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In this paper an energy based tracking control for the thrustdirection of a quadrotor heli-
copter is presented. The concept can be considered as a direct extension of the setpoint control
presented in [6], since by the application of appropriate feedforward control the open loop
structure of the setpoint control case is preserved. In particular the tracking dynamics are still
autonomous. Moreover, some modifications compared to [6] are introduced, which comprise
the addition of integral action to the controller part that regulates the angular velocity around
the thrust axis. Additionally, the whole control problem isreformulated using the reduced atti-
tude parametrization presented in [4], which is better suited for this particular control problem
than the quaternion representation used before. Global andlocal analysis of all equilibrium
points is provided and shows that the desired equilibrium, corresponding to a zero tracking
error, is almost globally asymptotically and locally exponentially stable.

1 Introduction

A quadrotor helicopter is a highly maneuverable vertical take-off and landing aircraft, which
offers the ability of hovering. As shown in Fig. 1, it is basically a rigid body with four rotors
arranged in a common plane which generate thrust forces and drag moments. The effects of the
four single rotors can be summarized in the center of gravityas a total thrustF perpendicular to

the plane and a torque vectorτ � �τx τy τz�T . Since the direction of the thrust is body-fixed,
the execution of almost all translational motions requirestilting the whole quadrotor helicopter
systematically. Consequently, a desired thrust directionis usually the remote control command
of a human operator or the output of a higher level position controller and has to be tracked by a
lower level thrust direction controller. In the latter case, especially if a high bandwidth position
controller is considered, exact tracking of the thrust command is required. In this paper we
will combine a suitable feedforward control with the approved error feedback from the setpoint
control [6] to achieve asymptotic convergence of the actualthrust direction to its moving ref-
erence direction. Moreover, integral action for disturbance rejection is added to the controller
part regulating the angular velocity around the thrust axis. The controller design gives rise to
a continuous state feedback law and is based on an energy shaping approach. The potential
energy as well as the damping functions proposed in this paper are slightly modified compared
to the ones assigned in [6]. The modifications significantly facilitate the local analysis of the
closed loop equilibrium points while their influence on the controller perfomance is negligible.
Finally, the problem is reformulated using the reduced attitude parametrization presented in [4]
instead of the quaternion representation. The new parametrization contributes to a simplified
stability analysis since it allows for examining equilibrium points instead of equilibrium sets.
The control task belongs to the field of reduced attitude control, which has been studied for
example in [4, 3, 2, 13, 7]. While applications encompass forinstance the spin axis stabilization
of spacecrafts [2, 13] or the stabilization of the inverted 3D pendulum [3], reduced attitude
control has been rarely used in the field of unmanned aerial vehicles, an exception is [7]. The
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Figure 1: Quadrotor with body-fixed frameB � �x,y,z� and control inputsF, τx, τy , τz.

energy based approach presented here can be roughly assigned to the very general concept
presented in [3] but focuses on indicating explicit energy and damping functions. Compared
to other control concepts, energy based control admits a transparent physical interpretation of
the closed loop. The static forces or torques of the control law can be viewed as the effects of
virtual (possibly nonlinear) spring elements, which correspond to the potential energy that is
shaped by the control engineer. This process determines theequilibria of the closed loop and
also admits the consideration of control input constraints. By injecting an appropriate damping
in the closed loop system, the dynamic forces or torques are designed. This way the energy
dissipation and thus the transient behavior is controlled.The control concept presented here,
places emphasis on a sophisticated damping strategy that aims on a fast transient behavior.
In Section 2 we briefly introduce the notation and the definitions used in the following. A
detailed problem statement together with the derivation ofthe tracking dynamics is given in
Section 3. Based on an energy shaping approach, the thrust direction controller is developed in
Section 4, before almost global asymptotic stability of theequilibrium, corresponding to a zero
tracking error, is proven in Section 5. Finally, conclusions are drawn in Section 6.

2 Nomenclature and Definitions

Scalars are indicated as italic letters, whereas vectors, matrices and composite quantities are
indicated by upright bold letters. Any physical vectora > R3 has meaning even without concrete
numerical values and is thus referred to as an abstract vector. To assign numerical values to
an abstract vector a suitable coordinate frame has to be chosen. All coordinate frames used
are right-handed Cartesian coordinate systems and identified by uppercase italic letters. The
representation of an abstract vectora > R3 with respect to a certain frameE � �e1,e2,e3�
with orthonormal basis vectorse1,e2,e3 is denoted byaE . The elements of a vectoraE are

identified byaE � �aEx aEy aEz�T and byaExy we meanaExy � �aEx aEy�T . For some
vectors, which are exclusively represented in one coordinate frame, the basis designation will

be dropped. Additionally, we define the basis independent unit vectorsex � �1 0 0�T , ey ��0 1 0�T andez � �0 0 1�T . The transformation from a frameE to another frameE� is
given by a rotation matrixRE�E > SO�3�, whereSO�3� � �R > R3�3 �RTR � I3,det�R� � 1�
is the special orthogonal group andIi, i > N denotes thei � i identity matrix. The angular
velocity of a frameE� with respect to a frameE given in a frameE�� is denoted byωEE�

