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In this paper an energy based tracking control for the thrdisection of a quadrotor heli-
copter is presented. The concept can be considered as d diktnsion of the setpoint control
presented in [6], since by the application of appropriatedéorward control the open loop
structure of the setpoint control case is preserved. Inipalar the tracking dynamics are still
autonomous. Moreover, some modifications compared to [@]isroduced, which comprise
the addition of integral action to the controller part thaggulates the angular velocity around
the thrust axis. Additionally, the whole control problenmregormulated using the reduced atti-
tude parametrization presented in [4], which is better edifor this particular control problem
than the quaternion representation used before. Globallandl analysis of all equilibrium
points is provided and shows that the desired equilibriuorresponding to a zero tracking
error, is almost globally asymptotically and locally exgonially stable.

1 Introduction

A guadrotor helicopter is a highly maneuverable verticketaff and landing aircraft, which
offers the ability of hovering. As shown in Fig. 1, it is baaiy a rigid body with four rotors
arranged in a common plane which generate thrust forcesragdabments. The effects of the
four single rotors can be summarized in the center of grastg total thrust” perpendicular to

the plane and a torque vector= [Tx Ty TZ]T. Since the direction of the thrust is body-fixed,
the execution of almost all translational motions requiiléisag the whole quadrotor helicopter
systematically. Consequently, a desired thrust diredsarsually the remote control command
of a human operator or the output of a higher level positiortratier and has to be tracked by a
lower level thrust direction controller. In the latter casspecially if a high bandwidth position
controller is considered, exact tracking of the thrust canchis required. In this paper we
will combine a suitable feedforward control with the apprd\error feedback from the setpoint
control [6] to achieve asymptotic convergence of the adtualst direction to its moving ref-
erence direction. Moreover, integral action for disturdenejection is added to the controller
part regulating the angular velocity around the thrust.aXise controller design gives rise to
a continuous state feedback law and is based on an energingraggproach. The potential
energy as well as the damping functions proposed in thisrgapeslightly modified compared
to the ones assigned in [6]. The modifications significardlyilitate the local analysis of the
closed loop equilibrium points while their influence on tleatoller perfomance is negligible.
Finally, the problem is reformulated using the reduceduaté parametrization presented in [4]
instead of the quaternion representation. The new paraadn contributes to a simplified
stability analysis since it allows for examining equiliom points instead of equilibrium sets.
The control task belongs to the field of reduced attitude robnivhich has been studied for
examplein [4, 3, 2, 13, 7]. While applications encompasgfstance the spin axis stabilization
of spacecrafts [2, 13] or the stabilization of the invertddl 3endulum [3], reduced attitude
control has been rarely used in the field of unmanned aerfathes, an exception is [7]. The



Figure 1: Quadrotor with body-fixed frame = {x,y,z} and control inputs’, 7., 7,,, 7.

energy based approach presented here can be roughly aksigtiee very general concept
presented in [3] but focuses on indicating explicit energgl damping functions. Compared
to other control concepts, energy based control admitsapeaent physical interpretation of
the closed loop. The static forces or torques of the condnwldan be viewed as the effects of
virtual (possibly nonlinear) spring elements, which cepend to the potential energy that is
shaped by the control engineer. This process determinaesgiinébria of the closed loop and
also admits the consideration of control input constraiBisinjecting an appropriate damping
in the closed loop system, the dynamic forces or torques esgded. This way the energy
dissipation and thus the transient behavior is controllElge control concept presented here,
places emphasis on a sophisticated damping strategy thatom a fast transient behavior.

In Section 2 we briefly introduce the notation and the debnsiused in the following. A
detailed problem statement together with the derivatiotheftracking dynamics is given in
Section 3. Based on an energy shaping approach, the thrastidn controller is developed in
Section 4, before almost global asymptotic stability oféleilibrium, corresponding to a zero
tracking error, is proven in Section 5. Finally, conclus@me drawn in Section 6.

2 Nomenclature and Definitions

Scalars are indicated as italic letters, whereas vectoatrjcas and composite quantities are
indicated by upright bold letters. Any physical vechior R? has meaning even without concrete
numerical values and is thus referred to as an abstractrvebtoassign numerical values to
an abstract vector a suitable coordinate frame has to beeshosll coordinate frames used
are right-handed Cartesian coordinate systems and id&hbfi uppercase italic letters. The
representation of an abstract vectoe R? with respect to a certain framé = {e;, e,,e3}
with orthonormal basis vectoks , e;, e; is denoted byaz. The elements of a vectery are
identified byag = [ap, ag, aEZ]T and byap,, we meanag,, = [ag, aEy]T. For some
vectors, which are exclusively represented in one cootdiframe, the basis designation will
be dropped. Additionally, we define the basis independeittvectorse, = [1 0 O]T, e, =

