
 

 

 

Abstract 
 

In this paper, an overall framework for crowd analysis 

is presented. Detection and tracking of pedestrians as well 

as detection of dense crowds is performed on image 

sequences to improve simulation models of pedestrian 

flows. Additionally, graph-based event detection is 

performed by using Hidden Markov Models on pedestrian 

trajectories utilizing knowledge from simulations. 

Experimental results show the benefit of our integrated 

framework using simulation and real-world data for 

crowd analysis. 

 

1. Introduction 

We present an interdisciplinary framework for the 

analysis of crowds in real-world scenarios which integrate 

benefits of simulation techniques, pedestrian detection and 

tracking, dense crowd detection and event detection.  

Crowd analysis and simulation are emerging fields of 

research which are motivated by security and monitoring 

issues in crowded areas. Recent surveys show the 

achievements and unsolved problems in vision-based 

crowd analysis, dealing with detection, tracking, occlusion 

handling, crowd modeling and event inference [16, 32]. 

The review of Dee and Velastin [7] tries to answer the 

question “How close are we to solving the problem of 

automated visual surveillance?”, concluding that much 

work remains in the field of behavior analysis in 

unstructured and changing environments. Depending on 

the application, the scale of the analyzed object ranges 

from individuals [6] to crowds themselves [1].  

On the other hand, significant research has been 

conducted to simulate pedestrian dynamics to predict 

possible conflict points or bottlenecks. There exists a 

variety of different simulation models: macroscopic 

models like network-based models [11] or fluid-dynamics 

models [14] as well as microscopic models like e.g. the 

Social Force Model [13] or Cellular Automata [3]. A good 

overview describing the different approaches and their 

objectives can be found in Schadschneider et al. [27]. 

However, the validation of pedestrian simulations is still 

an open research field. To assure the correctness of 

simulation results they have to be compared with real-

world data captured in the field. A number of small-scale 

investigations have been carried out already, e.g. Seyfried 

et al. [29] conducted experiments which examine flows 

through bottlenecks to gain validation data. Another 

experiment was conducted by Moussaid et al. [20], where 

participants walk along a corridor from both directions to 

examine evading behavior of pedestrians. However, up to 

now data from real-life situations is not considered very 

often for validation due to lack of data. In contrast, the 

framework presented in this paper aims at integrating 

simulation results and tracking results of crowds from an 

every-day situation to validate the simulation model.  

The utilization of image sequences and video data from 

airborne sensor platforms for surveillance applications 
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such as object tracking has been studied for several years, 

e.g. [10, 24]. However, research on tracking of people in 

airborne data is limited. In Miller et al. [19] individuals are 

detected using corner features, but the results are not 

satisfying. The work of Reilly et al. [25] received 

promising detection results including people´s shadow in 

the object model. In our approach, we integrate this 

information directly in an appearance-based model to deal 

with coarse image information.  

The use of extracted trajectories of pedestrians for event 

detection has been done in several approaches [4, 5, 21, 

31]. A basic tool for the analysis of trajectories are Hidden 

Markov Models (HMM) [23], which serves for further 

extensions for event detection and trajectory analysis [21]. 

Systems for trajectory analysis, region modeling and 

trajectory mining are well investigated and are still an 

important topic [5, 31]. However, the basis for such 

systems are big datasets of only recurring trajectories, as 

for example at shopping malls or parking lots, which have 

to be available for each scene of interest. But, there is a 

lack of prior trajectory datasets at specific big events, 

where automatic event detection has to be performed 

spontaneously. Event detection of individual behavior [6] 

or events which are composed of up to only two people 

[21] sufficiently copes with behavior of individuals and 

abandons prior trajectory datasets, but cannot deal with 

large groups of pedestrians. In contrast, we aim at 

modeling the behavior of larger groups of people using 

simulations and tracked pedestrians as input information.  

In the next section, we introduce our simulation model 

applied to a daily-life scenario. Afterwards, the detection 

and tracking of pedestrians and the detection of dense 

crowds is presented. In Section 4, we give an overview of 

our event detection approach using the before derived 

information. The results using all these developed parts for 

the analysis of crowds are shown in Section 5 to highlight 

the benefit of this overall framework. 

2. Simulation of pedestrians 

2.1. Model description 

To simulate pedestrian crowds, a microscopic approach 

is used, which consists of several layers:  

The time and space discretization is modeled by a 

cellular automaton, which forms the basic layer.  

