visited during a depth first run through a rooted tree.

For any rooted tree, its lexicographically lowest DFS code (Minimum DFS code)

is selected as its ordered normal form. The ordered normal form induces a total

order on rooted trees and is sufficient (correct and complete) to enumerate all

possible rooted trees.

Example 2.4. In Fig. 2.4, Tree #1 has DFS code (0,Y)(1,Z)(2,X)(1,Z), while

Tree #2 has DFS code (0,Y)(1,Z)(1,Z)(2,X). Both rooted trees are subgraph-

isomorphic to each other, but only Tree #1 is in ordered normal form, since depth

tuple (2,X)<(1,Z) in the formalism by Nijssen and Kok.

In order to obtain all possible refinements of a rooted tree, it is sufficient to enu-

merate only refinements growing from a node on the rightmost path in this rooted

tree, as Nijssen and Kok show in their paper. Refining a rooted tree corresponds

exactly to appending an appropriate suffix to the rooted tree’s ordered normal

form. Any prefix of a rooted tree’s ordered normal form is the ordered normal

form of some subtree of the tree. In Fig. 2.4, only the dashed refinements of

Tree #1 are possible in Tree #3. All other configurations would contradict the

minimality of the DFS code.

2.2.4.4 Algorithms for Mining General Graphs

The idea of using DFS codes was most generically captured in the theory under-

lying the gSpan algorithm, published in 2002 by Yan and Han [66], because it

defines a code for the class of subgraphs in databases of general graphs in G.

Example 2.5. Fig. 2.5 shows a cyclic graph, together with two possible repre-

sentations, called DFS trees (slightly abridged from [66]). The edges found by the
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Figure 2.5: DFS Trees

DFS procedure are drawn normally (termed forward edges), while the others ap-

pear dashed. They are always cycle closing edges (referred to as backward edges).

As for rooted trees, DFS codes are totally ordered and subgraph-isomorphism is

equivalent to prefix minimum DFS codes. The DFS code for the DFS tree in Fig.

2.5 (b) is lower than the DFS code for Fig. 2.5 (c), while both are equivalent to

the graph in 2.5 (a).

The gSpan algorithm does not fully exploit the subset relation P ⊂ T ⊆ G of the

different subgraph types (see section 2.2.1) while the Gaston algorithm, published

by Nijssen and Kok in 2003 [44], uses a similar DFS code, but works in three

different phases according to the subset relation. More specifically, the phases are

kept strictly separated, which enables Gaston to make initially fast progress on

the efficiently enumerable subgraph classes of paths and trees. Only after one class

has been completely enumerated it starts to work on the next class.

A spanning tree of a cycle-closing graph g is a subgraph with the same number of

nodes as g. Any such graph has a spanning tree. For example, consider the solidly

drawn trees in Fig. 2.5 (b) and 2.5 (c) (the forward edges). They form spanning

trees for their respective graphs. Gaston uses spanning trees to enumerate general

subgraphs in the third phase. However, a similar concept is already applied to the

second phase: Gaston employs longest paths (so-called backbones) to enumerate

free trees. Therefore, backbones play a similar role for free trees as maximum

spanning trees play for general subgraphs. Importantly, backbones partition the

search space of free trees disjointly, since every free tree has exactly one backbone.

A well-known property of free trees is that any free tree has center node or two

nodes that form a bicenter. The center or bicenter is obtained by repeatedly

removing leaf nodes (see Fig. 2.6, adopted from [7]). Whether a free tree is

centered or bicentered is mediated by the length of the longest path within the
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Figure 2.6: Finding Centers and Bicenters of free trees. Backbones are marked
by dashes.

tree: being centered corresponds exactly to an even length of the longest path.

The center (bicenter) is conceived as the root (the two roots) of a (two) rooted

subtree(s), which enables the procedure described in section 2.2.4.3 for unordered

rooted trees.

Among the longest paths in a free tree, Nijssen and Kok select the one with the

lowest DFS code as the backbone of the free tree. To this end, they re-label nodes

and edges to make the backbone appear always first in the canonical ordering

for every tree. This allows Gaston to start with longest path enumeration in the

first phase. The second phase uses each path (starting with the longest ones) as

backbone and extends it to the maximum possible spanning tree.

2.2.5 Discussion

Gaston exploits specific properties of trees and graphs to structure the search

for free trees in a more detailed fashion than gSpan does. Specifically, it distin-

guishes paths and real trees. For the latter, in case of a center, a free tree can

be conceived simply as a rooted tree, with the root being the center. In case of a

bicenter, the free tree can be conceived as two separate, rooted trees, each rooted

at one of the bicenter’s nodes, and connected by a single edge between the two

root nodes. This effectively reduces the problem of enumerating free trees within

databases of general graphs to enumerating rooted trees containing a specific path

(the backbone).

Checking for canonical refinements in Gastons representation has constant time

complexity for the class of trees, as Nijssen and Kok show. Moreover, Gaston
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uses a combination of joins and rightmost path extensions, in order to traverse the

search space of subgraphs with a combination of breadth- and depth-first search.

The procedure is more sophisticated than in gSpan in that it stores the embeddings

of all refinements, which helps avoiding costly subgraph isomorphism checks [65]

(see the Gaston article for details about the implementation [44]). The latter are

computationally expensive, even for the canonically enumerable classes P and T ,

as explained in section 2.2.4.1.

2.2.6 Conclusions

Both frequent item set mining and frequent subgraph mining return sets. How-

ever, the former is concerned with sets of sets, whereas the latter returns sets of

subgraphs. Subgraph mining implies stronger conditions through the requirement

that subgraphs be connected. The more structured search space allows for parti-

tioning the search into different phases, an important property which may serve

as a basis for new perspectives on graph mining.

Since the search space in graph mining is more structured than for itemset mining,

it implies higher demands to avoid redundant generation of patterns. To this end,

canonical representations have been developed in the form of DFS codes. Although

defined for general subgraphs, cyclic subgraphs cannot be efficiently enumerated

using DFS code, in contrast to subtrees.
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From Patterns to Models

3.1 Introduction

Frequent subgraphs in graph databases encode patterns that are shared among

many of the graphs, which makes them inherently informative. Frequent subgraphs

have been used as patterns for a variety of learning tasks: for distance metrics [53]

and clustering [57], as well as for classification or regression models. However,

current methods for subgraph mining still suffer from scalability problems and

problems with excessively large solution sets.

Most of the predominant approaches employ minimum frequency and possibly con-

vex constraints such as χ2 values [6, 18, 31, 36, 44, 66]. An increasing minimum

frequency tends to favor a higher entropy with regard to target class distribution,

whereas statistical constraints retrieve subgraphs that are correlated with the tar-

get classes. However, the thresholds used still lead to an explosion in the number

of patterns found, which is a significant drawback of these approaches. As a result,

the solution set size is usually multiple times larger than the original database,

rendering it useless for many classification algorithms, and individual inspection

by domain experts as well.

Whereas distance metrics and clustering methods mostly exploit the graph struc-

ture of the frequent subgraphs directly, many classification or regression algorithms

take a more indirect approach, termed propositionalization [50]. In this setting,

subgraphs (or general patterns) can be represented as bit vectors, indicating their

presence or absence in the instances. In fact, this occurrence-based description

makes any discrete patterns amenable to such machine learning algorithms [52].

25
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Figure 3.1: The Stepwise Approach to Model Building, adapted from Bring-
mann et al. [5].

To obtain a compressed propositionalization, researchers often constrain the so-

lution set to open or closed frequent subgraphs (see section 2.2.1), yielding a

significantly reduced number of patterns. This might however prune important

structural information, since only the support is considered, which may not be

sufficient to adequately summarize the diversity of subgraphs.

Fig. 3.1 shows a propositionalized workflow, where some patterns are generated by

a mining algorithm and then represented in terms of occurrences in the database.

Note that the patterns could be anything here: sets, graphs, or other descriptors.

The important point of Fig. 3.1 is that patterns are merely represented by where

they occur or not occur in the database once the pattern mining step is finished.

To obtain a compressed representation, the workflow features a dedicated pattern

selection step, where a pattern set most suitable for the learning problem at hand

(more specifically, for the learning algorithm later on) is derived from the orig-

inal pattern set. This means optimizing the bit vector representation such that

patterns (columns) describe database instances (rows) as diverse (non-redundant)

as possible. Importantly, no intrinsic information (graph structure) is used for

compression directly here.
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The following reviews techniques that have been proposed for pattern set com-

pression1. Much effort has been dedicated to exploiting extrinsic properties (such

as occurrences or correlation), but little work seems to have been done involving

more domain dependent properties (such as graph structure) for that.

3.2 Pattern Set Compression

3.2.1 Motivation

The set of frequent subgraphs (denoted as the result set when referred to as result

of a graph mining algorithm applied to a database of graphs) has to be compressed

to be of actual use in most cases: after all, a graph with e edges may contain up

to 2e possibly disconnected subgraphs (powerset relation). Such large result sets

may become intractable for all kinds of algorithms [8].

� The effort for mining an exponential amount of subgraphs scales unfavorably

with database growth, no matter how efficient a graph mining algorithm

works.

� It has been argued that an uncompressed result set would require post-

processing due to redundancy of the patterns contained in it [7, 27, 52].

Experts would not be able to draw any conclusions from the vast amount

of very similar subgraphs without such post-processing, since the useful pat-

terns would be lost in the flood; similarly, the high-dimensional pattern

space would prevent machine learning methods from obtaining meaningful

models [2].

� Compressed representations save space, both on disk and in memory and

allow for faster processing of the data [27]. On a positive note, the need

for compression may turn into an advantage, since it can potentially prune

parts of the search space and stop the search process early on [27].

1More examples are discussed in sections 5.5 and 5.7 in the context of experiments.
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Figure 3.2: Open Patterns Search Space. Dashed lines indicates levels of
frequency.

3.2.2 Related Work

Quite surprisingly, previously proposed compression methods for sets of subgraphs

build mostly on the occurrences of subgraphs rather than directly on their struc-

tural composition. As such they are applicable to general pattern sets as well and

graph-specific properties are left unexploited.

Among the “classical” occurrence-based methods are open [6] or closed [8, 67]

frequent subgraphs or subtrees. They consist of the most general or most specific

patterns of all the patterns with the same occurrences (see section 2.2.1). Note

that, in the case of graphs, the notion of open/closed is not exactly the original

meaning from algebra. The hypothesis space of open frequent patterns is depicted

schematically in Fig. 3.2. A special case of closed frequent patterns are maximal

frequent patterns, for which a lot of studies have been done [8, 27, 62].

Open and closed frequent patterns yield a lossless compression of the set of all

frequent subgraphs [18], which is theoretically appealing. However, “lossless” is to

be understood only in terms of distinct occurrences, i.e. no distinct pattern from

the propositionalization is lost. In particular, the term does not apply in terms of

structure when applied in the graph domain, i.e. a lot of very diverse frequent sub-

graphs are suppressed in the output. Subsequent treatment of the graph structures
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will thus be greatly affected. Even in a purely propositional setting, many algo-

rithms are affected by repeated patterns (for example k-nearest-neighbor methods

employing a weighting based on common patterns). Thus they behave differently

when receiving different amounts of equivalently propositionalized patterns.

Moreover, the result set of open or closed patterns might still be enormous [18, 35]

and do not guarantee a certain degree of compression.

To obtain representative subgraphs more efficiently, many approaches have traded

completeness for smaller set sizes. Maximal frequent subgraphs encode frequent

commonalities of maximal size between graphs [27], which is inherently interesting.

Among the works employing maximal frequent subgraphs, sampling methods have

dominated in recent years, imposing diversity [2] or top-k [39] constraints on the

result set. However, they lose frequency information for the individual subgraphs,

and thus this solution might be too coarse [18].

A very different approach, inspired by information theory, more specifically, by

minimum description length, has been proposed by Cook and Holder [9]. They

iteratively extract informative subgraphs from a graph database and replace the

original occurrences, shrinking the database and creating a hierarchical represen-

tation from the extracted patterns. Another technique by Jeroen Knijf [35] tries to

find patterns characteristic for a “master tree”, assuming a forest (set of ordered

trees) that represent embedded subtrees. It does so by overlaying the input trees

according to minimum edit distance.

3.2.3 Discussion

It seems sensible to classify existing approaches to pattern set compression for

subgraphs along two dimensions: systematic vs sampling methods and generic vs

graph-specific methods.

Whereas sampling methods have been employing graph-specific properties as pri-

mary measures of interest and are especially targeted towards structural diversity,

systematic (or even lossless) approaches (with the exception of Cook and Holder’s

and Knijf’s work) have been leaning exclusively on generic properties, applicable

to propositionalized and thus general pattern sets. One could argue that occur-

rences are determined by structure in the case when the patterns consist of sub-

graphs, which is true. However, it remains an indirect use of structure. Hence, the

implementation of an explicitly structural summarization strategy (defined inten-

sionally) should yield a higher compression ratio while still retaining all essential

information.
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3.3 Correlated Patterns

This section treats a special kind of pattern compression, namely the selection of

patterns that are significantly correlated to the target values. Selecting correlated

patterns from a set is a supervised process, and thus must be seen in direct context

to model building. Thus, it is a more complex step than the compression strate-

gies discussed so far, combining aspects of the Pattern Selector and the Learning

Algorithm from Fig. 3.1.

Here, a classification function a is available, relating instances to target classes,

but we will also allow the function a to assign numerical values to instances for the

purposes of this chapter. We will first consider the special - but important - case

where the target classes are binary (e.g. active vs inactive) and show how this

setting integrates into branch-and-bound algorithms (see section 2.2). Generaliza-

tions to multinomial cases are straightforward, both in theory and implementation.

Then, a case study using correlation to numerical target values is presented.

3.3.1 Statistical Metric Pruning

Since many correlation functions for categorical target values are convex [42],

mining correlated patterns constitutes a convex constraint (see section 2.1.1). In

practice, it is common to combine such convex constraints with at least one anti-

monotonic constraint, such as minimum frequency. When combined with a branch-

and-bound algorithm that generates patterns by extension of edges and nodes (as

discussed in the last section), anti-monotonic constraints can be directly used to

prune the search space and terminate the search process at the G-border. It is

thus beneficial that convex constraints can be adapted to the branch-and-bound

scenario. A possible integration is described in this section.

If each subgraph occurred in half of the graphs, a set of k subgraphs could in

principle distinguish 2k bins of graphs. Since a higher global minimum frequency

raises the support of frequent patterns in at least one target class as well, it may

leverage a pattern’s discriminative potential for classification tasks.

Subgraphs that are correlated significantly with the target class can be filtered

with statistical measures. Due to the absence of both monotonicity and anti-

monotonicity, significance values cannot be used for anti-monotonic (nor mono-

tonic) pruning directly, however, the convexity of the χ2 function allows to derive

a related measure for anti-monotonic pruning.
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θ all

active y m

inactive x − y n −m
Σ x n

Table 3.1: Contingency table for pattern θ.

3.3.1.1 Target Class Correlation

For a given pattern θ, a 2 × 2 contingency table gives a joint distribution for two

binary properties of interest. Each cell counts how many times the two properties

are observed with the respective value. For example, consider a table with entries

fij, where i, j ∈ {1,2}. Correlation can now be measured with the χ2 function:

χ2(x, y) = ∑
i,j

(eij − fi,j)2
ei,j

, (3.1)

where ei,j is the expected value of cell i, j.

In our case, the χ2 function takes into account both the ratio of class values of the

occurrences as well as the support. For any pattern, the contingency table lists

the class-internal support, i.e. depending on whether the instances r covered by θ

are active or inactive, i.e. a(r) = 1, or a(r) = 0, respectively. More specifically, let

x = supp(θ, r), and let y ≤ x be the number of actives in the support of θ, i.e., with

label (say) ’1’. Moreover, the contingency table contains the overall distribution

of target classes. Specifically, n = ∣r∣, and m ≤ n is the total number of actives in

r. The result is depicted in Table 3.1.

It can now be checked whether the distribution of θ differs significantly from

the distribution of all patterns. Given a contingency table, the χ2
d function for

distribution testing, defined as

χ2
d(x, y) = (y −

xm
n
)2

xm
n

+ (x − y − x(n−m)
n
)2

x(n−m)
n

, (3.2)

calculates the value for the χ2 distribution test as the sum of squares of deviation

from the expected support for both classes. One can consider significance for each

target class individually. Thus, a significant pattern θ is correlated to either

1. the positive class, denoted by θ⊕, if y > x
n
m, or

2. the negative class, denoted by θ⊖, if x − y > x
n
(n −m).
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Figure 3.3: Visualized as stamp points, patterns 3, 4, 5 may be refinements of
the current pattern (node 2), whereas pattern 1 cannot be a refinement. The χ2

d

values (indicated by the background gradient) of points 3, 4, 5 cannot exceed
χ2
d(4,4) and χ2

d(5,0).

3.3.1.2 Stamp Points

Statistical Metric Pruning was initially suggested by Morishita and Sese [42], ex-

ploiting the convexity of the χ2 function.

In the case described in the last section it holds that 0 ≤ y ≤ n and 0 ≤ x − y ≤ n.
Following Morishita and Sese’s notation, we use x(θ) and y(θ) to emphasize the

dependency of x and y on θ. Using the fact that convex functions take their

extreme values at the points that form the convex hull of their domain, they

showed that, for any subgraph θ, x(θ) and y(θ) allow to calculate an upper bound

for the χ2
d value of θ′, for all refinements θ′ with θ ⪯ θ′:
χ2
d(x(θ′), y(θ′)) ≤max { χ2

d(y(θ), y(θ)), χ2
d(x(θ) − y(θ),0) } (3.3)

Therefore, the upper bound measure is anti-monotonic and may thus be used

for pruning the search space of methods that employ branch-and-bound, such as

breadth- or depth-first algorithms.

Example 3.1. Consider Fig. 3.3. Five different patterns are depicted as points

in the space spanned by possible x and y values, forming a set of so-called stamp

points. Moreover, it is assumed that they are in refinement relation to each other

in ascending numbering, i.e. when identifying patterns with their stamp points,

it holds that 1 ⪯ 2 ⪯ 3 ⪯ 4 ⪯ 5. The depicted parallelogram determines the space

where refinement stamp points of 2 with coordinates (9,4) (i.e. 3, 4, 5) may lie.

At the same time, no such pattern can possibly have a χ2 value (indicated by the

background gradient) larger than the maximum of χ2
d(4,4) and χ2

d(5,0), because
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convex functions (such as the χ2 function) take their extreme values at the points

that form the outer face of their domain.

Note that this example only considered the case of binary classification for illus-

trative purposes. However, generalization to the multinomial setting is straight-

forward using the χ2 function.

3.3.2 Pattern Correlation and Statistical Learners

This section demonstrates (in a case study) the effectiveness of correlation mea-

sures for patterns used in a very common machine learning setting. In this study,

we investigated the effects of correlated patterns on regression analysis, performed

in a nearest-neighbor scenario [41]. The hypothesis was that correlated patterns

would benefit a propositionalized setting in terms of predictive power of models,

when no additional chemical expert knowledge was applied. Experiments with

chemical datasets for various endpoints were conducted to support this claim.

3.3.2.1 Target Value Correlation

Analogous to patterns in a classification scenario, correlated patterns can be found

for the case when the target information consists of continuous, numeric values.

However, I am not aware of any possibility to derive an upper bound for correlation

values analogous to the statistical metric pruning. The problem seems to be that

convex functions are missing in this context.

The Kolmogorov-Smirnov (KS) test was used to identify features that correlate

with the endpoint under consideration. It compares two cumulative probability

distributions sampled from numerical data, and returns a p-value indicating the

probability that the two sets were drawn from the same probability distribution

(null hypothesis) [46]. Consider Fig. 3.4. Given a pattern θ, the set of target

values of its support Y and the set of all target values X (whether in the support

of θ or not) yield two different cumulative probability distributions.

3.3.2.2 Significance-Weighted Kernel

The learning algorithm consisted of a support vector machine (SVM), and the

task was to learn a QSAR regression model that relates chemical structure to

target activity in a propositionalized setting. SVMs are statistical learners that
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Figure 3.4: Comparison of the cumulative activity distributions of two (hypo-
thetic) sets of activity values X and Y with sizes 100 and 35, respectively. The
mean value of X is 1.0, the mean value of Y is 2.0. It is highly unlikely (KS
test gives p = 0.0001319) that X and Y have been drawn from the same data

source.

find class boundaries or functional relations by computing dot-products in high-

dimensional feature spaces, employing so-called kernel functions. An introduction

to kernel methods would be out of scope of this work, so the reader is referred to

the literature [54] for more information.