[0 1 O]T ande, = [0 0 1]T. The transformation from a framg to another frame”’ is
given by a rotation matriR zp € SO(3), whereSO(3) = {R e R¥3: RTR =1I3,det(R) = 1}
is the special orthogonal group aid i € N denotes the x i identity matrix. The angular
velocity of a frameE” with respect to a fram& given in a frameE” is denoted by € R3.
The skew symmetric operatdr )) : R* — so(3), whereso(3) = {K € R33 : KT = -K} is
defined such thata))b = a x b reflects the cross product farb € R3. Moreover, we define the



functionAg" : [0, 7] - [0,sin(¢;)] as

sin(() if 0<¢<q,
AG(Q) = {sin(¢) it G<C<u, (1)
slsin(C) if Gu<Cs<m,

where(, (, € R, are constants. We also use the functi(é‘p: RxRxR - R,

wl(Cva) IfCSClv
XE (G (Ca), tha(Ca)) =f Lednlaalite)nlen) i ¢ < (< ¢, (2)
9(¢,a) if (<,

which provides a linear interpolation between the scalactionsy, (¢,a) andv,((,a) with
respect tal in the interpolation region defined iy and(,. For some(; < (5 < (3 < (4 we
moreover define

(GG a) (¢ ) = X (GG (Ga(Ga) da(¢a) (@)

which provides a linear interpolation from (¢, a) to ¢, (¢, a) and back ta); (¢, a).

We will frequently encounter the case that a (scalar, vemtonatrix) quantitya can be given
as a functionf(-) of coordinated, i.e. a = f(b), and also as a functiofi(-) of coordinates:,
i.e. a = f(c). With a slight abuse of notation we will writg(b) to refer tof(b) anda(c) to
refer tof(c). Sometimes, we will also drop the argument and in that cageng/iz: may refer
to f(b) or f(c) depending on the context.

Finally, some properties of the skew symmetric operétdrthat will be needed in the following
are stated. They can be found for example in [11]. By the skaansetry it holds that(a)) =
—({(a)T. Since((a))b reflects the cross produgkb we also have thgta))b = —((b))a. Moreover,
for any rotation matriR ¢z and any vectoa € R3 it holds that

Rpp(a)REp = (Repa) - 4)
Eventually, leta, b, c € R3, then the Grassman identy is
{a)({b)e) = (a” c)b - (a"b)c. (5)

3 Problem Statement and Reduced Attitude Tracking Dynamics

Regarding the attitude, we model the quadrotor helicopex agid body actuated in torque.
This commonly used model exploits the generally acceptearagtion that there exists a known
one to one reIatiorﬁF TT]T = f(w?, w3, w3, wi) (see e.g. [12]) between the magnitubleof
the thrust force, the torque vecterand the squares of the rotor angular rates € {1,2, 3,4},
which are the real control variables. Furthermore, the hoédglects some minor effects like
the gyroscopic torques of the rotors or the flapping dynamids distinguish an inertial north
east down coordinate frame = {€,rth, €cast, €down } aNd a body-fixed framé3 = {x,y,z}
attached to the center of gravity of the quadrotor and ceiéiais shown in Fig. 1. Then, the
rigid body attitude dynamics read

RBI = —«WIBB )Rar, (6)

JotP = (WBYJwlP + 1+ 7e, (7)



whereJ = J7 > 0 is the moment of inertia matrix given 8, 7 = 75 is the control torque antl

is a constant and bounded disturbance torque acting on thefb@d z-axis. Such a constant
torque7, can occur during hovering, for instance when the drag mosnemised by the rotors
are unbalanced due to slight inhomogeneities. In the fallgwe assume that the staf@s;;
andw!? are accessible either by direct measurements or as thetmitpn appropriate data
fusion.

The unit vector pointing along the body-fixeehxis is denoted by. As the thrust vector always
points in the direction-z, aligning the thrust vector is equivalent with alignimgAccordingly,
the control objective is to make the vectotrack a desired time-varying directiar, or more
technicallyz — z,; ast — . Even ifz = z; holds the quadrotor can still rotate around:iaxis
and we want that motion to decay. Hence we additionally claifi — [wgg Wiy O]T as

t - oo. Since the desired direction is usually the output of a higher level position controller,
its representation with respect to the inertial fratpeas well as its time derivatives;, z,; are
considered to be known and bounded.

