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Abstract

In thermonuclear plasmas, a population of super-thermal particles generated by exter-
nal heating methods or fusion reactions can lead to the excitation of global instabilities.
The transport processes due to nonlinear wave-particle interactions and the consequen-
tial particle losses reduce the plasma heating and the efficiency of the fusion reaction
rate. Furthermore, these energetic or fast particles may cause severe damages to the
wall of the device.

This thesis addresses the resonance mechanisms between these energetic particles and
global MHD and kinetic MHD waves, employing the hybrid code HAGIS. A systematic
investigation of energetic particles resonant with multiple modes (double-resonance) is
presented for the first time. The double-resonant mode coupling is modeled for waves
with different frequencies in various overlapping scenarios. It is found that, depending
on the radial mode distance, double-resonance is able to significantly enhance, both
the growth rates and the saturation amplitudes. Small radial mode distances, however
can lead to strong nonlinear mode stabilization of a linear dominant mode.

For the first time, simulations of experimental conditions in the ASDEX Upgrade fu-
sion device are performed for different plasma equilibria (particularly for different q
profiles). An understanding of fast particle behavior for non-monotonic q profiles is
important for the development of advanced fusion scenarios. The numerical tool is
the extended version of the HAGIS code, which computes the particle motion in the
vacuum region between vessel wall in addition to the internal plasma volume. For
this thesis, a consistent fast particle distribution function was implemented, to repre-
sent the fast particle population generated by the particular heating method (ICRH).
Furthermore, HAGIS was extended to use more realistic eigenfunctions, calculated by
the gyrokinetic eigenvalue solver LIGKA. One important aim of these simulations is to
allow fast ion loss measurements to be interpreted with a theoretical basis. Fast parti-
cle losses are modeled and directly compared with experimental measurements. The
phase space distribution and the mode-correlation signature of the fast particle losses
allows them to be characterized as prompt, resonant or diffusive (non-resonant). It is
found that a large number of diffuse losses occur in the lower energy range (at around
1/3 of the birth energy) particularly in multiple mode scenarios (with different mode
frequencies), due to a domino-like transport process. In inverted q profile equilibria,
the combination of radially extended global modes and large particle orbits leads to
losses with energies down to 1/10th of the birth energy.

The HAGIS code is a perturbative hybrid code, which models the nonlinear interaction
between a distribution of energetic particles and a set of Alfvén eigenmodes. The wave
eigenfunctions are assumed to be invariant, but its amplitude and frequency evolve in
time, as determined by kinetic wave-particle nonlinearities. To solve the particle equa-
tions of motion, the 6D phase space is reduced to a 5D description, using the guiding
center approach. The change in the fast particle distribution function is modeled using



a δ f -method, to significantly reduce numerical noise and the number of simulation
markers. As in ideal MHD, the HAGIS model previously neglected any parallel electric
field perturbation Ẽ‖. This approximation is dropped within this work, by implement-
ing a non-vanishing Ẽ‖ term, employing the electric and magnetic perturbation struc-
ture given by LIGKA. In this way, a more advanced damping effect is introduced into
the HAGIS model, which is not only individual for each poloidal harmonic, but is also
characterized by a radial structure. The implementation of this damping is the first
step towards a HAGIS-LIGKA hybrid model, which can overcome the limit of fixed radial
mode structures.



Kurzfassung

In thermonuklearen Fusionsplasmen existieren energiereiche Teilchen, hervorgerufen
durch externe Heizmethoden, sowie durch die Fusionsreaktionen selbst. Diese Popu-
lation an schnellen Teilchen kann globale Plasmainstabilitäten anregen. Nichtlineare
Welle-Teilchen-Wechselwirkungen führen dabei zu Transportprozessen der schnellen
Teilchen im Plasma mit der Konsequenz von Teilchenverlusten, was eine Reduktion der
Plasmaheizung und der Fusionsrate bewirkt. Außerdem besteht die Gefahr, dass es zu
Schäden an der Gefäßwand kommt.

Ziel dieser Arbeit ist ein tieferes Verständnis für die Resonanzmechanismen dieser Teil-
chen mit globalen MHD Wellen und kinetischen Moden. Mit dem hybrid Code HA-
GIS werden erstmals systematische Studien durchgeführt, welche die Wechselwirkung
von Teilchen mit mehreren Wellen verschiedener Frequenz untersuchen. Die resonan-
te Kopplung an zwei verschiedene Wellen (Doppel-Resonanz) wird für verschiedene
Modenkonstellationen untersucht. Es zeigt sich, dass Doppel-Resonanz zu signifikant
höheren Anwachsraten und Sättigungsamplituden führen kann. Der zu Grunde liegen-
de Effekt ist abhängig vom radialen Abstand der Wellen, und kann bei sehr geringem
Abstand auch bewirken, dass eine linear dominante Welle nichtlinear stabilisiert wird.

Erstmals werden Simulationen für realistische Plasmabedingungen durchgeführt, wel-
che auf neuen Erkenntnissen am Fusionsexperiment ASDEX Upgrade beruhen. Ein wich-
tiges Ziel ist es, experimentelle Messungen der Verluste schneller Teilchen theoretisch
zu interpretieren. Dabei werden verschiedene Plasmagleichgewichte untersucht, vor
allem unter dem Aspekt unterschiedlicher q Profile welche in sogenannten “advanced
scenarios” für künftige Fusionsreaktoren von Bedeutung sein können. Nummerische
Grundlage ist eine erweiterte HAGIS Version, die nicht auf das Innere des Plasmas be-
schränkt ist, sondern die Teilchenbewegung bis hin zur Gefäßwand berechnet. Im Rah-
men dieser Arbeit wird eine konsistente Verteilungsfunktion für schnelle Teilchen im-
plementiert, wie sie durch die ICRH Heizung entsteht. Außerdem werden realistischere
Eigenfunktionen für die Plasmawellen verwendet, berechnet mit Hilfe des Gyrokineti-
sche Eigenwertlösers LIGKA. Die simulierten Teilchenverluste können dann zum ersten
Mal direkt mit solchen aus experimentellen Messungen verglichen werden. Eine de-
taillierten Untersuchung der Phasenraumverteilung und des zeitlichen Signals der nu-
merisch berechneten Verluste erlaubt es, diese zu charakterisieren. Dabei unterscheidet
man Verluste, die “prompt” auftreten von solchen, die entweder durch resonante Wech-
selwirkung mit den Wellen oder auf Grund von Stochastisierungsprozessen (diffusiv)
das Plasma verlassen. Dabei zeigt sich, dass vor allem in Szenarien mit mehreren Wel-
len (mit verschiedener Frequenz) eine große Menge von diffusive Verlusten auftritt, v.a.
im niederen Energiebereich von c.a. 1/3 der Entstehungsenergie. Dies wird verursacht
von Kaskaden-artigen Transportprozessen, begünstigt durch ein invertiertes q Profil,
aus welchem global ausgedehnte Wellen und große Teilchenorbits folgen. Besonders
durch die radial ausgedehnten Moden mit mehreren Harmonischen kommt es sogar zu
Verlusten bis in den niedrigsten Energiebereich von 1/10 der Entstehungsenergie.



HAGIS ist ein störungstheoretischer Hybrid-Code, der die nichtlineare Wechselwirkung
zwischen einer Verteilung von energiereichen Teilchen und Alfvénischen Eigenmoden
als Plasmawellen modelliert. Die Eigenfunktion der Welle wird dabei als invariant
vorausgesetzt, jedoch entwickeln sich Amplitude sowie Frequenz selbstkonsistent auf
Grund der nichtlinearen, kinetischen Welle-Teilchen-Wechselwirkung. Um die Bewe-
gungsgleichung der schnellen Teilchen zu lösen wird der 6-dimensionale Phasenraum
mit Hilfe des Guiding-Center-Ansatzes auf 5 Dimensionen reduziert. Die Verwendung
der δ f -Methode reduziert das numerische Rauschen und die Anzahl der notwendi-
gen Marker, indem nur die Änderung der Verteilungsfunktion berechnet wird. Wie in
der idealen MHD vernachlässigt das HAGIS Modell jede parallele elektrische Feldstö-
rung Ẽ‖. Im Rahmen dieser Arbeit wird diese Näherung überwunden, indem ein nicht-
verschwindender Ẽ‖ Term implementiert wird. Unter Verwendung der von LIGKA be-
rechneten elektrischen und magnetischen Störung kann Ẽ‖ berstimmt werden. Damit
wird ein komplexerer Dämpfungseffekt in das Modell integriert. Gleichzeitig ist es der
erste Schritt auf dem Weg zu einem Hybrid-Modell bestehend aus HAGIS und LIGKA,
welches erlaubt, auch die Wellenstruktur während der Simulation zeitlich weiterzu-
entwickeln.
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CHAPTER 1

Introduction: Nuclear Fusion

1.1 Global Energy Situation

“History will judge us on our ability to manage this energy environment, and
mitigate the worst effects of climate change. It is the great challenge of our
generation.”

José Manuel Durão Barroso1

Life on Earth currently faces a threat on a truly global scale: climate change. A sci-
entific consensus is emerging that civilization must reduce its emissions of greenhouse
gases by more than half in less than the next five decades if we are to stand a chance
of retaining a global climate as stable as that of the past 10 000 years [3].
Maintaining civilization relies on energy supply and since the industrial revolution,
humanity’s need for energy is growing steadily – to the same degree, technical ad-
vancement is achieved.
But in spite of all the progress, the main source of our energy still remains the same
as it was centuries ago: the combustion of fossil fuels. Coal, natural gas and, to some
extent, uranium became the fuels of choice for electricity generation (fig. 1.1) – in de-
veloping or technologically advanced countries alike.
After two centuries of world-wide fossil fuel burning, concentrations of global warm-
ing gases such as methane, carbon dioxide, and nitrous oxide have increased markedly
and now exceed by far the natural range determined from ice cores spanning many
thousands of years before industrialization [4]. Although there have always been os-
cillations in these values throughout geological timescales2, analysis of climate models
together with constraints from observations (see fig. 1.3) have made a scientific con-
sensus possible that ‘most of the warming over the last 50 years is very likely to have
been caused by anthropogenic increases in greenhouse gases’, as stated by the Intergov-
ernmental Panel on Climate Change (IPCC) [4, 5]. But we are far even from stabilizing
the concentrations, mainly for two different reasons: Global population is growing3,
and with it, the demand for energy. Secondly: newly industrializing countries have an
extremely rapid growth in energy demand, but energy consumption of countries within

1 President of the European Commission, in January 2008 [1] and in his speech during the World Energy
Congress in Rome, November 12, 2007 [2].

2 Which can be explained by plate tectonics, variations in the geometry of the Earth’s orbit, solar activity,
greenhouse gases e.g. due to volcanism and feedback factors such as reflecting glacial areas, CO2

releasing, melting permafrost and others.
3 World population has more than doubled since 1950 and is set to increase by 40% by 2050 [6].
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Figure 1.1: Global electricity generation by fuel in the year 2004. Source: [7]

the OECD is projected to rise as well, summing up to an estimated increase of global
energy demand by 44% until 2030 (compared to 2006 values) [8] (see fig. 1.2). It is
assumed, that by 2015, growth in the production of easily accessible oil and gas will
not match the projected rate of increase in demand, and the question arises of how
supply-demand tensions will be resolved [6]. Political and market forces already favor
the development of coal as a still widely available, low-cost energy option [9].
To draw hope from nuclear fission energy might be delusive, as in this case as well, the
resource is not inexhaustible and far from being distributed homogeneously over the
globe [10] – plus the problem of massive damage, the mining of uranium causes to the

Figure 1.2: 2004 global primary energy con-
sumption by sector. Source: [7]

surrounding nature [11]. However,
the most prominent heavy drawbacks
of nuclear fission are the risk of ac-
cidents, which we are aware of since
the catastrophes of Chernobyl (1986)
and Fukushima (2011) and the –
after 55 years of civil use of nuclear
fission energy – still unsolved problem
of hazardous waste disposal. Fusion
energy might become, together with
renewable energy sources and fission
energy, one of the three alternatives to
fossil fuels. However, for the second
half of the 21st century, renewable
energy sources are by far not expected
to be able to meet the total energy
demand [7, 12]. The need for fusion
power as a globally available, stable
base load energy source will grow.
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Figure 1.3:

“Comparison of ob-
served continental- and
global-scale changes
in surface temperature
with results simulated
by climate models
using natural and an-
thropogenic forcings.
Decadal averages of
observations are shown
(black line) [...].

Blue shaded bands show the 5-95% range for 19 simulations from five climate models
using only the natural forcings due to solar activity and volcanoes. Red shaded bands the
5-95% range for 58 simulations from 14 climate models using both natural and anthro-
pogenic forcings”. Source for text and figure: [4]

1.2 Nuclear Fusion – From a Star to a Terrestrial Power Plant

1.2.1 Stellar Fusion and Principal Energy Source

For a long time – mainly since the 1950s – the idea exists to follow the example of
the stars and to generate energy by nuclear fusion. Like the sun and other stars, one
would then set energy free by nuclear fusion which corresponds to the difference in
nuclear binding energies between the fusing elements and the product element. Due
to the fact that the binding energy results from the attraction of the nucleons via the
strong force, this is a significant amount of energy: compared to chemical burning of
fossil fuels, where one sets free only the binding energy of the shell electrons, resulting
from the electromagnetic interaction, the energy set free in nuclear transformations is
six orders of magnitude larger. To maintain a gigawatt power plant, 7000 tons of coal
are necessary per day but only one kilogram of nuclear fusion fuel.
The nuclear binding energy depends on the composition of the particular isotope and
has a global minimum for iron (56Fe), see fig. 1.4. Therefore, energy can be set free
either by fissioning nuclei heavier than iron or by fusing nuclei with a mass number
lower than iron. The energy is – in both cases – on the scale of MeV. A net energy gain
can, in principle, be obtained from nearly all fusions of light nuclei, but only few of
them can be realized in practice, as there is the Coulomb barrier to be overcome. The
ionized nuclei repel one another because of the repulsive electrostatic force between
their positively charged protons.
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Figure 1.4: The binding energy EB of atomic nuclei per nucleon plotted against the number of
nucleons (mass number A). This curve can be explained with the Bethe-Weizsäcker
formula. To understand the existence of the peaks, one needs to use the nuclear
shell model. Net energy can be gained by fissioning heavy nuclei or by fusion of
light nuclei.

An estimate for the Coulomb barrier to be overcome shows that temperatures in the
scale of a billion Kelvin are necessary to make light nuclei fuse. In fact, fusion can
already be achieved at considerably lower temperatures, mainly due to two effects:
the Maxwellian tail in the Maxwell-Boltzmann distribution and the effect of quantum
tunneling, explained by Gamow in 1928. On the sun, the main reactions are:

p + p−→ D + e+ + νe + 0.42 MeV

D + p−→ 3He + γ + 5.49 MeV

and, as half as frequently as the above:
3He + 3He−→ 4He + 2p + 14.86 MeV

which gives – including matter-antimatter annihilation of the e+ with an e− – a total
of 26.7 MeV and is called the first pp-chain. Thus, the sun fuses four protons to one
Helium nucleus, transforming this way 4.3 million tons of mass to energy every sec-
ond. An important feature of the energy production in the sun is the role of the weak
interaction which transforms protons to neutrons in the first of the above reactions and
involves the emission of neutrinos. As the weak interaction is very slow, this contributes
to the long lifetime of the sun. But why not utilize these reactions for terrestrial fusion?
For energy production on Earth the weak interaction has to be avoided since it would
lead to unacceptably small fusion rates.
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1.2.2 Terrestrial Fusion Reactions

The sun, like all other stars overcomes this problem by its huge mass4, thus the stellar
fusion reactions are not feasible on Earth. Possible candidates for terrestrial fusion re-
actions are the following:

D + D −→ 3He + n + 3.27 MeV

or −→ T + p + 4.03 MeV

D + T −→ 4He + n + 17.6 MeV

T + T −→ 4He + 2n + 11.3 MeV

D + 3He −→ 4He + p + 18.4 MeV

since the highest energy gain can be ex-
pected for the fusion of the lightest nuclei
(see fig. 1.4). As can be seen in fig. 1.5, the
deuterium-tritium (D-T) fusion has by far
the largest cross section at the lowest en-
ergies. The reason for this can be found in
the energy levels of the unstable 5He nu-
cleus: it has an excited state just 64 keV
above the sum of the masses of tritium
and deuterium. Due to the a resonance-
like mechanism, the D-T fusion reaches its
maximum at this energy difference. As a
consequence, the D-T fusion is the most
promising candidate for the terrestrial use
of nuclear fusion.

Figure 1.5: Measured cross sections σ in
barns (10−28 m2) for different
fusion reactions as a function
of the center of mass energy E.
Source: [13]

1.2.3 Fusion Fuel

Deuterium appears with a weight fraction of 0.033% in water. Given the water of the
oceans as 1.4×1021 kg, the mass of deuterium on Earth is 4×1016 kg. In D-T reactors
with a thermal efficiency of about one third, this amount would allow for a production
of 4×1016/mD × 17.6 MeV ×1/3 ≈ 1033 J of electric energy. Assuming a constant
energy demand from onward, one could supply the world with energy for more than
the next 1010 years (calculation see ref. [14]). Moreover, the extraction of deuterium is
easier than the enrichment of uranium (235U), due to the high relative mass difference
of the isotopes.
Tritium – super heavy hydrogen 3H – in contrast, does not exist naturally as its half-life
is only 12.3 years. However, it can be bred from lithium using neutron-induced fission
reactions – for example with the help of fusion generated neutrons that are moderated

4 This concept is called ‘gravitational confinement’.
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to thermal energies 5:

6Li + nthermal −→ T + 4He + 4.8 MeV

The natural abundance of lithium is 7.4% 6Li and can be found in the Earth’s crust
to an averaged percentage of6 0.006%. Seawater contains an estimated 230 billion
tons of lithium, though at a low concentration of 0.1 to 0.2 ppm [15, 16]. The energy
contained in 1 kg 6Li is roughly 22 MeV/mLi. Thus, at a thermal efficiency of about
one third, 1 kg of natural lithium would give around 7×103 GJ of electric energy.
Summing up, one asserts that the fuels for fusion are widespread and abundantly avail-
able, fair distributed all over the world and nearly inexhaustible, as they can be ex-
tracted from seawater (deuterium) and out of the Earth’s crust (lithium). To assuage
todays energy demand, five thousand 1 GW fusion power plants worldwide would be
sufficient, each using 110 kg of deuterium and 380 kg of lithium per year (at perfect
efficiency)7.

1.2.4 Fusion Waste and Safety Aspects

Having discussed the fuels for terrestrial nuclear fusion, one should now have a look
at the waste: The D-T reaction leads to very small quantities of Helium, which is an
inert gas, and highly energetic8 neutrons which are like in a fission power plant the
principal performers in the process of producing hot steam to generate electricity in a
common generator.
In contrast to nuclear fission, the working principle of the processes is not a chain
reaction. There is only a very small amount of fuel used during the operation state,
and therefore no risk of explosion and meltdown as known from nuclear fission. Even
if there is a leak in the coolant cycle, only about 5 g of tritiated water (HTO or T2O) will
be released into the environment. The only concern arises from the reactor walls which
will be activated over time due to the high neutron fluxes. As a consequence, materials
will have to be disposed after the shutdown of the reactor. However, while fission plant
components (and especially the waste) remain extremely hazardous for millennia, the
storage period for fusion plant components is not of a geological time scale. It is
estimated to be less than 100 years (see fig. 1.6), depending on the achievements of
material research.

5 Since fusion reactors would operate at optimal temperature, a self-energizing runaway reaction like in
nuclear fission is not possible.

6 Salts of lithium can be found mainly in salt lakes with a natural abundance of 1%. The most important
technically available deposit of lithium is in the Salar de Uyuni area of Bolivia (5.3 million tons)
which holds half of the world’s reserves, the Salar de Atacama in Chile (3 million tons), China, and
the U.S.A.

7 Compared to 66 500 t of (natural) uranium required worldwide in 2013 ref. [17].
8 As the fusion energy is distributed to the products inversely proportional to their mass ratio.
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Figure 1.6: Comparison between

the time evolution of radiotoxicity of

all waste produced up to after shut-

down (including replaced units) from

three fusion power plant concepts dif-

fering in the material of the vacuum

vessel and from the most common fis-

sion power plant type (all with equal

power output). The radiotoxicity is re-

ferring to ingestion. The three fusion

power plant materials are: 1) vana-

dium alloy; 2) helium cooled blanket

and steel that is more resistant to acti-

vation; 3) water cooled blanket, with

the same steel. Source: [18]

1.3 Conceptional Approaches to a Fusion Reactor

As mentioned above, the gravitational confinement cannot be realized on Earth. In
principle, there are two types of confinement left: inertial confinement and magnetic
confinement. As this thesis is set in the context of magnetic confinement fusion, only
this concept is explained in the following.

1.3.1 Criteria for Energy Gain

To be able to use nuclear fusion in a power plant, it is very helpful to operate in a
(quasi) stationary state, using considerably less energy for its creation and maintenance
than the fusion plant is providing to the grid.
An estimate for the required conditions was given by J. D. Lawson in 1957 [19]: The
so-called Lawson Criterion gives a state in which the energy losses to the environment
are (over-) compensated by the energy released in the fusion reactions – it is therefore
an ignition criterion. Having passed the threshold of Lawson Criterion, the plasma is
called ‘burning’ or ignited . This should not be confused with the breakeven point, i.e.
the operation state which gives as much energy from fusion reactions than energy is
required to reach and maintain this state. Breakeven is easier to achieve than ignition.
The fusion power output is the product of the fusion reaction rate R = nDnT〈σvr〉
and the energy gain per fusion reaction. The plasma is burning, if energy losses via
electromagnetic radiation (with cB the constant of bremsstrahlung) and convection are
(over-)compensated by the heating of the α particles, i.e. Helium nuclei. Thus, the
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Lawson Criterion can be written as

n τE >
3kBT

1/4 〈σ(vr) · vr〉Eα− cB T1/2
(1.1)

for an ideal plasma without impurities. n is the plasma density, τE the so-called confine-
ment time 9, and σ is the cross section of the respective fusion reaction and depends on
the relative velocity vr between the reactants. Eα is the energy carried by each helium
nucleus, T the temperature.

To take the α particles into account which remain as ‘ash’ in the plasma, the Lawson
criterion, eq. (1.1) can be expanded. The density of the α particles is expressed as a
fraction f of the electron density ne. As it reduces the fusion probability, the heating
power is reduced, too, i.e. in mathematical terms it has to be multiplied by a factor of
(1−2 f )2. The losses due to electromagnetic radiation increase by a factor of (1+2 f ),
the convection power decreases by (1− f /2). Taking these factors into account, a new
Lawson Criterion is found:

n τE >

�

1−
f

2

�

3kBT

1/4 (1− 2 f )2〈σ(vr) · vr〉Eα− (1+ 2 f )cB T1/2

The right hand side has an absolute minimum at a temperature of T ≈ 3.2×1018 K
or ≈ 27 keV10. As the reaction parameter 〈σvr〉 is roughly proportional to T2 at these
temperatures, one can take the so-called triple product as an ignition condition (see fig.
1.7):

nTτE ≥ 3.5×1021keV s m−3 = 4.06×1028 K s m−3

Typical parameters to reach are T ∼ 10 keV, n ∼ 1020 m−3, τ ∼ 5 s. Within the last
decades, the triple product could be raised over more than three orders of magnitude
and today only needs to be increased by a factor of five to reach the threshold.
Note that the fusion power scales with ∝ (nT )2 and the costs of a power plant approx-
imately with ∝ B, the magnetic field.
The closest to a burning plasma that has been achieved was in the JET experiment, the
Joint European Torus, currently the largest fusion experiment in the world. The triple
product in JET is only a factor of five short of the ignition criterion. The next worlds
largest fusion experiment is under construction and shall reach the breakeven point.
It is an international project, realized by a number of nations (China, the European
Union, India, Japan, South Korea, Russia, and the USA) and called ITER 11 [20].

9 Defined by the confined energy divided by the heating power.
10 from now on, the Boltzmann constant kB will be absorbed in T , such that temperatures have the unit

of eV.
11 formerly standing for International Thermonuclear Experimental Reactor, but also Latin for ‘way’.
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Figure 1.7: The triple product for different fusion devices throughout fusion research history;
Q is the fraction of total output energy to input energy. For the acronyms of the
various machines, see app. A. Adapted from: [21, 22]

1.3.2 Magnetic Confinement

At the extremely high temperatures necessary for ignition, the fusion fuel is in the
state of a fully ionized12 plasma13. On a scale greater than the so-called Debye scale,
the plasma is electrically neutral (quasi-neutrality, Debye-shielding). As such, they are
subject to electric and magnetic forces. This feature of the plasma particles is used to
confine the fusion fuel. The Lorentz force acts on charged (charge q), moving (velocity
v) particles in a magnetic field B: F = q v × B. In a homogeneous field, moving
particles are forced on helical trajectories. The motion along the magnetic field lines
is not affected, whereas perpendicular to the field lines, it is limited to the gyroradius
ρ, resulting from the Lorentz force acting as a centripetal force. The gyroradius, or
Larmor radius

ρ =
mv⊥
eB

(1.2)

12 Up to the atomic number of argon, all elements are completely ionized in a fusion plasma.
13 Throughout this thesis, the plasma can be considered ideal, i.e. it is not relativistic and not quantum-

mechanically degenerated, as the velocity and the density respectively do not exceed a certain value.
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of an ion moving with ion sound speed vs =
p

Te/mi is a frequently used normalization
value in fusion research (Te is the electron temperature, mi the ion mass). In the case
of deuterium ions, ρs is typically a few millimeters14, whereas that of the electrons is
smaller by a factor of

p

me/mi(D) ≈ 1/60.
This limits the motion in the perpendicular direction, whereas in the parallel direction,
the charged particles can still move freely. A quite obvious method to avoid high loss
rates at the ends of any fusion device is to fold a cylindrical vessel to a torus. However,
the bending of the confining arrangement leads to an inhomogeneous, curved mag-
netic field. As will be shown in sec. 2.2.1, a purely toroidal magnetic field will cause
particle drift movements, leading to a charge separation within the plasma. Due to
the resulting electric forces, the plasma will drift out of the confinement region. To
prevent the charge separation, there is the idea of twisting the field lines helically. The
additional circulating movement of the particles, that follow the magnetic field lines,
leads to the compensation of the drift movements. A further advantage of such helical
magnetic configuration is the better magneto-hydrodynamic stability.

To obtain a helical magnetic field, two concepts were developed almost simultane-
ously, in the early 1950s: the so-called “Stellarator” and the so-called “TOKAMAK”. The
Stellarator15 concept was developed in 1951 by the U.S.-American astrophysicist Ly-
man Spitzer [23], and the first experiments were built the same year in the Princeton
Plasma Physics Laboratory (PPPL) in the USA. In a Stellarator, the magnetic field nec-
essary to confine the plasma is generated completely by external coils. The problem of
particle drift is addressed in this concept by establishing a very complex magnetic field
that minimizes radial particle diffusion.
The TOKAMAK [24] concept was developed in 1952 by the Soviet physicists Andrei
Sakharov and Igor Yevgenyevitch Tamm (who had been inspired by an original idea
from Oleg Lavrentyev) at the Kurtschatow Institute. In the early 1950s, first TOKA-
MAK experiments were run in the Soviet Union. The most famous among them are
T-3 and its larger version T-4, tested in Novosibirsk, conducting the first ever quasi-
stationary thermonuclear fusion reaction in 196816. In a TOKAMAK device (see fig.
1.8), the twist of the field lines is not achieved by a complicated coil configuration, but
by superimposing a simple toroidal magnetic field, generated by the so-called ‘toroidal
field coils’ with a poloidal one. The poloidal magnetic field is created by a toroidal
electric current carried by the plasma itself. This current is driven by the transformer
principle (induced with the help of a variable magnetic field from the ‘poloidal field
coils’: the plasma itself can be viewed as the secondary winding of a transformer). The
current, and therefore the magnetic confinement, can only be maintained for a distinct
time span18. Therefore, TOKAMAKs either operate inherently pulsed or have to rely on
other means of current drive.

14 In ASDEX Upgrade: ∼ 3mm in the plasma core.
15 From Latin: stella , star
16 The word ‘TOKAMAK’ is a transliteration of the Russian ‘Tokamak’, which is an acronym for

‘Toroidal~na� Kamera v Magnitnyh Katuxkah’17 meaning ‘toroidal chamber with magnetic
coils’. Furthermore, the word ‘tok’ is Russian for ‘current’.

18 In the case of ASDEX Upgrade, this is approximately 10 s; in the case of superconducting coils like in
Tore Supra it can be several minutes.
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The development of the TOKAMAK concept has advanced considerably. Thus, research
does no longer only concentrate on reaching the fusion criterion but also on common
problems of the power plant operating state, e.g. the development of long-life wall
materials that can stand the extreme thermal stresses and the progress of the so-called
advanced TOKAMAK concept. This concept is characterized by the features needed for a
viable fusion power plant. Primarily it implies a (quasi-) steady-state operating system
by generating the toroidal plasma current not inductively and therefore not pulsed.
Such non-inductive current drive is important with regard to desirable steady-state
operating TOKAMAKs, but also to access advanced regimes of superior confinement
which often rely on certain current profiles.

Figure 1.8: The TOKAMAK concept: Shown are the field coils (blue) generating the toroidal
field and the current for the poloidal field, the plasma itself (yellow) and the
vacuum vessel (gray). Adapted from: [25, 26]
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1.3.3 Plasma Heating

As mentioned above, the fusion born α particles remain as electrically charged par-
ticles in the magnetic cage and release their energy of 3.5 MeV via collisions to the
background plasma. Thus α particle heating is a by-product of fusion itself. However,
to heat a plasma to temperatures where ignition becomes possible in the first place,
other methods have to be employed, as will be described shortly.

Ohmic Heating

As the plasma has a non-zero electric resistivity, the toroidal plasma current induced in
tokamaks contributes to the plasma heating. This fact is called ohmic heating [14]. The
heat generated depends on the electrical resistivity, which is ∝ T−3/2, thus decreases
with rising electron temperature19. As a consequence, the maximum plasma tempera-
ture attainable by pure ohmic heating lies between 20 and 30 million degrees Celsius.
To obtain fusion temperatures, additional heating methods must be used.

Radiofrequency (RF) Heating

Radiofrequency heating, short RF, makes use of high power electromagnetic waves to
excite resonances with the gyromotion of plasma ions or electrons [14]. An antenna
in the plasma vessel which receives power from a remote generator radiates the elec-
tromagnetic wave into the plasma, where it is damped by particles with a gyromotion
satisfying the resonance condition. The resonances lie in the range of Alfvén waves
(1− 10 MHz), the ion cyclotron frequency (ICRH, 30− 100 MHz), electron cyclotron
frequency (ECRH, 20− 200 GHz), as well as the so-called lower hybrid range (the in-
termediate between the ion and the electron cyclotron frequency, 1− 10 GHz). Lower
hybrid heating excites oscillations of electrons along the magnetic field in phase with
ion oscillations across. Depending on the choice of the frequency, plasma density and
composition at the position of the wave energy deposition, different constituents of the
plasma are heated. Heating the lower concentration species (e.g. protons in a deu-
terium plasma) is often advantageous [27]. This method is called minority heating.

But RF is not only used for heating, it is also one non-inductive way for current drive:
if the waves are launched predominantly in one direction with respect to the main
magnetic field, the current profile is also changed.

Neutral Beam Injection (NBI) Heating

The concept of Neutral Beam Injection, short NBI, was suggested in the 1950s and is
nowadays the major work horse for plasma heating at most fusion experiments (see fig.
1.9) [14]: Atoms, being electrically neutral, are not affected by the Lorentz force and
can penetrate through the confining magnetic field until they become ionized in the
plasma via collisions with electrons and ions. If their kinetic energy is large compared

19 The current is mainly carried by electrons, as the resistivity is proportional to the square root of the
particle mass.
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to the plasma temperature, they will deliver their energy to the plasma, thus heat it up.
In general, the beams have energies up to several ten keV, in very large devices even
several hundred keV.

Figure 1.9: Schematic view of the NBI heating system. Source: [21, 26]

Another non-negligible aspect of the NBI concept is the re-fueling of the fusion plasma
with ions and, as in the case of RF, current drive. If a neutral beam is injected at an
oblique angle, the current profile can be changed.

As a side effect, the NBI beam can be used for diagnosing the fast particle distribution
function by measuring the Doppler-shifted Balmer-alpha light, that is emitted when fast
ions charge-exchange with neutral beam ions. This technique is called FIDA [28, 29].
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1.4 Thesis Outline

In a fusion plasma, due to the described external heating methods and eventually due
to fusion born α particles, a population of higher energetic particles is present. They
have energies significantly above the thermal ion energy. It is necessary that these
super-thermal (“fast”) particles are well confined until they transfer their energy to the
background plasma. Fast particle populations can interact with global electromagnetic
waves, what was described first by ref. [30]. Through inverse Landau-damping, the
wave-particle interaction can lead to the growth of MHD-like and kinetic instabilities.
The respective transport processes enhance fast particle losses. As a consequence, fu-
sion power is reduced and there is the risk of damages at the machine wall.

It is important to investigate the fast particle loss mechanisms for different reasons: on
the one hand, a deeper understanding of the mechanisms might provide an opportu-
nity to extract the α particle ash efficiently [31]. On the other hand, fast ion losses
need to be controlled to mitigate their negative effects on confinement and wall. This
could be done e.g. via tailoring the plasma current to control the MHD modes, once
their role concerning fast ion losses is understood.
ASDEX Upgrade [32, 33] and other machines of similar size (e.g. DIII-D [34]), have
the advantage to allow for a direct measurement of the fast ion losses caused by core-
localized MHD activity, since the particle orbits are relatively large compared to the
machine size. The fast ion loss detector (FILD) at ASDEX Upgrade measures fast ion
losses resolved in pitch angle and gyroradius [35].
From the theoretical point of view, these measurements are of great importance: com-
paring numerically obtained losses with experimentally measured ones can be regarded
as a code validation against the experiment. The basic connection between numeri-
cal predictions and experimental results provides a deeper understanding of physical
mechanisms and a validation of theoretical models. Therefore, this thesis not only
addresses the comparison of simulated with experimentally measured losses. It also
presents a study to reveal the underlying transport mechanisms in relatively complex
multi-mode scenarios.

The thesis is organized as follows: chapter 2 introduces TOKAMAK geometry and the
general particle motion in this geometry. In chapter 3, the theoretical background on
MHD waves and wave-particle interaction is given. After providing this general ba-
sis, chapter 4 presents the HAGIS model with the inclusion of a non-vanishing parallel
electric field. In chapter 5, a numerical study is carried out, investigating resonance
mechanisms for wave-particle interaction, especially in the presence of multiple modes
with different frequencies. Finally, in chapter 6, simulations are carried out under con-
ditions that are as realistic as possible. The resulting fast particle transport processes
are studied and the consequential losses compared with experimentally measured data,
in particular with FILD data from the ASDEX upgrade discharge #23824.



CHAPTER 2

Particle Motion in Toroidal
Magnetic Fields

2.1 Geometry of a Tokamak

One important quantity to characterize a TOKAMAK device is the so-called aspect ratio
A. It is defined as the ratio of major plasma radius Rmag to minor plasma radius a (see
fig. 2.1):

A :=
Rmag

a
. (2.1)

The limit of a very large-aspect ratio A→∞ corresponds to a cylindrical device. The
vertical symmetry axis (z in fig. 2.1) is the torus axis, the center of the plasma (r = 0
and R= Rmag in fig. 2.1) is called the magnetic axis. The inner part of the torus, where
R < Rmag is called the high field side (HFS), as the magnetic field strength is higher
there, compared to the so-called low field side (LFS), R > Rmag. The R-ϕ plane of
horizontal symmetry is called the outboard midplane for R > Rmag. For the last closed
flux surface, the acronym LCFS is used frequently. The boundary between closed and
open field lines, separating the toroidally confined region from the region where field
lines connect to material surfaces is called separatrix.
The safety factor q quantifies the helicity of the magnetic field by giving the number of
toroidal turns the magnetic field traverses until one poloidal turn is complete,

q :=
Nt

Np
. (2.2)

In other words, q := ∆ϕ/(2π), where ∆ϕ is the change of the toroidal angle for one
poloidal revolution (∆ϑ = 2π). The ratio of the toroidal to the poloidal magnetic field1

is Bt/Bp = Rdϕ/rdϑ. If one assumes a large-aspect ratio TOKAMAK, where Rmag� a,
and thus R≈ Rmag, Bt(R)≈ Bt(Rmag), the safety factor reads [36]

q =
dϕ(B line)
dϑ(B line)

≈
r

Rmag

Bt

Bp
. (2.3)

This is equal to the rate of change of toroidal flux Ψt with poloidal flux Ψp (for defini-
tions, see app. C, apply eqs. (C.1) and (C.5) in the toroidal coordinate system),

q =
dΨt

dΨp
. (2.4)

1 Bt is the toroidal, Bp the poloidal component of the magnetic field, according to Ampère’s law Bp(r) =
µ0 I/(2πr) for a current I passing through a circular area.
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Typically, |q|¦ 1, and q depends on the radial location r in the TOKAMAK. q is negative
if the helicity of the magnetic field twist is left handed, i.e. the current direction is
opposite to the toroidal magnetic field direction.

r

R

z

�
�

a
Rmag

Last Closed
Flux Surface
(LCFS)

High Field
Side (HFS)

Low Field
Side (LFS)

outboard
midplane

magnetic
surfaces

magnetic
field lines

magnetic
axis

Figure 2.1: Magnetic surfaces in a TOKAMAK and two different toroidal coordinate systems:
toroidal coordinates (r,ϑ,ϕ) and cylindrical coordinates (R, z,ϕ); the angle ϕ
denotes the toroidal direction, ϑ the poloidal direction. Adapted from: [18].

In the TOKAMAK ASDEX Upgrade, the characteristic values are:

a ≈ 0.5 m, Rmag ≈ 1.65 m, Bt ≈ 2.5 T, Bp ≈ 0.4 T, q ≈−2.

As the electron temperature decreases with increasing r, the electric conductivity de-
creases with r, leading to a lower current density j towards the plasma edge compared
to the plasma core. Therefore, the total current I increases less than quadratically with
r, and thus Bp less than linearly. Bt can be approximated to decrease with 1− r. Thus,
q(r) usually increases monotonically from the magnetic axis to the plasma edge lead-
ing to a differential helicity of the magnetic field lines, that is called magnetic shear ŝ:

ŝ(r)≡
r

q

dq

dr
. (2.5)

However, by means of different current drives, hollow radial current density profiles
can be tailored, resulting in non-monotonic, inverted q profiles. These may play a role
in future TOKAMAKs, especially with long-pulse operation since non-inductive current
drives often lead to hollow radial current density profiles (for an overview, see ref.
[37]).
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As each magnetic field line can be connected to a certain q value and due to the fact
that magnetic field lines cannot cross each other, a magnetic surface can be defined (see
fig. 2.1). Since the magnetic flux within each such surface must be constant through
any cross section, they are also referred to as flux surface. The magnetic surfaces are
toroidally symmetric. In the poloidal projection, they are nested flux surfaces2. This
becomes clear when considering one magnetic field line with an irrational q value. This
field line covers the entire magnetic surface. A surface where q takes a rational value
is called rational surface. Rational surfaces, especially those with q being a fraction of
small integers, 1/2, 4/3, 1, . . . play an important role in TOKAMAK stability, since they
are resonant surfaces for plasma instabilities. Physical variables that are constant on
magnetic surfaces are called flux functions. Besides q, the pressure p is a flux function3:
if ideal MHD is valid, in a static equilibrium, the pressure gradient is balanced by the
Lorentz force, j × B = ∇p (see eq. (3.1b)), and j and B are perpendicular to ∇p,
i.e. lie in surfaces of constant pressure which are the magnetic surfaces. Via this MHD
static force balance, applied to an axis symmetric static4 magnetic equilibrium cast in
terms of the poloidal flux Ψp , the magnetic surfaces can be calculated. The resulting
equation is the so-called Grad-Shafranov equation (for derivation see ref. [36]):

∆∗Ψp+
µ2

0

4π2 Ip · I ′p+µ0R2p′ = 0, (2.6)

with Ip, the flux function of the poloidal current and the operator5

∆∗ ≡
∂ 2

∂ R2 −
1

R

∂

∂ R
+
∂ 2

∂ z2 .

The primes (′) denote derivatives with respect to Ψp.

2.2 Guiding Center Motion

This section is dedicated to single particle movement, which is important in many
fundamental aspects of wave-particle resonance. However, for a more comprehensive
introduction, one may consult ref. [38].
In a strong magnetic field, it is advantageous to describe the motion of a charged par-
ticle as a superposition of its guiding center motion and its fast gyration around this
guiding center (see fig. 2.2). In many theories, the exact dynamics of the fast gyro-
motion is neglected, because it is sufficient to examine the guiding center motion only.
This not only leads to more analytic simplicity but also saves many orders of magnitude
in both spacial and temporal resolution.
The so-called guiding center approximation is such a theory (also referred to as driftki-
netic formulation). It is a perturbative ansatz, dating back to Hannes Alfvén, who

2 and even circular in the simple TOKAMAK model without additional shaping, such as elongation or
triangularity.

3 thus, magnetic surfaces are identical to isobaric surfaces.
4 Static means ∂ /∂ t = 0 and u = 0.
5 Note: the ∂ /∂ ϕ term is zero.
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recognized its validity in temporally and spatially varying fields (B) as long as the
variations are small during one gyroperiod, i.e. ∇B � B/ρ and Ḃ � Ω · B, with the
gyroradius ρ and the gyrofrequency Ω.
Ref. [39] presents a rigorous derivation for the guiding center motion using the vari-
ational principle δ

∫

Ldt = 0. The resulting equations of motion (the drift equations)
possess exact conservation laws for phase volume, energy (for time-independent sys-
tems), and angular momentum (for azimuthally symmetric systems). The Lagrangian

L =
∑

i

pi q̇i −H ,

(where q and p are conjugated canonical variables) for a charged particle (charge e,
mass m) in an electromagnetic field takes the form (details see sec. 4.3)

L = (mv + eA) · ẋ −
1

2
mv2− eΦ (2.7)

with x , v , A, Φ the exact particle position, velocity, the vector and scalar potential.

B

0

ξρ

R
x

Figure 2.2: Helical trajectory of a charged particle around a magnetic field line. The arrows
denote the space vectors used for the guiding center ansatz.