Intuitively, a kernel defines a measure of similarity between two instances (here:

molecules). In a comparative study, different spectral kernels based on chemical

structure were defined and evaluated [60]. Among the kernels studied, the Tani-

moto kernel [60] was evaluated favorably. It is essentially a set kernel [14]. The

related Tanimoto index is one of the most useful chemical similarity indices, as

shown in another famous study by Willet et al. [23]. The database molecules were

instantiated with a set of very basic patterns, namely all linear fragments (paths)

present in the database (cf. section 5.7). However, instead of denoting fragments

covering a specific compound or not with 1 and 0, respectively (cf. data repre-

sentation in Fig. 3.1), any fragment θ was represented by 1-pθ, if it covered the

compound, or by 0 else. Specifically, the significance weighted Tanimoto kernel is

defined as:

kw(r, s) = ∑
θ⪯r ∩ θ⪯s

1 − pθ
∑

θ⪯r ∪ θ⪯s
1 − pθ , (3.4)
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i.e. the significance-weighted fraction of patterns that graphs r and s share. Note

that setting all pθ values to 0 returns the standard Tanimoto kernel.

3.3.2.3 Applicability Domain Estimation

Due to chemical diversity, every QSAR model has only a limited domain of appli-

cability, namely “the physico-chemical, structural or biological space on which it

has been trained” [32]. Consequently, it can only make valid predictions for this

domain.

It has been shown that training compounds more similar to the query structure

give better predictions [19]. In our approach, a neighborhood similar to the query

compound with respect to structure and activity was automatically mined from the

training data as follows: Only compounds xi with kw(xq,xi) > 0.3 were considered

neighbors (referred to as the set N) to the query structure. If no neighbors for

a query structure could be found according to this definition, no prediction was

made. Preliminary trials showed that using a lower threshold yielded no significant

information gain. Higher values, on the other hand, led to excessive amounts of

empty neighborhoods and therefore missing predictions.

The so-described process of neighbor finding generates valuable information that

can be incorporated into a confidence index indicating the reliability of the pre-

diction, considering both dependent and independent variables [32]. It indicates

the structural “density” and similarity in activity for the neighborhood, derived

by statistical measures, which – of course – do not imply causality.

� The higher the median similarity s̃ of the neighbors, the higher the confidence

in the prediction5.

� Conversely, the higher the standard deviation σa of activity values of the

neighbors, the lower the confidence.

A variety of kernel functions has been reviewed for smoothing similarities [3]. In

the confidence index the Gaussian smoothed median similarity s̃ was assessed by

smoothing the single neighbor similarities, and taking the median of these values:

s̃ =median{ ϕ0.3 ( 1 − kw(r, s)) ∣ ∀s ∈ N }, (3.5)

5The median is used rather than the mean to reduce the sensitivity to potential skew in the
data.
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where ϕσ(x) = e−x22σ2 is the Gaussian squared exponential function with standard

deviation σ. The confidence value was defined as

conf = s̃e−σa . (3.6)

The exponential rapidly “punishes” large σa, but stays close to 1 for small values.

It was introduced due to the fact that the biggest errors occurred for the most

active compounds, where closer investigation revealed greatly varying target values

of the neighbors. This appeared plausible because those compounds require the

smallest doses for a reaction, and measurement errors were more likely in the

experiments that generated the data.

3.3.2.4 Significance-Weighted vs. Unweighted Kernel

The predictive performance of the significance-weighted kernel and the standard

Tanimoto kernel were compared for the EPAFHM dataset (Fathead Minnow Acute

Toxicity), specifically the LC50 values (lc50 mmol, 573 compounds) from EPAFHM

v4a, dating from 15 June 2007 [51].

All patterns were used in the runs, i.e. there was no p-value threshold applied.

A confidence value as described above was assigned to each prediction. Different

measures of predictivity were assessed in a cumulative fashion in descending con-

fidence order, meaning that, for every confidence level, the number describes the

predictions with higher or equal confidence.

� nr is the number of predictions made.

� r2 is the multiple correlation coefficient obtained by internal validation.

� q2 is the cross-validated coefficient that indicates the explained variance.

� Weighted accuracy (wa) is the fraction of predictions within the 1 log unit

error margin [4], weighted by their prediction confidence.

� Mean error (me) is the mean of the raw prediction errors, i.e. the errors are

not standardized.

� RMSE (rmse) is the root mean-squared error of the predictions.

We expected for both kernels increasing performance with increasing confidence

thresholds, with advantages for the significance-weighted kernel. The results (see
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Table 3.2: Leave-one out crossvalidation comparing significance-weighted and
standard Tanimoto kernel on the EPAFHM dataset using all patterns. For
every confidence threshold, the table lists the number of predictions made, q2,

weighted accuracy, mean error, as well as root mean-squared error.

Significance-weighted Standard Tanimoto

conf nr q2 wa me rmse nr q2 wa me rmse

0.150 207 0.68 0.79 0.61 0.82 144 0.66 0.86 0.6 0.88

0.163 195 0.68 0.78 0.62 0.83 133 0.65 0.86 0.63 0.91

0.175 178 0.69 0.78 0.62 0.83 116 0.63 0.84 0.67 0.96

0.188 165 0.69 0.77 0.63 0.85 100 0.68 0.87 0.62 0.88

0.200 147 0.74 0.77 0.62 0.8 87 0.67 0.86 0.64 0.91

0.213 127 0.75 0.76 0.65 0.83 64 0.65 0.84 0.72 1.01

0.225 116 0.76 0.77 0.65 0.83 56 0.63 0.82 0.73 1.04

0.238 100 0.76 0.75 0.68 0.86 45 0.62 0.84 0.72 1.07

0.250 90 0.75 0.75 0.67 0.85 41 0.58 0.83 0.77 1.12

0.263 81 0.72 0.74 0.68 0.87 37 0.74 0.83 0.68 0.87

0.275 70 0.73 0.72 0.71 0.9 31 0.75 0.86 0.66 0.85

0.288 65 0.73 0.76 0.64 0.83 27 0.68 0.87 0.62 0.8

0.300 60 0.73 0.77 0.62 0.8 26 0.7 0.89 0.6 0.79

median 116 0.73 0.77 0.64 0.83 56 0.66 0.86 0.66 0.91

Table 3.2) show that the significance-weighted kernel outperformed the unweighted

Tanimoto kernel in nr, q2, me and rmse, indicating that the p-values indeed can

help to identify patterns that are significant for the exhibited activity. They also

indicate a strong association between confidence and prediction quality (we suggest

that the better wa values for the Tanimoto kernel may be an effect of the lower

number of predictions made by this kernel).

Going one step further, it might be sensible to constrain the pattern set to patterns

that are highly significant, i.e. simply to leave out the insignificant ones straight

away. Plots of predictive vs. database activities for the datasets EPAFHM are

presented in Fig. 3.5, assessing the difference between using all patterns and only

those patterns with pθ < 0.1. Here, only the significance-weighted kernel was used.

Clearly, the predictions made within the applicability domain (black dots) were

much more precise in the latter scenario, although fewer predictions were made

inside the applicability domain in total. Thus, using significant patterns only can
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(a) (b)

Figure 3.5: EPAFHM scatterplots of predicted vs. database activity (-
log(mmol/l)) with the significance-weighted kernel using all patterns (left) and
significant patterns only (right). Predictions above a confidence threshold of

0.225 are drawn black, the rest gray.

benefit the model in principle. I omit a detailed discussion of results here and refer

the reader to our study published elsewhere [41].

3.3.2.5 Discussion

Some aspects of the machine learning scenario detailed in the previous section

deserve further attention:

Despite its members being sparsely distributed, the class of significant patterns

(leaving out the other patterns) may yield predictive models when used as de-

scriptors for machine learning. Here, we found that when the pattern set was

constrained to significant patterns, then few predictions were actually made (for

many query instances, no similar enough neighbors were found). In these cases,

the proposed similarity was based on relatively few patterns, and such sparse selec-

tion may lead to low average similarity. Using all patterns led to more predictions,

however the insignificant patterns seemed somewhat detrimental to model perfor-

mance. This may be explained by the most significant being “lost” within the

much larger set of insignificant patterns. The low total number of predictions may

well have been an effect of the fact that only paths (linear fragments) were used

in the model validation. Thus it is quite likely this could be changed once the set

is extended to other substructural classes.
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Confidence being associated with prediction quality is additional evidence for the

importance of using significant patterns: By definition, confidence included simi-

larity to the neighbor set as primary factor, being punished only by widely varying

neighbor target values, which is in turn directly dependent on the selected patterns.

As is clear from table 3.2, prediction accuracy could not be found to monotonically

increase with confidence. This may be due to very small instances being (wrongly)

predicted with high confidence, since the sketched nearest-neighbor approach has

no correction for graph size.

3.4 Conclusions

Model building was framed as a mostly modular workflow in typical machine learn-

ing scenarios: patterns are abstractly represented as entries in a matrix (proposi-

tionalization). This representation can be readily fed into many machine learning

algorithms that are implemented and publicly available.

In order to keep it as generic as possible, the workflow strictly maintains the

propositionalized representation from step to step. Each step is dedicated to a

specific task, the steps being mostly isolated from and ignorant of each other. At

least one step in the workflow is concerned with optimizing the patterns (more

specifically, the data represented by the patterns) for learning algorithms such as

classification or regression algorithms.

Mining correlated patterns is somewhat orthogonal to this workflow, since, be-

ing itself a supervised process, it combines aspects of discrete pattern mining and

model building. It was explained how correlated pattern mining may be inte-

grated into frequent pattern mining and results were presented that highlight how

a statistical learner can benefit from weighting patterns according to correlation,

and how sparsely a dataset can be represented while still yielding high accuracy

predictions.

The discussion highlighted a direction that will be followed throughout the rest of

this work: The search for highly significant patterns to yield a solid representation

of the dataset. It will be a crucial aspect to find those patterns in an efficient way

and to omit post-processing of the pattern set, which is deemed inefficient.





Chapter 4

Common Materials and Methods

This chapter introduces some material that is common to both backbone refine-

ment class mining and latent structure pattern mining, which will allow a better

reading of the experimental sections. Accordingly, the focus is on experimental

setups, which will share similar aspects, for example with regard to significance

testing.

4.1 Types of Subgraph Patterns

In the experiments, several types of subgraph descriptors were evaluated and com-

pared to backbone refinement class representatives and LAST-PM descriptors,

respectively, which we list here collectively upfront:

1. Linear Fragments : The set of all frequent subpaths.

2. Significant Trees : The set of all frequent and significant (see section 3.3.11)

subtrees.

3. Open Trees : The most general trees of the subsets with the same occurrences

from 2.

4. Maximal Trees : The most specific trees from 2.

The relation to the two types of subgraph descriptors presented in this work can

be compactly described as follows:

1Values exceeding 3.84 (≈ 95% significance for 1df) were considered significant.
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(a) Aromatic (b) Kekulé (c) Reduced

Figure 4.1: Molecular Graph Representations.

� Backbone Refinement Class Representatives : The most significant represen-

tatives of the backbone refinement classes from 2.

� LAST-PM Descriptors : Latent patterns based on 2.

Note, that open trees, maximal trees, backbone refinement class representatives

and LAST-PM descriptors form a summarization of the significant trees. Linear

fragments will serve as a baseline comparison.

4.2 Molecular Graph Representation

We distinguish three types of representations for molecular graphs here, but from

which hydrogens are deleted in any case (hydrogens attached to mined fragments

can be inferred from matching the fragments back to the structures in a post-

processing step):

� Aromatic: Most sophisticated representation, employs special node and bond

labels for aromatic bindings, for example inside Aromatic rings. Further-

more, it allows single, double, or triple bonds anywhere else.

� Kekulé: In between Aromatic and Reduced, employs alternating single and

double bonds within Aromatic rings but uses no special node labels. Allows

single, double, or triple bonds anywhere else.

� Reduced : Most basic representation, employs only single (aliphatic) bonds

throughout the structure and allows no special node labels.

Note that Reduced merely conveys the plain structural scaffold, whereas Kekulé

and Aromatic make the special chemical role of aromatic bindings more or less

explicit. Kekulé re-uses already available bond types to denote aromatic rings,
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whereas Aromatic invents a dedicated bond and node type. An important property

of Kekulé is that it is not possible to decide if a given non-cyclic fragment is part

of an aromatic ring or not, in contrast to Aromatic. In other words, Aromatic

is a very precise representation, whereas Kekulé is ambiguous. Fig. 4.1 gives

examples of the three different representations, where all node labels have been

made explicit. Note the special node label (lowercase “c”) in the ring in Aromatic.

4.3 Datasets

4.3.1 Small and Medium-Sized Datasets

According to the formal introduction in section 2.2.1, the datasets feature binary

target classification. This means every molecule is assigned to a target class (e.g.

active vs. inactive). All datasets are publicly available, either from the original

websites or from the author’s website (see Appendix C).

OFS-Data: The three small-sized chemical datasets were originally used in “Opti-

mizing Feature Sets for Structured Data” by Rückert and Kramer [49].

� Estrogen Receptor Binding (nctrer, 139 active / 232 compounds) [12]

� Bioavailability (yoshida, 159 active / 265 compounds) [68]

� Blood-brain barrier (bloodbarr, 276 active / 413 compounds) [38]

The nctrer dataset deals with the binding activity of small molecules at the estro-

gen receptor, the yoshida dataset classifies molecules according to their bioavail-

ability, and the bloodbarr dataset deals with the degree to which a molecule can

cross the blood-brain barrier. These characteristics are important for drug design

and drug treatment:

Bioavailability characterizes speed and quantity of a drug being available at the

target organ of treatment and is thus a vital parameter of prospective new medic-

inal agents. Also, for treating disorders of the central nervous system, drugs must

be able to penetrate the bloodbrain barrier to be able to reach the target organ

(the brain). This ability is thus a vital aspect in designing such drugs. Finally,

preconditions for estrogen receptor binding are applied in drug design for human

estrogen replacement therapy, as well as to identify estrogenic endocrine disrup-

tors.
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CPDB-Data: Four medium-sized chemical datasets were obtained from the Car-

cinogenic Potency Database (CPDB) at http://potency.berkeley.edu/cpdb.

html, version 08/04/29, were used in the experiments:

� Salmonella Mutagenicity (SM, 388 active / 810 compounds)

� Rat Carcinogenicity (RC, 459 active / 1145 compounds)

� Mouse Carcinogenicity (MoC, 428 active / 927 compounds)

� Multicell Call (MuC, 553 active / 1067 compounds).

Mutagenicity and carcinogenicity are obviously of major importance for all as-

pects of hazard detection and risk assessment of chemicals, as well as to drug

design. Corresponding studies have been routinely carried out using laboratory

animals (in-vivo testing), which raises ethical problems. Legislation, e.g. in the

EU, demands to reduce, refine and finally replace animal testing, wherever pos-

sible, which has been raising a substantial interest in computational (in-silico)

methods for modeling such properties.

4.3.2 Large-Scale Datasets

For the large-scale analysis, experiments were performed on parts of the NCI Yeast

Anticancer Drug Screen datasets at http://dtp.nci.nih.gov/yacds/download.

html (April 2002 release). These datasets reports growth inhibition of yeast strains

when exposed to chemicals as compared to solvent only:

� AC-One (stage 0): Total of 87,264 compounds, 12,068 active (active, if growth

inhibition of at least 70 % in at least one strain)

� AC-All (stage 0): Total of 87,264 compounds, 5,777 active (active, if growth

inhibition of at least 70 % in all strains)

� AC-All (stage 1): Total of 10,924 compounds at the high dose (50 microM),

5,433 active (active, if growth inhibition at least 70 % in all strains)

This data was gathered by the National Cancer Institutes of the United States

to facilitate drug design. Chemicals were applied to cell lines with mutations in

order to assess their potency as drug candidates for cancer treatment.

http://potency.berkeley.edu/cpdb.html
http://potency.berkeley.edu/cpdb.html
http://dtp.nci.nih.gov/yacds/download.html
http://dtp.nci.nih.gov/yacds/download.html


Chapter 5

Backbone Refinement Class

Mining

This chapter treats Backbone Refinement Class Mining, which extracts a sparse

class-correlated collection of subgraphs from a chemical database by combining

statistical and frequency constraints with structural constraints.

Section 5.1: Introduction. Discusses what could be improved on current meth-

ods to summarize the search space of frequent significant trees, leading to an in-

formal description of backbone refinement class mining. An intuitive account of

the approach supports the sketched direction. Backbone refinement class mining

is formally defined.

Section 5.3: Compression. Examines the compression potential of backbone

refinement class mining by comparison to the set of all subtrees in an artificial

-but reasonably chosen- search space.

Section 5.4: Coverage and Representativeness. What parameters influence

coverage and number of instances a pattern represents most? Does the sparsity of

backbone refinement class descriptors impair coverage compared to other descrip-

tors? The questions are treated using several values for minimum frequency and

two different chemical representations.

Section 5.5: Diversity In Structure And Occurrence. Predictive models

and human experts need descriptors that are diverse, so that they can describe

data in a variety of aspects. The diversity and distribution of patterns produced

by backbone refinement class mining are investigated here.

45
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Section 5.6: Runtime Analysis. Backbone refinement class mining employs

an effective pruning strategy which we analyze in detail. Its connection to top-k

mining is discussed and its power assessed in experiments.

Section 5.7: Classification Accuracy. Re-iterates on the question of chemical

representation from section 5.4 by comparing three representations according to

classification accuracy. Then backbone refinement class descriptors are compared

against other compressed substructural representations.
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5.1 Introduction

Current methods for subgraph mining still suffer from scalability problems and,

quite related, problems with excessively large solution sets. Most of the predom-

inant approaches employ minimum frequency and possibly statistical correlation

criteria such as χ2 values [6, 31, 36, 44, 66]. An increasing minimum frequency

tends to favor a higher pattern entropy, whereas statistical constraints retrieve

subgraphs that are correlated with the target classes. However, the thresholds

used still lead to an explosion in the number of frequent patterns, which is a

significant drawback of these approaches. As a result, the size of the resulting

pattern set is usually multiple times larger than the original database, rendering

it useless for subgraph-based classification models and individual inspection by

domain experts, at least for very large datasets. In order to build a more sparse

representation with a significantly reduced number of patterns, the solution set is

often constrained to open or closed patterns. This might however prune impor-

tant structural information, since only the support is considered, which may not

be sufficient to adequately summarize the diversity of subgraphs.

Hence, the implementation of an explicitly structural summarization strategy (de-

fined intensionally) should yield a higher compression ratio while still retaining all

essential information and achieving better running times. This approach, called

Backbone Refinement Class Mining (or BBRC mining for short) combines prin-

ciples from correlated subgraph mining [6, 42] with a novel strategy to ensure

diversity in structure rather than in subgraph occurrence. It proposes to increase

structural dissimilarity in order to both increase inter-pattern entropy and decrease

the number of solution patterns. A natural property of tree-shaped subgraphs (the

backbone) is used to represent classes, which renders the set suitable for compu-

tational models even for large-scale datasets.

The remainder of this chapter discusses related work, the intuition behind back-

bone refinement class mining, and concludes with a formal definition.

5.1.1 Related Work

Enumerating all frequent subtrees in a database can be done efficiently by using

depth-sequences, see section 2.2.4.3. In order to summarize the mined patterns in

the unsupervised setting, i.e., when no target class information is available, most

methods consider (only) the support of patterns. For instance, the solution can

be restricted to open (closed) subgraphs of various types. By definition, these
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techniques represent refinements with identical occurrences by the most general

(the most specific) pattern. They can be easily integrated into graph mining with

minimum support.

Rückert and Kramer [49] presented a solution to class-correlated pattern mining

based on occurrence lists, which aims for extensionally diverse sets of structural

patterns. Stochastic Local Search (SLS) is used to optimize the dissimilarity of

patterns, more specifically, to minimize the dot product between occurrence vec-

tors. The main drawback of the approach is the excessively long running time of

SLS to find small sets of diverse patterns.