The desired-axis direction given in the body-fixed franzgz = R z;z4; can be interpreted as
a reduced attitude error suitable for our purposes, [4]etms ofz,z € §?, whereS? = {a €
R3 :a”a = 1}, the first control objective readsz — zp = e, ast — oo. To derive the reduced
attitude error dynamics, we compute the time derivativegfusing (6), (5) together with the
fact thatz,; 1 z4; and (4),

Z4B = RBIZdI +Rprzqr = —«WIBB »RBIZdI +Rpr (( «Zdl »zdl»zdl =
= —«WIBB VR B1zar + (Rpr{(zar)zar) Rerzar =
= (~wi’ + Rpr(zar) 2ar)zas = —(wi’ - was)zas

= ~(@B)zip = (Zas)@s -

(8)

Note that the angular velocity,sz = Rp;{(zar)zsr does not indicate the rotational motion
between two particular coordinate frames, though it coelthkerpreted as the angular rate of a
desired frameD with respect to the inertial framg w5 = w!”. However this virtual frame

is not fully determined, since we only know aboutitaxisz,. Thus, any rotation matriR ;p
solvingz,; = R;pe. would characterize an admissible framle Moreover, not even the angular
velocity of such a frame is unique, since all angular rates satisfying’ = wgp + a - zqp,
wherea is arbitrary would lead to the saniggz. Consequently, the error angular velocity
&p = wiP? —w,p does not characterize the motion between two properly defioerdinate
frames but nevertheless represents an appropriate anvgldaity error, regarding our control
problem. Note thafo; = 0 impliesw!? = 0 if z,5 = e,. Using (7), the derivative ofz with
respect to time is identified as

‘::}B = d)IBB - "de = J_l (—«UJIBB»JUJIBB + 7T+ fzez) - "de s (9)
Wherecde = _«wlBB»RB[«ZdI»zdI + RBl«Zdl»zdl-
4 Controller Design

In this section, we will first execute an input transformatisuch that the controller presented
in [6] could be applied without any changes in the undistdrbase. We will then restate this

controller with some slight modifications concerning aubaial integral action for disturbance

rejection and minor changes to the potential energy andahepahg.



By inserting the input transformation
7 = k(w) (wi JIwi’ - (k(w) = 1) ((was) I (Wi -~ wap) + (w5 ) Iwas) + Ibas + 7, (10)
into (9) one obtains
wp =7 ((k(w) - 1)(@p)Jop +F + e.) | (11)

whereT is the new control input ankl(w) is any locally Lipschitz continuous function of the
statew defined below. For the sake of convenience, the fundtiem) is often chosen constant.
For examplek = 1 will cancel the coriolis term, whereds= 0 yieldsT = 7 in the case of a
setpoint control (whem,; is constant or considered to be constant). It will turn ot tihhe
stability properties of the closed loop do not depend on Hr&qular choice of.

If 7, = 0, the control law presented in [6] could now be directly apglior and would achieve
asymptotic tracking of,. In the following some modifications of that control law wile
introduced, but we adopt the input constraint

|1 Teyl € oy s 1Tl <72, (12)

wheret,, and7, are positive constants arg, > 7, holds. Althoughr is not the actual control
torgue, we nevertheless consider the constraint, sinaeeasioned abover equalsr if k is
chosen to be zero and a setpoint control is considered. Mergiine constraint can be easily
dropped if desired. Due to the similarity of (11) and (7), wil gloppily refer to 7 as the
control torque from time to time, while it is always cleartki@e actual torque ig. Eventually,
we assume

T,€[-b,b], 0<b<T, (13)

holds for the constant disturbante
The first modification compared to [6] concerns the optiongiraentation of the controller by
an integrator stat@ for disturbance rejection, which satisfies

Q=dg, . (14)

Together with (8), (11) the preceding equation represér®pen loop dynamics and the cor-
responding state vector s = [z, QE]T e W =82xR xR3. Since we want to consider
the integrator dynamics (14) as an optional feature, we didituss the case without integral
action at the end of each section. Without stating it exiijicive assume that the system is

undisturbed£, = 0) in this case.