In the guiding center approximation, the motion of the guiding center (spacial coordi-
nate R) is separated from the gyromotion (expressed by the gyroradius ρ) as visualized
in fig. 2.2,

x = R+ρ (2.8a)

with the gyroradius : ρ = ρρ̂ ≡
mv⊥
eB
=

v⊥
Ω
ρ̂ (2.8b)

with the known gyrofrequency : Ω≡
eB

m
(2.8c)

and a unity vector : ρ̂ = cosξ e x + sinξ e y . (2.8d)

e x(R,ξ) and e y(R,ξ) are unity vectors in the plane perpendicular to the magnetic field
lines. As the fields and potentials are assumed not to vary strongly over one gyroorbit,
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it is sufficient to Taylor expand the potentials around the gyrocenter up to the first
order:

A(x ) = A(R) + (ρ · ∇)A(R) (2.9a)

Φ(x ) = Φ(R) + (ρ · ∇)Φ(R) (2.9b)

Still, there are six phase space coordinates, three spacial components of the guiding
center position R, the parallel velocity of the guiding center v‖, the perpendicular ve-
locity of the particle ρ ∝ v⊥, and the gyrophase angle ξ. However, under the conditions
where the guiding center approximation is valid, the gyromotion is an exact periodic
motion, and therefore associated to an adiabatic invariant (according to

∮

pdq, see
textbooks like ref. [40]). This adiabatic invariant is the magnetic moment µ of the
gyrating charged particle (see textbooks like ref. [36]),

µ :=
1

2

∫

r × jd3r (2.10)

µ =
1

2
mv2
⊥/B b̂ ≡ E⊥/B b̂. (2.11)

As µ is related to v⊥, it can be substituted for it, reducing the number of evolving
phase-space coordinates to four: three components of R and the parallel velocity v‖ of
the guiding center. The gyrophase angle is irrelevant to the guiding center motion, and
averaged out in the following.
Inserting the Taylor expansion of the fields given above as well as the magnetic moment
µ and averaging over the gyromotion (then, the average of the gyroradius over one
gyroorbit vanishes < ρ >= 0), one obtains the particle Lagrangian as (details see app.
E.1)

L = (mv‖ b̂ + eA(R)) · Ṙ +
µB

Ω
ξ̇ −

1

2
mv2
‖ − µB − eΦ(R). (2.12)

The variation principle is now applied for the guiding center coordinate R to this La-
grangian,

0 =
d

dt

∂L
∂ Ṙ
−
∂L
∂ R

, (2.13)

using the definition

B∗ := B+
m

e
v‖∇× b̂

︸ ︷︷ ︸

O (1)

. (2.14)

The result can be cast into the following form (see app. F.3):

Ṙ = v‖ b̂+
B

B∗‖

�

vE×B+ v∇B + v curv
�

, (2.15)

which is split into two parts: the parallel motion given by mv̇‖ = F‖ and a motion
perpendicular to the magnetic field (other terms, that all contain “×B” as seen below),
called drifts. They are frequently combined into the drift velocity vd. A closer look on
these drift velocities is taken in the next section.
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2.2.1 Particle Drifts

The drift velocities appearing in the guiding center equation of motion eq. (2.15) are
of the general structure

vd =
F × B

eB2 , (2.16)

where F is a force that is specified in more detail in the following (for a more rigorous
derivation see app. F.3). Due to the cross product, only the perpendicular part of F is
relevant.
As a first example, an electric field is considered to cause the force, resulting in the
so-called E-cross-B drift:

vE×B =
E × B

B2 . (2.17)

The E-cross-B drift is independent of the particle’s charge e and therefore a threat for
plasma confinement, since it leads to a drift of the whole plasma in the same direction.
In a spatial inhomogeneous magnetic field with growing field strength, there is a force
F =−µ∇B on all particles, due to their magnetic moment µ (eq. (2.10)). The resulting
drift, called grad-B drift reads:

v∇B =−
m v2

⊥

2eB3∇B× B. (2.18)

Since ∇ · B = 0, the existence of a gradient in the magnetic field is always cou-
pled to a curvature of the field lines. The local curvature radius RC is given by
1/RCeC = −∇B/B (with eC being the unity vector in the direction perpendicular to
the curve and its tangent). With the centripetal force FR = mv2

‖ /RC eC , one obtains:

v curv =−mv2
‖

B× (B · ∇)B
eB4 ≡−

mv2
‖

eB3 (∇B× B), (2.19)

which is called the curvature drift.
As curvature and grad-B drift act in different directions depending on the sign of the
particle’s electric charge. Thus, if not compensated, they lead to a charge separation
and to the establishment of an electric field E. This field in turn causes E-cross-B drift,
which is independent of the charge and conducts the whole plasma radially outwards.
A different kind of drift, as caused by a fluid effect, arises in the presence of a pressure
gradient ∇p. There is a force F affecting a volume element δV , resulting from a
pressure difference per area: F = −∇p · δV . One single particle feels the force F =
−∇p/n. This leads to the so-called diamagnetic drift

vdiam =−
∇p× B

enB2 . (2.20)
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2.2.2 Magnetic Mirror Effect

Due to the particle gyration, it can be viewed as magnetic dipole, connected to a mag-
netic moment as defined in eq. (2.10). This dipole experiences a force arising from
the magnetic field’s inhomogeneity, Fm = −µ∇B. This force is called magnetic mirror
force and changes the potential energy µB of the magnetic moment. At the same time,
the particle’s total kinetic energy E = E‖ + E⊥ remains constant (in the absence of col-
lisions, as magnetic fields cannot perform work on charged particles). As mentioned
above, µ is an adiabatic invariant, and thus constant as well. To keep both µ = E⊥/B
and the particle energy E = E‖ + E⊥ constant, the parallel energy of the particle, E‖
decreases when moving to regions of higher magnetic field strength B. If the B field
becomes strong enough, the parallel velocity may reduce to zero and then be reversed,
before the particle is accelerated in the direction of the weaker field. This effect is
called magnetic mirror and results in a bounce movement of the particle. The turning
point, or bounce point, is determined by the local magnetic field Bb and the angle of
the particles initial velocities v‖,i/v⊥,i

Bb

Bi
= 1+

�

v‖,i
v⊥,i

�2

, (2.21)

where Bi is the magnetic field at the initial position [14]. The ratio of a particle’s per-
pendicular velocity (containing drifts and gyromotion) to its parallel velocity is referred
to as pitch λ or pitch angle λo:

λ :=
v‖
v

, or cosλo :=
v‖
v

. (2.22)

Although the pitch is sometimes used as second velocity space coordinate (besides the
energy), one has to keep in mind, that it changes along the gyroorbit. At the reflection
point, λ= 0.
Particles being trapped in inhomogeneous magnetic fields occur in cosmic phenomena
such as the Van Allen radiation belt, and also in magnetic fusion devices, as explained
in the next section.

2.2.3 Particle Orbits

Having introduced the concepts of drift (sec. 2.2.1) and magnetic mirror (sec. 2.2.2),
particle trajectories in a twisted toroidal magnetic field, as it is in a TOKAMAK, can
be sketched [14]. The magnetic field of a TOKAMAK has an intrinsic inhomogeneity
leading to a magnetic mirror effect, as the field decreases with the radius R. As a con-
sequence, there are two types of particle trajectories, the so-called passing particles and
the trapped particles, as will be explained in the following.
In TOKAMAKs and – although in a more complicated way also in stellarators – the
trapped particles bounce on the LFS within the well of the magnetic field. The mini-
mum of the well is located at the outboard midplane (ϑ = 0 in fig. 2.3), the maximum
at the opposite side (ϑ = ±π). The trapped particles have insufficient parallel ki-
netic energy compared with their perpendicular energy to penetrate into the HFS of
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the torus. Only particles with a parallel velocity that is high enough to let the parti-
cle overcome the mirror force Fm can complete a poloidal revolution. These are the
passing particles (for v‖ > 0, they are co-passing , for v‖ < 0 counter-passing).

Figure 2.3: Passing (blue) and trapped (yellow) particle orbits in a TOKAMAK’s magnetic
field (projection to the r-ϑ plane).

The fraction of these trapped particles depends on the position ε := r/Rmag in the
TOKAMAK [14],

ft(ε,ϑ) =

r

ε+ ε cosϑ

1+ ε cosϑ
, if B(ε,ϑ)≈ Bmag/(1+ ε cosϑ), (2.23)

thus, increases with increasing r.

The helical movement of the particles is superimposed by a vertical drift movement
due to the combined effects of field curvature and gradient. This leads to toroidally
symmetric drift surfaces – surfaces defined by the particle trajectories. In the poloidal
projection they resemble (almost) circles (in case of the passing particles) or so-called
banana orbits (for the trapped particles respectively), see fig. 2.4, fig. 2.5. Note, that
the magnetic surfaces do not coincide with the drift surfaces.
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Figure 2.4: Poloidal projections of the orbits of trapped (left) and passing (right) ions (thus
the toroidal movement of the particles on the drift surfaces around the TOKAMAK
cannot be seen here). The black lines represent a poloidal cut of the magnetic
surfaces, the arrows indicate the drifts, leading to a deviation between the drift
surfaces and the magnetic surfaces.

Additional to the poloidally periodic movement, as seen in fig. 2.4, the particles also
move periodically in the toroidal direction. This movement is visualized in fig. 2.5.
Since the particle does not stay exactly on the field line, its orbit does not close on itself
after one poloidal turn, but drifts to another field line. This implies that the particle
undergoes a slow precession in the ϕ direction (see fig. 2.5), the toroidal precession.
The toroidal precession frequency ωtp is (see ref. [41]):

ωtp ≈
qv2
⊥

2rRmagΩ
. (2.24)

Another important property of the particle movement is its orbit or bounce frequency
ωb, defined by the inverse of the transit time of one poloidal turn. In the following, a
very rough estimation for the bounce frequency is given. For a more formal derivation
of eq. (2.27) and eq. (2.34), involving elliptic integrals, in a large-aspect ratio approx-
imation assuming circular flux surfaces can be found e.g. in [41]).
For strongly passing particles, the bounce frequency results from

ωb =
2π

T
=

2π

Lc/v‖
, (2.25)

where Lc is the connection length of the magnetic field helix. Considering one toroidal
turn Nt = 1, the connection length can be given as Lc ≈ 2πRmag/Np with Np the number
of poloidal turns. Using the safety factor, eq. (2.2) this equals:

Lc = 2πqRmag. (2.26)

Thus,

ωb =
v‖

qRmag
. (2.27)
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Figure 2.5: A trapped particle’s orbit in 3D to visualize the toroidal drift motion in addition
to the poloidal bounce movement. Source: [42].

For the wave particle interaction, the shifts caused by the drift movement are often
crucial – for passing particles, this is the radial shift ∆R, for trapped particles it results
in the banana orbit width Wb. In the following, a closer look is taken on it. One can
focus on a poloidal cut, i.e. on a eR-ez plane, knowing already that the drift vd is in the
z direction (eqs. (2.18) and (2.19)). The equations of motion are thus:

R= Rmag+ cos(ωb t),

z = vd t + sin(ωb t). (2.28)

The time derivative is then:

Ṙ=−zωb− vd tωb,

ż = (R− Rmag)ωb+ vd. (2.29)

As the vertical drift will cancel out over the toroidal movement, it is valid to look at
this poloidal cut at the initial time t = 0 only. One can easily prove, that the following
circle equation is valid:

(R− Rmag+ vd/ωb)
2+ z2 = const., (2.30)

meaning, that in this approximation, where the passing particle’s orbit is a circle of the
radius of the flux surface, the orbit is shifted from the magnetic axis Rmag by

∆R=
vd

ωb
≈

v2
‖ +

1
2

v2
⊥

v‖v⊥
ρq ∝ ρq. (2.31)

A trapped particle’s bounce movement in the well of the magnetic field minimum can
be treated as harmonic oscillator with the mirror force FR = −µ ∂ /∂ s B as restoring
force, acting on the magnetic moment µ along the particle trajectory s. As the change of
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the magnetic field along the trajectory is crucial, one can not assume B ≈ Bmag here, but
may take B(r) ≈ Bmag(1− r/Rmag cosϑ) as given in eq. (4.15). Taylor expanding this
around ϑ reads B(r) ≈ Bmag(1− r/Rmag + r/Rmag(dϑ)2/2. As long as q is significantly
above 1, one can approximate the distance traveled by a particle along the magnetic
field line ds with its toroidal projection Rdϕ, and thus after eq. (2.3), ds = Rmagqdϑ.
In the expression for the magnetic field, dϑ can now be expressed by ds, the derivative
of the magnetic field with respect to s leads to

FR =−µ
Bmagr

q2R3
mag

s. (2.32)

The differential equation of motion of a harmonic oscillator with this restoring force
reads

ms̈ =−µ
Bmagr

q2R3
mag

s, (2.33)

leading to an eigenfrequency of

ωb =
v⊥

qRmag

r

r

2Rmag
. (2.34)

This is the approximated bounce frequency of deeply trapped particles.
With the differential equation of motion, the angular movement along the magnetic
field lines is known (one can consider now ϕ, instead of s, as they were assumed
equivalent): ϕ(t) = ϕ̂ sin(ωb t). However, the drift movement across the flux surface
r was not taken into account so far. To cast the vertical movement (see fig. 2.4) into
an expression for r, one can assume ṙ = vd sinϕ ≈ vdϕ. To obtain the projection of the
particle orbit in the er -eϕ plane, one has to calculate

dr

ϕ
=

dr/dt

ϕ/dt
=

vd

ωb

p

(ϕ̂/ϕ)2− 1
. (2.35)

After the ϕ integration, the banana orbit can be identified as
�

r

ϕ̂vd/ωb

�2

+
�

ϕ

ϕ̂

�2

= 1, (2.36)

which is the equation of an ellipse with the two axes ϕ̂ and ϕ̂vd/ωb in the ϕ and the r
direction respectively. The maximal width of the banana is twice the axis in the radial
direction,

Wb = 2
ϕ̂vd

ωb
,

Wb ∝ qρ
p

2Rmag/r. (2.37)

Thus, it is a factor of q/
p
ε, with ε := r/Rmag larger than the gyroradius.

After having introduced main aspects of particle motion in this chapter, the next chapter
is dedicated to the second actor within the fast particle-wave interplay, the waves.
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CHAPTER 3

MHD Waves and their Interaction
with Fast Particles

A well established model for understanding the large scale physics of plasmas is the
magnetohydrodynamic (MHD) theory [43]. In this theory, the plasma is seen as a
current-carrying, conductive fluid. The basic idea is to look only at macroscopic di-
mensions such as density, fluid velocity and temperature. Thus, a velocity space de-
pendence is neglected and a collisional plasma1 assumed.
The general equations that describe the ideal2 plasma this way are called MHD equa-
tions:

∂

∂ t
ρ = −∇ · (ρv), continuity equation (=mass conserv.) (3.1a)

ρ

�

∂

∂ t
+ v · ∇

�

v = −∇p+ j × B, momentum conservation (3.1b)
�

∂

∂ t
+ v · ∇

�

p = −γp∇ · v , adiabatic equation for an ideal gas (3.1c)

∂

∂ t
B = ∇× (v × B), Faraday’s induction law (3.1d)

E = −v × B, Lorentz trafo to a co-moving frame (3.1e)

j =
1

µ0
∇× B, Ampère’s law (non-relativistic) (3.1f)

∇ · B = 0, non-existence of magnetic monopoles (3.1g)

Here, ρ is the plasma mass density, n the plasma particle density, v the velocity of the
plasma, p the pressure, γ the adiabatic coefficient, B and E the magnetic and electric
field, ρel the charge density, and j the current density.
The ideal MHD in this case is a so-called single-fluid model, as the plasma’s composition
of different particle species is not taken into account. Considering ions and electrons as
different species is possible within the MHD as well: one assumes two different fluids
penetrating each other, what is called a multi-fluid model.

Every motion of the plasma will give rise to electromagnetic forces, as it consists of
charged particles. The emerging currents will, due to the magnetic field, lead to

1 Thus a plasma in which a Maxwellian distribution is always established.
2 i.e. without any energy dissipation: an infinite electric conductivity is assumed, as well as zero heat

conductivity and zero viscosity.
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mechanical forces that change the state of motion of the plasma. Thus, a combined
electromagnetic-hydrodynamic wave is created, a fact pointed out first by Hannes Alfvén
in 1942 [44]. These Alvfén waves are ubiquitous in astrophysical as well as in labora-
tory plasmas. The next sections are dedicated to approach Alfvén waves and – more
general – MHD waves, as they exist specifically in fusion devices.

3.1 Theory of MHD Waves

The equations of ideal MHD, eqs. (3.1), are nonlinear, but they can be used in a lin-
earized form to identify classes of waves. Such approximation is valid for the exam-
ination of perturbations with relatively small magnitudes: The bulk plasma, i.e. the
initial, non-perturbed state, can then be considered static on timescales that are large
compared to those associated with the small scale perturbation dynamics. Thus, all
quantities Q(x ,t) can be separated into an equilibrium part Q0(x ) and a small, first-
order time-dependent perturbation: Q̃(x ,t). All higher order terms are neglected, as-
suming |Q̃| � |Q0|. Furthermore, a global plasma motion is neglected: v0 = 0. After
introducing a displacement vector:

ṽ =:
∂ ξ

∂ t
, (3.2)

the linearized momentum conservation, eq. (3.1b), adiabatic equation, eq. (3.1c) and
Faraday’s law, eq. (3.1d) read

0= ρ0
∂ 2ξ

∂ t2 +∇p̃,+
1

µ0
(B̃× (∇× B0)) + B0× (∇× B̃), (3.3a)

0= p̃+ ξ · ∇p0+ γp0∇ · ξ, (3.3b)

0= B̃+∇× (B0× ξ). (3.3c)

One can now resolve eq. (3.3b) for p̃ and substitute this, together with B̃ from eq. (3.3c)
into eq. (3.3a), and obtain the so-called force-operator equation,

ρ0
∂ 2

∂ t2ξ= F(ξ). (3.4)

F(ξ) is the hermitian force operator

F(ξ) :=∇(ξ · ∇p0+ γp0∇ · ξ) +
1

µ0
[(∇× B0)× (∇× (ξ× B0))

+ (∇× (∇× (ξ× B0)))× B0] (3.5)

The linear stability of waves can be studied as a normal mode problem, assuming a
time variation of all perturbed quantities to be of the form Q̃(x ,t) = Q(x )exp (−iωt).
Eq. (3.4) can then be written as eigenvalue problem for the eigenvalue ω2:

−ω2ξ=
1

ρ0
F(ξ), (3.6)

As the force operator is Hermitian, the eigenvalue is real, which leads to ω taking
either purely real values (if ω2 > 0) or purely imaginary values (if ω2 < 0). The first
case represents an oscillating wave, the latter a growing/damped instability.
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3.1.1 MHD Waves in a Homogeneous Plasma

Let us assume a homogeneous magnetic field B in an infinite, homogeneous, stationary
plasma. After Fourier transforming the force-operator equation, eq. (3.4), according to
ξ= ξ̂exp (−iωt − ik · x ), one obtains:

−ρ0ω
2ξ̂ = ∇(ξ̂ · ∇p0− iγp0k · ξ̂)

+
1

µ0

�

(∇× B0)× (−ik × (ξ̂× B0)) + (−ik × (−ik × (ξ̂× B0)))× B0

�

.

(3.7)

In a homogeneous plasma, all derivatives of equilibrium quantities, such as ∇p0 or
∇× B0 vanish. Without loss of generality, we can assume the equilibrium magnetic
field to be parallel to the z direction, i.e. B0 = B0ez and k = k⊥e y + k‖ez . We further
take the Alfvén velocity vA and the adiabatic sound velocity vS, which are

vA :=
B0

p
µ0ρ0

, (3.8)

vS :=

r

γp0

ρ0
, (3.9)

and rewrite the eq. (3.7) to

0 =









ω2− v2
Ak2
‖ 0 0

0 ω2− v2
s k2
⊥− v2

Ak2 −v2
S k⊥k‖

0 −v2
S k⊥k‖ ω− v2

S k2
‖















ξ̂x
ξ̂y
ξ̂z ,






(3.10)

or, as a system of equations:

0 = (ω2− v2
Ak2
‖) ξ̂x , (3.11a)

0 = (ω2− v2
s k2
⊥− v2

Ak2) ξ̂y − v2
S k⊥k‖ ξ̂z , (3.11b)

0 = −v2
S k⊥k‖ ξ̂y + (ω− v2

S k2
‖) ξ̂z . (3.11c)

It can be seen now that the x component of ξ̂ decouples from the other two spacial
directions.
Non-trivial solutions for ξ̂ to this eigenvalue equation require a vanishing determinant
of the matrix in eq. (3.10),

(ω2− v2
Ak2
‖)
�

ω4− (v2
A + v2

S )k
2ω2+ (vAvSk‖k)

2
� !
= 0. (3.12)

Each solution of this equation represents a mode plasma perturbation, and since it is
cubic in ω2, three types are expected. The first solution is seen easily, as the ξ̂x branch
decouples:

ω2 = v2
Ak2
‖ . (3.13)

giving the dispersion relation of the so-called Shear-Alfvén wave in a homogeneous
plasma. As the right hand side is a quadrature and therefore always positive, the per-
turbation is oscillatory. Further, it is independent of k⊥, even if k⊥� k‖, meaning that
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the propagation direction is along the equilibrium magnetic field: k = k‖ez .
Since it is decoupled from the y and z direction, the plasma displacement of the Shear-
Alfvén wave is purely perpendicular to the equilibrium field, ξ̂x ⊥ B0 = B0ez . Substi-
tuting ξ̂ = ξ̂xe x into eq. (3.3c) gives a B̃ = −iξ̂x k‖B0e x which is ⊥ B0, thus reveals
the purely transverse nature of the Shear-Alfvén wave’s field perturbation. Substituting
ξ̂ into eq. (3.3b) reveals p̃ = 0, and thus the incompressible nature of the Shear-Alfvén
wave.
Summarized, the Shear-Alfén wave is an incompressible oscillation of the plasma iner-
tia against the magnetic field line tension producing a restoring force. Both the field
line perturbation B̃ and the plasma displacement ξ̂ are perpendicular to the propaga-
tion direction k, which is parallel to the equilibrium magnetic field B0.

The two other solutions result from the square bracket in eq. (3.10):

ω2 =
1

2
k2(v2

A + v2
S )






1±

s

1− 4
k2
‖

k2

v2
Av2

S

(v2
A + v2

S )
2






. (3.14)

︸ ︷︷ ︸

:=δ(>0)

With the plus sign, one obtains the dispersion relation for the fast magnetosonic wave,
with the minus the slow magnetosonic wave. The magnetosonic wave emerges from
the coupling between the magnetic compression (Alfvénic) and the fluid compression
(sonic). In contrast to the Shear-Alfvén wave, the magnetosonic waves are character-
ized by transversal as well as longitudinal components of both, the plasma displace-
ment ξ̂ and the magnetic perturbation B̃, and are compressible, i.e. p̃ and ∇· ṽ 6= 0. In
any case, the fast magnetosonic wave oscillates (ω2 > 0), and its frequency is higher
than that of the Shear-Alfvén wave.
In the next step, a limiting situation is considered, the limit of a low-plasma ‘beta’
parameter, β which is the ratio of plasma pressure to the magnetic field pressure:

β =
2µ0 p

B2 . (3.15)

Inserting p and B from the definition of the adiabatic sound velocity, eq. (3.9) and the
Alfvén velocity, eq. (3.8) respectively, β reads

β =
2

γ

v2
S

v2
A

. (3.16)

Most astro- or geophysical observations are related to a high β value, meaning that the
plasma fluid is ‘frozen’ to the magnetic field lines. In fusion plasmas, one has to deal
with the opposite case in general, the low-β limit resulting in the ratio v2

S/v
2
A� 1. This

ratio can thus be chosen as smallness parameter ε. It can then be seen, that the δ term
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is of the order O (≥ ε), too:

δ = 4
k2
‖

k2
‖ + k2

⊥
︸ ︷︷ ︸

1

(1+ ε)2
︸ ︷︷ ︸

Taylor exp.

ε.

< 1 ' (1+ 4ε) (3.17)

Therefore, the whole square-root term in eq. (3.14) can be Taylor expanded giving (up
to the order of O (ε))

p
1−δ ' 1− 1/2δ. Thus, the slow wave’s dispersion relation

becomes in the low-β limit:

ω2 = k2
‖

v2
S

1+ ε
' k2

‖ v
2
S . (3.18)

In the zero-th order in v2
S/v

2
A approximation, the slow magnetosonic wave’s dispersion

relation yields

ω2 ' k2
‖ v

2
S , (3.19)

which is the familiar ion sound wave’s dispersion relation. Inserting ω2 from eq. (3.19)
into eq. (3.11c) gives deeper insight into the nature of the slow wave: it can only be
valid if either k⊥ = 0 or ξ̂z = 0. However, the latter would lead to a ξ̂y = 0 as well
(second of eqs. (3.11)), resulting in no wave at all, whereas ξ̂y = 0 and k⊥ = 0 still al-
low for a parallel displacement vector ξ̂z . The slow wave therefore propagates parallel
to the equilibrium field (k‖) at the speed vS. It is characterized by a pure longitudinal
plasma displacement ξ̂z . Using these findings in B̃ = −ik × (B0 × ξ̂) (eq. (3.3c) in
Fourier space) results in B̃ = 0. This means, there is no magnetic field perturbation
involved at all, the energy oscillates within the plasma between kinetic and internal
energy.

Analogously to the “− branch” of the magnetosonic wave in eq. (3.14), one can derivate
for the “+ branch”, the fast wave

ω2 =
k2ε2+ (k2+ k2

⊥)ε+ k2

1+ ε
v2

A, (3.20)

giving in the zero-th order in v2
S/v

2
A approximation the dispersion relation of the fast

magnetosonic wave (in this limit the compressional Alfvén wave):

ω2 ' k2v2
A. (3.21)

The fast magnetosonic wave propagates isotropically with the speed vA. Inserting here
again ω2 from eq. (3.21) into eq. (3.11c) and dividing by v2

A, one can easily see that
the parallel plasma displacement ξ̂z is of order v2

S/v
2
A compared to the perpendicular

one ξ̂y . Thus, the plasma motion is almost transverse. Fast waves describe the in-
terchange between the energy needed to bend and compress the magnetic field with
perpendicular plasma energy.
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As could be seen, ideal MHD waves display a strong anisotropy. Since all three types of
MHD waves have constant phase velocities vPh = ω/k (at least along a fixed direction
of k), given by eq. (3.13) and eq. (3.14), there is no wave dispersion.

As ω2 > 0, the waves described above are stable in homogeneous equilibria. How-
ever, this is not generally the case in fusion relevant geometries, which are the topic of
the next section.

3.1.2 Shear-Alfvén Waves in Fusion Plasmas – TAE and RSAE

In magnetic fusion devices, the plasma cannot be considered as homogeneous. Con-
sidering an inhomogeneous plasma geometry, one might begin with asking about the
presumably least damped types of waves. A first guess can be made by examining
the dispersion relations in the homogeneous geometry, eqs. (3.13) and (3.14), and
viewing the wave numbers as effective spring constants: the larger the spring con-
stant in a wave equation, the less is the wave destabilized under external perturbation.
As k‖ ≤

Æ

k2
‖ + k2

⊥, the Shear-Alfvén waves are expected to be less stable than the
compressional waves, especially in TOKAMAKs, where k‖ < k⊥. The presence of inho-
mogeneities in the plasma density and magnetic field strongly affects the character of
the waves, making both k and vA space dependent. Assuming a local limit, were a local
dispersion relation is considered validω= k‖(r)vA(r), one can easily see, that no wave
packet of non-vanishing width (spectral or radial) can persist for a long time, as each
slice of the wave has to fulfill its local dispersion relation. The different slices move
with different velocities and in different directions. This effect is called phase mixing
and leads to the damping of any initial wave. However, the effect of toroidal geometry
introduces some new physical effects, that cannot be anticipated with the help of this
simple picture.
To derive the force-operator equation similar to eq. (3.10), but in fusion-relevant
toroidal geometry is far more involved even when applying several approximations.
Helpful milestones of the derivation are given in the technical report of Berk, ref. [45].
Here, a short overview is given in the following.

Toroidicity-induced Shear-Alfvén Eigenmode

Just like in the homogeneous plasma, one considers small perturbations B̃� B0 only,
allowing for a linearization of the MHD equations. Again, the equations to start with
are the momentum balance equation (eq. (3.1b)) and the MHD continuity equation
(eq. (3.1a)). Further the potential definitions, Maxwell’s equations and the linearized
E-cross-B drift velocity (eq. (2.17)) are used, assuming that the fluid velocity ṽ is
mainly given by the perturbed Ẽ × B0 motion. The theory is restricted to Shear-Alfvén
waves as described in subsec. 3.1.1. This allows to neglect density perturbations p̃, to
set B̃‖ = 0, as well as Ẽ‖ = 0 (due to the divergence-free nature of the electric field
in ideal MHD, k · E = 0 and k‖B0). Again, a steady-state equilibrium is assumed,
neglecting equilibrium electrostatic potentials (Φ0 = 0) and equilibrium plasma move-
ment (v0 = 0). Further, the low-β limit is considered, that allows one to ignore the
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equilibrium plasma pressure (p0 = 0) terms.
All quantities are rewritten in a straight field line coordinate system (see sec. 4.2.2),
under the assumption of a large-aspect ratio (see eq. (2.1)), i.e. one can chose the
inverse (local) aspect ratio as a smallness parameter ε := r/Rmag . In the presented
first order approximation of toroidicity, all terms of O (ε2) and higher are neglected.
The terms of order O (ε) are kept only if there is a second derivative in the perturbed
quantity. The electric potential perturbation is then assumed to depend on the radial
position r in its amplitude, and to be periodic in the toroidal ζ as well as the poloidal θ
direction. Thus, it can be expressed as a Fourier composition of all poloidal harmonics
m and toroidal harmonics n:

Φ̃ =
∑

n,m
Φn,m(r)exp (−imθ + inζ). (3.22)

As will be seen later, the mode (n,m) is coupled only poloidally, and in this approxima-
tion, only to the neighboring poloidal harmonic m± 1. Due to axis symmetry, they are
completely independent on each other in the toroidal direction, and therefore, one can
calculate Φ̃ for each n individually. In the following, we focus on the calculation of one
arbitrary n, i.e. drop the sum over n for simplicity. A new wave function is introduced,

Ẽm(r) =
1

r
Φm(r), (3.23)

giving a set of equations, one equation for each poloidal harmonic. This set is coupled:
each equation for the mth poloidal harmonic Ẽm includes terms of the neighboring
harmonics Ẽm±1 as well. At this point, a parallel wave vector is introduced,

k‖ =
1

Rmag

�

n−
m

q(r)

�

. (3.24)

It is shown in app. C, sec. C.2, that k‖ is the parallel wave vector of the cylindrical limit,
i.e. the wave equation in zeroth-order approximation (leaves away all terms O (≥ ε)).
To get rid of the dependence of θ and ζ, one multiplies with the complex conjugate
exp (imθ − inζ) and integrates over both angles. In a last step, in small terms, such as
those with the radial derivative of the Shafranov shift as well as those ∝ r/Rmag, the
wave vector is replaced by its gap value. The gap is the position where the wave vector
of m equals those of the neighboring harmonics m+ 1. Its value is then given by the
Shear-Alfvén dispersion relation. At all other radial positions, terms of the order O (ε)
can be neglected.
The final form of the Shear-Alfvén wave equation in the low-β limit in large-aspect
ratio toroidal geometry reads [45]:

0=

�

Pm Q
Q Pm+1

��

Ẽm
Ẽm+1

�

. (3.25)
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The diagonal elements P and the off-diagonal elements Q are the following differential
operators:

Pm =
d

dr
r3

�

ω2

v2
A

− k2
‖m

�

d

dr
− (m2− 1)r

�

ω2

v2
A

− k2
‖m

�

+

�

ω2

v2
A

�′

r2,

Q =
5

2
ε

d

dr

ω2

v2
A

r4

a

ω2

v2
A

. (3.26)

The prime (′) denotes the radial derivation. This is the Shear-Alfvén wave equation
for the first order toroidal approximation. The first order of toroidicity is kept in all
terms of the second derivative d2 Ẽm/dr2, since they become significant only in the gap
regions, i.e. the regions where the second derivatives almost vanish. In all other terms,
toroidicity is neglected. These wave equations are coupled to the neighboring poloidal
harmonic due to the toroidal geometry imposed by the toroidal system.
In the cylindrical limit, the off-diagonal elements vanish, leaving a decoupled system
of equations [46]:

0= Pm Ẽm,

0=
d

dr
r3

�

ω2

v2
A

− k2
‖m

�

d

dr
Ẽm − (m2− 1)r

�

ω2

v2
A

− k2
‖m

�

Ẽm +

�

ω2

v2
A

�′

r2 Ẽm.

(3.27)

In the following, the physical nature of Shear-Alfvén modes in toroidal devices is in-
vestigated. The wave equation eq. (3.25) is a second order linear ordinary differential
equation for the wave amplitude Ẽ depending on the radial coordinate r. If the co-
efficient in front of the second derivative becomes zero, the equation is fulfilled only
by Ẽ(r) = 0 ∀r. The condition that leads to this case, forbidding the existence of any
Shear-Alfvén wave, is called the Shear-Alfvén continuum. As the wave equation is a cou-
pled system of equations, this condition can be calculated by setting the determinant
of the coefficients in front of the second derivative terms equal zero [47]:

0= r3

�

ω2

v2
A

− k‖m

�

︸ ︷︷ ︸

from Pm

r3

�
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ε
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. (3.28)

Solving for ω2 gives

ω2(r) =
k2
‖m+ k2

‖m+1 ±
q

(k2
‖m− k2

‖m+1)
2+ 4

�

5
2
ε r

a

�2
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‖mk2

‖m+1

2
�

1−
�

5
2
ε r

a

�2
�

︸ ︷︷ ︸

k̄‖

v2
A. (3.29)

In the cylindrical limit, the Q term within the determinant does not exist, leading to
a decoupling of m and m+ 1. Performing the transition from first order toroidicity to
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cylinder means setting ε→ 0. This simplifies Eq. (3.29) to

ω2(r) =

(

+k2
‖m v2

A

−k2
‖m+1v2

A.
(3.30)

Note two important facts: through k‖m and vA, the Shear-Alfvén continuum eq. (3.29)
depends on the q profile and the density profile n(r). Also, the wave vector is now space
dependent. Second: although eq. (3.30) formally looks like the dispersion relation for
the Shear-Alfvén wave in an homogeneous plasma (eq. (3.13)), these equations for the
Shear-Alfvén continua express the contrary, resonant absorption of the Alfvénic waves
(evoked by the inhomogeneous plasma geometry). The Shear-Alfvén continuum gives
those frequencies ω(r) that are strongly damped (at least in the frame of this theory).
Therefore, the damping is referred to as continuum damping [48]. The effect of phase
mixing is smallest in regions where the Shear-Alfvén continuum is flat. This is the
case, where both q(r) and n(r) are relatively flat. These locations can be viewed as a
potential site for a Shear-Alfvén mode. Thus, n- and q profile affect strongly the radial
structures of Shear-Alfvén modes.

In the MHD model, the radial structure of the wave field perturbation Ẽ (obtained from
eq. (3.25) or also eq. (3.27)) has a singularity at the radial surface where the mode
frequency is resonant with the local continuum, ω = k‖(r)vA(r) – the resonant layer.
Ideal MHD does not allow the wave to propagate perpendicular to the magnetic field
(ω 6=ω(k⊥)), but causes resonant absorption. Within the MHD model, the singularity
is resolved only outside the continuum. However, if one goes beyond MHD, accounting
for kinetic effects, the singularity in the vicinity of the resonant layer can be resolved.
In this region, the perpendicular wavelength 2π/k⊥ is non-negligible, since it becomes
comparable to the ion gyroradius ρi , and finite Larmor radius (FLR) effects become
important. The ions do not need to follow the magnetic field lines any more, whereas
the electrons do (due to their smaller gyroradius). This results in a charge separation
and a coupling to the Kinetic Alfvén Waves (KAW). Mathematically, the singularity is
resolved in eq. (3.25) and eq. (3.27) due to higher order derivatives. At the resonance
layer, the concept of phase-mixing is replaced by the concept of mode conversion [49]
from an MHD eigenmode to a short wavelength KAW. Thus, the KAW can intersect the
continuum.

When plotting the Shear-Alfvén continuum for the toroidal case, one can see the dis-
appearance of the crossing point, giving rise to a gap instead, the Shear-Alfvén gap.
Within this model, Alfvén modes in toroidal geometry such as a TOKAMAK can be ex-
cited only at frequencies, where there is a gap in this continuum and therefore, the
continuum damping is weak (typically γ/ω = 0.01 ... 0.1%) [49]. These waves are
called Toroidicity-induced Alfvén eigenmodes (TAE) [50, 51]. However, in case the
mode spreads over a wide radial range, parts of its structure might intersect with a
local Alfvén resonance. The eigenmode then experiences a small amount of continuum
damping [52–54].
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(a) given analytically. (b) given numerically (by the CASTOR code) [55].

Figure 3.1: Toroidal Shear-Alfvén continuum (a) for a safety factor profile q = 1+ (r/a)2,
constant density profile n(r) = const. and B = B0(1− r/Rmag); the cylindrical
spectra (gray curves) for m=-1 and m=-2, with n=-1 cross at the flux surface
where q = 1.5. (b) numerically calculated for an ASDEX Upgrade equilibrium.

Fig. 3.1a shows both, the Shear-Alfvén continuum in cylindrical (gray curves) and in
toroidal (colored curves) geometry. The two curves for the neighboring harmonics in
the cylindrical case cross at a radial position, say r0, which is the position of the gap in
the toroidal geometry. Via

k‖mvA
!
=−k‖m+1vA

one obtains an expression for q at this radial position r0,

q(r0) =
m+ 1

2

n
. (3.31)

It is also possible to calculate the frequency of the crossing-point (eq. (3.30)), which is
approximately the TAE frequency ωTAE:

ωTAE =ω(r0) =
vA

2qRmag
. (3.32)

Inserting k‖m+1 = −k‖m into the toroidal Shear-Alfvén continuum eq. (3.29) gives the
width of the gap ∆ω:

ω(r0) =
k‖mvA
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a
. (3.33)
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TAEs are characterized by global radial ex-
tent with their maximum located at the ra-
dial position r0 of the gap, which strongly
depends on the q profile. In the spec-
trum, their frequencies are located at ei-
ther gap boundary (usually 100-300 kHz).
Due to the coupling, each mode consists
of two neighboring poloidal harmonics in
this model. If both harmonics are in phase
– which is the case for modes with fre-
quencies at the lower gap boundary – the
mode is called even. If their phase is op-
posite to each other – that happens for fre-
quencies at the upper gap boundary – the
mode is odd (both see fig. 3.2). As a con-
sequence, even modes interfere construc-
tively only on the LFS, an effect that is of-
ten referred to as ballooning. Even TAEs
are more frequently observed than odd
TAE, which exist only in low-shear plas-
mas [56]. It becomes clear, that the align-
ment of the gap structure strongly affects
the mode structure also in the poloidal di-
rection.

Figure 3.2: The Shear-Alfvén continuum of
a JET discharge with an even
and an odd TAE frequency in-
dicated, as well as their radial
structures. Source: [56]

As we saw in this section, the gap arises due to the toroidicity, when bending a cylin-
drical plasma to a torus. In realistic fusion devices, however, the plasma shape is in
general more complex. Mostly, the circular cross section is elongated, and even the
up-down symmetry might be broken. These two geometry features give rise to further
gaps, as shown in fig. 3.3.

Figure 3.3: Shear-Alfvén continuum of the AUG discharge #21067 at 2.99 s shows the toroi-
dicity-induced gap (which is closed at the plasma edge) but also the ellipticity-
induced gap and a small gap due to non-up-down symmetry. Source: [49]
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Reversed Shear-Alfvén Eigenmode or Alfvén Cascade

In the late 1990s, an experimental discovery of Shear-Alfvén modes with a frequency
sweeping upwards on the equilibrium evolution time scale was made in different TOKA-
MAKs, first in JT-60 [57]. In JET [58], the same upwards sweeping frequency was found
during q relaxation (i.e. decrease, due to current ramp-up). Thus, the new mode was
called Alfvén cascade (AC).
This mode differs considerably in its mode structure from the TAE: especially, it is thin-
ner (as it appears at positions, where the q profile is not flat, but reversed) and located
further inside (where ŝ is smaller). ACs typically emerge in ‘bunches’ outside the TAE
frequency gap, thus the AC sweeping starts at frequencies significantly below the TAE
frequency. In the course of the q profile relaxation, the frequency grows, until a transi-
tion from AC into TAE takes place.
In ref. [59], the excitation of these modes is explained through energetic particle drive
in a reversed shear equilibrium, therefore, ACs are also called Reversed Shear-Alfvén
Eigenmodes (RSAE). However, today it is known that the existence of the mode does
not necessarily require the reversal of the q profile nor the existence of energetic par-
ticles, but depends also on the background temperature and density profiles [60]. The
theoretical description resembles that for TAEs, but takes into account also second-
order toroidicity MHD effects, i.e. O (ε2) terms [60]. However, the RSAE are weakly
damped and easily destabilized by energetic particles [59]. The assumption of a very
localized (thin) mode at a position of shear ŝ ≈ 0 leads to decoupling, and therefore
the RSAE mode is cylindrical without a coupling to its neighbor poloidal harmonics.

3.1.3 Magneto-acoustic Waves in Fusion Plasmas – BAE

By ignoring the parallel plasma displacement ξ‖, all acoustic parts within the Alfvén
waves are neglected. However, it can be seen from the second branch in the plasma
wave dispersion relation (eq. (3.14) for homogeneous plasmas) that there is a coupling
between Shear-Alfvén waves and acoustic waves through the presence of both a mag-
netic (vA) and a compressional (vS) term. This mixing of the Alfvén and the acoustic
branch depends on the ratio of vS/vA and thus on β (eq. (3.16)). It is stronger in
the lower frequency range for fusion-relevant β values [61], where the compressional,
acoustic part cannot be neglected any more. Due to the finite β , the Shear-Alfvén con-
tinuum with the poloidal mode number m couples to the sound continuum with the
mode numbers m− 1 and m+ 1, leading to another type of instability. As it requires
β 6= 0, it is called Beta-induced Alfvén eigenmode (BAE). Due to the compressibility, it
has an additional parallel component ξ‖ with the poloidal harmonics m± 1. However,
in case of low-β plasmas, the perpendicular displacement is still larger ξ⊥ > ξ|, leading
to one dominant poloidal harmonic m. Nevertheless, the BAE is neither pure Alfvénic,
nor pure acoustic.
Experimentally, it is observed in many TOKAMAKs, first described in ref. [62] as a dan-
gerous instability with similar properties but at around 30-50% of the TAE frequency
(30-70 kHz) appearing in a spectral gap that is created by finite-β effects.
For frequencies close to the thermal ions’ toroidal precession frequency ωtp,i th, the
MHD approximation becomes invalid, due to existing resonances. A kinetic description
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of the BAE continuum is given in ref.s [63, 64]. The full kinetic BAE continuum (see
ref. [49]) can be approximated to take the following form, if q is large and k‖ is small
[65]:

ω2
BAE =

v2
th,i

R2
mag

�

7

4
+

Te

Ti

�

, (3.34)

with v the velocity and T the temperature of the plasma background ions (index i) and
electrons (index e). The kinetic BAE description reveals the geodesic curvature-induced
coupling of the Alfvén wave to the sound wave. However, in this approximation, the
diamagnetic and shaping effects together with trapped particle contributions were ne-
glected. They modify the dispersion relation in a non-trivial way, leading to a downshift
of the BAE continuum frequency, that has to be taken into account when comparing to
experimentally measured BAE frequencies [64].
The BAE is a core-localized, electromagnetic mode with an extent of around 20 to 40%
of the minor radius. As the dominant harmonic does not couple to its neighbor poloidal
harmonics, there is no ballooning on the LFS opposite to the case of the TAE, i.e. the
BAE is a cylindrical mode.
Further described by the same continuum relation (in the long wavelength limit) is
the so-called geodesic acoustic mode (GAM), a mostly electrostatic n = 0 BAE, usually
located at the plasma edge.
Due to the lower frequencies of the magneto-acoustic waves, the energy which is nec-
essary for background particles to resonate with the wave is lower. This results in a
stronger damping of BAE/GAM compared to Shear-Alfvén modes. The next section is
dedicated to damping mechanisms.

3.2 Fast Particle Resonance, Mode Drive and Damping

3.2.1 Mode Background Damping Mechanisms

One of the major damping mechanisms, the resonant absorption of Alfvén waves,
evoked by the inhomogeneous plasma geometry – continuum damping – has already
been discussed in sec. 3.1.2. But further damping mechanisms exist and are shortly
presented in the following.

