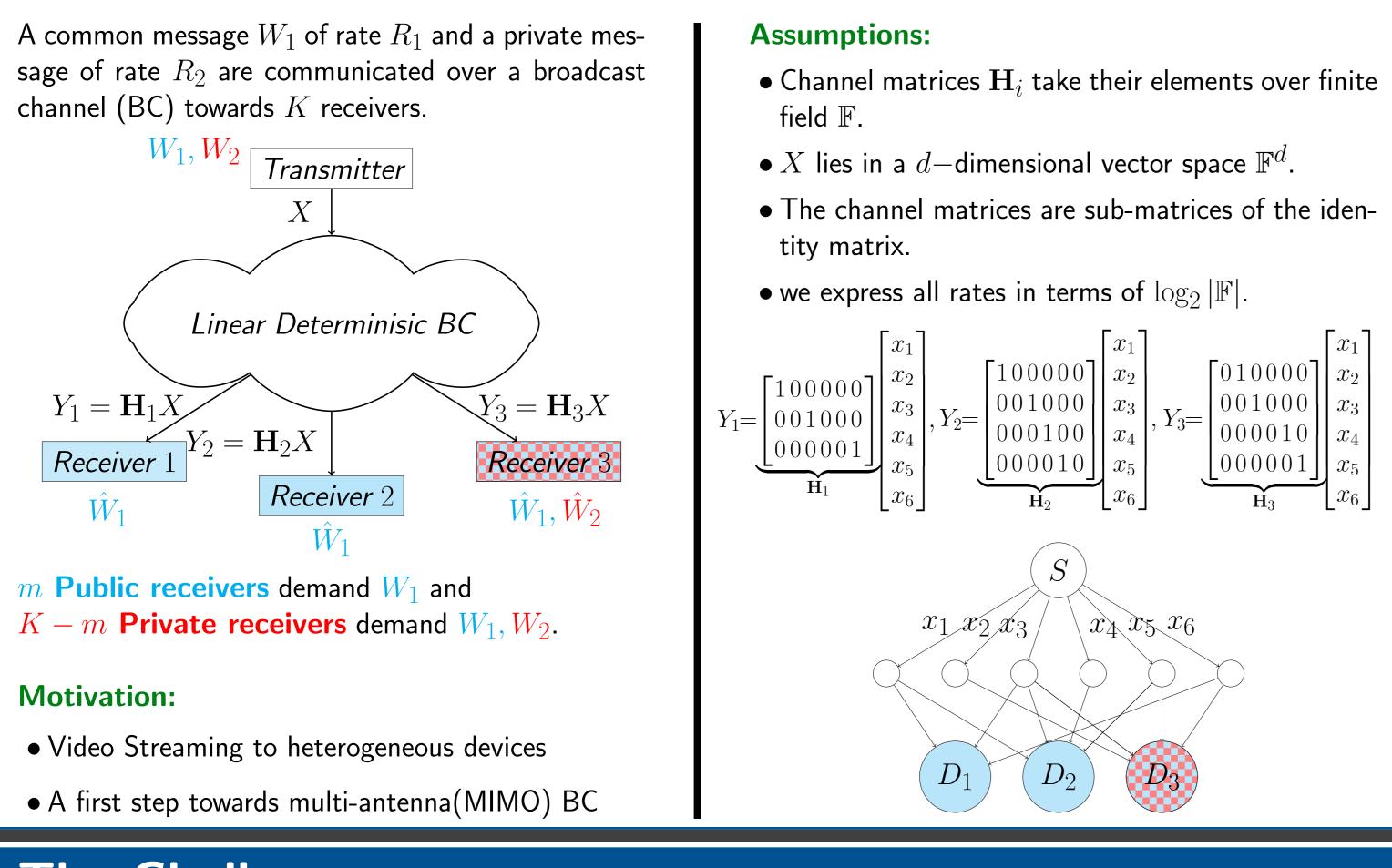


Abstract

Encoding schemes for broadcasting two nested message sets are studied. We start with a simple class of deterministic broadcast channels for which (variants of) linear superposition coding are optimal in several cases. Such schemes are sub-optimal in general, and we propose a block Markov encoding scheme which achieves (for some deterministic channels) rates not achievable by the previous schemes in [1, 2]. We adapt this block Markov encoding scheme to general broadcast channels, and show that it achieves a rate-region which includes the previously known rate-regions.

