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Abstract— Operating in the proximity of humans has been
a long-term challenge in robotics research. To achieve this
objective, one of the main issues is to ensure safe and comfort-
able physical human-robot interaction (pHRI). In this paper,
we tackle the safety problem at the control level. To ensure
operation is within perceived safe zone, we use model predictive
control, which finds the optimal control signal online, while
imposing predefined safety constraints on the robotic system.
The strength of this method lies in allowing the system to
perform close to, or at the edge of the constraints’ boundaries.
In contrast to other works we consider here perceived safety;
the constraints for perceived safety are derived in a competitive
pHRI experiment. The perceived safety and comfort of the
proposed approach is then evaluated with a second, game-like
pHRI experiment.

I. INTRODUCTION

Industrial robots’ safety standards are mainly based on

isolation of human’s and robot’s workspaces from each other.

However, in physical-human robot interaction (pHRI) au-

tonomous robots need to operate not only in close vicinity of

humans but even in direct contact with them [1]. According

to Asimov’s 1st law, an essential requirement for coexistence

of humans and robots is ensuring that the robot would not

harm humans (highest priority), the environment, or itself.

Therefore, In order to introduce robotic systems into human’s

daily life, a crucial step is development of a mechanism for

pHRI that ensures the human’s safety [2], [3], [4]. Two main

issues need to be tackled for safe pHRI, namely: passive

safety, which is safe mechanical design, and active safety,

which results from safe planning and control. The latter’s

responsibility is to prevent a collision or reduce the effect of

collision on the human [5].

A substantial body of work focuses on the control of

the impact force of robotic manipulators [6], [7], [8], lead-

ing to different force control schemes such as impedance

control [9]. Such reactive force control schemes are suitable

to reduce the impact of a collision with a human. Although,

in order to avoid collisions, a suitable motion planning

scheme is needed to change the nominal path to a collision-

free path [3], [5], [10], [11], [12]. pHRI requires the robot

to operate in uncertain dynamic environments, the robot

needs to avoid any potential unwanted collision online at

minimum computational expenses. Finding a collision free

path online is generally computationally complex and it

often results in a very conservative behavior [5]. When
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Fig. 1. The force, velocity, and the position of manipulator should be lower
than human acceptance threshold for safe interaction.

direct contact is desired as in pHRI, for ensuring safety,

the states, such as velocity should be constrained. To reduce

the probability of collision with human, some works use a

high level safety controller to minimize this probability using

an optimal control scheme [2], [5]. The optimal control’s

cost function represents either the level of injury in case

of collision, or the severity of collision based on the point

of contact [2], [3], [5]. Although, optimal control methods

are used for ensuring high level safety in pHRI, they com-

pute the optimal control signal for all the states offline.

This is not suitable for uncertain dynamic environments,

because building a look up table for such environment is

computationally expensive. Many of the existing methods

operate far from the constraints resulting in conservative

behavior [13], [14]. Operating far from constraints is a ma-

jor drawback of optimal control methods. Besides optimal

control methods, invariance control is proposed to keep the

robot within a predefined safe zone [15]. So far the method

works only with 6D workspace constraints, but neither forces

nor velocities are included.

In this paper, we investigate the safety problem from a

different perspective. We aim to establish a pHRI which

is perceived safe by the human partner. Perceived safety is

important for building trust in the human interaction partner

and also it is a sufficient condition for safety. The goal is to

provide maximal robot task performance while satisfying the

constraints on the position, velocity, and force induced by the

perceived safety at low computational cost, see also Fig. 1 for

an illustration. The proposed method serves between classical

control methods and global offline trajectory planners and

completes the safety architecture to ensure safety without

compromising the current task performance. To this end we

consider model predictive control, MPC, which is an online

optimal control method solved for the current state as initial

state of the controlled system [13], [14]. We design our

human-centered MPC using the safety constraints derived

from a psychological identification experiment. In order to
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Fig. 2. Schematic of control loop designed to ensure safety in pHRI.

evaluate the perceived safety and comfort resulting from

human-robot interaction, we perform a game-like competitive

experiment with a two-degrees-of-freedom (2 DOF) haptic

device.

This paper is organized as follows: Section II presents the

problem definition. Section III reviews the model predictive

control scheme. The simulation results are presented in

Section IV. The experiments are described and results are

discussed in Section V.