Radiative Damping

In the kinetic description of plasma waves (however still in the limit vi,th � vA), the
inclusion of finite Larmor radius (FLR) effects lead to a modification of the continuum
curve [66, 67], from eq. (3.29) to

ω=±k̄‖mvA

�
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+
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Ti

�

(k⊥ρi)
2
�

(3.35)

The term in square brackets evokes a finite radial group velocity, as ∂ω/∂ k⊥ 6= 0.
Although this makes the mode existence within the continuum possible in the first
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place (as explained in sec. 3.1.2), it can also lead to the damping of a TAE: a TAE with
a frequency close to the local continuum frequency can be converted into a KAW, an
effect called tunneling. Due to ∂ω/∂ k⊥ 6= 0 energy is carried radially away from the
localization of the TAE in the from of an outgoing radiative kinetic Alfvén wave (KAW).
Therefore, the effect is called radiative damping [68].

Ion Landau Damping

A negative slope in a particle velocity distribution function ∂ f /∂ E is known to cause
Landau damping [69, 70] (see textbooks as e.g. [36]) if particles are resonant with
the wave. However, the distribution function of the thermal ions in a typical fusion
plasma provides only a small number of particles that are fast enough to fulfill the
resonance condition with the AE, vi‖ = vA, since most ions have vi‖ � vA. It is only
due to the magnetic field curvature, which modifies the resonance condition, that ion
Landau damping becomes relevant [30, 71]: the drift velocity vd enters the resonance
condition, giving ω= k‖v‖+ k⊥ · vd. This extra term allows sub-Alfvénic particles with
vi‖ = vA/3 to resonate with the wave.
Though it is small and difficult to predict, it is expected to be the most important
stabilizing effect for global modes in ignited TOKAMAK plasmas [72].

Electron Landau Damping and Trapped Electron Collisional Damping

In typical TOKAMAK plasmas, the thermal velocity of background electrons exceeds by
far the Alfvén velocity ve‖ � vA. Therefore, only a small fraction of electrons – those
with ve,‖ � ve,⊥ satisfy the resonance condition ω = k‖ve‖, causing electron Landau
damping [73]. However, the electron Landau damping is very difficult to predict, as
at rational surfaces, k‖ can become very small (see eq. (3.24)) and thus, very high ve-
locities ve‖ may fulfill the resonance condition there. This resonance is located radially
at q = m/n, and not exactly in the TAE gap q = (m+ 1/2)/n, so that only the tails of
radially extended TAEs are affected. For radially localized modes, the electron Landau
damping effect can be neglected, similar to the effect of continuum damping.
As all electrons with ve,‖ � ve,⊥ are trapped (see sec. 2.2.2,sec. 2.2.3), an alternative
damping mechanism was proposed, caused by the transition of electrons from trapped
to passing orbits due to collisions, trapped electron collisional damping [74, 75]. It can
play a role in higher density plasmas or at lower temperatures.

3.2.2 Mode Drive and Fast Particle Transport

To determine the effect of fast particles, i.e. particles with v� vth,i – also referred to as
energetic particles – on the stability of MHD, a very common and straightforward way
is a hybrid model. The MHD instabilities are calculated as explained previously in this
chapter. As MHD does not cover the intrinsic Alfvénic wave-particle resonances, the
fast particles are taken into account using drift- or gyrokinetic models. It is sufficient,
to introduce the fast particle dynamics only via their pressure tensor. This simplification
is valid, since in typical fusion plasmas, the number density of the fast particles is small
compared to the background plasma, but due to their high energies, the fast particle
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pressure is of the same order as the background pressure. Thus, when using driftkinetic,
a linear operator Lk(ω) enters eq. (3.25) to calculate the pressure terms. With f̃ being
the perturbed particle distribution function, vd the curvature drift velocity in the low-β
limit, and s the different species, it has the following form [47]:

Lk(ω) =
−4πiωr2

c2

∑

s
e

∫

d3 vvds · ∇ f̃s = iLk(ω)ξm. (3.36)

In the driftkinetic model, ref. [47] did an estimation for the linear growth rate, using
α particles with a slowing-down energy distribution function in the large-aspect ratio
limit. The TAE is then highly peaked around the q = (2m+1)/(2n) surface. The result-
ing linear mode growth γ (relative to its unperturbed frequency ω0) can be estimated
by the analytical formula (‘fp’ stands for the fast particle species):
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γ∝ω∗,fp ∝mode harmonics m.

The diamagnetic drift frequency ω∗,s is

ω∗,s =
msc

eB
k × B

∇ f0,s

f0,s
, (3.38)

(3.39)

containing the equilibrium distribution function f0,s of the species s.
The function F is

F(x) = x(1+ 2x2+ 2x4)e−x2
.

Inserting the wave vector as it will be introduced in subsec. 4.4.1, k = n∇ξ−m∇θ ,
the magnetic field in Boozer coordinates eqs. (4.17), and ∇ f0,fp = ∂ f0,fp/∂ψ ∇ψ, the
diamagnetic drift frequency becomes3

ω∗,fp ∝
−nI −mg

J

∂ f0,fp

∂ψ
, (3.40)

which is always a positive expression, as long as ∂ f0,fp/∂ψ < 0, i.e. the fast particle
distribution function decreases with the radius. Thus, this term is an instability driv-
ing term in eq. (3.38). The second term (−1/2) comes from the negative slope in the
slowing-down energy distribution function, and is always < 0, i.e. (Landau) damping.
The last term of eq. (3.37) represents the bulk electron Landau damping. However,
most electrons have ve � vA and cannot resonate with the wave. As a consequence,
this term is very small. The Landau damping caused by thermal ions is neglected in
eq. (3.37), as most ions have vi � vA and only very few thermal ions, those in the
Maxwellian tail, are fast enough, to resonate with the Alfvén waves.

3 ψ is the radial coordinate, which will be introduced in sec. 4.2.
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To understand the driving mechanism caused by the negative slope (∂ f0,fp/∂ψ < 0)
of the radial distribution function, it is important that the radial position ψ is always
connected with a toroidal momentum, pζ (will be shown in eq. (4.45b)): pζ ∝ −ψ.
This means, whenever a particle loses toroidal momentum to the wave (pζ decreases),
ψ will increase, i.e. the particle moves outwards. The inverse process – a particle gains
momentum from the wave and moves inwards – is possible as well. However, in a
distribution function that decreases radially, the dominating process is the first one.
Since the energetic particle density is higher in the center, it provides a source of free
energy for mode drive – as a consequence the wave amplitude grows. As will be shown
in sec. 4.4.2, each change in the toroidal momentum of a particle is related to a change
in particle energy. In the nonlinear stage of the mode evolution, the radial particle
redistribution leads to plateau formation of the distribution function if other sources
and sinks are absent. This process is visualized in fig. 3.4.

ffp(�)

��~-p��

resonance
(in � and E)

net effect:
redistribution

�mode

Figure 3.4: Schematic radial fast particle redistribution due to wave-particle interaction.

The given growth rate was estimated in the limit of small particle orbits, i.e. for orbit
width Wb that are smaller than the mode width Wm , Wb � Wb. The mode width is
given by

Wm =
r2

m ŝ Rmag
. (3.41)

If the particle orbit is comparable to the mode width, Wb ≈ Wm, the growth rates
scales linear with the poloidal mode harmonic γ ∝ m [76]. If the orbit is much larger,
Wb � Wm, the growth rates scales with γ ∝ 1/m2 [77]. Thus, the maximal mode
growth is obtained for modes, that have a radial extent comparable to the resonating
particles’ bounce orbits, as shown in fig. 3.5. This is quite plausible, as a small particle
orbit can pass the mode twice during one poloidal surrounding, leading to a mutual
canceling of each interaction effect. A particle with an orbit much broader than the
mode extent might not pass through the mode at all.
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Figure 3.5: Scaling of the linear mode growth rate with ratio of orbit width to radial mode
width (for passing particles) [72, 77, 78].

3.2.3 Fast Particle-Wave Resonance

As mentioned above, the fast particle-wave interaction requires a distinct resonance
condition to be fulfilled: v‖ ≈ vA. Using the driftkinetic approach and dividing the
distribution function into a linearized part and a non-adiabatic part, ref. [79] rewrites
the particles’ bounce movement as a Fourier series

∝ exp(−iωτ− ipωbτ− in< ζ̇ > τ). (3.42)

There, ω is the wave frequency, ωb the bounce frequency , ωtp ≈< ζ̇ > the bounce
averaged toroidal precession frequency and τ is the time parameter to be integrated
over, in order to average out the bounce movement. Then, the non-adiabatic part can
be seen to be

∝
exp(−i(ω+ nωtp+ pωb)t)

ω+ nωtp+ pωb
. (3.43)

It is also shown, that the resonance for trapped particles requires

ω− nωtp− pωb ≈ 0, (3.44)

and, for passing particles,

ω− nωtp− (p+ nq)ωb ≈ 0. (3.45)

The bounce harmonic p comes from the Fourier decomposition of the bounce move-
ment, thus can take any integer value p = 0,±1,±2, but the most important are the
lower harmonics.



44 Chapter 3. MHD Waves and their Interaction with Fast Particles

1.0 1.5 2.0

-1.0

-0.5

0.0

0.5

1.0

HAGISEquilibrium

R [m]

Z
[m

]

-2 -1 0 1 2

-2

-1

0

1

2

HAGIS Equilibrium

X [m]

Y
[m

]

H
AG
IS
de
ve
lo
pm
en
tb
ra
nc
h

H
AG
IS
de
ve
lo
pm
en
tb
ra
nc
h

-20 -15 -10 -5 0

-1.0

-0.5

0.0

0.5

1.0

Motion on Flux Surface

ζ

θ

H
AG
IS
de
ve
lo
pm
en
tb
ra
nc
h

0.0 0.2 0.4 0.6 0.8 1.0
(x10-4)

-1

0

1

2

3

4

(x10-6) Canonical Angular Momentum

Time [s]

C
ha

ng
e

in
P ζ

[%
]

H
AG
IS
de
ve
lo
pm
en
tb
ra
nc
h

mag. axis

bounce point

line of particles
bounce points

particle
orbit

'

(a) How the radial parameter for a
resonance plot is obtained (pink line).

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

loss region

loss boundary

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

Energy /MeV

5
5

k
H

z
(
p
=

-1
)

1
2
0
k
H

z
(p

=
1
)

5
5
k
H

z
(
p
=

1
)

1
2

0
k
H

z
(p

=
0
)

5
5
kH

z
(p

=
2
)

120kHz (p
=2)

55kHz (p
=3)

120kH
z (p

=3)

5
5
k
H

z
(p

=
4
)

1
2

0
k
H

z
(p

=
4
)

55kHz (p=0)
120kHz (p=-1)

≈
z

ra
d

ia
l 

p
o

si
ti

o
n

(b) Resonances (pink) in phase space for a 120 kHz n = 4
and a 55 kHz n = 4 mode in the AUG equilibrium #23824,
t = 1.16 s. The blue region is the loss area for this equilib-
rium.

Figure 3.6: The bounce point location of trapped particles bouncing vertically above the mag.
axis (a) is used as radial parameter (vertical axis) for the resonance plot (b). As
second coordinate, the energy is chosen to be displayed (horizontal axis). (Note:
the resonance plot was created with HAGIS, without its vacuum extension.)

The bounce frequency (see eq. (2.34)) depends on the particles perpendicular energy
via ωb ∝

p

E⊥, 1/q(ψ), whereas its toroidal precession frequency (see eq. (2.24)) is
ωtp ∝ E⊥, q(ψ). A convenient (but not the only) way to visualize the resonances in
phase space is to contour plot eq. (5.2) in the energy-radius space [80]. To get rid of
the pitch λ and the poloidal coordinate θ , the resonance condition is evaluated (by
the HAGIS Code) along a radial line from the magnetic axis vertically upwards (see fig.
3.6a). Thereby, it is assumed, that all particles have their bounce point in this region,
i.e. have λ ≈ 0. Of course, this is an approximation that is only true for ICRH-heated
scenarios, where the fast particles are indeed generated in this region with λ≈ 0. Fur-
ther, the line then serves as radial coordinate, as the bounce averaged radial position
of a particle is approximately remaining on one flux surface. In this reduced phase
space (from 5D to 2D), the regions where the resonance condition is fulfilled form the
so-called resonance lines (pink in fig. 3.6b). Areas where no particles can be situated,
as they would not be confined are loss regions (turquoise). The loss region is separated
from the confined region by the loss boundary.

The resonance lines as well as the loss region depend strongly on the q profile. They
help to predict and explain the fast-particle interaction with waves at certain radial
positions and with certain frequencies. However, they do not contain information
about how dense the resonant areas are populated, nor if other requirements for wave-
particle interaction are fulfilled, such as a radial gradient at the wave position. To
model not only the possibility of wave-particle interaction but also the interaction pro-
cesses, the full HAGIS code will be used. The next chapter is dedicated to describe the
HAGIS model.



CHAPTER 4

The HAGIS Model and the Inclusion
of an Ẽ‖ Term

For a complete nonlinear description of fast particle-wave interaction, the spatial res-
olution has to cover several orders of magnitude, from millimeters to the scale of me-
ters. Also the time and velocity space require high resolution, due to the high wave
frequencies and the distinct phase space resonances. The nonlinear multi-scale prob-
lem cannot be solved in a fully consistent way so far. Rather, so-called hybrid models
are used, which either base on an MHD model, where the fast particle dynamics is
introduced via an energetic particle pressure tensor. Or, the fast particle distribution is
evolved in a drift- or gyrokinetic model and the wave contribution enters the problem
via a set of pre-calculated modes. This way, the energetic particle nonlinearities are
kept, but the MHD nonlinearities are usually dropped. The HAGIS code follows this
latter principle: only the energy transfer between waves and fast particles is accounted
for. This leads to a redistribution of the fast particle population in phase space and to
the evolution of the mode amplitudes and their real frequencies. However, the wave
structures and so far also their damping is kept fix during a simulation. Saturation is
reached in the nonlinear stage due to the local flattening of the driving gradient in the
radial fast particle distribution. Further, the stochastization of the fast particle orbits
caused by overlapping resonances with different modes influences the saturation level.

The scenarios considered in chapter 5 and chapter 6 are weakly nonlinear with wave
damping rates that are negligibly small (® 1%). Thus, the dependency of the lin-
ear background damping from the radial mode structure does not play a role so far.
However, this changes when studying strongly damped modes, such as acoustic low-
frequency electrostatic modes (GAMs) or the nonlinear behavior of linearly stable
modes. Of special interest is not only the study of waves near the marginal stability
threshold [81, 82], but also the investigation of the strong nonlinear regime, i.e. the
behavior of strongly damped non-MHD-like modes, such as energetic particle modes
(EPMs). When trying to answer the question under which conditions the strong nonlin-
ear regime will be dominating – probably with avalanche-like transport, the inclusion
of the background damping with non-local structure into the model is crucial. With a
view to future studies in this direction, the approximation of a vanishing parallel elec-
tric field Ẽ‖ in the HAGIS model is dropped in this chapter, giving rise to an effective
radial damping structure.

This chapter is organized as follows: after a short technical overview over the HAGIS

code, the Boozer coordinates are introduced as the relevant coordinate system. The
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equations of motion for the guiding center of the fast particles are derived in sec. 4.3,
using the Hamiltonian formalism in the Boozer coordinate system. Afterwards, the
effect of the fast particles on the waves is calculated, following the description given
by Pinches [72], but dropping the approximation of a vanishing parallel electric field
Ẽ‖. At the end of the chapter, an outlook is given, concerning on-going work.

4.1 HAGIS Overview

The HAGIS code [72, 83] models the interaction between a distribution of energetic
particles and a set of Alfvén Eigenmodes. It calculates the linear growth rates as well
as the nonlinear behavior of the mode amplitudes and frequencies, and the fast ion
distribution function evolution, determined by kinetic wave-particle nonlinearities. It
is fully updated to work with MHD equilibria given by the recent HELENA [84] ver-
sion. The plasma equilibrium for HAGIS is based on the CLISTE code [85, 86], then
transformed via HELENA to straight field line coordinates and to Boozer coordinates by
HAGIS. Some details about HAGIS:

• nonlinear, driftkinetic, perturbative
(delta-f), particle-in-cell (PIC) code,
written in FORTRAN (current release:
no. 10.4).

• newly updated (for this thesis) to re-
cent RWSHOT and HELENA versions.

• extended version by M. Brüdgam
with vacuum region: possibility to
track particles re-entering the plasma
[55], and investigate losses including
finite larmor radius effects.
Within this thesis, this vacuum ex-
tension was brought to use in combi-
nation with realistic ASDEX Upgrade
equilibrium geometry.
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Figure 4.1: HAGIS equilibrium

• Implemented for this thesis: possibility to read LIGKA eigenfunctions (electric and
magnetic part) and to simulate with non-vanishing Ẽ‖ term1. This new feature is
implemented from HAGIS Version 2440 (development branch) on2.

• Implemented for this thesis: ICRH-like distribution function through a consistent
loading & weighting scenario3.

• Built in the frame of this thesis: Comprehensive DIAGNOSTICS tool for post-
processing, written in PYTHON 2 language. Its graphical user interface is based
on the toolkit TKINTER. For further details see the manual.

1 Affects the files readsp.F, spif.m and falpha.m
2 Most important changes in files falpha.m, and rhs_waves.F; require the input parameter spcpet==15
3 Most important changes affect the file f0_method0.m.
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4.2 The Coordinate System

4.2.1 Magnetic Flux Coordinates

If it is a valid approximation to consider good magnetic surfaces Ψp only (see sec. 2.1),
the poloidal magnetic flux function Ψp(ψ,θ ,ζ) can be reduced to be a function of the
radius only: ψp(ψ). The coordinate ψ can be interpreted as the toroidal flux inside
a magnetic surface, and ψp(ψ) represents then either the poloidal flux outside the
magnetic surface, or the (equal) poloidal flux through a surface that is spanned by the
minor radius and the magnetic axis (see fig. C.1).

Figure 4.2: Schematic view of a torus, with flux surfaces and a set of toroidal coordinates.
Adapted from: [72].

Thus, flux coordinates are curvilinear coordinate systems, in which one of the coordi-
nates, usually denoted ψ, the flux label, is constant over each flux surface. As the mag-
netic field lines lie within the surface, it holds4 B ·∇ψ= 0, in other words: the contra-
variant component of the magnetic field direction vanishes Bψ = 0 and ψ = const.
defines a sequence of nested tori. The other two coordinates form a grid within each
flux surface such that they close upon themselves once around the poloidal (θ) as well
as the toroidal (ζ) direction, shown in fig. 4.2.
Flux coordinates are advantageous, as they enable the fast streaming of particles along
the magnetic field lines to be separated from the slow perpendicular drift movement.
Any function f that fulfills the condition B · ∇ f = 0 is a flux function.

The divergence-free nature of the magnetic field, ∇ · B = 0 then implies that

∇ · B =
1

J

�

∂

∂ θ
(JBθ ) +

∂

∂ ζ
(JBζ)

�

= 0 (4.1)

with J being the Jacobian of the coordinate system. It follows, that the magnetic field
might be defined with the help of a stream function ν:

JBθ =−
∂ ν

∂ ζ
, JBζ =

∂ ν

∂ θ
(4.2)

4 analogously: j · ∇ψ= 0.
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4.2.2 Straight Field Line Coordinates

Coming from the idea of a magnetic flux coordinate system, one can further specify
the ‘angular’ coordinates θ and ζ, such that the magnetic field lines appear as straight
lines on a flux surface. This is achieved by choosing the stream function ν of eq. (4.2)
to be linear in θ and linear in ζ , as shown in fig. 4.3.

_
_

0

B

2�

2�

�

�

Figure 4.3: A toroidal flux (ψ = const.) surface with straight magnetic field lines in the
appropriate θ − ζ coordinates.

The stream function can then be written as ν = u(ψ)θ + w(ψ)ζ. The magnetic field
B = Bψeψ+ Bθeθ + Bζeζ becomes then, using the relation eqs. (B.3a):

B =
∂ ν

∂ ζ
∇ψ×∇ζ+

∂ ν

∂ θ
∇ψ×∇θ (4.3)

And with the chain rule applied on ν ,

∇ν =
∂ ν

∂ψ
∇ψ+

∂ ν

∂ θ
∇θ +

∂ ν

∂ ζ
∇ζ (4.4)

one obtains

B =∇ψ×∇ν (4.5)

which is the Clebsch form for the magnetic field. Calculating the poloidal and the
toroidal flux , the meaning of ν becomes clear: The toroidal flux between the adjacent
surfaces ψ and ψ+ dψ is (see eq. (C.4)):

dΨt =
1

2π

∫ ψ+dψ

ψ

∫ 2π

0

∫ 2π

0

B · ∇ζ
︸ ︷︷ ︸

Bζ

dx3

=
dψ

2π

∫∫

1

J

∂ ν

∂ θ
︸︷︷︸

=u(ψ)

Jdθdζ

= 2π u(ψ)dψ
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⇒ u(ψ) =
1

2π

dΨt

dψ
(4.6)

and similarly with the poloidal flux, eq. (C.6):

w(ψ) =−
1

2π

dΨp

dψ
(4.7)

Using the prime to denote the derivative with respect to ψ, B is then written as

B =
ψ′t
2π
∇ψ×∇θ −

ψ′p

2π
∇ψ×∇ζ (4.8)

B = Bt+ Bp (4.9)

where Bt is the toroidal magnetic field and Bp the poloidal magnetic field .
The co-variant components of the vector potential are then flux functions Bθ = Bθ (ψ)
and Bζ = Bζ(ψ), and all variation of B upon a flux surface is then hidden in the basis
vectors ∇θ and ∇ζ.

4.2.3 Boozer Coordinates

At the beginning of the 1980s, Boozer [87, 88] introduced a specific coordinate system,
now called the Boozer coordinates: as a certain type of straight field line coordinates,
the Boozer coordinates have the property that the magnetic field components required
to describe the particle motion can be chosen to be functions ofψp alone. Additionally,
the last degree of freedom is used to chose the Jacobian to be a flux function. White
and Chance [89] used the Boozer coordinate system with the further assumption of
toroidal symmetry. This implies that all equilibrium quantities such as the metric ten-
sor and field components are independent of the azimuthal angle ζ .
In an axis symmetric toroidal device, ζ coordinate surfaces are vertical planes, so that
∇ζ points in the symmetry direction. It therefore holds∇ψ·∇ζ= 0 (implying the met-
ric tensor components gψζ = 0). To obtain physical quantities independent on ζ, the
poloidal coordinate must be chosen such, that ∇θ · ∇ζ= 0 (again, implying gθζ = 0).
The magnetic field can then be written as a composition of a horizontal and a orthog-
onal component (see app. D.1) [90]:

B = Bh(ψ,θ) ∇ψ×∇θ + BO(ψ,θ) (∇ψ×∇θ)×∇ψ (4.10)

The divergence-free nature ∇ · B allows to calculate BO (see app. D.1):

BO =
Γ(ψ)

J(∇ψ×∇θ)2
, (4.11)

with Γ a so far undetermined flux function. However, Γ(ψ) = 1 if one chooses the
poloidal flux Ψp to serve as flux label coordinate ψ, say ψ=Ψp/(2π).
As mentioned above, equilibrium force balance implies j · ∇ψ = 0, i.e. the plasma
current is a flux function as well. Using the Maxwell relation j = ∇× B, Bh is found
(see app. D.1):

Bh =
g(ψ)

J(∇ψ×∇θ)2
, (4.12)
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with g as another undetermined flux function.

Knowing this, the magnetic field can be written with its co-variant components,

B = Bψ∇ψ+ Bθ∇θ + Bζ∇ζ. (4.13)

These are obtained by taking the scalar product of eq. (4.10) with the appropriate co-
variant basis vector e i (see app. D.2).
In the same way, one obtains the contra-variant components of B (see app. D.3), and
then calculates B2 from B2 = Bψ · Bψ+ Bθ · Bθ + Bζ · Bζ,

B2 =
1

J2(∇ψ×∇θ)2
[(∇ψ)2+ g2]. (4.14)

Evaluating this in cylindrical coordinates (R,ϕ, z) = (Rmag+ψ cosθ ,−ζ,ψ sinθ) gives
the familiar large-aspect ratio approximation for the magnetic field

B(r)≈ B0(1− r/Rmag cosθ) (4.15)

As Boozer coordinates are meant to be a type of straight field line coordinates, the
magnetic field lines have to be straight in the eθ – eζ – plane, i.e. Bζ/Bθ = const. on
one flux surface. This constant is named q(ψ) in the following. The Bζ component (of
eq. (D.11c)) becomes then quite simple, using eq. (D.11b) in Bζ = q Bθ :

Bζ =
q

J
(4.16)

Calculating the toroidal magnetic flux (according to eq. (C.4)) reveals that the constant
q = Bζ/Bθ is the familiar safety factor of eq. (2.4) in Boozer coordinates.
Together with eq. (4.14), both representations of Bζ (eq. (D.11c) and eq. (4.24)) can
be used to recalculate Bθ (eq. (D.9), see app. D.3). By demanding B · ∇ψ = 0, the
Bψ component can be rewritten, using the contra-variant metric coefficients, which are
(eq. (B.6a)) gψψ = (∇ψ)2, gψθ = ∇ψ · ∇θ and gψζ = ∇ψ · ∇ζ. Summarized, it is
found that

Bψ = δ, (4.17a)

Bθ = I , (4.17b)

Bζ = g, (4.17c)

with

I := JB2 − qg, (4.18)

and (from eq. (D.14))

δ :=−
Igψθ + ggψζ

gψψ
. (4.19)

And B can be written in its co-variant components:

B = δ∇ψ+ I∇θ + g∇ζ. (4.20)
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As one can see, Bψ is related to the degree of orthogonality of the system, and is in
general a small quantity – the smaller the more circular the cross section of the equi-
librium.
Note: as mentioned at the beginning of this section, the metric of the Boozer coordi-
nate system was chosen such, that gψζ = gθζ = 0. Geometrically, this translates into
orthogonality of the respective contra-variant basis vectors. Furthermore, the angular
co-variant components I and g depend on the coordinate ψ alone, which is an im-
portant feature of this system, especially within the development of the Hamiltonian
formulation. The Jacobian might be written in terms of these co-variant components:

J=
I + gq

B2 (4.21)

It can be shown (see app. D.4), that I is closely related to the toroidal current pen-
etrating one poloidal cross section, whereas g represents the total poloidal current
penetrating one toroidal surface.

For the contra-variant components, it is found (see app. D.3):

Bψ = 0, (4.22)

Bθ = 1/J, (4.23)

Bζ = q/J. (4.24)

A frequently used form for the magnetic field B is obtained, when writing it as compo-
sition of its contra-variant components, i.e.

B = Bψeψ+ Bθeθ + Bζeζ (4.25)

B = 0−
1

J
J(∇ψ×∇ζ) +

q

J
J(∇ψ×∇θ)

B = ∇(ζ− q(ψ)θ)×∇ψ (4.26)

The fact, that q is dependent only on ψ leads to ∇q = ∂ q/∂ψ ∇ψ, which is parallel to
∇ψ and could therefore be interchanged with the first derivation.

4.3 Guiding Center Equations

In the following, the guiding center Lagrangian for the fast ion movement is derived
from that for a free charged particle moving in an electromagnetic field. Canonical
variables are identified and the gyro-averaging procedure is performed as usual for the
driftkinetic approximation [39], reducing phase space by one dimension. The equa-
tions of motions are obtained via the Hamiltonian formalism, i.e. differentiating the
guiding center Hamiltonian with respect to these canonical variables.
The Boozer coordinate system is used as a reference frame.
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4.3.1 The Guiding Center Hamiltonian

In a stationary reference frame, the exact particle Lagrangian of the form

L =
∑

i

pi q̇i −H

reads

L = (mV + eAS) · Ẋ −
1

2
mV 2− eΦS (4.27)

with X , V , AS , ΦS the exact particle position, velocity, the vector and scalar potential
in this reference frame S. Now we transform these quantities into a possibly time-
dependent reference frame (such as e.g. a time-dependent magnetic flux coordinate
system) with the coordinates χi: the particle position and velocity relative to this frame
are named x and v , and are related to the coordinates in the stationary frame via

V =
∂ x

∂ t
+
∂ x

∂ χi
χ̇ i

V = v + VB (4.28)

with VB the velocity of the frame (e.g. the magnetic field). By defining the field poten-
tials as

A= AS +
m

e
VB and Φ = ΦS − AS · VB −

1

2

m

e
V 2

B (4.29)

it is possible to write the Lagrangian in its well-known form

L = (mv + eA) · ẋ −
1

2
mv2− eΦ (4.30)

similar to its appearance in a stationary reference frame, although the coordinates
(x , v) are defined with respect to the new, non-inertial system. All terms of inertia
that arise naturally in every accelerated frame are packed into the new definition of
the field potentials, eq. (4.29).
In the following, the relative magnitudes of these terms of inertia should be considered:
recalling the Larmor radius ρ = mv⊥/(eB) and the common estimation of the magnetic
field strength B ≈ A/L (from B =∇× A), with L a typical scale length upon which the
field varies, one finds the relative magnitude of the term of inertia in A to the first term:

|mVB|
|eAB|

≈
VB

v⊥

ρ

L
(4.31)

As both, VB/v and ρ/L being small, it can be assumed that A ' AS , and also Φ '
ΦS − AS · VB.
If the driftkinetic approximation is valid, i.e. the field varies only on temporal and
spacial scales much larger than the gyromotion (∇B � B/ρ and Ḃ � Ω · B), the
magnetic moment µ = mv⊥/(2B) is invariant (see sec. 2.2). As it couples to external
forces by means of the mirror force, Fm = −∇(µB), the term µB = 1/2mv2

⊥ can be
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interpreted rather as potential energy than as kinetic energy. The Lagrangian can then
be written as

L =
1

2
mv2
‖ + eA(x ,t) · v −µB− eΦ(x ,t), (4.32)

a form that was first given in ref. [91]. Originally, there were six phase space coordi-
nates, which could have been expressed e.g. by three spacial components of the guiding
center position x , the parallel velocity of the guiding center v‖, the magnetic moment,
i.e. the perpendicular kinetic energy of the particle ∝ v2

⊥, and the gyrophase angle ξ.
However, in driftkinetic theory, µ is an invariant quantity, and the gyrophase angle can
be neglected since it is irrelevant to the motion of the guiding center R. Thus, the
number of independent phase space coordinates reduces to four: three components of
x and the parallel velocity v‖ of the guiding center. x can be composed of

x = R+ρ (4.33)

with the gyroradius : ρ = ρρ̂ ≡
mv⊥
eB
=

v⊥
Ω
ρ̂

with the known gyrofrequency : Ω≡
eB

m
and a unity vector : ρ̂ = cosξ e x + sinξ e y

e x(R,ξ) and e y(R,ξ) are unity vectors in the plane perpendicular to the magnetic
field lines. Note also, that the average of the gyroradius over one gyroorbit vanishes
< ρ >= 0.
Within the frame of driftkinetic theory, the fields and potentials are assumed not to
vary strongly over one gyroorbit. Therefore, the potentials can be Taylor expanded
around the gyrocenter up to the first order only:

A(x ) = A(R) + (ρ · ∇)A(R)
Φ(x ) = Φ(R) + (ρ · ∇)Φ(R) (4.34)

(4.35)

Inserting this into the Lagrangian eq. (4.30) yields:

L = eA(R) · Ṙ+ e(ρ · ∇)A(R) · Ṙ+ eA(R) · ρ̇ + e(ρ · ∇)A(R) · ρ̇

+mv · Ṙ+mv · ρ̇ −
1

2
mv2
‖ −µB− eΦ(R) (4.36)

The first order term of Φ can be dropped, since the electric field is of one order higher
in perturbation when assuming a vanishing equilibrium electric field, Φ0 = 0.
The canonical variables to keep within the formulation are R and Ṙ. As it is not nec-
essary to retain the fast gyromotion within the equations, an averaging over the gy-
roangle is performed, indicated by ‘<>’. This so called gyro-averaging reduces the
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phase-space coordinates by eliminating the gyroangle ξ:

L = e< A(R) · Ṙ >
︸ ︷︷ ︸

independent of ξ

+ e< (ρ · ∇)A(R) · Ṙ
︸ ︷︷ ︸

=0 (see app. E.1)

>+ e < A(R) · ρ̇ >
︸ ︷︷ ︸

=0 (see app. E.1)

+ e< (ρ · ∇)A(R) · ρ̇ >
︸ ︷︷ ︸

=2µB/Ω ξ̇

+ m< v · Ṙ >
︸ ︷︷ ︸

=mv2
‖ indep. of ξ

+ m< v · ρ̇ >
︸ ︷︷ ︸

=−µB/Ω ξ̇

−
1

2
m < v2

‖ >
︸ ︷︷ ︸

indep. of ξ

− < µB >
︸ ︷︷ ︸

indep. of ξ

− e< Φ(R)>
︸ ︷︷ ︸

indep. of ξ

(4.37)

The first and the three last terms are independent of ξ, and thus, the averaging brackets
are obsolete. For the remaining terms, the averaging is performed in app. E.1.
The vector b̂ = B/B is a unit vector in the direction of the equilibrium magnetic field.
This leads to a Lagrangian of the form

L = (mv‖ b̂ + eA(R)) · Ṙ +
µB

Ω
ξ̇ −

1

2
mv2
‖ − µB − eΦ(R). (4.38)

WithL =
∑

i pi q̇i−H , it is possible to identify the HamiltonianH = 1
2
mv2
‖ + µB + eΦ(R)

Furthermore, we define a formal parallel analogon to the gyroradius:

ρ‖ ≡
mv‖
eB
=

v‖
Ω

b̂, (4.39)

which makes the Lagrangian

L = e(ρ‖B(R) + A(R)) · Ṙ +
µB

Ω
ξ̇ −

1

2
mv2
‖ − µB − eΦ(R). (4.40)

Now we fill in the contra-variant notation of the magnetic field in Boozer coordinates
A=Ψt/(2π)∇θ−Ψp/(2π)∇ζ , eq. (D.19) and B = δ∇ψp+I∇θ+g∇ζ , eqs. (4.17), as
well as the co-variant decomposition of the gyrocenter position Ṙ = ψ̇eψp

+ θ̇eθ + ζ̇eζ.

With the use of ∇uie j = δi
j , one obtains5:

L = eρ‖δψ̇p + e(ρ‖ I +ψt)θ̇ + e(ρ‖g −ψp)ζ̇ +
m

e
µξ̇ − H . (4.41)

However, in this expression, only the equilibrium fields have entered the Lagrangian.
We are now also taking into account the perturbed part of the field potentials, i.e.
A = A0 + Ã, with A0 as given above, and Ã = Ãψp

∇ψp + Ãθ∇θ + Ãζ∇ζ, as well as

Φ = Φ0+ Φ̃. This leads to a Lagrangian of the form

L = e(ρ‖δ+ Ãψp
)ψ̇p + e(ρ‖ I +ψt+ Ãθ )θ̇ + e(ρ‖g −ψp+ Ãζ)ζ̇ +

m

e
µξ̇ − H ,

(4.42)

with a Hamiltonian written in the form

H =
1

2
ρ2
‖B

2 + µB + eΦ̃(R), (4.43)

5 Note: ψt :=Ψt/(2π) and ψp :=Ψp/(2π). The first expression is also referred to as ψ.
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when excluding any equilibrium electrostatic potential Φ0 = 0. In this form, one could
now immediately identify the conjugated momenta pi . However, it is also obvious, that
there are four terms of the form pi q̇i . To resolve this problem, the particle motion is
reproduced only to second order in ρ, but the Hamiltonian is conserved exactly. This
is achieved by modifying the guiding center velocity Ṙ = v with v −→ v + w . The
arising additional term in eq. (4.40) is of the form eA(R) ·w . The additional w may be
chosen such that

A · w =−δρ‖ψ̇p. (4.44)

This trick removes the ψ̇p term from the Lagrangian.
As the Lagrangian in eq. (4.42) is exactly written in the form L =

∑

i pi q̇i −H , the
three conjugated momenta are simply:

pθ = eρ‖ I + eψt+ eÃθ (4.45a)

pζ = eρ‖g − eψp+ eÃζ (4.45b)

pξ = µ (4.45c)

These expressions show a familiar structure: compared to the conjugated momentum
of a free particle in an electromagnetic field, p = mv + eA, eqs. (4.45), are composed
in the same way: concerning the vector potential, one has to take into account, that
ψt and −ψp are the co-variant components of the unperturbed vector potential A0 for
the coordinates θ and ζ. Concerning the classical momentum mv , it is worth knowing
that I also stands for the co-variant component of the magnetic field, Bθ , whereas g
represents Bζ. Therefore, the term eρ‖ I = ev‖m/(eB)Bθ ∝ mv‖ and analogously for
the g term. Hence, the particle momenta corresponding to θ and ζ are v‖ I and v‖g.

4.3.2 The Equations of Motion for the Guiding Center Coordinates

According to the Hamiltonian formalism, the equations of motion are obtained via

q̇i =
∂H
∂ pi

ṗi = −
∂H
∂ qi

(4.46)

with qi in our case being θ , ζ and ξ for the canonical variables, pi being pθ , pζ and
pξ for the conjugated canonical momenta. However, the Hamiltonian is not given in
terms of these canonical variables, and therefore, one first has to evaluate the partial
derivatives of ψp and ρ‖ with respect to these variables. Note that g, I and ψt are
flux coordinates, and thus functions of ψp alone. ψp in turn depends, as well as ρ‖ on
θ ,ζ, pθ and pζ.
From eqs. (4.45), one can eliminate ρ‖:

g(pθ − eψt− eÃθ ) = I(pζ+ eψp− eÃζ). (4.47)

Differentiating this expression with respect to θ ,ζ, pθ and pζ gives the ψp derivatives
(see app. F.1). Differentiating eqs. (4.45) with respect to θ ,ζ, pθ and pζ gives the
derivatives of ρ‖ (see app. F.2). Thereby, it is convenient, to summarize the term:

D ≡ ρ‖(g I ′− g ′ I) + I + qg − I Ã′ζ+ gÃ′θ , (4.48)
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where q is the well-known safety factor, in Boozer coordinates q = ∂ψt/∂ψp.
Having derived the partial derivatives of ψp and ρ‖ with respect to the canonical vari-
ables x = θ ,ζ, pθ and pζ, it is now possible, to obtain the equations of motion via the
Hamiltonian formalism, as recalled in eq. (4.46), using the chain rule:

∂H
∂ x
=
∂H
∂ψp

∂ψp

∂ x
+
∂H
∂ ρ‖

∂ ρ‖

∂ x
. (4.49)

This gives the equations of motion for the four guiding center coordinates:

θ̇ =
1

eD

h

ρ‖B
2 (1−ρ‖g ′− Ã′ζ) + g

�

(ρ2
‖B+µ)B

′+ Φ̃′
�i

, (4.50a)

ζ̇=
1

eD

h

ρ‖B
2 (q+ρ‖ I

′− Ã′θ )− I
�

(ρ2
‖B+µ)B

′+ Φ̃′
�i

, (4.50b)

ψ̇p =
1

D

��

I
∂ Ãζ
∂ θ
− g

Ãθ
∂ θ

�

θ̇ +

�

I
∂ Ãζ
∂ ζ
− g

Ãθ
∂ ζ

�

ζ̇ +
g

e
ṗθ −

I

e
ṗζ

�

, (4.50c)

ρ̇‖ =
1

I

�

ṗθ − e
∂ Ãθ
∂ θ

θ̇ − e
∂ Ãθ
∂ ζ

ζ̇− e ˙̃Aθ − e(q+ Ã′θ +ρ‖ I
′)ψ̇p

�

. (4.50d)

Eqs. (4.50) define the particle trajectories via the functions I(ψp), g(ψp), q(ψp),
B(ψp,θ), Ã(ψp,θ ,ζ, t), Φ̃(ψp,θ ,ζ, t). To describe the particle paths in the inertial lab-
oratory frame of reference, the transformation function x (ψp,θ ,ζ) has to be known.

4.3.3 Specialization to Low-β Shear-Alfvén Waves

The equations of motion derived above describe in a very general form the particle mo-
tion in a toroidal magnetic geometry in the presence of any perturbed vector potential
Ã. However, by choosing a more specific form for the magnetic perturbation, these
equations can be simplified at the expense of their generality. By choosing as perturba-
tion a low-β Shear-Alfvén wave, one imposes a constraint on the perturbed magnetic
field, as these kind of waves have a perpendicular field line displacement, oscillating
against the plasma inertia. As a consequence, B̃ = B̃⊥. The fact, that B̃‖ = 0 allows to
chose a vector potential of the form Ã= Ã‖ and thus

Ã≡ α̃(x , t)B0 (4.51)

This definition ties α̃ closely to the parallel component of the perturbed vector potential
and it follows for the resulting perturbed magnetic field, that

B̃ =∇× α̃(x , t)B0 (4.52)

As mentioned above, α̃ was introduced to simplify the equations of motion. To insert
α̃ into those, one first has to find the respective co-variant components of eq. (4.51):

Ãθ = α̃Bθ = α̃I , (4.53a)

Ãζ = α̃Bζ = α̃g. (4.53b)
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Note that when deriving Ã with respect to ψp (indicated by the prime ′), the product
rule must be applied. The arising terms α̃g ′ and α̃I ′ are then absorbed within the
definition of a new quantity, ρc:

ρc = ρ‖+ α̃
′ (4.54)

Using this definition, D can be written simpler:

D = ρc(g I ′− g ′ I) + I + qg (4.55)

Inserting the co-variant components of Ã from eqs. (4.53) into the equations of motion,
eqs. (4.50a) and (4.50b) and using eq. (4.54), one obtains:

θ̇ =
1

eD

h

ρ‖B
2 (1−ρc g ′− α̃′) + g

�

(ρ2
‖B+µ)B

′+ Φ̃′
�i

, (4.56a)

ζ̇=
1

eD

h

ρ‖B
2 (q+ρc I ′− α̃′)− I

�

(ρ2
‖B+µ)B

′+ Φ̃′
�i

. (4.56b)

In the next step, the same is done (inserting eqs. (4.53)) in equation for ψ̇p and ρ̇‖.
Starting with ψ̇p eq. (4.50c) the terms with θ̇ and ζ̇ will cancel, leaving only the ṗθ
and ṗζ terms, which can be replaced (by eq. (F.24) and eq. (F.25)), again substituting
the components of Ã (eqs. (4.53)).
For ρ̇‖ eq. (4.50d), the derivation is equally simple but more tedious, as terms cancel
only after expanding all the equations for θ̇ eq. (4.50a), ζ̇ eq. (4.50b), ṗθ eq. (F.24)
and ψ̇p eq. (4.57a). The results are:

ψ̇p =
1

eD

�

ρ‖B
2
�

g
∂ α̃

∂ θ
− I
∂ α̃

∂ ζ

�

+
�

g
∂ α̃

∂ θ
− I
∂ α̃

∂ ζ

�

− g(ρ2
‖B+µ)

∂ B

∂ θ
+ g

�

(ρ2
‖B+µ)B

′+ Φ̃′
�

�

, (4.57a)

ρ̇‖ = −
1

D

��

g
∂ α̃

∂ θ
+ I
∂ α̃

∂ ζ

�

n

(ρ2
‖B+µ)B

′+ Φ̃′
o

+ (q+ρc I ′− α̃′)
∂ Φ̃
∂ ζ

+ (1−ρc g ′− α̃′)
¨

(ρ2
‖B+µ)

∂ B

∂ θ
+
∂ Φ̃
∂ θ

«

�

− e ˙̃α. (4.57b)

With these equations of motion, implemented numerically6 the HAGIS code calculates
the trajectories of the fast particles in the presence of a magnetic perturbation imposed
on the equilibrium magnetic field B. The perturbation, as well as the other equilibrium
functions – poloidal current g, toroidal current I , safety factor q – are given externally
by MHD codes that solve the Grad-Shafranov equation. The structure of the perturba-
tion as well is calculated by external codes (such as the MHD code CASTOR [92] or the
gyrokinetic LIGKA solver [93]).

