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Abstract

Robotic surgery has pioneered minimally invasive interventions with respect to the
recovery of dexterity and visiomotor control. In addition to the technical progress
made in telemanipulation technology, the accomplishment of partially autonomous
performed sequences shows promising results in supporting surgeons during delicate
and time-consuming tasks. However, the established workflow of preoperative plan-
ning, registration, and ensuing task execution suffers from the inherent calibration in-
accuracies of surgical robots. Currently, planned tasks are merely replayed, since an
adaption of the mapping between the execution plan, the patient, and the manipu-
lators is difficult due to calibration uncertainties. In the scope of this thesis we aim
to transit toward a more flexible approach by acquiring task-relevant information in
situ at the time of execution. In this, in situ knowledge acquisition plays the major role
to perceive the environment, in which visual information is the driving force. To fur-
ther strengthen autonomy, interactive system control supports the surgeon during task
execution.

A key concept of in situ knowledge acquisition is to enhance the limited view of the con-
ventional laparoscope with a task-specific view that provides sensor data optimized for
the relevant perspective. Therefore, an instrument-mounted camera is introduced: a
surgical instrument is augmented with a miniaturized stereo endoscope to recover the
relationship between tool and tissue. Since camera and instrument share a common co-
ordinate frame, most calibration uncertainties of the system can be avoided and tasks
can be executed with machine precision. A newly developed micro projector enhances
the prevalent homogeneous texture of tissue by projecting a pattern onto the surface.
The mask is encoded with a globally unambiguous Hamming pattern, thus enabling a
combination of stereo matching and structured light. Further, we present an approach
for markerless surgical instrument detection and tracking. The method fuses image-
based tracking with additional sensor input and is independent from the instrument’s
appearance.

By interactive system control, we propose a novel approach for human machine inter-
action with the aim to quickly and intuitively access system commands. To this end,
the user is given the possibility to start robotic assistance by triggering the relevant
functionality by gesture-based commands, performed with haptic devices at the mas-
ter console. Given the acquired situs knowledge, image-based control laws are derived
that allow an autonomous alignment with the target region. The task of tissue dissec-
tion was chosen to explain the procedure. We further introduce methods to assist the
surgeon during the cutting process by providing haptic guidance during this fine ma-
nipulation task. The necessary precision in motion planning and feedback generation
becomes possible with the hand-mounted micro endoscopes.

A realistic setup for minimally invasive robotic surgery has continuously be en-
hanced and served as platform for the experiments conducted.





Zusammenfassung

Der Einsatz von Robotern in der Chirurgie hat minimal-invasive Eingriffe hinsichtlich
der Handhabung von Instrumenten und der Hand-Auge-Koordination erheblich ver-
einfacht. Neben dem technischen Fortschritt auf dem Gebiet der Telemanipulatoren
lässt die Durchführung von (teil-) autonomen Sequenzen auf eine Unterstützung der
Chirurgen bei komplexen und zeitaufwändigen Aufgaben hoffen. Der derzeit etablierte
Arbeitsablauf von präoperativer Planung, Registrierung, und anschließender Durch-
führung der Aufgabe leidet jedoch unter inhärenten Kalibrierungsungenauigkeiten
des Robotersystems. Geplante Aufgaben werden derzeit lediglich wiedergegeben,
da eine Anpassung des Aufsführungsplans bezüglich des Patienten und der Roboter
aufgrund von Kalibrierungsproblemen schwierig ist. Im Rahmen dieser Dissertation
wird ein flexibler Ansatz angestrebt, welcher aufgabenrelevante Informationen inner-
halb des Operationsgebietes während der Durchührung erfasst. Hierbei spielt der Er-
werb von Szenenwissen eine bedeutende Rolle, mit dem Hauptaugenmerk auf visuell
erfassbaren Informationen. Um den Gedanken eines autonomen Verhaltens weiter zu
stärken, wird der Chirurg mittels interaktiver Systemsteuerung unterstützt.

Ein wesentliches Konzept des Erwerbs von Szenenwissen ist es, das eingeschränkte
Sichtfeld des herkömmlichen Laparoskops durch eine aufgabenspezifische Perspek-
tive zu ergänzen. Hierzu wird eine Mikro-Kamera, welche an einer Instrumtenspitze
befestigt wird vorgestellt: ein chirurgisches Instrument wird mit einem miniaturisierten
Stereo-Endoskops ausgestattet, welches das Verhältnis zwischen Instrument und Ge-
webe erfasst. Da sich Kamera und Instrument auf das gleiche Koordinatensystem
beziehen, können viele der systembedingten Kalibrierungsprobleme vermieden wer-
den. Ein neuartiger Mikroprojektor verbessert das weitgehend homogene Erschei-
nungsbild des Gewebes durch Projektion eines Musters. Positionen innerhalb des
Musters sind durch einen global eindeutigen Hamming-Code identifizierbar, welcher
eine Kombination von Korrespondenzsuche und “structured light” zur Stereorekon-
struktion ermöglicht. Des Weiteren wird ein Ansatz zur markerlosen Erkennung und
Verfolgung von chirurgischen Instrumenten vorgestellt. Die Methode kombiniert ein
bildbasiertes Verfahren mit zusätzlichen Informationen von Sensoren, wobei das Er-
scheinungsbild des Instrumentes irrelevant ist.

Mittels einer interaktiven Systemsteuerung wird ein neuartiger Ansatz in der Mensch-
Maschine-Kommunikation vorgestellt, welcher das Ziel hat, Systembefehle schnell und
intuitiv auszulösen. Hierfür wird dem Benutzer die Möglichkeit gegeben Assistenz-
funktionen durch Gesten, welche an den haptischen Eingabegeräten der Masterkonsole
ausgeführt werden, zu starten. Anhand des gewonnenen Szenenwissens werden ver-
schiedene visuelle Regler vorgestellt, welche den Arzt während der Ausführung von
Aufgaben unterstützen. Der Ansatz wird anhand des chirurgischen Schneidens exem-
plarisch umgesetzt. Durch haptische Rückkopplung wird der Chirurg während des
Schnittes geführt. Die für die Bewegungsplanung und Feedbackgenerierung erforder-
liche Genauigkeit wird durch die am Instrument befestigten Mikro-Endoskope ermö-
glicht.



Ein realistisches Robotersystem für minimal-invasive Chirurgie wurde fortlaufend
verbessert und diente als Platform für die durchgeführten Experimente.
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1 Introduction to Medical Robotics

This thesis is conducted in the interdisciplinary field of minimally invasive robotic surgery. We
present a novel approach, termed online surgery, which dynamically generates the necessary
execution plan at the time of task execution. The approach goes beyond traditional surgery,
where static “offline”-planned tasks are merely replayed without adequate adaption to the dy-
namic environment. At this end, we augment surgical instruments with stereoscopic micro
endoscopes that provide images always from the task-relevant perspective. Therewith, we aim
to overcome current restrictions of the offline paradigm, particularly evident during assisted
and autonomous control. Situs knowledge acquisition, specifically depth perception and instru-
ment localization, plays a major role in online surgery. The knowledge gained is employed for
interactive system control, which comprises the two aspects of corrective motion planning and
intuitive system control.

1.1 From Offline toward Online Surgery

In the last two decades, medical robotics has undergone an astonishing development
from basic research and feasibility studies to commercial products that found their
place in the daily routine work of physicians. Besides the development of new hard-
ware, research has branched out to a variety of areas. New aspects of micro-scale ma-
nipulation, innovative instrument concepts, and rehabilitation robotics have emerged.
The entire scope of the area is reflected in the survey “Special Issue on Medical Robotics”
[48, 49]. Taylor and Stoianovici provide a broad overview of about 35 different computer-
integrated systems [192]. In [90, 56, 70] the reader is sent to a three-part journey with
emphasis on the technological challenges and system design considerations of today’s
surgery systems.

The application of robotic surgery can roughly be classified into “image-guided” pro-
cedures and those aimed to obtain minimal “invasiveness” [47], while the bound-
aries are becoming increasingly blurred. Image-guided procedures pioneered robotic
surgery. The alignment of diagnostic data with the patient’s anatomy in combination
with machine precision enabled a planned and targeted treatment of previously iden-
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tified structures with a new level of accuracy. In its original definition, image-guided
procedures rely on static execution plans which are executed by the robot. The plans
are created offline, based on preoperative diagnostic imaging, such as computer tomog-
raphy or magnet resonance tomography. The acquired knowledge about the patient’s
anatomy is then used to generate robot-executable trajectories. In the operating the-
ater, the plan is merely replayed, without giving the surgeon the possibility to actively
intervene in the execution. With the transition to minimally invasive robotic surgery
(MIRS), the reply of offline created plans is difficult, since the robot trajectories need
to be adjusted to a dynamic environment. We take up this challenge and propose
online surgery. This approach aims to adjust robot motions necessary for an (partial)
autonomous task execution dynamically, based on information perceived directly at
the surgical site in parallel to the actual task execution. Before we explain the concept
of online surgery more detailed, we consider the drawbacks of offline surgery.