Generally, the common strategy in most of the current approaches is to represent

a large part of frequent patterns by representatives that form a summary of their

occurrences. However, ignoring the wealth of structural information may be a

drawback for three main reasons:

1. Occurrence-based representation is not directly related to structure. For

instance, refinements on different support levels are not observed together,

which might prune important data or could lead to redundant patterns.

2. For the same reason they also do not distinguish between different subgraph

types for occurrence-based methods, e.g., paths are refined to trees arbitrar-

ily without changing the mining strategy. Given the variability of graphs,

structural invariants may be desirable to be able to process different parts

of the search space differently, for example to be able to concentrate on sub-

trees only and speed up the search, or to use the structural information to

process the gathered patterns even during the search, which could help to

avoid postprocessing.

3. Occurrence-based methods are forced to mine a representative for any fre-

quent support level, which could impact performance.

Al Hasan et al. [2] employ sparse representations of maximal frequent subgraphs

obtained by sampling. The approach aims for structural diversity (orthogonality)

of the sampled patterns while enforcing a certain level of structural similarity

(representativeness) at the same time. It is a supervised method that repeatedly

evaluates candidate sets using a score function.

In contrast to occurrence-based representations, such as open/closed patterns, I

propose to partition the search space directly by structure. The ORIGAMI patterns

are defined structurally, and therefore bear some similarity to the descriptors pro-

posed here. Backbone refinement class representatives are compared favorably
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Figure 5.1: Three example trees q1, q2, and q3 with the same backbone b. It
holds that q1 ⪯b q3 and q2 ⪯b q3, but neither q1 ⪯b q2 nor q2 ⪯b q1. Therefore, q1

and q2 are not in the same backbone refinement class.

against those patterns, which will be underpinned by theoretical and empirical

evidence for their potential to provide a compressed representation of frequent

and significant patterns, and to significantly improve classification accuracy over

occurrence-based techniques. Moreover, it is shown that a structure-aware search

can be implemented efficiently and that the method is scalable to datasets larger

than those previously considered in correlated class mining.

5.1.2 A New Class of Substructures

Recall the definition of path from section 2.2.1. As discussed in section 2.2.4.4,

depth sequences can be used to canonically enumerate trees that grow from a

specific backbone. An (immediate) tree refinement of t ∈ T is an addition of an

edge and a node to t, such that the result t′ is still acyclic, i.e. t′ ∈ T . A backbone

refinement is a tree refinement that is backbone-preserving, i.e. b(t′) = b(t).
The following idea is central to backbone refinement class mining: A given back-

bone spans a maximal tree, i.e., no tree refinement may be added to that tree

without changing the backbone. Since every tree has exactly one backbone, by

maximally tree-refining all backbones, the partial order of trees is disjointly par-

titioned across different backbones.

The classes used here are induced by the conjunction of a backbone and a refine-

ment, hence the name backbone refinement classes (BBRCs).

Example 5.1. In Fig. 5.1, q1 ∶ C-C=C-C=C(-C)-O-C and q2 ∶ C-C=C-C(-C)=C-O-C
are in different classes, but q3 ∶ C-C=C-C(-C)=C(-C)-O-C is in the respective

classes of both q1 and q2 1. Assume that the search starts with the backbone b ∶
C-C=C-C=C-O-C from Fig. 5.1. Assume further that the search then refines to

q1. It may further refine to q3. However, to enumerate q2, it will have to backtrack

1See http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html for notation.

http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
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(a) Eugenol
(4-allyl-2-

methoxyphenol,
Pubchem CID 3314)

(b) Methyleugenol
(4-allyl-1,2-

dimethoxybenzene,
Pubchem CID 7127)

Figure 5.2: Small structural modifications turn a harmless substance (left)
into a carcinogen (right). The backbones are marked bold.

to the backbone position and branch and initiate a new class. Since q3 is a super-

graph of q1 and q2, it is in both classes (but it is only enumerated once due to the

enumeration strategy).

5.1.3 Intuition

According to section 5.1.2, backbone refinement classes partition the search space

structurally. Fig. 5.2 shows an example where structural summarization directly

detects information that other methods may miss. It depicts two structurally sim-

ilar compounds: eugenol, Fig. 5.2(a), and methyleugenol, Fig. 5.2(b). Eugenol is

used widely as flavoring agent and in medicine as a local antiseptic and anesthetic.

Methyleugenol, however, is “reasonably anticipated to be a human carcinogen”2.

In experiments with rodents, methyleugenol induced cancer in multiple organs,

especially in the liver. Note that the structure graph of the latter is a refinement

of the former. Such deviations might therefore not be detected by methods that

represent sets of patterns by most specific or most general patterns. In contrast,

the structural method is able to detect this case: Due to the backbone change be-

tween the two structures, the structures belong to different backbone refinement

classes3 and would therefore be represented differently. It can be argued that the

backbone change in the example was selected on purpose. In practice, however, it

is useful in a surprisingly large number of cases. Also, other structural invariants

are conceivable, e.g. constraints on branching.

Therefore, I propose to select the most significant representative from every class

induced by the structural criterion. Fig. 5.3 schematically depicts the general

2See http://ntp.niehs.nih.gov/ntp/roc/eleventh/profiles/s109meth.pdf for details.

3The approach is currently limited to tree-shaped fragments, but that should not invalidate the
argument.

http://ntp.niehs.nih.gov/ntp/roc/eleventh/profiles/s109meth.pdf
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Figure 5.3: Backbone Refinement Class search space, spanning multiple sup-
port levels as opposed to occurrence-based methods. Backbone Refinement
Class Representatives are more probable in lighter regions of the hypothesis

space.

search space for backbone refinement classes (see section 5.1.2). The search

branches into different directions, corresponding to mutually exclusive sets of pat-

terns with respect to “⪯” and sometimes joins again.

Classes may spread across many support levels, due to their structural definition-

however, class representatives are more likely in the lighter regions of Fig. 5.3,

i.e., patterns with medium support tend to be most significant. Due to the con-

vexity of the χ2 function, patterns with very low or high support either have too

little weight, or their occurrences’ class distribution resembles closely the overall

database distribution. More formally, for high-support patterns, the weight factor

(see section 3.3.1.1) x
n
is close to 0, while for low-support patterns y is close to

m, and x − y is close to n −m, where x (y) is the number of instances (active

instances) covered by the pattern, and n (m) is the number of instances (active

instances), see section 5.6.1 for the exact definitions. To summarize, the dichotomy

between classes leads to a sparse (by taking only the maximal class member) and

structurally diverse (by the structural definition of classes) selection of patterns.

Most backbone refinement class representatives are sampled from the middle of

the search space, where the majority and the most diverse patterns reside. This

distribution also allows for early pruning of the search as well as robustness against

increasing minimum frequency, since not every frequent support level is visited.
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5.2 Backbone Refinement Class Mining

The concepts are formally defined now.

5.2.1 Structurally Defined Classes

Definition 5.1 (Backbone Refinement Classes). Consider the Backbone Refine-

ment Classes of backbone b ∈ P , denoted by BBRCb = {BBRCb1 , . . . ,BBRCbn},
where each BBRCbi is the set of trees that are backbone refinements of each other

with respect to b, i.e. for all t, t′ ∈ BBRCbi the following conditions hold:

1. b(t) = b(t′) and
2. t ⪯ t′ or t′ ⪯ t.

The backbone refinement relation given by conditions 1. and 2. is denoted by

⪯b. The set of all backbone refinement classes for a graph database R is called

BBRCR.

It follows directly from the definition, that backbone refinement classes are in

general not disjoint for the same backbone. More precisely, given two BBRCs

BBRCbi and BBRCcj , they are associated in one of two possible ways: BBRCbi

and BBRCcj are either

1. not disjoint, iff b = c, or
2. disjoint, iff b ≠ c.

For case 1, members of the two classes BBRCbi and BBRCcj are enumerated such

that the refinement process starts at the same backbone, but at some later point

branches into different directions. It is possible that BBRCbi and BBRCcj have

a common maximal supergraph (see Fig. 5.1 and 5.3). For case 2, no common

elements exist, since b and c occupy disjoint parts of the search space. Fig. 5.4

gives an example of two backbone refinement classes with the same backbone.

They have a common maximal supergraph (case 2).
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Figure 5.4: Backbone Refinement Classes. In this example, the two classes
have a common maximal supergraph.

5.2.2 Mining Representatives

The objective of Backbone Refinement Class Mining is to find the most significant

representative for each backbone refinement class, formally:

Definition 5.2 (Backbone Refinement Class Mining). Given a graph database R,

a user-defined minimum supportminsup and user-defined minimum χ2 value u, for

all B ∈ BBRCR, find the most significant t ∈ B that is frequent, i.e. supp(t,R) ≥
minsup, and significant with respect to occurrence in the target classes, i.e. χ2

t ≥ u.
If more than one such patterns exist, return the most general one.

Note that the selection process is in fact not oriented on frequency levels (see

section 5.1.3). Instead, it is not clear a priori across how many levels of frequency

a class stretches and where the representative patterns reside.

5.3 Compression

Backbone refinement classes address the problem of exponentially sized result sets

right during the mining process, not by post-processing. Also, compared to other

graph mining methods that output condensed representations of the fragment

pattern space, it shows a much higher degree of compression.

In the following, a formula for the number of backbone refinement classes induced

by a rooted perfect binary tree will be derived. We will compare this number to

the complete set of subtrees containing the root node, which shows the amount

of compression possible with backbone refinement classes. Then, those properties

are put to the test in experiments.
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Figure 5.5: Left: Rooted perfect binary tree with height 3. A longest path β∗

of length 6 has been marked by dashes. It has branches Bβ∗ = {a, b, c, d}, where
the subtrees induced by b and c have longest paths of length σ(b) = σ(c) = 2.
The path β∗ induces ρ(β∗) = 4! = 24 backbone refinement classes. Right: A

backbone with branches a, b, c (gray) attached.

First, a theoretic bound on the degree of compression with respect to the full set

of all subtrees will be derived in sections 5.3.1 - 5.3.4. Following that, we will see

the actual degree of compression backbone refinement class representatives yield

for several medium-sized CPDB datasets and for parts of the NCI dataset, the

largest dataset that has been used in correlated graph mining.

5.3.1 Induced Backbone Refinement Classes

A rooted perfect binary tree is a perfectly balanced binary tree with a designated

root node of degree 2. An example of height 3 is shown in Fig. 5.5(a).

Of course, in real datasets, the search space will most likely not have the perfect

binary property. However, we observed that trees for typical carcinogenicity and

mutagenicity databases have a branching factor < 2. Therefore, it seems legiti-

mate to simplify the theoretical setting and use binary trees for the estimation of

compression. Furthermore, intuition tells that the relationships described in the

following also hold for higher branching factors.

Example 5.2. Consider a backbone β of a certain length such as the one in Fig.

5.5(b) with length 4. A branch (gray) is either present or not present (Fig. 5.5(b)

shows all branches present). The number of branches is σ(β) = length(β) − 1,
where length(β) is the number of edges in β.

Let the branches be labeled a, b, c, . . .. Consider the set B of branches {a, b, c, . . .}
and all its subsets including the empty set. The subsets can be partially ordered

in a directed set graph according to “⊂“ (set inclusion ), such as shown in Fig. 5.6

for the set {a, b, c}. Note that there is alway a node corresponding to the full set

of branches (with indeg σ(β) and outdeg 0), as well as a node corresponding to
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a,b,c

a,b a,c b,c

a b c

Figure 5.6: Set graph corresponding to the subsets of {a, b, c} and the partial
order induced by the subset relation.

the empty set (with indeg 0 and outdeg σ(β)), where in(out)deg of a node is the

number of edges going into (emanating from) that node.

Lemma 5.3. The number of paths from the empty set node to the full set node

in the set graph of a backbone equals the number of backbone refinement classes

induced by this backbone. It is ρ(β) = σ(β)!.
Proof. Starting at the empty set node, after having traversed i edges, there are

σ(β) − i ways to add exactly one item to the current set, which in combination

yields σ(β)! different paths. Let B1, . . . ,Bn denote all the subsets of B, including

the full and empty sets. Associate x ∈ Bi with the following meaning: x is present

on the backbone. It follows that two sibling nodes in the set tree induce two

different backbone refinement classes, since all elements in one class contain a

branch that no element from the other class contains (no two trees are refinements

of each other). On the other hand, the subgraph relation between a child and a

parent node does not induce a new backbone refinement class, since all branches

on the parent are still present on the child.

5.3.2 Number of Backbone Refinement Classes

Lemma 5.4. The number of backbone refinement classes induced by a subtree of

height h with root node on the backbone of a rooted perfect binary tree is recursively

given by

b(h) = (h − 1)! + (h − 1) h−1∑
i=1

b(i). (5.1)

Proof. From Lemma 5.3: The number of backbone refinement classes induced by

a longest path β of this branch is ρ(β) = (h − 1)!.
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Then, for every branch bi of the branches b1, . . . , bh−1 of β, we recursively add its

number of induced classes. Every branch can be combined uniquely with the h−2
other branches, or combined with none, thus appearing in h−1 induced classes.

We are now in the position to state the result of this section.

Theorem 5.5. The number of backbone refinement classes in the search space of

rooted perfect binary trees of height h is recursively given by

B(1) = 1 (5.2)

B(h) = h∑
i,j=2

2i−12j−1 [ (i + j − 2)! + (i − 2) i−1∑
s=1

b(s) + (j − 2) j−1∑
t=1

b(t) ] , h ≥ 2
(5.3)

Proof. There are∑h
i,j=2 2

i−12j−1 paths containing the root in a rooted perfect binary

tree of height h. For each pair (i, j), the corresponding path has i + j − 2 subtree

inducing branches (because of the missing branch at the root node) and (i+j −2)!
induced backbone refinement classes. Then, for every branch, we add its number of

induced classes. On each side of the root, every branch can be combined uniquely

with the i − 2 and j − 2 other branches, respectively.

5.3.3 Number of Subtrees

Szekely and Wang [61] showed that a rooted perfect binary tree with height h has

F (h) = ⌊q2h+1⌋ − 1 (5.4)

non-empty subtrees containing the root, where q ≈ 1.502837.

5.3.4 Comparison of Backbone Refinement Classes and Tree

Set Sizes

For different values of height h we calculate the number of backbone refinement

classes B(h) according to Theorem 1, as well as the complete tree set size F (h)
according to the result of Szekely and Wang. Fig. 5.7 compares the values for

heights 1 to 8. Clearly, F grows much faster than B. Note that there is a double

exponential in F which does not occur in B. The log-scaled chart in Fig. 5.7
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h B(h) F(h)

1 1 4

2 8 25

3 632 676

4 60,280 458,330

5 11,922 296 2.101e+11

6 4.126e+09 4.413e+22

7 2.138e+12 1.947e+45

8 1.537e+15 3.792e+90  1
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Figure 5.7: Comparison of backbone refinement classes and full subtree set
sizes for heights 1 to 8 (log-scaled).

reveals this extra exponential growth of F , while B is nearly linear on the investi-

gated interval. In summary, we have a compression by backbone refinement class

representatives of at least from double exponential to exponential, compared to

the full set of subtrees.

5.3.5 Experiments

The compression of three common types of fragment descriptors, namely all linear

subgraphs, significant trees, and open trees, were compared to that of backbone

refinement class representatives. Note, that open trees and backbone refinement

class representatives form a summarization of the significant trees (see section

4.1). Minimum frequencies of 6 and 200 were employed for medium-sized and

large-scale data, respectively, to avoid excessive numbers of subgraphs. This was

well below 1 % of the respective data set sizes for the medium-sized and 2 % for

the large-scale datasets. For the linear subgraphs, no minimum frequency and

no significance threshold was used; however, refinement was stopped at frequency

1, i.e. a fragment with single occurrence was included in the pattern set but

not further refined. All datasets were given to the algorithm in non-aromatic

representation, i.e. without special labels for carbons and edges that are part of

an aromatic ring.

Table 5.1 compares the resulting pattern set sizes for the different fragment types.

Fig. 5.8 summarizes this information by mean values of relative fragment counts

across the different datasets, revealing high compression for backbone refinement

class representatives. On large-scale data, the pattern set sizes of maximal trees
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SM RC MoC MuC

1. Linear Fragments 48,259 86,300 49,816 70,802

2. Significant Trees 27,093 94,991 22,395 29,970

3. Open Trees 8,062 4,569 1,937 5,122

4. BBRC Representatives 2,715 5,183 3,083 3,636

Table 5.1: Pattern set sizes for all linear fragments, significant trees, open
trees, backbone refinement class representatives for the four CPDB datasets.

Figure 5.8: Fragment count mean reduction.

were investigated instead that of linear fragments due to combinatorial explosion

for the latter on a dataset with this size (see Table 5.2). Here, a subset of AC-one

(stage 0), composed of all actives and an equal number of inactives sampled ran-

domly from the dataset (2*11,700 = 23,400 compounds) was used. The second

run, on AC-All (stage 1), used all actives and inactives (in total, 5,248+5,300

= 10,548 compounds). Moreover, we used aromatic perception here to keep the

pattern set as concise as possible (see section 5.4).

The empirical findings suggest that fragment set sizes may be reduced by 94 %,

91 % and 31 % through the use of backbone refinement class representatives com-

pared to all linear subgraphs, significant trees and open trees, respectively. On

large-scale data, the effect was even more pronounced: Backbone refinement class

representatives had a very condensed representation of below 5%, whereas max-

imal and open trees achieved a reduction up to only ∼ 50%. Thus, backbone

refinement class representatives reduced the fragment sets much more drastically

for these large-scale datasets than for the smaller validation datasets.
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AC-One (stage 0) AC-All (stage 1)

Significant Trees 1,190,763 291,729

Open Trees ? 216,206

Maximal Trees 556,673 148,562

BBRC Representatives 31,450 14,381

Table 5.2: Pattern set sizes for large-scale datasets AC-One (stage 0) and
AC-All (stage 1). ’?’ indicates that computation terminated with an error.

.

5.3.6 Conclusions

Backbone refinement class representatives are able to compress the pattern space

very efficiently. It can be shown that the number of backbone refinement class

representatives grows only exponentially, while the set of all subtrees grows double-

exponentially with the height of the artificial search space. The joint effect of

the two key components of backbone refinement class mining explains the sparse

representation. On the one hand, the search space is structurally partitioned into

equivalence classes, conversely to occurrence-based approaches. Such a partition

may contain multiple levels of occurrences in the search space. On the other hand,

the pattern set for each partition is reduced to a single representative: its most

correlated member. Therefore, the “granularity” of backbone refinement classes is

much higher than occurrence-based approaches, while structural dissimilarity of

the representatives is favorable (see section 5.5).

In the experiments, we have compared the compression of open and maximal trees

to those of backbone refinement class representatives. Given that the former meth-

ods have been standard approaches for pattern set reduction in graph mining –

even without the reduction to significant patterns – and the huge differences shown

in the experiments, the structural compression approach of backbone refinement

class mining may interesting for condensed representations in models as well as

for human experts.

5.4 Coverage and Representativeness

The measures of coverage (number of patterns per instance) and representativeness

(number of patterns per class), which we will investigate in this section, plays an

important role in the question how sparse we can make our pattern sets without
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loosing much descriptive potential: The higher the coverage and the lower the

representativeness, the richer each instance is described, which in turn is beneficial

for models (at least those that can handle high dimensionality). A pattern set

should, on the other hand, allow for fast, memory saving computational models,

as well as for interpretable representations of the data set- raising a demand for a

reduced set of significant, non-redundant patterns.

While this section gives insights into coverage and representativeness of backbone

refinement class descriptors per se, it also investigates how stable these proper-

ties are. Intuitively, backbone refinement class representatives should occur more

frequently than at minimum frequency since they are not the most specific, but

the most significant members of their respective classes. Therefore, the identity of

backbone refinement class representatives (and thus their occurrences) should be

somewhat independent of minimum frequency. In a chemical context, it is inter-

esting to assess the effect of aromatic perception, i.e. if molecules are represented

with aromatic bindings or not.

5.4.1 Experiments

Coverage and representativeness were assessed under the factors of varying mini-

mum frequency and (non-)aromatic perception on two large-scale datasets. Differ-

ent degrees of coverage and representativeness were not actually tested in models

at this time- rather, those characteristics were studied when parameters of the

mining process were changed. Besides medium-sized datasets, large-scale data

was used to make the effects as pronounced as possible, i.e. a large number of

instances should render differences in minimum frequency maximally visible.