6 in rhs_markers.F.
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4.4 Wave evolution (with a Non-vanishing Parallel Electric
Field)

The amplitude evolution of the perturbations is evaluated by HAGIS self-consistently,
calculating the effect of the moving particles on the waves. I.e. the amplitude evolu-
tion of the waves is a response to their collective interaction with the particles. In turn,
the wave evolution then determines the particle motion in the perturbed field.
This section is dedicated to the derivation of the wave equations, in response to the
wave-particle interaction. If follows ref. [72] but drops the approximation of a van-
ishing parallel electric field Ẽ‖. Like the particle motion, the wave evolution can be
derived within the Lagrange Formalism. The total system LagrangianL consists of the
fast particle Lagrangian Lfp and the wave Lagrangian Lw, which in turn contains the
background (=bulk) plasma contribution to the Alfvén waves and the electromagnetic
wave energy. Both parts are derived in subsec. 4.4.3. The actual wave-particle inter-
action is contained within a third Lagrangian Lint, describing the effect of the Alfvén
waves upon the particle motion. It is derived in subsec. 4.4.4. The total Lagrangian
then reads

L =

particle motion
︷ ︸︸ ︷

Lfp + Lint + LW
︸ ︷︷ ︸

wave evolution

4.4.1 Wave representation, Potential Definitions and Notation

In the following, the notation is set up. In all terms concerned with the energetic part
of the plasma, j is the particle index, m and e the particle mass and electric charge .
As a subscript to the potentials, j indicates, that it has to be evaluated at the respective
particle position. The subscript 0 denotes an equilibrium quantity, whereas a tilde
indicates a perturbed quantity.
The electric field equilibrium part is equal zero, leading to an electric field of: E =
Ẽ‖ + Ẽ⊥. The magnetic field B consists of a (per definition parallel) equilibrium part,
and a perturbed part, which is perpendicular: B = B0‖ + B̃⊥. For simplicity the ⊥,‖
subscripts of B are left away.
The same applies for the velocity v = v0‖ + ṽ⊥, with ṽ = (B × E)/B2, the E-cross-B
drift velocity eq. (2.17), which is perpendicular to the unperturbed magnetic field.
The perturbed fields and potentials can be written as a sum over all perturbations k,
which reads B̃ =

∑

k Bk and Ẽ =
∑

k Ek respectively. Expanding the fields and take
up to the 2nd order of perturbation – considering only perpendicular terms of ṽ, one
obtains:

v = v0+
∑

k

Ek⊥× B0

B2
0

+
∑

k,k′

Ek‖× Bk′

B2
0

(4.58)

Analogously to ref. [72], all fields are expressed through potentials, using the definition
of α̃, which makes use of the fact, that the perturbed vector potential must be parallel
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to the equilibrium magnetic field to result in a perpendicular perturbed magnetic field:

Ak = αk(x ,t) B0,

⇔ Bk =∇× (αkB0), (4.59)

The perturbed fields then read 7:

Bk =∇× Ak, (4.60)

Bk =∇× (αkB0),

Bk = αkB0 ∇× b̂
︸ ︷︷ ︸

small (of order ε)

−b̂×∇(αkB0),

(4.61)

Ek = ∇Φk −
∂

∂ t
Ak,

Ek = ∇Φk −
∂

∂ t
(αkB0), (4.62)

E⊥k = ∇⊥Φk. (4.63)

So far, it was assumed in the HAGIS code, that the parallel electric field Ẽ‖ vanishes,
due to the fast parallel dynamics of the particles along the equilibrium magnetic field
lines. Then, the magnetic and the electric potential are correlated via the potential
definition eq. (4.62):

E‖k ≡ 0=∇‖Φk −
∂

∂ t
(αkB0). (4.64)

As each wave is characterized by a distinct toroidal eigenfunction (index k), and rep-
resented as a sum of poloidal harmonics m, one can compose its electric potential, as
it enters the HAGIS code such that

Φk =
∑

m
Φkm(ψp) ei(knm·x−ωk t),

Φk =
∑

m
Φkm(ψp) ei(nkζ−mθ−ωk t). (4.65)

with the real wave vector knm = n∇ξ−m∇θ . The wave frequency is ωk, which might
be complex, if there is a damping term γ, otherwise, it is real.
Using this wave decomposition for Φ̃ and analogously for α̃, eq. (4.64) turns into

0=
∑

m
ik‖nmΦkm ei(knm·x−ωk t)− iωkαkmB0 ei(knm·x−ωk t)

⇒ αkm =
k‖nm

ωB0
Φkm. (4.66)

This means, the magnetic perturbation can be obtained from the electric perturbation
input data8.

If one wants to drop this approximation and keep E‖k 6= 0, this is not valid any more:
magnetic as well as electric perturbation have to be given. Instead of eq. (4.66), one
can calculate the (small) parallel electric field (using the same wave decomposition as

7 Reminder: b̂ = B/B is the unit vector in the direction of the equilibrium magnetic field.
8 used in falpha.m
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for the potential):
∑

m
E‖km =

∑

m
ik‖nmΦkm ei(knm·x−ωk t)− iωkαkmB0 ei(knm·x−ωk t)

⇒ αkm =
k‖nm

ωkB0
Φkm+ i

E‖km

ωkB0
. (4.67)

The relation between Φ̃ and α̃ make it later possible to eliminate the magnetic per-
turbation α̃ from the wave equation, which is extremely useful, especially if Ẽ‖ = 0.
Otherwise, it also allows one to eliminate α̃, but a small correction term Ẽ‖ has to be
retained within the formulation.
To be able to expand the perturbation potential in the ordering of powers of the slowly
varying wave amplitude, and the small wave frequency shift (see below), it is useful to
further decompose the wave potential. First, one can define:

Φk =:
∂

∂ t
χk, (4.68)

and χ consisting of a slowly varying Amplitude A , a spatial eigenfunction χ̂ and the
oscillation term of the exponential function, which also contains a frequency shift σ:

χk = Ak(t) χ̂k e−iωk t−iσk(t). (4.69)

The same slow complex time variation is introduced for each wave’s electric potential:

Φk = Ak(t) Φkmei(nkζ j−mθ j−ωk t−σk(t)). (4.70)

The slow variation is separated into its real and an imaginary part by defining an X
and Y such that

Xk(t) := ℜe[Ak e−iσk] = Ak cos(σk),

Yk(t) :=−ℑm[Ak e−iσk] = Ak sin(σk). (4.71)

Thus,

Ak e−iσk = Xk(t)− iYk(t). (4.72)

In case of a non-vanishing parallel electric field, one has to do the same for Ẽ‖ (other-
wise, E‖k = 0 and Σk = 0), i.e. defining:

E‖k =:
∂

∂ t
Σk, (4.73)

Σk = Ck(t) Σ̂k e−iωk t−iσk(t). (4.74)

With these definitions, eq. (4.62) results in

αk =−
∇‖χk

B0
+
Σk

B0
,

αk =−
(b̂ · ∇)χk

B0
+
Σk

B0
. (4.75)
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It is convenient to introduce the following notation for the real and the imaginary part
of Φk:

C jkm :=ℜe[Φkm(ψp j) ei(nkζ j−mθ j−ωk t)],

S jkm := ℑm[Φkm(ψp j) ei(nkζ j−mθ j−ωk t)]. (4.76)

(4.77)

This definition results in the following notation for the real and the imaginary part of
the wave electric potential:

ℜe Φk =
∑

m
[Xk(t) C jkm + Yk(t) S jkm],

ℑm Φk =
∑

m
[Xk(t) S jkm − Yk(t) C jkm]. (4.78)

4.4.2 System Invariants

In the presence of a perturbation, the particle energy is no longer conserved, as there
can be an energy exchange between wave and particle. However, a new constant
of motion exists, as will be shown in the following [72]: The following differential
operator gives zero

∂t+ (ωk/nk)∂ζ ≡ 0, (4.79)

as can be seen when acting on the wave as defined in eq. (4.65):

Φ jkm ∝ ei(nkζ−mθ−ωk t).

Applying this operator onH , and using ∂ζH =−ṗζ, one obtains for one particle j:

d

dt

�

E j −
ωk

nk
pζ j

�

= 0

=⇒ E j −
ωk

nk
pζ j = const. (4.80)

This means, if the particle loses energy, it also loses toroidal momentum and vice versa.
However, the relative change in momentum is much larger than the relative change in
the particle energy:

∆pζ j

pζ j
=

nk

ωk

E j

pζ j

∆E j

E j
, (4.81)

(as long as nk is in the usual range of 10) since E j ∝ Ω and the gyrofrequency is much
higher than the Alfvén wave frequency, Ω�ωk.
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4.4.3 Wave Lagrangian

This section carries out the derivation of the Lagrangian LW for Alfvén waves. As
these waves represent a balance between field line tension and plasma inertia, the
wave Lagrangian must consist of an electromagnetic part, as well as a contribution
from the bulk plasma particles:

LW =
∑

j

1

2
m j v

2
j

︸ ︷︷ ︸

kin. part

+ e(A j · v j −Φ j)
︸ ︷︷ ︸

potential part
︸ ︷︷ ︸

bulk plasma

+
1

2µ0

∫

V

� 1

c2 E2− B2
�

d3 x .

︸ ︷︷ ︸

el.mag. part

(4.82)

Now, the drift velocity (eq. (4.58)) and the fields as composition of an equilibrium and
a perturbed part (given in subsec. 4.4.1) are substituted. For simplicity, the sum over k
is left away, using the tilde instead. Furthermore, the sum over all bulk plasma particles
j is replaced by an integration over the volume V , using

∑

j m j =
∫

V
nsms d3 x for each

particle species s (electrons are neglected, due to their small inertia). Note, that many
terms vanish due to orthogonality, as e.g. B̃ and Ẽ⊥ are perpendicular to B0. The same
applies for A0, due to the choice of the equilibrium gauge Φ0 ≡ 0. The latter leads
to A0 · Ẽ × B̃ = 0, as the vectors are co-planar. Sorted according to the perturbation
ordering, LW reads:

LW =

∫

V

�

1

2
nsmsv

2
0

︸ ︷︷ ︸

0th order

+
1

2
nsms

Ẽ2
⊥

B2
0

︸ ︷︷ ︸

2nd order

+ nsev0Ã− nseΦ̃ +
nse

B2
0

A0 · (Ẽ⊥× B0)
︸ ︷︷ ︸

1st order

+
nse

B2
0

A0 · (Ẽ‖× B̃)
︸ ︷︷ ︸

2nd order

�

d3 x

+
1

2µ0

∫

V

�

B2
0

︸︷︷︸

0th order

+
1

c2 Ẽ2
‖ +

1

c2 Ẽ2
⊥− B̃2

︸ ︷︷ ︸

2nd order

�

d3 x . (4.83)

The 0th order terms represent the MHD equilibrium and cancel by force balance. The
first order perturbations vanish, since linear waves are stable within ideal MHD. Second
order terms are the first non-zero contribution to LW within this model. With the use
of the definition of the Alfvén velocity (eq. (3.8)), vA := B0/

p
µ0msns, with n being

the number density of the plasma , and ms the mass of a particle of the species s, the
Lagrangian becomes

LW2 =
1

2µ0

∫

V

�

1

v2
A

Ẽ2
⊥

︸ ︷︷ ︸

kin. term

+
1

c2 Ẽ⊥
2 +

1

c2 Ẽ‖
2− B̃2

︸ ︷︷ ︸

wave energy term

+
1

v2
A

e

ms
A0 · (Ẽ‖× B̃)

︸ ︷︷ ︸

potential term

�

d3 x .

(4.84)

The fact, that vA� c , allows to neglect the terms containing 1/c2.
Substituting the Fourier sums (hidden in tilde terms), the Lagrangian reads
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LW2 =
1

2µ0

∑

k,k′

∫

V

�

1

v2
A

E2
⊥k − B2

k +
1

v2
A

e

m j
A0 · (Ek‖× Bk′ )

�

d3 x . (4.85)

The orthogonality of the MHD eigenfunctions ensures, that all cross terms of squared
field quantities due to the double sum k, k

′
are zero. Note, that when setting k

′
= k,

every term is counted twice, therefore, a factor of 1/2 enters LW.
Since Ẽ‖ is small compared to Ẽ⊥, which appears in the first term, it is a valid approx-
imation within the chosen ordering, to neglect the last term. Thus, it turns out, that
Ẽ‖ does not contribute significantly to the wave Lagrangian in second order of pertur-
bation, and LW has not changed compared to its expression with vanishing parallel
electric field, presented in [72], p. 56.
Substituting eqs. (4.61) and (4.63) into eq. (4.85) yields:

LW2 =
1

4µ0

∑

k

∫

V

�

1

v2
A

�

�∇⊥Φk

�

�

2 −
�

�b̂×∇(αkB0)
�

�

2
�

d3 x (4.86)

Using eqs. (4.68) and (4.75) further gives:

LW2 =
1

4µ0

∑

k

∫

V

�

1

v2
A

�

�

�∇⊥
∂ χk

∂ t

�

�

�

2
−
�

�b̂×∇((b̂ · ∇)χk) + b̂×∇Σk

�

�

2
�

d3 x (4.87)

Thanks to the notations 4.69 and 4.74, the slowly varying complex amplitude terms A
and C are made explicit, as well as the small frequency shift σ. It is therefore possible,
to expand χ and Σ in powers of the small fractions Ȧk/(ωkAk) and σk/ωk (see app.
G). In zeroth order, Ak is constant in time. Taking only the first order, one obtains (the
last term does not have any order higher than zero!):

LW2 =
1

2µ0

∑

k

∫

V

1

v2
A

�

σ̇k

ωk

�

ωk

�

�∇⊥χk

�

�

︸ ︷︷ ︸

=ω2
kA2

k|∇⊥χ̂|
2

�

2
�

d3 x . (4.88)

With χ̂ being the radial structure of the electric perturbation, the expression becomes

LW2 =
1

2µ0

∑

k

∫

V

1

v2
A

�

σ̇k

ωk
A2

k

�

�∇⊥
∑

m
Φkm

�

�
2ω2

k

�

d3 x . (4.89)

With the definition of the (time independent) wave energy

E⊥ =
1

2µ0

∫

V

1

v2
A

�

�∇⊥
∑

m
Φkm

�

�

2
d3 x , (4.90)

one obtains

LW2 =
∑

k

1

v2
A

Ek

ωk

h

A2
k σ̇k

i

ω2
k. (4.91)
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From the wave potential decomposition performed in subsec. 4.4.1, it is obvious that:

A2
k = X 2

k + Y 2
k ,

σk = arctan
�

Yk

Xk

�

. (4.92)

This gives for the temporal derivative of the frequency shift σ

σ̇k =
Xk Ẏk − ẊkYk

A2
k

. (4.93)

With this equation filled into the equation for LW2, eq. (4.91), one obtains

LW2 =
∑

k

1

v2
A

Ek

ωk

�

Xk Ẏk − ẊkYk
�

ω2
k. (4.94)

4.4.4 Interaction Lagrangian

The interaction Lagrangian Lint expresses the interaction of an ensemble of particles
(labeled by the subscript j) and a spectrum of waves (subscript k). The Lagrangian
for a free particle in an electromagnetic field consists of a kinetic term and a potential
term. The part containing the perturbed fields of the latter is responsible for the wave-
particle interaction and thus forms the interaction Lagrangian:

Lint =
∑

j

(Ã j · v j − Φ̃ j). (4.95)

The equation can now be re-written, using the definition of α̃, eq. (4.59).

Lint =
∑

j

(α̃ jB0 · v j − Φ̃ j). (4.96)

As the perturbed velocity ṽ is perpendicular to the equilibrium magnetic field, their
scalar product vanishes, leaving only the equilibrium velocity v0 = v‖. With the rela-
tion between the electric and the magnetic potential, eq. (4.67) one obtains:

Lint =
∑

j

∑

k

1

ωk

∑

m
(k‖mv‖ j −ωk)Φkm(ψp j) + iv‖ j E‖km(ψp j). (4.97)

Note the appearance of the resonance condition here and the decisive role of the radial
(ψp) envelope of the mode in combination with the particle orbit.
In the following, the equation is separated according to its real and its imaginary part.
Therefore, eq. (4.78) is used for the electric potential. A similar decomposed notation
has to be introduced for the electric field as well (unless one assumes Ẽ‖ = 0).

D jkm =:ℜe[E‖km(ψp j) ei(nkζ j−mθ j−ωk t)],

F jkm := ℑm[E‖km(ψp j) ei(nkζ j−mθ j−ωk t)]. (4.98)

(4.99)
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In contrast to the case of the wave electric potential, the amplitude parallel electric
field is not allowed to evolve in time self-consistently (i.e. independently). Thus, the
physics of Ẽ‖ is not contained within HAGIS, but given externally, assuming that the
damping does not change. One only has to allow for a slowly evolving phase, which
has to be the same as for the potential, σk(t). The wave electric field then reads

E‖k = E‖kmei(nkζ j−mθ j−ωk t−σk(t)). (4.100)

To again separate this into a real and an imaginary part, one can separate the new
factor by defining V and W such that

Vk(t) := ℜe[e−iσk] = cos(σk) =⇒ Vk(t) = Xk(t)/Ak(t),

Wk(t) :=−ℑm[e−iσk] = sin(σk) =⇒ Wk(t) = Yk(t)/Ak(t). (4.101)

This definition results in the following notation for the real and the imaginary part of
the wave electric potential:

ℜe E‖k =
∑

m
[Vk(t) D jkm + Wk(t) F jkm],

ℑm E‖k =
∑

m
[Vk(t) F jkm − Wk(t) D jkm]. (4.102)

The real part of the interaction Lagrangian is

Lint =
∑

j

∑

k

1

ωk

∑

m
(k‖mv‖ j −ωk) ℜe[Φkm] + i i ℑm[E‖k]v‖ j . (4.103)

Using eq. (4.78) for the electric potential, and eq. (4.102) for the field, leads to

Lint =
∑

j

∑

k

1

ωk

∑

m
(k‖mv‖ j −ωk) [Xk(t) C jkm + Yk(t) S jkm]

− v‖ j [Vk(t) F jkm − Wk(t) D jkm]. (4.104)

Inserting the expressions for V and W of eq. (4.101) yields

Lint =
∑

j

∑

k

1

ωk

∑

m
(k‖mv‖ j −ωk) [Xk(t) C jkm + Yk(t) S jkm]

−
v‖ j

p

X 2
k + Y 2

k

[Xk(t) F jkm − Yk(t) D jkm]. (4.105)

4.4.5 The Wave equations

The wave equations can be obtained by varying the relevant Lagrangian, which is
Lint+Lw , calculated in subsec. 4.4.4 and subsec. 4.4.3 respectively.
The relevant Lagrangian reads

L =
∑

j

∑

k

1

ωk

�
∑

m
(k‖mv‖ j −ωk)[Xk(t) C jkm + Yk(t) S jkm]

−
v‖ j

p

X 2
k + Y 2

k

[Xk(t) F jkm − Yk(t) D jkm]

+Ek [Xk Ẏk − ẊkYk]
�

(4.106)
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The variation for Y ,

0=
d

dt

∂L
∂ Ẏ
−
∂L
∂ Y

(4.107)

gives

0=
∑

j

∑

k

1

ωk

�

d

dt
�

2EkXk
�

+ Ek Ẋk −
∑

m

h

(k‖mv‖ j −ωk)S jkm

+
v‖ j

p

X 2
k + Y 2

k

D jkm+
v‖ j

p

X 2
k + Y 2

k

3 (XkF jkm− YkD jkm)
i

�

(4.108)

Solving for Ẋ reads

Ẋk =
1

2Ek

∑

j

∑

m

�

(k‖mv‖ j −ωk)S jkm

+
v‖ j

p

X 2
k + Y 2

k

D jkm+
v‖ j

p

X 2
k + Y 2

k

3 (XkF jkm− YkD jkm)
�

(4.109)

Analogously varying for X , one obtains Ẏ :

Ẏk =−
1

2Ek

∑

j

∑

m

�

(k‖mv‖ j −ωk)C jkm

−
v‖ j

p

X 2
k + Y 2

k

F jkm+
v‖ j

p

X 2
k + Y 2

k

3 (XkF jkm− YkD jkm)
�

(4.110)

These are the equations to solve for the wave evolution9. In case of Ẽ‖ = 0, the sec-
ond line vanishes in both, and only S jkm and C jkm have to be provided as input data
(ℜe Φkm and ℑm Φkm) in the form of a radial wave structure ( j indicates that the radial
position is particle j’s position) for each wave k and each poloidal harmonic m. Other-
wise, D jkm and F jkm have to be known as well. Usually, the magnetic field perturbation
structure (ℜe Ψ̃km and ℑm Ψ̃km) is given (analogously to the electric potential struc-
ture Φ̃), from which α̃ is calculated via α̃ = k‖/(ωB0). Having Φ̃ and α̃, the relation
eq. (4.67) gives the parallel electric field structure, thus D jkm and F jkm:

E‖km(ψp) = i
�

k‖nm Φkm(ψp)−ωkB0 αkm(ψp)
�

. (4.111)

4.4.6 Interpretation and First Consistency Check of the Ẽ‖ Term

The electric perturbation field Ẽ moves the particles out of the resonance, due to the
electric force, and the Ẽ × B force, and has therefore the physical effect of damping.
Particles in resonance with the wave (i.e. near the singularity in eq. (3.43)) exchange
energy with it. If there is no slope in f (E), the energy transfer to and from the wave
cancels. Only with a slope, there is net energy transfer – from the wave to the particles

9 implemented in rhs_waves.F
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if the slope is negative (Landau damping).
An additional imaginary term as the Ẽ‖ term shifts the singularity into the complex
plane, like a damping term does. In the relation between α̃ and Φ̃, an imaginary
term was derived, being formally equivalent to a damping component γ in the wave
frequency ω:

ωkB αkm = k‖mΦkm+ iE‖km
︷ ︸︸ ︷

fk + iγk (4.112)

However, the non-vanishing Ẽ‖ is not just another form of adding a damping to the
wave frequency10: Ẽ‖ is obtained from the electric and magnetic component of the
MHD wave, given as input. Therefore, it has a radial structure, Ẽ‖ = Ẽ‖(ψ), that
is different for each mode harmonic m. So far, the wave structure cannot evolve in
time within a HAGIS simulation (only the wave amplitude and frequency changes self-
consistently with time), and thus, Ẽ‖ cannot either. However, it is planned to update
the wave structure on a time scale slower than the particle’s bounce time in the wave
via coupling HAGIS to the LIGKA code. This will eventually lead to a time-evolving Ẽ‖
term as well.

In order to test the new implementation, a first consistency check has been carried
out. α̃ and Φ̃ are chosen to have the same radial shape but are assumed different by a
constant factor:

αkm = factor
k‖m
ωB0
Φkm

As Ẽ‖ is determined by the difference between α̃ and Φ̃, the parallel electric field also
differs only by a constant factor, as shown in (fig. 4.4a) The resulting growth rates (fig.
4.4b) show the expected scaling γ∝ factor, in agreement with the discussion above.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
s

-0.002

-0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

factor = 100%

factor =   90%

factor =   80%

factor =   70%

factor =   60%

EII,m=4
EII,m=5
EII,m=4
EII,m=5
EII,m=4
EII,m=5
EII,m=4
EII,m=5
EII,m=4
EII,m=5 

}
}
}
}
}

R
e
( 

E
II
 )

  
/H

a
g
is

 n
o
rm

a
li
ze

d
 u

n
it

s

(a) Radial Ẽ‖ structure.
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Figure 4.4: First consistency check for the new Ẽ‖ 6= 0 implementation: the growth rate scales
with the same factor, that was chosen between α̃ and Φ̃. The difference between
α̃ and Φ̃ determines Ẽ‖ and thus the damping.

10 which can be done within HAGIS via setting sgamma < 0
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4.5 HAGIS Outlook

Although the nonlinear wave-particle interaction is calculated self-consistently within
HAGIS, other nonlinearities such as the wave structure evolution and the toroidal cou-
pling of different n are not included. However, the first steps have been carried out
towards a hybrid model that overcomes this deficiency. This model will be a hybrid
between the nonlinear wave-particle modeling HAGIS code and the linear gyrokinetic
eigenvalue solver LIGKA [93], that calculates the wave structures. HAGIS reads the
LIGKA-given eigenfunctions (electric and magnetic parts), models the wave-particle
interaction and gives back moments of the new fast particle distribution function to
LIGKA, which then in turn re-evaluates the wave structures for the HAGIS input (fig.
4.5). What is achieved so far is the possibility to read the full LIGKA eigenfunctions, i.e.
with an arbitrary amount of poloidal harmonics, and including not only their electric
but also their magnetic potential, which allows to run HAGIS with a non-vanishing Ẽ‖
term, thus a realistic damping structure. Since the calculation of the moments to give
back to LIGKA is already included within HAGIS, in the next step, the HAGIS-LIGKA com-
munication has to be addressed. Of special interest is the adequate iteration scheme
for passing back and forth the eigenfunction as well as the distribution function to
describe the nonlinear system behavior correctly. It has to be a compromise between
easing LIGKA’s iterative eigenvalue search by short exchange intervals (thus, the start
eigenfunction for the search has not changed too much) and saving computational
costs.

LIGKA HAGIS
linear, gyrokinetic
mode properties

nonlinear, driftkinetic
fast particle wave interaction

damping rate �, mode structure,..

fast particle distribution functio
n,

wave amplitude

Figure 4.5: Basic idea for the HAGIS-LIGKA hybrid model to allow the mode structure to evolve.

The hybrid HAGIS-LIGKA model will be able to evolve the eigenmodes on a time scale
slower than the mode frequencies. Although chirping effects – i.e. rapid frequency
changes that occur in regimes near marginal stability11 – can be simulated by HAGIS,
as the frequency evolves in time, it will not be possible to update the wave structures
on a time scale comparable to the mode frequencies. Whether or not these structures
change during a chirping event is still an open question, since there is no experimen-
tal evidence yet. In contrast, the importance of a non-local damping mechanism for
regimes near marginal stability is not doubted. With the use of the new Ẽ‖ term, first
studies can be carried out in the near future. Another aspect, that is still missing within
the HAGIS model is a source term for fast particles – so far, there is no possibility to ‘re-
fill’ fast particles, making it impossible to simulate on time scales of the slowing-down
time [98] (≈ 0.1 s, see sec. 6.3.6).

11 Experimental evidence is reported in ref.s [94, 95], simulations presented in ref.s [96, 97], the theory
is covered by the Berk & Breizman model (1990s).



CHAPTER 5

Double-resonant Fast Particle-wave
Interaction

The interaction of a fast particle population with MHD and MHD-like instabilities (see
chapter 3) can lead to significant fast particle losses, as observed in many ASDEX Up-
grade discharges. The study presented in this chapter applies the driftkinetic HAGIS

code (see chapter 4)[72] with the aim of understanding the underlying resonance
mechanisms, especially in the presence of multiple modes with different frequencies.
Of particular interest is the resonant interaction of particles simultaneously with two
different modes, referred to as double-resonance. Various mode overlapping scenarios
with different q profiles are considered. It is found that, depending on the radial mode
distance, double-resonance is able to enhance growth rates as well as mode amplitudes
significantly. Surprisingly, no radial mode overlap is necessary for this effect. Quite the
contrary is found: small radial mode distances can lead to strong nonlinear mode sta-
bilization of a linearly dominant mode.
Sec. 5.1 gives an overview over the theoretical basis of these coupling mechanisms.
Sec. 5.2 shortly introduces the AUG equilibrium, which the numerical study is based
on. In sec. 5.3 and sec. 5.4, the preparation of the simulations is described concerning
simulation conditions and numerical requirements. The last two sections are dedi-
cated to the study itself, investigating first the single-mode situation, followed by the
double-mode scenario and a short summary.

5.1 Theoretical Picture of Double-Resonance

Theory (e.g. ref. [76]) predicts that conversion of free energy to wave energy is en-
hanced in a multiple-mode scenario, i.e., the interaction of multiple modes produces
energy conversion rates higher than what would be achieved with each mode acting in-
dependently. This can be partially explained by the principle of gradient (of the radial
particle distribution) driven mode growth – according to1 γ ∝ ∇ f (s) (see sec. 3.2.2)
[47] – which was extended to multiple modes [76, 99–101]. So far, however, the in-
vestigation focused on modes with equal frequencies and radial overlap, a limitation
that will be overcome in this chapter.

1 Throughout this work, s refers to the radial coordinate as square root of the normalized poloidal flux:
s = (ψpol/ψpol,edge)1/2 ∈ [0,1].
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Figure 5.1: Simple scheme of gradient driven

double-resonance to explain steeper gradients and

higher saturation levels in the double-resonant mode

case compared to the single-mode case.

The picture of gradient driven
double-resonance, schematically
visualized in fig. 5.1, is based on
the precondition that modes share
resonances in the same phase space
area. Through the resulting redis-
tribution by each mode, a steeper
gradient is produced at the other
mode’s position, enhancing its drive.
The overlapping of modes leads then
to a much larger conversion of free
energy to wave energy.

However, this mechanism can only
work if there is also spatial mode
overlap in the radial direction. In
ref. [55] simulations were carried
out, finding a double-resonant ef-
fect also without this precondition.
Furthermore, an oscillation super-
imposed on the mode amplitudes
was observed, clearly indicating
mode-mode interaction. The modes
without radial overlap are then cou-
pled radially through the particles’
trajectories: A population of particles
that shares resonances in phase
space with both modes and passes
both mode locations at once, can
transfer energy from one mode to
the other [55]. Since the particle
orbits are characterized by a certain
width, it is not necessary that both
modes have a radial overlap. In the
following, this mechanism is called
inter-mode energy transfer:

By damping one mode (toroidal mode number n), particles gain energy E and also
toroidal momentum pζ due to the relation (eq. (4.80))

�

E −
ω

n
pζ
�

= const. (5.1)

As Alfvénic mode frequencies (ω) are very low (compared to the particles’ cyclotron
frequency), momentum transfer dominates over energy transfer. Since a particle’s
toroidal momentum is related to its radial position, pζ ∝ −ψ (see eq. (4.45b)), parti-
cles gaining energy from the wave (i.e. damping it), are redistributed radially inwards,
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whereas particles losing energy to the wave (i.e. driving it), are redistributed radially
outwards. The latter is the dominant process and is caused by the negative slope of
the particles’ radial distribution function. When passing through the second mode, the
particles lose energy and toroidal momentum by the mode.

z

�

dominant
mode

subdomi-
nant mode

(a) Scheme of inter-mode energy transfer. The

black arrows represent the statistical relations

of particle redistribution.

Figure 5.2: Double-resonant mode cou-
pling mechanism to explain
the superimposed oscilla-
tion and steadily growing
modes. The different colors
in (b) and (c) give sub-
sequent time intervals to
visualize the back-and-forth
redistribution.
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of the same particle.

As long as the dominant mode is strong, this process can continue, keeping the particle
trapped between both modes without a radial net drift, as seen in fig. 5.2. Therefore,
this scenario is dominant over other possible combinations of mode-mode energy ex-
change. Particles that gain energy from both modes or lose energy to both modes soon
leave the resonant phase space area. It is the exchange of energy between the modes
that leads to the observed oscillation of their amplitudes: The mode receives energy in
phase with the particle bounce motion, characterized by ωb, which equals the beat fre-
quency of both modes ∆ω as shown in the following: Trapped particles with a bounce
frequency ωb and toroidal precession frequency ωtp interact with MHD modes of a
certain frequency ω, if the resonance condition (see eq. (5.2)) [79]

ω− nωtp− pωb ≈ 0 (5.2)
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is fulfilled, where n is the toroidal mode harmonic and p the particle bounce harmonic.
For double-resonance, this resonance condition has to be fulfilled for both modes ‘1’
and ‘2’ simultaneously, leading to

ωtp(n1− n2) +ωb(p1− p2) =ω1−ω2 ≡∆ω. (5.3)

For the simplest case, the toroidal mode numbers n are considered equal, and p1 = 1,
p2 = 0. This leads to ωb = ∆ω. Indeed, the lowest bounce harmonics p = 0,±1 are
the most relevant ones; however, the issue of different toroidal mode numbers n will
be discussed later (sec. 5.6.3).
For the example scenario in fig. 5.2b, i.e. a particle with an energy of 435 keV and
two modes (both n = 4) of frequencies ω1 = 55 kHz and ω2 = 120 kHz, at the
radial positions s1 ≈ 0.2 to 0.3 and at s2 ≈ 0.4 to 0.8, the resonances of importance
are the p1 = 3 and the p2 = 1 resonance (consult fig. 3.6b). The bounce frequency
of the particle can be seen e.g. from the plot (5.5 poloidal orbit surroundings per
∆t = 4.6 · 10−5 s) as ωb ≈ 120 kHz. Thus, eq. (5.3) is fulfilled within this rough
estimation.

5.2 Using the Hagis Code with an ASDEX Upgrade Plasma
Equilibrium

The numerical investigations presented in this work are performed with the HAGIS

code (for an overview, see sec. 4.1), current release 12.05, without using the vacuum
extension of ref. [55] (explained in sec. 4.1).
The data for the MHD equilibria of all simulations presented in the following originate
from the ICRH-minority-heated ASDEX Upgrade (AUG) discharge #23834, at time t =
1.16 s or t = 1.51 s. At the earlier time point, the q profile is slightly inverted (fig. 6.2,
black solid line), whereas at the later time point, it is monotonic, with lower absolute
values (fig. 6.2, blue dashed line).
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Figure 5.3: q profile according to experimental measurements in AUG discharge #23824 at
different times: t = 1.16 s (black solid line) and t = 1.51 s (blue dashed line): the
q profiles differ in shape (the earlier one is inverted, the later one monotonic), but
also in the absolute values (the inverted q profile has higher absolute q values).
Note: the negative q values result from the AUG magnetic field’s helicity.
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The plasma equilibrium, and in particular the q profile is determined by Alfvén spec-
troscopy of the RSAEs: magnetic pick-up coil data and soft X-ray emission measure-
ments are used to determine the q profile’s minimum value and location.
This particular discharge was chosen due to the availability of especially detailed exper-
imental data concerning fast particle-mode interaction. A detailed comparison between
numerical and experimental results is carried out in chapter 6. In this chapter, a numer-
ical study is presented, which is based on an AUG reference case: the q profile, as well
as the mode frequencies, harmonics and width are chosen according to experimental
observation. However, significant simplifications are made: the mode structures are
chosen analytically, as well as the particle distribution functions. Furthermore, mode
saturation is based completely on the depletion of the particle distribution function,
no collisions, nor turbulence as saturation mechanisms are taken into account, and
there is no source term for energetic particles. Therefore, it has to be noted, that the
simulated time is significantly lower than the slowing-down time of the fast particles.

5.3 Simulation Conditions

As the question of understanding double-mode resonance is very fundamental, the sim-
ulations are performed under quite simple, but still realistic physical conditions: the
background plasma2 is chosen to consist of 94% deuterium and 6% hydrogen ions3,
whereas the fast particle population is simulated as hydrogen ions (concerning mass
and charge) with a volume averaged fast particle beta of βfp = 1%. To avoid different
mode drive at different radial mode positions only due to a steeper gradient in the dis-
tribution function, a radial particle distribution f (ψ) with constant gradient is chosen
(fig. 5.4a). The only damping mechanism that is accounted for is the local flattening
of the driving gradient in the radial fast particle distribution. However, as explained in
sec. 3.2.1, background damping is negligible for the considered scenario.
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Figure 5.4: Fast particle distribution function (marker weighting) in phase space for the nu-
merical study.

2 ni = 5.4 · 1019 m−3, Ti = Te = 2 keV
3 This is only important for the slowing-down parameters in the energy distribution function.
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As energy distribution function f (E) a slowing-down function [102, 103] is used, as
shown in fig. 5.4b:

f (E) =
1

E3/2+ E3/2
c

erfc
�

E − E0

∆E

�

. (5.4)

The parameter E0 is the most probable maximal energy of the fast particles (birth
energy) and chosen to be E0 = 1.0 MeV. ∆E depends on the background plasma tem-
perature T , and is (for T = 2.0 keV) ∆E = 149.9 keV. The cross-over energy Ec takes
into account the drag of the electrons on the fast ions. It depends on the background
electron temperature Te (in the following simulations Te = 2.0 keV) and on the frac-
tion of hydrogen to deuterium ions in the background (in the following simulations
0.06 : 0.94). It is Ec = 19.34 keV throughout this work. The particles are distributed
isotropically in pitch angle (as e.g., fusion born α particles would be).

As MHD perturbations (see chapter 3), analytic, Gauss-shaped functions are used (see
fig. 5.5), without background damping. The mode frequencies are chosen to match
experimental data: at both time points within the considered discharge #23824, a
high frequency TAE with 120 kHz is found (n = 4), as well as a lower frequency mode
at 55 kHz. Ref. [64] describes this mode as an n = 4 RSAE at t = 1.16 s and as n = 4
BAE at t = 1.51 s. The widths of the modes are based on the MHD eigenfunctions,
calculated with the linear eigenvalue solver LIGKA [93].
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Figure 5.5: Analytical, Gauss-shaped perturbation as used in the simulations.

5.4 Numerical Requirements

Before starting the study, convergence in the numerical parameters is tested.
For time stepping, values around 50 to 100 per wave period in the major time dis-
cretization4 and 150 for the orbit integration time stepping5 are chosen. Concerning
error tolerance, values of 10−2 for the orbit integration accuracy, and 10−4 for the
wave amplitude accuracy and magnetic field lines were used6. Their convergence is
validated by reducing all of them by a factor of 10−2. However, most important for
resolution is the number of simulation markers. Fig. 5.6 shows a convergence test
for a double-mode simulation with 84 000, 120 000 and 160 000 markers. One can

4n_interm=50 or 100
5 n_integ=150
6 toler_1,2,3
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see, that even the 84 000 marker simulation gives a roughly similar result, compared
to the 160 000 marker simulation. The amplitude evolution for the 120 000 marker
simulation is in good agreement with the 160 000 marker simulation.
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Figure 5.6: Temporal mode evolution in a double-mode simulation (RSAE at s = 0.3, straight
lines, and TAE at s = 0.4, dashed lines, βfp = 0.3%) with different numbers of
simulation markers: 84 000 (black curves), 120 000 (red) and 160 000 (or-
ange): Convergence is found for 120 000 markers already.

In fig. 5.7, the convergence test for a slightly different scenario is shown: RSAE radial
mode position and fast particle beta βfp are increased. This leads to a decreasing TAE
amplitude in the saturation phase (as will be explained later). Due to the different
amplitudes of both modes, resolution becomes more critical. However, a simulation
with 120 000 markers gives perfect convergence for the RSAE amplitude and at the
same time, resolves the decaying TAE sufficiently. In the following study, there is no
need for a better resolution of decaying modes (which might cost even more than
160 000 markers). Thus, the convergence tests indicate that simulations with 120 000
markers are sufficient, leading to computational costs of a few hundred CPUh for each
simulation.
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Figure 5.7: Temporal mode evolution in a double-mode simulation (RSAE at s = 0.35,
straight lines, and TAE at s = 0.4, dashed lines, βfp = 2.0%) with different num-
bers of simulation markers: 84 000 (black curves), 120 000 (red) and 160 000
(orange): Convergence is good for 120 000 markers.
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5.5 Single-Mode Investigation

The first simulations are carried out with just one mode.
As shown in fig. 5.8, the mode growth rate rises strongly with radial position – the
further it is located outside, the higher the growth rate and also the saturation level.
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Figure 5.8: RSAE mode amplitudes for different mode positions: s = 0.2 (black), 0.3 (pink),
0.35 (red), 0.4 (orange); one can see that more outside positions lead to higher
growth rates and higher saturation levels.

The gradient of the particle distribution is the same at every radial position, due to
the linearity of f (ψ). However, the q profile depends strongly on the radial position,
and therefore also the particle orbit width. Particles further outwards have a more
adequate orbit width for interacting with the given mode: for the circulating particles,
the drift ∆R (see eq. (2.31)) is crucial, for the trapped particles, it is the banana width
Wb (see eq. (2.37)),

∆R∝ qρ (5.5)

Wb ∝
qρ
p
ε

(5.6)

For the q profile, it is a good approximation to assume q ∝ r2, whereas for the magnetic
field B, it is B ∝ 1/R. Hence, with ρ = mv⊥/(eB),

∆R∝ r2R (5.7)

Wb ∝
r2R

p

r/Rmag

∝ R
p

r3 (5.8)

Especially for core-located modes, trapped particles have a significant contribution to
mode drive (growth rate in the linear phase), whereas for modes further outside, this
effect is slightly weaker (see fig. 5.9), although the fraction of trapped particles rises
with the radial position. In simulations done for fig. 5.9, no trapped particles were
initialized, and further, the code was modified to also neglect particles that become
trapped in the course of the simulation.



5.5. Single-Mode Investigation 77

10-3

10-4

10-5

10-6

A
m

pl
it

ud
e�
��

B
/B

0.0       0.25      0.5      0.75      1.0      1.25      1.5       1.75      2.0      2.25      2.5

time  /10-3 s

s=0.2,   w/   trapped
s=0.2,   w/o trapped
s=0.5,   w/   trapped
s=0.5,  w/o  trapped

Figure 5.9: Mode amplitudes in single-mode simulations with (solid lines) and without
trapped particles (dashed lines) of a single RSAE at s = 0.2 (black) and at s = 0.5
(red). Note: βfp =1.0% at the inner, and βfp=0.35% at the outer position, to
obtain comparable growth rates.

The reason for the larger impact of trapped particles on mode drive at inner locations
is the location of the resonance lines: at s = 0.2 the trapped particles’ resonance lines
lie densely in lower energy regions. Therefore, particles with smaller orbits, which are
better confined are the resonant particles, that cause mode drive.

However, the influence of the q profile is the most important factor. Only the inverted
q profile case has sufficient large absolute q values that lead to adequate orbit widths
(∝ q) allowing the fast particles to drive the modes (see fig. 5.10). In the monotonic q
profile, the fast particles’ orbit width is much smaller than realistic mode widths, and
therefore, fast particle-wave interaction is weaker. Additionally, the resonance lines are
less dense in phase space in the monotonic q profile equilibrium (see fig. 6.8).
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Figure 5.10: Mode amplitudes of the RSAE (at s = 0.35) simulated in two equilibria with dif-
ferent q profiles: the inverted q profile leads to high growth rate and saturation
level (black curve), whereas the monotonic q profile does not lead to significant
mode drive (blue).
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In all simulations with amplitudes above certain values, one can perceive a significant
‘step’: after a first quasi-saturation phase, the amplitude is rising again to a higher
level, where it saturates finally. This step is no numerical artifact, but has a physical
background. It appears at an amplitude level of about δB/B ≈ 2 · 10−3, in accordance
with the theoretical predicted stochasticity threshold [76, 104], but fairly independent
of q, the shear ŝ or the radial mode position s. Looking at the redistribution in phase
space before (at around the simulated time t ≈ 2.5 ·10−3 s) and after the step (t ≈ 5.0 ·
10−3 s) explains what happens during the step: during the time before the step, when
the quasi-saturation level is reached, the mode is in a resonant phase, i.e. it redistributes
resonant fast particles interacting with the perturbation, as can be seen in fig. 5.11a:
there are specific areas in phase space, where particles move away (blue color) from
and others, more radially outward, where particles accumulate (red). The location
of these areas matches with the location of the resonance lines (pink) in phase space
showed in fig. 5.11a (for trapped particles). Later, however, no distinct redistribution
is visible; particles are redistributed all over the energy range from a more inward
position towards a more outward one, independent of their energy. Therefore, this
phase, shown in fig. 5.11b, is called stochastic regime.
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Figure 5.11: Change of particle pressure E · δ f in E-s phase space, separated by particle
species (co-, counter-passing and trapped. Red: more particles, blue: less par-
ticles than initially. During the redistribution phase (a), one can see distinct
areas of redistribution that match with the resonance lines (pink) of the reso-
nance plot. In saturation phase (b), this pattern vanishes, leading to a broad
redistribution over the energy range.
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Note: unlike the fast particle density, their pressure is comparable to the background
pressure, due to their high energies. Thus, the pressure term, Eδ f , gives the relevant
quantity for particle-mode interaction and is therefore plotted in the phase space plots,
rather than the density redistribution δ f .