Image-guided surgery, which relies on offline generated plans, can predominantly be
found in surgical domains that allow for a reliable registration between preoperative
data and the patient. Rigid structures are suitable by nature, but also whole-body pa-
tient tracking during radiotherapy is in everyday clinical practice [177]. A prominent
representative is the Robodoc™ assistant for orthopedic interventions [191]. The lack
of ability to perceive detailed information about the currently processed tissue and to
adapt the generated plan accordingly has already led to complications with this sys-
tem. Because Robodoc™ could not differentiate bone from soft tissue, nerves were
harmed occasionally during drilling.

The currently established workflow of offline surgery is divided into sequentially per-
formed steps. The steps specify a loop of “preoperative planning → intraoperative
registration → and plan execution”.offline workflow According to Yaniv et al., six key enabling tech-
nologies play an important role [214]. The identified driving devices and visualization
technologies are preoperative imaging, segmentation, registration, tracking, data visualiza-
tion, and human-machine interaction (HMI). While we do not dwell on medical imaging,
we would like to briefly introduce the essential technological aspects to clarify the es-
tablished workflow.

• Image segmentation is inherently coupled with the planning phase of image-guided
procedures. The acquired image data is partitioned into non-overlapping con-
nected regions. Identified regions can then be matched to distinct anatomical
structures to quantify the dimensions of structures and to define instrument tra-
jectories.

• Registration helps to combine the gained knowledge by aligning multiple corre-
sponding structures into a single reference frame, such that spatial correspon-
dences between all frames coincide. Regarding robotic surgery, registration links
the execution plan to both the patient’s anatomy and the manipulators. This step
decisively determines the achievable accuracy and is currently the limiting factor.
This is especially true for minimally invasive interventions, where image-based
registration methods, which search for natural landmarks or fiducial markers,
are the only applicable tracking technique.
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Figure 1.1: Concept of camera-augmented instrument, illustrated on the basis of an EndoWrist
SnapFit™ scalpel and NanEye™ micro cameras.

• Human-machine interaction deals with the question of how functionalities offered
by the surgical system can be operated by, or in cooperation with, the surgeon.
Early systems relied on traditional computer interfaces such as mice, keyboards,
and foot pedals. More recently, researchers investigate methods such as voice
activated control, gesture-based input, and gaze contingent control to intuitively
trigger commands.

This definition of Yaniv is strongly influenced by the application of augmented reality,
which aims to enhance the limited field of view with the consistent presentation of vir-
tual patient data. Here, the visualization of poses of tracked instruments, indication of
target areas such as tumorous regions or lesions, facilitate surgeons in completing their
spatial ability of the presented anatomical structure. However, the definition applies
in the same way to robotic surgery.

In summary, the traditional workflow of image-guided medical procedures is currently
driven by the strong separation of data acquisition and an ensuing task execution. The
offline planning phase of an intervention has the objective of creating robot-executable
trajectories, based on preoperative imaging. To date, a mapping of the different in-
formation sources into a uniform representation is necessary to transfer the generated
plan to the operating theater. Various registration routines between the patient, the
manipulators, and the generated model, play a crucial role to accurately superimpose
the relevant data on anatomy. The uncertainties inherent in minimally invasive inter-
ventions pose, however, strong limitations on this approach. The non-rigid anatomy
associated e.g. with thoracic and abdominal surgery makes it difficult to apply static
plans. Because direct visual feedback is replaced by indirect laparoscopic feedback,
registration can only be performed by means of the camera.

Motivated by these challenges, we aim to achieve a transition from the current offline
surgery toward the dynamic approach of online surgery. It drives our methodology
of assisting surgeons in that context and environment information necessary for plan-
ning are acquired in situ, thus online at the time of task execution. online surgeryHence, we do not
only replay preplanned trajectories, but are able to provide up-to-date situs knowledge
in order to reliably implement task assistance. In doing so, adaptive in situ knowl-
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edge acquisition and interactive system control constitute the approach. Adaptive
knowledge acquisition aims to model exactly the situs part of interest for task plan-
ning, i.e. by depth perception and tool tracking. For this purpose, we introduce a
camera-augmented instrument that is equipped with a miniaturized stereo endoscope,
as illustrated in Fig. 1.1. The resulting perspective provides sensor data always from
the relevant (task-specific) position. Since the sensor is aligned with the instrument
coordinate frame, the mentioned error-prone registration steps can largely be avoided.
Based on these precise measurements, we derive control laws that allow correcting
fine-scaled instrument movements and guidance of the operator. Being a part of inter-
active system control, this kind of instrument control aims to reduce the mental work-
load of surgeons and assists in managing complexity of interventions through contex-
tual systems. Beyond, system control focuses on providing intuitive input channels to
invoke system commands.

To gain a better understanding of the challenges and constraints associated with the
application domain we focus on, let us first illustrate the general concept of minimally
invasive surgery. A more technical perspective of telesurgery can be found in Sec.
5.1. Afterwards, we continue to address the methods of adaptive situs modeling and
interactive system control in greater detail.

1.1.1 What is Laparoscopy?

The technique of minimally invasive surgery pioneered its way into various surgical
disciplines at the beginning of the 1980s. MIS differs to conventional surgery in us-
ing long instruments through small incisions inserted into the patient. These so-called
“key holes” or “trocars” are approximately 1cm in length. Three instruments with
trigger-like handles are typically used: two surgical tools (one for each hand) and the
laparoscope, a camera that is usually guided by an assistant. Patients benefit, in ad-
dition to cosmetic advantages such as less trauma and scarring, from reduced pain,
shorter hospitalization, and shorter rehabilitation [125]. These facts are obviously a
potential for hospitals to reduce costs. The patients benefit came, however, at the ex-
pense of surgeons.

Many drawbacks of the approach can be attributed to the loss of spatial perception and
require much effort and training to be controlled:drawbacks the tip of the instruments can not be
oriented arbitrarily, restricting the movements to four degrees of freedom (DoF) inside
a conical workspace. With the loss of the “wrist” at the distal end, surgeons had to
cope with reduced dexterity, which is particularly evident during complex movements
as they are typical for delicate tool-tissue interaction. Visual and motor spaces are not
consistent anymore, resulting in cumbersome hand-eye coordination [36]. The trocar
causes a leverage effect at the fulcrum point, reversing the surgeon’s motion and lead-
ing to an unequal acceleration of instrument tip and handle, which is dependent on the
insertion depth of the tool, cf. Fig. 1.2. Friction disturbs the perception of forces and the
palpation of vasculature is impossible due to the lack of tactile feedback. Surgeons are
faced with reduced depth perception due to a two-dimensional endoscopic view. Since
the patient’s anatomy can not be observed directly anymore, the reduced sight yields
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severe orientation conditions. The quest for decreasing the size of surgical openings
led to the advanced concepts of single port and natural orifice transluminal endoscopy
surgery (NOTES) [40]. While single port surgery is carried out through one abdominal
incision, NOTES uses esophagus, stomach or vagina to access the abdominal cavity.
Needless to say that instrument control therewith gets even more challenging.

To ease operation, the introduction of master-slave technology strikes to recover man-
ual dexterity and visio-motor control. Instead of directly manipulating the surgical
instruments, the surgeon sits at a master console and directs the movements of a re-
mote telemanipulator [1]. Two haptic input devices, one for each hand, allow for an
intuitive operation of two surgical instruments. Mechanical wrists at the distal end
of the surgical instrument recover mobility in six degrees of freedom and assist the
surgeon with motion scaling for reduced gross hand movements and suppression of
human tremor. The master console, also called medical workstation, typically has the
capability to display 3D images of the situs, provided by stereoscopic optics at the
slave.

Figure 1.2: Instrument movements in MIRS with remote center of motion.

In order to enhance safety, accuracy, and task completion time, researchers investigate
in autonomous control [127]. autonomyThe level of autonomy is governed by the degree of user
interaction. While in manually performed telesurgery the surgeon compensates for
any tissue movement by visually closing the servo-control loop, selectively automated
(sub-) tasks allow an active intervention of the system in this control loop, moving
the surgeon up in the “hierarchy of controllers”. For instance, fully automated actions
are performed solely by the robot, interpreting higher-level directives and assigning
the surgeon a supervisory role. In doing so, the control-loop is closed locally at the
slave by substituting sensory information and perceiving the environment. In shared
control the surgeon and the robot achieve task completion in working cooperatively.
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The system aids the surgeon while he remains in full control at all times. The control
loop is closed at the master-side, incorporating sensory information of the slave in
combination with human input commands. Online surgery focuses heavily on the
latter type.