II. PROBLEM DEFINITION

The goal of this paper is to find a control method to

achieve pHRI which is perceived safe and comfortable by

the interacting human, while the performance of the robotic

manipulator is maximized. We focus here on the most

challenging case of pHRI, where the human is in continuous

contact with the robot. One crucial question in this respect

is how to model the human behavior. Learning methods are

successfully employed to predict human intention in pHRI in

a probabilistic fashion [1], those approaches are not suitable

for absolute safety guarantees.

To avoid this problem, we consider the human’s intention

as unknown. We consider a problem of controlling the lin-

earized dynamics of a robotic manipulator in the task space,

which is linearized by appropriate feedback linearization

schemes [1], [2]. The discretized, linear, time invariant model

of the manipulator is given by

xk+1 = Axk +B1uk +B2 fhk,

yk =Cxk +wk.
(1)

the position and velocity of the manipulator at time k are

represented by xk = (pk,vk). The input fhk is the unknown,

unmodeled human force which is exerted on the end-effector

of the robot. No measurement is available for this force, we

measure the mutual force of the manipulator and the human

at the contact point. The measured position of the end-

effector is yk, and wk is zero-mean white noise (ZMWN)

which represents the measurement noise. The matrices A, B1,

and B2 contain the manipulator dynamics, C is the output

matrix which is detailed out in section IV, and the control

input is uk. The goal is to design the control input uk = u
sa f e

k

such that the task performance of the robot is expressed

in terms of a cost functional J(u,k) is optimized while

constraints g(.) on position, velocity, and the exerted force

are satisfied, minu J(u,k) s.t g(x,u)≤ 0. To address this

problem we propose a model-predictive control scheme. The

constraints, which represent the ”perceived safety zone” for

the human, are derived in a human user study.

III. MODEL PREDICTIVE CONTROL FOR SAFETY IN PHRI

To deal with the safety constraints, we use model predic-

tive control scheme [13], [16]. The overall control architec-
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Fig. 3. Receding horizon in MPC.

ture that we propose for ensuring safety in pHRI is shown

in Fig. 2. In this architecture we assume that the global

motion planner defines the desired trajectory rk. Based on

this desired trajectory and the constraints, the MPC block

responsibility is to compute the desired safe force u
sa f e

k .

The admittance block, which is added to reduce the impact

of collisions, transforms this force into desired position, pkd .

The error pkd − pk is fed into the classical position control

block with high gain to derive the control signal uc
k. In contact

with the human the robot dynamics is driven by the sum of

the motor forces uk and the external force fhk applied by the

human. The recent measurements are compared to the safety

constraints, based on the distance between the measurements

and references and with respect to constraints the MPC block

takes compensating safe action. The optimization algorithm

computes a sequence of future control signals that optimize

the cost function, J, subject to safety constraints. However,

only the first control sample will be implemented. Then

the horizon is shifted one sample and the optimization is

repeated, see Fig. 3.

A. Generalized Predictive Control Performance Index

In this paper, we use the generalized predictive control

method (GPC) [13], [14], [16], which is the simplest cost

function that handles SISO system. We use this cost function

for safety in pHRI because we can both punish the position

errors and high force changes. The following optimization

is done subject to safety constraints, see Fig. 2. Based on

the model of Eq. (1) we estimate the position and velocity

of the system. Here we assume that the future values of fhk

and uk are constant and equal to the previous step, k−1.

We measure the mutual force, which is f = uk + fhk, at

the interaction point and we have the uk from previous

optimization. Thus, the MPC block computes the optimal

control input, u
sa f e

k , online based on the prediction ŷk+ j|k

of the output and x̂k+ j|k of the state at time k+ j, assuming

the noise ŵk+ j|k = 0 for j > 0 given the measurements up to

time step k. Nevertheless, this prediction might be different

from real measurements.

x̂k+ j|k = A jxk +
j

∑
i=1

Ai−1B1uk+ j−i|k +
j

∑
i=1

Ai−1B2 fhk,

ŷk+ j|k =Cx̂k+ j|k + ŵk+ j|k.