5.4.1.1 Coverage

According to the intuition from section 5.1.3, backbone refinement class mining is

relatively robust in terms of coverage, since only the most significant member of

each backbone refinement class is mined and since the most significant fragments

occur in the middle of the search space. Thus, growing minimum frequencies

should remove fewer patterns when the dataset is represented by backbone refine-

ment class representatives, as compared to when it is represented by the set of

significant trees (see section 4.1).

Table 5.3 shows how coverage decreases (in percentages of the original set size),

when minimum frequency is raised from 3 to 4, 5, 6, 8, 10, 20, and 40� of the
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SM RC MoC MuC

MF ALL BBRC ALL BBRC ALL BBRC ALL BBRC

� % % % % % % % %

3 100.00 100.00 100.00 100.00 . . 100.00 100.00

4 100.00 97.92 100.00 100.00 . . 100.00 100.00

5 100.00 95.83 94.64 96.00 . . 91.38 95.65

6 100.00 95.83 91.07 96.00 . . 84.48 91.30

8 91.04 95.83 82.14 88.00 100.00 100.00 79.31 91.30

10 85.07 91.67 80.36 88.00 100.00 100.00 77.59 82.61

20 73.13 87.50 69.64 76.00 76.47 83.33 65.52 73.91

40 56.72 83.33 48.21 64.00 52.94 58.33 50.00 60.87

Table 5.3: Coverage Table for Backbone Refinement Class Representatives
and Significant Trees for the CPDB datasets and different values of minimum

frequency. Dots indicate missing values due to combinatorial explosion.
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Figure 5.9: Mean values of Table 5.3, taken across the CPDB datasets SM, RC,
and MuC.

dataset size. For MoC, we had to leave out the lowest frequencies to combinatorial

explosion of the pattern set. Clearly, for all four datasets, backbone refinement

class representatives maintained a higher relative coverage. The effect is quite

pronounced, although it varies between the datasets. Fig. 5.9 summarizes Table

5.3 by taking mean values across SM, RC, and MuC. It suggests that, on average,

backbone refinement class representatives are able to maintain about 10% higher
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Dataset Aromatic? Min-freq Mdn M (SD) # C

AC-One (stage 0)

y
200 1.623 1.650 (0.479) 84,414

100 1.633 1.673 (0.509) 84,500

n
200 1.903 1.878 (0.501) 84,415

100 1.914 1.896 (0.523) 84,422

AC-All (stage 0)

y
200 1.580 1.582 (0.499) 84,342

100 1.613 1.631 (0.516) 84,458

n
200 1.785 1.751 (0.488) 84,437

100 1.820 1.800 (0.493) 84,485

Table 5.4: Coverage Table for AC-One (stage 0) and AC-All (stage 0) datasets
(log10), with and without aromatic ring perception.

coverage relative to the lowest frequency than the complete set of significant trees.

For the large-scale data, first a minimum frequency of 200 (≈ 2.3�) was examined

for the AC-One (stage 0) and AC-All (stage 0) datasets to see how well backbone

refinement class representatives would cover the data set, i.e. numbers of descrip-

tors per compound were assessed, and compared to the respective figures for a

minimum frequency of 100. This experiment was performed twice to also check

the impact of aromatic perception, i.e., whether the algorithm uses special labels

for carbons and edges that are part of an aromatic ring, or whether it uses Kekulé

notation (employing alternating single and double bonds).

Table 5.4 shows that almost all instances are covered by at least one pattern at

all times (column “#C”), regardless of minimum frequency. However, from the

mean and median values, we see that minimum frequency has hardly any effect on

mean coverage, whether with or without aromatic perception. The AC-One (stage

0) dataset with aromatic perception has a mean log value of 1.650 for a minimum

frequency of 200, and a mean log value of 1.673 for a minimum frequency of 100.

Moreover, we observe that the difference between median and mean shrinks from

lower to higher minimum frequency. In contrast, missing aromatic perception

raises mean coverage substantially: Here, the AC-One (stage 0) dataset has a

mean log value of 1.878 for a minimum frequency of 200 and a mean log value

of 1.896 for a minimum frequency of 100. Without aromatic perception, however,

the difference between median and mean does not shrink, but grows instead. In

Table 5.4, we observe a similar trend for the AC-All (stage 0) data . Therefore,

the mean number of descriptors per compound is about 101.63 ≈ 42.6 [101.61 ≈ 40.7]
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Figure 5.10: Backbone refinement class sizes for AC-One (stage 0)

with aromatic ring perception and about 101.91 ≈ 81.28 [101.82 ≈ 66.07] without for

AC-One (stage 0) [AC-All (stage 0)].

5.4.1.2 Representativeness

The higher coverage for the non-aromatic setting raises the question whether this is

an expression of low representativeness, i.e. whether backbone refinement classes

are smaller for the non-aromatic setting. In a second experiment, we assessed

backbone refinement class sizes by putting every significant and frequent subtree

into exactly one bin, where each bin gathers the subtrees with the same support,

and then counting the trees per bin. The result is summarized by the histogram

of Fig. 5.10. The frequency distribution of classes with different sizes shows

clearly that the non-aromatic setting produces far more classes of the same size,

and moreover, that mean class size is significantly lower (∼ 5 patterns) than for

the aromatic setting (∼ 7 patterns). We obtained similar results for a minimum

frequency of 100 (not shown).

5.4.2 Conclusions

In this section, we found that backbone refinement class representatives were in-

deed able to maintain a high coverage when minimum frequency was increased.

This was different for the significant trees, whose coverage deteriorated much

faster. The set of open and closed subtrees is a lossless compression of the latter.

It still models all levels of frequency above minimum frequency, however. Likewise,

they would more rapidly lose coverage with growing minimum frequency, too.
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Consistent with the findings for medium-sized data, a lower minimum frequency

did not increase coverage for the large-scale datasets. Here, backbone refinement

class representatives were also very descriptive, given their coverage of > 40 for the

minimum frequency 200, which was achieved with only about 30,000 patterns for

about 23,000 compounds (see section 5.3). The results thus underpin the intuition

from section 5.1.3, namely that backbone refinement class mining is robust in terms

of coverage, allowing for fast mining in the search space implied by medium and

high frequency thresholds.

The aspect of aromatic perception brought quite ambiguous results. Aromatic

perception induced both lower coverage and higher representativeness than the

non-aromatic representation. The fact that the higher frequency lowered the dif-

ference between mean and median in the aromatic setting indicates that a sub-

stantial set of patterns, which had previously covered only a small fraction of

compounds, were removed (see the normality of the corresponding density curves

in Appendix B). This observation is intuitively plausible, since patterns near the

positive border are always the largest fragments considered, and here relatively

many new, but sparsely populated backbone refinement classes may be created.

In contrast, without aromatic perception, the difference between median and mean

was growing.

On the other hand, the coverage without aromatic perception was found to be

higher, while its representativeness was lower. Also, without aromatic perception,

a higher total number of patterns are generated (note, however, that the compres-

sion experiments in section 5.3.5 were conducted without aromatic perception).

This may be attributed to lower expressiveness of non-aromatic perception, where

always two permutations exist to describe atoms and bonds in an aromatic ring.

We note that the tradeoff induced by the aromatic vs. non-aromatic perception

has to be investigated further with regards to their classification performance.

5.5 Diversity in Structure and Occurrence

So far, all presented properties were obtained by counting, not by looking at (pairs

of) actual patterns and/or instances. In this section, we will experimentally try

to verify the intuition of diversity of backbone refinement class representatives by

investigating two more intrinsic properties.

We will start with structural diversity, which exploits their property of being

graphs. From their definition, backbone refinement class representatives should
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have quite diverse scaffolds. To verify this, we will investigate diversity by maxi-

mum common (induced) subgraphs that are shared between representatives.

Second, structural diversity should reflect in diversity of occurrences, i.e. struc-

turally diverse subgraph patterns should describe different instances. I consider

this important to prove correct the hypothesis that structural partitioning aids

classification. Although we know from their definition that backbone refinement

class representatives are highly target class correlated, the setting could still be

unfortunate because we know not much about the diversity of the representation:

� Patterns could be highly co-occurring, i.e. pairs of patterns have highly

similar occurrences.

� Groups of instances could have indistinguishable representations, i.e. are

covered mostly by the same patterns.

Unfortunately, co-occurrences are generally not easy to convey, because the data

is high-dimensional. For example, each pair of patterns and each pair of instance

and pattern is considered. Thus, we will look at a low-dimensional presentation

of the data, where distance represents co-occurrence.

5.5.1 Experiments

The datasets were represented without aromatic information and the thresholds

for minimum frequency and correlation were the same as in section 5.3.5.

5.5.1.1 Structural Diversity

Backbone refinement class representatives were compared to the class of “α -

orthogonal, β - representative patterns” introduced by Al Hasan et al. and their

ORIGAMI approach [2] in terms of structural similarity.

Their approach is motivated by the idea of mining a small set of representative

subgraphs that is supposed to summarize the frequent subgraphs. In the ORIGAMI

algorithm, they approached the problem by sampling from the positive border,

i.e. from among the maximal patterns, as induced by minimum frequency. They

formalized their ideas by forcing the mined representatives to be structurally dis-

similar, while maintaining a minimum similarity between any frequent subgraph to
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Figure 5.11: Pairwise pattern similarity distribution for the CPDB datasets.

at least one mined representative. Specifically, they defined the similarity between

two subgraphs p and q as

sim(p, q) = ∣mpq∣
max(∣p∣, ∣q∣) , (5.5)

where mpq is the maximum common (edge-induced) subgraph of p and q and ∣x∣
is the number of edges of x. Therefore sim is the size of the maximum common

subgraph relative to the larger graph.

Al Hasan et al. investigated α-orthogonal patterns with pairwise similarity values

with α ∈ [0.15,0.35]. Running times reported in their analysis were ≈ 2750s

(= 45m48s) for a set of 1000 patterns obtained from a database of 1084 compounds

using a minimum frequency threshold of 2.3 % (pp. 9-10).

To assess the structural diversity of backbone refinement class representatives,

their similarity was measured post hoc, according to the definition of sim. Fig.

5.11 shows boxplots of the pairwise pattern similarity distribution for the four

CPDB datasets. It gives the median (bold bar in the middle), the upper and

lower quartile (box boundaries, comprising 50 % of the data) and therefore also

the inter-quartile distance. The boxplots show that, except for the SM dataset,

backbone refinement class representatives had a median similarity of < 0.4, and

that, in two cases, median values were inside the ORIGAMI interval. The running

time for mining the patterns on the four datasets were 0.22s, 0.34s, 0.24s, and

0.37s for mining 519, 413, 263, and 447 patterns, respectively.
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5.5.1.2 Co-Occurrence and Entropy

This section uses the visualization method for relational datasets by Schulz et al.

to embed patterns and instances into a 2-D plane [55]. The embedding method-

ology originates from ILP (inductive logic programming). There, clausal theories

are checked for fulfillment in logical interpretations. Here, however, the setting

is transformed to patterns (backbone refinement class descriptors) occurring in

instances (molecules). This representation may yield insights into the relational

structure of the data, especially about the quality of the pattern representation.

The goal of the embedding is to provide the human user with easily understand-

able insights into the relations “pattern-covers-instance” and “pattern-occurs-

with-pattern”. More specifically, in the 2-D representation patterns and instances

are points, and their coordinates are influenced by:

1. Pattern-pattern co-occurrence: Co-occurring patterns are placed close to

each other.

2. Pattern-instance co-occurrence: Instances are placed close to the patterns

by which they are covered. Moreover, the lower the entropy of a pattern,

the closer a covered instance is placed to it.

Thus, the image visualizes high-dimensional data by Euclidean distance. Besides

representation as an image, it also provides an interactive layer (see Appendix C).

The main characteristics of the embedding approach [55] are described as follows.

For the pattern-instance co-occurrences, an instantiation matrix C is used, where

CPI = 1 if pattern P occurs in instance I. Then, the joint probability of observing

P in I is

Pr(P, I) = CPI/∑
P

∑
I

CPI (5.6)

Note that in our setting, Pr(P, I) is uniform for all patterns P that occur in I.

The embedding approach then relates distance dP,I between P and I to statistical

dependency by Gaussian decay:

Pr(P, I)

Pr(I)
∝ e−d

2

P,I (5.7)

Note the cancellation of the marginal Pr(I). It then maximizes the probability

Pr′(P, I) = 1
Z
Pr(I)e−d

2

PI , where Z is a normalization factor ensuring that Pr′ is a

probability distribution. The maximization is done with a gradient ascent method

using random restarts.
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However, to account for entropy of the patterns, the negative entropy of each

pattern is multiplied on the associated entries CPI for all i prior to maximizing

Pr′, which also removes uniformity. The entropy of a pattern P is defined as

H(P ) = − ∑
C∈{0,1}

Pr(C,P ) log Pr(C,P ), (5.8)

and Pr(C,P ) is the empirical (induced) probability of P covering an instance with

target class C. Finally, pattern-pattern co-occurrences are integrated into Pr′ in

a way similar to equation 5.7 where a second pattern takes the role of I, weighted

by a constant factor.

Fig. 5.12 shows the Euclidean embedding: The data points consisted of backbone

refinement class representatives (triangles) and molecules (circles), the distances

were found by locally optimizing the log-likelihood of the data.

The lower the entropy of a pattern the brighter was its color (green for active, red

for inactive), indicating its potential to discriminate between classes. The corre-

sponding instance colors are blue for active, salmon for inactive.

For the SM dataset, the patterns were in general well distributed across the plane,

with few clusters. Instances and patterns did not overlap much. Instead, the ma-

jority of patterns surrounded the instances. The activating patterns were isolated

in the lower left half space.

For the MuC dataset, there were a few homogeneously colored pattern clusters,

but the majority of patterns were well distributed. Instances and classes did not

overlap much, but patterns surrounded instances. The activating patterns were

isolated in a convex subspace on the lower right.

5.5.2 Conclusions

The structural diversity of backbone refinement class representatives, obtained by

a simple structural criterion, has been shown to translate in diverse occurrences

in this chapter. This makes backbone refinement class representatives interesting

candidates for descriptors in classification tasks. The results have underpinned

those of section 5.4, namely that relatively low coverage may still yield a usable

representation.

For the structural similarity, the tradeoff between mining time and structural

diversity has been found favorable. An important factor is that larger graph

structures are more likely to be dissimilar than smaller ones. Given that backbone

refinement class representatives are not generally found among the largest frequent
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(a) Salmonella Mutagenicity (SM)

(b) Multicell Call (MuC)

Figure 5.12: Euclidean embedding of backbone refinement class representa-
tives and instances of the graph database based on co-occurrence and entropy

towards the target classes.
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subgraphs (as opposed to the maximal patterns considered by ORIGAMI) their

structural diversity thus seems high. Compared to the latter, however, backbone

refinement class representatives can be derived efficiently enough to be even used

in “on demand”-settings, i.e. in ad-hoc situations.

The 2-D embedding combined occurrences and entropy towards the target classes

into a graphical model, in that it placed co-occurring patterns close to each other

and instances close to associated patterns (the lower the entropy of patterns, the

closer). However, instances and patterns have appeared quite separated from one

another in the experiments. More specifically, there were few clusters of instances

and associated patterns. This indicates low co-occurrence between instances and

patterns, and thus different instances should be described in a distinguishable

way. Next, disregarding instances, also patterns appeared well-distributed, which

indicates low co-occurrence between patterns. Therefore, pairs of patterns seem

to have mainly dissimilar occurrences.

5.6 Runtime Analysis

We now investigate empirically how efficiently backbone refinement class represen-

tatives can actually be mined. The method builds on the principles of correlated

pattern mining outlined in chapter 3. Actual running times are assessed experi-

mentally, using several differently aggressive pruning methods.

5.6.1 Dynamic Upper Bound Pruning

Corresponding to section 3.3.1, the χ2 distribution test (checking the adherence

of a variable to a given distribution) was used.

Definition 5.6 (Dynamic Upper Bound Pruning). For any frequent subtree t, let

χ2
t and χ2

u,t denote the χ2 value for t, and χ2 upper bound for refinements of t,

respectively. Let umax(t) = max{χ2(t′,R) ∣ t′ ⪯b t}, the maximal χ2 value seen

so far. Then, if umax(t) > u, the user-defined upper-bound threshold u may be

increased to umax(t), since we only search for the maximal class element.

The method for mining backbone refinement class representatives using dynamic

upper bound pruning is shown in algorithms 1 and 2.

The procedure is invoked as p.init() for any path p of length 1. As can easily

be seen, procedure init() starts the search procedure expand() with the longest,
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Algorithm 1: init():
Calculation of paths as candidate backbones.

Input: A global, user defined significance threshold u; a global, user defined
minimum frequency m

Output: Immediate path refinements of the current structure that satisfy the
minimum frequency constraint.

1: for all q′ ∈ this.ImmediatePathRefinements do
2: if q′.frequency >m then
3: q′.init()
4: end if
5: end for
6: for all q′ ∈ this.ImmediateTreeRefinements do
7: if q′.frequency >m then
8: q′.expand(q′, χ2

q′)
9: end if

10: end for

i.e., non-path-refineable, paths and subsequently backtracks to the shorter paths.

Thus, every path p satisfying the user defined minimum frequency serves as a

backbone once.

The tree search procedure expand() in algorithm 2 works as follows: Lines 1-4

output the maximal element, if no further refinements are available. Otherwise, for

every refinement on the same level, a new class is instantiated for every refinement

q′. In line 6 cmax, the maximal χ2 value seen so far (including q′) is calculated.

Line 7 then implements dynamic upper bound pruning by checking q′’s upper

bound value against cmax.

� If the upper bound value is lower, the search is truncated and the maximal

pattern at that point is output (lines 15-18).

� Otherwise, if the upper bound value is not lower, the bound is updated and

the iteration continues.

Therefore, once a subtree is output as backbone refinement class representative,

all the refinements that are in backbone refinement relation to it are pruned away.

Note: the print() routine checks (not shown) that the pattern to be printed has

an absolute χ2 value of at least u wherever it is called, since this property is in

general not guaranteed.
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Algorithm 2: expand(qmax, χ2
qmax
):

Implementation of backbone refinement class mining via dynamic upper bound
pruning.

Input: A tree qmax with significance χ2
qmax
> u above the global user defined

significance threshold u, a global user defined minimum frequency m, a global
variable updated = true
Output: The most significant backbone refinement of qmax.

1: if this.ImmediateTreeRefinements == ∅ { then
2: print(qmax)
3: updated=false

4: end if
5: for all q′ ∈ this.ImmediateTreeRefinements do
6: cmax = max(χ2

q′ , χ
2
qmax

)
7: if χ2

u,q′ ≥ cmax ∧ q′.frequency >m then
8: if χ2

qmax
< χ2

q′ then
9: qmax = q′

10: χ2
qmax
= χ2

q′

11: updated = true
12: end if
13: q′.expand(qmax,χ2

qmax
)

14: else
15: if updated then
16: print(qmax)
17: updated = false
18: end if
19: end if
20: end for

5.6.2 Implementation

We modified the graph miner Gaston [44] to support backbone refinement class

mining4. Two specific properties allow for an efficient implementation on top of

Gaston:

� As discussed in section 2.2, modern graph miners enumerate subgraphs

canonically. Gaston uses a canonical code representation for graphs that

enables checking for allowable path and tree refinements in constant time.

Specifically, no refinement is enumerated twice (for details, see the work of

Nijssen and Kok [44, 45]).

4We used version 1.1 (with embedding lists), see http://www.liacs.nl/~snijssen/gaston/.

http://www.liacs.nl/~snijssen/gaston/
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(a) q2 (b) Paths b, b′, b′′ and associated BBRCs.

Figure 5.13: Left: Backbone Refinement Classes for q2 from Fig. 5.1 with
numbered edges 1), 2), and 3). Dashed borders indicate their boundaries due
to condition 1. from definition 5.1. Right: Associated search space for non-
refineable paths b, b′, and b′′. Insignificant (95% ∼ 3.84) nodes are dashed,

pruned nodes are gray.

� Gaston first enumerates all frequent path refinements P∣R, and only there-

after starts enumerating all tree refinements T ∖P ∣R growing from all p ∈ P∣R.
This is performed by using p as backbone of the innate tree, i.e. by prohibit-

ing backbone changes while applying tree refinements recursively.