To visualize the effect of stochastization on the particles, a representative particle orbit
(left picture) and the particle’s energy evolution (right) before and after the stochas-
tization sets in is shown in fig. 5.12. One can clearly see the difference between the
two phases: in the resonant phase, mode-particle interaction just shifts the whole orbit
radially outwards (fig. 5.12a), while the particle loses energy. During the stochastic
phase in contrast, the interaction with the mode additionally distorts the particle orbit
(fig. 5.12b), and the energy loss occurs in bursts. Simulating far beyond amplitudes of
δB/B ≈ 10−2 is not reasonable, as amplitudes reaching into the range of few percent
compared to the background field are not considered ‘small perturbations’ any more,
and the HAGIS code will be out of validity (due to the perturbation ansatz, described in
sec. 3.1).
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Figure 5.12: Representative particle orbit (left, blue line) and energy evolution (right) before
(a) and after (b) the stochasticity threshold is reached: During the early satura-
tion phase, the orbit is banana-shaped and shifted outwards, with the particle
losing its energy. In the stochastic regime, the orbit becomes distorted and the
particle’s energy loss occurs in bursts. The black line in the left plots indicates
radial envelope of the MHD mode.
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5.6 Multi-Mode Investigation

After getting familiar with the basics of mode drive with one single-mode in the pre-
vious section, the original aim of investigating multi-mode interaction is addressed in
the following. Multi-mode simulations are carried out with different radial distances
∆s between the Alfvénic modes.

5.6.1 The Effect of Radial Mode Distance on Double-resonance

It is helpful to look at the different stages within the simulation individually: although
all simulations are performed including all particle nonlinearities, the nonlinear effects
are small at the beginning of each simulation, leading to an amplitude evolution ac-
cording to ∝ exp(γt) with γ the linear growth rate.

The linear regime The mode amplitudes in this linear regime, as depicted in fig. 5.13
confirm already some of the results presented in ref. [55]: at least one mode grows
faster in the double-mode scenario compared to the single-mode simulation (the TAEs
in fig. 5.13, dark colors).
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(a) The analytic perturbations used
for the multi-mode simulations pre-
sented in (b). The cases differ in the
radial distances ∆s between the two
simultaneously used modes.
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(b) Mode amplitude evolution in linear growth phase for the different
multi-mode (solid lines) scenarios according to (a). For comparison, the
single-mode simulations are depicted as dashed lines. In all cases, the
TAE (120 kHz at s = 0.4, dark colors) grows stronger in the double-mode
scenario, the RSAE (55 kHz at various radial positions, reddish colors) in
contrast, benefits most from the double-mode case, if ∆s is small.

Figure 5.13: Three multi-mode (solid lines) scenarios in the inverted q profile equilibrium,
differing in radial mode distances ∆s.
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In most cases, both modes have larger growth rates in the double-mode scenario than
in the single-mode simulation. Furthermore, it is usually the radially outer mode that
is driven most strongly due to the double-mode resonance. This is because gradient
driven double-resonance is most effective in driving the outer mode: through resonant
particle redistribution, one mode produces steeper gradients at the other mode’s posi-
tion. Through the inner mode, particles are redistributed towards the outer position
and supply it with more (resonant) particles, which can transfer their energy to the
wave. At the inner mode’s position, in contrast, the particle population decreases, and
with it, the potential energy transfer to the wave.

However, in simulations with small growth rates (see linear phase of fig. 5.18), the
stronger – and that is mostly the outer mode – was enhanced in mode drive less effec-
tively than the subdominant one, or even weakened to the single-mode case. In these
cases, the inter-mode energy exchange is the prevailing mechanism, conducting energy
from the stronger to the weaker mode.

A superimposed oscillation is visible, strongest if the modes’ growth rates are rela-
tively different from each other. However, if they differ too much, the oscillation be-
comes jagged, due to the large impact of the dominant mode on the subdominant
one. The oscillation frequency matches the beat frequency of both modes ∆ω =
ω(TAE)−ω(RSAE) = 65 kHz, indicating the action of inter-mode energy transfer.
As stated in ref. [55], both mode numbers n have to be equal to lead to the oscillatory
behavior, i.e. to double-mode resonance, as will be discussed later.

In the course of each simulation, nonlinear effects become more and more important,
leading to a mode amplitude evolution different from ∝ exp(γt). The beginning of
the nonlinear regime is observed, when the mode amplitude changes from evolving
linearly (in a semilogarithmic plot) to saturating at a certain level.

The nonlinear regime The effect of the double-resonance in the nonlinear regime
is clearly visible in fig. 5.14 (∆s = 0.2): in the double-mode scenario, the modes not
only grow faster (in the case of the TAE), but also saturate at a higher level compared
to the single-mode case (by about a factor of five to ten). The reason for this is the
orbit stochastization at δB/B ≈ 2 · 10−3 that was already observed in single-mode sim-
ulations: in the stochastic phase, non-resonant particles can become resonant due to
distortions of their orbits and drive the mode as well. Thus, a new reservoir of free
energy can be tapped. The stochasticity threshold is only reached in the double-mode
scenario, not in the single-mode case, in accordance with the prediction by theoretical
models [104].
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Figure 5.14: Mode amplitudes evolution in double-mode (solid lines) versus single-mode
(dashed) simulation, with an RSAE (pink) at s = 0.2 and a TAE (blue) at
s = 0.4 for the inverted q profile equilibrium. In the double-mode case, one can
clearly see a superimposed oscillation (insert) and higher saturation levels.

The picture is not as simple in the second example considered (∆s = 0.1, fig. 5.15):
at the beginning of the nonlinear regime, double-resonance is effective – mode am-
plitudes are higher by a factor of five compared to the single-mode simulation. At a
later time point in the simulation however, the situation changes completely: the TAE
amplitude vanishes and the RSAE saturates at a lower level compared to the amplitude
it reached in the single-mode scenario during stochastization. This scenario was found
frequently for close radial mode distances, and shows that a linearly dominant mode
can be stabilized nonlinearly in a multi-mode scenario.
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Figure 5.15: Mode amplitudes evolution in double-mode (straight lines) versus single-mode
(dashed) simulation, with an RSAE (red) at s = 0.3 and a TAE (green) at
s = 0.4 for the inverted q profile equilibrium. Here, the TAE is ‘destroyed’ in the
double-mode case.
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The reason for this behavior can be found in the radial particle redistribution: the
single RSAE leads to a radial particle redistribution as depicted in fig. 5.16a. This
redistribution leads to a flattened gradient (fig. 5.16b) at s = 0.4, the position of the
TAE in the double-mode case of fig. 5.15. The reason for the stabilization of the TAE
in this simulation is therefore its radial location too close to the RSAE. However, at
all positions s > 0.45, the gradient becomes steeper in the course of the single-mode
simulation. Indeed, simulating the RSAE with a TAE in this radial range leads to strong
TAE drive.
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Figure 5.16: Temporal evolution (early: solid, late: dashed) of the distribution function f (s)
in the single-mode simulation (inverted q profile equilibrium) with an RSAE at
s = 0.3 (upper). Lower: the gradient d f (s)/ds at s = 0.4 shows a transition
from negative values (straight) to positive values (dashed), leading to a very low
amplitude of the TAE mode at that position in the double-mode simulation.
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A scan over the radial mode distance reveals the effect of the double-resonance as
shown in fig. 5.17: depicted are the ratios of the linear growth rates (a) and the am-
plitudes (b) in the double-mode case vs. the single mode case over the radial mode
distance ∆s. The amplitude level was compared after ≈ 300 TAE periods (= 2.5 ms)
of simulation time. This time is sufficient for the single amplitudes to saturate, but
still significantly below energy slowing-down time ≈ 0.1 s. Therefore, the fact that no
source term is implemented in the code does not disturb the simulation result.
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Figure 5.17: Mode evolution scanned over the radial mode distance ∆s in the inverted q
profile case. Depicted is the ∆s dependence of the ratios of growth rates (a)
and amplitudes (b) in double-mode simulations over those from single-mode
simulations. Red: RSAE, blue: TAE. One can clearly see that larger radial mode
distances lead to higher amplitudes, whereas amplitudes are even lower than
in the single-mode case for ∆s ≤ 0.15. The linear growth rates, however, are
higher than in the single-mode simulation throughout the∆s range. (The RSAE
growth rate experiences a small drop at ∆s ≈ 0.15.)

One can see that the growth rates of both the TAE and the RSAE are enhanced in all
double-mode cases compared to the single-mode ones. However, the growth rate of
the outer TAE is enhanced most strongly and independently of the radial mode dis-
tance – i.e. gradient driven double-resonance works even if there is no radial mode
overlap. In contrast, the enhancement of the inner and weaker RSAE decreases with
the radial mode distance for small ∆s. Then it increases for ∆s > 0.15. These larger
mode distances match the double-resonant particle orbits and therefore enable inter-
mode energy exchange, driving the weak mode. For higher ∆s, the larger, i.e. higher
energetic orbits fit the mode distance and lead to even more energy exchange. Fur-
thermore, with larger radial mode distances, the modes are able to tap energy from a
wider region. The amplitude ratios, however, are even lowered in the double-resonant
case compared to the respective single-mode levels, if the radial mode distance is small.
This happens due to the mutual gradient depletion at the other mode’s radial position.
If the modes cover a larger radial distance (∆s > 0.15), the double-mode scenario
amplitudes are much higher compared to the single-mode amplitudes, both for the
TAE and the RSAE. Both modes benefit from each other – most for a radial distance
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of about ∆s ≈ 0.25. It is important to note that the distance ∆s = 0.25 giving max-
imum amplitude ratios depends strongly on the absolute mode positions with respect
to the radial distribution function, and especially on the amplitude regime (stochastic
or non-stochastic) of each mode. The same applies for the value ∆s = 0.15 at which
the transition towards double-resonant amplitude enhancement takes place.

To summarize, the growth rates are generally enhanced by the presence of another
mode, whereas for the nonlinear amplitudes, this is only the case, if the modes have
a sufficient radial distance. For small distances, modes at radial positions, where the
initial distribution function is already relatively flat, double-resonance leads to strong
mode stabilization. If the amplitudes are enhanced, their amplification level is, how-
ever, mainly determined by whether the mode reaches the stochastic regime. The
stochasticity threshold can be reached more easily, if a second mode is present.

However, if the growth rates are relatively low for some reason (e.g. small mode width,
small fast particle beta), the particle redistribution is not strong enough to lead to
a dominant gradient driven double-resonance. In these cases, the inter-mode energy
transfer mechanism can prevail (even in a later phase). The dominant mode is weak-
ened through inter-mode energy transfer to the subdominant mode, as depicted in fig.
5.18. The process saturates, as the mode amplitudes converge towards comparable
levels. In this simulation, there is no strong fast particle redistribution.
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Figure 5.18: Mode amplitudes over time in double-mode (solid lines) versus single mode
(dashed) simulation with low growth rates (for monotonic q profile equilib-
rium (βfp = 2.5%) with a BAE (pink) at s = 0.3 and a TAE (blue) at s = 0.4).
Here, the redistribution is too weak to lead to significant gradient driven double-
resonance. Inter-mode energy transfer (from the TAE to the BAE) dominates.
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As a proof, that it is not per default the drive of the inner mode, that gains energy
from the inter-mode energy transfer, nor the low-frequency wave, fig. 5.19 is shown.
Here, an RSAE is simulated as a radially broader perturbation, whereas the TAE has
a relatively small radial width. These conditions result in a stronger growing RSAE
compared to the TAE, and, eventually in the double-mode scenario to an inter-mode
energy transfer from the inner RSAE to the outer TAE.
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Figure 5.19: Mode amplitudes over time in double-mode (solid lines) versus the single-mode
(dashed) simulation (in the monotonic q profile equilibrium, βfp = 1.1%), with
a broad and therefore strong RSAE at s = 0.5 (pink) and a small, i.e. weak TAE
at s = 0.6 (blue): here, the inter-mode energy transfer in the linear phase goes
from the BAE radially outwards to the TAE. Later in the double-mode simulation,
the BAE reaches the stochasticity threshold and outstrips the single BAE; the TAE
amplitude decays due to the BAE’s redistribution.
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A more complex case is shown in fig. 5.20, where two modes in the monotonic q
profile equilibrium were simulated, with an increased βfp value, to obtain higher am-
plitudes: the weaker but inner (BAE) mode is enhanced far stronger than the outer
mode (TAE), but even the outer mode experiences an enhanced mode drive through
double-mode resonance. A possible explanation is the interplay between both double-
mode resonance mechanisms: at first, the BAE does not lead to sufficient redistribution
for enhancing the outer TAE through gradient driven double-mode resonance. How-
ever, the radial mode distance and the q profile at the mode positions match for an
effective inter-mode energy transfer from the TAE to the BAE. Due to the growth of
the BAE, its redistribution can be increased (although exactly the particle population
responsible for the inter-mode energy transfer is not redistributed, as explained earlier
in this section) – and leads to a steeper gradient at the TAE position and eventually to
enhanced mode drive also for the TAE.
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Figure 5.20: Mode amplitudes evolution in double-mode (solid lines) versus single-mode
(dashed) simulation with large radial mode distance (in the monotonic q profile
equilibrium, βfp = 2.5%) with a BAE at s = 0.4 (pink) and a TAE at s = 0.6
(blue): here, the weak mode’s drive is enhanced stronger by double-resonance
than the dominant one.
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The next example, fig. 5.21 investigates the effect of very different radial mode width.
In the single-mode simulation, the mode with large radial extent saturates at almost
the same level than the mode with small width. Only the time needed to reach this
level is longer in the case of the thin mode. In the double-mode scenario in contrast,
the saturation amplitude of the broad mode is higher by a factor of 20 compared to the
thin mode. Since the broad mode can tap a wider reservoir of energy in phase space,
it grows faster than the thin mode, and quite individually at the beginning. However,
once the thin mode reaches a significant amplitude, it ‘refills’ the exhausted reservoir
of resonant particles for the broad mode, i.e. counteracts the flattening of the broad
mode. This mechanism does not work vice versa, as the thin mode’s radial extent is
very small and overlaps largely with the structure of the dominating broad mode.

  55 kHz, s = 0.3
120 kHz, s = 0.4
  55 kHz, s = 0.3, single
120 kHz, s = 0.4, single

}

time /10-3s
0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0

A
m

pl
it

ud
e

/δ
B

/B

10-3

10-4

10-5

10-6

(a) Temporal evolution of the mode amplitudes.

radius s

in
iti
al

Am
pl
itu

de
/1
0-
7 1.0

0.8

0.6

0.4

0.2

0.0 0.2 0.4 0.6 0.8 1.0

(b) Analytic perturbations used in a.

Figure 5.21: Mode amplitudes over time in double-mode (solid lines) versus the single-mode
(dashed) simulation (for the monotonic q profile equilibrium, βfp = 2.5%), with
a broad and therefore strong BAE at s = 0.5 (pink) and a small, i.e. weak TAE
at s = 0.6 (blue): here, the inter-mode energy transfer goes from the outside
(but weak) TAE to the inside (but strong) BAE.
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5.6.2 The Role of Trapped Particles

Another question regards the role of trapped particles in the double-resonance mech-
anisms: Especially for the inter-mode energy exchange, the particles’ orbit widths are
crucial. Therefore, trapped and passing particles may have a different role within the
double-resonance mechanism.

In the simulations presented in the following, no trapped particles were initialized, and
the code was modified to even neglect particles that become trapped in the course of
the simulation. It was found that for the linear phase, the absence of trapped particles
leads to significantly lower growth rates (fig. 5.22). The effect is slightly stronger for
inner mode positions, although there would be more trapped particles further outside.
This is due to the fact that the orbit width broadens with radial position, and therefore
also the loss region. But especially the resonance with a broader TAE is effective only
with broader orbit particles that are more easily lost.
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Figure 5.22: The effect of double-mode resonance on the mode amplitudes evolution in a
simulation neglecting trapped particles, using an RSAE at s = 0.3 (red solid
line) and a TAE at s = 0.5 (green solid line). The same scenario is simulated
with trapped particles (pink and blue solid lines respectively). The amplitude
evolutions in the single-mode cases are shown for comparison (dashed lines).

However, except for the effect of generally lower amplitudes in the scenario without
trapped particles, the double-resonance also works with passing particles alone: the
effect of double-resonance remains, which is reflected by the ratio of growth rates and
amplitude levels in double-mode simulations compared to those from single-mode sim-
ulations. This means, passing as well as banana orbits can be adequate orbits for the
double-resonance mechanism of inter-mode energy transfer: As for passing particles,
the orbit does not close entirely on the low field side, the double-resonance mecha-
nism must work with the higher poloidal harmonics m of one mode, located at the
high field side. For the even TAE, there are no significant maxima at the HFS (see end
of sec. 3.1.2). Core-localized modes, such as BAE and RSAE do not couple to the next
harmonic m ± 1 and are cylindrical modes, thus, they have comparable amplitudes
at the HFS and the LFS (see sec. 3.1.3, sec. 3.1.2). There, double-resonant passing
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particles can interact with the mode. Compared to the banana width Wb of a trapped
particle eq. (2.37), the drift displacement ∆R of a passing particle’s orbit (eq. (2.31) at
the same energy) is significantly smaller. But, as the resonance condition is different
for passing particles, higher energetic particles are responsible for double-resonance.
These have a larger drift displacement that fits again the simulated radial mode dis-
tances ∆s.

For the gradient driven (double as well as single) resonance, the trapped particles’ res-
onances are very important. Without trapped particles, the saturation levels are much
lower and do not reach the stochastic regime. This is due to the importance of the
trapped particles’ (single) resonances, leading to gradient driven mode-particle inter-
action. The importance of the trapped particles is consistent with the fact, that the
TAE is an even TAE, which due to its ballooning structure interacts very strongly with
trapped particles.

5.6.3 The importance of equal toroidal mode numbers

Especially for the inter-mode energy transfer, there has to be a population of particles
that is resonant with both modes at once with orbits that pass through both modes.
For two modes with different toroidal mode numbers n, the overlapping volume of
resonances in phase space becomes smaller, and it becomes less probable to find par-
ticles that fulfill the resonance condition eq. (5.3) for two modes at once. Thus, it is
expected that less double-mode resonance effects occur, if the modes differ in their
toroidal mode number n. Fig. 5.23 shows the resulting amplitude in a double-mode
simulation with different n for the RSAE (n = 4) and TAE (n = 5) in comparison with
a simulation of both modes at n= 4.
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Figure 5.23: The effect of double-mode resonance on the mode amplitudes evolution in a
scenario with different toroidal mode numbers: an n = 4 RSAE at s = 0.3 (red
solid line) was simulated together with and an n= 5 TAE at s = 0.4 (green solid
line). For comparison, the result of the simulation, using an n = 4 RSAE and
TAE (pink and blue solid lines respectively) is shown, as well as the single-mode
cases (dashed lines).
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In the linear phase, one can see clearly that the amplitudes of the single TAE sim-
ulations are almost exactly equal, independent on n. However, in the double-mode
scenario, the RSAE is enhanced (compared to the single-mode amplitude), and the
TAE even more strongly – but only if both modes have equal n. If this is not the case,
only the TAE is enhanced, whereas the RSAE actually decreases. Furthermore, the su-
perimposed oscillation vanishes to a slightly jagged curve. This shows that gradient
driven double-resonance still works with different toroidal n – the outer mode ampli-
tude is still enhanced – but the inter-mode energy transfer mechanism breaks down,
as the resonance condition cannot be easily fulfilled for both modes at once for parti-
cles with trajectories through both modes: the inner RSAE amplitude is not enhanced,
but weakened. When reaching saturation, the effect of inter-mode energy transfer is
overlapped by the dominance of the gradient driven double-resonance, and therefore,
the saturation levels do not depend strongly on equal n. Simulations with different
n show almost identical nonlinear behavior, although saturation is reached later. The
stochasticity threshold does not seem to be influenced by the differing n, nor the effect
that one mode can be damped by the redistribution of the other one. However, the
differences again depend on the exact scenario.

5.7 Summary

The interaction of fast particles with Alfvén Eigenmodes of different frequencies was
studied numerically with the HAGIS code in a simple, but physically realistic picture for
two different MHD equilibria occurring during the ASDEX Upgrade discharge #23824.
Double-resonant mode drive was compared to single-mode scenarios, verifying previ-
ous findings of double-resonance mechanisms: gradient driven double-resonance [76]
and inter-mode energy transfer [55]. The latter was observed to prevail only in low
amplitude cases, enhancing the weaker mode at the expense of the dominant one. A
beat frequency oscillation superimposed on both mode amplitudes was found, as well
as higher linear growth rates – at least for one mode – compared to the single-mode
reference cases. The growth rate enhancement was observed to have only a very weak
dependence on the radial mode distance. Concerning the amplitudes of the Alfvén
Eigenmodes, the double-resonance can enhance modes to grow into the stochastic
regime and therefore lead to much higher saturation levels compared to the single-
mode scenarios, even if there is no radial mode overlap. However, close radial mode
distances were found to ‘destroy’ linearly dominant modes when the nonlinear regime
sets in. As a consequence, linearly weaker modes may become nonlinearly dominant.
These results reveal a complex nonlinear evolution of multi-mode scenarios, rather
than merely a simple continuation of the linear multi-mode behavior.
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CHAPTER 6

Nonlinear Alfvénic Fast Particle
Transport and Losses

In many discharges in different TOKAMAKs fast particle losses can be observed due
to Toroidicity-induced Alfvén eigenmodes (TAE), Reversed Shear-Alfvén eigenmodes
(RSAE) or core-localized Beta-induced Alfvén eigenmodes (BAE) (see chapter 3 for
modes). They are driven by energetic particles and in turn enhance the losses. In the
previous chapter, the mode-particle interaction was studied in different multi-mode
scenarios. This chapter advances one step further: simulations under more realistic
plasma conditions are presented for different plasma equilibrium conditions, in par-
ticular for different q profiles. Fast particle losses are simulated using the extended
version of the HAGIS code [72, 83] (see chapter 4 for the code model).
To find out about the loss mechanisms, loss features such as phase space pattern and
ejection frequency are analyzed. Both can help to learn about whether or not the losses
are caused by mode-particle (double) resonance (resonant losses), phase space stochas-
tization (diffusive losses) [105, 106] or none of both. Therefore, the losses are catego-
rized: all particles that are unconfined solely due to their large orbit width – caused by
a high birth energy – or a birth position radially far outside, are called prompt losses.
They have no phase correlation with any mode, thus their ejection frequency is not
related to any of the modes’ frequencies, and the losses are therefore inherently in-
coherent. Losses that are caused due to wave-particle interaction can be both, either
coherent losses, or incoherent as well. They are coherent, if they show a correlation with
one of the mode frequencies or the beat frequency of different modes, but incoherent if
they are ejected e.g. due to phase space stochastization. To learn about the role of the
modes in the ejection mechanisms, the losses are further studied with respect to the
number and type of modes present in the plasma and the q profile (as this determines
particle orbit widths and also mode growth). Finally, the numerically obtained losses
are compared directly to experimental loss measurements at ASDEX Upgrade [33].

The chapter is organized as follows: sec. 6.1 presents the experimental settings the
numerical simulations are based on, as well as experimental loss observation. In sec.
6.2, the step-by-step advance towards more realistic simulations is documented, fol-
lowed by sec. 6.3 where the final results are formulated, summarized and eventually
compared to the experimental measurements.
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6.1 Experimental Fast Ion Loss Measurement

To be able to compare the numerical loss results with experimental measurements, a
specific experimental scenario with high quality loss data [33] is chosen as a basis for
the simulations.

6.1.1 ASDEX Upgrade Discharge #23824

The ion cyclotron (ICRH) minority-heated ASDEX Upgrade (AUG) discharge #23824 is
especially interesting for the investigation of fast particle-wave interaction and losses,
as it has an inverted q profile after the current ramp-up phase and the q profile relaxes
to a monotonic profile (q decreases) as the current density penetrates inwards (see fig.
6.2). As particle confinement depends largely on the q profile due to the proportion-
ality between orbit width and q value, the inverted q profile with its higher absolute q
values is expected to impact the amount of losses and also the wave-particle interac-
tion. Further, an inverted q profile allows RSAEs to exist, which are known to interact
with fast particles.

Except for the q profile, shot #23824 shows relatively similar plasma properties at two
chosen time points (t = 1.16 s and t = 1.51 s), as can be seen in fig. 6.1.
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Figure 6.1: Measured values over time for plasma current, electron temperature and density
during AUG shot #23824 [107].
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The simulations are based on these two different MHD equilibria – at t = 1.16 s and
t = 1.51 s (shown in fig. 6.3). The total plasma current is constant between both time
points (I = 800 kA), only the current density penetrates inwards. Consequentially the
inverted q profile at the earlier time point changes to a monotonic q profile at the later
time point.
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Figure 6.2: q profile during AUG discharge #23824
at different time points, obtained from CLISTE calculation
constrained by Alfvén spectroscopy measurements as de-
scribed in detail in [64]. The black solid line shows the q
profile at t = 1.16 s, whereas the blue dashed line refers
to t = 1.51 s: the q profiles differ in the shape (the ear-
lier one is inverted, the later one monotonic), but also
in the absolute values (the inverted q profile has higher
absolute q values in the plasma core).
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Figure 6.3: MHD equilibrium
of AUG discharge #23824 at time t =
1.16 s (black) and the separatrix at
time t = 1.51 s (red) as obtained from
the discharge database [107].

6.1.2 Experimental Observation

In ASDEX Upgrade and other machines of similar size (e.g. DIII-D), a large number of
fast ion losses occurs, which is directly measured: a new diagnostic in ASDEX Upgrade,
the fast ion loss detector (FILD), provides energy and pitch angle resolved measure-
ments of fast ion losses [35, 108]. The diagnostic consists of a scintillator plate that is
contained within a cylindrical cup. The cup can be inserted via a movable manipulator
up to a few millimeter behind the limiter, approximately 300 mm above the outboard
mid plane (see fig. 6.5). Fast ions enter the detector through an aperture open in the
cup and hit the scintillator. Their strike points depend on their gyroradius (i.e. their
energy) and on their pitch angle, see fig. 6.4. A CCD camera observes the scintillating
surface and provides a highly spatially resolved image. Furthermore, an array of 20
photomultipliers, which have a bandwidth of 1 MHz record the signal, providing a very
high time resolution. The collimator geometry of the FILD allows for a detection of fast
particles with a gyroradius of ρ ∈ [30,120] mm. The corresponding energies depend
on the magnetic field at the FILD position and on the particle species (their mass and



96 Chapter 6. Nonlinear Alfvénic Fast Particle Transport and Losses

charge). Since there is no mass detection, different species, e.g. deuterium and hy-
drogen ions cannot be distinguished. The measured pitch angles are in the range of
λo ≈ 30o (passing) and λo ≈ 87o (trapped).

Figure 6.4: Working principle of the
FILD diagnostic. Two different particle tra-
jectories are shown to demonstrate how the
aperture works in the perpendicular and
the parallel direction to the magnetic field.
Source: [35]

Figure 6.5: Computer-aided design (CAD)
view into the ASDEX Upgrade vacuum vessel (seg-
ments 8-10) to demonstrate the position of the
FILD. Source: [108]

When comparing the FILD measurements to numerical results from HAGIS, it is impor-
tant to subtract from the experimental data 6o to 9o in (absolute) pitch angle and 6%
in energy [55]. This deviation is due to the experimental method: deeply trapped par-
ticles (created in great number from ICRH heating), have a relatively high drift velocity.
However, when measuring the particle’s energy, the drift that takes place within the
detector is neglected (see fig. 6.6): it is assumed, that the impact spot of the particle
perpendicular to the magnetic field lines is caused solely by its gyroradius without any
drift within the detector. Thus, the particle’s gyroradius is overestimated: ρexp = ρ+ρ′.
Further, the pitch angle changes along the trajectory through the detector. Therefore,
to compare with the numerically calculated pitch angle λo (which corresponds to the
one, the particle had at the detector entry position, λ0), it is necessary to take this
deviation into account, too: λexp = λ0 + λ′. The overestimation of pitch angle and
gyroradius is caused by the drift velocity vD: ρ′ ≈ vDΩ, and λ′ ≈ arccos(vD/v‖). Thus,
since vD ∝ O (ρ/R), it depends on the gyroradius. With ρ/R ≈ 5% for deeply trapped
particles, it becomes relevant even on the scale of the detector size.
In ref. [55], λ′ was calculated numerically for lost particles with different energies and
initial positions, confirming the above estimate with the most relevant angle being λ′

approximately ∈ [6o,9o]. The overestimation ρ′ of the gyroradii measured experimen-
tally is in the same percentage range. Although λ′ and ρ′ depend on the pitch λ as
well as on the gyroradius ρ (as vD depends on ρ), they can be approximated with the
values given above, which were reported in ref. [55].
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For the AUG discharge #23824, ref. [33] reports a high raw signal with a vast majority
of incoherent losses for times before t ≈ 1.4 s, whereas, after this time, the raw signal is
low, consisting of only coherent losses and no incoherent losses at all (figures showing
the experimental results are given in sec. 6.3.6).
Fig. 6.7 shows the FILD spectrograms used to investigate the present modes and their
frequencies during AUG discharge #23824. At the representative time point of t = 1.16
s, the major modes are a n = 4 TAE of 120 kHz and a n = 4 RSAE of 55 kHz. Later, at
t = 1.51 s, there is a 160 kHz, n = 5 TAE and (though visible only with the Soft X-ray
diagnostic method [109]) an 70 kHz, n= 4 BAE [64].
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Figure 6.7: Spectrograms (over time) obtained via different measurement systems for AE fre-
quencies during the AUG discharge #23824. Note that the frequencies in (b)
include a small Doppler shift.
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The Mirnov coils [111] detect an integrated signal for electromagnetic fluctuations at
the plasma edge. Thus, they can detect global modes with either a relatively high am-
plitude or a not too core-localized position, such as TAE. With the Soft-X ray diagnostic
more core-localized modes, such as BAE and RSAE can be measured regarding their
amplitude and radial position [109].

With HAGIS, the wave-particle resonances in phase space are calculated for these modes
(as explained in sec. 3.2.3) in the respective MHD equilibria, AUG #23824, t = 1.16 s
(see fig. 6.8a) and t = 1.51 s (see fig. 6.8b). Two important differences are visible: at
the earlier time point, where the q profile is inverted, the loss boundary is larger, due
to the higher |q| value. Further, the resonance lines for the observed mode frequencies
lie denser, due to the smaller difference in the frequency of both modes.
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Figure 6.8: Resonance plots for two equilibria of AUG discharge #23824 at two different time
points with different q profiles. Pink indicates resonant, cyan non-resonant areas,
with respect to the main MHD modes as diagnosed experimentally (n = 4 TAE of
120 kHz, n = 4 RSAE of 55 kHz at t = 1.16 s and n = 5 TAE of 160 kHz, n = 4
BAE of 70 kHz at t = 1.51 s). Particles in the blue regions are lost. The loss
region of the right picture is plotted superimposed in the left image to point out
the difference. Note: the HAGIS version extended to the vacuum region was used.

Thus, it appears evident, to observe fewer losses at the later time point. However, the
detailed loss mechanism is not known yet: the large amount of losses at the earlier
time point can be both – prompt and thus incoherent due to the large orbit widths, or
caused by wave-particle interaction. In the latter case, the question arises, if the in-
teraction is resonant, causing coherent losses, or diffusive, emerging from phase space
stochastization and causing incoherent losses [105]. In the following sections, these
questions will be investigated.
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6.2 Numerical Implementation to Simulate Fast Particle Losses

As mentioned before, the simulation of fast particle losses with HAGIS requires the
use of the extended version, which includes the vacuum region [55]. Therefore, the
simulations are computationally more expensive (roughly between 120% and 300%
compared to the simulations without the extended version). Otherwise, there is no
possibility to track the particles across the separatrix and to decide whether they are
lost or re-enter the plasma. As will be shown in sec. 6.2.4, losses can be overestimated
up to 30%. I.e. around 30% of the particles that cross the separatrix and are lost in the
original version of HAGIS are actually not lost, but re-enter the plasma.
Compared to chapter 5, not only the code itself is used differently, also the physical
simulation conditions are adapted to the more realistic problem. This will be done in
different steps: firstly, the distribution function is specialized, secondly the eigenmode
input data. But first, a few lines about numerical requirements have to be given, as
these may change while approaching more and more realistic simulation scenarios,
compared to simpler studies.

6.2.1 Numerical Requirements

One of the most crucial parameters in a PIC code simulation is the number of markers,
but also the time stepping as well as error tolerance allowed.
Concerning error tolerance, convergence is validated by reducing the orbit integration
tolerance1 from 10−2 to 10−4: the number of losses does not change (100.4%), very
small deviations in the mode amplitude evolution of the subdominant mode are visi-
ble.
For the time stepping, the numerical requirements are investigated by reducing the
time step in the time discretization for calculating the energy transfer between parti-
cles and waves2 from 50 to 150 per wave period (1/55 kHz). The losses obtained are
reduced to around 98% only, without a qualitative change in the pattern. Very small
deviations in mode amplitude evolution are visible only for the subdominant mode
during the phase were both amplitudes differ significantly.
Concerning the number of markers3: increasing from 250 000 to 1 million results in ex-
actly the same amplitude evolution (except for minor deviations with the subdominant
mode during the phase were both amplitudes differ significantly) and loss appearance.

The reason for the use of the relatively large amount of markers is the idea to in-
vestigate the time correlation between mode amplitudes and losses via Fourier analy-
sis. Therefore, the amount of loss events needs to be large enough, to provide good
enough time resolved statistics, even after sorting the losses by energy (to not make
the peak smeared out by different travel time of the particles). This is, however, not
the only point why the desired Fourier analysis makes the simulations more expensive:
for good frequency resolution, the selected time window has to be sufficiently large.
As the frequency correlation between losses and mode is expected to occur especially

1 toler_1 parameter, used in rkqs subroutine
2 n_interm parameter, loop in follow.F
3 nmrkrs parameter
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during the resonant phase, the modes have stay sufficiently long on this first saturation
level, before the stochastization sets in. Thus, the growth rates have to be low and the
simulated time interval large.

6.2.2 More Realistic Simulation Conditions – ICRH Distribution Function

The AUG discharge #23824 is characterized by the ion cyclotron resonance heating
(ICRH), resulting in a very particular fast ion distribution function, different from the
fast particle population generated by neutral beam injection (NBI). To be able to simu-
late the interaction of these ICRH-generated fast ions with Alfvénic waves, an adequate
distribution function is implemented in HAGIS. Especially the anisotropy in the pitch
λ is taken into account: the ICRH resonance with the background plasma depends on
the ion gyrofrequency, and thus on the magnetic field strength. It is located in a small
cone below and above the magnetic axis at the poloidal angles ϑ = 90o and ϑ = 270o,
radially between s = 0 and s ≈ 0.7. Particles with a very small parallel velocity v‖
stay longer in this area under the influence of the ICRH heating, and further, the res-
onance heating increases the perpendicular energy of the particle. Thus, the pitches
of the newly generated fast ions are very small. This results in banana orbits (see sec.
2.2.3) with turning points in the area of the ICRH deposition layer. As a consequence,
the ICRH-generated distribution function is highly anisotropic in both velocity and orbit
topology. Usually, and also in the AUG discharge #23824, the ICRH resonates with the
second harmonic of the proton cyclotron frequency, since this is the most efficient heat-
ing method (it is called minority heating). The major challenge one faces when trying
to simulate an ICRH scenario is a two-part problem: first, it is difficult to find the real
fast particle distribution function. Different from NBI-heated plasmas, the fast ion dis-
tribution function in ICRH-heated plasmas is almost unknown experimentally. Second,
the distribution function has strong anisotropies in coordinates that are not constants
of the motion (pitch λ and poloidal angle ϑ – coordinates of velocity and real space
that change along the particle orbit), making it difficult to evolve such a distribution
function in HAGIS.
To explain how these two problems are addressed, this section is split into two parts:
the first part is about the implementation of the distribution function into HAGIS. The
second part discusses the choice of the distribution function.

ICRH-like Distribution Function Implementation

In HAGIS, the fast ions are treated in a 5D phase space (see sec. 4.3), consisting of
the three spacial coordinates: the radial coordinate as square root of the normalized
poloidal flux s =

p

ψ/ψedge ∈ [0,1], the poloidal angle θ ∈ [0,2π], and the toroidal
angle ζ ∈ [0,2π], which is irrelevant due to axisymmetry. Velocity space is treated
in spherical coordinates: v = |v | =

p

2E/m is the absolute value of the velocity and
λo the known pitch angle λo = arccos(v‖/v). The volume element of this coordinate
system consists of the spacial Jacobian part 2π(I + gq)/B2dsdθ (see eq. (4.21), where
the dζ integration has been executed) and the velocity space part 2πv2 sin(λo)dvdλo,
which is equivalent to 2πv2dvdλ.
As a PIC code and applying the delta-f method, HAGIS handles the distribution function
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as sum of two parts: an unperturbed part f0, and a perturbed part δ f . This separation
of a prescribed component f0 and a numerically described component δ f is formally
valid without the assumption that the latter must be much smaller than the former.
However, it is only for the case where δ f � f0 that substantial reductions in simula-
tion noise are expected [83]. It is possible to represented only the perturbed part via
‘particles’, which follow the equations of motion presented in eqs. (4.57). The ‘parti-
cles’ are not equal to physical particles but represent a certain particle density in phase
space and are therefore called ‘markers’.
Concerning the markers in phase space, one has to distinguish between loading and
weighting: the loading takes place at the beginning of the simulation and positions
the markers at their initial position in phase space (see Sec. 3.4.1 of ref. [72]) using
Hammersley’s sequences4. Afterwards, the markers are restricted to the phase space
regions specified in the input parameters5. All five coordinates are relevant for load-
ing: s, θ , ζ, v and λ. All except the toroidal coordinate ζ can be restricted: s ∈ [s1, s2],
θ ∈ [θ1 −∆θ ,θ1 +∆θ] (above the mag. axis) and θ ∈ [θ2 −∆θ ,θ2 +∆θ] (below
the mag. axis), E ∈ [Emin, Emax] and λ ∈ [λ0 −∆λ,λ0 +∆λ]6. Especially for the θ
coordinate, one has to take into account, that the Boozer coordinate θ does not trans-
fer identically into the torus coordinate ϑ. The loading fills these phase space regions
uniformly with markers, as can be seen in green in fig. 6.9 and fig. 6.10 (green).

In the unperturbed situation, an equilibrium energetic particle distribution profile is
present during the discharge, i.e. one assumes either a balance between relaxation and
heating source (which is not implemented in HAGIS) or sufficiently small simulated
times (� 0.1 s). The unperturbed part of the distribution function, and also the weight
of a marker is determined by the distribution function specified as analytical function
f0(ψ,E,Λ) in the input parameters7. Each marker is assigned with a weight according
to the value of this function at its current phase space position. However, for this po-
sition, the coordinates θ and λ are not ‘good coordinates’, as they change along the
orbit. In contrast, the radial coordinate s is an approximately constant orbit property
(if neglecting particle drifts, the particle remains on the same flux surface), as well as
the kinetic energy, i.e. the particle velocity v (if HAGIS is used without taking collisions
into account, as it is in this work). For simulating isotropic energetic particles (e.g.
α particles), the distribution function can be described in the above way, as the fast
particle population is isotropic in pitch space then. For ICRH-heated plasmas, this char-
acterization however is not sufficient, as it does not describe the strong anisotropy in
λ: it is wrong to weight λ independent from θ . For a combined λ and θ weighting,
one has to use other coordinates that are constants of the motion.

4 Source file quiets.F. Different loading schemes are possible, addressed by the start0 option, such as via
random generator or user input. However, these other loading schemes are not used throughout this
chapter.

5 &MARKER_LOADING in hagis.dat
6 In the input parameter file, [s1, s2] are given by s_load[:], θ1,2 by thICRH1,thICRH2, ∆θ by epsthICRH,

Emin,max by ensmin, ensmax, λ0 is lam0 and ∆λ is dellam in the parameter file. The pitch anisotropy
is addressed only when setting the parameter lamopt==4.

7 &DISTRIBUTION_FUNCTION in hagis.dat
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Figure 6.9: The R-z plane of the MHD equilibrium used in the HAGIS simulations with
the ICRH-type initial marker distribution (in green), i.e. showing the loading
along the s and the θ coordinate. In this example, s ∈ [0.001, 0.70] and
θ1 = 1.26, θ2 = 5.09, ∆θ = 0.3, which transfer to ϑ = ±90 ± 17.2o in the
shown torus coordinate system.

ICRH-heated fast ions populate only a small area of pitch space around λ = 0. For NBI-
heated plasmas, pitch space is populated highly anisotropic as well, but around λ=±1.
The pitch is not a conserved quantity and it is therefore not correct to just emphasize
those markers (via a strong weight) that have λ = 0 (in the ICRH case), because this
is only valid for certain θ angles. Instead, one has to search for a conserved quantity
resulting from λ and θ , according to which the markers can then be weighted at any
orbit position. The quantity Λ fulfills this condition: it is connected to the pitch λ, but
in contrast to that, is not subject to changes along the orbit:

Λ =
µ Bmag

Etot
=

Bmag

B

�

1−λ2
�

, (6.1)

where Bmag is the magnetic field at the magnetic axis, introduced as normalization,
and B is the magnetic field at the respective position B(s,θ) and λ = λ(s,θ) the pitch
at this position. In fig. 6.10d, the transformed distribution function is shown for three
different flux surfaces. The blue lines in fig. 6.10c show the back transformed function
dependent on λ.
Once the distribution functions along s, v, Λ are known, they can be implemented into
HAGIS8. The choices for the simulations of this chapter are shown in blue in fig. 6.10.

8 More precisely: in the f0_method0.m file, as a routine called raddis for the s direction, veldis for v and –
in case of pitch anisotropy – Lamdis for Λ respectively. Several functions can be chosen via the input
parameters rflag, vflag, pitflag.
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Figure 6.10: Regions where markers are loaded (green) in the different phase space directions
and distribution functions for the unperturbed part f0 and weighting (blue).
Due to the weighting according to Λ instead of λ, the weight function in this
direction becomes dependent on (s,θ) and is shown here for three different flux
surfaces (the Gaussian is less steep for flux surfaces further outside).