(2)

We define the predicted control error at time k + j

as êk+ j|k = rk+ j − ŷk+ j|k. Also, in this paper we assume that

the position is the measured output, i.e. C =
(

I 0

0 0

)

,

where I is an identity matrix of appropriate dimension. The

MPC controller minimizes the following performance index
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Fig. 4. Schematic of 2 DOF control problem. The arrows show the
movement direction. The operation should be within the safe zone shown
by the dashed green line.

at time k

J(u,k) =
N

∑
j=Nm

(êk+ j|k)
T (êk+ j|k)+λ 2

Nc

∑
j=1

∆uT
k+ j−1|k∆uk+ j−1|k,

subject to

−∆umin < ∆uk < ∆umax & −umin < uk < umax,

− ymin < ŷ(k+ j) < ymax.

(3)
the incremental input signal is ∆u = uk −uk−1, the parame-

ter N is the prediction horizon, Nc is the control horizon, Nm

is the minimum cost horizon, and λ is the weighting on the

control signal. At each time step the optimization is repeated

with new measurements (receding horizon principle). A

delay exists between implementing the input and seeing

any effect, so Nm > 1. Also, it is assumed that Nc ≤ N,

and ∆uk+ j|k = 0 for j ≥ Nc +1, see Fig. 3. It is possible to

apply the input signal uk or its increments ∆uk to the model.

In order to achieve a good steady-state behavior, we use an

incremental state space model that removes the steady-state

tracking errors [13].

B. Optimization and Constraints

The aim is to optimize the objective function subject

to safety constraints (3). The GPC value function that

we use is a quadratic value function. As a result, in an

unconstrained case, the QP optimization problem that is

solved to derive the control input, is convex and convergence

to the global optimum is guaranteed. However, when we

add the constraints to the optimization problem, on the one

hand the problem might be infeasible, on the other hand

convexity and smoothness can not be guaranteed everywhere.

In this paper, we consider a quadratic cost function subject to

linear inequality constraints, which are active on hyperplanes.

Consequently, the constrained objective function is a convex

surface which is cut off by number of flat surfaces, that keeps

the convexity property.

Infeasibility of solution is a major challenge in solving

constrained optimization of pHRI problem. In such a case,

the quadratic programming solver stops without returning

any solution. One option is to use the value ûk+ j+1|k+ j−1

from the last step of optimization and feed it into the system,

but as the predictions are not accurate it can cause an unsafe

situation for the human user which is not acceptable. Various

approaches have been suggested to deal with this problem

like actively managing constraints at each time step, have

been proposed in classical MPC literature [13]. In this paper

we will not treat the infeasibility problem in depth.

IV. SIMULATIONS

In this section, we use a model of a 2DOF robotic

end-effector for running sets of simulations to study the

effects of using MPC in the pHRI safety problem, see

Fig. 4. The mass, which represents the end-effector, is

attached to two decoupled spring damper systems. Each

of these systems can only move in one direction, that

in total results in 2 DOF. To ensure safety aside from

constraining the position, the velocity and the force

should also be within the predefined safety constraints.

The dynamics of system is decoupled and is represented

by a mass-spring-damper system Mv̇+Dv+K p = f ,

along each dimension where f ∈ R
p×1 is the

combined force of control input u and the

human fh (either f1 or f2 based on direction, see Fig. 4), M

is the virtual mass, D is the damping coefficient, and K is

the stiffness. The human force is modeled as an unknown

input here, since deriving a detailed model of human

behavior is impractical or computationally expensive.

The states of the system are x = (p,v)T , x ∈ R
2×1,

where p is the position and v is the velocity of the system

in either direction of movement. The continuous system is

discretized with sampling time ∆t, and the discrete, linear-

time-invariant-state-space model is computed as
(

pk+1

vk+1

)

=

(

1 ∆t

−M−1K∆t 1−M−1D∆t

)(

pk

vk

)

+

(

0

M−1∆t

)

(uk + fhk),

(4)

yk = pk +wk. (5)

The robot must keep the human safe without any prior

knowledge about the human’s intention. The only assumption

regarding human is that the exerted human force is bounded.

Moreover, safety should not compromise the desired behav-

ior of a robot more than necessary. The aim is to compute

the optimal control input uk ∈ R
p×1 that is able to keep the

robot at within the predefined safety zones, while a robot is

trying to achieve its own objective.