1.1.2 The Challenge of Autonomy

Autonomous control is difficult to implement for the predominantly present soft tissue
of MIRS. The limited view and the dynamic environment impede access to relevant in-
formation that models the relation between the surgical instrument and the situs. In
the sequel, we consider different autonomy modes to elucidate the issues of acquiring
task-relevant knowledge in situ and using the information gained to deduce system
control laws.

As aforementioned, full autonomy enables a robot to perform a certain task indepen-
dently, e.g. tying a knot, assuming access to sufficient background knowledge about
the task to be performed, the operator’s intentions, and the environment. In this case,
the system would respond to all kind of incidents during the execution.

Partial autonomy requires a more refined differentiation, with a distinct and univer-
sally acceptable description seems to be difficult. The most generic definition is the
joint execution of a task by man and machine. However, the question of whether the
task is carried out in alternation between human operator and robot, or simultaneously,
remains to be clarified. Consider for instance performing a running suture with three
needle insertions. [143] execute the task in alternation with the system by breaking
it up into different subtasks. The operator takes those task portions that require fine
manipulation skills, i.e. grasping the needle and punctuating tissue. The system rec-
ognizes transitions between the individual task steps and automatically proceeds with
transportation movements, such as pulling the thread and handing the needle to the
second instrument. No environment cues are considered, disqualifying the method
for subtasks that involve interaction with tissue or tools. Consequently, the opera-
tor needs to grasp the needle manually before the robot automatically completes the
task. The automated movements are acquired by temporal averaging of multiple user
demonstrations and superimposed on haptic input devices during replay. Learning by
demonstration often serves as concept in human-machine skill transfer [7, 19]. Many
approaches are, however, limited to the acquisition and reproduction of movements
without considering environment dynamics [203]. Although methods for trajectory
adaption have been proposed [117], their implementation is difficult due to incomplete
or obsolete situs knowledge. This fact explains the current restriction on transportation
movements, which are easier to implement since the uncertainties arising are mainly
attributed to the system. For a generalized execution an accurate model of the situs is
essential.

If tasks are processed simultaneously by human and robot, the latter can either solve
its own subtask concurrent to human input or assist the operator to improve his task
performance. [145] use automated scissors to cut a thread, at which the loose ends
are held by operator controlled micro grippers. Assistance, seen on the background of
improving manual task performance in terms of accuracy, speed, and quality, is often
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achieved by employing the concept of “virtual fixtures” (VF). Introduced by Rosen-
berg, virtual fixtures overlay telemanipulation tasks with abstract sensory information
[168]. A fixture can essentially be characterized in two ways: forbidden-region virtual
fixtures restrict the operator from entering certain areas, while guiding virtual fixtures
augment the surgeon’s ability to perform complex procedures. Visual or auditory sig-
nals can convey the fixture information. In remote surgery it is useful to implement
the fixture by means of haptic feedback. Hence, haptic virtual fixtures are also referred
to as “active constraints” or “virtual walls”.

A major drawback, shared by all types of haptic virtual fixtures is the precise genera-
tion of the constraint information. More precisely, the question of how to obtain the ge-
ometric distance between the manipulator and a potential fixture and how to relate this
measurement to the master-side haptic device is essential and significantly affects the
quality of the feedback. trajectory

generation
Although observing the objective defining the virtual fixture

visually has the potential to cope with the dynamic nature of the situs, the approach
suffers from strong inherent registration inaccuracies. The measurements can solely
be acquired by either recovering depth information from laparoscopic images or by
establishing correspondences between preoperative data and the patient [108]. Preop-
erative registration of the patient’s anatomy with atlas models is often proposed, but as
we have seen in the last section, it is less suitable for dynamic environments. Surgical
tools restrict the view and relevant parts of the workspace might not be reconstructible
due to the limited maneuverability of the camera. In addition, many error sources of
telemanipulation systems contribute to a comparably poor overall calibration between
endoscopic camera, surgical instruments, situs, and the haptic devices on the master-
side. All uncertainties mentioned sum up if the endoscopic camera is used to derive a
vision-based fixture for surgical instruments that are mounted on a different manipu-
lator than the camera. The achievable precision is then not sufficient for small-scaled
fine manipulation tasks. On this account, the application of virtual fixtures is in many
cases still limited to delineate larger regions [149, 62].

1.1.3 In Situ Knowledge Acquisition

Partial autonomy, in particular virtual fixtures, aims to combine the advantages of hu-
man and robot in a common remote workspace. By definition, this implies access to
common knowledge. During time-consuming preprocessing steps, telling the system
the difference between safe (or target) regions and forbidden regions, the workspace
can be segmented preoperatively. The transfer to the system involves an error-prone
transformation chain, making it difficult to apply the procedure to fine manipulation
tasks. Advanced control will only be realized if the traditional loop of planning, reg-
istration, and execution can be overcome and the robot itself becomes an integral part
of the planning phase. To do so, we give instant access to relevant and task specific
situs details by augmenting surgical instrument with micro endoscopes, therewith
instantiating our definition of online surgery.

Most surgical activities can either be described by tool-tissue or tool-tool interaction
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Figure 1.3: Important coordinate frames: RE,0 instrument robot base, RE,6 instrument robot
wrist, RC,0 camera robot base, RC,0 camera robot wrist, C camera, C̃ calibrated camera image,
E instrument, T task frame, P haptic device, W world frame, D execution plan.

[134]. Recovering the spatial relationship between surgical tools and anatomical struc-
tures, a second tool, or surgical supplies, becomes therewith essential to plan tasks
online. The basic steps toward this goal are tool tracking (cf. Sec. 3.2) and surface recon-
struction (cf. Sec. 3.3).situs knowledge The difficulty of their application lies in the nature of minimally
invasive interventions, which inhibits any direct view of the surgical field. The use
of external tracking devices and imaging modalities, such as fluoroscopy, computer
tomography, or magnetic resonance imaging, are often incompatible with robotic sys-
tems, emit prolonged radiation, and face serious challenges in achieving sufficient ac-
curate registration results. Deriving situs information directly from the laparoscope is
one of the few remaining options, but suffers from strong calibration inaccuracies. The
problem is further tightened if the endoscopic image stream needs to be registered with
preoperative models. More detailed, major drawbacks can be identified as follows:

1. Erroneous transformation chains. Telemanipulation systems are operated by
means of Cartesian control. The camera and the instrument are attached to two
different manipulators, with the consequence being that long and erroneous trans-
formation chains are introduced (see also Fig. 1.5 and Sec. 5.2.3). Fig. 1.3 illus-
trates the problem by introducing the important coordinate frames. Frame C

indicates the pose of the endoscopic camera and ‹C refers to a calibrated camera
image. The frame indicating the posture of the micro end effector at the instru-
ment’s distal end is denoted with E. The task specific coordinate frame T is inde-
pendent of the system’s kinematics, and finally the origin of the world is denoted
as W. Image-guided object manipulation now demands an accurate and gap-
less transformation chain from the global pose of the object to be manipulated,
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to the camera and to the surgical tool used for manipulation. This transform in
turn is also dependent on the robot base frame RE,0 and the tool center position
RE,6 of the instrument robot, respectively RC,0 and RC,6 of the camera robot. If
the task execution is based on preoperative imaging, the generated plan D addi-
tionally needs to be aligned with the target reference frame. This image-based
registration involves the entire transformation chain mentioned above. When it
comes to haptic guidance, an accurate alignment of the plan and the world is of
particular importance. Due to the Cartesian control, the coordinate frame of the
input devices P is typically coincident with the world frame. Thus, smallest de-
viations yield to misdirected haptic feedback, making the assistance impractical
and misleading.

2. Fixed perspective. The remote center of motion restricts movements of the la-
paroscope to a conical workspace. As a consequence, parts of the situs may be
viewed poorly and always from a similar perspective. Repositioning the laparo-
scope for situs exploration is impracticable, since it is time consuming and in-
terrupts the physician in his work routine. Perceiving detailed up-to-date depth
information for model building is severely restricted due to occlusions caused by
organs and instruments.

3. Improper field of view. The relatively fixed perspective of traditional laparo-
scopes in combination with their wide-angle optics, mentioned under item 2.,
have direct impact on in situ task planning. Various tasks, in particular fine
manipulation of tissue, require the relevant field of view for proper trajectory
planning associated with the relationship between the instrument and the target
region. During tissue dissection, for instance, the important information is how
well the blade follows the structure to be cut. This task-dependent visualization
cannot be provided by the conventional laparoscope.

To tackle these drawbacks, we propose to augment surgical instruments with minia-
turized endoscopes, which are shown in Fig. 1.4. With the recent advances in sensor
technology it has now become possible to extend medical instruments beyond their
actual functionality, upgrading them to imaging devices. The concept is illustrated in
Fig. 1.1. When mounting an image source to a surgical instrument’s tip, it is found that
the image is obtained from the relevant task-specific perspective, keeping the distal
end of the tool always in field of view. micro

endoscopes
In this way, the relationship between tissue and

tool can be derived straightforward, without elongated transformation chains. The
combination of imaging and surgical instrument also strengthens autonomy by incor-
porating the information pertaining to the area of interest. Naturally, the image can
be combined with the conventional laparoscope. The creation of new views improves
navigation and orientation of the instrument within the operative field. Unlike con-
ventional endoscopes, it can be positioned freely in space. The micro camera shows a
very limited, though microscope-like view of the situs. This property enables detailed
visual inspection of e.g. suture quality or formerly tumorous tissue.