Due to the necessity of transforming λ coordinate into the constant of the motion Λ,
one obtains one velocity space coordinate, Λ, dependent on the spacial coordinates:
Λ = Bmag/B(s,θ)(1− λ2). As a consequence, when calculating the moments, the inte-
gration over the different phase space coordinates is not separable any more. Further,
also the volume element has to be transformed into the new coordinate system,

dλ = ∓
BdΛ

2Bmag

q

1− B
Bmag
Λ

. (6.2)

Not only the volume element has become dependent on the spacial coordinates, but
also the integration limits,

Λmin =
Bmag

Bmax

�

1− |λ|2max

�

,

Λmax =
Bmag

Bmin

�

1− |λ|2min

�

, (6.3)

with Bmax/min being the maximum/minimum value of the magnetic field for a distinct
s within the loading area θ1,2 ±∆θ . For a general distribution function (with co- and
counter-passing particles) the integration has to be performed over both branches of
the square root in eq. (6.2), which are symmetric only in the case of λ0 = 0, the typical
ICRH distribution function.
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‘Educated Guess’ for the ICRH Distribution Function

As the AUG #23824 discharge is ICRH minority-heated, it is a reasonable approximation
to simulate the fast particle population as consisting of protons only. As in the pre-
vious chapter, the background plasma9 (only important for the determination of the
slowing-down parameter Ec in the energy distribution function) is chosen to consist
of 94% deuterium ions and 6% protons. The fast particle population is simulated as
protons (concerning mass and charge) with a volume averaged fast particle beta in
the range of βfp ≈ 0.05%. This can be estimated from the construction of the MHD
equilibrium and different kinetic plasma profile measurements. However, the volume
averaged βfp does not alone determine the radial gradient of the distribution function,
which governs the mode drive. For the most realistic modeling in the following sec-
tions, the βfp value given above is reduced to βfp = 0.02% to obtain mode amplitude
saturation levels comparable to the experimental values. However, the larger βfp value
leads to a faster mode growing. In the indicated studies, it is chosen to save computa-
tional costs.

To get an idea of the fast particle distribution function, the TORIC-SSFPQL code [112]
is considered, which calculates in a nonlinear loop algorithm the ICRH wave propa-
gation (by TORIC, a linear full-wave code) and solves the Fokker-Planck equation (by
SSFPQL, a nonlinear kinetic code). It provides a 3D function in radius, pitch and energy.
However, to describe a fast particle distribution function including the higher energy
range in SSFPQL, the loss mechanisms would have to be known quantitatively within
the model. Therefore, energies E > 400 keV are neglected in the SSFPQL distribution
function. In contrast, for the fast particle loss investigation with HAGIS, energies up to
E = 1200 keV are considered. For the same reason of a missing loss mechanism, the
radial distribution cannot be calculated self-consistently in SSFPQL, but strongly relies
on AUG background profiles. Further, SSFPQL does not take the mirror effect (‘trapping
effect’) nor a finite drift orbit width into account10. The drift orbit width can easily
take values of around ∆s ≈ 0.3.

Both constraints (in the radial and energy direction) will lead to a radial pressure
profile with underestimated radial width, as the broad orbits are missing. The red
curve in fig. 6.11a shows the radial distribution function assumed by SSFPQL (from AUG

data of the #23824 discharge, t = 1.16 s): for s > 0.4 there are no fast particles.
Experimental observation of Alfvénic modes at up to s ≈ 0.7 infers that a gradient in
the fast ion population density exists also there. Ref. [114] addresses this problem
by using different codes (amongst others the PSION code). These give a non-zero fast
particle pressure at radial positions further outside. The differences are explained with
the finite orbit width approximation. Thus, the radial distribution function for the
simulations of this chapter is implemented to decrease to zero at s2 = 0.7 (unless
otherwise noted). The weighting function is implemented as constant for s < 0.25 and

9 n= 5.4 · 1019 m−3, T = 2 keV
10 The ‘trapping effect’ was taken into account in a very recent implementation, see ref. [113].
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drops down according to a Fermi-like potential law for s ≥ 0.25,

f (s) =

(

const. for s < s0

(1− (s− s0)2)a for s ≥ s0,
with s0 = 0.25 and a = 5 (6.4)

It is depicted as blue curve in fig. 6.11a, where the line in turquoise gives the actual
resulting numerical distribution (averaged over the remaining coordinates), which dif-
fers as it is also affected by the loading and (through the averaging) by the weighting
in the other coordinates (E, λ).

Concerning the energy distribution f (E), SSFPQL does not give information about the
higher energy range. However, to fit (see red dashed line in fig. 6.11b) a slowing-down
function [102, 103] to its values for all E > 50 keV (see red solid line) gives a quite
reasonable fit. The function used in HAGIS is depicted as blue curve and matches well
the fit. It reads:

f (E) =
1

E3/2+ E3/2
c

erfc
�

E − E0

∆E

�

,

with Ec = 19.34 keV, ∆E = 149.9 keV, E0 = 1.0 MeV. (6.5)

Within the energy range of interest, the resulting numerical function (turquoise line)
does also not differ significantly from the SSFPQL result. This modeling has to be viewed
in the light, that SSFPQL is designed for investigating particles at energies of a few tens
of keV up to around 100 keV, whereas for the following simulations, merely particles at
higher energies, as generated by ICRH, are of interest. Thus, the chosen energy range
is E ∈ [10, 1200] keV. Deviations from the SSFPQL distribution function in the lowest
energy range are not crucial.

The distribution in Λ is determined by marker loading in poloidal angle (θ) and pitch
(λ) space. Unless otherwise noted, markers start at pitches in

λ ∈ [0± 0.2] (6.6)

and at poloidal angles

θ ∈ [90o ± 17.2o] and θ ∈ [270o ± 17.2o] (6.7)

(is 1.26± 0.3 rad, 5.09± 0.3 rad in HAGIS’ Boozer coordinate system). A poloidal cut
of the two initial cones, where the ICRH-generated fast particles are loaded is shown in
fig. 6.9. A reasonable Λ weighting function is the Gaussian

f (Λ) = exp
n

�

(Λ−Λ0)/∆Λ
0.2�2

o

, (6.8)

where Λ0 and ∆Λ result from λ0 and ∆λ as well as from the (unperturbed) magnetic
field B(s,θ) (according to eq. (6.1)) and are thus position-dependent. Transformed
back to the pitch, f (λ) is depicted as blue line in fig. 6.11c. For comparison, the SSFPQL

result is shown in red, as well as a Gaussian fit to its data (red dashed).
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Figure 6.11: The implemented fast particle distribution functions for different coordinates:
radius s, energy E and pitch λ. Blue curves depict the (analytical) weighting
and turquoise curves the numerical distribution as a result from the loading
and weighting scheme. For comparison, the distribution function from AUG

data/calculated by SSFPQL is shown in red. The red dashed lines give a fit to
this data.

Note that the pitch distribution function is expected to be peaked stronger around
λ ≈ 0 than given by SSFPQL, since the given SSFPQL distribution function does not ac-
count for all particles in the higher energy range E > 400 keV. However, in this energy
range, the ratio of particles at high pitches λ ¦ ±0.5 is smaller. The reason is, that
the ICRH heating method produces high energy particles at low pitches, higher pitches
result from collisions, which are less likely the higher the energy of a particle is. Fur-
ther uncertainties enter the SSFPQL pitch distribution through the lack of the mentioned
‘trapping effect’: the given pitch is drift orbit averaged, but without finite orbit width
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taken into account. Currently, SSFPQL is extended to include finite orbit width, thus it
will be possible in the near future, to compare with a more realistic ICRH distribution
function.
The chosen Λ weighting results in a relatively broad Λ distribution, which is realistic
when considering also pitch angle scattering, but too broad to represent the instanta-
neous effect of the ICRH heating source. Therefore, the pattern of the losses appearing
at the very beginning (prompt losses) is broader than what would be realistic. To
investigate this pattern, additional simulations are carried out with marker loading in

λ ∈ [0± 0.05] (6.9)

and

θ ∈ [90o ± 5o] and θ ∈ [270o ± 5o]. (6.10)

In sec. 6.2.2 it will be shown that the prompt losses are relatively sensitive to the
distribution function, but cannot be determined quantitatively within the used model
anyhow. The reason lies inherently in the code model, which does not calculate the
establishing of the (unperturbed) fast particle distribution function, but considers a
plasma situation, where the heating process is in a stationary state. More details will
be discussed in sec. 6.3.6.
The non-prompt losses (i.e. those that appear in the presence of a mode) in contrast,
are quite robust against minor changes in the radial and poloidal distribution function.

Results of Simulations with an ICRH-like Distribution Function

This section presents the results of the simulations performed with the ICRH-like dis-
tribution function as described above. They are based on the MHD equilibrium for
AUG discharge #23824, t = 1.16 s, where the q profile is inverted. The radial struc-
ture of the magnetic perturbation data is given via analytic Gauss functions (fig. 6.12).
The frequencies of the perturbation are chosen to match the experimentally deter-
mined frequencies, 120 kHz and 55 kHz. The fast particle beta value was set to
βfp=0.025%. Concerning numerical requirements, the minimum amount of markers,
120 000, needed for reasonable loss statistics provides sufficient convergence (tested
against 1 000 000 and 1 500 000 markers).
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Figure 6.12: Analytic perturbation n = 4 TAE of 120 kHz with two poloidal harmonics m =
4, 5 (dark and light blue) and the n= 4 RSAE of 55 kHz (pink).
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The results from the numerical study in chapter 5 still hold in the simulations with
the ICRH-like distribution function (see fig. 6.13a): an amplitude oscillation is visible,
at exactly the beat frequency of both modes. Stochastization sets in, as soon as the
mode amplitude reaches the threshold. However, this appears to be slightly higher
(δB/B = 4 ·10−3) compared to the simulations with an isotropic distribution function.
The gradient driven double-resonance is clearly visible: as the RSAE redistributes par-
ticles to the TAE position, the TAE starts to grow (see fig. 6.13a and b). One can again
distinguish three phases of the simulation: during the linear phase, the mode ampli-
tudes grow with exp(γt) (linear in the logarithmic plot). The resonant phase starts,
when a first saturation level is reached, due to the depletion of the gradient in the fast
particle distribution function due to resonant particle-mode interaction. If this level ex-
ceeds the stochasticity threshold, a stochastic phase sets in, allowing the mode to tap
the energy of particles in a wider phase space range. The resulting mode amplitudes
exceed the experimental measured values by a factor of 2 to 5, a mismatch that will be
reduced by the use of more realistic eigenfunctions, shown in the next section.
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Figure 6.13: Double-mode simulation of analytical modes as shown in fig. 6.12, in the in-
verted q profile equilibrium.

A look at the changes in the particle distribution function in E-s space further confirms
the picture drawn above: during the resonant phase, redistribution matches resonance
lines very well (fig. 6.14a). In the stochastic phase, a broad redistribution sets in, espe-
cially in the lower energy range. The redistribution transports fast particles outwards,
leading to particles crossing the loss boundary. During the resonant phase, this hap-
pens especially due to the p = 2 resonant mode interaction with both the RSAE and
the TAE, thus at energies of ≈ 500 keV. In the stochastic phase, far more particles are
redistributed across the loss boundary, especially in energy ranges of E ∈ [250,500]
keV and E ∈ [750,1000] keV.

This redistribution pattern at different times is in accordance with the numerically
obtained losses: fig. 6.15 shows the loss appearance over time at the first wall in
energy space. One can clearly see the resonant losses at ≈ 500 keV. The (fewer) losses
at higher energies emerge from the p = 3 resonance. Later, in the stochastic phase,
a large number of lower energy losses appear between E ∈ [250,500] keV, as well as
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higher energetic losses, especially up to 900 keV. Prompt losses (white area) appear
in the higher energy regime. However, their loss pattern can reach down to lower
energies (with decreasing intensity), depending on the distribution function used.
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the resonance lines (pink). Once the stochastic phase is reached (b), a broad
redistribution sets in. The dark line indicates the loss boundary.
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plitude evolution for comparison.
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As the losses emerge very distinctively around 550 keV during the entire resonant
phase, they are expected to show a correlation with either at least one of the mode fre-
quencies or their beat frequency. Unfortunately, the amount of markers simulating the
losses in this energy and time interval is not large enough for a reasonable statistics to
carry out a Fourier analysis. Further, the TAE is, as long as it is still very subdominant,
not resolved numerically well. Therefore, its frequency change is not calculated accu-
rately. Without a constant frequency, frequency-correlated losses cannot be identified.
However, plotting the time traces of losses shows only a very thin underlying offset
of incoherent losses in this energy range (fig. 6.16a). The time integrated losses scale
linear with the RSAE amplitude for amplitudes below 1.5 · 10−2, indicating a resonant
loss mechanism. For higher amplitudes, they scale quadratically, according to diffusive
losses caused by stochastization (see fig. 6.17a).
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Figure 6.16: Time traces of losses appearance in the inverted q profile simulation with ana-
lytic perturbation (fig. 6.12) for different energy ranges.

The lower energetic losses in the energy range of 300 to 500 keV are ejected during
stochastization. Their time trace reveals a significant underlying offset (light blue in
fig. 6.16b). As the amount of losses is large, a Fourier analysis is possible. The re-
sulting spectrum of these lower energetic losses exhibits a very small peak at the beat
frequency. The time integrated losses show a quadratic dependence on the RSAE am-
plitude, as expected for stochastic losses.
In the high energy range of 800 to 1000 keV, losses appear as well in the non-prompt
phase. They again have almost no underlying offset, and a significant peak in the
Fourier spectrum at the modes’ beat frequency, depicted in fig. 6.17b.
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It is clear now, that losses in the lowest energy range (especially below 400 keV) are
merely incoherent because they are caused by the modes’ phase space stochastization.
Prompt losses, which are also incoherent, appear in the higher energetic ranges. Their
loss pattern, however, is quite sensitive to marker loading, as will be shown later.
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(a) Time integrated resonant losses with E ∈ [500,580] keV over RSAE amplitude
(green) and a linear and quadratic fit (red).
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Figure 6.17: Results of two different techniques to analyze the losses’ time trace.

For a preliminary comparison with the experimental FILD measurement, the loss pat-
tern in pitch angle-energy space resulting from this simulation is shown in fig. 6.18:
after accounting for the drift deviation as explained in sec. 6.1.2, prompt losses (a)
appear in the energy range of E ∈ [370 keV, 1300 keV] and in pitch of λo ∈ [76o,87o],
non-prompt losses (b) in E ∈ [260keV, 1300 keV] and λo ∈ [68o,81o]. This position in
phase space is already quite in accordance with experimental observation [33], where
the loss pattern is located between E ∈ [150 keV, 1400 keV] and λo ∈ [65o,81o].
However, the experimentally measured loss pattern reaches to both higher and lower
energies. To miss the losses > 1300 keV in the simulation is not surprising, as no
markers were loaded beyond this energy. Concerning the appearance of losses in the
lowest energy range, it will turn out that one more step towards realistic simulation
conditions has to be made.
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Figure 6.18: Losses at first wall in pitch angle-energy (λo-E) space for the simulation of two
analytical modes (fig. 6.12) in the inverted q profile: prompt losses (a) and
losses during mode activity (b).

Robustness of the Results w.r.t. the Distribution Function

Due to the uncertainties in the distribution function, it is reasonable, to test the sensi-
tivity of the model on the chosen distribution function. The ICRH characteristics enters
the distribution function via θ and λ loading, but both are coupled, resulting in the con-
stant Λ. Thus, it is sufficient to investigate one of these parameters, e.g. the poloidal
loading∆θ . The sensitivity of the model with respect to the radial distribution function
is investigated since it affects strongly the prompt losses.

Radial distribution function
To investigate the importance of the radial distribution function, simulations with three
different combinations of radial loading and weighting are performed, as shown in fig.
6.19a. The amplitude evolution depends on the radial distribution function both in the
linear as well as in the saturation phase (fig. 6.19b): as expected (from eq. (3.37)), the
steeper the radial distribution function, the higher is the linear growth rate. The sat-
uration levels differ, since the energy that can be tapped by the mode depends on the
radial profile of the energetic particle distribution function with respect to the radial
mode structure. It is necessary to mention that due to the relatively high fast particle
beta of βfp=0.05%, the growth rates and final amplitudes of the modes reach levels
that are close to the code’s limits of validity. The reason for the choice is to save com-
putational time, as it was found that simulations with lower βfp give similar results,
just on a larger time scale.

Looking at the loss pattern in pitch angle-energy space (fig. 6.20), one can see that
the prompt losses are very sensitive to the initial fast particle distribution function: the
further the radial distribution function reaches outside, the more the pattern broadens
towards lower energies and higher pitch angle values |λo|.
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Figure 6.19: The amplitude evolution (b) of three double-mode simulations in the inverted q
profile (mode radial structures and frequencies as explained later and shown in
fig. 6.23, βfp=0.05%). They differ in the applied radial distribution function
what is shown in (a): the parameter s0 in the weighting function eq. (6.4)
takes the values 0.15, 0.25, 0.35, and the marker loading reaches out until
s2 = 0.6, 0.7 and 0.8 respectively (colored as red, green, blue).
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Figure 6.20: Losses at first wall in pitch angle-energy (λo-E) space for three double-mode
simulations in the inverted q profile (modes as explained later and shown in fig.
6.23, βfp=0.05%). The simulations differ in the radial distribution function:
the color code gives the prompt (a) and later (b) losses for the intermediate dis-
tribution function in fig. 6.19b, the gray lines give the boundary of the pattern,
when using the steeper distribution function; the white line gives the respective
result for the less steep distribution function.
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However, as explained earlier, when considering prompt losses, all of the applied radial
distribution functions are too broad in Λ space to represent a physically realistic picture
of ICRH-heated ions before pitch angle scattering could smear out the Λ distribution. As
a consequence, the extend of the prompt loss pattern is overestimated towards lower
energies. Thus, when obtaining a large number of lower energetic losses, one will
not expect them to be prompt in their majority. However, in the experimental mea-
surement it is not possible to distinguish prompt losses from the incoherent diffusive
losses. Concerning the non-prompt losses, which appear in all three cases mainly in the
lower energy range below 400 keV, almost no dependence on the initial radial distri-
bution function is found. Note: the spot looks different compared to fig. 6.18, because
a different eigenmode structure was used. This will be discussed in more detail in sec.
6.2.3.

Poloidal distribution function
For the θ distribution function, a similar scan is performed: the default distribution
function (as shown in green in fig. 6.21a) is compared with two similar simulations.
One (blue) differs only in the width of the poloidal loading angle∆θ , the second (red)
additionally in the pitch loading range ∆λ. (Note that ∆θ and especially ∆λ enter the
Λ weighting function.)

The modes’ amplitude evolution (fig. 6.21b) reveals a difference only in the growth
rate – giving higher growth rates, the narrower the loading range in θ and λ. This
is expected (from eq. (3.37)), as the local βfp value of potentially resonant particles
is higher in the scenario with the narrower distribution function (to obtain the fixed
volume averaged βfp). In contrast, the amplitude saturation levels are independent
of the poloidal distribution function, since the total energy that can be tapped from
phase space is the same. This is different from the different radial distribution func-
tions, where the radial energy reservoir that can be tapped is determined by the radial
location and structure of a mode with respect to the radial gradient in the distribution
function.

As expected, the prompt losses (fig. 6.22a) show a dependence on the poloidal distri-
bution function. However, only for the extreme narrow poloidal loading the prompt
loss pattern appears significantly smaller (mostly due to ∆λ, affecting the weighting
in Λ). The qualitative phase space position is the same. The non-prompt losses (fig.
6.22b) are very robust against changes in the poloidal distribution function. Only for
the extreme narrow Λ function, the pattern is slightly smaller, missing the lowest pitch
angles |λ|.
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Figure 6.21: The amplitude evolution (b) of three double-mode simulations in the inverted
q profile (modes as explained later and shown in fig. 6.23, βfp=0.05%). They
differ in the applied poloidal distribution function what is shown in (a): the
marker are loaded in ∆θ = ±17.2o (green), ±11.5o (blue) and ±2.5o (red)
respectively. The pitch loading is ∆λ = ±0.2 (for both the green and blue case)
and ±0.05 (red case).
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Figure 6.22: Losses at first wall in pitch angle-Energy (λo-E) space for two double-mode simu-
lations in the inverted q profile (modes as explained later and shown in fig. 6.23,
βfp=0.05%). The simulations differ in the Λ distribution function: the color
code gives the prompt (a) and later (b) losses for the ∆θ =±17.2o,∆λ=±0.2
marker loading, the white lines give the boundary of the pattern, when using
∆θ = ±11.5o,∆λ = ±0.2 loading, the gray lines for ∆θ = ±2.5o,∆λ =
±0.05.
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6.2.3 More Realistic Simulation Conditions – MHD Eigenfunctions

In the previous section, the simulation conditions were adapted towards more realistic
fast particle distribution functions. In this section, the input perturbation data is im-
proved, as explained in the following.
The MHD equilibrium of AUG discharge #23824 (at t = 1.16 s and t = 1.51 s) is
calculated by the Grad-Shafranov solver HELENA [84], under the constraint of the lo-
cation of rational surfaces. These are known due to the experimental measurement
of the modes’ radial positions (via Soft-X ray) and the toroidal mode numbers n (via
Mirnov coils). Based on the resulting MHD equilibrium (based on CLISTE calculations
[85, 86, 115, 116]), the radial structure and frequency of the perturbation is calculated
numerically with the linear gyrokinetic eigenvalue solver LIGKA [93]. As explained be-
fore, there are two dominating modes, which are seen in the experiment (see fig. 6.7)
at t = 1.16 s around the radial positions s ≈ 0.3 and s ≈ 0.5 with frequencies of 120
kHz (n = 4) and 55 kHz (n = 4) respectively. At the later time point, the frequencies
have evolved upwards, resulting in 160 kHz (n = 5) and 70 kHz (n = 4). The numer-
ical LIGKA results are shown in fig. 6.23 and fig. 6.24. The higher frequency mode is
identified as TAE, the lower as RSAE (=AC) at t = 1.16 s but as BAE at t = 1.51 s.
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Figure 6.23: The radial structure including poloidal harmonics with m = 4...10 (from black
to blue) of the n = 4 TAE (120 kHz) (lower) and the n = 4, m = 4 RSAE
(55 kHz) (upper) as calculated by LIGKA [117] for the AUG discharge #23824
equilibrium at t = 1.16 s. The given perturbation amplitude refers to the real
(solid lines) and the imaginary (dashed lines) part of the electric perturbation
potential Φ̃. The values are normalized, such that unity corresponds to the initial
value of δB/B = 10−7.
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Figure 6.24: The radial structure including poloidal harmonics with m = 4...11 (from black
to violet) of the n = 5 TAE (160 kHz) (lower) and the n = 4, m = 4 BAE
(70 kHz) (upper) as calculated by LIGKA [117] for the AUG discharge #23824
equilibrium at t = 1.51 s. The given perturbation amplitude refers to real
(solid lines) and the imaginary (dashed lines) part of the electric perturbation
potential Φ̃. The values are normalized, such that unity corresponds to the initial
value of δB/B = 10−7.

HAGIS is not only able to read analytically given radial perturbation structures of the
electric perturbation’s real part, but was extended to handle perturbation structures
given by LIGKA11. Thereby, one can either only consider the electric perturbation (real
and imaginary part) and obtain the magnetic perturbation from the relation eq. (4.66),
i.e. neglecting any parallel electric field. The other way is to take both electric and mag-
netic perturbation from LIGKA and thus simulating with a non-vanishing parallel electric
field Ẽ‖, calculated from eq. (4.67). The latter possibility would effectively include a
damping term into the wave equations. The imaginary part of the electric perturba-
tion results in a phase shift of the modes only. In the present scenario, the observed
perturbations are either purely Alfvénic (TAE, RSAE), and therefore characterized by
damping rates well below 1%, or weakly damped (BAE) with damping rates of ≈ 1%.
Therefore, it is not necessary to take the computational effort for the inclusion of Ẽ‖
within the study of this chapter.
The simulations were performed again with 250 000 markers to obtain good statistics
with the ejected losses.

11 These options are addressed via the input parameter spcpet==4 (analytic perturbation), 14, 15 (given
by LIGKA with and without the magnetic potential).
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To test the newly implemented HAGIS feature of using eigenfunctions given by LIGKA,
quite simple simulations were carried out, comparable to those of chapter 5. The
single-mode simulations with isotropic marker loading and βfp=1% in the inverted q
profile equilibrium were repeated with the mode structure given by LIGKA, adapted
to the position of the modes used in the numerical study (TAE at s = 0.4, RSAE at
s = 0.35). The structures can be seen in fig. 6.27.
This test reveals an almost identical mode growth for the RSAE mode (pink vs. red
in fig. 6.25), whereas the TAE grows significantly slower with the structure given by
LIGKA and saturates at lower amplitudes (light blue vs. green in fig. 6.25). However,
this effect is partially compensated when using all LIGKA calculated poloidal harmonics
for the TAE (m= 4,...,10) (dark blue).

10-2

10-3

10-4

10-5

10-6

A
m

pl
it

ud
e 

 �
B

/B

time /10-3  s
0.0       0.15      0.3       0.45      0.6      0.75      0.9       1.15     1.2       1.35      1.5 

   55 kHz, ligka perturbation
   55 kHz, analytic perturbation

 120 kHz, ligka perturbation
 120 kHz, analytic perturbation

 120 kHz, ligka w/ all harmonics

Figure 6.25: Amplitude evolution in the single-mode simulations (inverted q profile equilib-
rium, βfp=1%, isotropic marker loading) to compare modes given by LIGKA

(pink and light blue for RSAE and TAE) with similar analytical Gaussians (red
and green for RSAE and TAE). The mode peaks are at s = 0.4 (TAE) and
s = 0.35 (RSAE). The mode structures are given in fig. 6.27. The dark blue
curve shows the mode evolution of the TAE with all harmonics given by LIGKA.

The reason for the lower drive must be given solely by the different structure of the
waves: the more realistic eigenmodes given by LIGKA are spread more widely over the
radius, but are characterized by a smaller mode width around their peak region. This
leads to a lower impact on the resonant particles, which results in a less effective en-
ergy exchange. In this example, one can see the influence of the mode structure on
the quantitative amplitude evolution, which emphasizes the need to implement a mode
structure evolution into HAGIS via coupling it to the LIGKA code, as explained in sec. 4.5.

The first multi-mode simulations using the ICRH-like distribution function and eigen-
functions given by LIGKA including all poloidal harmonics (fig. 6.23) reveal that the
double-resonance effect still holds in this realistic case (fig. 6.26): the broad radial
redistribution of the RSAE enhances the TAE’s drive. Also, one can clearly see an oscil-
lation superimposed on the mode amplitude evolution, although it is less regular than
in the simulations of the theoretical study presented in chapter 5, or even those of the
previous section (sec. 6.2.2).
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The three phases, linear phase, resonant phase and stochastic phase, however, are not
as clearly separable any more, compared to the simulations with the analytical pertur-
bation function. Therefore, it is difficult to say at which amplitude the modes reach
the stochastization level, but a phase space analysis, as it will be described below (sec.
6.3.1) reveals that the threshold is reduced to 1 ·10−3δB/B for the first mode reaching
it, and might even be lower for the subdominant mode (see fig. 6.31).
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Figure 6.26: Amplitude evolution (a) of a n = 4 RSAE (55 kHz, pink solid) and a n = 4
TAE (120 kHz, blue solid) as shown in fig. 6.23, simulated with βfp=0.05% in
the inverted q profile equilibrium. For comparison, both modes were simulated
alone as well (dashed). One can see clearly the double-resonance effect: the
inner RSAE is lowered, while the outer TAE is enforced strongly, due to the redis-
tribution caused by the RSAE, until reaching the stochastization threshold. In
the nonlinear phase, the primarily weaker TAE outstrips the RSAE. The RSAE’s
radial redistribution at different time points is shown in (b). To point out its
effect on the TAE, both mode structures are plotted over the radial axis (blue:
TAE, pink: RSAE).

Although the simulations with the perturbation structure given by LIGKA show the same
double-resonance mechanism as found in the numerical study of chapter 5, they exhibit
a lower growth rate and also lower saturation levels compared to the same scenario
with a similar analytical Gaussian perturbation (fig. 6.27), as can be seen in fig. 6.28.
It is remarkable that, compared to the single-mode investigation with the mode struc-
ture given by LIGKA, in the double-mode scenario it is the RSAE mode and not the TAE,
which differs significantly from the result with the analytical mode structure. This can
be explained by double-resonance effects: as a single-mode, the broader TAE given by
LIGKA grows slower, as explained above. The presence of a second mode, however,
leads to an energy transfer via gradient-driven double-resonance towards the TAE. Es-
pecially once the stochastic regime is reached, the thin peak region in the TAE structure
of the LIGKA given mode is not so important any more, since the resonances have not
to be met exactly. In contrast, the broad overall radial extent of this mode becomes
crucial: since it overlaps stronger with the RSAE structure (compared to the Gaussian
modes), it reduces the RSAE’s drive through local gradient-flattening.
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Using the eigenmodes given by LIGKA with all TAE poloidal harmonics results in an
even slower growth rate of the TAE, but similar amplitude levels are reached. This can
be understood when taking into account that the total wave energy is higher, the more
poloidal harmonics the wave has. The mode grows slower, as the energy transfer needs
to include all TAE harmonics, as can be seen from the sum over m in eq. (4.105). Since
the energy reservoir to tap is wider due to the broader radial structure, the saturation
levels are comparable.
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Figure 6.27: Radial structure of the electric perturbation for two modes, a n = 4 RSAE of 55
kHz and two poloidal harmonics (m = 4, 5) of a n = 4 TAE of 120 kHz. The
modes given by LIGKA (lower: RSAE in pink, TAE in blue; the solid lines depict
the real part, the dashed lines the imaginary part of Φ̃) are compared with their
analytical approximation via Gaussians (upper: RSAE in red, TAE in green).
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Figure 6.28: Mode amplitude evolution in the double-mode simulations (inverted q profile
equilibrium, βfp=0.05%) to compare the eigenmodes given by LIGKA (pink and
blue for RSAE and TAE) with similar analytical Gaussians (red and green for
RSAE and TAE). Details on the modes are given in fig. 6.27.
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6.2.4 The Importance of the HAGIS Vacuum Extension

For the energetic particle loss investigation, the use of HAGIS with its vacuum extension
[55] might be crucial, depending strongly on the scenario that is to be simulated. As
can be seen from fig. 6.29, there is almost no difference in the losses’ energy spectra
resulting from simulations without using the vacuum extension (red curves) compared
to the ones including it (black curves). The amount of lost markers is 99% of those in
the simulation with the vacuum extension.

5.0

4.0

3.0

2.0

1.0L
o
s
s
e
s
 /

1
0

+
1

2

Energy  /keV

0                                    300                                  600                                  900                                 1200

w/   vacuum extension
w/o vacuum extension

Figure 6.29: Energy spectra of losses simulated in the monotonic q profile with eigenmodes
given by LIGKA (see fig. 6.24) using HAGIS with its vacuum extension (black
curve) and without (red). The amplitudes for these simulations were fixed at
δB/B = 5.1 · 10−3. The losses shown appeared in a time interval starting after
approximately 10 RSAE wave periods (t ∈ [0.2,1.5] · 10−3 s), to avoid the
prompt losses.

But the situation is quite different in scenarios with many lower energetic losses, as
they appear e.g. in all inverted q profile simulations throughout this chapter. Fig.
6.30 visualizes the difference in the losses’ energy spectra obtained with (black curve)
and without (red curve) the vacuum extension – if simulating without it, the lower
energetic losses are massively overestimated.

4.0

3.2

2.4

1.6

0.8L
o
s
s
e
s
 /

1
0

+
1

3

Energy  /keV

0                                    300                                  600                                  900                                 1200

  w/ vacuum extension
 w/o vacuum extension

Figure 6.30: Energy spectra of losses simulated in the inverted q profile with the eigenmodes
given by LIGKA (see fig. 6.23) using HAGIS with its vacuum extension (black
curve) and without (red). The amplitudes for these simulations were fixed at
δB/B = 5.1 · 10−3. The losses shown appeared in a time interval starting af-
ter approximately 10 RSAE wave periods (t ∈ [0.2,1.5] · 10−3 s) to avoid the
prompt losses.
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The overestimation results from to the fact, that particles are considered lost, as soon
as they cross the separatrix. However, particles with very small gyroradii (i.e. low
perpendicular energies), often re-enter the plasma and are not lost. The overestimation
of lost markers if simulating without the vacuum extension is over 130% in the given
example. ICRH-generated fast particles are characterized by relatively low pitches λ =
v‖/v, thus, they have low perpendicular energies only if their total energy is in a lower
range. These particles have small gyroradii, and therefore a higher probability to re-
enter the plasma. Further, the distance between the separatrix and the first wall is
important, which depends on the given equilibrium in the particular fusion device.
The vacuum extension allows particles to travel through the vacuum and checks12 if
the particle hits the machine specific first wall through assuming a ‘tube’ around its
guiding center with the radius of the gyroradius.

6.3 Numerically Modeled vs. Experimentally Observed Losses

This section is dedicated to the simulation of fast particle redistribution and losses un-
der realistic simulation conditions with the vacuum extended version of HAGIS. There-
fore, the original eigenmodes given by LIGKA are used with all their poloidal harmonics,
as depicted in fig. 6.23 for the MHD equilibrium of AUG discharge #23824 at t = 1.16 s
(inverted q profile) and in fig. 6.24 for the time point t = 1.51 s (monotonic q profile).
For the rest of this chapter, the two equilibria will be referred to as “scenario1.16” and
“scenario1.51” respectively. In the following, the ICRH-like distribution function is
used, and the fast particle beta value was chosen as βfp=0.02%, a quite realistic value,
that leads to mode amplitudes comparable to those measured experimentally [33], or
slightly higher (δB/B ∈ [5 · 10−3,2 · 10−2]).

6.3.1 Internal Transport Study in Two Different q profile Equilibria

This section examines the internal fast particle transport and also aims to find out when
the stochastization sets in. The mode amplitude evolution in both equilibria are shown
in fig. 6.31: in scenario1.16, one can see again clearly the double-resonance effect
leading a superimposed oscillation (insert), and also to the TAE (blue curve) exceeding
the initially much faster growing RSAE (pink curve) in the late nonlinear phase. The
examination below (fig. 6.33) confirms that both modes reach the stochasticity thresh-
old. In scenario1.51, the TAE (green curve) grows much faster than the low frequency
mode (in this case a BAE, red curve), but both grow slower and saturate at a lower
amplitude compared to scenario1.16. The TAE’s stochasticity threshold is reduced by
the stochastization due to the BAE. Since the simulated time scale in this case is only
one order of magnitude below the slowing-down time, the effect of energy dissipation
becomes slightly visible with the TAE amplitude decreasing at the end of the simula-
tion. Beyond this time point, the model is valid only when accounting for a fast particle
source term and damping mechanisms.

12 routine gyro_check
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Figure 6.31: Amplitude evolution in two double-mode simulations with different MHD equi-
libria of the AUG discharge #23824 (βfp=0.02%): pink and blue: n = 4 RSAE
(55 kHz) and n = 4 TAE (120 kHz) as shown in fig. 6.23, simulated in in the
equilibrium at t = 1.16 s, red and green: n = 4 BAE (70 kHz) and n = 5 TAE
(160 kHz) as shown in fig. 6.24 in the equilibrium at t = 1.51 s. The marker
are loaded as a Fermi-like radial distribution, slowing-down energy distribution,
and ICRH-type pitch and poloidal angle distribution.

To understand the mode-particle interaction in the different stages of the mode evolu-
tion, it is helpful to look at the processes in phase space. In fig. 6.32, redistribution in
E-s space is shown during the mode’s resonant phases, for both, scenario1.16 (a), and
scenario1.51 (b). The color code represents the change of the fast particle pressure
(E · δ f ) with respect to the equilibrium state. The pink color denotes the resonance
lines, the blue areas the loss boundary, as given by the resonance plot (fig. 6.8). In this
phase, the redistribution in phase space takes place along the resonance lines, from
higher energies and lower radial positions to lower energies further outside. As the
modes in scenario1.51 stay longer in the resonant phase, the redistribution pattern is
better visible in this case.

When the modes, or at least one of both, reach the stochastization level, a massive ra-
dial gradient depletion takes place over the whole energy space. No resonance pattern
is visible any more, as visualized in fig. 6.33. This happens in both scenarios, however
much later in scenario1.51 around t ≈ 1.5 · 10−2 s whereas at t ≈ 1.5 · 10−3 s in sce-
nario1.16. In both cases, at lower energies (E ∈ [50,200] keV), the resonance regions
are still slightly visible in the redistribution pattern. However, only in scenario1.16
does the redistribution (along the p = 0, 1 resonance lines of both modes) cross the
loss boundary.
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Figure 6.32: Redistribution in energy and radial position space during the resonant phase for
both scenarios. Red indicates particle accumulation, blue means particles move
away. The pink lines give the resonance lines for trapped particles, the blue areas
the loss region. The horizontal lines denote the modes’ radial positions. One can
see clearly the redistribution caused by the wave-particle resonance along the
resonance lines in the mode regions.
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Figure 6.33: Redistribution in energy and radial position space in the stochastic phase (t2 =
1.5 ·10−2 s) for both scenarios. Red indicates particle accumulation, blue means
particles move away. The dark blue lines give the loss boundaries. The radial
gradient depletion is taking place over a broad energy range.

The redistribution takes place independently on the energy, but once the radial gra-
dient is depleted in in the energy region of E ∈ [400,600] keV, the redistribution is
radially broadened at lower energies. In sec. 6.3.4, it will be seen that this broad radial
redistribution is caused by the outer poloidal harmonics of the TAE. Once the process
is coming to an end, the lowest resonance regions are again distinguishable, but only
in scenario1.16, as shown in fig. 6.34.
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Figure 6.34: Redistribution in energy and radial position space in a later stochastic phase
(t3 = 2.3 · 10−2 s) for both scenarios. Blue means particles move away, red
means they accumulate. The dark blue lines give the loss boundaries. In sce-
nario1.16, the radial gradient depletion has come to an end in the medium
energy range.

6.3.2 Fast Particle Losses in Two Different q profile Equilibria

The redistribution plots already indicate fewer losses in scenario1.51, due to the smaller
loss area, and the weaker redistribution especially in the lower energy range. In fact,
scenario1.16 gives much more losses – prompt (i.e. appearing before any influence of
the mode) as well as losses in the later phase of the simulation (compare fig. 6.35 a
and b). In scenario1.51, there are no losses with an energy below 300 keV at all. This
is in accordance with the redistribution pattern of this case, giving no redistribution
across the loss boundary for E < 300 keV, due to the smaller loss area. The prompt
losses appear in both cases in the higher energy range. They reach down to 600 keV
(scenario1.16) and 750 keV (scenario1.51).
As the resonant phase is not distinguishable very clearly in scenario1.16, it is difficult
to find resonant losses at very distinct energies. However, it is still visible, that losses in
this phase have energies that match with the resonant phase space redistribution across
the loss boundary (shown in fig. 6.32). In scenario1.16, these are at E ∈ [450,700]
keV and ∈ [750,950] keV. In scenario1.51, these are very few losses around 400 keV,
550 keV, 700 keV and 850 keV.
When stochastization sets in, lower energetic losses appear, due to the broad redistri-
bution across the loss boundary over a large energy range. In scenario1.16, this redis-
tribution (see fig. 6.33 and fig. 6.34) is a caused by the fact that most of the relevant
phase space is covered by overlapping resonances. As will be described in sec. 6.3.5,
a domino effect is triggered: first, energies E ∈ [300,600] keV are redistributed until
the radial gradient in this energy area has flattened and the redistribution continues in
E ∈ [200,400] keV. In the loss spectrum over time (fig. 6.35), the successive transport
across the loss boundary can be recognized as losses. Due to the many poloidal har-
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monics resulting in a very broad radial structure of the TAE (as will be shown in sec.
6.3.4), even a very low energy resonance is able to transport particles across the loss
boundary, that in turn appear as a thin loss peak at E ∈ [100,150] keV, once the TAE
has reached the stochastization level.
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Figure 6.35: Temporal evolution of losses appearance at the first wall in energy space for the
two different scenarios. The white areas indicate the prompt losses as carried
out in an extra simulation with a thinner Λ distribution function eq. (6.9) and
eq. (6.10), as explained before. The gray lines give the mode amplitude evolution
as shown in detail in fig. 6.31.

In scenario1.51, where the loss region is smaller, the TAE is not broad enough, to redis-
tribute particles with E < 350 keV across the loss boundary. Although one reason for
this is the lower amplitude levels reached in scenario1.51 (compared to scenario1.16),
the main reason for the missing of the lowest energetic losses (around ≈ 180 keV) and
the small amount of losses in the whole range of E ∈ [300,600] keV is found in the dif-
ferent equilibrium, i.e. the smaller loss region and the larger distance between the reso-
nance lines. This is proved by simulating the same TAE and RSAE eigenmode structures
of scenario1.16 in both equilibria with a fixed mode amplitude of δB/B = 5.1 · 10−3

(an experimentally realistic value): as shown in fig. 6.36, even with the same mode
amplitude, structure, mode number n and frequency, the monotonic q profile case leads
to far fewer losses. No losses at all are observed in E ∈ [300,600] keV. The complete
inhibition of the very low energy peak around 180 keV however, is caused by a combi-
nation of the monotonic q profile equilibrium and the corresponding eigenmode.

The drop in the height of the very low energy peak not only results from the smaller
loss area in the monotonic q profile 13, but also from a different redistribution: due to
the less dense resonances in phase space around E ∈ [100;600] keV, the redistribution

13 Note that the resonances for the scenario resulting in the red curve differ from what is shown in fig.
6.8b, because as mode frequencies, the values from the modes in the inverted q profile equilibrium
were used.
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in the monotonic q profile is less intense but spreads wider towards higher energies.
This can be seen in fig. 6.37, where the difference in the redistribution between the
inverted and the monotonic q profile scenario (using the same perturbations) is shown.
In combination with the different loss boundaries, this leads to the missing of losses in
the energy range of E ∈ [300,600] keV: one can see clearly the missing redistribution
across the loss boundary in this energy range in the monotonic q profile (black circle).
In contrast, the transport is stronger at energies around 600 keV and around 200 keV
(red circles), but still does not reach into the smaller loss region. The higher the
energy is, the smaller is the effect of the equilibrium on the loss spectrum. This is quite
logical, as the orbit width is increasing with energy, reducing the relative impact of the
equilibrium on the orbit width.
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6.3.3 Frequency Correlation between Losses and Modes

In the previous section, one could see that the prompt losses’ energy range (white areas
in fig. 6.35) does not reach to energies below 600 keV (in scenario1.16) and 750 keV
(in scenario 1.51) respectively. Thus, the lower energy losses can only be either res-
onant or stochastic. However, at this point of the numerical investigation, the higher
energetic losses that are measured experimentally can be explained to be either prompt
or wave-correlated. To find out about the nature of the losses that occur in the presence
of modes, the loss signature over time is investigated in the following: the frequency
correlation to any of the modes or their beat frequency indicates resonant (coherent)
losses, whereas a signal with no frequency signature but significant underlying offset
indicates stochastic – also called ‘diffusive’ – losses, which are incoherent.

Fig. 6.38 shows the losses’ time traces of scenario1.16 for three different energy ranges.
In the intermediate energy range E ∈ [450,700] keV (b), no offset is visible, the
losses appear with a certain frequency, thus are rather coherent. In the higher energy
range (a), significantly less losses appear (note that the energy range chosen is wider),
because the highest energetic particles have already been ejected (incoherently) as
prompt losses.
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Figure 6.38: Time traces of the losses at the first wall in scenario1.16.
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During the phase when only the RSAE has reached the stochastization, a small under-
lying offset of incoherent losses is visible (light blue area in a) in the highest energy
range. In the lower energy range, a large offset of incoherent losses appears (light blue
in c), as soon as both modes reach the stochastization level.
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Figure 6.39: Time integrated loss signal (a+c) and a Fourier analysis of the losses’ time sig-
nature (b) for scenario1.16 in different energy ranges: high (a), intermediate
(b) and low (c).