The parameters of the model and cost function, and the

constraints are summarized in Table I. The mass can move

in the workspace as long as it stays in the safe zone. In all the

experiments the end-effector starts from the workspace center

which lies at (0,0). The GPC cost function is optimized

at each step to compute the safe optimal force signal. The

schematic of the problem is shown in Fig. 4. In the first

TABLE I

OPTIMIZATION AND MODEL PARAMETERS.

Parameter M(Kg) D( NS
m
) K( N

m
) ∆t

Amount 40 30 10 0.1

Parameter N Nc Nm λ
Amount 30 20 2 0.3

Parameter ∆umin(N) ∆umax(N) umin(N) umax(N)
Amount -2 2 -10 10

Parameter ymin(m) ymax(m) vmin(
m
s
) vmax(

m
s
)

Amount -6 6 -0.5 0.5

simulation, we consider the human is pushing the mass

toward the vertical positive direction with a force of 1 N

for 30 steps 1. The desired reference trajectory is a step

1Results are reported for one direction and can be used to both directions.
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Fig. 5. MPC used as safety control for the 1DOF robotic end-effector.

of size 5. The human force contributes in accomplishing

the task. During first few seconds, it helps the human to

push the mass in the positive direction, but as it reaches

the final position the system disagrees with the human force

and tries to stop the motion. Fig. 5 shows the result of

using MPC in normal mode. In the next simulation the

desired task is similar, but we modify the force safety con-

straints to −5N ≤ uk ≤ 5N. The result of this simulation is

shown in Fig. 6: the force constraint becomes active for 12

steps (1.2 s), when the force wants to pass the safety limit.

The controller keeps the force within the safe boundaries,

however, as a result of tightening the force constraint the

position settling time is higher. In the third simulation, we
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Fig. 6. MPC used as safety control for the 1DOF robotic end-effector with
tightened force constraints.

tighten the position safety constraints to −1m ≤ y ≤ 6m,

and change the reference trajectory to a step of size -5.

In order to reach this position the robot needs to violate

the position safety constraints. The controller’s priority is

dealing with the exceeding constraint before a catastrophic

failure happens. Eventually, the controller keeps the position

approximately at -0.5 which is close to the safety bound,

but the force peaks are relatively high. These peaks can

cause uncomfortable interaction between human and robot.

To reduce the force peaks, we increase λ to 0.7 and increase

the control horizon to 50, respectively. As we can see in

Fig. 7, the peak of the force is reduced drastically, but

the position reaches the boundary limit which is -1. This

shows the trade off between position tracking error and the

desired input force that is always present in this system.

Overall, based on the simulations we conclude that MPC can

successfully handle the safety constraints. We will validate

these results with experiments in the next section.

V. HUMAN USER STUDY

A. Experimental Setup

The haptic interface consists of a 2 DOF linear-actuated

device (TrustTube) having a free-spinning handle at the
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Fig. 7. Tuned MPC used as safety control for the 1DOF robotic end-effector
acting in panic mode.

grasping point. Attached to the handle, a force/torque sensor

(JR3) measures the human force input. The virtual scene

is visually represented on a display placed on top of the

interface, see Fig. 4. The control scheme implemented in

MATLAB/Simulink is executed on a personal computer on the

Linux/PreemptRT using MATLAB’s Real-Time Workshop.

B. Experiment 1: Identification of Comfortable Force Limit

The capability to interact with humans such that they

perceive the interaction as safe although they are unaware

of the robot’s intention, is necessary for pHRI. The forces

that a robot applies when it comes to direct contact with

a human should not exceed human capabilities. Therefore,

instead of assuming safety constraints as we did in the

simulation part, we created an experiment to find out about

the human perception of reaction forces applied by a 2 DOF

haptic device, Fig. 4. We considered a competitive pHRI task

for the experiment because it is the worst case scenario and

both partners are trying to follow their own objective. The

experiment is designed as a positioning task in which the

human has to keep a certain position and the end-effector

applies forces in a non-predictable way. The goal of the

human is conflicting with the goal of the robotic manipulator.

1) Participants: In total, 14 persons (4 females) aged 26

to 31 years (M = 27.8 years) participated in the experiment.

2) Setup and Procedure: We defined a simple scenario,

where the device is supposed to disturb a human partner with

periodic pulses on the two axes, while the human is supposed

to stabilize the device in the center point (conflicting goals).