Other surgical domains already benefit from the advances in sensor technology.
Lüth for example explored the paranasal sinus by attaching a micro camera on fine-
manipulation forceps [113]. When percutaneous body structures are to be visualized,
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camera 1 camera 2 

projector 

(a) (b)

Figure 1.4: Proposed micro camera system. (a) stereo camera pair with additional pattern pro-
jector; (b) single NanEye™ camera [image courtesy of Awaiba GmbH].

intraoperative ultrasonography and optical coherence tomography can be used. While
[103] aims at minimizing the risk of an accidental dissection of sub-surficial vessels
by ultrasound probing, the latter method is currently used mainly in retinal surgery.
The Medigus SRS™ system for intraluminal treatment of gastroesophageal reflux dis-
ease combines a surgical stapler, ultrasonic sights for accurate positioning, and a video
camera in a single flexible tube [24].

1.1.4 Interactive System Control

The demand for human interaction and supervision decreases with an increasing level
of autonomy. Many surgical tasks require machine precision, especially in terms of
accuracy, but human intelligence and supervision at the same time. In our efforts to
transit MIRS toward a more intuitive and contextual responsive system, we integrate
task-specific information to ease task execution. The information can either be based
upon explicit user directives or it can be derived from implicit cues. The cues in turn
arise either directly from the situs model obtained or are set by the operator.

The type of parameters necessary to specify a certain system behavior can be very dif-
ferent in nature. Environment-dependent parameters, i.e. those introduced in the pre-
ceding section, are typically required by tasks that involve tool interaction.control types We group
those tasks into instrument guidance and automated instrument control. Instrument guid-
ance assists the user in achieving superior task performance in terms of accuracy or
execution speed. This includes hybrid control schemes. [58] for instance, controls the
position of a manipulator by means of visual servoing based on ultrasound images,
while the velocity of the motion is manually set by the surgeon. Similarly, the control
of individual degrees of freedom of a manipulator can be split between system and
user. In contrast, automated instrument control generates motion commands based on
the perceived situs knowledge without any user input. Both control schemes usually
require knowledge about a tool’s position, the relationship between tool and target, or
both to adjust the control loop.

The specific call of a system function that triggers system behaviors, including those de-
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(a) (b)

Figure 1.5: Setup of our telesurgery system at the German Heart Center Munich: (a) slave-
side robots (covered with blue fabric), equipped with surgical instruments and master-side
medical workstation, comprising haptic devices and a stereoscopic screen; (b) manipulation
scene illustrating the patient-side configuration of the instruments and the trocars (two needle
drivers and one stereoscopic laparoscope).

scribed above, obviously depends exclusively on some user choice. However, such a
call possibly requests additional information for execution that needs to be defined by
the operator, e.g. a target position intended for execution. With the intention to reduce
the mental workload of surgeons and to manage complexity of interventions, the ques-
tion arises which modalities are well-suited to guarantee a smooth integration of such
contextual information into the surgical workflow. In general, we ask the following
requirements for interactive control:

• shortest possible distraction of the surgeon from the operative situs,

• little cognitive burden and mental stress,

• fast and seamless integration into the surgical workflow,

• correct interpretation and execution of commands,

• little training effort.

The integration of operator knowledge into the surgical workflow plays a central role
in enhancing dexterity and usability of surgical robots. We consider the introduced
types of system control and assess the required amount of interaction in order to pro-
pose draft solutions, which are dealt with in the course of this treatise in more detail.

1. System commands. The growing number of functionalities offered by MIRS sys-
tems is more and more imbalanced with the currently available input options.
This development demands for new interfaces that facilitate the handling. Sign
language and haptic gesturing promise to be intuitive and simple to understand.
We borrow the concept from everyday life and transfer the idea of interpreting
gestures to the movements performed by the operator at the master devices. In
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this way, we offer a customizable input modality with fast interaction times.
Since haptic gestures define a spatio-temporal context, the method allows in-
tegrating location-dependent information, e.g. the user can define the incision
points of a suturing task in advance.

2. Instrument guidance. This type of system control behavior assists the operator
during task execution by consuming the situs knowledge gained. In particular
the performance of delicate fine manipulation tasks, such as tissue dissection,
benefits from machine precision through system aid. We therefore instantiate
shared control by employing haptic virtual fixtures to convey force information.
The accurate and task-relevant information derived from our new micro camera-
augmented instruments allows smart behaviors, i.e. “snap to” an online gener-
ated trajectory and overcomes the calibration limitations mentioned.

3. Instrument control. Instrument control adopts autonomous control to relieve
the surgeon from small subtasks. Instrument control can be driven by both user
input or on intrinsic system knowledge. Assisted targeting for instance helps the
user to align the surgical tool with a manually chosen target. While the selection
of the target is based on operator input, the manipulator motions necessary for
the alignment are derived from situs knowledge. In a similar way, automating
the displacement of the camera helps the surgeon to concentrate on his primary
task. We investigate two modes to reveal a proper endoscope position. On one
hand, the surgeon can direct the robot by means of gaze control. Gaze provides
a strong cue and incorporates the user’s knowledge of the relevant field of view
into the control loop. On the other hand, the instrument’s pose can be used to
keep the dominant instrument in the field of view.

1.2 Problem Statement and Application

So far, we identified the drawbacks related to traditional offline surgery and auton-
omy. Although methods of preoperative planning have shown potential in acquiring
and learning tasks, less progress has been made for the transfer and execution phase.
The adaption of tasks to only slightly different environments currently exceeds most
capabilities of current surgical robots. Thus, a certain degree of autonomy could be
achieved, but it lacks the necessary adaptivity. To overcome these restrictions, we in-
troduced the method of online surgery that aims to answer three fundamental ques-
tions:

• How can system commands be triggered at the master-console in an ergonomic
and intuitive way to start assistance, while providing the possibility to pass task
specific information, such as the location intended for execution, along with the
command?

• How can task trajectories be planed and corrected without relying solely on pre-
operative data, but taking the dynamic environment of the surgical field into
account?
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• How can the inherent system uncertainties be overcome, which arise from error-
prone transformation chains, to enable autonomous task execution with a high
accuracy?

Online surgery tries to refrain from predefined execution plans and obtains the nec-
essary information in situ, in parallel to the actual task execution. A significant and
challenging step in this direction is adaptive surgical field modeling. Smart tools that
combine imaging and surgical instrument are expected to support this process, i.e. by
providing task-specific views. Because the camera is aligned with the instrument’s co-
ordinate frame, prolonged transformation chains are bypassed and intrinsic system er-
rors minimized. Therefore, we augment our instruments with endoscopic micro cam-
eras. As a result, task execution can be accomplished by relying on image-derived con-
trol laws, which increase machine-precision. We illustrate the steps of online surgery
based on the generic use case of guided tissue dissection.

(1)                                                  (2)                                                (3)                                                (4) 

Figure 1.6: Steps of guided tissue dissection: (1) indication of incision point and automatic
alignment of blade tip with the selected target; (2) the field of view provided by the conven-
tional laparoscope is commonly inadequate for task planning: important structures cannot be
identified and visibility is limited; (3) micro endoscopes (highlighted in gray) are attached at
the distal end of the tool. The mounting is colored white. The camera provides images always
from the task-relevant perspective, as illustrated in (4). This allows for reconstructing the cut
path (dashed line) and measuring the deviation between blade and cut path (red line).

This dexterous manipulation task requires micro-scaled manipulation skills. However,
the conventional laparoscope often provides a poor perspective, which is obstructed
by the scalpel and impedes a precise trajectory definition. tissue dissectionWe start the task of guided
tissue dissection by calling the corresponding system function using our gesture-based
input interface (cf. Sec. 4.2). The procedure can then be divided into independent steps,
as illustrated in Fig 1.6.

1. The surgeon selects the desired incision point of the scalpel within the surgical
field. For precision reasons, this is done using a laser beam, where the projected
dot indicates the penetration point on the surface. The laser diode is attached to
the surgical instrument.

2. A visual servoing scheme maneuvers the scalpel to the assigned target. If neces-
sary, position-based servoing first brings the instrument into the field of view of
the laparoscope. Afterwards, image-based servoing is employed to perform the
precise alignment with the target (cf. Sec. 4.3). The image features necessary to
generate the corresponding motion commands of the manipulators are obtained
by tracking the surgical instrument (cf. Sec. 3.2).
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3. Once the scalpel is aligned with the structure to be cut, the dissection is started
by the surgeon. The image center of the laparoscope is always automatically
aligned with the scalpel, while the cut itself is performed by the surgeon under
haptic guidance. The system calculates the optimal blade orientation to guaran-
tee a smooth cut (cf. Sec. 4.4). Our camera-augmented instrument with tool-tip
mounted micro endoscope recovers the deviation between the blade and the cut
path from the task-relevant perspective (cf. Sec. 3.3). In this way, the approach
enjoys similar advantages as traditional visual-servoing techniques, but becomes
applicable to delegate processes that are not adequately observable by the con-
ventional laparoscope.