To allow for efficient pruning, backbone refinement classes are kept disjoint once

they have branched, i.e., given two backbone refinement classes A and B with

patterns a ∈ A and b ∈ B, with a â b and b â a, every c with a ⪯ c and b ⪯ c is put

either in A or B, whichever backbone refinement class is enumerated first. For

example, q3 would be either assigned to the class of q1 or q2 in Fig. 5.1. However,

any pattern more general than the branch point can represent A or B or both.

5.6.3 Example Session

Fig. 5.13 visualizes the refinement process for tree q3 by continuing the example

from Fig. 5.1. Fig. 5.13(a) indicates backbone refinement class boundaries due

to condition 1. from definition 5.1 by dashed borders, while Fig. 5.13(b) shows

how the three different non-refineable paths in q3 are used as backbones while

the structure is explored. Backbone refinement class sizes are given in brackets.

Specifically,
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� BBRCb contains two backbone refinement classes corresponding to the ex-

clusive inclusion of either edge 1) or 2), BBRCb1 and BBRCb2 , with 4 sub-

trees in total: BBRCb1 = {b, q1, q3}, BBRCb2 = {b, q2, q3}.
We detail the expansion and pruning process for BBRCb. Note the associ-

ated χ2 and upper bound (χ2
qmax

) values in Fig. 5.13(b). Pattern b has a χ2

value of 3.88, and no refinement of b can have a χ2 value > 5.61. Assume

that b is the most discriminative pattern seen so far. Then, χ2
qmax
= 3.88.

Assume further that the original threshold given by the user was u = 3.84
(≈ 95% significance for 1 degree of freedom). Since 5.61 > 3.88, we expand

b. Subtree q1 is expanded before q2, since it has the lower canonical depth

sequence. It has a χ2 value of 5.61, increasing the upper bound threshold

χ2
qmax

to that value, thus making q1 representative for BBRCb1 . However, it

has an upper bound value of 4.90, which is below the current threshold of

5.61. Thus it is not expanded. Subtree q2, the right child, has a χ2 value

of 2.18. Since it is not in backbone refinement relation to the left child, it

initiates a new class. However, it cannot be representative of that class, since

b has the higher χ2 value. We therefore mark it with a dashed border (even

if b had a lower value, it could not be a representative, since its significance

is below u). Thus, b will be the current representative for BBRCb2 . Also, it

has an upper bound value of 2.05, which is below the current threshold of

3.88. Thus it is not expanded (additionally, in our implementation, q3 would

have already been considered as refinement of q1 and not be enumerated a

second time). In summary, q3 (gray) will never be reached, due to dynamic

upper bound pruning. More specifically, although it could be a significant

pattern judging from the q1 position (its χ2 value could be > u), the upper

bound threshold has increased too far already, making q1 the final represen-

tative for BBRCb1 already at that point. For BBRCb2 , the representative

is b.

� BBRCb′ contains two backbone refinement classes corresponding to the ex-

clusive inclusion of either edge 1) or 3), BBRCb′1 and BBRCb′3 , with 4

subgraphs in total.

� BBRCb′′ contains a single backbone refinement class with 2 subgraphs.

The class members are enumerated by subjecting paths b, b′, and b′′ from Fig.

5.13(b) to algorithm 2. After backtracking, the same concept is applied to the

other (shorter) paths in q2.
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SM RC MoC MuC

APL to s % s % s % s %

None 1,2,3,4 2.63 100.00 21.23 100.00 3.71 100.00 5.17 100.00

Static 2,3,4 2.55 96.97 21.11 99.43 2.98 80.32 4.76 92.07

Dynamic 4 0.44 16.73 6.63 31.22 2.13 57.41 1.76 34.04

Table 5.5: Comparison of running time for mining Backbone Refinement Class
Representatives using different pruning techniques for the four CPDB datasets.

Figure 5.14: Mean values of Table 5.5, taken for the four CPDB datasets.

5.6.4 Experiments

Again, the datasets were represented without aromatic information and the thresh-

olds for minimum frequency and correlation were the same as in section 5.3.5.

5.6.4.1 Runtime

For fixed minimum frequency and significance thresholds, Table 5.5 compares min-

ing performance of backbone refinement class representatives (4) on the one hand

to the same subgraph descriptors as in section 5.3.5, namely linear fragments (1),

significant trees (2), and open trees (3) on the other hand. It indicates the mining

times we obtained for BBRC representatives with the different statistical metric

pruning techniques that apply to the different fragment types (column “APL to”).

More specifically, those times correspond to backbone refinement class mining us-

ing no statistical pruning, static upper bound pruning and dynamic upper bound
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pruning, respectively. Mining times for open trees using sfgm were as follows:

1,899 s (SM), 28,537 s (RC), 1,744 s (MoC), and 2,594 s (MuC).

Fig. 5.14 summarizes the information from Table 5.5 by mean values of relative

running time reduction across the different datasets. The application of dynamic

upper bound adjustment was associated with a reduction in running time by 63.34

% and 60.92 % compared to using no statistical pruning and static upper bound

pruning, respectively. The “no pruning” setting corresponds to ordinary fragment

search with only minimum frequency as anti-monotonic constraint, i.e. to the

original Gaston implementation with significance value calculation added.

5.6.4.2 Profiling

To assess the amount of overhead incurred by our method, running time analysis

was performed by comparing its profile to that of the original Gaston algorithm.

Here, the OProfile system profiler for Linux recorded how much time each method

spent carrying out a certain function. The results indicate that our algorithm

was about 6 % of the time concerned with χ2 and upper bound calculations,

and about 3 % with additional control overhead due to the more sophisticated

expand() routine.

5.6.5 Conclusions

Dynamic upper bound pruning, as applied to backbone refinement class mining,

incurs a drastic decrease in runtime, as compared to ordinary (static) upper bound

pruning. The key to the performance gain is to raise the threshold for the upper

bound of refinements of the current pattern. It can only be raised so quickly,

however, due to the top-1 mining performed inside each backbone refinement class.

The more general concept of top-k mining uses the same principle, see the work

by Bringmann et al. [5, 6]. Here, the threshold can only be raised to the value of

the k-th best pattern. Thus, the larger k, the smaller the effect. Since k = 1 in

our case, backbone refinement class mining is optimal in this respect.

The structural partitioning of the search space into backbone refinement classes

enables the approach of top-1 mining discussed in the previous paragraph. The

Gaston algorithm delivers this partitioning “for free”, due to the “quickstart prin-

ciple”, which grows trees from backbones only. Since running time gains of over 60

% were obtained, the additional effort for the more sophisticated expand routine

seems fully justified.
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The set of significant trees cannot use dynamic upper bound pruning, because it

does not offer the possibility for top-k mining. Thus, static upper bound pruning

applies here. The same holds for the set of open trees- mining open trees merely

compresses the result set, but offers no further gain in efficiency compared to the

complete set (see the work of Bringmann et al. [6]). Finally, for the set of all

frequent subtrees, no upper bound pruning is possible. Performance comparisons

in this class-blind setting, e.g., to gSpan, can be found in the literature [45, 65].

5.7 Classification Accuracy

This section compares accuracy, sensitivity and specificity of the different descrip-

tors discussed so far in a binary classification task. Sensitivity (specificity) mea-

sures the proportion of target class positives P (target class negatives N) which

are correctly identified as such (TP and TN , respectively). Accuracy is the overall

fraction of correct predictions, calculated as ∣TP ∣ + ∣TN ∣/(∣P ∣ + ∣N ∣).
Obviously, when evaluating subgraph descriptors in a classification task, the clas-

sifier should be able to handle large amounts of subgraphs without suffering from

the high-dimensional pattern space. As discussed earlier, support vector machines,

nearest-neighbor methods, or decision trees are among the suitable algorithms for

this setting. The nearest-neighbor method described in section 3.3.2 was used.

5.7.1 Experiments

The figures reported in this section were derived as follows. For any instance x,

1. ALL includes all unweighted predictions, denoted f(x) (cf. eq. 1.1),

2. AD (or Applicability Domain predictions) considers the top 80 % unweighted

predictions as ranked by confidence conf(x) [21], and

3. WT includes again all predictions, but this time the contribution of every

prediction is weighted by its associated confidence value. In this case, accu-

racy is calculated as ∑
x ∈TP ∪TN

conf(x)

∑
x ∈P ∪N

conf(x)
(5.9)



78 Chapter 5, Backbone Refinement Class Mining

The rationale for the WT measure is that errors of high-confidence predictions

should be penalized more heavily than errors of low-confidence predictions. There-

fore, WT aggregates both types of information into one measure. Again, the

datasets were represented without aromatic information and the thresholds for

minimum frequency and correlation were the same as in section 5.3.5.

5.7.1.1 Evaluating Different Representations

Section 5.4 revealed some issues with several ways to represent the data: when

aromatic perception was used, the representativeness increased strongly, while

the number of patterns shrank. This was in contrast to minimum frequency,

which did not have any pronounced effect. To clarify the effects on predictive

performance before comparing backbone refinement class representatives to other

types of descriptors, both parameters were varied at the same time and the effects

were systematically assessed. The results from our previous study [41] showed

that WT was the most stable and meaningful in validation, thus this validation

method was also used here. The plots in Fig. 5.15 reveal that

� Reduced generally performed sub-optimal.

� Classification accuracy could be maintained at a high level even for high min-

imum frequencies for Kekulé (e.g. the rightmost point denotes a minimum

frequency of 10 % of the dataset size).

� Aromatic was associated with more jitter and non-monotonicity then Kekulé.

However, for very low frequencies it often performed better than aromatic

representation.

In view of these results (no clear winner) and since the data could be most con-

veniently represented in Kekulé notation for sfgm (see section 5.7.1.2), this rep-

resentation was chosen to compare backbone refinement class descriptors against

other representations.

5.7.1.2 Validation Against Compressed Representations

Table 5.6 compares the accuracy values of backbone refinement class representa-

tives to linear fragments, significant trees, and open trees. As discussed in section

5.7.1.1, Kekulé representation was chosen. Additionally, a minimum frequency of

6 was selected. The results show that tree-shaped subgraphs always performed
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Figure 5.15: Validation against different representations using WT validation
method, see section 5.7.1.

better than linear subgraphs, whether for all or AD predictions or for weighted ac-

curacy. Backbone refinement class representatives outperformed open trees in 10

out of 12 cases. The mean accuracy difference between backbone refinement class

representatives and significant trees was -0.27 ±1.47, whereas it was 1.1 ± 1.44 com-

pared to open trees and 2.77 ± 1.66 compared to linear fragments, respectively.

A paired t-test on the accuracy values revealed that backbone refinement class

representatives performed significantly better than open trees (t = 2.65, df = 11,
p-value = 0.02267), while no significant difference between backbone refinement

class representatives and the complete set of trees (t = 0.65, df = 11, p-value =

0.5302) was found.
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Figure 5.15: Validation against different representations using WT validation
method, see section 5.7.1.

Fig. 5.16 compares the four different types of descriptors in ROC space, showing

the differences in sensitivity and specificity for the prediction of active compounds.

There is a trend for better values when tree-shaped fragments were used, clearly

signaling the higher information content present in those descriptors. Backbone

refinement class representatives seemed to exhibit a lower false alarm rate com-

pared to open trees. Indeed, a paired t-test on the false positive ratios confirmed

that backbone refinement class representatives significantly improved on specificity

(t = −4.60, df = 11, p-value = 0.00077). A significant difference in sensitivity could

not be detected. Test results were confirmed with Wilcoxon signed rank tests [64].
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SM RC

ALL AD WT ALL AD WT

% % % % % %

1. Linear Fragments 75.0 77.8 83.0 63.7 67.0 77.5

2. Significant Trees 74.6 80.7 86.8 64.4 70.0 81.8

3. Open Trees 75.5 80.6 84.5 64.5 68.7 80.0

4. BBRC Representatives 74.6 79.4 85.4 67.2 70.4 82.2

MoC MuC

ALL AD WT ALL AD WT

% % % % % %

1. Linear Fragments 67.6 72.7 79.9 69.3 72.4 79.6

2. Significant Trees 73.3 75.7 83.7 71.9 75.6 83.5

3. Open Trees 71.5 74.4 80.8 70.2 73.5 81.3

4. BBRC Representatives 71.7 76.5 82.0 70.3 74.1 84.9

Table 5.6: Accuracy table for the CPDB datasets, obtained with leave-one-out
crossvalidation. Bold figures indicate the best results.

5.7.1.3 Validation Against Supervised Selection

We also evaluated backbone refinement class representatives on the three datasets

from the study of Rückert and Kramer [49]. Their work frames the selection of

pattern sets suitable for classification as a combinatorial optimization problem

based on entropy (cf. section 5.5.1.2). Define conditional entropy of pattern p as

H(P ∣C) = −Pr(C,P ) log Pr(C,P ), (5.10)

where Pr(C,P ) is the empirical (induced) probability of P covering an instance

with target class C. Consequently, the entropy of pattern P is

H(P ) = − ∑
C∈{0,1}

Pr(C,P ) log Pr(C,P ). (5.11)

Similar to Eq. 5.10, the mutual pattern entropy is defined as

H(Pi∣Pj) = −Pr(Pi, Pj) log Pr(Pi, Pj), (5.12)

where Pr(Pi, Pj) is the probability of Pi and Pj both covering an instance. The

approach combines the three measures by looking for high correlation of patterns
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Figure 5.16: ROC plots for the CPDB datasets comparing Significant Trees
(black), Backbone Refinement Class Representatives (dark gray), Open Trees
(light gray) and Linear Fragments (hollow). Circles denote predictions weighted
by confidence, squares predictions in applicability domain, and triangles all

predictions.

towards the target classes (which is equivalent to low entropy H(P ∣C)), high

pattern entropy H(P ), as well as high inter-pattern entropy H(Pi∣Pj) for all pairs

of patterns i, j into a common measure, the so-called dispersion score. Then,

using stochastic local search (SLS ), i.e. a forward selection method with random

restarts, it assembles a set with the k highest scoring patterns it encounters, where

k is set by the user. The approach is applied as a post-processing step and is not
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Figure 5.16: ROC plots for the CPDB datasets comparing Significant Trees
(black), Backbone Refinement Class Representatives (dark gray), Open Trees
(light gray) and Linear Fragments (hollow). Circles denote predictions weighted
by confidence, squares predictions in applicability domain, and triangles all

predictions.

limited to subgraph descriptors, but is applicable to general sets.

To render the results as comparable as possible, we also used 6 % of the dataset

size as minimum frequency threshold and performed 10-fold crossvalidation. With

that, we obtained the accuracies shown in Table 5.7. It also displays the results

the original authors obtained using a special kernel model and that they reported
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ALL AD WT #P t SLS k

% % % s %

NCTRER 0.74 0.79 0.82 1782 0.65 0.82 150

Bloodbarr 0.72 0.75 0.84 616 0.22 0.75 150

Yoshida 0.55 0.59 0.58 377 0.16 0.68 150

Table 5.7: Accuracy table for datasets used in the study of Rückert and
Kramer, obtained with 10-fold crossvalidation.

as having “good predictive performance for all pattern set sizes” (MMV with the

class-correlated dispersion score).

Apart from the yoshida dataset, the results seem to be competitive to the respec-

tive figures from the original publication. In particular within the applicability

domain (AD), results were very similar to those of the SLS method. The table

also gives the mean number of patterns and the running time for pattern calcula-

tion per fold. In terms of running times, the method proposed here is much faster,

as the construction of the trie for the SLS method typically takes a few minutes,

whereas the SLS run itself may take hours.

5.7.1.4 Validation Against Large-Scale Data

Crossvalidation runs were also conducted with the large-scale datasets from section

5.3.5. The mining settings were the same, i.e. involved the same compound

selection, aromatic perception and a minimum frequency of 200. A prediction

included the derivation of the training set similar to the query instance based on

patterns occurring in the compounds and the calculation of the prediction itself.

In accordance with the findings in section 5.3.5, backbone refinement class repre-

sentatives turned out to be the only practically useful pattern type for validation

on the (quite powerful) computer we used. For the significant trees, the pattern

set was way too large to be even read into RAM. With open trees, we obtained

impractical prediction times of > 60 s, whereas backbone refinement class repre-

sentatives gave a mean of 4.7 s and 11.1 s, respectively. Also, RAM usage was

unacceptable with open trees. Table 5.8 shows the accuracy results we obtained

in our validation with backbone refinement class representatives.

For AC-All (stage 1), the extraction of open trees with sfgm took > 10h, whereas
backbone refinement class representatives took 1 m 13 s. For AC-One (stage 0),
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ALL AD WT

% % %

AC-One (st. 0) 68.4 71.9 78.3

AC-All (st. 1) 67.7 71.2 77.5

Table 5.8: Validation results for large-scale datasets AC-One (stage 0) and
AC-All (stage 1).

sfgm terminated with an error (see Table 5.2), while backbone refinement class

representatives took 4 m 52 s.

5.7.2 Conclusions

In the experiments, the different representations revealed a slight advantage for

Kekulé representation, since the aromatic representation seemed more unstable,

showing a non-monotonic behavior in classification accuracy when minimum fre-

quency was raised. Generally, the results underpin robustness towards increasing

minimum frequencies, which has been already confirmed in section 5.4.

When compared to other types of descriptors, the classification accuracy of back-

bone refinement class descriptors was not only similar to that of the complete

set of significant trees, but significantly better than that of the other compressed

representations we investigated.

For large-scale data, backbone refinement class representatives were even the only

practically useful descriptor type. Note that we deliberately selected a model that

is able to handle high-dimensional pattern spaces and does not prefer or work

better with sparse descriptors such as backbone refinement class descriptors. As

an ad-hoc method, the selection of patterns obtained by backbone refinement class

mining is not “tuned” towards classification in the sense of a post-processing step

on the result set. Still, the method seems competitive to pattern sets composed in

such a supervised fashion for classification purposes. Contrary to such approaches,

however, backbone refinement class mining does not try to approximate an NP-

hard problem and can thus run in seconds or even fractions of seconds, whereas

the other approaches may take hours to run.





Chapter 6

Latent Structure Pattern Mining

This chapter treats Latent Structure Pattern Mining, which fully automatically

converts a large set of basic fragment descriptors (obtained by frequent and cor-

related subgraph mining) into a condensed set of weighted, elaborate, chemically

interpretable patterns, containing previously hidden (or latent), essential motifs

present in the original set.

Section 6.1: Introduction. Discusses work related to elaborate pattern mining,

in which, however, no fully automatic approaches have been proposed so far. This

seems surprising, since the intuitively appealing idea of aligning basic fragments is

also computationally feasible. A pipelined approach for latent structure calculation

is presented.

Section 6.2: Latent Structure Pattern Mining. A strategy to integrate

latent structure pattern mining into any depth-first branch-and-bound algorithms

is developed. It exploits the partial order that the subgraph relation induces and

solves situations where basic patterns provide conflicting information. Suitable

“adjacent” basic fragments are chosen to equally contribute to a latent pattern,

which limits the selection in a sensible way. Aligned basic fragments induce a

weighted edge graph, from which the latent information is extracted by means of

spectral analysis.

Section 6.3: Algorithm. A detailed account of the proposed algorithm elabo-

rates on the merging strategy and on computational effort.

Section 6.4: LAST-SMARTS. Three different strategies for converting latent

structures to so-called SMARTS patterns, which are commonly used in chemoin-

formatics to describe substructures, are evaluated.

87
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Section 6.5: Experimental Evaluation. LAST-PM descriptors are compared

to other complex and elaborate chemical fragment representations in terms of clas-

sification accuracy using crossvalidation. They are also contrasted against QSAR

models based on physico-chemical descriptors, which is especially interesting re-

garding the complex biological endpoints used. The tradeoff between reduction of

the resulting pattern set and runtime that LAST-PM faces is examined.
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6.1 Introduction

Graph mining algorithms have focused almost exclusively on basic patterns (so-

called ground features, subgraphs that are frequent and significantly correlated

with the target classes) so far, such as frequent or correlated substructures. In

the biochemical domain, Kazius et al. [33] have demonstrated the use of more

elaborate patterns that can represent several ground features at once. Such pat-

terns bear the potential to reveal latent information which is not present in any

individual ground feature. So far, their identification requires expert knowledge

[33] or extensive pre-processing of the data (annotating certain nodes or edges by

wildcards or specific labels) [22].