In the following, the losses’ time traces are Fourier analyzed to find a correlation be-
tween the ejection signature and the mode frequencies. However, for the higher energy
range, the amount of losses is not large enough to provide good statistics for the Fourier
analysis in a very thin energy interval. Especially at high energies, this is important, as
different particle velocities would smear out any frequency correlation with the mode.
In this part of phase space, it is only possible, to plot the time integrated losses over
the mode amplitude. This results in a linear dependence with the TAE, as long as it
is still below the stochasticity threshold (shown in fig. 6.39a), indicating a coherent
loss mechanism due to the interaction with the TAE. At high TAE amplitudes, the losses
saturate, as this corresponds to a late time point within the simulation, where most
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particles of this energy are already lost. Comparing the time integrated losses in this
energy interval to the RSAE amplitude, the losses scale quadratically with the RSAE
amplitude, a characteristics for diffusive (incoherent) loss, which is also the dominant
mechanism in the lowest energy range (shown in fig. 6.39c). In this range, however,
the quadratic scaling is with respect to the TAE amplitude, as the losses appear only
when this mode is reaching stochastization. The amount of losses allows for a Fourier
analysis, which does not show a correlation with either mode, nor with their beat fre-
quency. This confirms the classification of the lower energy losses as stochastic, thus
incoherent. For the intermediate energy range, the Fourier analysis is possible as well,
showing a strong frequency correlation to the beat frequency of both modes (≈ 65
kHz). The peak is slightly shifted downwards, as the both modes’ frequencies decrease
slightly with time (∆ωTAE ≈−0.6).

6.3.4 Influence of the Poloidal Harmonics

Next, the effect resulting from the many poloidal harmonics of the TAE is investigated.
By calculating the eigenmodes with the LIGKA solver, the poloidal harmonics are known
and can be used within the HAGIS simulation. Comparing two simulations – one with
the poloidal harmonics m = 4 and m = 5 only, the other one with all harmonics (from
m = 4 to m = 10) as shown in fig. 6.23 – shows a similar qualitative mode amplitude
evolution (see gray lines in fig. 6.40) with similar mode saturation levels. However,
the TAE growth rate is lower if simulating with all poloidal harmonics, as the energy
has to be distributed over more poloidal harmonics. In the saturation phase, this effect
is compensated by the wider radial range, i.e. the mode with all poloidal harmonics is
able to tap energy from the radial gradient also radially further outside.
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Figure 6.40: Temporal evolution of losses appearance at the first wall in energy space in
the inverted q profile simulation (βfp=0.05%). Although the amplitudes (gray
lines) reach the same levels (however, slower in the case with many harmonics),
the lowest energy losses appear only in the case with many harmonics.
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This effect is well visible in the redistribution (fig. 6.41): only if all poloidal harmonics
are present, the TAE redistributes particles at very low energies (around E ≈ 100 keV)
and far outside radial positions (s > 0.8). This redistribution results in the observed
low energy losses of E < 200 keV, that are not observed in the simulation with only
two poloidal harmonics (compare fig. 6.40 a and b).
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Figure 6.41: Redistribution (blue means particles move away, red means they accumulate) in
energy and radial position space at the end (t = 3.6 ·10−3 s) of two simulations
in the inverted q profile (βfp=0.05%): in (a) the modes are taken as given by
LIGKA (see fig. 6.23), whereas in (b), the same modes are chosen, except that the
TAE is simulated with only its first two poloidal harmonics. The blue line gives
the loss boundary (as explained in fig. 6.8a).

Summarized, it is clear now, that the losses with E < 200 keV result from the combi-
nation of the broad TAE with many harmonics and the large loss region appearing in
the inverted q profile equilibrium. However, it was shown above (see fig. 6.36), that
significantly less of these losses appear when simulating the same modes at the same
amplitudes in the monotonic q profile, due to the smaller loss region. Concerning the
losses in the lower energy range between around 300 keV up to c.a. 600 keV, it was
found that these are due to the dense resonance lines meeting the loss boundary in the
inverted q profile scenario, quite independent of the mode structure. In the monotonic
q profile, these losses do therefore not occur.
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6.3.5 Double-Mode Effect

To understand the loss mechanism with respect to multiple mode-particle interaction,
it is important to find these losses that are caused by the fact that multiple modes
are present. Multi-mode scenarios result in more losses for several reasons: first,
amplitudes grow higher due to double-resonances, especially gradient-driven double-
resonance (this has been investigated in detail in chapter 5 and earlier in this chapter).
Second, a domino effect can transport particles outwards, caused by the inner mode
delivering new particles to the outer mode’s position. The outer mode in turn ejects
the particles eventually. This second possibility was described on a theoretical basis in
ref. [106] and is to be investigated numerically in the following.

As the mode amplitudes in the nonlinear saturation are known now from simulations
with consistent mode evolution, HAGIS is run with these mode amplitudes kept fixed.
This offers the possibility to investigate the losses caused by each of the modes alone
vs. the losses caused by double-mode interaction, but without the additional effect that
different amplitudes are reached in single-mode simulations compared to double-mode
simulations. Fig. 6.42 shows the energy spectra of the losses appearing in such double-
mode simulation (black curve), as well as those obtained, when simulating both modes
individually (blue for the TAE and pink for the RSAE).
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Figure 6.42: Energy spectra of losses in three different simulations with fixed mode ampli-
tudes at δB/B = 5.1 · 10−3 for a time interval starting after approximately 10
RSAE wave periods (t ∈ [2.0,1.2] · 10−3 s): the pink and the blue curves give
the loss spectrum of the RSAE and TAE single-mode simulation, stretched by a
factor of 10. The black curve gives the losses appearing if simulating both modes
together (modes as shown in fig. 6.23).

Note that the loss spectra curves obtained in the single-mode simulations are shown
multiplied by a factor of 10. For each of the three spectra, the same time interval is cho-
sen, starting after approximately 10 wave RSAE periods, to avoid the effect of prompt
losses. All mode amplitudes are fixed at δB/B = 5.1 · 10−3, which is a reasonable
value, when comparing to experimentally measured amplitudes. Further, it is of the
order of the minimum saturation level reached in the previous simulations with consis-
tent mode evolution. Although both modes are now fixed at the same amplitude level,
it is not surprising that the more core-localized RSAE causes significantly fewer losses
than the TAE, which is broad and located at a higher radial position. However, for
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both single-mode simulations, the losses’ energy spectra exhibits clearly the different
resonances: losses appear at energies, where resonance lines meet the loss boundary
(see fig. 6.8a). In fig. 6.42, the bounce harmonic number p is given to identify the
individual resonance lines. But the most interesting fact is found, when looking at
the double-mode simulation’s losses: they do by far exceed the sum of the losses of
the single-mode simulations, although the amplitude levels are the same. The redistri-
bution in phase space is consistent with the appearance of losses in the double-mode
simulation versus the single-mode simulations. Fig. 6.43 shows the radial redistribu-
tion for both modes simulated individually (blue for TAE, pink for RSAE) and for the
double-mode scenario (black curve). For comparison, the initial distribution function
of all three simulations is given (black dashed). As well as the losses, also the redistri-
bution in the double-mode simulation exceeds by far those of the single-mode cases.
Thus, the large number of losses in multi-mode situations is not only caused by the
higher mode amplitudes that are possibly reached then (as was shown in chapter 5).
The same reason that leads to higher mode amplitude levels – the lowering of the
stochastization threshold – also causes more losses, because the redistribution is en-
hanced by the stochastization. If the loss boundary is large, as in the inverted q profile
equilibrium, this redistribution leads to a large number of losses.
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In the double-mode scenario, stochastization is enhanced due to the dense coverage
of phase space with both resonance lines and perturbation structure. In fig. 6.44, this
effect can be observed clearly: the RSAE transports energetic particles into phase space
areas from where they are further redistributed by the TAE. Since this effect also occurs
vice versa, both modes mutually refill the phase space areas with particles, where the
other mode redistributes them away from. Through such nonlinear domino effect, not
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only a high loss amount can be triggered, but also modes might be possibly destabilized
that would otherwise be stable on the basis of linear stability [106].

Fig. 6.45a illustrates the orbit of such a particle together with the mode positions (pink
for RSAE, blue for TAE) for the given particle energy. In (b), the particle’s radial po-
sition and energy over time are shown. The little jags in the energy time trace clearly
indicate the stochastic interaction, as discussed already in chapter 5 (fig. 5.12). Be-
cause of the stochastization, the mode-particle interaction does not occur due to the
specific resonances any more, but the influence of the different modes can still be seen
on the radial scale: the particle is trapped between the two modes until it is finally lost.
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Figure 6.45: Representative orbit (a) of a particle that is trapped between two modes. In (b),
its radial position and energy is shown over time.

The described domino-like loss mechanism is a nonlinear phenomenon, since it is gov-
erned strongly by the interplay of different modes and the resulting phase space re-
distribution, which is significantly different compared to single mode redistribution.
However, the scenario is still in a weakly nonlinear regime. In contrast, it is possible
that an energetic particle distribution function (mostly its radial gradient) destabilizes
the strongly damped energetic particle modes (EPM, [118]). In such system far above
the stability threshold, fast particle transport can occur in avalanche-like events [119–
122]. The regime is strongly nonlinear as the radial gradient and the mode structure
change on a very fast time scale, before orbit stochastization can become relevant. To
investigate scenarios like this requires to account for a damping mechanism, which is
now possible within the HAGIS model due to the implementation of Ẽ‖ described in
chapter 4 and will be object of future studies, especially as application for the planned
HAGIS-LIGKA hybrid model.
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6.3.6 Summary & Comparison with the Experimental Loss Measurement

In this chapter, different causes for losses were discussed, depending on energies or
ejection frequencies as a consequence of a certain loss mechanism. For the first time, a
realistic scenario has been modeled numerically by implementing a consistent ICRH-like
distribution function and kinetically calculated perturbation structures.

Summary of the most important findings

• The lowest energy losses around 180 keV (ρ ≈ 35 mm) appear mainly due to
the very broad radial mode structure of the TAE, and only in the inverted q
profile equilibrium. They are the highest peak in the energy spectrum, and do
not show any correlation to either one of the mode’s frequencies, nor their beat
frequency, and scale quadratically with the mode amplitude. Therefore, they can
be classified as incoherent diffusive losses.

• In the low energy range of E ∈ [200; 350] keV (ρ ∈ [40; 50] mm), the high
amount of losses is caused by the combination of a large loss area and dense
resonance lines in phase space, in the inverted q profile equilibrium. There-
fore, these losses do not occur in the monotonic q profile. Resonant losses do
not appear in great number in this energy range, as the orbits are too small to
be unconfined. Only the interaction of multiple modes can cause theses losses,
leading to a strong phase space stochastization and non-resonant energetic par-
ticle transport. The modes grow to high amplitudes and to large scale particle
redistribution and ejection. Thus, these losses are incoherent as well – appear-
ing only when both modes reach the stochasticity threshold, uncorrelated to any
mode or beat frequency. As diffusive losses, they scale quadratically with the
mode amplitude.

• In the intermediate energy range of E ∈ [450;700] keV (ρ ∈ [55; 70] mm),
losses occur in the inverted q profile equilibrium, as well as in the monotonic
one. The amount of losses is smaller than in the lower energy range (in the
inverted q profile), however, they appear earlier in the simulation, even before
both modes reach the stochasticity threshold. Their ejection is correlated to the
beat frequency of both modes, and in a single-mode scenario or the monotonic q
profile case, the distinct energies where the resonance lines meet the loss bound-
ary are visible. They scale linearly with the TAE mode amplitude. All these
characteristic strongly indicate a resonant (=coherent) loss mechanism.

• In the highest energy range of E ∈ [700; 1300] keV (ρ ∈ [70; 90] mm), losses
appear mainly due to their large orbits, and thus as prompt losses, which are in-
herently incoherent. However, to identify resonant loss mechanisms in this energy
range is difficult, due to the insufficiently amount of losses within a reasonably
small energy interval to perform a Fourier analysis. It can be assumed, that
these energetic particles can easily become unconfined by any resonant or non-
resonant energy exchange with a wave, due to their large orbit width. In the
view of transport studies in large fusion devices (like ITER), the characterization
of these losses is not relevant, since such large-orbit particles do not exist.
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Limitations of the Model

The simulations with the extended version of HAGIS give fast particle losses that are
quite comparable to the experimental measurements, concerning the position in pitch
angle and energy space, and the relative changes between different q profile equilibria.
This will be shown in the next section. Before, several reasons, why a comparison on a
quantitative level is difficult, will be discussed.

Throughout the last section, it was assumed, that the losses arriving at the FILD po-
sition are a representative subset of all losses hitting the machine’s first wall, which
might not be the case. Unfortunately it is not possible within HAGIS to investigate the
impact position of the losses exactly: the model assumes perfect toroidal symmetry,
thus the first wall is given in 2D, integrated over the toroidal angle. As a consequence,
unconfined particles tend to hit the first wall earlier on their orbit than in reality. Since
the orbit direction of losses is usually going upwards on the LFS, the z coordinate of
their impact position is slightly underestimated and sensitive to the wall geometry. The
exact wall geometry as well as further edge effects are addressed by other models, such
as the ASCOTT code [123].
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Figure 6.46: Appearance of prompt (t < 10−4 s) losses (indicated black lines) and non-
prompt (t > 10−4 s) losses (colors – from blue to red represent the losses ac-
cording to increasing density) at first wall (red line) in the simulations of AUG

discharge #23824. The red box depicts the approximate FILD position, the thin
curved lines the plasma equilibrium reconstruction.
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The location of the FILD is at around z ≈ 300 mm above the outboard midplane [108].
In fig. 6.46, a histogram of the loss appearance in R-z space is plotted onto the equi-
librium used by HAGIS, that includes the vacuum region and also the first wall (red
line). The great part or even the majority of losses hits the first wall slightly above
the outboard midplane. In scenario1.16 (a), quite a representative fraction of losses
appears at the detector position (red box). The area in gyroradius (ρ)-pitch (λo) space
that this subset of losses covers does not differ from the one covered by the whole set
of losses, except for the missing of very high pitch angles |λo| > 82o. However, within
the ρ-λo pattern, the peak in the lower energy range is under-represented in the set of
losses restricted to the detector position. In scenario1.51 in contrast, all the numerical
losses hit the first wall below the detector position, which is quite unrealistic, as a small
amount of losses was measured in this equilibrium at the FILD.

It should further be mentioned, that the FILD is insensitive to different masses. Al-
though, due to minority heating, most fast particles are protons, there is a fraction of
fast deuterium ions as well (< 10%), that were not taken into account in the simula-
tions. At the same measured gyroradius, their energy is lower by a factor of two. Thus,
the deuterium ions are slower, compared to the protons, and smear out the experimen-
tally measured time signature of the losses. The incoherent loss fraction is therefore
expected to be slightly overestimated by the FILD. A similar smearing effect is further
caused by magnetic field ripple [124, 125] at the plasma edge, that alter the particle
energy.

Another important limitation of the model is, that prompt losses are not given quan-
titatively within the HAGIS model, as explained in the following. Therefore, it is not
possible, to quantify the ratio of incoherent to coherent losses in the higher energy
range.

In a heated fusion plasma, the energetic particle distribution function results from
the continuous balancing between energy input (source of fast ions) and the dissi-
pation of this energy via collisional processes with the background plasma. Further
transport channels within the slowing-down process are turbulence, transport due to
non-axis symmetric components of the magnetic equilibrium, e.g. magnetic field ripple,
and finally, the interaction with global plasma waves. In the HAGIS model, a station-
ary distribution function is assumed, neglecting all effects except the flattening due to
mode-particle interaction. There is no source term implemented so far, nor the various
dissipation mechanisms. As long as the simulated time is significantly below the fast
particle slowing-down time [98] (≈ 0.1 s), the initial distribution function represents
a stationary state of the energetic particles. Its form is justified by resulting mode am-
plitude levels in the range of the experimentally observed values. The evolution of the
distribution function is caused purely by wave-particle interaction, leading to a flat-
tening in the radial gradient, and to energetic particle losses. The modes grow and
eventually saturate through this mechanism alone.
The reasons that allow to neglect different damping mechanisms were already dis-
cussed in sec. 3.2.1. Concerning the various energy dissipation mechanisms, it was
found, that turbulent transport of fast particles is in the most relevant regimes two
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orders of magnitude lower than thermal transport [126, 127], and ripple losses affect
only the plasma edge. In the plasma core, the fast particle-wave interaction is the
most important transport process. This justifies the limitation of the model to assume
a stationary distribution function as non-perturbed initial state. However, as a conse-
quence, prompt losses can not be calculated quantitatively. Concerning the qualitative
findings, the energy range of the appearing prompt losses was shown (sec. 6.2.2) to be
relatively sensitive to the fast particle distribution function. Since the ICRH energy
deposition is very localized, the applied distribution function gives an upper estimate
for the energy range of prompt losses. The non-prompt losses are quite robust against
uncertainties in the radial or pitch distribution. Thus, also the finding of a drastic en-
hancement of diffusive low energy losses in the presence of multiple modes with many
poloidal harmonics, is quite robust.

Achievements of the Model

Now, it is discussed, which of the various experimental findings can be reproduced and
explained within the numerical model.

The first striking statement of ref. [33] is the difference in the total amount of losses
between the earlier time points, t < 1.4 s, when a large number of losses appears in
the whole energy range, and later times, t > 1.4 s, when there are only few losses in
the high energy channel and almost none in the low energy channel.

(a) Low energy channel ρ ≈ 40 mm (b) High energy channel ρ ≈ 70 mm

Figure 6.47: The FILD raw signal of losses over time during AUG discharge #23824 [33, 128]
for different energy channels. The frequency correlated (coherent) losses are
colored dark blue, the incoherent offset is shown in light blue. The vertical lines
indicate the time points investigated numerically in this chapter (pink for the
earlier, green for the later time).
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Focusing on the two time points t = 1.16 s and t = 1.51 s, shown in fig. 6.47 reveals: at
t = 1.16 s (marked by pink lines), an equally high amount of losses is found in the low
(a) and the high energy channel (b), whereas at t = 1.51 s (marked by green lines), no
low energy losses appear – except for a general noise level (a), and fewer (≈ 18%) in
the high energy range (b). This result is well reproduced by the numerical simulations,
as is found when interpreting the loss data shown in fig. 6.35: scenario1.16a gives a
large number of losses in the lower and in the higher energy range, with quite com-
parable levels, relative to each other. In scenario1.51, no losses appear below ρ ® 45
mm and a few for higher energies (ρ ¦ 45 mm), mostly within ρ ∈ [65; 75] mm. The
drop of losses in the higher energy range between the earlier and the later scenario is
in the range of around 10% in the simulation, depending on the choice of the ρ range.
However, to compare the losses quantitatively with the ones measured at the FILD is
only possible in the lower energy channel. In the higher energy channel, prompt losses
are expected. These prompt losses cannot be quantified within the model, as explained
in the previous section. Despite the missing of the prompt losses, the numerically cal-
culated difference between scenario1.16 and 1.51 is also one order of magnitude.

Next, the nature of losses – incoherent or coherent is discussed. The simulations for
t = 1.51 s (see fig. 6.35b) give losses only in the high energy range. There are both
prompt, i.e. incoherent losses and non-prompt losses, which show clearly an energy
spectrum correlated to the resonance energies at the loss boundary. However, there is
also a small amount of non-prompt incoherent losses (diffusive). Thus, the few inco-
herent losses seen also in the FILD signal fig. 6.47b can be both prompt or diffusive.
But taking into account, that the mode amplitudes were slightly overestimated in the
simulation, it can be concluded that in reality the diffusive losses are probably few.
In the experiment, the ratio of coherent to incoherent losses at t = 1.16 s is about 1:5
in the low and roughly 1:2.5 in the high energy channel. A possible overestimation of
incoherent losses due to the smearing effects discussed in the previous section has to
be taken into account. In the numerical simulation as well, both coherent and inco-
herent losses are found. In the lower energy range the ratio of coherent (resonant) to
incoherent losses (caused by phase space stochastization, combined with the large loss
area of the inverted q profile) is in the same order of magnitude (shown in fig. 6.38) as
in the experiment. In the higher energy range, simulations indicate that the majority
of incoherent losses are ejected as prompt losses: the non-prompt losses show coher-
ent characteristics, but are too few to analyze the ratio of coherent to diffusive losses
quantitatively. Further, the prompt losses do not allow a quantitative analysis for the
reasons given above. Though, a rough estimate is, that a large fraction of the losses in
this energy range is prompt: since no prompt losses occur in the low energy range, one
can calculate a scaling factor between the experimental loss value and the simulated
amount of losses. With this factor, the simulated losses in the high energy range can
be compared to the measured ones. The difference gives the prompt losses, that are
missing in the simulation. In the case of the most realistic simulation, this allows one
to estimate, that between around 5% and 50% of the measured incoherent losses in
the high energy channel would be prompt. However, this is only a rough estimate, due
to the uncertainties that enter the comparison. Besides the limitations of the model
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discussed above, these are the width of the energy channels, the FILD noise level, and
the fact, that the scaling between experiment and simulation can depend on the energy,
since the losses at different energies are caused by different loss mechanisms. If one
considers smearing effects at the FILD, that overestimate the incohrent losses, the ratio
of prompt losses are expected to be higher.

In the next step, the energy-pitch angle characteristics of the numerical losses is
compared with the experimental measurement. As explained in sec. 6.1.2, the FILD

gives a pattern in the space of gyroradius ρ and pitch angle λo. When comparing
the numerically obtained values with the experimental ones, one has to bear in mind
that the FILD measurement neglects the drift movement that takes place within the
detector. Therefore, the numerically obtained values for ρ and λo are shifted about
approximately +6% in ρ and +9o in |λo|, as explained in sec. 6.1.2 or ref. [55]. It
is then found, that experimental (colored red in fig. 6.48, from ref. [33, 128]) and
numerical loss pattern (blue and green lines) match very well in phase space. The
numerical results indicate, that the higher energy (or gyroradius-) incoherent losses
are prompt losses, whereas the lower energy (or gyroradius-) incoherent losses are
caused by phase space stochastization due to the presence of multiple modes. The
highest energies detected at the FILD do not appear in the simulation, as the maximum
energy simulated was Emax = 1.2 MeV.
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Figure 6.48: Loss pattern (colored red) in phase space (gyroradius ρ over pitch angle λo) as
measured at the FILD in AUG discharge #23824 at time t ∈ [1.14,1.16] s (a,
from ref. [128]) and t ≈ 1.52 s (b, from ref. [33]). Further, the loss pattern
as resulting from the simulation of an ICRH-generated fast particle distribution
function in the MHD equilibrium of AUG #23824 at t = 1.16 s (a) and t = 1.51
s (b) with the corresponding perturbation given by LIGKA (see fig. 6.23 and
fig. 6.24) is shown. For the distribution function see eqs. (6.6) to (6.8). The
blue line gives the boundary of the non-prompt losses at the first wall – where
the majority appears in the respective lower ρ part within the boundary. The
green line depicts the boundary of the prompt losses’ appearance at the first wall
(simulated with the distribution function of eqs. (6.8) to (6.10)). The numerical
values have been drift-corrected by +6% in ρ and ≈+9o in λo, as explained in
sec. 6.1.2.
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CHAPTER 7

Conclusions and Outlook

In this thesis, nonlinear effects due to energetic particle driven Alfvén eigenmodes in
a TOKAMAK plasma have been investigated. The simulations for this purpose have
been performed with the HAGIS code [72]. The code has further been extended to be
applicable to more realistic scenarios.

In chapter 5, the interaction of fast particles with Alfvén Eigenmodes of different fre-
quencies were studied numerically with HAGIS in a simple, but physically realistic pic-
ture for two different MHD equilibria occurring during the ASDEX Upgrade discharge
#23824. Double-resonant mode drive was compared with single mode scenarios, con-
firming previous findings of double-resonance mechanisms: gradient driven double-
resonance [76] and inter-mode energy transfer [55]. The latter was observed to be
significant only in low amplitude cases, enhancing the weaker mode at the expense
of the dominant one. A beat frequency oscillation superimposed on both mode am-
plitudes was found, as well as higher linear growth rates – at least for one mode –
compared to the single mode reference cases. The growth rate enhancement turned
out to be fairly independent on the radial mode distance. The double-resonance can
enhance the saturation amplitudes of the Alfvén Eigenmodes to reach the stochastic
regime and can therefore lead to much higher saturation levels compared with the
single mode scenarios, even if there is no radial mode overlap. However, close radial
mode distances were found to stabilize linearly dominant modes when the nonlinear
regime sets in. As a consequence, linearly weaker modes may become nonlinearly
dominant. Thus, simulations revealed a complex nonlinear evolution of multi-mode
scenarios, that is not just a simple continuation of the linear multi-mode behavior.

In chapter 6, simulations with ICRH-generated fast particles were performed with the
extended HAGIS version [55]. They allowed to compare numerical fast particle losses
with experimental measurements of the ASDEX Upgrade discharge #23824 [33] and
lead to a deeper understanding of the transport processes. This was achieved through
the investigation of the internal redistribution in combination with existing resonances,
as well as phase space and frequency analysis of the losses. A useful diagnostic tool
has been developed to allow the in-depth investigation of a large amount of simulation
data.

At first, the importance of the extended HAGIS version, that includes the vacuum region
was investigated. A difference in losses up to 30% was found, especially in scenarios
with lower energetic losses. Further, the simulations have been carried out within a
more realistic model in various respects: on the energetic particle side, a more general,
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consistent ICRH-like distribution function was implemented, which applies the marker
weighting on conserved quantities. The simulation results are quite robust against un-
certainties in the radial and pitch distribution function, except for the prompt losses,
i.e. those, that are unconfined solely due to their large orbit width – caused by a high
birth energy – or a birth position radially far outside. On the perturbation side, HAGIS

has been extended to use kinetic perturbation data from the eigenvalue solver LIGKA

[93]. Differences in the mode amplitude evolution between the specific LIGKA given
eigenmode structure and comparable analytical Gaussians were studied, stressing the
importance of radially shaped eigenfunctions and the appropriate number of poloidal
harmonics.

Next, the fast particle transport and losses, as simulated under these realistic condi-
tions, were analyzed. The simulated losses’ phase space pattern was found to coincide
very well with the experimental one. Especially in multi-mode scenarios with different
mode frequencies, stochastic redistribution sets in over a broad energy range, leading
to lower energetic diffusive (incoherent) losses. Resonant losses appear from the late
linear phase on, mainly in the intermediate to higher energy range, showing good co-
herence with the mode frequencies and especially their beat frequencies. The higher
energetic part of experimentally measured incoherent losses has been identified as
mainly prompt losses. The eigenmode structure given by LIGKA revealed that the lowest
energetic losses result from a combination of two interconnected facts: first, the many
poloidal harmonics of the toroidicity induced Alfvén eigenmode, which are caused by
the gap alignment in the continuum of an inverted q profile equilibrium. Second, due
to particle drift orbits that are radially extended on the size of the machine’s small ra-
dius. In scenarios like this, especially in the presence of multiple modes with different
frequencies, i.e. with complementary resonances, that densely fill the relevant phase
space, a domino effect can occur: particles in the high energy range leave the plasma
as prompt losses, followed by resonant and diffusive losses. At the same time, the
redistribution caused by the core-localized mode refills the particles, that have been
transported radially outwards by the outer mode. When the outer mode reaches the
stochasticity threshold, low energy losses appear (down to E = 300 keV), and if many
poloidal harmonics are present, they transport even very low energetic particles (down
to E = 100 keV) across the loss boundary. This domino effect, caused by the pres-
ence of multiple modes, is clearly a nonlinear phenomenon, although the regime is
still weakly nonlinear. Losses are enhanced by orders of magnitude.

Although the radial structure of the wave is very important, it is not yet allowed to
evolve in time within the HAGIS model. HAGIS is a hybrid code, which calculates inter-
action with MHD or other perturbations self-consistently only concerning mode ampli-
tude and frequency evolution. In the frame of this thesis, the coupling of HAGIS with the
LIGKA code, which calculates the wave structures has been started. The future hybrid
HAGIS-LIGKA model is planned to evolve the eigenmodes on a time scale slower than the
eigenmode frequencies. For this purpose, the interface in HAGIS to the LIGKA given per-
turbation has been built. Also, a non-vanishing parallel electric field term Ẽ‖ has been
included in HAGIS, and first successful consistency studies have been carried out. Pre-
viously, Ẽ‖ was neglected, as in ideal MHD. With Ẽ‖, a damping enters the equations,
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that has a radial structure and is different for each mode harmonic m. The new im-
plementation will be used to study the nonlinear behavior of linearly stable modes and
strongly damped modes, e.g. acoustic low-frequency electrostatic modes. Additionally,
non-MHD-like modes will be investigated, such as energetic particle modes, which are
strongly damped. In the strongly nonlinear regime, these modes can be destabilized by
an energetic particle population and lead to an avalanche-like transport. It is still an
open question, which conditions determine whether the regime is strongly or weakly
nonlinear.
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APPENDIX B

Useful Formula concerning
Curvilinear Coordinate Systems

For derivations and explanations, see the book of d’Haeseleer [129] (Note: base vectors
are not normalized there!).
Consider a one-to-one transformation R from one coordinate system
(coordinates (u1, u2, u3) or short: ui) to the other (x i):
R(u1,u2, u3) = (x1(u1, u2, u3), x2(u1, u2, u3), x3(u1, u2, u3)).
The tangent-basis vectors or covariant basis vectors are defined as:

e i =
∂ R

∂ ui (B.1)

(in some notation normalized to unity length). They are tangential to the ui coordinate
curves.
The reciprocal-basis vectors or contra-variant basis vectors are defined as:

e i =∇ui (B.2)

(in some notation normalized to unity length as well). These are perpendicular to the
coordinate surfaces ui = const.

It holds e i · e j = δ j
i , meaning that the set of vectors e i forms a reciprocal set to those

of e i . From this, it can be derived that any basis vector of one set can be calculated if
the three vectors of the other set are known:

e i =
1

J
e j × ek (B.3a)

e i = J e j × ek (B.3b)

where i, j,k must be chosen as a cyclic permutation.
J is the Jacobian of the transformation:

J=
∂ R

∂ u1 ·
∂ R

∂ u2 ×
∂ R

∂ u3 = e1 · e2× e3 (B.4a)

J=
1

∇u1 · ∇u2×∇u3 =
1

e1 · e2× e3 (B.4b)

A denotes an arbitrary vector. It can be written with co-variant (Ai) or contra-variant
(Ai) components:

A= Ai∇ui i.e. with co-variant components, Ai = A · e i (B.5a)

A= Aie i i.e. with contra-variant components, Ai = A · e i (B.5b)
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Note the following geometric concepts in this notation:

The metric tensor:

gi j = e i · e j

g i j = e i · e j (B.6a)

⇒ Ai = gi jA
j

⇒ Ai = g i jA j (B.6b)

gi j = e i · e j

=−J2(e j × ek) · (ek × e i)

= J2e i · [ek × (ek × e j)]

= J2e i · [ek(ek · e j)− e j(ek)2]

= J2 [gikgk j − gi jgkk] (B.7)

Gradient:

∇Φ =
∂

∂ uiΦ e i (B.8)

Divergence:

∇ · A=
1

J

∂

∂ ui (JAi) (B.9)

Curl:

∇× A=
∂

∂ u j Ai (e
j × e i) (B.10)

Parallel and perpendicular component of a vector A along B:

A‖ =
A · B

B
A⊥ =−

B

B2 × (B× A) (B.11)

B.1 General Vector Identities

Scalar product:

c = a · b = |a||b| cos(∠(a,b))

c = aia j (B.12)

Cross product:

c = a× b ⊥ a, b

ck = aia jεi jk (B.13)
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Double cross product:

a× (b× c) = b(a · c)− c(a · b) (B.14)

Scalar triple product:

a · (b× c) = b · (c× a) = c · (a× b)

=−a · (c× b) =−c · (b× a) =−a · (c× b) (B.15)

Product rules with the nabla operator:

∇(a · b) = (a · ∇)b+ (b · ∇)a+ a× (∇× b) + b× (∇× a) (B.16)

∇ · (a× b) = b · (∇× a)− a · (∇× b) (B.17)

∇× (a× b) = a(∇ · b)− b(∇ · a) + (b · ∇)a− (b · ∇)a (B.18)
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APPENDIX C

Toroidal Geometry related Formula
and Definitions

C.1 Poloidal and Toroidal Magnetic Fluxes

The magnetic flux is defined as the component of a magnetic field passing through a
given surface.

Definition of the Toroidal Flux:
Independent on the coordinate system, the mathematical formulation of the magnetic
flux definition is

Ψt =

∫∫

Aζ=const.

B · dA (C.1)

The area Aζ=const. is the surface of constant ζ angle, as shown in orange in fig. C.1.
One can consider the following expression, where V is the volume enclosed by the flux
surface A:

∫∫∫

V

B · ∇ζ dV.

Since ∇ · B = 0, one can write

=

∫∫∫

V

∇ · (Bζ)dV,

and using Gauss’s theorem :

=

�
A

Bζ · dA,

=

∫∫

A(torus)
Bζ · dA+

∫∫

A(ζ=0)
Bζ · dA+

∫∫

A(ζ=2π)
Bζ · dA.

(C.2)

The first integral on the right hand side vanishes by definition of a flux surface: B is
tangent everywhere, thus perpendicular to the normal vector of A, i.e. B · dA = 0. On
the surfaces ζ = 0 and ζ = 2π, ζ is constant and can be replaced by its value, leaving
only

= 2π

∫∫

Aζ=2π

B · dA. (C.3)
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Combining eqs. (C.1) and (C.3), one obtains

Ψt =
1

2π

∫∫∫

V

∇ζ · BdV =
1

2π

∫∫∫

V

BζdV. (C.4)

Analogously, the poloidal flux is defined.

Definition of the Poloidal Flux:

Ψp =

∫∫

Aθ=const.

B · dA. (C.5)

The area Aθ=const. is the surface of constant θ angle, as shown in green in fig. C.1. This
expression can be written as

Ψp =
1

2π

∫∫∫

V

∇θ · B dV =
1

2π

∫∫∫

V

BθdV. (C.6)

z

mag. axis

�

R

�

�

�

Figure C.1: Schematic view of the torus, cylindrical (R,ϕ, z) and toroidal coordinate
(ψ,θ ,ζ) system, as well as surfaces of constant ζ (green), constant θ (orange),
and constant ψ – a flux surface (pink).
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C.2 The Parallel Wave Vector k‖ in the Cylindrical Limit

To consider the cylindrical limit of toroidal geometry, i.e. the wave equation in zeroth-
order of the large-aspect ratio approximation, a/Rmag� 1, let us assume a coordinate
system as shown in fig. C.1: when bending up the torus towards a cylinder Rmag→∞,
the toroidal set of coordinates (ψ,θ ,ζ) transfers to the common familiar cylindrical
coordinate system ψ → r, θ → ϕ, ζ → z, with z the coordinate along the magnetic
axis. In this cylindrical coordinate system, the magnetic field reads

B = Bϕeϕ + Bzez

=
r

Rmag

Bz

q
eθ + Bzez , (C.7)

as the safety factor q becomes q = r/Rmag Bz/Bϕ, because z equals the ‘toroidal’ direc-
tion, and ϕ the poloidal one. The factor r/Rmag is considered small, so one can assume
the unity vector in the magnetic field direction is b̂ = B/B ≈ B/Bz
The parallel wave vector in this geometry can now be calculated via ik‖ Ẽ being the
Fourier transform of ∇‖ Ẽ ≡ (b̂ ·∇)Ẽ, with Ẽ the perturbation quantity. After executing
the scalar product of b̂ with ∇ in cylindrical coordinates, one can directly read the
expression for k‖ as eq. (3.24):

ik‖ Ẽ = b̂ · ∇Ẽ

=

�

r

qRmag
eϕ + ez

�

·
�

er
∂

∂ r
+

1

r
eϕ
∂

∂ ϕ
+ ez

∂

∂ z

�

Ẽ,

using the Fourier decomposition Ẽ =
∑

m
Ẽm(r)exp (−imϕ+ in z/Rmag) :

ik‖m Ẽ = i
1

Rmag

�

n−
m

q

�

Ẽm. (C.8)

Thus, the parallel wave vector in the cylindrical limit is

k‖ =
1

Rmag

�

n−
m

q

�

.
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APPENDIX D

Derivations Used for Introducing
the Boozer Coordinates

D.1 A First Boozer Coordinate Representation of B

Flux coordinates are curvilinear coordinate systems, in which one of the coordinates,
usually denoted ψ, the flux label, is constant over each flux surface. As the magnetic
field lines lie within the surface, it holds1 B · ∇ψ = 0, in other words: the contra-
variant component of the magnetic field direction vanishes Bψ = 0 and ψ = const.
defines a sequence of nested tori. The other two coordinates form a grid within each
flux surface such that they close upon themselves once around the poloidal (θ) as well
as the toroidal (ζ) direction, shown in fig. 4.2.
From these conditions, it follows for the co-variant basis vectors, using eq. (B.7):
eθ · eζ = 0 (implying gθζ = 0) and eψ · eζ = 0 (implying gψζ = 0).
However, one cannot take ∇ψ · ∇θ = 0 without losing the straightness of B lines.
Therefore, gψθ 6= 0.
With these choices, it is possible, to express the magnetic field B as a composition of
∇ψ×∇θ and ∇ψ× (∇ψ×∇θ), i.e. just like in eq. (4.8), but without using the ∇ζ
coordinate. The second term has been modified using eqs. (B.3a) and the metric tensor
components gψθ = gθζ = 0:

∇ψ×∇ζ=∇ψ× [eψ× eθ ]

=∇ψ× [gψie
i × gθ ie

i]

=∇ψ× [(gψψ∇ψ+ gψθ∇θ + 0 · ∇ζ)× (gθψ∇ψ+ gθθ∇θ + 0 · ∇ζ)]

=∇ψ× (−g2
ψθ + gψψgθθ )(∇ψ×∇θ)

= const. ∇ψ× (∇ψ×∇θ). (D.1)

The divergence-free nature of the magnetic field, ∇·B = 0 (with the use of eqs. (B.3a)

1 analogously: j · ∇ψ= 0
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and eqs. (B.6b) and (B.9)) leads to

0=∇ · [Bh(∇ψ×∇θ
︸ ︷︷ ︸

=eζ/J

)] + ∇ · [BO(∇ψ×∇θ
︸ ︷︷ ︸

=eζ/J

)× ∇ψ
︸︷︷︸

=gψψeψ+gψθ eθ+0eζ

]

0=∇ ·
�

Bh

J
eζ

�

+ ∇ ·
�

BO gψψ

J
Jeθ −

BO gψθ

J
Jeψ

�

0=
1

J

∂

∂ ζ
Bh

︸ ︷︷ ︸

=0

+ ∇ · [BO gψψ eθ
︸︷︷︸

=gψθ eψ+gθθ eθ

−BO gψθ eψ
︸︷︷︸

=gψψeψ+gθθ eθ

]

0=∇ · [BO (g
ψψgψθ − gψψgψθ )

︸ ︷︷ ︸

=0

eψ + BO(g
ψψgθθ − gψθ gψθ )eθ ]

0=
1

J

∂

∂ θ
[J(BO(∇ψ)2(∇θ)2− (∇θ · ∇ψ)2)]

0=
1

J

∂

∂ θ
[JBO(∇ψ×∇θ)2]

⇒ BO =
Γ(ψ)

J(∇ψ×∇θ)2
. (D.2)

As mentioned above, equilibrium force balance implies j · ∇ψ = 0, i.e. the plasma
current is a flux function as well. Using Ampère’s law j =∇× B, Bh can be found:

0= (∇× B) · ∇ψ=∇ · [B×∇ψ]
0=∇ · [Bh (∇ψ×∇θ)×∇ψ + BO ((∇ψ×∇θ)×∇ψ)×∇ψ].

The first term is analogous to the second term above.

0=
1

J

∂

∂ θ
[JBh(∇ψ×∇θ)2] + ∇ · [

BO

J
gψψ((eζ× eψ)

︸ ︷︷ ︸

=Jeθ

×∇ψ) +
BO

J
gψθ ((eζ× eθ )

︸ ︷︷ ︸

=Jeψ

×∇ψ)]

0=
1

J

∂

∂ θ
[JBh(∇ψ×∇θ)2] + ∇ · [

BO gψψ

J
eζ+ 0]

0=
1

J

∂

∂ θ
[JBh(∇ψ×∇θ)2] +

1

J

∂

∂ ζ
[BO gψψ]

︸ ︷︷ ︸

=0

⇒ Bh =
g(ψ)

J(∇ψ×∇θ)2
. (D.3)

With the knowledge of Bh and BO, the magnetic field of eq. (4.10) can be written as

B =
g(ψ)

J(∇ψ×∇θ)2
∇ψ×∇θ +

Γ(ψ)
J(∇ψ×∇θ)2

(∇ψ×∇θ)×∇ψ. (D.4)

One now chooses the poloidal flux Ψp to serve as flux label coordinate ψ, say ψ =
Ψp/(2π). With this choice, the poloidal flux formula eq. (C.6) becomes

Ψp =
1

2π

∫∫∫

V

∇θ · B J
dΨp

2π
dθdζ. (D.5)
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From eq. (D.4), it can be seen that

∇θ · B =
Γ(Ψp)

J
, (D.6)

and therefore, J cancels, and the angular integrations can be executed

Ψp =
1

2π

∫

V

Γ(Ψp)
dΨp

2π
2π 2π

⇒ Γ(ψ) = 1. (D.7)

D.2 The Co-Variant Components of B

The co-variant components of B are obtained by taking the scalar product of eq. (D.4)
with the appropriate co-variant basis vector e i (and making use of vector identities,
such as eqs. (B.14) and (B.15)):

Bψ = B · eψ

Bψ =
1

J(∇ψ×∇θ)2
�

g(∇ψ×∇θ) · (∇θ ×∇ζ)J + 1 [(∇ψ×∇θ)×ψ] · (∇θ ×∇ζ)J
�

Bψ =
1

J(∇ψ×∇θ)2
[g(∇ψ×∇θ) · (∇θ ×∇ζ)J +

+ (∇ψ)2∇θ · (∇θ ×∇ζ)
︸ ︷︷ ︸

=0 as ⊥

J− (∇θ · ∇ψ)∇ψ · (∇θ ×∇ζ)
︸ ︷︷ ︸

=1/J

J]

Bψ =
1

(∇ψ×∇θ)2

�

g(∇ψ×∇θ) · (∇θ ×∇ζ) +
∇ψ · ∇θ

J

�

. (D.8)

Analogously, one obtains

Bθ = B · eθ

Bθ =
1

(∇ψ×∇θ)2

�

g(∇ψ×∇θ) · (∇ζ×∇ψ) +
(∇ψ)2

J

�

, (D.9)

and very easily

Bζ = B · eζ
Bζ = g. (D.10)
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D.3 The Contra-variant Components of B

Analogously to the co-variant components, one obtains the contra-variant components
of B:

Bψ = B · ∇ψ= 0, (D.11a)

Bθ = B · ∇θ =
1

J
, (D.11b)

Bζ = B · ∇ζ=
1

J(∇ψ×∇θ)2

�

g

J
+ (∇ψ×∇θ) · (∇ψ×∇ζ)

�

.

(D.11c)

As Boozer coordinates are meant to be a type of straight field line coordinates, one
wants the magnetic field lines to be straight in the eθ – eζ – plane, i.e. Bζ/Bθ = const.
on one flux surface. This constant is named q(ψ) in the following. The Bζ component
becomes then quite simple, using eq. (D.11b) in Bζ = q Bθ :

Bζ =
q

J
.