In contrast to the traditional laparoscope, the pair of miniaturized laparoscopes can be
positioned freely to generate new three-dimensional views of the situs. To facilitate
depth recovery on homogeneous surfaces, a micro projector that projects a globally
unambiguous pattern onto the scene was developed. Experiments are conducted on
our realistic telesurgery system, depicted in Fig. 1.5 and discussed more detailed in
Sec. 5.2.1.



2 Terminology

Gaining knowledge about in situ conditions is extensively done by deducing geometry from
camera images. Before describing the projective relationship between the three-dimensional
world and the two-dimensional images, we define some general terminology with respect to rigid
body transformations. We model the problems of instrument tracking and depth perception
from a probabilistic point of view. In the center is Bayes’ theorem, which we briefly introduce
accompanied by the Kalman filter as a frequently used case of application.

2.1 Coordinate Frames and Transformations

In the next sections, we frequently deal with various coordinate frames and their trans-
formation. Therefore, we begin by establishing a uniform notation. Extending the rep-
resentation of a point x ∈ <3 in the three dimensional Euclidean space to its homoge-
neous form x = [xx, xy, xz, 1]

T
allows us to express any rigid transformation x̃ = Rx+t

by a single transformation matrix T as

x̃ = Tx , with T = [R | t] =

ñ
R[3×3] t

0
T

3 1

ô
, (2.1)

where R ∈ SO(3) is the 3 × 3 rotation matrix and t ∈ <3 the translation vector. There
remains the questions, which coordinate frame the transformation refers to as a ref-
erence. For instance, a camera sensor captures images relative to its own coordinate
frame. In order to relate the measurement to any other frame, the involved frames
need to be aligned. We introduce some dedicated notation for coordinate frames that
we are frequently using, i.e. W denotes the world coordinate system and Ri,j refers
to the j-th link of robot number i in our system. Frame C is usually associated with
a camera. Each couple of frames can be aligned using a transformation A

BT . In this
mapping, the reference frame A is superscribed and the target system B is subscribed.
Multiple transformations can be composed through non-commutative multiplications,
i.e. the posture of a robot’s end effector can be expressed relative to its base frame
with Ri

R0T =
R1
R0T · · ·

Ri−1
Ri−2T

Ri
Ri−1T. Transformations between individual robot joints are
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denoted by
Ri,j
Ri,k

T, where j 6= k. Reference frames associated with vectors are indicated
likewise, e.g. Ax. If the assignment of coordinate frames is non-ambiguous, we refrain
from indexing the variables.

Velocities are represented by the 6-vector ξ = [υ,ω]
T

, where υ = [υx, υy, υz]
T

is the
linear velocity portion and ω = [ωx, ωy, ωz]

T
the angular velocity respectively. In many

cases it is necessary to relate the velocity of two rigidly connected frames A and B, i.e.
between the end effector of a manipulator and an attached tool. Velocities between two
rigidly attached frames can be transformed with

Aξ =

ñ
B
AR

B
A[t]×

B
AR

0[3×3]
B
AR

ô
Bξ, (2.2)

where the quantity B
A[t]× = S(t) is the skew-symmetric matrix defined by the equation

S(t) =

 0 −tz ty
tz 0 −tx
−ty tx 0

 , (2.3)

representing the cross product with B
At [46] .

2.2 Projective Geometry

Projective geometry describes the mapping between an image sensor and the three-
dimensional world. In the sequel, we consider both directions, the relationship of the
world to the sensor and the reverse mapping, which describes how image coordinates
can be projected back to the world.

3D to 2D Projections: From World to Sensor Space

To describe a three dimensional scene in the two-dimensional image plane of a camera,
it is necessary to model the projection geometry of the camera and the spatial relation-
ship between the camera and the world reference frame. Two sets of parameters are
used, the intrinsic and the extrinsic camera parameters.

Intrinsic parameters describe how metric 3D points form camera space project to 2D
pixel coordinates. A general acquisition model, which is frequently employed, is the
pinhole camera. A small pinhole defines the camera center C through which opti-
cal rays enter the camera body, as illustrated in Fig. 2.1(a). The rays are incident on
the retinal plane and form a 180 degree rotated representation of the observed reality.
The principle axis of the camera is orthogonal to the retinal plane, passing C and in-
tersecting the retinal plane in the principle point c = [cx, cy]

T
. The distance between

the camera center and the principle point is denoted as focal length f . To provide
a more convenient representation of the projection, with a reference frame attached
at the upper-left corner of the image, a virtual image plane in front of the camera is
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usually introduced at the same distance f . The projection matrix K projects a homo-
geneous 3D point Cx, given in the reference frame of the camera, to Ix = KCx in image
space with

K =

 fx σ cx 0
0 fy cy 0
0 0 1 0

 . (2.4)

To scale the metric value of the focal length to pixel space f 7→ (fx, fy), it is normal-
ized with the metric width and height of a single pixel on the CCD camera px and
py respectively, to fx = f/px and fy = f/py. The same normalization applies for the
metric principle point, which can be expressed in pixels by normalizing its value with
the sensor’s dimensions along the x− and y− axis. A skew angle σ describes the axis
displacement, if the sensor’s pixels are not rectangular,

σ = (tanα) · fy. (2.5)

Since for CCD and CMOS sensors σ is always zero, we can finally describe the projec-
tion model with

x = fx
Wxx
Wxz

and y = fy
Wxy
Wxz

. (2.6)

Particular optics with a short focal length suffer from additional nonlinear distortion
effects, which are more pronounced with increasing distance from the image focus
point. Distinction is usually made between radial distortion, which locally alters the
scale and causes straight world lines to project onto curves in the image, and tangen-
tial distortion, which results from an off-centered lens alignment. To account for the
distortion effects, first a nonlinear transformation functionD(·) is applied, followed by
the calibration matrix, therefore Ix = KD(Wx). Also compare appendix A.1.

The spatial relationship between the camera frame C and the world reference frame W
is governed by the extrinsic camera parameters, expressed as an Euclidean transform
W
C T. Combining both intrinsics and extrinsics, an arbitrary scene point Wx projects from
the world frame to image space with

Ix = K[3×3]
W
C T

Wx = K[3×3]
W
C [R | t] Wx (2.7)

= W
I P[3×4]

Wx, (2.8)

where K[3×3] is the left (3× 3) sub-matrix of K and P[3×4] is denoted as the projection
matrix.

2D to 3D Projections: Depth by Triangulation

Reconstructing the actual 3D position of an image point, given in at least two differ-
ent camera views, is known as stereo matching. For stereoscopic setups, the spatial
relationship between the two cameras is known and the world coordinate can be re-
covered by triangulation, as illustrated in Fig. 2.1(b). The distance between the two
camera frames, called baseline b, causes a horizontal displacement of the projection in
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Figure 2.1: (a) camera geometry; (b) epipolar geometry.

one image with respect to the second image. This horizontal disparity value d describes
the relationship between corresponding pixel coordinates as

x′ = x+ sd(x, y) with y′ = y, (2.9)

where s = ±1 always ensures a positive disparity value, regardless of whether d is
calculated from the left to the right image or vice versa. The depth xz of a world
coordinate can then be expressed with

xz =
fb

d
, (2.10)

where f is the focal length measured in pixels.

The problem of recovering depth from a scene reduces therewith to finding corre-
sponding pixel matches in both images. Equation (2.9) describes the horizontal dispar-
ity value, assuming that images are coplanar and corresponding pixels can be found in
the same horizontal scanline of both images. This constraint speeds up matching and
increases its reliability, since instead of looking for vectors between points only scan-
lines need to be compared. For non axis-aligned camera configurations, with known
calibration parameters, images need to be rectified, i.e. pre-warped, so that correspond-
ing epipolar lines are coincident in both images. This characteristic is defined by the
epipolar geometry: the projection of a scene point Wx to its corresponding image point
Ix in the left camera image defines a ray between the left camera’s center and the pro-
jection on the image plane. All points along this ray project to the same pixel in the
left image. The right camera observes all of these possible point correspondences as a
line. The epipolar plane Π is passing through the cameras center and the scene point.
Its intersection with both image planes defines the epipolar line. The correspondence
search in the right camera image can therefore be restricted to a segment of the epipolar
line, bounded at one end by the projection e′ of the left camera’s optical center in the
right image, referred to as epipole, and the projection x′ of the original world point at
infinity Wx∞.

