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Abstract—In this work the problem of utility-based multi-
user scheduling is considered in a fading environment.
The goal is to make use of the multi-user diversity while
still guaranteeing short-term fairness. The performance of
a scheduler is captured by a utility function. Based on
the utility function and assuming statistical knowledge of
the time-varying channel the optimization problem for the
optimal scheduler can be formulated. Based on the optimal
scheduler various simplifications are proposed which use
estimations of future system states. Simulations show the
performance gain compared to state-of-the-art methods.

Index Terms—opportunistic scheduling, predictive
scheduling, multi-user diversity

I. INTRODUCTION

Consider the downlink of a cellular multi-user system.
The problem we discuss in this work is the optimization
of the average service rates of each user, such that a
utility function with respect to the average service rates
is maximized. The optimization is with respect to the
scheduling decisions at the base station. The system
operates in discrete time, i.e., the time is divided in time
slots. In each time slot, the scheduler has to make a
decision concerning the service rates for the different
users, where the set of possible decisions depends on
the time-varying channel state, which is assumed to be
constant within one time slot.

Previous work [1], [2] focuses on algorithms that are
optimal if the service rates are averaged over a large
number of time slots. For our work, we are interested
in high performing solutions for short term averages,
which are interesting for applications with tighter delay
constraints. A first step in this direction, which is based
on the modification of an established scheduling algo-
rithm, can be found in [3].

To find a practical high performing scheduler we first
discuss the optimal causal scheduler for our system
model. The optimal scheduler uses information on pre-
vious channel states together with statistical informa-
tion to estimate the system progression and scheduling
decisions in future time slots. These estimates are then
included in an optimization problem.

Since the optimal scheduler turns out to be too com-
plex for application, we also present a less complex
suboptimal approach. In order to reduce the complexity,

we propose a scheduling approach with a simplified
optimization problem, which still uses statistical infor-
mation and information on previous channel states to
improve the overall scheduling performance.

We propose further simplifications for larger systems
and cases where no statistical information is available.
We also suggest an optimization algorithm for the sub-
optimal scheduler, which is particularly efficient for
complex physical layers, that offer a very large amount
of possible scheduling decisions in each time slot. Finally,
we present simulation results which show that our ap-
proach yields better short-term performance than state-
of-the-art methods in the scenarios we considered.

II. SYSTEM MODEL

The system model is partially adopted from [1]. We
consider the downlink of a cellular system, where a base
station serves N different users. In each time slot, the
channel is in one of the possible states contained in a set
M. The sequence of channel states mt (t = 1, 2, . . .) is
assumed to be an ergodic stochastic process. Let Km be
the set of possible scheduling decisions for channel state
m. Each scheduling decision k ∈ Km has an associated
vector of service rates rkm which contains the service
rates for the different users when the channel is in state
m and decision k is chosen.

We define the achievable rate region Rm of a channel
state m as the set of all possible service rate allocations
that can be obtained with a feasible scheduling decision

R′m =
{
rkm, k ∈ Km

}
. (1)

For the practical implementation of our suboptimal
algorithm, we include the possibility of time-sharing
scheduling decisions within one time slot. We thus ob-
tain a convex achievable rate region

Rm = conv [R′m] , (2)

where conv[•] denotes the convex hull of a set.
The achievable rate regions allow for a more con-

venient way to formulate the optimization problems
in later sections. That is, we formulate the optimiza-
tions with respect to the rate allocations instead of the
scheduling decisions. We assume that, given a feasible



rate allocation µ ∈ Rm, it is possible to reconstruct the
necessary scheduling decisions.

III. OPTIMAL SCHEDULING

The goal of the scheduler is, to maximize a utility
function U(•) with respect to the average user rates in
a window of fixed length T . The optimal rate allocation
is the solution of the following problem

{µ?t }Tt=1 = arg max
µt∈Rmt ,
t=1,...,T

U

(
1

T

T∑
t=1

µt

)
, (3)

where µt is the rate allocation for time slot t.
Since the scheduling decision for time slot t has to

be made without knowing the channel states of future
time slots and, thus, the rate regions, we cannot use (3)
to compute the schedule in a real system. However, we
can use the results from (3) as an upper bound for the
causal schedulers discussed in this work.