To model pedestrians’ locomotion, a combination of 

potentials is applied. Each pedestrian is influenced by 

different forces: a driving force to the destination, repellent 

forces of obstacles situated on the way to a destination as 

well as repellent forces of other pedestrian in the scene. 

These forces are superimposed into one potential field. 

The corresponding value from the potential field is 

mapped to each cell of the automation, corresponding to 

the position of the cell. A detailed description of the 

potentials approach can be found in Hartmann [12].  

The third layer describes the navigation layer, which 

models the spatial orientation of pedestrians. The layer is 

implemented as a navigation graph, on which different 

routing strategies can be applied, e.g. pedestrians who are 

familiar/are not familiar with a location [17]. An overview 

of the model setup is shown in Fig. 1.  
 

 
Figure 1: Model setup of the simulation. 

2.2. Scenario 

Each simulated scene is called a scenario. It consists of 

one or more sources, obstacles and destinations. 

Pedestrians are generated from sources. The number of 

generated pedestrians can be adjusted in each time step. 

Each pedestrian walks towards a destination which has 

been assigned during generation. Obstacles refer to walls 

or fences as well as buildings or booths. The scenario of 

our test case is shown in Fig. 2.  
 

 
Figure 2: Simulation scenario 

2.3. Simulation setup 

To get realistic start parameters we receive the number 



 

 

of pedestrians in the congestion areas through detection of 

pedestrians as described in the following Section 3.2. The 

images, to which we compare the simulation results, 

represent a snapshot of a longer process (cf. Section 5). To 

get a simulation state comparable to the snapshot, we need 

an init phase, during which the pedestrians who are 

generated by the sources in the lower part of the scenario 

walk towards the crowds in front of the entrances in the 

upper part (Fig. 2). The following main phase refers to the 

snapshot from the images, which we compare to the 

measures from Section 3.  

3. Detection and tracking of pedestrians and 

crowds 

3.1. Detection and tracking of pedestrians 

The detection and tracking of pedestrians in aerial 

image sequences is a challenging task. A single person has 

a size of just a few pixels and changing atmospheric 

conditions can lower the visibility (Fig. 3). Furthermore, 

the number of people can vary from hundreds up to many 

thousands which all look very much alike. In this section 

we present the features of our detection and tracking 

approach which can handle the mentioned challenges. A 

more detailed description can be found in [28]. 
 

Figure 3: Example of a crowd (left) and a person with and 

without shadow (center and right) at a pixel size of 0.15 m. 

 

3.1.1. Detection. We utilize an appearance-based 

approach for object detection since this method has been 

successfully applied for very small objects, e.g. cars in 

satellite images [18] or spots in microscopy images [30]. 

The approach works on single images and can therefore 

detect small and static objects as opposed to the standard 

but error-prone methods for moving object detection. 

The shadow of a person is a very important cue for 

detection. We have designed a detector which covers the 

body of a person and also its potential shadow. A 

normalization procedure ensures that the shadow will 

always point in upward direction. We extract color and 

shape features inside the detection window and pass them 

to a trained Gentle AdaBoost classifier [9]. It produces a 

confidence score about the presence of a person at the 

location of evaluation. By running the customized detector 

over the region of interest inside an aerial image, we get an 

independent confidence measure at every pixel position. 

We then estimate the continuous confidence distribution 

with a Gaussian kernel. Potential object positions are 

finally extracted by applying non-maxima suppression and 

a detection threshold for minimal confidence. 

The detection results are the base of the following 

tracking-by-detection approach. A very low detection 

threshold ensures that the number of misses stays at a 

minimum and that the tracking procedure has enough 

input. The final decision between object and clutter is 

postponed to the end of the tracking stage, where more 

information is available. 

 

3.1.2. Tracking. Tracking people in aerial image 

sequences requires an algorithm that can handle lots of 

similar objects simultaneously. Further challenges arise 

due to the low frame rate of e.g. 2 Hz and deviations in 

image alignment. 

We adapt an iterative Bayesian tracking approach for 

our application, similar to the one used by [2] to track a 

large number of flying bats. A single person is described 

using the following states: position, color and direction of 

motion. The latter is determined by calculating optical 

flow between consecutive images. The states of every 

object are predicted for the next frame with a linear 

dynamic model. Afterwards the prediction has to be 

associated with new detection to form tracks. We apply an 

efficient gating strategy to reduce the number of potential 

association candidates to a minimum. Each link between 

prediction and detection is weighted by evaluating their 

state similarity. The established data association problem 

is solved in a fast way by using the conservative direct link 

method of [15]. Objects associated with an observation are 

updated while unassigned objects are considered lost and 

are not tracked further. Unassigned observations are 

marked as new objects. In a final step tracks are rejected if 

the mean confidence score of all associated detections is 

below a certain threshold. 