As above-mentioned, input images need to be rectified to arrange corresponding epipo-
lar lines. For a calibrated stereo rig, with known intrinsics and extrinsics, the relation-
ship between the two camera frames C0 and C1 is given by a rotation R and a transla-
tion t. An image point given in C0 can be expressed in C1 as x′ = Rx + t. The epipolar
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constraint implies that the vectors x,x′ and t are coplanar, thus one of the vectors must
lie in the plane spanned by the other two, or

x
[
t×

(
Rx′

)]
= 0, (2.11)

which can also be written as
x

T
Ex′ = 0. (2.12)

This equation defines the relationship of all pairs of point correspondences, where
E[3×3] is called the essential matrix

E = [t]×R. (2.13)

Note that for two corresponding image coordinates the essential matrix describes the
epipolar line for x in the other image, on which x′ must lie, thus

l′ = Ex. (2.14)

Given the corresponding measurement points x and x′ we can recover the depth of
the original world point by intersecting the two rays originated in each optical center
and passing through the image point. In consequence of calibration uncertainties, the
rays are not expected to intersect in exactly one point. Instead, the 3D coordinate is
estimated as a minimization of the distance between both rays.

2.3 Bayesian Probabilities

Many problems are considered from a probabilistic point of view. Thus, let us con-
sider two random variables X and Y , defined on the same probability space. The joint
probability that X will take the value xi and Y will take the value yi is written as
ρ(X = xi, Y = yj), with i = 1, · · · ,M and j = 1, · · · , N . In brief, we simply write
ρ(X,Y ) for the probability of X and Y . The quantity ρ(X|Y ) is the probability of X
given Y , referred to as the conditional probability. The quantity ρ(X) is simply the
probability of X , also known as the marginal probability.

The product rule of probability ρ(X,Y ) = ρ(Y |X)ρ(X) together with the symmetry
property ρ(X,Y ) = ρ(Y,X) immediately gives us an equation that is well-known as
Bayes’ theorem

ρ(X|Y ) =
ρ(Y |X)ρ(X)

ρ(Y )
. (2.15)

The theorem describes the dependency of a conditional property on its inverse [33].

In Bayesian probability theory, probabilities are interpreted as a quantification of un-
certainties instead of being treated as frequencies of random, repeatable events. From
this perspective, we can express the uncertainties in model parameters that describe
a certain observation. A set of assumed model parameters s then replaces the event
represented by the random variable X , and Y is now an observation of data D that we
try to explain with the model. We first evaluate D and then express the uncertainty in
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the model parameters s for the observation as posterior probability ρ(s|D). The evalua-
tion of the observed data on the right-hand side of (2.15), given the model parameters,
is called likelihood distribution ρ(D|s). It expresses how well the parameters describe
the current observation. It is weighted with a prior distribution ρ(s). This prior knowl-
edge reflects an assumption about the parameter distribution in advance of the actual
observation. The denominator of (2.15) ensures the integral of ρ(D|s) to be one. In
short,

posterior ∝ likelihood× prior (2.16)

converts a prior distribution into a posterior distribution by incorporating the mea-
surement of how well a certain parameter set explains the observation. Maximizing
the posterior term in order to find the best parameters that fit the data is called a max-
imum posterior probability (MAP) estimation, written as

s∗ = arg max
s
ρ(s|D). (2.17)

Likewise, maximizing only the likelihood without integrating the prior is called maxi-
mum likelihood (ML) estimation.

2.4 Kalman Filter Revisited

Inter alia, the Bayesian theory finds its application in the Kalman Filter [212]. The filter
estimates the optimal discrete-time state s ∈ <n of a linear dynamic process, given as
difference equation

st = Ftst−1 + wt (2.18)

with a measurement z ∈ <m
zt = Htst + vt. (2.19)

The transition matrix Ft describes the dynamics of the process and relates the previous
state st−1 to current the state st. Matrix Ht is the measurement model matrix, relating
the state to the measurement. The white Gaussian noise variables wt ∼ N (0,Qt) and
vt ∼ N (0,Rt) represent the process and measurement noise respectively, with time-
depending covariance Qt and Rt.

Starting with an initial state distribution as Gaussian N (s0,Σ0), the prediction step
computes the a priori state distribution N

Ä
s−t ,Σ

−
s,t

ä
s−t = Ftst−1, (2.20)

Σ−s,t = FtΣs,t−1F
T

t + Qt. (2.21)

Given a new measurement zt, the error, denoted as measurement residual rt, is com-
puted between the actual and estimated measurement

rt = zt −Hts
−
t . (2.22)

In a similar fashion the residual covariance can be obtained

Σr,t = HtΣ
−
s,tH

T

t + Rt. (2.23)
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Using rt and Σr,t, the correction step, which integrates the new measurement with the
propagated state in the a posteriori distribution N (st,Σs,t), is performed

st = s−t + Ktrt, (2.24)
Σs,t = (I−KtHt) Σ−s,t, (2.25)

where Kt is called the Kalman gain

Kt = Σ−s,tH
T

tΣ
−1
r,t (2.26)

that either emphasizes the measurement in case of a higher gain or follows more closely
the prediction for a lower gain.
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Building an adaptive task-specific model of the surgical field is the first step in tackling the
challenges of online surgery. Once we have dealt with the characteristics of endoscopic images,
we start with localizing surgical instruments. To manage a variety of existing tools without
employing tracking markers, we propose a method that adapts to the instrument’s appearance,
independent from the shaft’s color and the shape of the functional instrument part. We then
address the problem of perceiving the environment with miniaturized micro endoscopes. To
facilitate the reconstruction of poorly textured areas, we introduce a micro projector that uses
a globally unambiguous encoded texture pattern to enhance the correspondence search during
the stereo matching.

3.1 Endoscopic Image Characteristics

Endoscopic camera images show certain characteristics that are rarely found in other
scenarios and make it difficult for machine vision to analyze their content. Image qual-
ity is affected by the camera itself and the conditions of the surgical site. Rigid endo-
scopes convey light rays typically by means of rod lenses to a camera mounted at the
end. Newer devices, especially those with flexible tubes, offer tip-mounted sensors
with improved image quality. Fiber optic bundles are used as light guides to illumi-
nate the situs. Although the resolution and image quality of endoscopic systems were
substantially improved in recent times, many laparoscopes still operate with the ana-
log PAL signal. PAL uses interlaced line scanning, reading even and odd line numbers
alternately. Thus, moving objects cause artifacts when being captured between indi-
vidual half frames. In the sequel, images are always deinterlaced before processing,
meaning that two half frames are combined to create the final image.

Depending on the interventional application, the surgical environment might ap-
pear highly cluttered, as illustrated in Fig. 3.1. The homogeneous appearance of tissue
makes it difficult to identify spatial structures as they are i.e. required during the cor-
respondence search in depth reconstruction. Main difficulties of in situ knowledge
acquisition are also emanating from organ movement and respiration, non-uniform
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and time-varying lightning conditions, and specular reflections, which change the ap-
pearance of background and surgical instruments.

(a) (b)

Figure 3.1: (a) Response of the Sobel filter; and (b) the Canny filter.

3.2 Tool Localization

Localizing surgical instruments, in particular the ability to track the movements of
the tip, is a prerequisite for the development of techniques that assist surgeons with
higher level functionality. Performing the localization in situ is important, because
instruments can be exposed to high forces at the trocar points, yielding to aberration
and deflection of the flexible shaft. Since approaches that model the tool’s dynamic
flexion to correct the forward kinematics are rather system specific [29], we focus on
visual tool tracking [17]. The next section reviews the state of the art.

3.2.1 Basic Techniques

Some studies investigated the feasibility of the daVinci™ robot as “mechanical track-
ing system” and validated its position accuracy using joint encoder readings. While
Kast et al. specified an accuracy of about 6mm for the daVinci classic™mechanical

accuracy
[89], [105]

found the accuracy of the daVinci-S™ to be approximately 1mm. Experiments con-
ducted on our telesurgery system (cf. Sec. 5.2.1), which is equipped with accurate
industrial manipulators that carry Intuitive EndoWrist™ instruments, could however
not affirm similar results. While the absolute accuracy of industrial manipulators is in-
deed about 1mm, the flexible shaft and error-prone transformation chains deteriorate
results noticeable. Nickel et al. investigated magnetic tracking in a realistic operating
room environment [135]. Static interference sources, such as a metallic operating table,
have been considered during the calibration procedure. The found deviation was less
than 1cm within a well-defined workspace. According to the authors, the activity of
the manipulators itself had little influence. [106] measured a kinematic error of approx-
imately 10.6±22.9mm with the daVinci™ . Additional optical markers, attached to the
manipulator links, improved the precision to approximately 1.5mm. Notwithstanding
that non-image-based tracking is capable to provide measurements even when instru-
ments are obscured in the situs, the above mentioned studies find no consistent conclu-
sions regarding accuracy, applicability and transferability. Specifically, the deflection
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of the shaft is often omitted.