E�� > R3.
The skew symmetric operatort �y � R3 � so�3�, whereso�3� � �K > R3�3 � KT � �K� is
defined such thattayb � a�b reflects the cross product fora,b > R3. Moreover, we define the



functionΛζuζl � �0, π�� �0, sin�ζl�� as

Λ
ζu
ζl
�ζ� � ¢̈̈̈̈�̈̈̈̈¤sin�ζ� if 0 B ζ B ζl ,

sin�ζl� if ζl � ζ B ζu ,
sin�ζl�
sin�ζu� sin�ζ� if ζu � ζ B π , (1)

whereζl, ζu > R� are constants. We also use the functionχ
ζ2
ζ1
� R �R �R � R,

χ
ζ2
ζ1
�ζ,ψ1�ζ,a�, ψ2�ζ,a���¢̈̈̈̈�̈̈̈̈¤ψ1�ζ,a� if ζ B ζ1 ,�ζ2�ζ�ψ1�ζ1,a���ζ�ζ1�ψ2�ζ2,a�

ζ2�ζ1 if ζ1� ζ B ζ2 ,
ψ2�ζ,a� if ζ2� ζ , (2)

which provides a linear interpolation between the scalar functionsψ1�ζ,a� andψ2�ζ,a� with
respect toζ in the interpolation region defined byζ1 andζ2. For someζ1 � ζ2 � ζ3 � ζ4 we
moreover define

χ
ζ3,ζ4
ζ1,ζ2

�ζ,ψ1�ζ,a�, ψ2�ζ,a�� �� χζ2ζ1 �ζ,ψ1�ζ,a�, χζ4ζ3�ζ,ψ2�ζ,a�, ψ1�ζ,a��� , (3)

which provides a linear interpolation fromψ1�ζ,a� toψ2�ζ,a� and back toψ1�ζ,a�.
We will frequently encounter the case that a (scalar, vectoror matrix) quantitya can be given
as a functionf��� of coordinatesb, i.e. a � f�b�, and also as a functioñf��� of coordinatesc,
i.e. a � f̃�c�. With a slight abuse of notation we will writea�b� to refer tof�b� anda�c� to
refer tof̃�c�. Sometimes, we will also drop the argument and in that case writing a may refer
to f�b� or f̃�c� depending on the context.
Finally, some properties of the skew symmetric operatort �y that will be needed in the following
are stated. They can be found for example in [11]. By the skew symmetry it holds thattay ��tayT . Sincetayb reflects the cross producta�b we also have thattayb � �tbya. Moreover,
for any rotation matrixRE�E and any vectora > R3 it holds that

RE�EtayRT
E�E � tRE�Eay . (4)

Eventually, leta,b,c > R3, then the Grassman identy istay�tbyc� � �aT c�b � �aTb�c . (5)

3 Problem Statement and Reduced Attitude Tracking Dynamics

Regarding the attitude, we model the quadrotor helicopter as a rigid body actuated in torque.
This commonly used model exploits the generally accepted assumption that there exists a known

one to one relation�F τ
T �T � f�ω2

1
, ω2

2
, ω2

3
, ω2

4
� (see e.g. [12]) between the magnitudeF of

the thrust force, the torque vectorτ and the squares of the rotor angular ratesωi, i > �1,2,3,4�,
which are the real control variables. Furthermore, the model neglects some minor effects like
the gyroscopic torques of the rotors or the flapping dynamics. We distinguish an inertial north
east down coordinate frameI � �enorth,eeast,edown� and a body-fixed frameB � �x,y,z�
attached to the center of gravity of the quadrotor and oriented as shown in Fig. 1. Then, the
rigid body attitude dynamics read

ṘBI � �tωIB
B yRBI , (6)

Jω̇IB
B � �tωIB

B yJωIB
B � τ � τ̂zez , (7)



whereJ � JT A 0 is the moment of inertia matrix given inB, τ � τB is the control torque and̂τz
is a constant and bounded disturbance torque acting on the body-fixedz-axis. Such a constant
torqueτ̂z can occur during hovering, for instance when the drag moments caused by the rotors
are unbalanced due to slight inhomogeneities. In the following we assume that the statesRBI

andωIB
B are accessible either by direct measurements or as the output of an appropriate data

fusion.
The unit vector pointing along the body-fixedz-axis is denoted byz. As the thrust vector always
points in the direction�z, aligning the thrust vector is equivalent with aligningz. Accordingly,
the control objective is to make the vectorz track a desired time-varying directionzd, or more
technicallyz� zd ast �ª. Even ifz � zd holds the quadrotor can still rotate around itsz-axis

and we want that motion to decay. Hence we additionally claimω
IB
B � �ωIBBx ωIBBy 0�T as

t �ª. Since the desired directionzd is usually the output of a higher level position controller,
its representation with respect to the inertial framezdI as well as its time derivativeṡzdI , z̈dI are
considered to be known and bounded.
The desiredz-axis direction given in the body-fixed framezdB � RBIzdI can be interpreted as
a reduced attitude error suitable for our purposes, [4]. In terms ofzdB > S2, whereS2 � �a >
R3 � aTa � 1�, the first control objective readszdB � zB � ez ast �ª. To derive the reduced
attitude error dynamics, we compute the time derivative ofzdB using (6), (5) together with the
fact thatżdI Ù zdI and (4),

żdB � ṘBIzdI �RBI żdI � �tωIB
B yRBIzdI �RBI ttzdIyżdIyzdI �� �tωIB

B yRBIzdI � tRBItzdIyżdIyRBIzdI �� t�ωIB
B �RBItzdIyżdIyzdB � �tωIB

B �ωdByzdB� �tω̃ByzdB � tzdByω̃B .