6.1.1 Related Work

Latent structure pattern mining allows deriving basic motifs within ground fea-

tures. The approach falls into the general framework of graph mining.

Kazius et al. [33] created two types of (fixed) high-level molecule representations

(aromatic and planar) based on expert knowledge. These representations are the

basis of graph mining experiments.

Inokuchi [29] proposed a method for mining generalized subgraphs based on a

user-defined taxonomy of node labels. Thus, the search extends not only due to

structural specialization, but also along the node label hierarchy. The method finds

the most specific (closed) patterns at any level of taxonomy and support. Since

the exact node and edge label representation is not explicitly given beforehand,

the derivation of abstract patterns is semi-automatic.

Hofer, Borgelt and Berthold [22] present a pattern mining approach for ground

features with class-specific minimum and maximum frequency constraints, that

can be initialized with arbitrary motifs. All solution features are required to

contain the seed. Moreover, their algorithm MoSS offers the facility to collapse

ring structures into special nodes, to mark ring components with special node and

edge labels, or to use wildcard atom types: Under certain conditions (such as if

the atom is part of a ring), multiple atom types are allowed for a fixed position.

It also mines cyclic structures at the cost of losing double-free enumeration.

All approaches have in common that the (chemical expert) user specifies high-level

motifs of interest beforehand via a specific molecule representation. They integrate

user-defined wildcard search into the search tree expansion process, whereas the
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approach presented here derives abstract patterns automatically by resolving con-

flicts during backtracking and weighting. Importantly, it does so on the ground

representation of the data, without lifting it first to a different representation.

6.1.2 Mining Latent Structure

The following presents a modular graph mining algorithm, called Latent Struc-

ture Pattern Mining (or LAST-PM for short), to identify higher level (latent) and

mechanistically interpretable motifs for the first time in a fully automated fash-

ion. The two-fold goal of LAST-PM is to find chemical substructures that are

chemically informative and ultimately useful for prediction.

Technically, the approach is based on so-called alignments of features, i.e. orderings

of nodes and edges with fixed positions in the structure. Such alignments may be

obtained for features by controlling the pattern generating process in a graph

mining algorithm with a canonical enumeration strategy. This is feasible, for

instance, on top of current a-priori based graph mining algorithms. Subsequently,

based on the canonical alignments, ground features can be stacked onto each other,

yielding a weighted edge graph that represents the number of occurrences in the

fragment set (see the left and middle panel of Fig. 6.2). In a final step, the

weighted edge graph is reduced again (in this case by singular value decomposition)

to reveal the latent structure of the pattern (see the right panel of Fig. 6.2). Thus,

the approach can be described as a pipeline with the steps (a) align, (b) stack,

and (c) compress.

6.1.3 Intuition

The following discusses an actual pattern found by LAST-PM to convey an idea

what form those elaborate patterns take. The molecular fragments generated

for the classification of the bloodbarr dataset (see section 4.3) were inspected

for this purpose. A total number of 310 fragments was found by LAST-PM in

the msa variant (see section 6.4) and 19 of these have ambiguities in the atomic

number which represents a node of the structure. Taking into account its statistical

significance [1], we chose the highest relevant fragment with ambiguities for a closer

inspection; its expression in LAST-SMARTS reads

[#7,#8]-[#6]-[#6]=[#6]-[#7](-[#6])-[#6]-[#6].
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Figure 6.1: Two molecules with strong polarity, induced by similar fragments
(gray).

a) b) c)

Figure 6.2: Illustration of the pipeline with the three steps (a) align, (b) stack,
and (c) compress. Left: Aligned ground features in the partial order. Center:

Corresponding weighted graph. Right: Latent structure graph.

A significant number of molecules containing this fragment are unable to cross the

blood-brain barrier according to the binary classification of the dataset. Fig. 6.1

depicts two examples for molecules which contain the fragment in two different

embeddings. It is well-suited to be analyzed by a chemical expert and to extract

a general relationship between the molecular structure and its physiological activ-

ity. Chemically interesting is the interchangeability of the hetero atoms nitrogen

([#7]) and oxygen ([#8], arrow-marked positions in Fig. 6.1). Although different

in their chemical behavior, these atoms have in common a strong electronegativ-

ity. They become negatively charged when bound to aliphatic carbon atoms, as is

the case in these fragments. In addition, the ambiguous position is separated by

three carbon atoms from another negatively charged amine group. Therefore, the

generated pattern represents molecules which possess the characteristic electro-

static structure of two negatively charged sites separated by a fixed distance. The

occurrence of the pattern is a clear indication for a polar molecule, resulting in a

decreased ability to cross membranes in the body, such as the blood-brain barrier.

The pattern found in this case thus also confirms the correlation of electrostatic

molecular properties with the drugs’ ability to cross the blood-brain barrier [38].
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Figure 6.3: Left: Conflicting siblings c12 and c21. Right: Corresponding
partial order.

6.1.4 Stacking Features

Two (distinct) features obtained by node refinements of a specific parent pattern

are called siblings. Note that we have defined this term already differently in

section 2.2.1 in the context of nodes of a graph, but the meaning will be clear from

the context. Two aligned siblings r and s are called mutually exclusive, if they

branch at different locations of the parent structure, i.e. let vi and vj be the nodes

where the corresponding node refinements are attached in the parent structure,

then φr(vi) ≠ φs(vj). Conversely, two siblings r and s are called conflicting, if they

refine at the same location of the parent structure.

For several ground features, alignments can be visualized by overlaying or stacking

the structures. It is possible to count the occurrences of every component (iden-

tified by its position), inducing a weighted graph. Assume a collection of aligned

ground features with occurrences significantly skewed towards a single target class,

as compared to the overall activity distribution. A “heavy” component in the as-

sociated weighted graph is then due to many ground features significant for a

specific target class. Assuming correct alignments, the identity of different com-

ponents is guaranteed, hence multiple adjacent components with equal weight can

be considered equivalent in terms of their classification potential.

Fig. 6.2 illustrates the pipeline consisting of the three steps (a) align, (b) stack,

and (c) compress, which exploits these relationships. It shows aligned ground

features a, a11, a12, a13, a21, and a22 in the partial order (search tree) built

by a depth-first algorithm. The aligned features can be stacked onto each other,

yielding a weighted edge graph. Subsequently, latent information (such as the

main components) can be extracted by SVD. Inspecting the partial order, note

that refining a branches the search due to the sibling pair a11 and a21. Siblings

always induce a branch in the partial order. Note that the algorithm will have to

backtrack to the branching positions.
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However, in general, the proposed approach is not directly applicable. In contrast

to a11 and a21, which was a mutually exclusive pair, Fig. 6.3 shows a conflicting

sibling pair, c12 and c21, together with their associated part of the partial order

(matching elements are drawn on corresponding positions). It is not obvious how

conflicting features could be stacked, thus conflict resolution is necessary.

The introduced concepts (alignment, conflicts, conflict resolution, and stacking)

will now be used in the workflow and algorithm of LAST-PM.

6.2 Latent Structure Pattern Mining

This section explains the main steps of latent structure pattern mining:

1. Ground features are repeatedly stacked, resolving conflicts as they occur. A

pattern representing several ground features is created.

2. The process in step 1. is bounded by a criterion to prevent the incorporation

of too diverse features.

3. The components with the least information are removed from the structure

obtained after step 2. Then the result (latent structure) is returned.

In the following, the basic components of the approach are described in some

detail.

6.2.1 Efficient Conflict Detection

Conflict detection is based primarily on edges and secondarily on nodes. A node

list is a vector of nodes, where new nodes are added to the back of the vector

during the search. The edge list first enumerates all edges emanating from the

first node, then from the second, and so forth. For each specific node, the order

of edges is also maintained. Note, that for this implementation of alignment, the

ground graph algorithm must fulfill certain conditions, such as partial order on

the ground features as well as canonical enumeration (see section 6.3). In the

following, the core component of two siblings denotes their maximum subgraph,

i.e. the parent.
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id label

0 7

1 6

2 8

3 6

4 6

5 6

6 8

7 8

id1 id2 label

0 1 1

0 6 1

0 7 2

1 2 1

2 3 1

3 4 2

4 5 1

(a) a11 node and edge lists

id label

0 7

1 6

2 8

3 6

4 6

5 6

6 8

7 6

id1 id2 label

0 1 1

0 6 1

1 2 1

2 3 1

3 4 2

3 7 1

4 5 1

(b) a21 node and edge lists

Figure 6.4: Node and edge lists for conflicting nodes c12 and c21, sorted by
id (position). Underlined entries represent core nodes and adjacent edges.

Example 6.1. Fig. 6.4 shows lists for features a11 and a21, representing the

matching alignment. Underlined entries represent core nodes and adjacent edges.

In line with previous observations, no distinct nodes and no distinct edges have

been assigned the same position, so there is no conflict. The node refinement

involving node identifier 7 has taken place at different positions. This would be

different for the pattern pair c12,c21.

Due to the monotonic addition of nodes and edges to the lists, conflicts between

two ground features θ1 and θ2 become immediately evident through checking cor-

responding entries in the alignment for inequality. Three cases are observed:

1. Edge lists of θ1 and θ2 differ, but all elements with identical positions, i.e.

pairs of ids, are equal. This does not indicate a conflict.



Chapter 6, Latent Structure Pattern Mining 95

2. There exists an element in each of the lists with the same position that differs

in the label. This indicates a conflict.

3. No difference is observed between the edge lists at all. This indicates a con-

flict, since the difference is in the node list (due to double-free enumeration,

there must be a difference).

For siblings a11 and a21, case 1. applies, and for c12 and c21, case 2. applies. A

conflict is equivalent to a missing maximal pattern for two aligned search struc-

tures (see section 6.2.2). Such conflicts arise through different embeddings of the

conflicting features in the database instances. Small differences (e.g., a difference

by just one node/edge), however, should be generalized.

6.2.2 Conflict Resolution

Let r and s be graphs. A maximum refinement m of r and s is defined as (r ⪯
m) ∧ (s ⪯m) ∧ (∀n ⪰ r ∶m ⪰ n) ∧ (∀o ⪰ s ∶m ⪰ o).
Lemma 6.1. Let r and s be two aligned graphs. Then the following two configu-

rations are equivalent:

1. There is no maximum refinement m of r and s with alignment φm induced

by φr and φs, i.e. φm ⊇ φr ∪ φs.

2. A conflict occurs between r and s, i.e. either

(a) vi ≠ vj for nodes vi ∈ r and vj ∈ s with φr(vi) = φs(vj), or

(b) ei ≠ ej for edges ei ∈ r and ej ∈ s with φr(ei) = φs(ej).

Proof. Two directions:

“1. ⇒ 2.”: Assume the contrary. Then the alignments are compatible, i.e. no

unequal nodes vi ≠ vj or edges ei ≠ ej are assigned the same position. Thus, there

is a common maximum pattern m with φm ⊇ φr ∪ φs.

“1.⇐ 2.”: Since φ is a bijection, there can be at most one value assigned by φ for

every node and edge. However, the set φm ⊇ φr ∪ φs violates this condition due to

the conflict. Thus, there is no m with φm ⊇ φr ∪ φs.

In Fig. 6.3, the refinements of c11 have no maximum element, since they include

conflicting ground features c12 and c21. In contrast, refinements of a in Fig. 6.2

do have a maximum element (namely pattern a13).
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Figure 6.5: Conflict resolution by logical OR.

As a consequence of Lemma 6.1, conflicts prove to be barriers when several features

should be merged to patterns, especially in case of patterns that stretch beyond

the conflict position. A way to resolve conflicts and to incorporate two conflicting

features in a latent pattern is by logical OR, i.e. any of the two labels may be

present for a match.

Example 6.2. Patterns c12 and c21 can be merged by allowing either single or

double bond and either node label of {N,C} at the conflicting edge and node, as

shown in Fig. 6.5, represented by a curly edge and multiple node labels.

Conflicts and mutually exclusive ground features arise from different embeddings

of the features in the database, i.e. the locations (in terms of nodes and edges)

where those patterns occur in the database instances may overlap, but are not

in subset relation. Thus, the anti-monotonic property of diminishing support is

lost between pairs of conflicting or mutually exclusive features. This also poses a

problem for directly calculating the support of latent patterns.

6.2.3 Stopping Criterion

Since the alignment, and therefore equal and unequal parts, are induced by the

partial order of the mining process, which is in turn a result of the embeddings

of ground features in the database, they are employed to mark the boundaries

within which merging should take place. Given a ground feature θ, its support in

the positive class is defined as y = ∣{r ∈ r ∣ covers(θ, r) ∧ a(r) = 1}∣, its (global)

support as x. Values of χ2 tests are used to bound the merging process, since

they incorporate a notion of weight : a pattern with low (global) support is down-

weighted, whereas the occurrences of a pattern with high support are similar to

the overall distribution. Assuming the notation of section 3.3.1 with n = ∣r∣ being
the number of graphs, define the weight of a pattern as w = x

n
. Moreover, assuming

m = {r ∈ r ∣a(r) = 1}, define the expected support in the positive [negative] class as
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wm [w(n −m)]. Thus, equation 3.2 may be written as

χ2
d(x, y) = (y −wm)2m

+ (x − y −w(n −m))2
w(n −m) , (6.1)

which emphasizes the weight.

Definition 6.2 (Ground Features). Given a graph database R, a user-defined

minimum support f and user-defined minimum χ2 value u, any t ∈ B that is

frequent, i.e. supp(t,R) ≥ f , and significant with respect to occurrence in the

target classes, i.e. χ2
t ≥ u is called a ground feature.

Given this definition, we can now collect associated ground features:

Definition 6.3 (Patch). Given a graph database R = {r, a}, a patch P is a set

of significant ground features, where for each ground feature θ there is a ground

feature in P that is either sibling or parent of θ, and for each pair of ground

features (θX , θ′Y ) ∶X = Y , X,Y ∈ {⊕,⊖}.
The contour map for equally balanced target classes, a sample size of 20 and occur-

rence in half of the compounds in Fig. 3.3 illustrates the (well-known) convexity

of the χ2 function and a particular refinement path in the search tree with features

partially ordered by χ2 values as 1⊖ > 2 < 3 < 4⊕ < 5⊕. Thus, the method indeed

singles out “patches” of ground features in the search space significant for a partic-

ular target class. The members of these patches are fused to form a meta-pattern.

Fig. 6.6 gives a schematic depiction of the hypothesis space.

6.2.4 Latent Structure Graph Calculation

In order to find the latent (hidden) structures, a “mixture model” for ground fea-

tures can be used, i.e. elements (nodes and edges) are weighted by the sum of

ground features that contain this element. It is obtained by stacking the aligned

features of a specific patch, followed by a compression step. To extract the latent

information, singular value decomposition (SVD) can be applied. It is recom-

mended by Fukunaga to keep 80% − 90% of the information [13].

The first step is to count the occurrences of the edges in the ground features and

put them in an adjacency table. For instance, Table 6.7(a) shows the pattern that

results from the aligned features a11, a12, a13, a21, and a22 (see Fig. 6.2). As a

specific example, edge 1 − 2 was present in all five ground features, whereas edge

9 − 10 occurred in two features only.
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Figure 6.6: Hypothesis space of LAST-PM patterns

A SVD with 90%, applied to the corresponding matrix, yielded the latent structure

graph matrix in Fig. 6.7(b). Here, spurious edges that were introduced by SVD

(compression artifacts) were removed. As can be seen, the edges leading to the two

nodes with degree 3 are fully retained, while the peripheral ones are downweighted.

In fact, edge 9 − 10 is even removed, since it was downweighted to weight 0. In

general, SVD downweights weakly interconnected areas, corresponding to a blurred

or downsampled picture of the original graph, which has previously proven useful

in finding a basic motif in several ground patterns [70].

Definition 6.4 (Latent Structure Pattern Mining (LAST-PM)). Given a graph

database R, and a user-defined minimum support minsup, calculate the latent

structure graph of all patches in the search space, where for each ground feature

θ, supp(θ) ≥minsup.

The next section describes how the building blocks of this section can be embedded

in a graph mining algorithm. The proposed technique requires a branch-and-bound

algorithm and re-uses the partial order and canonical enumeration provided by

such algorithms (see chapter 2, especially sections 2.1.2 and 2.2.4).
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1 2 3 4 5 6 7 8 9 10

1 0 5 0 0 0 0 0 0 0 0

2 5 0 5 0 0 0 0 3 0 0

3 0 5 0 5 0 0 0 0 0 0

4 0 0 5 0 5 0 0 0 0 0

5 0 0 0 5 0 5 0 0 4 0

6 0 0 0 0 5 0 5 0 0 0

7 0 0 0 0 0 5 0 0 0 0

8 0 3 0 0 0 0 0 0 0 0

9 0 0 0 0 4 0 0 0 0 2

10 0 0 0 0 0 0 0 0 2 0
(a) Weighted original adjacency matrix.

1 2 3 4 5 6 7 8 9 10

1 0 4 0 0 0 0 0 0 0 0

2 4 0 5 0 0 0 0 3 0 0

3 0 5 0 4 0 0 0 0 0 0

4 0 0 4 0 5 0 0 0 0 0

5 0 0 0 5 0 5 0 0 3 0

6 0 0 0 0 5 0 4 0 0 0

7 0 0 0 0 0 4 0 0 0 0

8 0 3 0 0 0 0 0 0 0 0

9 0 0 0 0 3 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0
(b) Latent structure adjacency matrix.

Figure 6.7: Input (above) and output (below) of latent structure graph cal-
culation, obtained by aligning the features a11 − a22.

6.3 Algorithm

Given the preliminaries and description of the individual steps, this section presents

a unified approach to latent structure pattern mining, combining alignment, con-

flict resolution, and component weighting. The method assumes (a) a partial

order on ground features (vertical ordering), and (b) canonical representations for

ground features, avoiding multiple enumerations of features (horizontal ordering).

A depth-first pattern mining algorithm, possibly driven by anti-monotonic con-

straints, can be used to fulfill these requirements. It follows a strategy to extract
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latent structures from patches. A latent structure is a graph more general than de-

fined in section 2.2.1: the edges are attributed with weights, and the label function

is replaced by a label relation, allowing for multiple labels. Since patches stretch

horizontally (sibling relation), as well as vertically (parent relation), a recursive

updating scheme is needed to embed the construction of the latent structure in

the ground graph mining algorithm.

6.3.1 Merging

We first inspect the horizontal merging: given a specific level of refinement i, we

start with an empty latent structure li and aggregate siblings from low to high in

the lexicographic ordering, starting with empty li. For each sibling s and innate

li, it holds that either

1. s is not significant for any target class, or

2. s is significant for the same target class as li, i.e. X = Y, for sX , liY (if empty,

s initializes li to its class), or

3. s is significant for the other target class.

In cases 1. and 3., li is subjected to latent structure graph calculation and output,

and a new, empty latent li is created. For case 3., it is additionally initialized with

s. For case 2., however, s and li are merged, i.e. subjected to conflict resolution,

aligning s and li, and stacking s onto li.

For the vertical or top-down merging, we return li to the calling refinement level

i − 1, when all siblings have been processed as described above. Structures li and

li−1 are merged, if li is significant for the same target class as li−1, i.e. X = Y, for
liX , l

i−1
Y . Also, condition 1. must not be fulfilled for the current sibling on level i−1.

Otherwise, both li and li−1 are subjected to latent structure graph calculation and

output, and a new li−1 is created.

Alignment calculation (Algorithm 3) works recursively: In lines 3-9, it extracts

mutually exclusive edges leaving core positions to non-core positions, i.e. there is

a distinction between edges leaving the core, but are shared by l1 and l2 (conflicting

edges, E), vs. edges that are unique to either l1 or l2 (non-conflicting edges, El1 ,

El2). The overall minimum edge is remembered for the next iteration, ordered by

“to”-node position (lines 11-12). The minimum edge of El1 and El2 (line 10; in
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Algorithm 3: Alignment Calculation

Input : Latent structures l1, l2; an interval C of core node positions.
Output: Aligned and stacked version of l1 and l2, conflicts resolved.
repeat1

E.clear() ; El1 .clear() ; El2 .clear() ;2

for j = 0 to (size(C)-1) do3

index = C[j] ;4

I = (l1.to[index] ∩ l2.to[index]) ;5

E.insert(I ∖ C) ;6

El1 .insert(l2.to[index] ∖ I) ;7

El2 .insert(l1.to[index] ∖ I) ;8

end9

if min(El1) ≤min(El2) then M1 = El1 else M1 = El2 ;10

if min(E) <min(M1) then M2 = E else M2 =M1 ;11

core new.insert(min(M2)) ;12

if M1 == El1 then l2.add edge(min(M1)) else l1.add edge(min(M1)) ;13

until E.size==0 ∧ El1.size==0 ∧ El2.size==0 ;14

l1 = stack(l1, l2) ;15

l1 = alignment(l1, l2, core new) ;16

return l1;17

case of equality, El1 takes precedence) is added to the other structure where it was

missing (line 13).