4.1 Shaping of the Potential Energy

We will now briefly state the control law, which is largely meal to the control law given in
[6] and subsequently discuss the modifications made. Fotadlet motivation and discussion
of the controller properties, we refer to the aforementtbaticle. Since the controller design is
based on an energy shaping approach (see e.g. [10]), it &¢racted such that the closed loop
system is described by means of an assigned continuoudyatifiable energy functiovi (w),
which has a strict minimum at the desired equilibrium paint= [eZ Oy OT]T. Since the
state) was introduced for disturbance rejection, the constanef), is not known a priori but
depends on the disturbante In the following we will assign an energy function

- |
V(W) = Erot(©5) + Epot (245, Q) = 3 2Iop + Epor (245, Q) | (15)



which is composed of a kinetic and a potential energy parfalfils V' (w,) = 0 andV (w) > 0
if w = w,. Moreover,VV will be constructed such that all its sublevel sets are catpa
The potential energy,,; necessarily needs a component depending on the alignmienbér
the thrust axis. A natural error function for the alignmemoeis the angle> = arccos(z5zqp) =
arccos(el'zyp) = arccos(zq4p.) € [0, 7] betweerz andz,. We propose a potential energy of the
form

Epor(£,2) = Ey() + Ea(9) + B+ (), (16)

where
© Q Q
B@)=c, [TAz(©Qdc. Ea@)= [ w(Qdc. Eu@)= [ -mdc. @)

Therein,c, < SiZ”(”:;l) is a positive constant andiZ; (¢) is defined in (1). The energ¥,, can
be considered as the potential energy caused by a torsiomgspith a nonlinear spring char-
acteristic-c,, - AZ; (), which is arranged between the actual and the desired ttinestion.
Regardind? as a deflection around the body-fixedxis, ;. is the potential energy component
caused by the disturbanée. Finally, £, can be interpreted as the potential of a spring with
spring characteristiezw (£2). We claim thatw : R — R is a locally Lipschitz continuous odd

function additionally satisfying
dw ()

70 >0, max(|w(Q)]) < 7, Ve, (18)
dwdgz) >0, max(|=(Q)]) > b, if Qe [-0,9], (19)

where() is a positive constant. A simple function satisfying theuiegments would be the
saturated linear spring characteristic

CQ'Q ifQE[—Q,Q],

_ 20
cq-sgn(Q2) - otherwise (20)

cq - satq (L) = {
where the constant, fulfills % > cq >_% > 0. The constraints (18) and (19) imply that for any
admissibler, there exists &, € [-(2, 2] such thatz (2;) — 7. = 0. In other words, the virtual
spring is able to compansate the disturbance at a certaectefi(,.
In order to take the derivative &f with respect to time, the time derivative of the error angle
is needed. Using (8) and the unit lengthzgf, one obtains

. —ZdB
. TRdBz 1 o _ T 21
¥ = T == > > ZdBx | WB="€,Wp, (21)
\/ ~ %dBz \/Zde * ZiBy 0
e

wheree,, obviously is a unit vector. Note that only depends on the first two elementsi
but not onwg.. Accordingly, computing the time derivative of the energgdtionl’(w) yields

OE,(¢) . (0Ea(Q) aEﬁ(m)-
00 +( ) + 20 Q
(TE)T (T2)"

OE,(¢) 7 0Ea(Q) 1) - A
0 e, 20 e, |Wwp— 7€, Wp,

. (TI)7

TT

V=ohJops+

(22)

=Op(T +7.e.) - (




where (11), (14), and (21) have been used. The véEterT{ + T denotes the torque field
caused by, + Eg whereasI': is the torque resulting from:, . Now, by choosing the control
law

7=T-D(w)op, (23)

whereD(w) > 0 is a state dependent damping matrix and inserting it intd, (2 obtains

V=-&pD(wW)@p<0. (24)
It follows from (24) that the sublevel sets Bfare not only compa€but also positively invari-
ant, which proves global stability of the desired equiliioni

In contrast to [6], a slightly modified potential energy campnt,, was chosenin (17). Instead
of a linear increasing and decreasing integrand, here agramd increasing and decreasing
with the sine function is chosen. While the deviation frone tmear function is negligible
for typical values ofp; and,, this choice significantly facilitates linearizing the séa loop
system around its equilibrium points for the analysis ofltoal properties.

If one forgoes the optional integral dynamics (14), one $ynomits F(2) andE;_(2) in the
potential energy.

4.2 Damping Injection

The damping matriXD (w) needed to complete the control law (23) is adopted from [&h wi
some minor changes far > ¢, — Ap. The basic idea is to decompose the angular velocity
wp into components having a different meaning in view of thetrmrask and to damp them
individually. Introducing the orthonormal basis vectors

1 2dBz 1 —~2dBy 0
e = ———— |2y | €p=—F——=| 2Bz |, €.=]|0], (25)
1

/.2 2 /.2 2
ZdBx + ZdBy 0 ZdBx + ZdBy 0

the decomposition ab 3 reads
~ _ T ~ T ~ T ~ _
Wp=e wpe, +e,Wpe, +e,wpe, =w e, +we,+w.e, . (26)

Note that according to (21), it holds that = —¢ and that the other componentsandw, = &g,
do not influence). By choosing a damping matrix of the form