(8)

Note that the angular velocityωdB � RBItzdIyżdI does not indicate the rotational motion
between two particular coordinate frames, though it could be interpreted as the angular rate of a
desired frameD with respect to the inertial frameI, ωdB � ω

ID
B . However this virtual frameD

is not fully determined, since we only know about itsz-axiszd. Thus, any rotation matrixRID

solvingzdI �RIDez would characterize an admissible frameD. Moreover, not even the angular
velocity of such a frameD is unique, since all angular rates satisfyingω

ID
B � ωdB � a � zdB,

wherea is arbitrary would lead to the samėzdB. Consequently, the error angular velocity
ω̃B � ω

IB
B � ωdB does not characterize the motion between two properly defined coordinate

frames but nevertheless represents an appropriate angularvelocity error, regarding our control
problem. Note that̃ωB � 0 impliesωIBBz � 0 if zdB � ez. Using (7), the derivative of̃ωB with
respect to time is identified as

˙̃
ωB � ω̇

IB
B � ω̇dB � J�1 ��tωIB

B yJωIB
B � τ � τ̂zez� � ω̇dB , (9)

whereω̇dB � �tωIB
B yRBItzdIyżdI �RBItzdIyz̈dI .

4 Controller Design

In this section, we will first execute an input transformation, such that the controller presented
in [6] could be applied without any changes in the undisturbed case. We will then restate this
controller with some slight modifications concerning additional integral action for disturbance
rejection and minor changes to the potential energy and the damping.



By inserting the input transformation

τ � k�w�tωIB
B yJωIB

B � �k�w��1� �tωdByJ�ωIB
B �ωdB� � tωIB

B yJωdB��Jω̇dB � τ̃ , (10)

into (9) one obtains

˙̃
ωB � J�1 ��k�w� � 1�tω̃ByJω̃B � τ̃ � τ̂zez� , (11)

whereτ̃ is the new control input andk�w� is any locally Lipschitz continuous function of the
statew defined below. For the sake of convenience, the functionk�w� is often chosen constant.
For examplek � 1 will cancel the coriolis term, whereask � 0 yieldsτ � τ̃ in the case of a
setpoint control (whenzdI is constant or considered to be constant). It will turn out that the
stability properties of the closed loop do not depend on the particular choice ofk.
If τ̂z � 0, the control law presented in [6] could now be directly applied toτ̃ and would achieve
asymptotic tracking ofzd. In the following some modifications of that control law willbe
introduced, but we adopt the input constraintYτ̃ xyY B τ̄xy , Sτ̃z S B τ̄z , (12)

whereτ̄xy andτ̄z are positive constants and̄τxy Q τ̄z holds. Although̃τ is not the actual control
torque, we nevertheless consider the constraint, since, asmentioned above,̃τ equalsτ if k is
chosen to be zero and a setpoint control is considered. Moreover, the constraint can be easily
dropped if desired. Due to the similarity of (11) and (7), we will sloppily refer to τ̃ as the
control torque from time to time, while it is always clear that the actual torque isτ . Eventually,
we assume

τ̂z > ��b, b� , 0 � b � τ̄z (13)

holds for the constant disturbanceτ̂z.
The first modification compared to [6] concerns the optional augmentation of the controller by
an integrator stateΩ for disturbance rejection, which satisfies

Ω̇ � ω̃Bz . (14)

Together with (8), (11) the preceding equation represents the open loop dynamics and the cor-

responding state vector isw � �zT
dB

Ω ω̃
T
B�T >W � S2 �R �R3. Since we want to consider

the integrator dynamics (14) as an optional feature, we willdiscuss the case without integral
action at the end of each section. Without stating it explicitly, we assume that the system is
undisturbed (̂τz � 0) in this case.

4.1 Shaping of the Potential Energy

We will now briefly state the control law, which is largely identical to the control law given in
[6] and subsequently discuss the modifications made. For a detailed motivation and discussion
of the controller properties, we refer to the aforementioned article. Since the controller design is
based on an energy shaping approach (see e.g. [10]), it is constructed such that the closed loop
system is described by means of an assigned continuously differentiable energy functionV �w�,
which has a strict minimum at the desired equilibrium pointwd � �eTz Ωd 0T �T . Since the
stateΩ was introduced for disturbance rejection, the constant valueΩd is not known a priori but
depends on the disturbanceτ̂z. In the following we will assign an energy function

V �w� � Erot�ω̃B� �Epot�zdB,Ω� � 1

2
ω̃
T
BJω̃B �Epot�zdB,Ω� , (15)



which is composed of a kinetic and a potential energy part andfulfills V �wd� � 0 andV �w� A 0

if w xwd. Moreover,V will be constructed such that all its sublevel sets are compact.
The potential energyEpot necessarily needs a component depending on the alignment error of
the thrust axis. A natural error function for the alignment error is the angleϕ � arccos�zTBzdB� �
arccos�eTz zdB� � arccos�zdBz� > �0, π� betweenz andzd. We propose a potential energy of the
form

Epot�ϕ,Ω� � Eϕ�ϕ� �EΩ�Ω� �E τ̂z�Ω� , (16)

where

Eϕ�ϕ� � cϕS ϕ

0

Λϕu
ϕl
�ζ� dζ , EΩ�Ω� � S Ω

Ωd

̟�ζ� dζ , Eτ̂z�Ω� � S Ω

Ωd

�τ̂z dζ . (17)

Therein,cϕ � τ̄xy
sin�ϕl� is a positive constant andΛϕu

ϕl
�ζ� is defined in (1). The energyEϕ can

be considered as the potential energy caused by a torsion spring with a nonlinear spring char-
acteristic�cϕ � Λϕu

ϕl
�ϕ�, which is arranged between the actual and the desired thrustdirection.