The procedure can be seen as inserting pseudo-edges into the two candidate struc-

tures that were only present in the other one before, thus creating a canonical

alignment. For instance, in Fig. 6.4, exclusive edge 0-7 from a11 would be first

inserted into a21, pushing node 7 to node 8 and edge 3-7 to edge 3-8 in a21. Sub-

sequently, vice versa, exclusive edge 3-8 would be inserted into a11, leaving no

more exclusive edges, i.e. the two structures are aligned.

This process is repeated until no more edges are found, resulting in the alignment

of l1 and l2. Line 15 then calls the stacking routine, a set-insertion of l2’s node

and edge labels into l1’s and the addition of l2’s edge weights to l1’s, and line 16

repeats the process for the next block of core ids. Due to the definition of node

and edge lists, the following invariant holds in each iteration: For the node list,

core components are always enumerated in a contiguous block, and for each edge

e, the core components are always enumerated at the beginning of the partition

of the edge list that corresponds to e. For horizontal (vertical) merging, we call

Algorithm 3 with l1 ∶= li, l2 ∶= s (l1 ∶= li−1, l2 ∶= li). This ensures that l1 comprises

only ground features lower in the canonical ordering than l2. Thus, Algorithm 3

correctly calculates the alignments.
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6.3.2 Complexity

The Gaston algorithm by Nijssen and Kok [44] was modified to support latent

structure pattern mining1. It is especially well-suited for the purpose of latent

structure pattern mining: First, Gaston uses a highly efficient canonical repre-

sentation for graphs. Specifically, no refinement is enumerated twice. Second,

Gaston employs a canonical depth sequence formulation that induces a partial

order among trees (cycle-closing structures are not considered due the complexity

of the isomorphism problem for general graphs). Siblings in the partial order can

be compared lexicographically.

Latent Structure Pattern Mining (LAST-PM) allows the use of anti-monotonic

constraints for pruning the search in the forward direction, such as minimum

frequency or upper bounds for convex functions, e.g χ2. The former is integrated in

Gaston, the latter is implemented via statistical metric pruning, more specifically

as static upper bound pruning using a χ2 upper bound as described in section 3.3.2.

Obviously, the additional complexity incurred by LAST-PM depends on conflict

resolution, alignments, and stacking (see Algorithm 3), as well as weighting (SVD).

� Algorithm 3 for latent structures l1, l2 takes at most ∣l1∣ + ∣l2∣ insert opera-

tions, i.e. is linear in the number of edges (including conflict resolution).

� For each patch, an SVD of the m × n latent structure graph is required

(mn2 − n3/3 multiplications).

Thus, the overhead compared to the underlying Gaston algorithm is rather small

(for an empirical analysis, see section 6.5.2).

6.4 LAST-SMARTS

Given the output of LAST-PM, SMARTS patterns for instantiation are created

by parsing patterns in pre-order (depth-first). Those patterns are referred to as

LAST-SMARTS (see Appendix A). This section presents different possible parsing

mechanisms and evaluates their predictive power, employing the nearest-neighbor

approach described in section 3.3.2.

1Version 1.1 (with embedding lists), see http://www.liacs.nl/~snijssen/gaston/.

http://www.liacs.nl/~snijssen/gaston/
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6.4.1 Weighted Depth-First Parsing

Focusing on a node, all outgoing edges have weights according to section 6.2.4.

This forms weight levels of branches with the same weight. We may choose to

make some branches optional, based on the size of weight levels, or demand all

branches to be attached:

� nop: demand all (no optional) branches.

� msa: demand number of branches equal to maximum size of all levels

� nls : demand number of branches equal to highest (next) level size

Example 6.3. Variant nop would disregard weights and require all of the three

bonds leaving the arrow-marked atom of Fig. 6.2 (right), while nls (here also msa)

would require any two of the three branches to be attached.

With msa and nls, combinations of important branches may be captured better.

The two methods allow, besides simple disjunctions of atomic node and edge labels

such as in Fig. 6.1, for (nested) optional parts of the structure (see Appendix A).

6.4.2 Experiments

This section presents experimental results on three small to medium-sized OFS

datasets with binary class labels from the study by Rückert and Kramer [49],

see section 4.3. The same framework as in section 5.7.1 for backbone refinement

classes was used. This time again, only the WT measure was employed to rank

the different variants. Fig. 6.8 compares the performance of LAST-PM variants.

For nctrer and bloodbarr, nls and msa performed best (with slight advantages

for nls). On the yoshida data set, however, nop was the winner.

6.4.3 Conclusions

The variants nls and nsa perform a more detailed analysis of the structure than

nop by taking the weight levels into account. Moreover, they are able to declare

larger parts of the structure as optional, which nop cannot.

I want to stress here that the non-marginal differences found between the three

variants can be also be seen as a validation of the principle of weighted graph
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Figure 6.8: LAST-PM: Validation against different variants.
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Figure 6.8: LAST-PM: Validation against different variants.

components in general. Although on two of the three data sets the intuition of

higher expressiveness could be corroborated, in the rest of the experiments the

best method available was used for each dataset.

6.5 Classification Accuracy and Runtime

This section presents experimental results on three small to medium-sized OFS

datasets with binary class labels from the study by Rückert and Kramer [49],
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Figure 6.8: LAST-PM: Validation against different variants.

see section 4.3. Those datasets deal with complex biological endpoints, namely

estrogen receptor activity, blood-brain-barrier activity, and bioavailability. The

mode of action of a compound is usually explained directly with physico-chemical

properties, such as electrotopology, quantum chemical properties, or 3-D struc-

ture, or hydrophobic properties. Accordingly, those endpoints were modeled with

such descriptors by the original authors [12, 38, 68], while purely structural 2-D

descriptors, such as those created by LAST-PM, are not used by most studies in

this area.

6.5.1 Classification Accuracy

Edges were attributed as single, double and triple, or as aromatic bond, as inferred

from the molecular structure. Features were converted to SMARTS according to

the variants msa, nls, and nop, and matched onto training and test instances,

yielding instantiation tables. A 20% SVD compression (percentage of sum of

singular value squares) is reported for the LAST-PM features, since this gave the

best AUROC values of 10, 15, and 20% in preliminary trials in two out of three

times. Significance was determined by the 95% confidence interval.

6.5.1.1 Validation Against Compressed and Elaborate Representations

The results were obtained from repeated (two times in total) ten-fold stratified

crossvalidation (two times with different folds). Edge-induced subgraphs were
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Dataset LAST-PM ALL BBRC MOSS SLS

Variant %Train %Test %Test %Test %Test %Test

bloodbarr nls+nls 84.19 72.20 70.49a 68.50a 67.49a 70.4b

nctrer nls+msa 88.01 80.22 79.13 80.22 77.17a 78.4b

yoshida nop+msa 82.43 69.81 65.19a 65.96a 66.46a 63.8b

a significant difference to LAST-PM.
b result from the literature, no significance testing possible

Table 6.1: Comparative analysis (repeated 10-fold crossvalidation).

used as ground features. For each training set in a crossvalidation, descriptors

were calculated using 6% minimum frequency and 95% χ2-significance on ground

features to ensure features are selected ignorant of test sets. Unoptimized linear

SVM models with a constant parameter C = 1 for each pair of training and test set

were employed. The statistics in the tables were derived from pooling the twenty

test set results into a global table first.

The performance of LAST-PM descriptors is compared in Table 6.1 to that of

1. ALL ground features from which LAST-PM descriptors were obtained (base-

line comparison).

2. BBRC descriptors to relate to structurally diverse and class-correlated ground

features.

3. MOSS descriptors by Borgelt and Berthold [22] to see the performance of

another type of abstract patterns.

4. SLS descriptors by Rückert and Kramer [49] to see the performance of ground

features compressed according to the so-called dispersion score.

For ALL and BBRC, a minimum frequency of 6% and a significance level of 95%

were used. For the MOSS approach, features were obtained with MoSS [22].

This involves cyclic fragments and special labels for aromatic nodes. In order to

generalize from ground patterns, ring bonds were distinguished from other bonds.

Otherwise (including minimum frequency) default settings were used, yielding only

the most specific patterns with the same support (closed features). For SLS, the

overall best figures are reported for the dispersion score and the SVM model from

Table 1 in their paper. As can be seen from Table 6.1, using the given variants

for the first and second fold, respectively, LAST-PM outperforms ALL, BBRC
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Figure 6.9: LAST-PM: Performance on External Test Sets.

and MOSS significantly for the bloodbarr and yoshida dataset (paired corrected

t-test, n = 20), as well as MOSS for the nctrer dataset (seven out of nine times

in total).

6.5.1.2 Validation Against Original QSAR Models

In their original paper [68], Yoshida and Topliss report on the prediction on an

external test set of 40 compounds with physico-chemical descriptors, in which they

achieved a false negative count of 2 and false positive count of 7. The authors

provided the test set and their exact accuracy with 1 false negative and 8 false

positives could be reproduced, using LAST-PM features.

Hu and co-workers [38], authors of the bloodbarr dataset study, provided us with

the composition of their “external” validation set, which is in fact a subset of the

complete dataset, comprising 64 positive and 32 negative compounds. Their SVM

model was based on carefully selected physico-chemical descriptors, and yielded

only seven false positives and seven false negatives, an overall accuracy of 85.4%.

Using LAST-PM features and the unoptimized linear polynomial kernel, only five

false positives and two false negatives were predicted, an overall accuracy of 91.7%.

Fig. 6.9 summarizes the results.

Further experiments with another 110 molecule blood-brain barrier dataset (46

active and 64 inactive compounds) by Hou and Xu [26] were conducted, obtained

together with pre-computed physico-chemical descriptors. Here, an AUROC value

of 0.78 was reached using LAST-PM features in repeated 10-fold crossvalidation,

close to the 0.80 that the authors obtained with the former. However, when

combined, both descriptor types give an AUROC of 0.82. In contrast to this,
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Dataset LAST-PM ALL PCR/RTR

bloodbarr 249 (1.23s) 1613 (0.36s) 0.15 /3.41

nctrer 193 (12.49s) 22942 (0.13s) 0.0084 /96.0769

yoshida 124 (0.28s) 462 (0.09s) 0.27 /3.11

Table 6.2: Analysis of pattern count and runtime.

AUROC could not be improved in combination with BBRC instead of LAST-PM

descriptors.

6.5.2 Runtime Analysis

According to section 6.3.2, the additional work compared to ground feature mining

is induced by conflict resolution, alignments, and stacking in LAST-PM. It is clear

that this effort will be non-marginal, given the time complexity of SVD. However,

it bears the potential to drastically reduce the resulting pattern result.

An analysis investigating the tradeoff between runtime and pattern set reduction

was performed [17]. The same settings as in section 6.5.1 were applied.

Table 6.2 relates pattern count and runtime (in braces) of LAST-PM and ALL

(median of 20 folds). PCR is the pattern count ratio, defined as the ratio of LAST-

PM patterns to ALL patterns, while RTR the runtime ratio between LAST-PM

and ALL, as measured for descriptor calculation on the 2.4 GHz Intel Xeon test

system with 16GB of RAM, running Linux 2.6. It turned out that 1/PCR always

exceeded RTR. Especially, for the nctrer dataset, the result set could be reduced

from > 20,000 ground features to merely 193 patterns. Profiling showed that most

CPU time was spent on alignment calculation, while SVD can be neglected.

6.5.3 Conclusions

LAST-PM descriptors are well-suited for binary classification tasks involving com-

plex biological endpoints. They were found to be not only competitive to other

compressed representations – more importantly, they are able to improve over the

complete set of ground features from which they were derived. This corroborates

the intuition that the pipelined process of LAST-PM may extract latent (hidden)

information from the ensemble of ground features in a patch that cannot be found

in any individual ground feature.
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A further, very important conclusion is that 2-D fragments can be used competi-

tively to physico-chemical descriptors, as was shown on the external test sets from

the original studies. The extraction of latent information from the ensemble of

ground features seems to have closed the gap in expressiveness to the latter that

has been arguably present before. The information seems to be complementary

and beneficial in addition to physico-chemical properties.

Given the favorable tradeoff between runtime and pattern set reduction, it may

well be concluded that the additional computational effort is justified. Combined

with the classification accuracy results from section 6.5.1, this result implies that

the crucial bits of information needed to classify molecular data can be embedded

in just a very small set of chemical fragments.

6.6 Conclusions

Latent Structure Pattern Mining (LAST-PM), a method for generating abstract

non-ground descriptors for large databases of molecular graphs was introduced.

The approach differs from traditional graph mining approaches in that it incor-

porates several similar descriptors into a larger pattern reveals additional (latent)

information, e.g., on the most frequently or infrequently incorporated parts, em-

phasizing a common interesting motif. It can thus be seen as graph mining on

subgraphs.

In traditional frequent or correlated pattern mining, sets of ground features are

returned, including groups of very similar ones with only minor variations of the

same interesting basic motif. It is, however, hard and error-prone (or sometimes

even impossible) to appropriately select a representative from each group, such

that it conveys the basic motif. Latent structure pattern mining can also be

regarded as a form of abstraction, which has been shown to be useful for noise

handling in many areas. It is, however, new to graph and substructure mining.

The key experimental results were obtained on blood-brain barrier, estrogen recep-

tor binding and bioavailability data, which have been hard for substructure-based

approaches so far. The experiments showed that the non-ground pattern sets

improve over the set of all ground features from which they were derived, but

also over MOSS descriptors [22], BBRC descriptors, and compressed [49] ground

feature sets when used with SVM models. In seven out of nine cases, the improve-

ments are statistically significant. Also, a favorable tradeoff between pattern count
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and runtime for computing LAST-PM descriptors compared to the complete set

of frequent and correlated ground features was found.

Bioavailability and blood-brain barrier data were taken together with correspond-

ing QSAR models from the literature and it was shown that, on three test sets

obtained from the original authors, the purely substructure-based approach is on

par with or even better than their approach based on physico-chemical properties

only. It was also shown that LAST-PM descriptors can enhance the performance of

solely physico-chemical properties. Therefore, latent structure patterns show some

promise to make hard (Q)SAR problems amenable to graph mining approaches.



Chapter 7

Case Study: A Biological Dataset

This chapter shows in a paradigmatic way, how backbone refinement class mining

and latent structure pattern mining may be applied to a chemical dataset with a

biological endpoint. It will be investigated how well BBRC and LAST-PM predict

the dataset, with a focus on chemical similarity.

7.1 Dataset

In a recent study, intestinal drug absorption in humans was the subject of QSAR

modeling [59]. This topic is of great interest, since the ability of chemicals to pass

from the gastrointestinal tract into the systemic circulation (blood) is central to

drug discovery. Any chemical failing to do so sufficiently will not be able to reach

the target site (organ), and thus will fail to exhibit its desired mechanism of action.

Key factors that limit the transport are low solubility, chemical instability, high

hydrogen bonding ability, as well as high gastrointestinal metabolism.

The dataset used was put together from the literature and consists of 458 small,

druglike compounds with FDA approval, for which experimental data were avail-

able and sufficiently documented. The variable describing the endpoint (intestinal

absorption) is defined as the percentage of the dose absorbed from the gastroin-

testinal tract following oral administration. Fig. 7.1 shows that the endpoint

variable is quite skewed in the dataset. In the study, three classes were defined

according to which the variable was binned: false for ≥ 80%, unknown between

30% and 80%, and true for ≤ 30%. Only the class labels true and false were

considered, molecules with label unknown were disregarded, yielding a true/false

ratio of 73/303 (≈ 0.241).
111
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Figure 7.1: Histogram for the Intestinal Absorption Dataset

MF BBRC LAST-PM

25 101 74

20 140 132

15 267 336

10 498 794

8 605 1,043

7 710 1,260

6 792 1,413

5 1,586 2,430

4 3,423 3,656

Table 7.1: Minimum Frequency Table

7.2 Parameter Selection

In order to find acceptable parameter values for minimum frequency and minimum

correlation (BBRC only), BBRC and LAST-PM were run several times against the

whole dataset in ascending minimum frequencies (see Table 7.1). The runtimes

never exceeded one minute: For the lowest minimum frequency of 4, BBRC finished

in 6.8s, and LAST-PM in 34.3s.
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Further preliminary testing, now using crossvalidation runs, revealed that 95%

would be acceptable as significance threshold (the default for both BBRC and

LAST-PM). For a good tradeoff between fingerprint coverage and runtime, mini-

mum frequencies of 20 for BBRC and 25 for LAST-PM were finally chosen.

7.3 Algorithms Validation

BBRC and LAST-PM were validated with the Lazar framework [21]. Lazar uses

local models built at prediction time in order to improve on predictive accuracy

(lazy learning). Conceptually, it employs a weighted Tanimoto index to determine

neighbors to the query structure and derives a prediction from them. The Tani-

moto index is built using fingerprints which indicate the presence or absence of sub-

structures in molecules, or the number of times substructures occur in molecules.

The left hand side of Table 7.2 defines basic statistics (TP = Number of True

Positives, FP = Number of False Positives, analogously for the negative class), as

well as some associated ratios. Importantly, Lazar provides a confidence value with

every prediction, ranging between 0 and 1, based on the mean neighbor Tanimoto

similarity. A measure that integrates ACC (accuracy) and neighbor similarity

into a single numeric value can be derived by weighting each prediction with its

associated confidence, referred to as WACC (weighted accuracy, see section 5.7.1).

The hypothesis is that WACC would be higher than ACC since better predictions

should occur for high confidences.

Three different factors were assessed for influence on model quality. Besides using

BBRC vs. LAST-PM descriptors, quantifying each pattern in the fingerprints with

the number of times (“hits”) it occurs in a molecule vs. simple binary indication

of occurrence as well as the effect of learning an SVM model vs. weighted majority

vote on the neighbors, were investigated. The right hand side of Table 7.2 encodes

these factors with capital letters.

7.4 Results

Since three binary factors were considered, eight validation settings were mutually

compared in total: For any of the eight settings, five times ten-fold crossvalida-

tion was conducted, yielding 50 data points each. Each pair of such vectors was

subsequently subjected to a paired t-test with significance level set to α = 0.05.



114 Chapter 7, Case Study: A Biological Dataset

Prediction → true false Σ

true TP FN P

false FP TN N

TPR = TP/P
TNR = TN/N
PPV = TP/(TP+FP)
NPV = TN/(TN+FN)
ACC = (TP+TN)/(P+N)

Code Description

L LAST-PM

B BBRC

S SVM

M Majority Vote

H Number of Hits

O Occurrence

Table 7.2: Algorithm Comparison Code Table

BSO BMO BSH BMH LSO LMO LSH LMH

BSO w w w wa wa

BMO W W a a

BSH w

BMH W W a a

LSO w w w w

LMO W W

LSH WA A A

LMH WA A W A W

Table 7.3: Algorithm Comparison: Significant Differences

Table 7.3 gives the relative performance results for the two accuracy measures.

A capital “W” in cell i, j indicates that the setting in row i scored significantly

higher than the one in column j for the WACC measure, a lowercase “w” signals

significantly lower score. The same scheme is used for ACC with letters “A”, “a”.

From the results, three major trends may be observed: Best performance was

seen using LAST-PM descriptors with number of hits per compound. Weighted

majority voting shows good performance, regardless of descriptor type and oc-

currence indicator (*M* combinations). The *SO combinations (support vector

machine and binary occurrence) generally perform worst.

Fig. 7.2 shows a chart of ACC and WACC, along with TPR (true positive rate

and TNR (true negative rate), as well as PPV (positive predictive value) and NPR

(negative predictive value). TPR and TNR are referred to as sensitivity statistics,

PPV and NPV as selectivity statistics.