 

3.1.3. Further analysis. The generated trajectories are 

reliable but rather short. Hence, their potential use for 

individual motion analysis is still limited. Future 

improvements aim on generating longer trajectories even 

in complex situations. However, the results can be used to 

estimate the total number of persons in the scene and their 

general motion. The latter can be determined easily given 

the generated tracklets. The displacement in object 

position between consecutive frames can be used with the 

pixel size and the frame rate to calculate the velocity. 

The total number of people can be estimated easily from 

the specific performance range of the detection algorithm: 
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The detected number of individuals 'P  can be 

converted into the true number P  by multiplication with 

the ratio of correctness and completeness. If the variance 

of the ratio has been determined in advance, it is possible 

to make a good estimate for the lower and upper bounds of 

the true number of people in a scene.  

3.2. Detecting dense crowd regions 

The proposed approach presented in the above section 

will probably fail in dense crowds, because aerial image 

resolutions do not enable to see each person with sharp 

contours and details (Fig. 3 left). However, a local change 

of the color components at the pixels where a person exists 

can be noticed. Therefore, we develop a dense crowd 

detection approach depending on local features extracted 

from chroma bands of the input images. Moreover, dense 

crowd data can be used to improve the simulation model. 

For local feature extraction, we use features from 

accelerated segment test (FAST) method. The FAST 

method is especially developed for corner detection 

purposed by Rosten et al. [26], but the method also detects 

small regions which are significantly different than their 

surrounding pixels. We start with converting RGB input 

image into CIELab color space. CIELab color space bands 

are preferred since they are able to enhance different 

colors best and minimize color variances [8]. After 

transforming, we obtain again three bands as L (intensity 

value) and a, b (chroma information of the pixels 

independently from illumination). To detect small regions 

which have significant color variance compared to their 

surrounding, we extract FAST features from a and b 

chroma bands of the image. As local feature, we use (xi,yi) 

i є [1,2,…,Ki] locations which holds FAST features 

extracted from a and b image bands.  

Extracted FAST features will behave as observations of 

the probability density function (pdf) of the dense crowd 

locations to be estimated. For dense crowd regions, we 

assume that more local features should come together. 

Therefore, knowing the pdf will lead to detection of 

crowds. For pdf estimation, we benefit from a kernel based 

density estimation method. Using symmetric Gaussian 

functions as kernel, the estimated pdf is formed as follows: 
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where σ is the bandwidth of Gaussian kernel and R is 

the normalizing constant to normalize p(x,y) between 

[0,1]. In kernel based density estimation, the main 

problem is how to choose the bandwidth of Gaussian 

kernel for a given test image, since the estimated pdf 

directly depends on this value. In probability theory, there 

are several methods to estimate the bandwidth of kernel 

functions for given observations such as statistical 

classification or using balloon estimators. Unfortunately, 

those well-known approaches need high computation time 

for large input images having very high number of 

observation points (local features). For this reason, we 

follow an estimation approach which is slightly different 

from balloon estimators. First, we pick 20 numbers of 

random observations (FAST feature locations) to reduce 

the computation time. For each observation location, we 

compute the distance to the nearest neighbor observation 

point. Then, the mean of all distances give us a number l. 

We assume that variance of Gaussian kernel (σ
2
) should be 

equal or greater than l. In order to guarantee to intersect 

kernels of two close observations, we assume variance of 

Gaussian kernels as 5l. This automatic kernel bandwidth 

estimation method makes the algorithm robust to scale and 

resolution changes. Afterwards, we use Otsu’s automatic 

thresholding method on this pdf to detect regions having 

high probability values [22]. After thresholding our pdf 

function in the obtained binary image we eliminate small 

regions since they cannot indicate large human crowds.  

4. Graph-based event detection using Hidden 

Markov Models (HMM) 

We perform event detection in image sequences 

containing large groups of people. Trajectories of tracked 

pedestrians (cf. Section 3) are used to construct a dynamic 

pedestrian graph which comprises all detected pedestrians 

in the scene. Triggered by the existence of edges in the 

graph, HMM-based analysis of pairwise motion interaction 

between pedestrians is done [4]. Supported by simulation 

results (cf. Section 2), the event detection module can be 

focused on potentially dangerous spots in the scene.  

4.1. Motion model 

Motion interaction between pedestrians is analyzed by 

inferring the type of motion pattern of two neighboring 

trajectories, which itself is derived from a set of three 

motion features.  