In image-based tracking, blob-detection is frequently applied in combination with track-
ing markers. Usually, colored bio-compatible markers are attached at the distal end
of the instrument. The blob detector then groups pixels with similar properties into
larger regions, which differ from their surrounding. artificial markersThe HSV color space is partic-
ularly suited, since it separates pixel color information (Hue, Saturation) from lumi-
nance (Value). Therefore, the classification is more robust against illumination changes.
Analysis of typical laparoscopic image sequences has found cyan be a suitable marker
color [67, 178]. While the former authors performed a segmentation in the H-S color
plane at 17Hz, the latter restricted their analysis to the hue channel, but simultane-
ously identify the instrument type by a multi-colored marker. Depth information was
derived as the size ratio of individual marker parts with respect to each other were
known. A similar approach was proposed by Zhang and Payandeh [218]. They con-
sidered the ratio of marker and shaft diameter. Tobergte et al. used a dot pattern to
extrapolate the instrument’s pose [194]. After segmentation and topological ordering,
the dots were matched agains the well-known 3D model of the marker. Kruppa et al.
retrofitted surgical instruments with laser diodes that project a pattern structure on the
tissue surface [101]. In conjunction with three circular LEDs, mounted at the instru-
ment tip, the projected dot pattern was used to recover the relationship between organ
and instrument.

To avoid artificial markers, other authors segment instruments based on color infor-
mation [51]. Bayes classifiers are frequently used to learn the color statistics of the
tool with respect to the background, making the segmentation process more robust
against varying lightning conditions. colorThe color distributions are represented as Gaus-
sians and the classifier assigns, according to Bayes’ theorem, the observed pixels to the
most probable class. Evidently, manual labeling of the classes is required to learn their
probability density distribution. Speidel et al. [181] and Kim et al. [92] combined a
Bayesian color classifier with conditional density propagation of the instrument state to
integrate object dynamics. The latter authors implemented a two-stage approach, first
locating the instrument itself and subsequently detecting the forceps with an adapted
color model. The employed particle filter [85] propagates a set of randomly generated
and weighted hypotheses for each image frame, calculated on the basis of a dynamic
model that depends on the previous time steps. The weight is updated according to a
likelihood function, comparing measurement and prediction. The new tracking posi-
tion is then estimated as the weighted mean of all samples. In [111], the method was
combined with additional visual cues, such as changes in specular highlights and tis-
sue deformation, for the application of surgical event classification.

In addition to color, shape information is a possible criterion to minimize the risk of
misclassification. However, detecting the tool solely with gradient images is difficult
due to the cluttered appearance of the situs, as depicted in Fig. 3.1. Ueckert et al.
considered the elongated shape of the instrument shaft to fit a rectangular bounding
box after color classification [201] . To cope with lens distortion, shapeespecially visible at
small distances between camera and object, a trapezoid is used for the near-field case.
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Thresholding of the two principal second-order moments then indicated the match of
a shaft. McKenna et al. analyzed adjacent pixels in the background of a presumed
shaft position: a reasonable instrument state minimizes the background, while the
shaft region is maximized [120]. Line structure concepts, e.g., the instrument’s length-
to-diameter ratio, are often combined with a color search. For instance, Hessian matrix
analysis [213] and the Hough transform [197, 45] were applied. Casales and Amat ap-
plied a window operator to assign parallel line pairs to a tool marker [41].

Geometric considerations, such as workspace and movement restrictions of the instru-
ments, can be derived based on the configuration of the trocar point with respect to the
camera pose. The relationship allows to limit the search space in the image domain.

additional
constraints

Voros et al. manually labeled the trocar position in images, using their so-called “vocal
mouse” [205]. The point was assumed to have a fixed location during the intervention.
The constraint was then used to restrict the search of a gradient filter that works in
conjunction with a Hough transform. With images showing little specular reflections
and a resolution down-sampled to 200×100px, the method operates in near-realtime
with an average error of 11px. Doignon et al. applied seeded region growing, initial-
ized automatically at the image boundary [50] . Recognized candidate regions are then
be classified by shape. They simultaneously estimate the trocar position, however, it
seems that the information is currently not used for seed initialization. The approach
operates at 13fps on a two-level image pyramid with the even field providing a resolu-
tion of 320×120px.

The Center for Computer Integrated Surgical Systems and Technology (CISST, Johns
Hopkins University, Baltimore) presented articulated tracking of the EndoWrist™ tools.

machine
learning

They fused kinematic information of the daVinci™ robot with a template tracker, which
minimizes the sum of squared differences of source and target image [38]. More re-
cently, they reported a general purpose articulated object tracker and demonstrated
its application to surgical scenarios [152]. Geometry and kinematics of the object to
be tracked have to be known in advance. The appearance of different body parts was
modeled with a class-conditional probability and matched with the input image after
rendering the target object geometry. The appearance model was trained with man-
ually labeled images. The computational complexity limits the method currently to
0.2fps. Two different articulated tool trackers have also been proposed by Reiter et
al. [161, 162]. One approach learns features offline by rendering a CAD model of the
instrument in different poses and matches the templates nearby live kinematic data
with 3fps. The second approach learns landmarks on the tool’s forceps, such as the
manufacturer’s logo, as well as different wheels and pins of the mechanics. The au-
thors evaluated SIFT, HoG, and Region Covariance features to train a support vector
machine and two different types of randomized trees. The current performance is re-
stricted to 0.8fps.

3.2.2 Hybrid Instrument Localization

The diversity of different instruments employed during a surgical intervention, such
as scissors, scalpels, forceps, or needle drivers, differ in their kinematics and in the
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appearance of the functional part. With respect to our application scenario, we define
the following requirements for instrument localization:

• Real-time capability. A high update rate is required, since the instrument’s lo-
cation will be further processed by control algorithms that generate robot trajec-
tories.

• Markerless. The approach should forgo any instrument modifications.

• Reusability. The surgical system should detect instrument changes automati-
cally to adapt the tracking to the respective tool kinematics and the appearance
of the tool used. No prior training should be necessary.

• Adaptivity. The method should be robust to changes of the instrument appear-
ance during surgery, e.g. caused by bloodstains.

Concerning these requirements, we propose a hybrid tracking approach. First, the pose
of the instrument is determined by means of a position sensor in Cartesian space. This
world coordinate is then related to the perspective of the laparoscope by projecting it
into image space. hybrid trackingBased on this initial guess, the estimate is refined during a visual
optimization. Since the prior sensor information restricts the image search space we
can perform visual tracking locally. In principal, all types of position sensors can be
used, e.g. optical fiber brackets that are embedded into the instrument. Regarding our
particular setup, we deduce the position of both the instrument and the laparoscope
from robot joint readings.

Without loss of generality, we assign the tracking reference frame TW always to the
projection of the sensor-based instrument measurement in image space (cf. Fig. 3.3).
After feature matching, the recovered model state s corresponds to frame Tref . Taking
the time-averaged error between the last k kinematic observations s̃t−k and the corre-
sponding outputs of the visual tracker st−k into account, we calculate a corrected state
parameter prediction ŝt−1, which is then Kalman-filtered to obtain the posterior state
probability distribution. Also compare Fig. 3.2.

Kalman filter feature matching 
(CCD) 

error 
compensation 

trackloss / reinit tip estimation 

image 

kinematic data 
s~

s

ŝ

-s

Figure 3.2: Tracking pipeline.

As visual tracking modality the CCD (contracting curve density) algorithm is applied
[73]. It allows recovering the contour of the shaft without knowing its coloration in
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advance and can cope with color changes over time to a certain degree. A detailed
explanation is given in the sequel. Further, we detect the transition between the shaft
end and the articulated instrument tip. The pose of the articulated instrument part is
estimated from encoder readings and related to the tip position. Next, the individual
steps of the algorithm are described.