A Linear Deterministic Model



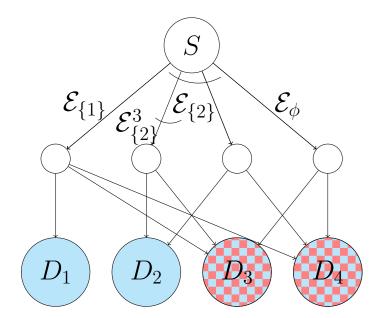
The Challenge

The underlying **trade-off**:

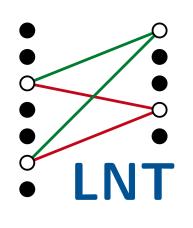
- On the one hand, public receivers need only enough information so that each can decode the common message;
- On the other hand, private receivers need to be able to decode both messages. It is, therefore, desirable from private receivers' point of view to have these messages mixed.

To optimally resolve this tension, one might need to reveal some partial information about the private message to the public receivers.

Notation



- I_1 : set of public receivers, : set of private receivers.
- \mathcal{E}_{S} , $S \subseteq I_1$: resources connected to every (public) receiver in S and not to other public receivers.
- $\mathcal{E}_{\mathbf{S}}^{\mathbf{p}}$, $S \subseteq I_1$, $p \in I_2$: resources in \mathcal{E}_S that are also connected to private receiver p.
- We call a subset \mathcal{T} of 2_1^I superset saturated if inclusion of a set S in \mathcal{T} implies inclusion of all its supersets.



Institute for Communications Engineering

A Block Markov Encoding Scheme for Broadcasting Nested Message Sets

- $X_{\mathbf{S}}$: vectors of symbols carried over \mathcal{E}_S .
- $X^{p}_{\mathbf{C}}$: vectors of symbols carried over ${\mathcal E}^p_{S}$.

•
$$X = \begin{bmatrix} X_{\{1,2\}} \\ X_{\{2\}} \\ X_{\{1\}} \\ X_{\phi} \end{bmatrix}$$
.

The Standard Approach: Linear Superposition Coding

Reveal partial information about the private message to public receivers through a zero-structured encoding matrix:

• Let $[w_{1,1}\ldots w_{1,R_1}w_{2,1}\ldots w_{2,R_2}]^T.$ • Let $X = \mathbf{A}W$. $\mathbf{A} =$ • Each $Y_i = \mathbf{H}_i X$, $i = 1, \dots, K$. A feasibility problem: $\alpha_S \ge 0 \quad \forall S \subseteq I_1$ $\alpha_{\{1,2\}}, \alpha_{\{2\}}, \alpha_{\{1\}}, \alpha_{\phi} \ge 0$ $R_2 = \sum \alpha_S$

 $R_2 = \alpha_{\{1,2\}} + \alpha_{\{2\}} + \alpha_{\{1\}} + \alpha_{\phi}$ Decodability at public receivers $R_1 + \alpha_{\{1\}} + \alpha_{\{1,2\}} \le \mathcal{E}_{\{1\}} + \mathcal{E}_{\{1,2\}}$ $R_1 + \alpha_{\{2\}} + \alpha_{\{1,2\}} \le \mathcal{E}_{\{2\}} + \mathcal{E}_{\{1,2\}}$ Decodability at private receiver p $R_2 \le \mathcal{E}_\phi + \alpha_{\{1\}} + \alpha_{\{2\}} + \alpha_{\{1,2\}}$ $R_{2} \leq \mathcal{E}_{\phi}^{p} + \mathcal{E}_{\{1\}}^{p} + \alpha_{\{2\}} + \alpha_{\{1,2\}} \qquad \forall p: \text{ priv} \\ R_{2} \leq \mathcal{E}_{\phi}^{p} + \alpha_{\{1\}} + \mathcal{E}_{\{2\}}^{p} + \alpha_{\{1,2\}} \qquad \longrightarrow \qquad R_{2} \leq R_{2}$ $R_2 \leq \mathcal{E}^p_{\scriptscriptstyle d} + \mathcal{E}^p_{\scriptscriptstyle f11} + \mathcal{E}^{\tilde{p}}_{\scriptscriptstyle f21} + \alpha_{\lbrace 1,2 \rbrace}$ $R_1 + R_2$

$$R_{1} + R_{2} \le \mathcal{E}_{\phi}^{p} + \mathcal{E}_{\{1\}}^{p} + \mathcal{E}_{\{2\}}^{p} + \mathcal{E}_{\{1,2\}}^{p}$$

$$R_{1} + R_{2} \le \mathcal{E}_{\phi}^{p} + \mathcal{E}_{\{1\}}^{p} + \mathcal{E}_{\{2\}}^{p} + \mathcal{E}_{\{1,2\}}^{p}$$

• The achievable scheme is generalizable.

• Optimal for m = 2 public and any number of private

It turns out ...