Three motion features are computed from a pair of 

neighboring trajectories at each frame, beginning with the 

second frame of the sequence. The first motion feature is 

the sum of the velocities of both pedestrians ijv . The 

second motion feature is the variation of the distance 

between both pedestrians 1/t td d d , with 1td  being 

the distance at frame 1t  and td  being the distance at 

frame t . Thus, 1d  at an increasing distance and 

1d  at a decreasing distance. The third motion feature 

is the average pedestrian density in an area with radius r  

around both pedestrians ( )ijn . 



 

 

We define six simple pairwise motion patterns which 

commonly occur at adjacent pedestrians. Pairwise motion 

patterns are suitable for event detection in crowds, because 

they focus on motion interaction between pedestrians. In 

contrast, a single person walking on an open area has no 

motion interaction to other pedestrians and, thus, is of 

minor interest for event detection in groups. The six 

motion patterns are together standing, together queuing, 

parallel walking, parallel running, diverging, converging, 

each defined by specific values of the motion features. 

4.2. Dynamic pedestrian graph 

Managing large groups of pedestrians can ideally be 

performed by constructing a spatio-temporal dynamic 

graph in which nodes represent pedestrians and edges 

represent interactions between pedestrians. The dynamic 

pedestrian graph can change its topology at every frame 

and is flexible to the number of nodes. The number of 

edges is kept low by considering only those interactions 

which take place between directly adjacent pedestrians. 

This is done by introducing a Gaussian weight function in 

which the width is depending on the local pedestrian 

density. The dynamic pedestrian graph is updated at each 

frame by introducing edges which represent interaction 

between converging pedestrians or deleting edges which 

represent interaction between diverging pedestrians.  

4.3. HMM-based event detection 

The temporal behavior of the motion interaction 

between two pedestrians is evaluated by Hidden Markov 

Models (HMM) for each edge in the graph throughout the 

sequence. Usually, HMM are learned offline from real-

world training data containing recurring trajectories. 

However, no training data is available for  the monitoring 

of specific events and the persons cannot be assumed to 

follow predefined paths. Therefore, we generate synthetic 

training data which is generated by moving agents. This 

approach is reliable because the moving agents follow our 

simple motion model which represents authentic motion 

interaction of pedestrians. We use about 1000 observations 

for each of the six motion patterns to train the HMM.  

The type of interaction between two pedestrians is 

inferred by HMM for every edge at every frame using the 

forward algorithm [23]. We construct a HMM-buffer 

which internally continues the HMM analysis of one 

interaction for some frames, even if the corresponding 

edge is deleted. This may occur when two pedestrians 

slightly deviate to the left or right and depart from each 

other awhile. By using the HMM-buffer, the interaction 

inference will not be interrupted during that time and no 

fragments of the corresponding interaction arise. The event 

detection module can deal with a varying number of 

trajectories of varying length. Trajectories that are too 

short can be eliminated by applying a threshold for the 

length. This step is necessary because short trajectory 

fragments of length 1 or 2 provide no meaningful motion 

information and increase the computational cost.  

5. Experimental results 

The dataset used for this study is an image sequence 

taken by an airborne camera platform showing the 

entrance area of a soccer stadium. The images are taken at 

a frame rate of 2 Hz, the length of the analyzed image 

sequence is 8 sec, the ground resolution is 0.15 m. For the 

experimental results, we focus on the area in the south of 

the stadium gates. 

5.1. Simulation of pedestrians 

The simulation scenario for the stadium dataset is 

illustrated in Fig. 2. We use measures such as densities and 

velocities to validate the results of the simulation as well 

as a visual comparison between the images and the 

simulation. Until now, the crowds in front of the 

bottlenecks are only validated by visual checks. 

In Fig. 4 simulation snapshots of actual positions and 

moving directions of simulated pedestrians are shown at 

the beginning of the tracking phase. In addition, Fig. 5 

shows the same snapshots at the end of the tracking phase. 

These plots can now be compared with the real-world data 

to check for matches (cf. following sections and Fig. 6).  

In our example one can observe the same pattern of 

pedestrians moving in real vs. pedestrian moving in the 

simulation. The density within the center dense crowd 

region can be reproduced by the simulation: The crowd 

detection data shows a density of 0.81 persons per square 

meter, whereas the simulation produces a density of 0.79. 

Furthermore, the derived velocities from the tracking 

results of the real-world data are used to improve the 

model of the simulation velocities.  