One approach to compute an optimal causal schedul-
ing decision is to find the rate allocation for the current
time slot which leads to the highest expected utility at
the end of the time window. The expectation is with
respect to the future channel states and calculated given
the known channel states of the past and the current
time slots collected in the vector mt = [m1, . . . ,mt]. We
formulate the optimal causal scheduler as

µOC(t) = arg max
µt∈Rmt

E

[
U

(
1

T

(
c(t) + µt

+
T∑

τ=t+1

µOC(τ)

))∣∣∣∣∣mt

]
(4)

where c(t) =
∑t−1
τ=1 µt denotes the cumulated rate allo-

cations from previous time slots.
The recursive formulation in equation (4) can be trans-

formed into

µOC(t) = arg max
µt∈Rmt

E

[
max

µt+1∈Rmt
E

[
. . . E

[
max

µT∈RmT

U

(
1

T

(
c(t) +

T∑
τ=t

µτ

))

|m(T − 1)
]
. . .

∣∣m(t+ 1)
] ∣∣∣mt

]
. (5)

For a finite number of possible channel states M , each
expectation branches into M maximizations. The result
is a number of optimization variables in the order of
(NM)T for the maximization in the first time slot of
a time window. If the conditional distribution of the
channel states are known, and in case of a small number
of states and a small time window, it is possible to
calculate the optimal solution to the problem in (5).
However, the huge increase in complexity with respect
to all relevant system parameters makes the optimal
scheduler impractical for real systems.

IV. RATE PREDICTIVE SCHEDULING

In order to reduce the complexity of the optimal sched-
uler we reduce the number of optimization variables by
solving an approximation of (5). Instead of the actual
rate regions and the expected utility function values we
take the expectations of the rate regions and a single
deterministic utility function value. The result is the
following scheduler,

µRP(t) = arg max
µt∈Rmt

max
µτ∈E[Rmτ |mt],
τ=t+1,...,T

U

(
1

T

(
c(t) +

T∑
τ=t

µτ

))
(6)

In other words, we predict the rate regions and solve
the problem in (3) with the predicted rate regions for the
future time slots. Note that the inner maximization in (6)
gives an upper bound to the outer expectation in (5).

If we substitute µ̃ = 1
T−t

∑T
τ=t+1 µτ we obtain the

equivalent problem,

µRP(t) = arg max
µt∈Rmt

max
µ̃∈R̃t

U

(
1

T
(c(t) + µt + (T − t)µ̃)

)
(7)

with

R̃t =
1

T − t

T∑
τ=t+1

E[Rmτ |mt]. (8)

With this substitution we reduce the number of opti-
mization variables, but shift the complexity into the con-
straint set R̃t. However, the structure of the constraint
set does not change. For a finite number of states M , the
expectation of an achievable rate region is a weighted
vector sum of the achievable rate regions corresponding
to the different states. This gives us the following result

R̃t =
1

T − t

T∑
τ=t+1

∑
m∈M

pmτ |mt
(m|mt)Rm

=
∑
m∈M

∑t
τ=t+1 pmτ |mt

(m|mt)

T − t
Rm

=
∑
m∈M

pm̃|mt
(m|mt)Rm.

(9)

We can see that the reduction in complexity comes with
the minimal cost of calculating the probability distribu-
tion pm̃|mt

.
If the channel states in different time slots are inde-

pendent, the estimation in (8) simplifies to

R̃AP = E[Rm], (10)

which is independent of the time slot t. This can also be
seen as an a-priori estimator which disregards available
observations of the channel states.



A. Low complexity estimation

For systems with unkown statistics or systems with
a large number of possible channel states it might not
be possible to calculate the expectations used in the
estimators in (8) and (10). In this case we propose to
approximate the a-priori estimator in (10) based on a
local average

R̃LA
t =

1

W

t∑
τ=t−W+1

Rmτ ≈ R̃AP. (11)

In order to further reduce complexity, we propose to
use an exponentially weighted average with a recursive
update of the estimated region which is given by

R̃WA
t+1 = (1− α)R̃WA

t + αRmt , (12)

with α = 1
W .

In the worst case, this update leads to an exponential
increase in rate points in the estimated region, as a result
of the vector summation of the sets. As a consequence,
we propose to track only a fixed amount of rate points
on the boundary of the estimated region. These points
can be defined as solutions to linear programs.