D (W) =k (W) (dy(W)e el +d,e,e”) 45 (w)doe.el = [nxy(w)(l)%y(w) Kz(g)dzl 50,

(27)

the damping coefficients,, d, andd, allow an individual damping of,,, w, andw,. The
submatrixD,,,(w) in (27) reads

2 2
d zZ —ZdBz*dB z ZdBxz~dB
Da:y (W) = o) o ) yl %dB - l o : yl (28)

2 2 2 2
ZibatiiBy | —ZaBrZdBy  Zop. «*2apy |ZdBaZdBy %y,

'One may verify the compactness of the sublevel sets by takingiccount that the reduced attitude sp&ée
is compact itselfF,..; is a radially unbounded function @fz andE(2) + E+_(Q2) is an unbounded function of
€2 - Qal.



and the gainsg,, andx, serve to saturate the damping torques if necessary. Thelefined as

Ky = min (1,k), k.= min (1,k) (29)

x>0, ||Twy—H-Dwy(:)Bzy ”:ﬂvy H>07|Tz -k d. 0B |=7_'z

and guarantee compliance with (12). Singeandw. do not contribute to a decreasewthey
should always be damped. Accordingly andd. are chosen to be positive constants. The
choice of the damping coefficiedt, given below, is guided by some simplifying considerations
on the motion of the controlled system. These simplificatioerely serve as tool for the design
of d, and do not affect the stability analysis in Section 5. Fing,assume that the system is
undisturbed, i.e.7, = 0. Second, regarding the symmetry properties of a quadrota,can
assume thal ~ J = diag(.J;,.J;,.),) > 0 approximately holds. Since moreovey, > 7., one
will usually construct the energigs, andEy, such thaf TZ | > | T¢| holds in the better part of
the state space. It is therefore plausible to assume thatfthence ofT$ on the motion of the
quadrotor is rather negligible comparedEg. AssumingT' ~ 0 and an initial angular velocity
around the axig,, i.e. &g | e,, one concludes from (11), (23), (22) and (27) tiaf | e,
also holds. Thus, the rotational motion occurs only aroumel @onstant axis given by, and
accordingly it can be completely characterized using tlgdeap. Assuming furthermore that
no saturation occurs, i.&,, = 1, one obtains

Jip=-T,—dy,(w)-¢ ifpz0,2 (30)

whereT,, = | TZ||. According to (22), (17) and (1) we ha& = ¢, sin(y) for 0 < ¢ < ;. For
typical values ofp; we can furthermore use the small-angle approximation tainbt

J1p=—cop—dy(w)-¢ if0<p<y. (31)

By choosing
do (0,0, Tp) = X0 (9,00, (0,0, T1) ) (32)
whered, and Ay < ££L are positive constants, the dynamics (31) are renderedrliriénis
certainly is a desirable behavior for small alignment exrirthe thrust vector. In contrast to
d, given in [6], here in (32) the damping is rendered constahbnty for ¢ < ¢; but also for
¢ > ¢,. This together with choosing
d, =0,, (33)

ensures that, according to (28), the maldy, becomes constant,
D,, =0,I,>0 if p<p0ore>q,. (34)

This way, difficulties with determining,, ande, neary = 0 andy = 7, wherezj, + 23, =0,

are effectively omitted.

A sophisticated damping stratedy is applied in the regiop; + Ay < ¢ < ¢, — Ap. There, a
strategy similar to the bang-bang solution of a time optiomaitrol is applied. This requires to
indicate a switching curve,(¢) < 0, where the transition from acceleratiop € 0) to deceler-
ation (» > 0) occurs. Ify > s(p), the damping?y, is chosen to enable maximum acceleration
based on (30). In case gf > 0, this means supporting the torqué;, by a positive damping
dy, > 0, such that the maximum torqyg, is exploited. In case ap < 0, the damping is set to

2Note thaty = 0 has to be excluded, since we have defiped be positive or equal to zero. Accordingly> 0
must hold forp = 0. The solutions of the given differential equation do notessarily satisfy this requirement.
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Figure 2: Visualization of the damping. (¢, ¢, 7,,) in the phase plane. Hatched areas: Con-
stant damping. Shaded areas: Acceleration supporting idgm@rosshatched areas: Deceler-
ation supporting damping. White areas indicate regiongre/kthe damping is interpolated.