The human is instructed to keep the end-effector in the

middle and has no knowledge of the manipulator’s desired

goal. To find the force which is still under human control,

we measured the maximum peak of force participants can

tolerate while they are still able to keep the device in the

middle. We predefine the force exerted by the device to the

human in this experiment. In total, three conditions were

introduced: (1) weak disturbance force with 4 [N] peaks; (2)

stronger disturbance with 8 [N] peaks; (3) high disturbance

with 12 [N] peaks. Forces were measured at the contact point

to derive the threshold of human tolerance. Each participant

was performing each condition once. The conditions were

always presented in the order 1-2-3 to give participants the

ability to adapt to higher forces as well. After each condition,

participants were asked to rate whether they perceived the

force as weak, normal, high or too high (not controllable).

3) Results: The average position disturbance of

condition (1) was 144.2 µm, (2) was 4275 µm and (3)
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was 6595 µm. However, most of the participants were not

comfortable when the peak of the force exceeds 4 [N].

Already for condition (2) 64% of participants ranked the

force as high. In the following, we therefore only report

the result of the first condition with lowest disturbance,

see Fig. 8. The maximum measured force in horizontal

direction is computed as max(|Fmax|, |Fmin|) which is equal

to 12.5 [N]. We use this maximum as safety boundary

for designing the MPC controller for the 2 DOF haptic

device. In the same way the maximum acceleration is

approximated as 0.3 m
s2 and the maximum velocity equal

to 0.6 m
s

. These constants and the same model Eq. (4), (5)

of simulations discretized with ∆t = 0.001 s is used for the

second experiment in which we measure the human comfort

during interaction with the haptic device using MPC as a

safety controller.

C. Experiment 2: Comfortable Interaction

Using the identification results of Experiment 1 we de-

signed a second experiment in which the human and the

robot have different goals. The objective of this experiment

is to gain knowledge about the comfort and the perceived

safety participants feel when interacting with the same 2

DOF haptic device, now with MPC as safety control method.

1) Participants: Overall, 16 persons (4 female) took part

in this experiment. They were between 25 and 31 years

old (M = 27,9 years) and reported not to suffer any motori-

cal restrictions in their right arm/hand.

2) Setup and Procedure: In order to visualize the task,

a circle of targets was presented on the screen above the 2

DOF device, see Fig. 10. Before the start of the experiment,

the handle of the 2 DOF device was positioned in the

center which matched the blue circle in the center of the

circle of targets, see Fig. 10. After reading the instructions,

participants were asked to stand in front of the device. Their

task was, to grasp the handle and, by pushing the handle

into an indicated direction, hit all targets (red circles) one

1

2

Fig. 10. Experimental Setup: visualization of the game scenario, circle of
targets presented on the screen (left). 2 DOF haptic device (right).

after each other. Counter productive to this action, the robot’s

task was to keep the handle in the middle. Participants

were unaware of this intention. Performing the experiment

they were only allowed to try and hit each target once

by pushing the handle in the indicated direction. The first

target was defined by the experimenter and participants were

instructed to hit the subsequent targets either in clockwise

or counter clockwise order. In total four different levels of

peak force were introduced: (a) low, which was defined

as half of the identified force (12.5[N]/2 = 6.25 [N]); (b)

identified (12.5 [N]); (c) high, which was defined as double

the identified force (12.5 [N] * 2 = 25 [N]); and (d) very

high 250 [N]. For each condition, a full target circle has to

be completed. Conditions were assigned randomly as were

first targets and hitting order direction. After each condition,

participants were asked to fill in a questionnaire regarding

their perceived safety during interaction and their rating

of comfort. To access the perceived safety we utilized the

block V taken from the Godspeed questionnaire in which the

participant has to rate his/her impressions on three 5-point

semantic differential pairings regarding their impression after

interacting with the device [17]. Pairings of the scales are

anxious/relaxed, agitated/calm and quiescent/surprised. Note

that the pairing quiescent/surprised contributes in a reversed

way: being surprised by the reactions of the device causes

lower perceived safety. For assessing comfort level, we used

the continuum subjective ranking scale introduced by Kong

et al. [18]. Participants mark their perceived level of comfort

on a line of 10 cm ranging from very uncomfortable (-100)

to very comfortable (+100). Data Analysis was performed in

MS Excel and SPSS 19. For all ratings, one-way repeated

measures ANOVAs were calculated over force conditions.