Specifically, we store a set of rate points R̃′t = {r̃lt}Ll=1

considering a corresponding set of weightsW = {wl}Ll=1,
where each rate point is a point on the boundary of the
estimated region in (12) given by

r̃lt = arg max
r̃∈R̃WA

t

wlTr̃

= (1− α) arg max
r̃∈R̃WA

t−1

wlTr̃ + α arg max
r∈Rmt−1

wlTr

= (1− α)r̃lt−1 + α arg max
r∈Rmt−1

wlTr.

(13)

For this update we assume the weights to be fixed for
all time slots. For example, they can be chosen as a fixed
number of approximately uniformly distributed vectors
on the positive part of the N-dimensional unit sphere.

With the optimization problem in (7) in mind, we see
a possible advantage in adapting the weights over time,
to sample areas of the estimated region more accurately,
that are of higher importance to the optimization prob-
lem, i.e., areas that are more likely to be in the vicinity
of the optimal solution to (7). This idea is based on the
assumption that the optimal solution µ̃∗ of the inner
maximization varies only slowly with time.

For time-varying weights Wt = {wl
t}
Lt
l=1 the updated

rate points are given by

r̃lt = (1− α) arg max
r̃∈R̃′t−1

wl
t

T
r̃ + α arg max

r∈Rmt−1

wl
t

T
r. (14)

Note that with time-varying weights the rate points are
no longer guaranteed to be on the boundary of the
estimated region defined in (12).

The actual estimated rate region with this approach is
given by the convex hull over the sampled rate points

R̃LC
t = conv[R̃′t] ⊆ R̃WA

t . (15)

V. IMPLEMENTATION ASPECTS

In this section we suggest an convex optimization
algorithm to solve the problem in (7), which integrates
well with the proposed estimation methods. It is very
efficient when there are a lot of rate points in the
constraint sets which is usually the case for the estimated
region R̃t, but also for the achievable rate regions for
some physical layers.

A. Complex Physical Layers

For complex physical layers with a large or even
infinite amount of possible scheduling decisions, it is
not feasible to calculate all of the corresponding service
rate vectors. However, we only need a subset of the
possible rate allocations to compute the optimal solution.
To be able to solve the optimization problem with the
suggested algorithm, we assume that it is possible to cal-
culate single rate vectors of the achievable rate regions as
the solution to a weighted sum rate (WSR) maximization
problem

rim = arg max
r∈Rm

λi
T
r. (16)

The multiple-input-multiple-output (MIMO) broadcast
channel (BC) capacity region would be one example.

B. Proposed Algorithm

Since the achievable rate regions are convex, the prob-
lem in (7) can be solved using convex optimization
algorithms. One algorithm we found to be very efficient
in solving the problem is the simplicial decomposition
algorithm [4]. The algorithm solves the optimization
problem by iteratively refining inner approximations of
the current constraint sets Rmt , R̃t

Rimt = conv
[
{rjmt}

i
j=1

]
R̃it = conv

[
{r̃jt }ij=1

]
.

(17)

where the rate vectors rjmt , r̃
j
t are solutions to WSR

maximizations over Rmt , R̃t as in (16).
The intermediate solution vectors µit and µ̃it are ob-

tained by solving the optimization problem in (7) but
replacing the constraint sets with the respective inner
approximations

{µit, µ̃it} = arg max
µt∈Rimt ,
µ̃t∈R̃it

U

(
1

T
(c(t) + µt + (T − t)µ̃t)

)
. (18)

This optimization over a polytope can be solved with a
projected gradient method.



The weights for the next WSR maximizations are
chosen as the gradient at the intermediate solution of
the last iteration

λi = ∇U
(
1

T

(
c(t) + µi−1t + (T − t)µ̃i−1t

))
. (19)

With this choice, it can be shown that the solutions of (18)
converge to the solution of the original problem in (7).

One important thing to note is that we can make use
of the already calculated WSR maximizations for the
update of the estimated region in (13) and (14) if we
do not want to spend additional complexity. That is, we
use the inner approximation RItmt to update the estimated
region, where It is the number of optimization iterations
preformed in time slot t.

If we use time varying weights Wt for the update of
the estimated region can also use the weights {λi}Iti=1

that were used in the optimization to adapt the weights
for the current time slot. One option would be to com-
pletely discard Wt−1 and set Wt = {λi}Iti=1.