Inserting eq. (D.11c) on the left side, one obtains

(∇ψ×∇θ) · (∇ψ×∇ζ) =
g

J
− q(∇ψ×∇θ)2. (D.12)

Substituting this equation, eq. (D.12), and B2, eq. (4.14), into the equation for Bθ ,
eq. (D.9), one obtains

Bθ = I , (D.13)

if I is defined as

I := JB2 − qg. (D.14)
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D.4 Physical Meaning of the Co-variant Components of B

To learn about the physical meaning of the angular co-variant components of B, it
is useful to compute the currents flowing in the device. According to Ampère’s law,
the current density is j = 1/µ0∇ × B. Using eq. (4.20) and the curl in curvilinear
coordinate systems, eq. (B.10), one obtains:

j =
1

µ0

�

∂ δ

∂ θ
∇θ ×∇ψ+

∂ I

∂ψ
∇ψ×∇θ +

∂ g

∂ψ
∇ψ×∇ζ

�

. (D.15)

Note: one can see very easily, that j · ∇ψ= 0 is fulfilled.
The current penetrating one poloidal cross section Aζ=const. (see orange area in fig. C.1)
leads to the total toroidal current It:

It =

∫∫

j · dAζ=const. =
1

µ0

∫∫

∇× B · dAζ=const.

=
1

µ0

∫

ψ,ζ=const.

B · dl (Stoke’s theorem)

=
1

µ0

∫

ψ,ζ=const.

�

δ∇ψ− I∇θ + g∇ζ
�

· eθdθ (now use e i · e j = δ
i
j)

It(ψ) =
2π

µ0
I(ψ) (D.16)

Thus, I is closely related to the toroidal current within the flux surface.

Analogously, one can calculate the current penetrating one toroidal surface Aθ=const.
(see green area in fig. C.1), leading to the total poloidal current Ip :

Ip(ψ) =
2π

µ0
g(ψ) (D.17)
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D.5 Straight Field Lines and q Factor

Calculating the toroidal magnetic flux according to eq. (C.4) reveals

Ψt =
1

2π

∫∫∫

V

q(ψ)
J

Jdψdθdζ

=
1

2π

∫

V

q(ψ)
dΨp

2π
2π 2π

⇒ q(ψ) =
dΨt

dΨp
(D.18)

Thus, the constant q = Bζ/Bθ is the familiar safety factor of eq. (2.4) in Boozer coor-
dinates.

D.6 Vector Potential in Contra-variant Representation

With this representation of B, it can be shown, that the following expression is valid as
vector potential A :

A=
Ψt

2π
∇θ −

Ψp

2π
︸︷︷︸

=:ψ

∇ζ. (D.19)

This is proved, using the curl in curvilinear coordinate systems, eq. (B.10):

B =∇× A

B =
∂Ψt

∂ ζ
︸︷︷︸

=0

(∇ζ×∇θ) +
1

2π

∂Ψt

∂ψ
︸ ︷︷ ︸

=q

(∇ψ×∇θ)−
∂ψ

∂ψ
︸︷︷︸

=1

(∇ψ×∇ζ) +
∂ψ

∂ ζ
︸︷︷︸

=0

(∇θ ×∇ζ)

B =∇ζ×∇ψ+ q(∇ψ×∇θ). (D.20)



APPENDIX E

The Driftkinetic Lagrangian

E.1 Gyro-averaging the Driftkinetic Lagrangian

In chapter 2 and chapter 4, the driftkinetic particle Lagrangian is introduced.
As it is not necessary to retain the fast gyromotion within the equations, an averag-
ing over the gyroangle is performed, indicated by ‘<>’. This so called gyro-averaging
reduces the phase-space coordinates by eliminating the gyroangle ξ. The averaging
within the Lagrangian yields

L = e< A(R) · Ṙ >
︸ ︷︷ ︸

independent of ξ

+ e< (ρ · ∇)A(R) · Ṙ
︸ ︷︷ ︸

=0 (eq. (E.2))

>+ e< A(R) · ρ̇ >
︸ ︷︷ ︸

=0 (eq. (E.3))

+ e < (ρ · ∇)A(R) · ρ̇ >
︸ ︷︷ ︸

=−µB/Ω ξ̇ (eq. (E.4))

+ m< v · Ṙ >
︸ ︷︷ ︸

=mv2
‖ b̂·R (eq. (E.6))

+ m< v · ρ̇ >
︸ ︷︷ ︸

=2µB/Ω ξ̇ (eq. (E.5))

−
1

2
m < v2

‖ >
︸ ︷︷ ︸

indep. of ξ

− < µB >
︸ ︷︷ ︸

indep. of ξ

− e< Φ(R)>
︸ ︷︷ ︸

indep. of ξ

.

(E.1)

The first and the three last terms are independent of ξ, and thus, the averaging brackets
are obsolete. For the remaining terms, the averaging is performed in the following:

< (ρ · ∇)A(R) · Ṙ >=

*

ρ













cosξ
sinξ

0






·







∂x
∂y
∂z



















Ax
Ay
Az






·







Ṙx
Ṙ y
Ṙz







+

= ρ[< cosξ >
︸ ︷︷ ︸

=0

∂xAz +< sinξ >
︸ ︷︷ ︸

=0

∂yAz] Ṙ

= 0, (E.2)

< A(R) · ρ̇ >=

*







Ax
Ay
Az






·







− sinξ
cosξ

0






ρξ̇

+

=−Ax < sinξ >
︸ ︷︷ ︸

=0

ρξ̇+ Ay < cosξ >
︸ ︷︷ ︸

=0

ρξ̇

= 0, (E.3)



166 Appendix E. The Driftkinetic Lagrangian

e < (ρ · ∇)A(R) · ρ̇ >= e

*

ρ



















cosξ
sinξ

0






·







∂x
∂y
∂z



















Ax
Ay
Az












·







− sinξ
cosξ

0






ρξ̇

+

= e < ρ2ξ̇ [−< sinξ cosξ >
︸ ︷︷ ︸

=0

∂xAx + < cos2 >
︸ ︷︷ ︸

=1/2

∂xAy

−< sin2 ξ >
︸ ︷︷ ︸

=1/2

∂yAx + < sinξ cosξ >
︸ ︷︷ ︸

=0

∂yAy]>

= e <
1

2
ρ2ξ̇ (∂yAx − ∂xAy)

︸ ︷︷ ︸

=−Bz

>

= −
µB

Ω
ξ̇, (E.4)

m< v · ρ̇ >= m

*







vx
vy
v‖






·







− sinξ
cosξ

0






ρξ̇

+

= m< v⊥ρξ̇ > = m< v2
⊥/Ω ξ̇ >

= 2
µB

Ω
ξ̇, (E.5)

m< v · Ṙ >= m< v‖ > b̂ · Ṙ + m< v⊥ >
︸ ︷︷ ︸

=0

·Ṙ

= mv‖ b̂ · Ṙ. (E.6)

The vector b̂ = B/B is a unit vector in the direction of the equilibrium magnetic field.
This leads to a Lagrangian of the form

L = (mv‖ b̂ + eA(R)) · Ṙ +
µB

Ω
ξ̇ −

1

2
mv2
‖ − µB − eΦ(R). (E.7)

E.2 The Equations of Motion for the Guiding Center

The driftkinetic equations of motion for the guiding center R can be obtained via the
Euler-Lagrange method:

0=
d

dt

∂L
∂ Ṙ
−
∂L
∂ R

. (E.8)

With the driftkinetic Lagrangian, eq. (E.7), one calculates

0=
d

dt

�

mv‖ b̂+ eA
�

−mv‖
∂

∂ R

�

Ṙ · b̂
�

− e
∂

∂ R

�

Ṙ · A
�

+µ
∂ B

∂ R
+ e
∂Φ
∂ R

,
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and with the magnetic field assumed temporarily constant, the time derivation applies
on the quantities x = v‖, A, and R according to the chain rule dx/dt = ẋ + ∂ x/∂ R Ṙ.
With the potential definition E = e∇Φ+ eȦ, above equation becomes

0= mv̇‖ b̂+ e(Ṙ · ∇)A∗− eE − e∇(Ṙ · A∗) +µ∇B,

where the modified vector potential was introduced as

A∗ := m/e v‖ b̂+ A. (E.9)

After expanding the gradient of the scalar product (with eq. (B.16), where, since Ṙ is
not a field, the 1st and 3rd term on the right hand side vanish) and with defining

B∗ :=∇×A∗

B∗ = B+
mv‖

e
(∇× b̂), (E.10)

one obtains

0= mv̇‖ b̂− eṘ×B∗− eE +µ∇B. (E.11)

This equation is multiplied by b̂× on both sides. Expanding the triple cross product
(eq. (B.15)), one can solve for Ṙ:

Ṙ =
1

B∗‖
v‖B

∗+
1

B∗‖

�

1

B
E × B+

µ

e
b̂×∇B

�

(where B∗‖ := b̂ · B∗). The remaining B∗ in the nominator is split into its parallel and

perpendicular part, B∗ = B∗‖ b̂ + mv‖/e(∇ × b̂)⊥, where it was used, that B⊥ = 0.
Substituted into the previous equation yields

Ṙ = v‖ b̂+
B

B∗‖

 

1

B2 E × B+
µ

eB2 B×∇B+
mv2
‖

eB
(∇× b̂)⊥

!

,

which is the equation of motion for the guiding center position. It consists of a part
parallel to the magnetic field (first term), and a ‘drift’ part (terms in bracket). The
drifts are called as follows:

E− cross− B drift : vE×B =
1

B2 E × B, (E.12a)

grad− B drift : v∇B =
µ

eB3 B×∇B, (E.12b)

curvature drift : v curv =
mv2
‖

eB4 B× (B · ∇)B ≡ −
mv2
‖

eB3 (∇B× B). (E.12c)

For the curvature drift, it was used that (∇× b̂)⊥ = b̂× (b̂ · ∇)b̂, which results from b̂
being a unit vector, thus 0=∇(b̂ · b̂) = (b̂ · ∇b̂) + b̂× (∇× b̂) (used eq. (B.16)). This
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equation is then multiplied with b̂× and after eq. (B.14), only the perpendicular terms
remain. Therefore, it is

(∇× b̂)⊥
eq. (B.11)
= b̂× (b̂ · ∇)b̂

=
1

B2 B× (B · ∇)
B

B

=
1

B2 B× (B · ∇)B+
1

B2 B× (B (B · ∇)
1

B
)

︸ ︷︷ ︸

=0 as ‖

.

The alternative formulation for the curvature drift is derived in the following:

(∇× b̂)⊥ = (∇× B/B)⊥

=
�

1

B
(∇× B) + B×

1

B2∇B
�

⊥
,

which is, after using Ampère’s law ∇× B = µ0 j ,

eq. (B.11)
= −b̂×

�

b̂×
�

µ0 j

B
+

1

B
b̂×∇B

��

.

With the static MHD equilibrium condition eq. (3.1b), j × B =∇p, this reads

eq. (B.14)
= b̂×

µ0∇p

B2 + b̂×
∇B

B
,

and after using the definition of β eq. (3.15):

=
β

2

B

B
×
∇p

p
+

1

B2 B×∇B. (E.13)

For low-β scenarios, the first term is negligible.

The equation of motion for the guiding center velocity can be derived either from the
particle’s energy conservation, d/dt(m/2v2

‖ +µB+ eΦ) = 0, or from eq. (E.11) as well,

by multiplying Ṙ onto it: with Ṙ · b̂, this gives

v̇‖ =
Ṙ

mv‖

�

eE −µ∇B
�

. (E.14)



APPENDIX F

Calculating the Derivatives of ψp
and ρ‖

Note: g, I and ψt are flux coordinates, and thus functions of ψp alone.
ψp in turn depends, as well as ρ‖, on θ ,ζ, pθ and pζ:
ψp = ψp(θ ,ζ, pθ , pζ) and ρ‖ = ρ‖(θ ,ζ, pθ , pζ).
Furthermore, for canonical variables, it holds:

∂ qi

q j = δ
j
i ,

∂ pi

p j = δ
j
i ,

∂ pi

q j =
∂ qi

p j = 0. (F.1)

Here, it is qi ∈ [θ ,ζ,ξ] and pi ∈ [pθ , pζ, pξ].
The prime ′ indicates a derivation with respect to ψp.

F.1 The derivatives of ψp

To calculate the derivatives of ψp with respect to θ , ζ, pθ and pζ, one starts from
eq. (4.47), which is obtained out of the expressions for the canonical momenta, eqs. (4.45):

g(pθ − eψt − eÃθ ) = I(pζ+ eψp − eÃζ).

In the following, the total derivative of this expression with respect to θ is performed
and solved for the derivative of ψp:

g ′
∂ψp

∂ θ

�

pθ − eψt − eÃθ
�

+ g

�

0− e
∂ψt

∂ψp

∂ψp

∂ θ
− e
∂ Ãθ
∂ θ
− eÃ′θ

∂ψp

∂ θ

�

= I ′
∂ψp

∂ θ

�

pζ+ eψp − eÃζ
�

+ I

�

0− e
∂ψp

∂ θ
− e
∂ Ãζ
∂ θ
− eÃ′ζ

∂ψp

∂ θ

�

. (F.2)

Knowing that the safety factor q in Boozer coordinates reads

q =
∂ψt

∂ψp
, (F.3)

and re-arranging the terms, one obtains

∂ψp

∂ θ

�

g ′(pθ − eψt − eÃθ ) + eg(−q− Ã′θ )
�

− eg
∂ Ãθ
∂ θ

=
∂ψp

∂ θ

h

I ′(pζ+ eψp − eÃζ) + eI(1− Ã′ζ)
i

− eI
∂ Ãζ
∂ θ

. (F.4)
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From the expression for the conjugate momenta, eqs. (4.45), one knows, that
(pθ − eψt − eÃθ ) = eρ‖g and (pζ+ eψp − eÃζ) = eρ‖ I .

∂ψp

∂ θ

h

ρ‖(g I ′− g ′ I) + I + qg − I Ã′ζ+ gÃ′θ
i

=

�

I
∂ Ãζ
∂ θ
− g

∂ Ãθ
∂ ζ

�

. (F.5)

Now, it is useful, to define

D ≡ ρ‖(g I ′− g ′ I) + I + qg − I Ã′ζ+ gÃ′θ .

Thus, one obtains

∂ψp

∂ θ
=

1

D

�

I
∂ Ãζ
∂ θ
− g

∂ Ãθ
∂ θ

�

. (F.6)

Analogously, the derivation with respect to ζ leads to:

∂ψp

∂ ζ
=

1

D

�

I
∂ Ãζ
∂ ζ
− g

∂ Ãθ
∂ ζ

�

(F.7)

The the derivation with respect to pθ leads to:

g ′
∂ψp

∂ pθ
(pθ − eψt − eÃθ )
︸ ︷︷ ︸

=eρ‖ I

+ g(1− 0− 0) + g(0− e
∂ψt

∂ψp
︸︷︷︸

=q

∂ψp

∂ pθ
− eÃ′θ

∂ψp

∂ pθ
)

= I ′
∂ψp

∂ pθ
(pζ+ eψp − eÃζ)
︸ ︷︷ ︸

=eρ‖g

− I(0− 0− 0) + I(0+ e
∂ψp

∂ψp
︸︷︷︸

=1

∂ψp

∂ pθ
− eÃ′ζ

∂ψp

∂ pθ
) (F.8)

⇔
∂ψp

∂ pθ
e [ρ‖(g I ′− g ′ I) + I + qg − I Ã′ζ+ gÃ′θ ]
︸ ︷︷ ︸

=D

= g

(F.9)

Resulting in

∂ψp

∂ pθ
=

g

eD
. (F.10)

The the derivation with respect to pζ is performed analogously, giving

∂ψp

∂ pζ
=−

I

eD
. (F.11)
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Summarized, it was found:

∂ψp

∂ θ
=

1

D

�

I
∂ Ãζ
∂ θ
− g

∂ Ãθ
∂ θ

�

, (F.12a)

∂ψp

∂ ζ
=

1

D

�

I
∂ Ãζ
∂ ζ
− g

∂ Ãθ
∂ ζ

�

, (F.12b)

∂ψp

∂ Pθ
=

g

eD
, (F.12c)

∂ψp

∂ Pζ
= −

I

eD
. (F.12d)

F.2 The derivatives of ρ‖

One can start from the expressions for the canonical momenta, eqs. (4.45):

pθ = eρ‖ I + eψt + eÃθ ,

pζ = eρ‖g − eψp + eÃζ,

pξ = µ.

Differentiation of the first with respect to θ gives:

∂ pθ
∂ θ
︸︷︷︸

=0

= e(
∂ ρ‖

∂ θ
I + ρ‖ I

′ ∂ψp

∂ θ
+
∂ψt

∂ψp
︸︷︷︸

=q

∂ψp

∂ θ
︸︷︷︸

use eq. (F.12a)

+
∂ Ãθ
∂ θ

+ Ã′θ
∂ψp

∂ θ
)

−I
∂ pθ
∂ θ
= (q+ρ‖ I

′+ Ã′θ )

�

1

D
I
∂ Ãζ
∂ θ

− g
∂ Ãθ
∂ θ

�

+
∂ Ãθ
∂ θ

−I
∂ pθ
∂ θ
=

1

D

�

(qI +ρ‖ I
′ I + I Ã′θ )

∂ Ãζ
∂ θ

− (qg +ρ‖ I
′g + gÃ′θ − D)

∂ Ãθ
∂ θ

�

. (F.13)

Filling in D leads to

∂ ρ‖

∂ θ
=
−1

D

�

�

1−ρ‖g ′− Ã′ζ
� ∂ Ãθ
∂ θ

+
�

q+ρ‖ I
′+ Ã′θ

� ∂ Ãζ
∂ θ

�

. (F.14)

Differentiating analogously the second momentum, eq. (4.45b) with respect to ζ
gives:

∂ ρ‖

∂ ζ
=
−1

D

�

�

1−ρ‖g ′− Ã′ζ
� ∂ Ãθ
∂ ζ

+
�

q+ρ‖ I
′+ Ã′θ

� ∂ Ãζ
∂ ζ

�

. (F.15)

Differentiating again the first momentum, eq. (4.45a) with respect to pθ reads:

∂ pθ
∂ pθ
︸︷︷︸

=1

= e(
∂ ρ‖

∂ pθ
I + ρ‖ I

′ ∂ψp

∂ pθ
+
∂ψt

∂ψp
︸︷︷︸

=q

∂ψp

∂ pθ
︸︷︷︸

use eq. (F.12c)

+ Ã′θ
∂ψp

∂ pθ
)

eI
∂ ρ‖

∂ pθ
=

1

D
(D−ρ‖ I ′g − gq− Ã′θ g). (F.16)
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Filling in D in the numerator leads to

∂ ρ‖

∂ pθ
=

1

eD

h

1−ρ‖g ′− Ã′ζ
i

. (F.17)

Analogously differentiating the second momentum, eq. (4.45b) with respect to pζ
gives:

∂ ρ‖

∂ pζ
=

1

eD

�

q+ρ‖ I
′+ Ã′θ

�

. (F.18)

Summarized, it was found:

∂ ρ‖

∂ θ
=
−1

D

�

�

1−ρ‖g ′− Ã′ζ
� ∂ Ãθ
∂ θ

+
�

q+ρ‖ I
′+ Ã′θ

� ∂ Ãζ
∂ θ

�

, (F.19a)

∂ ρ‖

∂ ζ
=
−1

D

�

�

1−ρ‖g ′− Ã′ζ
� ∂ Ãθ
∂ ζ

+
�

q+ρ‖ I
′+ Ã′θ

� ∂ Ãζ
∂ ζ

�

, (F.19b)

∂ ρ‖

∂ pθ
=

1

eD

h

1−ρ‖g ′− Ã′ζ
i

, (F.19c)

∂ ρ‖

∂ pζ
=

1

eD

�

q+ρ‖ I
′+ Ã′θ

�

. (F.19d)

F.3 Derivation of the Equations of Motion for the Guiding
Center

Having derived the partial derivatives of ψp and ρ‖ with respect to the canonical vari-
ables x = θ ,ζ, pθ and pζ, it is now possible, to obtain the equations of motion via the
Hamiltonian formalism, as recalled in eq. (4.46), using the chain rule:

∂H
∂ x
=
∂H
∂ψp

∂ψp

∂ x
+
∂H
∂ ρ‖

∂ ρ‖

∂ x
. (F.20)

Beginning with the differentiation of the Hamiltonian, eq. (4.43), with respect to x =
θ , using eq. (F.12a) and eq. (F.19a):

ṗθ =−
h

(ρ2
‖B+µ)B

′+ Φ̃′
i ∂ψp

∂ θ
(F.21)

−ρ‖B2 1

D

�

−
�

1−ρ‖g ′− Ã′ζ
� ∂ Ãθ
∂ θ

−
�

q+ρ‖ I
′+ Ã′θ

� ∂ Ãζ
∂ θ

�

, (F.22)

using the dependency of the fields on θ ,

B′ =
∂ B

∂ψp
=
∂ B

∂ θ

∂ θ

∂ψp
Φ̃′ =

∂ Φ̃
∂ψp

=
∂ Φ̃
∂ θ

∂ θ

∂ψp
, (F.23)

one obtains
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ṗθ =−(ρ2
‖B+µ)

∂ B

∂ θ
−
∂ Φ̃
∂ θ
+ ρ‖B

2 1

D

�

�

1−ρ‖g ′− Ã′ζ
� ∂ Ãθ
∂ θ

+
�

q+ρ‖ I
′+ Ã′θ

� ∂ Ãζ
∂ θ

�

.

(F.24)

The differentiation of the Hamiltonian with respect to x = ζ, using eq. (F.12b) and
eq. (F.19b) is exactly analogous, except for the vanishing of one term due to ∂ B/∂ ζ= 0
(assumption of toroidal symmetry of the magnetic field):

ṗζ =−
∂ Φ̃
∂ ζ
+ ρ‖B

2 1

D

�

�

1−ρ‖g ′− Ã′ζ
� ∂ Ãθ
∂ ζ

+
�

q+ρ‖ I
′+ Ã′θ

� ∂ Ãζ
∂ ζ

�

. (F.25)

DifferentiatingH with respect to pθ , using using eq. (F.12c) and eq. (F.19d), gives:

θ̇ =
1

eD

h

ρ‖B
2 (1−ρ‖g ′− Ã′ζ) + g

�

(ρ2
‖B+µ)B

′+ Φ̃′
�i

,

and analogously with respect to pζ, using eq. (F.12d) and eq. (F.19d):

ζ̇=
1

eD

h

ρ‖B
2 (q+ρ‖ I

′− Ã′θ )− I
�

(ρ2
‖B+µ)B

′+ Φ̃′
�i

.

The equations of motion derived above describe completely the guiding center motion,
however, they do not provide the easiest numerical scheme to implement. This is due
to the fact, that the expressions for the momenta (eqs. (4.45)) have to be inverted to
obtainψp and ρ‖. From the numerical point of view, it is more convenient to evolveψp
and ρ‖ directly from their own equations of motion. These are derived in the following:
ψ̇p is obtained from using the chain rule and substituting eqs. (F.12) into it:

ψ̇p =
∂ψp

∂ θ
θ̇ +

∂ψp

∂ ζ
ζ̇ +

∂ψp

∂ pθ
ṗθ +

∂ψp

∂ pζ
ṗζ

ψ̇p =
1

D

��

I
∂ Ãζ
∂ θ
− g

Ãθ
∂ θ

�

θ̇ +

�

I
∂ Ãζ
∂ ζ
− g

Ãθ
∂ ζ

�

ζ̇ +
g

e
ṗθ −

I

e
ṗζ

�

.

As ψ̇p is known now, one obtains ρ̇‖ easily from either of the expressions for the mo-
menta, eq. (4.45a or b), by differentiating it with respect to time:

ṗθ = eρ̇‖ I + eρ‖ I
′ψ̇p+ e

∂ψt

∂ψp
︸︷︷︸

=q

ψ̇p+ e ˙̃Aθ + e
∂ Ãθ
∂ψp

ψ̇p+ e
∂ Ãθ
∂ θ

θ̇ + e
∂ Ãθ
∂ ζ

ζ̇

ρ̇‖ =
1

I

�

ṗθ − e
∂ Ãθ
∂ θ

θ̇ − e
∂ Ãθ
∂ ζ

ζ̇− e ˙̃Aθ − e(q+ Ã′θ +ρ‖ I
′)ψ̇p

�

.
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APPENDIX G

Expansion of the Potential
in Powers of the Slowly Varying Amplitude and Frequency Shift

Via

χk = Ak(t) χ̂k e−iωk t−iσk(t) (G.1)

(see sec. 4.4.1) the slowly varying complex amplitude term A is made explicit, as well
as the small frequency shift σ. It is therefore possible, to set up an ordering for χ
in powers of the small fractions Ȧk/(ωkAk) and σk/ωk. χk is of 0th order, its first
temporal derivative yields

∂ χk

∂ t
= Ȧk χ̂k e−iωk t−iσk(t)− Ak χ̂k i(ωk + σ̇k) e−iωk t−iσk(t)

∂ χk

∂ t
=











Ȧk

ωkAk
︸ ︷︷ ︸

1st order

−i ( 1
︸︷︷︸

0th

+
σ̇k

ωk
︸︷︷︸

1st order

)











ωkχ(t). (G.2)

Its quadrature:
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�
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2
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Ȧk
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− i (1+
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=


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k |χk|2
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0th order
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︸ ︷︷ ︸

1st order

+

 

�

Ȧk
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!
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2nd order

. (G.3)

The quadrature of the perpendicular gradient of its temporal derivative:

�

�
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Ȧk

ωkAk
− i (1+

σ̇k

ωk
)

�2

ω2
k|∇⊥χ|

2(t)

=ω2
k |∇⊥χk|2
︸ ︷︷ ︸

0th order

+2
σ̇k

ωk
ω2

k |∇⊥χk|2

︸ ︷︷ ︸

1st order
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︸ ︷︷ ︸

2nd order

.

(G.4)
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Symbols & Abbreviations, Index

∆R orbit shift, 24
Σ t-integrated parallel el. field, 60, 175
Φ electric potential, scalar potential, 18,

33, 52, 59
Ψp poloidal magnetic flux, 15, 47, 48, 156
Ψt toroidal magnetic flux, 15, 47, 48, 50,

155, 164
Ω gyrofrequency, Larmor freq., 18, 53
α̃ pert. vector potential (scaling), 56
β plasma beta, 30
δ radial co-variant B-component, 50
ε inverse (local) aspect ratio, 25, 33
ε smallness parameter, 30
ε0 dielectric constant (vacuum), 27
ζ toroidal angle (Boozer coords.), 33, 47–

49, 159
γ adiabatic coefficient, 27
γ damping/growth rate, 41, 59
θ poloidal angle (Boozer coords.), 33, 47,

48, 159
ϑ poloidal angle (cyl.coords.), 15
λ pitch, 21, 100
λo pitch angle, 21
µ magnetic moment, 19, 53
µ0 magnetic permeability (vac.), 27
ξ displacement vector, 28, 29
ρ gyroradius, Larmor radius, 9, 18, 53
ρ mass density, 27
ρc, 57
ρel electric charge density, 27
ρ‖ parallel gyroradius, 54, 169
σ frequency shift, 60, 175
τE confinement time, 8
ϕ toroidal angle (cyl.coords.), 15
χ t-integrated el. potential, 60, 175
χ̂ spatial eigenfunction of wave, 60
ψ flux label (Boozer coords.), 17, 47, 159,

169
ψp poloidal flux label, 54, 169
ψt toroidal flux label, 54, 169
ω frequency (of wave), 59

ξ gyroangle, gyrophase, 19, 53
ωb bounce frequency, 23, 43
ωtp toroidal precession frequency, 23, 43
A Amplitude of wave, 60, 175
A aspect ratio, 15
A vector potential, 58, 164
B magnetic field, 9, 27, 59
Bb bounce point mag. field, 21
Bp poloidal magnetic field, 49
Bt toroidal magnetic field, 49
C real wave el.potential, 61
D certain denominator, 55, 57
D real wave parallel el.field, 64
E electric field, 27, 58
E0 birth energy, 74
Ec cross-over energy, 74
F imaginary wave parallel el.field, 64
F force, 20
Fm magnetic mirror force, 21
F(ξ) force operator, 28
H Hamiltonian, 54
I poloidal co-variant B-component, 50, 163
Ip poloidal current, 163
It toroidal current, 10, 163
J Jacobian, 47, 49, 100
L Lagrangian, 18, 52
P coefficient, 34
Q coefficient, 34
R radius (local major, cyl.coords.), 15
Rmag major plasma radius, 15
S imaginary wave el.potential, 61
T temperature, 8
V real wave E‖ evolution, 65
V volume, 20, 62
W imaginary wave E‖ evolution, 65
Wb banana width, 25
Wm mode width, 42
X real wave potential evolution, 60
Y imaginary wave potential evolution, 60
a minor plasma radius, 15
b̂ magnetic unit vector, 54, 59, 166
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c speed of light, 62
e (index) electron, 10
e electric charge unit, 58
g toroidal co-variant B-component, 50, 163
i (index) ion, 10
j electric current density, 16, 27
j particle index, 58
k wave vector, 59
k (index) wave number, 59
kB Boltzmann constant, 8
k‖ parallel wave vector, 33, 157
m mass, 10, 58, 62
m poloidal harmonic, 33
n particle density, 27, 62
n toroidal harmonic, 33
p bounce harmonic, 43
p pressure, 17, 27
q electric charge, 9
q safety factor, 15, 23, 50, 164
r radius (local minor, torus coords.), 16
s (index) species, 62
s radial coordinate=sqrt.(norm.pol.flux), 69
ŝ shear, 16
t time, 28
v velocity, 9
vA Alfvén velocity, 29, 62
vS adiabatic sound velocity, 29
vd drift velocity, 19
vs ion sound speed, 10
w, 55
z torus axis (cyl.coords.), 15
0 (index) equilibrium quantity, 58
∼ (tilde) perturbed quant. (1st order), 58
‖ (index) parallel component (to B0), 58
⊥(index) perpendicular comp.(to B0), 58

AC “Alfvén cascade”, 38
AE “Alfvén Eigenmodes”, 35
AlCaTor (C) “Alto Campo Torus”, 149
ASDEX “Axialsymm.Divertorexp.”, 149
AUG “ASDEX Upgrade”, 16
BAE “Beta-induced AE”, 38
CASTOR “Castor code”, 57
DIII-D “DIII-D TOKAMAK”, 149
ECRH “electron cyclotron reson.heating”, 12
EPM “Energetic Particle Modes”, 134

FILD “Fast Ion Loss Detector”, 14
FLR “finite Larmor radius”, 35, 39
GAM geodesic acoustic mode, 39
HAGIS “Hamiltonian guiding center system”,

46, 57
HELENA “Helena code”, 46
HFS “high field side”, 15
ICRH “ion cyclotron resonance heating”, 12,

100
ITER “Internat.thermonuclear test reactor”,

8, 149
JET “Joint European Torus”, 8, 149
JT-60 “Japan Torus”, 149
KAW “Kinetic Alfvén Waves”, 35
KAW “kinetic Alfvén waves”, 40
LCFS “last closed flux surface”, 15
LFS “low field side”, 15
LHD “Large Helical Device”, 149
LIGKA “Lin.gyrokin.shear Alfvén physics”,

57
MHD “magnetohydrodynamics”, 27
NBI “Neutral Beam Injection”, 12
NSTX “National Spherical Torus Experiment”,

149
PIC “particle-in-cell”, 100
RF “Radiofrequency heating”, 12
RSAE “Reversed Shear-AE”, 38
RWSHOT “RWshot code”, 46
TAE “Toroidicity-induced AE”, 35
TFTR “Tokamak Fusion Test Reactor”, 149
TOKAMAK “toroidal chamber w/mag.field”,

10
TORIC-SSFPQL “toric-ssfpql code”, 104
W7-AS “Wendelstein7-AS”, 149
W7-X “Wendelstein7-X”, 149

adiabatic coefficient γ, 27
adiabatic invariant, 19
adiabatic sound velocity vS, 29
advanced TOKAMAK, 11
Alfvén cascade (AC), 38
Alfvén Eigenmodes (AE), 35
Alfvén velocity vA, 29, 62
α particle, 7, 12
α particle ash, 8
Alto Campo Torus (AlCaTor (C)), 149
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Ampère’s law, 27
Amplitude of wave A, 60, 175
ASDEX Upgrade (AUG), 16
aspect ratio A, 15
avalanche-like, 134
Axialsymm.Divertorexp. (ASDEX), 149

background plasma Temperature, 74
ballooning effect, 37
banana orbit, 22, 25
banana width Wb, 25
Beta-induced AE (BAE), 38
Bethe-Weizsäcker formula, 4
binding energy, 3
birth energy E0, 74
blanket, 7
Boltzmann constant kB, 8
Boozer coordinates, 49
bounce frequency ωb, 23, 43
bounce harmonic p, 43
bounce movement, 24
bounce point, 21
bounce point mag. field Bb, 21
breakeven, 7
bremsstrahlung, 7
bulk plasma, 28, 58, 62

Castor code (CASTOR), 57
Clebsch form, 48
climate change, 1
co-passing, 22
coherent losses, 93, 128
conductive fluid, 27
confined region, 44
confinement time τE, 8
continuity equation, 27
continuum damping, 35
Coulomb barrier, 3
counter-passing, 22
cross section, 5, 8
cross-over energy Ec, 74
current drive, 10, 11
curvature drift, 20, 167
cylindrical coordinates, 16
cylindrical limit, 34, 157

damping, 39

damping/growth rate γ, 41, 59
Debye-shielding, 9
delta-f method, 100
deuterium D, 2H, 5
deuterium-tritium (D-T) fusion, 5
diamagnetic drift, 20
diamagnetic drift frequency, 41
dielectric constant (vacuum) ε0, 27
diffusive losses, 93
DIII-D TOKAMAK (DIII-D), 149
displacement vector ξ, 28, 29
dissipation channels, 137
divergence-free, 27, 47, 49, 159
domino effect, 133
double-resonance, 69
drift, 19, 20, 167
drift surfaces, 22
drift velocity, 20, 167
drift velocity vd, 19
driftkinetic formulation, 17
driftkinetic theory, 53

E-cross-B drift, 20, 167
electric charge q, 9
electric charge density ρel, 27
electric charge unit e, 58
electric current density j , 16, 27
electric field E, 27, 58
electric potential, scalar potential Φ, 18,

33, 52, 59
electrical resistivity, 12
electricity generation, 1
electromagnetic radiation losses, 7
electron e (index), 10
electron cyclotron reson.heating (ECRH), 12
electron Landau damping, 40
elongation, 17
Energetic Particle Modes (EPM), 134
energetic particles, 40
equations of motion

in guiding center coords., 166
in Boozer coords., 55

equilibrium quantity 0 (index), 58

Faraday’s induction law, 27
Fast Ion Loss Detector (FILD), 14
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fast magnetosonic wave, 30
fast particles, 40
Fermi-like potential law, 105
finite Larmor radius (FLR), 35, 39
finite-β (beta) effect, 38
fission, 3
fission energy, 2
flux coordinates, 47
flux function, 17, 47
flux label (Boozer coords.) ψ, 17, 47, 159,

169
flux surface, 17
force F , 20
force operator F(ξ), 28
fossil fuels, 1
frequency

chirping, 68
sweeping, 38

frequency (of wave) ω, 59
frequency shift σ, 60, 175
fusion, 4
fusion reactions, 5

gas equation, 27
geodesic acoustic mode GAM, 39
global warming gases, 1
grad-B drift, 20, 167
Grad-Shafranov equation, 17, 57
gradient driven double-resonance, 70
gravitational confinement, 5
greenhouse gas, 1
growth/damping rate γ, 41, 59
guiding center, 17

ansatz, 17, 51
approximation, see ansatz
motion, 17

gyration, 17
gyro-averaging, 53, 165
gyroangle, gyrophase ξ, 19, 53
gyrofrequency, Larmor freq. Ω, 18, 53
gyroradius, Larmor radius ρ, 9, 18, 53

HamiltonianH , 54
Hamiltonian guiding center system (HAGIS),

46, 57
Helena code (HELENA), 46

helical trajectories, 9
helicity, 16
Helium He, 4, 6
high field side (HFS), 15
hybrid model, 40, 45

ideal MHD, 27
ignition, 7, 12
incoherent losses, 93, 128
inter-mode energy transfer, 70
Internat.thermonuclear test reactor (ITER),

8, 149
inverse (local) aspect ratio ε, 25, 33
inverted q profile, 16
ion i (index), 10
ion cyclotron resonance heating (ICRH), 12,

100
ion Landau damping, 40
ion sound speed vs, 10
ion sound wave, 31
isobaric surfaces, 17

Jacobian J, 47, 49, 100
Japan Torus (JT-60), 149
Joint European Torus (JET), 8, 149

Kinetic Alfvén Waves (KAW), 35
kinetic Alfvén waves (KAW), 40

Lagrangian L , 18, 52
Landau damping, 67
Large Helical Device (LHD), 149
large-aspect ratio, 15, 33
Larmor frequency, see gyrofrequency
Larmor radius, see gyroradius
last closed flux surface (LCFS), 15
Lawson Criterion, 8
Lin.gyrokin.shear Alfvén physics (LIGKA),

57
linear

growth rate, 80
regime, 80
regime,phase, 81

linearization, 28
lithium Li, 5
Lorentz force, 9
loss area, see loss region
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loss boundary, 44
loss region, 44
losses

coherent, 93, 135, 139
diffusive, 93, 135
incoherent, 93, 135, 139
non-prompt, 107
prompt, 93, 135
resonant, 93, 135

low field side (LFS), 15
low-β (beta) limit, 30–33, 56

magnetic axis, 15
magnetic confinement, 7, 9
magnetic field

Boozer co-variant form, 50
Boozer contra-variant form, 51
in cylindrical limit, 50

magnetic field B, 9, 27, 59
magnetic flux coordinates, 47
magnetic mirror force Fm, 21
magnetic moment µ, 19, 53
magnetic monopole, 27
magnetic permeability (vac.) µ0, 27
magnetic surface, 17
magnetic unit vector b̂, 54, 59, 166
magnetohydrodynamics (MHD), 27
major plasma radius Rmag, 15
marginal stability, 45, 68
marker, 101

loading, 101
weighting, 101

mass m, 10, 58, 62
mass density ρ, 27
MHD equations, 27
MHD waves, 28
minor plasma radius a, 15
minority heating, 12, 100
Mirnov coils, 98
mirror force, 52
mode conversion, 35
mode overlap, 70
mode width Wm, 42
momentum conservation, 27
monotonic q profile, 16
multi-fluid, 27

National Spherical Torus Experiment (NSTX),
149

Neutral Beam Injection (NBI), 12
neutrinos, 4
neutron, 4
non-inductive current drive, 11
nonlinear

regime, 81
saturation, 81
stabilization, 82

nonlinearity, 28, 45, 68
nuclear binding energy, 3

ohmic heating, 12
orbit shift ∆R, 24
outboard midplane, 15, 21

parallel component (to B0) ‖ (index), 58
parallel gyroradius ρ‖, 54, 169
parallel wave vector k‖, 33, 157
particle density n, 27, 62
particle index j, 58
particle Lagrangian, 18, 52
particle-in-cell (PIC), 100
passing particles, 21, 22
perpendicular comp.(to B0) ⊥(index), 58
pert. vector potential (scaling) α̃, 56
perturbed quant. (1st order) ∼ (tilde), 58
phase mixing, 32
pitch λ, 21, 100
pitch angle λo, 21
plasma beta β , 30
plateau formation, 42
poloidal angle (Boozer coords.) θ , 33, 47,

48, 159
poloidal angle (cyl.coords.) ϑ, 15
poloidal co-variant B-component I , 50, 163
poloidal coupling, 33
poloidal current Ip, 163
poloidal field coils, 10
poloidal flux label ψp, 54, 169
poloidal harmonic m, 33
poloidal magnetic field Bp, 49
poloidal magnetic flux Ψp, 15, 47, 48, 156
pp-chain, 4
pressure p, 17, 27
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prompt losses, 93, 107
proton, 3

quantum tunneling, 4
quasi-neutrality, 9

radial co-variant B-component δ, 50
radial coordinate=sqrt.(norm.pol.flux) s, 69
radiative damping, 40
Radiofrequency heating (RF), 12
radiotoxicity, 7
radius (local major, cyl.coords.) R, 15
radius (local minor, torus coords.) r, 16
rapped electron collisional damping, 40
rational surface, 17
redistribution, 42
renewables, 2
resonance condition, 43
resonance lines, 44
resonance plot, 44
resonant

losses, 93
phase, 78
regime, 78

Reversed Shear-AE (RSAE), 38
RF heating, 12
RWshot code (RWSHOT), 46

safety factor q, 15, 23, 50, 164
saturation, 73

amplitude,level, 76, 78, 91
phase, 75

scalar potential, see electric potential
scenario1.16, 122
scenario1.51, 122
separatrix, 15
shear ŝ, 16
Shear-Alfvén continuum, 34
Shear-Alfvén gap, 33, 35
Shear-Alfvén wave

in a cylindrical plasma, 34
in a homogeneous plasma, 29
in a reversed shear tor. plasma, 38
in a toroidal plasma, 32

shell model, 4
single-fluid, 27
slow magnetosonic wave, 30

slowing-down
function, 105
time, 68, 137

slowing-down function, 74
smallness parameter ε, 30
source term, 68, 137
spatial eigenfunction of wave χ̂, 60
species s (index), 62
speed of light c, 62
steady-state, 11
stellar fusion reactions, 5
Stellarator, 10
stochastic

phase, 78
regime, 78, 79

stochasticity threshold, 78, 81
stochastization, 79
straight field line coordinates, 33, 48
stream function, 48
strongly nonlinear regime, 134
sun, 4

t-integrated el. potential χ, 60, 175
t-integrated parallel el. field Σ, 60, 175
temperature T , 8
terrestrial fusion, 4
time t, 28
TOKAMAK, 10
Tokamak Fusion Test Reactor (TFTR), 149
Tore Supra, 149
toric-ssfpql code (TORIC-SSFPQL), 104
toroidal angle (Boozer coords.) ζ, 33, 47–

49, 159
toroidal angle (cyl.coords.) ϕ, 15
toroidal chamber w/mag.field (TOKAMAK),

10
toroidal co-variant B-component g, 50, 163
toroidal current It, 10, 163
toroidal field coils, 10
toroidal flux label ψt, 54, 169
toroidal harmonic n, 33
toroidal magnetic field Bt, 49
toroidal magnetic flux Ψt, 15, 47, 48, 50,

155, 164
toroidal mode number, 90
toroidal momentum, 42
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toroidal precession, 23
toroidal precession frequency ωtp, 23, 43
toroidal symmetry, 17, 49
toroidal/torus coordinates, 16
Toroidicity-induced AE (TAE), 35
torus axis (cyl.coords.) z, 15
transformer, 10
trapped particles, 21
triangularity, 17
triple product, 8
tritium T, 3H, 5
tunneling, 40

uranium, 2, 6

vacuum extension, 99
vacuum region, 99
vacuum vessel, 7
vector potential A, 58, 164
velocity v , 9
volume V , 20, 62

waste, 2, 6
wave equations, 65
wave evolution, 58
wave Lagrangian, 62
wave number k (index), 59
wave vector k, 59
weak interaction, 4
weakly nonlinear regime, 134
Wendelstein7-AS (W7-AS), 149
Wendelstein7-X (W7-X), 149
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