RegardingΩ as a deflection around the body-fixedz-axis,Eτ̂z is the potential energy component
caused by the disturbancêτz. Finally,EΩ can be interpreted as the potential of a spring with
spring characteristic�̟�Ω�. We claim that̟ � R � R is a locally Lipschitz continuous odd
function additionally satisfying

d̟�Ω�
dΩ

C 0, max�S̟�Ω�S� � τ̄z , �Ω, (18)

d̟�Ω�
dΩ

A 0, max�S̟�Ω�S� A b, if Ω > ��Ω̄, Ω̄�, (19)

whereΩ̄ is a positive constant. A simple function satisfying the requirements would be the
saturated linear spring characteristic

cΩ � satΩ̄�Ω� � ¢̈̈�̈̈¤cΩ �Ω if Ω > ��Ω̄, Ω̄�,
cΩ � sgn�Ω� � Ω̄ otherwise,

(20)

where the constantcΩ fulfills τ̄z
Ω̄
A cΩ A b

Ω̄
A 0. The constraints (18) and (19) imply that for any

admissiblêτz there exists aΩd > ��Ω̄, Ω̄� such that̟ �Ωd� � τ̂z � 0. In other words, the virtual
spring is able to compansate the disturbance at a certain deflectionΩd.
In order to take the derivative ofV with respect to time, the time derivative of the error angleϕ

is needed. Using (8) and the unit length ofzB, one obtains

ϕ̇ � �żdBz»
1 � z2

dBz

� � 1¼
z2dBx � z2dBy <�����>�zdByzdBx

0

=AAAAA?T´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
eTϕ

ω̃B � �eTϕω̃B , (21)

whereeϕ obviously is a unit vector. Note thaṫϕ only depends on the first two elements ofω̃B

but not onω̃Bz. Accordingly, computing the time derivative of the energy functionV �w� yields

V̇ � ω̃
T
BJ

˙̃
ωB � ∂Eϕ�ϕ�

∂ϕ
ϕ̇ � �∂EΩ�Ω�

∂Ω
� ∂Eτ̂z�Ω�

∂Ω
� Ω̇� ω̃

T
B�τ̃ � τ̂zez� � � �Tϕ

ϕ�T³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
∂Eϕ�ϕ�
∂ϕ

eTϕ

�TΩ
z �T³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ�∂EΩ�Ω�

∂Ω
eTz �´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

TT

ω̃B � τ̂ze
T
z±�Tτ̂z

z �T ω̃B ,

(22)



where (11), (14), and (21) have been used. The vectorT � T
ϕ
ϕ �TΩ

z denotes the torque field
caused byEϕ�EΩ whereasTτ̂z

z is the torque resulting fromEτ̂z . Now, by choosing the control
law

τ̃ � T �D�w�ω̃B , (23)

whereD�w� C 0 is a state dependent damping matrix and inserting it into (22), one obtains

V̇ � �ω̃T
BD�w�ω̃B B 0 . (24)

It follows from (24) that the sublevel sets ofV are not only compact1 but also positively invari-
ant, which proves global stability of the desired equilibrium.
In contrast to [6], a slightly modified potential energy componentEϕ was chosen in (17). Instead
of a linear increasing and decreasing integrand, here an integrand increasing and decreasing
with the sine function is chosen. While the deviation from the linear function is negligible
for typical values ofϕl andϕu, this choice significantly facilitates linearizing the closed loop
system around its equilibrium points for the analysis of thelocal properties.
If one forgoes the optional integral dynamics (14), one simply omitsEΩ�Ω� andE τ̂z�Ω� in the
potential energy.

4.2 Damping Injection

The damping matrixD�w� needed to complete the control law (23) is adopted from [6] with
some minor changes forϕ A ϕu � ∆ϕ. The basic idea is to decompose the angular velocity
ω̃B into components having a different meaning in view of the control task and to damp them
individually. Introducing the orthonormal basis vectors

e� � 1¼
z2dBx � z2dBy <�����>zdBxzdBy

0

=AAAAA? , eϕ � 1¼
z2dBx � z2dBy <�����>�zdByzdBx

0

=AAAAA? , ez � <�����>001=AAAAA? , (25)

the decomposition of̃ωB reads

ω̃B � eT� ω̃Be� � eTϕω̃Beϕ � eTz ω̃Bez � ω�e� � ωϕeϕ � ωzez . (26)

Note that according to (21), it holds thatωϕ � �ϕ̇ and that the other componentsω� andωz � ω̃Bz
do not influenceϕ̇. By choosing a damping matrix of the form

D�w� �κxy�w��dϕ�w�eϕeTϕ�d�e�eT� ��κz�w�dzezeTz � �κxy�w�Dxy�w� 0

0 κz�w�dz	 C 0 ,

(27)

the damping coefficientsdϕ, d� anddz allow an individual damping ofωϕ, ωÙ andωz. The
submatrixDxy�w� in (27) reads