While negatives are detected nearly completely for the combinations using LAST-

PM, the sensitivity towards the actives is actually significantly better using BBRC

descriptors, with BMH performing roughly four times as good as random guessing
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ACC WACC TPR TNR PPV NPV

BSO 0.824 0.821 0.422 0.925 0.621 0.864

BMO 0.824 0.868 0.454 0.916 0.604 0.870

BSH 0.839 0.847 0.485 0.931 0.619 0.877

BMH 0.834 0.875 0.491 0.923 0.633 0.877

LSO 0.839 0.840 0.351 0.955 0.671 0.863

LMO 0.846 0.869 0.350 0.963 0.699 0.864

LSH 0.858 0.862 0.405 0.961 0.678 0.876

LMH 0.859 0.881 0.406 0.964 0.700 0.875

Table 7.4: Algorithm Comparison: Statistics

Figure 7.2: Algorithm Comparison: Statistics Chart

on the positive class. However, LAST-PM is able to predict the positive class much

more specifically than BBRC, as the higher PPV values for the LM* combinations

indicate.

To illustrate the practical use of confidences and the importance of the WACC

measure, Fig. 7.3 plots confidence vs. ACC in a cumulative fashion (taken from

one of the crossvalidation runs of the LMH setting): The leftmost data point

represents a single prediction (the one with the highest confidence), the second

leftmost point represents two predictions (those with the two highest confidences)

and so forth. Confidences per se are not probabilities, but raw, uncalibrated mea-

sures. Using an analysis such as in Fig. 7.3 however, they could be converted into

probability estimates. This would appear straightforward, since any point in the
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Figure 7.3: ACC vs. Confidence Chart

plot is the empirical probability of obtaining a correct prediction for a confidence

at least that high. Doing so would enable users to specify comprehensible thresh-

olds for minimum confidence values in terms of probabilities. A present drawback,

however, is the jitter in the high confidence regions, where, due to the cumulative

approach, only few data points lie.

7.5 Discussion

The modelling exercise in this chapter has found LAST-PM to perform overall

better than BBRC on this dataset, probably due to its ability to mine more elab-

orate patterns. This backs up the experience made already in the experiments in

the LAST-PM section, namely that LAST-PM performs often better on complex

biological endpoints (cf. section 6.5.1). The results of the significant difference

testing (cf. Fig. 7.2) suggest also that weighted majority vote should be used.

They suggest furthermore that the number of hits for quantifying patterns in the

fingerprints should be used instead of mere presence indication. Remarkably, these

findings are consistent through all 26 factor combinations, in the sense that no

single factor switch could be found contradicting these rules (there are exceptions

for two factors, however, e.g. BMO beats LSO on WACC). Direct comparisons

between the influence of descriptor type and prediction scheme indicate a slight

advantage for the latter, thus it would be more important to use majority voting

instead of SVM models than to use LAST-PM instead of BBRC.



Chapter 7, Case Study: A Biological Dataset 117

The experiments revealed high sensitivity values on the negative class (TNR),

while sensitivity for the positive class remained below 0.5. This may be attributed

to the skewed distribution of the target classes. However, good specificity (NPV

and PPV) was found for the overall winning LM* combinations. Therefore, de-

spite many (in relation to the small positive class) false negatives, the positive

predictions made were quite specific.

It has been shown in two ways that confidence is a meaningful way of describing

prediction quality: First, WACC was found to be higher than ACC for nearly all

compared models (see Table 7.4). Second, models employing majority vote gen-

erally showed superior performance compared to support vector machine models.

In the former, the contribution of each neighbor was weighted according to its

similarity to the query structure (remember that confidence was defined as mean

neighbor similarity), whereas in the latter, it was not. BBRC seemed to profit

more from confidence than LAST-PM, as the difference between ACC and WACC

was consistently higher there. However, although BBRC descriptors were able to

achieve a significantly higher number of true positives, they induced models with

a significantly lower specificity and also lower total accuracy.

7.6 Resources Used

BBRC and LAST-PM are available as web services in the OpenTox framework

(http://www.opentox.org, cf. Appendix C). OpenTox is a research project

financed by the European Union with the aim to establish an open standards

predictive toxicology framework, connecting chemoinformatics services via the web

[17].

This chapter was produced using the OpenTox facilities for algorithm valida-

tion, specifically the algorithm comparison module. The validation engine au-

tonomously splits datasets in training and test folds and sends them over the

network to the algorithm service. Only after the model has been built, valida-

tion sends the test dataset to the model to obtain predictions 1. This approach

effectively prohibits information flow from the test set at training time.

1In case of a lazy learning algorithm, such as Lazar, the training phase consists mainly in pattern
generation.

http://www.opentox.org
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Conclusions and Future Work

8.1 Summary of Results

Chapter 1 prefaces the thesis with the basic requirements for predictive, inter-

pretable, and time-efficient QSAR models. It shows that data mining methods

made the process modular, but also introduced new complexity that has to be

dealt with. Chapters 2 and 3 introduce graph mining and strategies that enable

graph mining algorithms to search a database of graphs efficiently, with respect

to general complexity results. The process of model building using data mining

methods is elaborated with a focus on compression methods, among them selection

according to class correlation.

In the next two chapters, two graph mining algorithms that address the above

aspects are proposed – the following list compactly summarizes the results:

� In an artificial – but reasonably chosen – search space, backbone refinement

class mining achieves high compression due to its unique partitioning of the

search space (see section 5.3).

� Backbone refinement class descriptors are able to maintain high coverage for

increasing minimum frequencies. The normality of the distribution is higher

without aromatic perception, whereas compression (and thus representative-

ness) is lower (see section 5.4).

� The structural partitioning of the search and the statistical selection crite-

rion in backbone refinement class mining produce highly diverse and well-

distributed patterns (see section 5.5).

119
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� The method scales nicely, it is even applicable for large-scale data, as exem-

plified on the (to the author’s best knowledge) largest database in correlated

graph mining yet (see section 5.6).

� Backbone refinement class representatives show very good classification per-

formance with very few descriptors, which enables the use of large-scale

datasets also in QSAR models (see section 5.7).

� There is a striking lack of graph mining algorithms for the calculation of

latent (hidden) motifs in graph databases. A pipelined approach to latent

structure pattern mining is proposed. An example shows, how such a pattern

may be interpreted by a chemical expert (see section 6.1).

� The building blocks for latent structure pattern mining are defined and the-

oretically examined. This includes conflict detection and conflict resolution

(introducing ambiguities), and bounding the search by structural and statis-

tical constraints (see section 6.2).

� In latent structure pattern mining, the computational effort for aligning basic

fragments is kept linear when embedded into a branch-and-bound graph

mining algorithm (see section 6.3).

� Latent structure pattern mining is shown to outperform other compressed

representations. Unoptimized SVM models using LAST-PM descriptors are

on par or better to highly optimized QSAR models for complex biological

endpoints. The tradeoff between compression and runtime indicates good

scalability (see section 6.5).

In view of these results, I consider the hypothesis from section 1.5 confirmed.

8.2 Lessons Learned

The interplay of machine learning techniques in the process of creating a QSAR

model is an enormously complex process that always needs optimization. In partic-

ular, the choices taken in any stepwise approach to model building (cf. chapter 3)

must be all well-founded for the predictive model to generalize well to unseen data.

This work has contributed to the state of the art in fragment-based descriptor gen-

eration by methods that produce compact, in practice efficiently computable, and
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interpretable pattern sets with good expressiveness. They do so by employing a

novel combination of user-defined and structural constraints.

My experience confirms the idea of sparse selections, i.e. that exhaustive searches

on the complete descriptors space should be rather avoided in graph mining ap-

plied to chemical databases. Designing the BBRC algorithm was guided by the

idea that descriptors can be calculated efficiently due to their distribution around

the medium-frequent patterns. Thus, not all frequency levels above minimum

frequency would have to be searched. Indeed, in the experiments on the largest

labeled set of chemical compounds used so far in class-correlated graph mining, it

was shown that BBRC descriptors can be computed within reasonable time and

used in simple predictive learning schemes.

LAST-PM can be seen as “nested” graph mining, since it processes the results of

a graph mining algorithm to find the most frequently or infrequently incorporated

parts of fragments, emphasizing a common interesting motif (latent structure).

Thus, it may aggregate and summarize subgraphs, forming a lifted representation

of interesting subgraphs. This sophisticated approach has been useful for biologi-

cal endpoints that describe processes in organisms involving metabolic activity. I

conclude from the experiments that fragment-based descriptors may be useful in

such settings, but that a more elaborate representation than traditional mining

of frequent or correlated subgraphs would be needed. Specifically, none of the

other types of fragment descriptors could compete in this setting. The question

whether LAST-PM should be preferred over BBRC mining whenever possible,

since it produces more elaborate patterns, must be answered with “no”, however.

In my experience, LAST-PM descriptors show superior predictivity on datasets de-

scribing complex biological endpoints (see chapter 7), but apart from that BBRC

descriptors are competitive and can be computed very fast (given sensible con-

straint parameters). In this sense, LAST-PM cannot be considered a “successor”

to BBRC mining.

Machine learning may extract relevant knowledge from structured databases, for

example in the form of informative patterns. This can be shown on an implicit

level through predictive ability when used in statistical models. However, patterns

found by machine learning algorithms were also successfully matched with human

expert knowledge on an explicit level (cf. section 6.1.3). I have observed that,

oftentimes, patterns found by machine learning provides a more detailed, fine-

grained perspective, whereas expert knowledge tends to generalize.

Quite obviously to me, not every pattern found by statistical methods is inter-

pretable for experts. Sometimes, the automatically derived representation is quite
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distant from what an expert may expect. This does not mean it is wrong – even

experts need to constantly refactor their knowledge – but perhaps just hard to

grasp. Of course, also the data could be insufficient in quality or size.

However, expert knowledge may be sometimes wrong too, due to over-generalization.

In sophisticated settings, e.g. when complex metabolic processes are involved, this

is not surprising.

I conclude that a combination of data-driven and expert techniques would be most

useful when ultimately applied to real-world problems, mutually contributing to

and controlling each other, as for example in the study by Wicker et al. [63].

8.3 Future Work

The algorithms presented in this work are depend critically on reasonably cho-

sen constraint parameters. Most important are sensible selections of minimum

frequency and minimum correlation thresholds. Finding appropriate settings is

currently up to the user, which can be guess work and time consuming. Thus,

efficient methods to find characteristics of a dataset at hand, associated with the

quality of parameter choices would be very valuable. Such characteristics may in-

clude mean graph size, mean graph density (number of interconnected node pairs),

or structural diversity of graphs, or others. A promising approach is structural

graph clustering, for which recently a very efficient method has been proposed [56].

Here, the molecular graphs are clustered according to maximum common substruc-

ture (more specifically an approximation to it). The clustering is non-exclusive

and non-exhaustive, so that instances can belong to more than one cluster, or to

no cluster. The method illustrates some of the above properties, which could be

functionally tied to parameter selection in a future study.

We have also shown that the descriptors in this work are useful to determine

chemical similarity (cf. section 5.7.1). Thus, they could be also used for clustering

chemical space, for example using Tanimoto similarity based on fingerprints rep-

resenting the mined patterns. Since the presented methods work very efficiently,

this could even be done in an on-demand setting, for example when screening

a large database of chemical compounds for instances similar to a certain query

compound.

Extensions of BBRC and LAST-PM for the multinomial and regression setting,

i.e., with more than two target classes or a numeric endpoint variable, have already

been implemented. In the multinomial setting, the method of dynamic upper

bound pruning (cf. section 5.6.1) can be generalized from the binomial setting
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in a straightforward manner. For regression, however, no such efficient pruning

technique is available, since the corresponding correlation function (Kolmogorov-

Smirnov test) lacks the convexity property.

Although the regression setting could be approximated by binning the response

variable into classes, with n classes, the number of tests that must be performed on

each pattern to calculate its upper bound is 2n, which is prohibitive. Therefore, the

current implementation is restricted to maximally five target classes. Techniques

to overcome this will be the topic of future research.





Bibliography

[1] Amir Ahmad and Lipika Dey. A Feature Selection Technique for Classificatory

Analysis. Pattern Recognition Letters, 26(1):43–56, 2005.

[2] Mohammad Al Hasan, Vineet Chaoji, Saeed Salem, Jeremy Besson, and Mo-

hammed J. Zaki. ORIGAMI: Mining Representative Orthogonal Graph Pat-

terns. ICDM 2007. Seventh IEEE International Conference on Data Mining,

pages 153–162, Oct. 2007.

[3] Christopher G. Atkeson, Andrew W. Moore, and Stefan Schaal. Locally

Weighted Learning. Artificial Intelligence Review, 11(1-5):11–73, 1997.

[4] Romualdo Benigni, Cecilia Bossa, Tatiana Netzeva, and Andrew Worth. Col-

lection and Evaluation of (Q)SAR Models for Mutagenicity and Carcinogenic-

ity, chapter 4.1. European Commission Joint Research Centre, 2007.

[5] Björn Bringmann, Siegfried Nijssen, and Albrecht Zimmermann. From Lo-

cal Patterns to Classification Models. In Saso Džeroski, Bart Goethals, and
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tors, Machine Learning and Knowledge Discovery in Databases, volume 6323

of Lecture Notes in Computer Science, pages 213–228. Springer Berlin / Hei-

delberg, 2010.

[58] Ashwin Srinivasan, Ross D. King, Stephen H. Muggleton, and Michael J. E.

Sternberg. The Predictive Toxicology Evaluation Challenge. In Proceedings



Bibliography 131

of the 15th International Joint Conference on Artifical Intelligence - Volume

1, IJCAI’97, pages 4–9, San Francisco, CA, USA, 1997. Morgan Kaufmann

Publishers Inc.

[59] Claudia Suenderhauf, Felix Hammann, Andreas Maunz, Christoph Helma,

and Jörg Huwyler. Combinatorial QSAR Modeling of Human Intestinal Ab-

sorption. Molecular Pharmaceutics, 8(1):213–224, 2011.

[60] S. Joshua Swamidass, Jonathan Chen, Peter Phung, Liva Ralaivola, and

Pierre Baldi. Kernels for Small Molecules and the Prediction of Mutagenic-

ity, Toxicity and Anti-cancer Activity. Bioinformatics, 21:i359–i368(1), June

2005.
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Appendix A

LAST-SMARTS

LAST-PM output is converted to a special type of SMARTS patterns (LAST-

SMARTS). LAST-SMARTS are valid SMARTS strings according to the standard

set forth by Daylight Inc. 1.

While SMILES (Simplified Molecular Input Line Entry Specification), a popu-

lar ASCII string notation for chemicals, denotes molecules, a SMARTS (SMiles

ARbitraryTarget Specification) string describes molecular fragments. The SMILES/S-

MARTS language pair is supported by most computational chemistry software.

SMILES strings are obtained by printing the symbol nodes encountered in a depth-

first tree traversal of a chemical graph (see Fig. A.12).

Figure A.1: An example for SMILES generation

1See http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html.

2Taken from http://en.wikipedia.org/wiki/Simplified_molecular_input_line_entry_

specification.
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SMARTS strings can be thought of as “regular expressions for chemicals”, i.e. a

query language for molecular fragments. Besides the symbols allowed in SMILES,

SMARTS allow a variety of wildcard patterns. LAST-SMARTS implement some of

these. Formally, LAST-SMARTS are defined as follows in Extended Backus-Naur

Form:

ANN := ’17’ | ’35’ | ’5’ | ’6’ | ’7’ | ’8’ | ’15’ | ’16’ | ’9’ | ’53’

AN := ANN ’&a’ | ANN

A := (AN ’,’ A) | AN

SB := ’-’ | ’=’ | ’#’ | ’:’

E := (SB ’,’ E) | SB

N := ’[#’ A ’]’

L := N ’(’ E LS ’)’ (’(’ E N ’)’)+

LR := (L ’,’ LR) | L

BN := ’[#’ A ’;$’ ’(’ LR ’)’ ’]’ ’(~*)’+

LS := (N | BN) | LS E (N | BN)

The definition uses an organic subset of atoms (ANN), possibly with aromatic

annotation (AN), and four different bond types (SB). Bonds (E) and atoms (A)

can be composed of several types, with the semantics of logical OR.

LAST-SMARTS employ recursive SMARTS to describe optional parts of the struc-

ture for ambiguities larger than a single atom or bond type. A recursive SMARTS

is a SMARTS embedded in a SMARTS using the embeddeding operator ‘$’(BN).

It is composed of several substructures, with the semantics of logical OR (LR).

Thus this construct is analogous to E and A respectively, but describes fragments

larger than a single atom or bond.

The embedded SMARTS consists of the atom itself, and so-called back links and

forward links, describing precisely the one-step neighborhood (see example below).

The back and forward links are needed, since the standard is truly recursive, i.e.

nothing inside the $(...) is identified with the outside. For the same reason,

(~*) (arbitrary branch) is used to enforce that at least one optional branch is

actually attached.

Example A.1. The following LAST-SMARTS describes two branches as optional

(broken up on several lines for demonstration):

1 [#7,#9]

2 [#6&a;$(
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(a) Matches without optional parts.

(b) Matches with optional parts.

Figure A.2: Example for matching LAST-SMARTS.

3 [#6&a][#7]([#6&a][#9])=[#6&a]

4 ),$(

5 [#6&a][#7]([#6&a]=[#8])=[#6&a]

6 )

7 ](~*)

8 =[#6&a]

This denotes a nitrogen or fluorine (1) (single-)connected to an aromatic carbon

(2) double-connected to an aromatic carbon (8). The middle carbon’s local en-

vironment (2-6), attached via conjunction (‘;‘), is described using two recursive

SMARTS (3,5), denoted by $(...), and a disjunction (‘,‘).

The example demonstrates optional fragments larger than a single atom or bond.

Ambiguities on the atomic level do not require recursive SMARTS, the example

demonstrates this in the first atom. Fig. A.2(a) shows all matchings without

the recursive parts on the chemical from Fig. A.1. However, since at least one

optional part is required, the match in Fig. A.2(b) is obtained, with the optional

part marked lighter in contrast to the darker rest of the match.

Note: Variants msa and nls produce LAST-SMARTS with recursive SMARTS,

while nop disallows optional parts of the structures and allows ambiguities only

on the atom / edge level.





Appendix B

BBRC-Coverage

As discussed in section 5.4.1.2, the normality of the coverage distribution increased

for higher minimum frequencies. Fig. B.1 shows the corresponding density curves.

(a) Minimum Frequency: 100

(b) Minimum Frequency: 200

Figure B.1: Coverage (density) of BBRC patterns.
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Appendix C

Online-Resources

C.1 Source Code

The source code for both BBRC and LAST-PM is freely available. For each algo-

rithm, a dedicated library has been developed (libbbrc and liblast). The code

is hosted on Github, a collaborative source code management platform (http://

github.com/amaunz/fminer2).

A thin frontend application is provided (called fminer) for use on the command

line. Moreover, the exact same functionality is exposed as REST web service in the

OpenTox framework [17], which allows for convenient remote use without having

to install applications locally.

Visit the main websites at http://bbrc.maunz.de and http://last-pm.maunz.

de for information on how to

� Download, build and use fminer locally on your computer.

� Query the fminer web service.

� Build the libraries for several scripting languages (currently Ruby, Python,

and Java).

� Reproduce some main experiments of this work.

Note: Please check back frequently for bugfixes and new functionality, since the

libraries are being developed constantly.
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C.2 Datasets

The datasets that have been used in this work (apart from Chapter 7) can be

obtained as follows: Visit http://github.com/amaunz/ and branch to the sub-

directories corresponding to the desired datasets (see section 4.3).

OFS Datasets http://github.com/amaunz/ofsdata

CPDB Datasets http://github.com/amaunz/cpdbdata

Large-Scale Datasets http://github.com/amaunz/data-yeast-acl

Please refer to the README that accompanies each dataset for further informa-

tion.

C.3 Animated Embeddings

The BBRC website at http://bbrc.maunz.de contains dynamic versions of the

euclidean embeddings presented in section 5.5.1.2, allowing to zoom and pan the

representation. An important feature that is not available in the printed version is

that it allows to explore the actual embeddings of every single pattern by hovering

over it with the mouse. Conversely, all patterns occurring in an instance will be

marked when hovering over the instance, conveying a much more detailed picture

of the embedding.

Figure C.1: Occurrences highlighted by hovering the mouse pointer.
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