VI. SIMULATION RESULTS

In this section we compare the performance of differ-
ent schedulers in numerical simulations. We analyse the
schedulers based on the optimization problem in (7) for
different estimators, namely the a-posteriori scheduler
using the estimate in (8), the a-priori scheduler using the
estimate in (10) and two schedulers using the recursively
updated estimates in (13) and (14) respectively. The
first one of those two uses fixed weights, which are
approximately uniformly distributed on the unit sphere,
and the other one uses a small number of dynamic
weights based on the optimization weights. Additionally
we include the gradient scheduler [1] and the upper
bound in (3) as references.

As utility function we use the proportional fair utility
given by

U(r) =
N∑
n=1

log rn. (20)

A. Orthogonal Scheduling
For the first set of simulations we consider sets of

possible scheduling decisions Km, where each decision
is associated with a single user. The rate vector rkm
corresponding to the scheduling of user k has only one
non-zero entry at component k denoting the achievable
rate of the user given the channel state m. The resulting
achievable rate regions are N -dimensional simplices,
where N is the number of users.

The channel states are modeled as N -dimensional
vectors. Each component denotes the channel state of
a single user, which can be mapped directly to the
corresponding achievable rate. The states of the different
users are modeled as independent Markov chains.

The transition probabilities for the Markov processes
are gathered from empirical simulations. To this end
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Fig. 1. Performance for orthogonal scheduling

we generate channel coefficients for a large number of
time slots according to Jakes’ model [5] and calculate
the corresponding Shannon rates. The rates are then
quantized using C different rate configurations, each
quantization interval representing one possible channel
state for one user. Thus, the total number of possible
states is given by M = CN .

The actual scheduling simulations are done for several
realisations of the random channel state process over
5000 time slots. We choose C = 4 and N = 4 and varying
scheduling window lengths T .

The performance of the different algorithms is shown
in Figure 1. The two algorithms using statistical infor-
mation show nearly the same performance indicating
a small impact of current channel state information on
the estimated rate regions. The scheduler using time-
varying weights shows a slight performance gain over
the gradient algorithm for all window lengths. Note that
the gradient scheduler is equivalent to the proportional
fair scheduler [6] under this system model.

The scheduler using fixed weights performs similar
to the statistical schedulers for small window lengths
but falls of for larger window lengths compared to all
other algorithms. This can be explained by the fact that
for small window lengths there is more variation in the
average rates of the different windows, thus, there is also
more variation in the results of the optimization. In this
case the fixed weight scheduler benefits from the widely
distributed sample rate points over the estimated region.

For larger time windows, however, the average rates
vary only slightly, which leads to optimization results
which are focused on a small area of the estimated
region. In this case the fixed weight scheduler has a lot
of useless information, i.e., unnecessary sample points,
and not enough sample points in the important area of
the estimated region resulting in a relative performance
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degradation for large window sizes, where accuracy in
the estimate is important to further increase the utility.

Note that for large window sizes, the a-priori and a-
posteriori schedulers outperform the gradient scheduler
only slightly. Thus, in most cases the gradient scheduler
is the preferable solution for long term fairness due to
the low complexity.

B. Scheduling for the MIMO-BC Channel
A further set of simulations analyses the application

of our algorithm to the MIMO-BC channel, where we
assume that the achievable rate regions correspond to
the capacity region, which is achievable with dirty paper
coding [7]. We assume two antennas at the transmitter
and at each receiver. The complex flat fading channel
coefficients are generated independently for each user
using Jakes’ model. The total channel state is then given

as the combination of all coefficients. The number of
users is set to N = 6.

In this scenario it is no longer reasonable to use the
a-priori and a-posteriori estimators due to prohibitively
high complexity.

In Figure 2 we show the results for the fixed and dy-
namic weights schedulers compared to the upper bound
and the gradient scheduler. We notice that the dynamic
weights scheduler yields a better relative performance. A
possible explanation is that for the MIMO-BC with dirty
paper coding, the average user rates are more stable than
for the orthogonal scheduling case.

VII. CONCLUSION

We proposed effective methods for multi-user schedul-
ing based on estimates in the rate space and could
show significant performance gains for tighter delay
requirements.
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