Dxy�w� � dϕ�w�
z2
dBx

�z2
dBy

� z2dBy �zdBxzdBy�zdBxzdBy z2dBx
	 � d�

z2
dBx

�z2
dBy

� z2dBx zdBxzdBy
zdBxzdBy z2dBy

	 (28)

1One may verify the compactness of the sublevel sets by takinginto account that the reduced attitude spaceS2

is compact itself,Erot is a radially unbounded function of̃ωB andEΩ�Ω� �Eτ̂z�Ω� is an unbounded function ofSΩ �ΩdS.



and the gainsκxy andκz serve to saturate the damping torques if necessary. They aredefined as

κxy � min
κA0,ZTxy�κ�Dxyω̃BxyZ�τ̄xy�1, κ� , κz � min

κA0,STz�κ�dzω̃Bz S�τ̄z�1, κ� (29)

and guarantee compliance with (12). Sinceω� andωz do not contribute to a decrease ofϕ they
should always be damped. Accordinglyd� anddz are chosen to be positive constants. The
choice of the damping coefficientdϕ given below, is guided by some simplifying considerations
on the motion of the controlled system. These simplifications merely serve as tool for the design
of dϕ and do not affect the stability analysis in Section 5. First,we assume that the system is
undisturbed, i.e.τ̂z � 0. Second, regarding the symmetry properties of a quadrotor,one can
assume thatJ � Ĵ � diag�Ĵ1, Ĵ1, Ĵ2� A 0 approximately holds. Since moreoverτ̄xy Q τ̄z, one
will usually construct the energiesEϕ andEΩ such thatYTϕ

ϕYQ YTΩ
z Y holds in the better part of

the state space. It is therefore plausible to assume that theinfluence ofTΩ
z on the motion of the

quadrotor is rather negligible compared toT
ϕ
ϕ. AssumingTΩ

z � 0 and an initial angular velocity
around the axiseϕ, i.e. ω̃B Õ eϕ, one concludes from (11), (23), (22) and (27) that˙̃

ωB Õ eϕ
also holds. Thus, the rotational motion occurs only around one constant axis given byeϕ and
accordingly it can be completely characterized using the angleϕ. Assuming furthermore that
no saturation occurs, i.e.κxy � 1, one obtains

Ĵ1ϕ̈ � �Tϕ � dϕ�w� � ϕ̇ if ϕ x 0 , 2 (30)

whereTϕ � YTϕ
ϕY. According to (22), (17) and (1) we haveTϕ � cϕ sin�ϕ� for 0 B ϕ B ϕl. For

typical values ofϕl we can furthermore use the small-angle approximation to obtain

Ĵ1ϕ̈ � �cϕϕ � dϕ�w� � ϕ̇ if 0 � ϕ B ϕl . (31)

By choosing
dϕ�ϕ, ϕ̇, Tϕ� � χϕu�∆ϕ,ϕu

ϕl,ϕl�∆ϕ �ϕ, δϕ, d�ϕ�ϕ, ϕ̇, Tϕ�� , (32)

whereδϕ and∆ϕ � ϕu�ϕl

2
are positive constants, the dynamics (31) are rendered linear. This

certainly is a desirable behavior for small alignment errors of the thrust vector. In contrast to
dϕ given in [6], here in (32) the damping is rendered constant not only for ϕ B ϕl but also for
ϕ C ϕu. This together with choosing

d� � δϕ , (33)

ensures that, according to (28), the matrixDxy becomes constant,

Dxy � δϕI2 A 0 if ϕ B ϕl or ϕ C ϕu. (34)

This way, difficulties with determiningeϕ ande� nearϕ � 0 andϕ � π, wherez2dBx � z2dBy � 0,
are effectively omitted.
A sophisticated damping strategyd�ϕ is applied in the regionϕl �∆ϕ � ϕ � ϕu �∆ϕ. There, a
strategy similar to the bang-bang solution of a time optimalcontrol is applied. This requires to
indicate a switching curvesϕ�ϕ� � 0, where the transition from acceleration (ϕ̈ � 0) to deceler-
ation (ϕ̈ A 0) occurs. Ifϕ̇ A s�ϕ�, the dampingd�ϕ is chosen to enable maximum acceleration
based on (30). In case ofϕ̇ A 0, this means supporting the torque�Tϕ by a positive damping
d�ϕ A 0, such that the maximum torquēτxy is exploited. In case oḟϕ � 0, the damping is set to

2Note thatϕ � 0 has to be excluded, since we have definedϕ to be positive or equal to zero. Accordinglyϕ̇ C 0

must hold forϕ � 0. The solutions of the given differential equation do not necessarily satisfy this requirement.
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Figure 2: Visualization of the dampingdϕ�ϕ, ϕ̇, Tϕ� in the phase plane. Hatched areas: Con-
stant damping. Shaded areas: Acceleration supporting damping. Crosshatched areas: Deceler-
ation supporting damping. White areas indicate regions, where the damping is interpolated.