zero to avoid counteractingl,. If ¢ < s(¢) <0 maximum deceleration is desired, which can
be achieved by choosingj, > 0 so high that-7,, is overcompensated arg, is used to slow
down. Summing up, we choose

d;(@, Sba Tkp) = XZ:.(SS)(W) (907 d;dec(¢7 TlP)? d;acc(¢7 TKP)) ' (35)
where
—? 7 ifg>u, o
d;acc(gb’TsD) = _ﬁ + 7_; if Uy 2 gp >0 ) d;dec(gb’TsD) = _7% - % ) (36)
0 if 0>y,

andr, as well asv,, are positive constants. Itis clear from (35) that r,, < 1 defines a region
of interpolation betweet},,.. andd .. in order to render the resulting torque continuous. An
examination of?,,.. reveals that the small constant > 0 prevents the damping from growing
unbounded whet approaches zero. The switching curve which is used in (g)ge

A =1
50(8) = e -2 1= ) <0 @7

This curve is simply the phase-plane trajectgfy) solving the differential equatio; ¢ = Tay
and passing through the poipty;) = —vyme: < 0. Figure 2 visualizes the applied damping
strategy ford,, in the phase plane.



5 Stability Properties

In this section we prove local exponential and almost glalsgimptotic stability of the desired
equilibrium. This is done by showing first that apart from tlesired equilibrium another unde-
sired equilibrium exists. The analysis of their local pndjgs shows that the desired equilibrium
is locally exponentially stable and the undesired equilitoris a hyperbolic fixed point. Using
LaSalle’s invariance principle we establish that the uirddsequilibrium is unstable and the
desired equilibrium exhibits a region of attraction thatexs the whole state space except for
a manifold with Lebesgue measure zero. As it is analyzed]intlis so called almost global
asymptotic stability is the best we can achieve with a coénw that is continuous over the
whole state space.

By inserting the control law (23) derived in the previoustgetinto the open loop dynamics
(8), (11), (14) and setting the left hand side to zero, thelibgum points are identified as

wa=[eT @, 07", w,=[-eI Q, 07]" | (38)

wherewy, is the desired equilibrium anst, is an undesired equilibrium sinegz = —e, implies
p=m.

5.1 Local Properties

To derive the local properties, the closed loop system ésliized arounev, andw,. Observe
that z,z has only two degrees of freedom since it evolvesS8n Consequently, it can be
locally represented by,z,, in a neighborhood of the equilibria. Near;, wherez,z ~ e.,

it holds thatz,s. = \/1 - (225, +z§By), whereas neaw,, wherez,z ~ —e., it holds that

ZdB» = —\/1 ~ (23, + #2p,)- Accordingly, from the first two lines of (8) one obtains

-1 |~ ~ 2 2y |

Z WBz<dBy — WBy\/l — (%ip. + Zipy) , -

“dBz | _ B ) . z - Y in a neighborhood ofv; and (39)
_ZdBy_ _szdeJ?+wBl’\/1_(ZdB:p+ZdBy)
N ~ 2 2 ]

Z WBzZdBy WBy\/l — (%ip. + Zipy) : -

sl BT ) : ° = 4 in a neighborhood ofv,. (40)
_ZdBy_ —WRB2ZdBx — wB:B\/l - (ZdB:B + ZdBy)

Recalling thaty € [0,7] and hencg /275, + 275, = sin(y), the torqueT{ aroundw, can be
indicated as

1 ~XZdBy —ZdBy
T? = c,sin(yp) - e, = ¢, sin(yp) - Sn(2) ZdOBa: = Cy ZdOBx (41)

and analogous computations in a neighborhoow p¥ield

. . —ZdB
sin(pr) sin (1) !
TY = c,— sin() - e, = c,— ZaBe | - (42)
"7 in(e) T o) |



5.1.1 Local Stability properties of the desired equilibrium w,

For the linearization around;, it proves advantageous to define the reduced state wegter
[2ay —2aB: © wg]T =37 wB] Note in particular the order and the S|gn of the first two

components. In terms of¢ the desired equilibrium readg’ = [0 €, OT] . Linearizing
(39) and (14) arounev? = x? yields
Ay = Adp (43)

and the linearization of (11), considering (23), (41), (2@y (34) results in
Adp=-J"'CuAs, - I'BAG g, (44)

whereC, = diag(c,, c,, d“;—g’)b:gd) > 0 andB = diag(é,,d,,d.) > 0. Combining (43) and
(44) yields

: 0 I
Ax? = [_ jic, - J_?’IB] Ax? . (45)

Ag

SinceJ~! is positive definite, there exists a nonsingular real matfixsuch that— = MM7.
By definingC,; = MTC;M > 0 andB = MTBM > 0 one can rewrite\ ; as