- The above basic linear superposition scheme breaks the private information into independent pieces and reveals each piece to a subset of the public receivers.
- It turns out that one may achieve a rate gain by introducing some dependency among the revealed partial (private) information.
- One way of introducing such dependency is investigated in [2] through a particular pre-encoder at the source, which transforms the R_2 symbols of the private message into a larger number of dependent symbols through a random MDS (Maximum Distance Separable) matrix. Linear superposition coding is then used for this pseudo private message.
- This scheme is not optimal in general (for m > 3) and we propose a block Markov encoding scheme which strictly outperforms it.

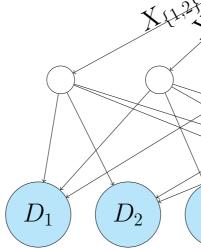
An Example

• Rate pair $(R_1 = 1, R_2 = 3)$ is achievable, but none of the above schemes is capable of achieving it. $W_1 = [w_{1,1}], \ W_2 = [w_{2,1}, w_{2,2}, w_{2,3}] (S)$

$$X_{\{1,2\}} = w_{1,1} + w_{2,1}$$
$$X_{\{2,3\}} = w_{1,1} + w_{2,3}$$
$$X_{\{1,2\}} = w_{1,1} + w_{2,2}$$

$$X_{\{2,4\}} = w_{1,1} + w_{2,2} + w_{2,3}$$

- $X_{\{1,4\}} = w_{1,1} + w_{2,1} + w_{2,2}$
- $X_{\{3,4\}} = w_{1,1} + w_{2,2} w_{2,3}$



Shirin Saeedi, Vinod Prabhakaran and Suhas Diggavi

A Block Markov Encoding Scheme

- Extend the channel by introducing a "virtual resource" in $\mathcal{E}_{\{4\}}$.

 $X_{\{4\}} = w_{1,1} + w_{2,1}' + w_{2,2}' + w_{2,4}'$

- Can we use the above code to achieve rate pair $(R_1 = 1, R_2 = 3)$ over the original channel?
- We emulate the virtual signal using a block Markov encoding scheme.
- In the t^{th} block, encoding is done as suggested by code in (1). To provide receiver 4 and the private ceivers with the information of $X_{\{4\}}[t]$ (as promised the virtual resource in $\mathcal{E}_{\{4\}}$), we use information syml $w'_{2,4}[t+1]$ in the next block, to convey $X_{\{4\}}[t]$. T symbol is ensured to be decoded at receiver 4 and private receivers and it indeed emulates $\mathcal{E}_{\{4\}}$.
- In the n^{th} block, we simply encode $X_{\{4\}}[n-1]$ and directly send it to receiver 4 and the private receiver
- Decoding is via backward decoding.
- This encoding technique can be applied more generally and results in an achievable rate-region which is strictly larger than those addressed in [1, 2].
- **Theorem 1.** The rate pair (R_1, R_2) is achievable if there exist parameters γ_S , $S \subseteq I_1$, such that

$$R_2 = \sum_{S} R_1 - \sum_{S} R_1 - \sum_{S} R_2 = 0$$

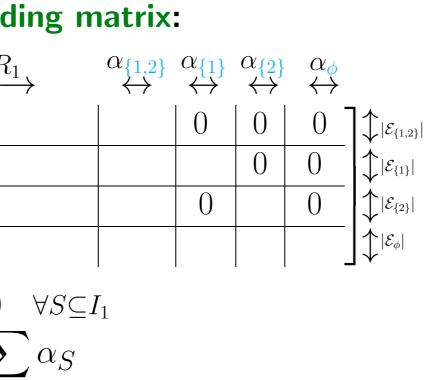
Relaxed non-negativity constraints $\sum_{S \in \mathcal{T}} \gamma_S \ge 0 \qquad \forall \mathcal{T} \subseteq 2^{I_1} \text{ superset saturated}$ $=\sum_{S\subseteq I_1}\gamma_S$ $\forall \mathcal{T} \subseteq \{\{i\} \star\}$ superset saturated $\sum_{\substack{S \subseteq I_1 \\ S \ni i}} \gamma_S \le \sum_{\substack{S \in \mathcal{T}}} \gamma_S + \sum_{\substack{S \in \mathcal{T}^c \\ S \ni i}} |\mathcal{E}_S|$ Decodability at public receiver $i \in I_1$ $+ \sum_{\substack{S \subseteq I_1 \\ S \ni i}} \gamma_S \le \sum_{\substack{S \subseteq I_1 \\ S \ni i}} |\mathcal{E}_S|^{-1}$ $R_2 \leq \sum_{S \in \mathcal{T}} \gamma_S + \sum_{S \in \mathcal{T}^c} |\mathcal{E}_S^p| \qquad orall \mathcal{T} \subseteq 2^{I_1}$ superset saturated Decodability at private receiver $p \in I_2$ $R_1 + R_2 \le \sum_{S \subseteq I_1} |\mathcal{E}_S^p|.$