3) Results and Discussion: Regarding comfort, the

ANOVA revealed a significant main effect between peak

forces, F(3,45) = 5.88, p < .01. Planned comparisons show,

that low (M = 27.00), identified (M =−0.64) and high

force (M =−56.43) were perceived as more comfortable

than the very high force (M =−80.07), see Table II. This is

not surprising as the very high peak force (d) of 250 [N] did

not allow participants to move the handle in any direction.

Thus, instead of a compliant device, the robot appears as a

solid body. Colliding with a robot like that would definitely

imply the risk of injury which is depicted in the high

discomfort rating (negative comfort). In contrast, the low

force (a) and the identified force (b) were rated significantly

better, see Table II, whereby the latter was rated almost at

the threshold between comfort and discomfort. Summing

up it appears that the low peak force (a) was the most

comfortable, the identified peak force (b) was proven to



TABLE II

PLANNED COMPARISONS

Force Anxious-Relaxed Agitated-Calm Quiescent-Surprised Perceived Safety Comfort
F(1,15) p F(1,15) p F(1,15) p F(3,45) p F(3,39) p

(a)−(b) 2.93 n.s. 0.041 n.s. 1.22 n.s. 0.12 n.s. 3.09 n.s.

(a)−(c) 12.45 < 0.01 0.63 n.s. 0.11 n.s. 2.77 n.s. 30.43 < 0.001
(a)−(d) 11.80 < 0.01 8.23 < 0.05 5.42 < 0.05 10.48 < 0.01 33.44 < 0.001
(b)−(c) 2.14 n.s. 0.79 n.s. 3.00 n.s. 2.99 n.s. 15.34 < 0.01
(b)−(d) 1.90 n.s. 7.06 < 0.05 7.74 < 0.05 8.79 = 0.01 26.85 < 0.001
(c)−(d) 0.28 n.s. 4.09 = 0.06 3.56 = 0.08 5.00 < 0.05 6.90 < 0.05

be the comfort threshold, while the higher peak forces (c)

and (d) were rated as seriously uncomfortable and are thus

not applicable if the interaction partners human and robot are

unaware of each other’s intention. The ANOVA on the cu-

mulated perceived safety shows that peak forces also caused

a difference in perceived safety, F(3,45) = 5.88, p < .01.

Numerically, the low force (M = 3.46) caused a higher

perceived safety compared to the identified force (M = 3.38)

and the high force (M = 3.00), see V-C.2. Although this

result did not reach significance, the low and the identified

peak force resulted in a perceived safety above the middle

ranking of 3.00, while the high force was rated to be at

this threshold. The very high peak force was rated to have

a significantly lower perceived safety compared to all the

others, see Table II. Interestingly, the results for the pairing

quiescent/surprised shows the lowest rating at the identified

peak force. This might indicate that the low force, although

being most comfortable, was also not expected. It might

differ from previous experience participants could have in

contact with comparable devices. Note that for the applied

computation of perceived safety, higher surprise - whether

positive or negative - is treated as unwanted and thus scales

down perceived safety.

The final argument for concluding the experiments is that

safety and efficient performance are two essential charac-

teristics for successful pHRI. In this paper we develop a

control architecture that keeps the human safe while trying

to maximize the performance. By using the MPC scheme

as safety controller, the manipulator performs within the

predefined safety boundaries. Moreover, the designed con-

troller’s perceived comfort is at the threshold, which means

higher forces than the identified one can cause uncomfortable

pHRI. If a feeling of comfort should be created, peak forces

should be scaled down. However, if the performance of

the manipulator is important, then the designed controller

will achieve the highest comfortable force. Overall, we

conclude that the designed MPC controller has the best trade

off between efficiency and safety among the four tested

conditions.
VI. CONCLUSIONS

In this paper, we present a control architecture to ensure

perceived safety in physical human-robot interaction, where

the human is in continuous contact with the robot. It involves

an an online optimal control, which imposes constraints

on interaction forces, position, and velocity of the robotic

system. The suggested model-predictive control approach

enables the robot to optimize its desired performance as

long as the perceived safety and comfort of the interacting

human are not endangered. The interaction force constraints

for perceived safety are derived in a human user study in

a 2 DOF haptic virtual environment. In a second human user

study on pHRI it is shown, that indeed the human feels safer

and more comfortable when the robot is operated under MPC

with the derived force constraints.
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