~ 0 I, [Mm o][0 L ]MT o
Ad= ~-MC,M- —MBM—ll_lO Ml l—éd _BH 0 M-ll- (46)
—_———
A,

Since the eigenvalues dof,; and A, are the same, we can restrict the analysis&go Let
T . ~ . .
[vlT va] wherev,, v, € C3, be any eigenvector ok ; corresponding to the eigenvalue

)\ Then, A v = \v |mpI|e5v2 = Avy andBv, + Cyv; = —~A\vs. Inserting the first equation into
the second yielda2v; + ABv; + Cy4v; = 0. Multiplying by the complex conjugate! from the
left results in

FIviX2 + ¥ TBviA+ 9T Cqvi =aX2 +bA +¢=0. (47)

From the positive definiteness 6f, and B, it follows thata,b,c > 0 and from the Routh-
Hurwitz criterion for polynomials of order two, all solutis of (47) lie in the left complex half
plane. This proves asymptotic stability @f; with local exponential convergence, [8, Theorem
4.15].

In the case that no integral stdteis desired, the linearization around the desired equiliari
yields a dynamic matrix 4, which is obtained fromA ; by deleting the third row and the third
column. LetA, be the matrix, where the third column &f; has been replaced by zeros, then
by a Laplace expansion along the third column of the mdtkils — A,), it can be seen that
det(AIg — Ag) = Mdet(\I5 — Ay). Thus, all eigenvalues ok, are eigenvalues oA, but A,
has an additional zero eigenvalue. It holds that

| o I,
AO‘[—J—IC0 —J—lBl’ (48)

whereC = diag(c,, ¢,,0) > 0 has rank two. Analogously as before one derives the comaitio
equation (47), wher€, is now replaced by the rank two mati@, = M”C,M 2 0. As one can
easily verify thatA, has exactly one zero eigenvalue, the veetoryieldingc = v{lcovl,l =0



must be one of the three vectors; solving \%v; ; + )\Bvl,i + éovl,i =0,i € {1,2,3}. This

can be understood by noting that 0 in (47) results in\(Aa + b) = 0 which gives rise to the
zero eigenvalue and additionally to a negative eigenvalse-7. SinceA, has no further zero
eigenvaluesy; » andv, 3 must be linearly independent f ; and thus yield: > 0. Using
again the Routh-Hurwitz criterion we conclude that all remray eigenvalues are in the left
half plane. It follows that all eigenvalues &f; have a negative real part and hence the desired
closed loop equilibrium is locally exponentially stable.

5.1.2 Local properties of the undesired equilibriumw,,

For the linearization around, another reduced state vect®f = [-zap, zap: € ng]T is
defined, where the sign of the first two components has beargelda Linearizing around the
undesired equilibrium, which correspondssto= [07 €, OT]T yields

cu 0 I3 "
AX! = l_J_lcu —J‘lBl Ax; (49)

Au
where now the equations (40) and (42) have been used anddawglyrthe stiffness matrix
C, = diag(—c, 325, ~c, 552, 62 o-0,). As it was shown before, the eigenvaluesiof
coincide with the eigenvalues of

~ 0 I3
A, - [_éu _B] , (50)
whereC,, = MTC, M. The eigenvalues dk,, in turn satisfy
VX2 + 9 TBviA+ 9 Cyvy =aX2 +bA+¢=0. (51)

Note thatA.,, obviously has full rank and hence no zero eigenvalues cast, exhich implies

¢ # 0. Moreover, fromB > 0 it follows thatb > 0 and accordingly no eigenvalues can lie on
the imaginary axis. One concludes thaf is a hyperbolic fixed point and hence no invariant
center manifold?¢(w,,) exists, [9, Appendix B]. It will be proven in the next sectitvatw,,

is unstable and hence an unstable invariant manifidldw,,) of at least dimension one must
exist. This in turn limits the stable invariant manifdlds(w,) to be of a smaller dimension
than the state space.

The same properties can be established for the case witih@uttegral stat€) by proceeding
analogously as in the previous section. Sifigg now has two negative and one zero eigenvalue,
it is easily proven thal, must posses exactly three eigenvalues in the left and tvemesdues

in the right complex half plane. Thus, there exists a staiariant manifold of dimension three
and an unstable invariant manifold of dimension two.

5.2 Global Stability Properties

In this section we prove almost global asymptotic stabdityhe desired equilibrium following
the lines of [5]. Using LaSalle’s invariance principle (&g.[8, Theorem 4.4]) this is done by
showing first that all solutions convergewgq, or w, and second that, is unstable and hence
can only posses a stable invariant manifold of Lebesgueuneasro.