zero to avoid counteracting�Tϕ. If ϕ̇ � s�ϕ� � 0 maximum deceleration is desired, which can
be achieved by choosingd�ϕ A 0 so high that�Tϕ is overcompensated and̄τxy is used to slow
down. Summing up, we choose

d�ϕ�ϕ, ϕ̇, Tϕ� � χrϕ�sϕ�ϕ�
sϕ�ϕ� �ϕ̇, d�ϕdec�ϕ̇, Tϕ�, d�ϕacc�ϕ̇, Tϕ�� , (35)

where

d�ϕacc�ϕ̇, Tϕ� � ¢̈̈̈̈̈�̈̈̈̈̈¤�Tϕϕ̇ � τ̄xy
ϕ̇

if ϕ̇ A vϕ�Tϕ
vϕ

� τ̄xy
vϕ

if vϕ C ϕ̇ A 0

0 if 0 C ϕ̇ ,

, d�ϕdec�ϕ̇, Tϕ� � �Tϕϕ̇ � τ̄xy
ϕ̇
, (36)

andrϕ as well asvϕ are positive constants. It is clear from (35) that0 � rϕ � 1 defines a region
of interpolation betweend�ϕacc andd�ϕdec in order to render the resulting torque continuous. An
examination ofd�ϕacc reveals that the small constantvϕ A 0 prevents the damping from growing
unbounded wheṅϕ approaches zero. The switching curve which is used in (35) reads

sϕ�ϕ� � �½v2ϕmax � 2Ĵ1
�1
τ̄xy�ϕl � ϕ� � 0 . (37)

This curve is simply the phase-plane trajectoryϕ̇�ϕ� solving the differential equation̂J1ϕ̈ � τ̄xy
and passing through the pointϕ̇�ϕl� � �vϕmax � 0. Figure 2 visualizes the applied damping
strategy fordϕ in the phase plane.



5 Stability Properties

In this section we prove local exponential and almost globalasymptotic stability of the desired
equilibrium. This is done by showing first that apart from thedesired equilibrium another unde-
sired equilibrium exists. The analysis of their local properties shows that the desired equilibrium
is locally exponentially stable and the undesired equilibrium is a hyperbolic fixed point. Using
LaSalle’s invariance principle we establish that the undesired equilibrium is unstable and the
desired equilibrium exhibits a region of attraction that covers the whole state space except for
a manifold with Lebesgue measure zero. As it is analyzed in [1], this so called almost global
asymptotic stability is the best we can achieve with a control law that is continuous over the
whole state space.
By inserting the control law (23) derived in the previous section into the open loop dynamics
(8), (11), (14) and setting the left hand side to zero, the equilibrium points are identified as

wd � �eTz Ωd 0T �T , wu � ��eTz Ωd 0T �T , (38)

wherewd is the desired equilibrium andwu is an undesired equilibrium sincezdB � �ez implies
ϕ � π.

5.1 Local Properties

To derive the local properties, the closed loop system is linearized aroundwd andwu. Observe
that zdB has only two degrees of freedom since it evolves onS2. Consequently, it can be
locally represented byzdBxy in a neighborhood of the equilibria. Nearwd, wherezdB � ez,

it holds thatzdBz � ¼
1 � �z2dBx � z2dBy�, whereas nearwu, wherezdB � �ez, it holds that

zdBz � �¼1 � �z2dBx � z2dBy�. Accordingly, from the first two lines of (8) one obtains�żdBx
żdBy

	 � <�����> ω̃BzzdBy � ω̃By¼1 � �z2dBx � z2dBy��ω̃BzzdBx � ω̃Bx¼1 � �z2dBx � z2dBy�=AAAAA? in a neighborhood ofwd and (39)�żdBx
żdBy

	 � <�����> ω̃BzzdBy � ω̃By¼1 � �z2dBx � z2dBy��ω̃BzzdBx � ω̃Bx¼1 � �z2
dBx

� z2
dBy

�=AAAAA? in a neighborhood ofwu. (40)

Recalling thatϕ > �0, π� and hence
¼
z2dBx � z2dBy � sin�ϕ�, the torqueTϕ

ϕ aroundwd can be
indicated as

Tϕ
ϕ � cϕ sin�ϕ� � eϕ � cϕ sin�ϕ� � 1

sin�ϕ� <�����>�zdByzdBx
0

=AAAAA? � cϕ <�����>�zdByzdBx
0

=AAAAA? (41)

and analogous computations in a neighborhood ofwu yield

Tϕ
ϕ � cϕ sin�ϕl�

sin�ϕu� sin�ϕ� � eϕ � cϕ sin�ϕl�sin�ϕu� <�����>�zdByzdBx
0

=AAAAA? . (42)



5.1.1 Local Stability properties of the desired equilibrium wd

For the linearization aroundwd, it proves advantageous to define the reduced state vectorwd
r ��zdBy �zdBx Ω ω̃

T
B�T � �zTd ω̃

T
B�T . Note in particular the order and the sign of the first two

components. In terms ofwd
r the desired equilibrium reads̄xdr � �0T Ωd 0T �T . Linearizing

(39) and (14) aroundwd
r � x̄dr yields

∆żd � ∆ω̃B (43)

and the linearization of (11), considering (23), (41), (27)and (34) results in

∆ ˙̃
ωB � �J�1Cd∆zd � J�1B∆ω̃B , (44)

whereCd � diag�cϕ, cϕ, d̟�Ω�
dΩ

SΩ�Ωd
� A 0 andB � diag�δϕ, δϕ, dz� A 0. Combining (43) and

(44) yields

∆ẋdr � � 0 I3�J�1Cd �J�1B	´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ad

∆xdr . (45)

SinceJ�1 is positive definite, there exists a nonsingular real matrixM, such thatJ�1 � MMT .
By definingC̃d �MTCdM A 0 andB̃ �MTBM A 0 one can rewriteAd as