What can be directly observed from the simulation 

results is the mismatch of the crowd formation. This can be 

partly explained by the definition of the repellent obstacle 

potential. Moreover, until now no queuing effect is 

implemented within the simulation. To improve the 

matching between simulation results and real-world data, a 

further refinement of the simulation model is necessary. 

But nevertheless, the available real-world data serve a 

reference data set to improve the simulation model. 

Furthermore, an adequate comparison measure has to be 

developed to validate the simulation data with real data.   

5.2. Detection and tracking results of pedestrians 

and crowds 

The results of the detected dense crowds are visualized 

in Fig. 6 (red boundaries). The derived results demonstrate 



 

 

a reliable detection of dense crowed regions, which are 

obviously in the front of the gates to the stadium. This 

information, in particular the dimension and shape of the 

region, is important to support the simulation model and 

the detection and tracking of single pedestrians. 

The detection and tracking of individuals is focused on 

the area excluding the detected dense crowds. The quality 

of the detection and tracking results are evaluated 

separately with ground truth data. We define a correct 

detection if its distance to a reference person is below 50 

cm or 3.3 pixel. Our algorithm achieves a correctness of 

88% and a completeness of 36% (Fig. 6). The main cause 

for the low completeness is the poor visual quality of the 

image sequence. The contrast is very low and some thin 

clouds are passing. Furthermore, lots of people walk in 

groups which cannot be found by our detector. The 

correctness is good since there is not much person-like 

clutter present in the scene. The tracking results are 

similar. We compare the generated links between 

consecutive frames with the reference links. Our algorithm 

achieves a correctness of 89% and a completeness of 28%. 

The values reflect the conservative setting of our tracking 

algorithm and also the previous mentioned difficulties of 

the images.  

We use the detection results to calculate the number of 

people in the scene as described in section 3.1.3. At first 

we determine the ratio between correctness and 

completeness for several different test sequences. It varies 

between 2.33 and 2.95. We take the median of 'P  for all 

frames, which is 233 and calculate a lower and upper 

bound. As a result we estimate the total number of people 

in the region of interest to lie between 515 and 688. The 

actual number of people in every frame of the reference 

data varies between 564 and 597 which approves the 

proposed estimation method for the evaluated sequence. 

5.3. Event detection results 

The event detection results for pedestrian motion 

interaction in the test scenario are shown in Fig. 7. The 

trajectories used for event detection are the tracking results 

from section 5.2. Fig. 7 shows 252 pedestrian detections 

(black circles), each of it being part of a trajectory of 

minimum length 2 and forming a node of the pedestrian 

interaction graph. In addition, 110 edges are shown which 

represent motion interactions between pedestrians. Edges 

are labeled by 6 colors, each of it represents one of the six 

motion patterns. The detected motion interactions are 

occurring only between small groups. In most instances the 

results together walking and converging are delivered. The 

approach depends on the density of pedestrians.  

Therefore, more edges in the graph will be constructed 

when a higher tracking completeness is achieved because 

then the distances between detected pedestrians are lower. 

In that case, a more significant event detection result will 

be enabled which incorporates larger groups of people.  

The simulation results (Fig. 4, Fig. 5) show a location of 

potential danger in front of the middle entrance. Here, the 

queue gets close to an obstacle such that passing 

pedestrians might suffer from a bottleneck situation. Fig. 8 

shows a sequence of event detection results based on real-

world data in this area. For this result we use manually 

generated reference trajectories to show the potential of 

our event detection approach. Arriving pedestrians have to 

converge and slow down in the narrow area such that 

congestion occurs, shown by an increased number of 

yellow edges at a later time. Therefore, the event detection 

result confirms the simulated dangerous scenario.  

6. Conclusions 

We presented a novel integrated framework for the 

analysis of crowds including all relevant aspects as 

simulation, detection and tracking of pedestrians and dense 

crowds and event detection. The exploitation of the 

different parts in an overall approach lead to a clear 

benefit as demonstrated with the real-world scenario.  

Our goal for future work is to enhance the system for 

arbitrary new scenarios, where only a short image 

sequence is needed for pedestrian tracking and the results 

are immediately implemented in the update of the 

simulation model. Moreover, tracked data can help to 

improve the simulation model. These results allow us to 

focus on specific locations of potential danger, probably 

depending on simulated different numbers of pedestrians, 

and operate only there the visual surveillance and event 

detection. In addition, the individual parts of the system 

will be improved, e.g. a better tracking method to track 

more pedestrians and an enhanced event detection to 

include more complex events at a higher hierarchical level. 
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