Recalling that all level sets df are positively invariant and compact, we apply LaSalle’s in
variance principle by showing that the get= {w ¢ W : V(w) = 0} contains no invariant sets
apart from the equilibrium pointer; andw,,. Inserting (27) in (24) and using (26) yields



V(W) = —Fgy (W) (dw(w)wi + dlwf) — ko (W)d.w? . (52)

Taking into account that,,, x.. > 0 the functionl” only vanishes itl,(wW)w2 = d,w} =d.w?=0

holds. Outside the equilibrium points, in the §8t = W\{w,, w,}, this condition is only
fulfilled in the subset;, which is the set of all states with zero angular velocityg amthe
seté, in which@&p # 0 while w, = w, = d,(w)w? = 0. Thusé, is the set wherd,,(w) = 0.

Explicitly stated, the set§;, & are

51={W€W2G)BZO},

~ (53)
Egz{weW:gpl+Ag0$g0$<pu—Agp,r¢s@(<p)s¢<0,wl=0,wZ=O}.

Next, we show that the equilibrium poings; andw,, are the only invariant sets th= & u&; U
{wa, Wy} ‘
Imagine thatw € &£, thenT # 0 and sincevi = 0, we havew # 0 from (11). Thus, the state
will exit the subset; instantaneously, which shows that no invariant sets ar@agwd iné;.
Now, let us assumev can stay inside the subsét for all times. Recalling that, = -¢ it
follows from (26) that

wp=-pe,#0. (54)

A lower boundw for the angular velocity can be derived solving

1 1-
ErotO = §®BOJ®BO = 5)\(:])@2 >0 , (55)

where A\(J) denotes the largest eigenvalue -f £, is the rotational energy and g, the
angular velocity at the time= 0. Since in the sef, no damping occurs, using (23) and (22)
the torque can be identified &s= T = T + T = &, - e, + k. - e, wherek,, > 0. Now as long
asw ¢ &, it holds thatF,, = ag% = —pk, > 0 and consequently

w’ < OpGp = * . (56)
Based on (37), a lower bound fgris given by
—L=s,(m) <¢<0. (57)
Making use of (57), we can hence extend (56) to obtain
w? < P2 < L. (58)

Now, letyg € [¢; + A, o, — Ap] be the error angle dt= 0. The timet solving the equation

t
pi+dp=go+ [ pat (59)

certainly is an upper bound of the time at which the state neaste&,. By inserting (58) in
(59) and evaluating the integral, we obtain the inequality

w?
801+A80S800—_ft, (60)



which reveals that itself is upper bounded by

PP (3012+ Ay) (61)
w

This proves our assumption wrong, sirtses left in any case and accordingly cannot contain
any invariant sets. Moreover, also the uniorfpand&; cannot contain any invariant sets. This
is due to the fact that, although the state may cross overd&kanto &,, the reverse transition is
not possible. Henceg,w,, w, } represents the largest invariant set containggdlamd according

to LaSalle’s invariance principle every trajectory comes to either tav, or tow,,.

In order to prove almost global asymptotic stability of thesiled equilibriumw,, we first
notice thatl’(w,) = 0 andV(w,) = E,(7) > 0. If we choose any initial stater,, such that
V(wy) < E,(m), we excludew, from the initial sublevel set o¥’(w) and the solution can
only approachw,. Hence,w, is an asymptotically stable equilibrium point. Since the se
{weW:V(w) < E,(r)} is adjacent tow,,, the preceding argumentation also proves that

is unstable and according to the analysis in Section 5.4 &dtble invariant manifold/ s (w,)
must be of smaller dimension than the state spacedite(1V$(w,)) < 6. It is known that an
m-dimensional invariant manifold of am-dimensional system has Lebesgue measure zero if
m < n, see e.g. [9, Appendix B]. This proves almost global asymipstability of w,.

If the integral staté) is omitted, the stability proof remains completely uncheshg

6 Conclusion

In this paper we have presented a fast tracking controllethi® thrust direction of a quadro-
tor helicopter. The nonlinear controller is an extensionhaf setpoint controller presented in
[6] that involves the augmentation of the controller by grad action concerning the angular
rate around the thrust axis. Furthermore, minor modificatiof the potential energy and the
damping have been introduced, which are advantageousddodtial stability analysis, while
their impact on the controller performance is negligibléthie integral state is omitted, the
closed loop dynamics of the tracking control problem andsttpoint control problem hardly
differ. Therefore, we refer the interested reader to [6@@erformance analysis based on sim-
ulation results. Compared to [6] the control problem hastzitionally reformulated using
the reduced attitude parametrization given in [4] enabéirggmplified stability analysis. Local
exponential and almost global asymptotic stability of tleeiced equilibrium, corresponding to
a zero tracking error, has been proven.
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