Ad � � 0 I3�MC̃dM
�1 �MB̃M�1	 � �M 0

0 M
	 � 0 I3�C̃d �B̃	´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ãd

�M�1 0

0 M�1	 . (46)

Since the eigenvalues ofAd and Ãd are the same, we can restrict the analysis toÃd. Let

v � �vT
1

vT
2
�T , wherev1,v2 > C3, be any eigenvector of̃Ad corresponding to the eigenvalue

λ. Then,Ãdv � λv impliesv2 � λv1 andB̃v2 � C̃dv1 � �λv2. Inserting the first equation into
the second yieldsλ2v1 �λB̃v1 � C̃dv1 � 0. Multiplying by the complex conjugatēvT

1
from the

left results in
v̄T1 v1λ

2 � v̄T1 B̃v1λ � v̄T1 C̃dv1 � aλ2 � bλ � c � 0 . (47)

From the positive definiteness of̃Cd and B̃, it follows that a, b, c A 0 and from the Routh-
Hurwitz criterion for polynomials of order two, all solutions of (47) lie in the left complex half
plane. This proves asymptotic stability ofwd with local exponential convergence, [8, Theorem
4.15].
In the case that no integral stateΩ is desired, the linearization around the desired equilibrium
yields a dynamic matrix̄Ad, which is obtained fromAd by deleting the third row and the third
column. LetA0 be the matrix, where the third column ofAd has been replaced by zeros, then
by a Laplace expansion along the third column of the matrix�λI6 �A0�, it can be seen that
det�λI6 �A0� � λdet�λI5 � Ād�. Thus, all eigenvalues of̄Ad are eigenvalues ofA0, butA0

has an additional zero eigenvalue. It holds that

A0 � � 0 I3�J�1C0 �J�1B	 , (48)

whereC0 � diag�cϕ, cϕ,0� C 0 has rank two. Analogously as before one derives the conditional
equation (47), wherẽCd is now replaced by the rank two matrix̃C0 �MTC0M C 0. As one can
easily verify thatA0 has exactly one zero eigenvalue, the vectorv1,1 yieldingc � v̄T

1,1C̃0v1,1 � 0



must be one of the three vectorsv1,i solvingλ2v1,i � λB̃v1,i � C̃0v1,i � 0, i > �1,2,3�. This
can be understood by noting thatc � 0 in (47) results inλ�λa � b� � 0 which gives rise to the
zero eigenvalue and additionally to a negative eigenvalueλ � �a

b
. SinceA0 has no further zero

eigenvalues,v1,2 andv1,3 must be linearly independent ofv1,1 and thus yieldc A 0. Using
again the Routh-Hurwitz criterion we conclude that all remaining eigenvalues are in the left
half plane. It follows that all eigenvalues of̄Ad have a negative real part and hence the desired
closed loop equilibrium is locally exponentially stable.

5.1.2 Local properties of the undesired equilibriumwu

For the linearization aroundwu another reduced state vectorwu
r � ��zdBy zdBx Ω ω̃

T
B�T is

defined, where the sign of the first two components has been changed. Linearizing around the

undesired equilibrium, which corresponds tox̄ur � �0T Ωd 0T �T yields

∆ẋur � � 0 I3�J�1Cu �J�1B	´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Au

∆xur , (49)

where now the equations (40) and (42) have been used and accordingly the stiffness matrix
Cu � diag��cϕ sin�ϕl�

sin�ϕu� ,�cϕ sin�ϕl�
sin�ϕu� , d̟�Ω�

dΩ
SΩ�Ωd

�. As it was shown before, the eigenvalues ofAu

coincide with the eigenvalues of

Ãu � � 0 I3�C̃u �B̃	 , (50)

whereC̃u �MTCuM. The eigenvalues of̃Au in turn satisfy

v̄T1 v1λ
2 � v̄T1 B̃v1λ � v̄T1 C̃uv1 � aλ2 � bλ � c � 0 . (51)

Note thatAu obviously has full rank and hence no zero eigenvalues can exist, which implies
c x 0. Moreover, fromB̃ A 0 it follows that b A 0 and accordingly no eigenvalues can lie on
the imaginary axis. One concludes thatwu is a hyperbolic fixed point and hence no invariant
center manifoldW c�wu� exists, [9, Appendix B]. It will be proven in the next sectionthatwu

is unstable and hence an unstable invariant manifoldW u�wu� of at least dimension one must
exist. This in turn limits the stable invariant manifoldW s�wu� to be of a smaller dimension
than the state space.
The same properties can be established for the case without the integral stateΩ by proceeding
analogously as in the previous section. SinceC̃u0 now has two negative and one zero eigenvalue,
it is easily proven that̄Au must posses exactly three eigenvalues in the left and two eigenvalues
in the right complex half plane. Thus, there exists a stable invariant manifold of dimension three
and an unstable invariant manifold of dimension two.