The General BC

Similarly, superposition coding can be enhanced via a block Markov scheme and achieve the following rate-region: **Theorem 2.** The rate pair (R_1, R_2) is achievable if there exist parameters α_S , $S \subseteq I_1$, and auxiliary random $\sum_{S \in \mathcal{T}} \alpha_S \ge 0 \quad \forall \mathcal{T} \subseteq 2^{I_1} \text{ superset saturated}$ Relaxed non-negativity constraints $R_2 = \sum_{S \subseteq I_1} \alpha_S$ $\sum_{S \subseteq I_1} \alpha_S \leq \sum_{S \in \mathcal{T}} \alpha_S + I(\bigcup_{S \subseteq I_1} U_S; Y_i | \bigcup_{S \in \mathcal{T}} U_S) \xrightarrow{\forall \mathcal{T} \subseteq \{\{i\}\star\}} superset \ saturated$ Decodability at public receiver $i \in I_1$ $R_1 + \sum_{S \subseteq I_1} \alpha_S \leq I(\bigcup_{S \subseteq I_1, U_S} Y_i)$ $\forall \mathcal{T} \subseteq 2^{I_1}$ superset saturated $R_2 \leq \sum_{S \in \mathcal{T}} \alpha_S + I\left(X; Y_p | \cup_{S \in \mathcal{T}} U_S\right)$ Decodability at private receiver $p \in I_2$ $R_1 + R_2 \le I(X; Y_p).$ • This rate-region includes the rate-region of superposition coding. Whether or not this inclusion is strict needs further investigation. Oct. 2009 [2] S. Saeedi Bidokhti, V. Prabhakaran, and S. Diggavi, "On multicasting nested message sets over combination networks," in *Proc. IEEE Inf. Theory* Workshop, Sept 2012.

variables $U_{\mathcal{T}}$, $\phi \neq \mathcal{T} \subseteq 2^{I_1}$ (with joint pmf $\prod_{k=1}^K \prod_{S \subseteq I_1} p(u_S | \{u_T\}_{T \in \{S\star\}}) p(x | \{u_S\}_{S \subseteq I_1})$) such that References: [1] S. Saeedi Bidokhti, S. Diggavi, C. Fragouli, and V. Prabhakaran, "On degraded two message set broadcasting," in Proc. IEEE Inf. Theory Workshop,

Technische Universität München



$\forall i$: public receiver $R_1 + \sum \alpha_S \le \sum |\mathcal{E}_S|$

$$i$$
 $S \ni i$

$\forall p: private receiver$

$$\sum_{S \in \mathcal{T}} \alpha_S + \sum_{S \in \mathcal{T}^c} |\mathcal{E}_S^p| \underset{\text{superset saturated}}{\forall \mathcal{T} \subseteq 2^{I_1}} \\ 2 \leq \sum_{S \subseteq I_1} |\mathcal{E}_S^p|$$

shirin.saeedi@tum.de, vinodmp@tifr.res.in, suhasdiggavi@ucla.edu

• Rate Pair $(R'_1 = 1, R'_2 = 4)$ is achievable over this extended channel using the basic linear superposition coding. E.g., for $W'_1 = [w'_{1,1}]$ and $W'_2 = [w'_{2,1}, w'_{2,2}, w'_{2,3}, w'_{2,4}]$, the following code achieves rate pair $(R' = 1, R'_2 = 3)$.

$$\begin{split} X_{\{1,2\}} &= w_{1,1}' + w_{2,3}' & X_{\{2,3\}} = w_{1,1}' + 2w_{2,3}' \\ X_{\{1,3\}} &= 2w_{1,1}' + w_{2,3}' & X_{\{2,4\}} = w_{1,1}' + w_{2,2}' \\ X_{\{1,4\}} &= w_{1,1}' + w_{2,1}' & X_{\{3,4\}} = w_{1,1}' + w_{2,4}' \end{split}$$

the re-	$W_{1}[1], \ldots, W_{1}[t+1] = [w_{1,1}[t+1]]$ $W_{2}'[1], \ldots, W_{2}'[t+1] = [w_{2,1}'[t+1], w_{2,2}'[t+1], w_{2,3}'[t+1], w_{2,4}'[t+1]]$
by bol	S
his the	Xunder Alt
and	
ſS.	$egin{array}{cccccccccccccccccccccccccccccccccccc$