5.2 Global Stability Properties

In this section we prove almost global asymptotic stabilityof the desired equilibrium following
the lines of [5]. Using LaSalle’s invariance principle (seee.g.[8, Theorem 4.4]) this is done by
showing first that all solutions converge towd or wu and second thatwu is unstable and hence
can only posses a stable invariant manifold of Lebesgue measure zero.
Recalling that all level sets ofV are positively invariant and compact, we apply LaSalle’s in-
variance principle by showing that the setE �� �w >W � V̇ �w� � 0� contains no invariant sets
apart from the equilibrium pointswd andwu. Inserting (27) in (24) and using (26) yields



V̇ �w� � �κxy�w� �dϕ�w�ω2

ϕ � d�ω2�� � κz�w�dzω2

z . (52)

Taking into account thatκxy, κz A 0 the functionV̇ only vanishes ifdϕ�w�ω2
ϕ � d�ω2� � dzω2

z � 0

holds. Outside the equilibrium points, in the setÇW � W��wd,wu�, this condition is only
fulfilled in the subsetE1, which is the set of all states with zero angular velocity, and in the
setE2 in which ω̃B x 0 while ω� � ωz � dϕ�w�ω2

ϕ � 0. ThusE2 is the set wheredϕ�w� � 0.
Explicitly stated, the setsE1, E2 areE1 � �w > ÇW � ω̃B � 0� ,E2 � �w > ÇW � ϕl �∆ϕ B ϕ B ϕu �∆ϕ, rϕsϕ�ϕ� B ϕ̇ � 0, ω� � 0, ωz � 0� . (53)

Next, we show that the equilibrium pointswd andwu are the only invariant sets inE � E1 8E2 8�wd,wu�.
Imagine thatw > E1, thenτ̃ x 0 and sincẽωB � 0, we have ˙̃ω x 0 from (11). Thus, the state
will exit the subsetE1 instantaneously, which shows that no invariant sets are contained inE1.
Now, let us assumew can stay inside the subsetE2 for all times. Recalling thatωϕ � �ϕ̇ it
follows from (26) that

ω̃B � �ϕ̇eϕ x 0 . (54)

A lower boundω for the angular velocity can be derived solving

Erot0 � 1

2
ω̃
T
B0Jω̃B0 � 1

2
λ̄�J�ω2 A 0 , (55)

where λ̄�J� denotes the largest eigenvalue ofJ, Erot0 is the rotational energy and̃ωB0 the
angular velocity at the timet � 0. Since in the setE2 no damping occurs, using (23) and (22)
the torque can be identified as̃τ � T � T

ϕ
ϕ �TΩ

z � kϕ � eϕ � kz � ez, wherekϕ A 0. Now as long
asw > E2, it holds thatĖrot � ω̃

T
Bτ̃ � �ϕ̇kϕ A 0 and consequently

ω2 B ω̃
T
Bω̃B � ϕ̇2 . (56)

Based on (37), a lower bound forϕ̇ is given by�L � sϕ�π� � ϕ̇ � 0 . (57)

Making use of (57), we can hence extend (56) to obtain

ω2 B ϕ̇2 � �Lϕ̇. (58)

Now, letϕ0 > �ϕl �∆ϕ,ϕu �∆ϕ� be the error angle att � 0. The timet̃ solving the equation

ϕl �∆ϕ � ϕ0 �S t̃

0

ϕ̇ dt (59)

certainly is an upper bound of the time at which the state mustleaveE2. By inserting (58) in
(59) and evaluating the integral, we obtain the inequality

ϕl �∆ϕ B ϕ0 � ω2

L
t̃ , (60)



which reveals that̃t itself is upper bounded by

t̃ B Lϕ0 � �ϕl �∆ϕ�
ω2

. (61)

This proves our assumption wrong, sinceE2 is left in any case and accordingly cannot contain
any invariant sets. Moreover, also the union ofE1 andE2 cannot contain any invariant sets. This
is due to the fact that, although the state may cross over fromE1 into E2, the reverse transition is
not possible. Hence,�wd,wu� represents the largest invariant set contained inE and according
to LaSalle’s invariance principle every trajectory converges to either towd or towu.
In order to prove almost global asymptotic stability of the desired equilibriumwd, we first
notice thatV �wd� � 0 andV �wu� � Eϕ�π� A 0. If we choose any initial statew0, such that
V �w0� � Eϕ�π�, we excludewu from the initial sublevel set ofV �w� and the solution can
only approachwd. Hence,wd is an asymptotically stable equilibrium point. Since the set�w > W � V �w� � Eϕ�π�� is adjacent towu, the preceding argumentation also proves thatwu

is unstable and according to the analysis in Section 5.1.2 its stable invariant manifoldW s�wu�
must be of smaller dimension than the state space, i.e.dim�W s�wu�� � 6. It is known that an
m-dimensional invariant manifold of ann-dimensional system has Lebesgue measure zero if
m � n, see e.g. [9, Appendix B]. This proves almost global asymptotic stability ofwd.
If the integral stateΩ is omitted, the stability proof remains completely unchanged.

6 Conclusion

In this paper we have presented a fast tracking controller for the thrust direction of a quadro-
tor helicopter. The nonlinear controller is an extension ofthe setpoint controller presented in
[6] that involves the augmentation of the controller by integral action concerning the angular
rate around the thrust axis. Furthermore, minor modifications of the potential energy and the
damping have been introduced, which are advantageous for the local stability analysis, while
their impact on the controller performance is negligible. If the integral state is omitted, the
closed loop dynamics of the tracking control problem and thesetpoint control problem hardly
differ. Therefore, we refer the interested reader to [6] fora performance analysis based on sim-
ulation results. Compared to [6] the control problem has been additionally reformulated using
the reduced attitude parametrization given in [4] enablinga simplified stability analysis. Local
exponential and almost global asymptotic stability of the desired equilibrium, corresponding to
a zero tracking error, has been proven.
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