Sensor-based State Space Prediction

Our surgical system is equipped with Intuitive Surgical EndoWrist™ instruments. The
system can identify the type of the instrument that is currently connected to the robot
by means of a hot-plug (cf. Sec. 5.2.1), i.e. its kinematics and its individual calibration
parameters are known. The instruments are composed of a long shaft, wrist joint, and
a tool-specific functional part. Forceps, for instance, have two independently movable
jaws. A scalpel consists of only one “finger”. Fig. 3.3 illustrates the kinematics of a
standard needle driver. We will use

qe =
î
qe1 , · · · , qei , qei+1 , · · · , qej

ó
(3.1)

to describe the kinematic chain, whereas qe1 , · · · , qei refer to the joints of the manipula-
tor that carries the tool, and joints qei+1 , · · · , qej are related to the surgical instrument,
i.e. i = 6 and j − i = 4 in case of the needle driver. Since the laparoscope is a straight
tool without additional joints we can simply modify the kinematics of the correspond-
ing robot by translating the tool center position to the center of the carried camera,
thus qc = [qc1 , · · · , qci ] and q = [qe,qc]. We choose three “virtual” reference points Exk
(k = 1, 2, 3) distally located on the instrument. These points are chosen according to
the instruments (kinematic) model and are no visual features. Features k1 and k2 are
located at the end corners of the shaft. Feature k3 is located at the shaft’s center, above
the two other features (cf. Fig. 3.3). The projection of the points into image space is de-
noted as xk and defines the instrument orientation, the distal end of the shaft, and the
width of the shaft in the image domain. Function fk concatenates the two kinematic
models of instrument and camera, taking the transformation between the two robot
bases into account. Given the joint values, each of the k features can be expressed as

fk : <(ej+ci) → <3; q 7→ Wxk. (3.2)

Without loss of generality, we choose the world reference frame at the camera’s optical
center. The mapping between the robot bases is described as the homogeneous trans-
form RE

RCT. The resulting transform of the forward kinematics is
RE,0
RE,jT for the instrument

and
RC,0
RC,i T for the camera respectively, which yields

Wxk =
RC,0
RC,i T

RE
RCT

RE,0
RE,jT

−1
Exk. (3.3)

The mapping from world to sensor space is modeled as xk = g(Wxk), with the projec-
tion function

g : <3 → <2; Wxk 7→ remap

Ç
f

Wxkz

ñ
Wxkx
Wxky

ôå
, (3.4)
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Figure 3.3: Kinematics of the EndoWrist™ needle driver and tracking model representation
with coordinate frames RE,0 robot base, RE,6 robot wrist, TW tracking reference frame (equals
kinematic prediction), Tref object reference frame. The contour model is illustrated with a red
line —, the sampling normals with red dashed lines - - -.

where remap(·) is an optional remapping that accounts for lens distortions. When
combining the kinematics model (3.2) and the camera model (3.4) we can relate the
feature points Exk to the image space with

xk = (g ◦ fk)(q). (3.5)

The projection of the feature points gives an initial guess of the instrument’s pose in the
image and restricts the visual search space. The prediction accuracy mainly depends
on the quality of the sensor readings, that is, in our case on the system calibration and
the tool’s shaft deflection (cf. Sec. 5.2.3).

The initial estimate is now corrected by means of a model-based visual measurement.
To be independent of the appearance of different instrument types, we neglect the tool-
specific functional instrument part in this step and represent the shaft with a rectan-
gular two-dimensional shape. The planar roto-translational model pose s is parame-
terized by rotation θ, translation tx respectively ty, and the two scaling factors hx and
hy:

s = [tx, ty, hx, hy, θ] . (3.6)

As mentioned, we treat the image-based tracking as a local refinement step of the
kinematic prediction. The kinematic-based estimate of the model parameters s̃ =î
t̃x, t̃y, hx, hy, θ̃

ó
is updated according to the cycle time of the robots, except the scal-

ing parameters. The scaling is set once during tracking initialization according to the
kinematic observation, afterwards it is kept in accordance to the tracker output.

Given the tracker output s and the kinematic estimate s̃, the error of the mapping (g ◦
fk)(q), averaged over the last k frames, is

e =
∑
k

(̃st−k − st−k) . (3.7)

Since the kinematic error changes smoothly within the workspace, we can correct the
estimate according to (3.7) and define a corrected state parameter prediction as

ŝt−1 = s̃t−1 − e. (3.8)
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In order to account for process dynamics and for uncertainties in ŝt we generate the
final prior state hypothesis s−t , by applying a motion model to ŝt. Specifically, a Kalman
filter is used in conjunction with Brownian motion. Brownian motion is given by a
linear and time-invariant autoregressive process of the form pt = F1pt−1 + F2pt−2 +
· · ·+ Fnpt−n + W0wt with n = 1 [148]. The matrices Fn model the transitions between
the time steps (n − 1) and n. Since Brownian motion is a first order model, it neglects
any derivatives (e.g. ṗt and p̈t, with F1 ≡ I, W0 ≡ I). Thus, the state probability
distribution depends on the pose and on Gaussian process noise wt only. The final
prior state hypnosis is then

s− = ŝt + wt. (3.9)

The state probability distribution is centered at the corrected kinematic guess. We trust
our space-time corrected kinematic prediction and only allow for little dynamics of the
position, though permit a higher scaling dynamic (i.e., σx, σy � σθ ≪ σs) to quickly
adapt to changes in the depth direction, thusî

t̃xt , t̃yt , θ̃t
ó
∼ N

(î
t̃xt−1 , t̃yt−1 , θ̃t−1

ó
, diag

(
σ2
t̃x
, σ2

t̃y
, σ2

θ̃

))
(3.10)

[hxt , hyt ] = s
[
hxt−1 , hyt−1

]
, s ∼ N

Ä
1, σ2

s

ä
(3.11)

Next, we discuss the image-based model fitting process to close the loop of sensor-
based state space prediction and the visual correction step.

Visual Measurement Modality

The visual measurement process is performed under the state hypothesis s− and the
Kalman filter is used with a target-related likelihood working on a real-time capable
implementation of the contracting curve density (CCD) algorithm [72], which is im-
plemented in the OpenTL framework [148]. The CCD algorithm is a contour tracker,
which fits a geometric model across the image to describe the screen contour projection
of the model under the given pose hypothesis and camera view as best as possible. In-
stead of looking for sharp edges along the model boundary, the algorithm maximizes
the separation between color regions, i.e. the instrument (hereinafter referred to as
foreground region F ) and tissue (referred to as background region B). This kind of ob-
ject separation is favorable in the cluttered environment of a surgical site, where edge
maps are difficult to interpret (again, cf. Fig. 3.1). Since the color distribution of both
object classes are learned online, the method is applicable to a broad variety of surgical
instruments without a preceding training phase. To a certain degree, changes of the
color appearance of the shaft can be accounted for during the intervention. On the
algorithmic side, CCD is implemented by iterating two steps until convergence. First,
local color statistics in the vicinity of the two sides of the contour are collected. After-
wards, the observed pixels are assigned to either the foreground- or the background
class, according to the respective statistics, and a minimization of the classification er-
ror is performed with a Gauß-Newton step. While the two steps are alternated, the
region considered for computing the statistics as well as the fuzzy assignment are re-
duced, thus contracting the likelihood function with each iteration.



3.2 Tool Localization 31

We sample the color statistics at the geometric model presented in Fig. 3.3 along the
two edges of the shaft’s main axis. Hence, orientation and scale are determined in this
step. The transition between shaft and functional part, more precisely tx and ty, needs
to be recovered in a separate step, as described later in the section.

Typically we operate in RGB color space. Depending on the instrument used, also
HSV color space might be suitable. After identifying a set of i uniformly distributed
contour points ci under the current pose hypothesis, color statistics mo

i up to the sec-
ond order (o = 0, 1, 2) are collected along the contour point normals ni (cf. Fig. 3.3,
right illustration). A number of D points is evaluated on each normal up to a maxi-
mum distance L, specifically D/2 on each side of the contour, according to

m
0,B/F
i =

D∑
d=1

wid (3.12)

m
1,B/F
i =

D∑
d=1

wid · I
(
ci ± d̄Lni

)
(3.13)

m
2,B/F
i =

D∑
d=1

wid · I
(
ci ± d̄Lni

)
· I
(
ci ± d̄Lni

)T
, (3.14)

with I(x) the raw image values at position x and d̄ = d/D the normalized distance
to the contour. The ±-sign relates the normal direction to the instrument F or the
background B respectively. Note that attention has to be paid in limiting the search
distance to be less the width of the shaft to avoid sampling the wrong area. The local
weights wid decay exponentially with the distance to their contour point, thus giving a
higher confidence to pixels close to the object boundary.

In contrast to the original implementation of CCD, which collects statistics of con-
nected image regions, the speed-up version samples only local line statistics. As a
consequence, a single Gaussian is sufficient for representation instead of mixtures of
Gaussians. However, the single line statistics are blurred with their j respective neigh-
bors to receive contributions from larger areas:‹mo,B/F

i =
∑
j

exp (−λ ‖ci − cj‖)mo,B/F
j ; o = 0, 1, 2. (3.15)

The factor λ < 1 influences the amount of contribution of the neighboring statistics.
In doing so, the entire image region around the shape contour is accounted for. Fi-
nally, the obtained area statistics are normalized to receive the means Ī

B/F
i and 3 × 3

covariance matrices Σ̄
B/F
i of the pixel values for the two-sided silhouette:

Ī
B/F
i =

‹m1,B/F
i‹m0,B/F
i

, (3.16)

Σ̄
B/F
i =

‹m2,B/F
i‹m0,B/F
i

. (3.17)

Given mean and covariance, the classification likelihood for the pixels I(ci ± d̄Lni)

is computed by comparing their values with the respective statistics (Ī
B/F
i , Σ̄

B/F
i ). A
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multi-resolution approach is applied to overcome local minima by performing the clas-
sification with a fuzzy assignment. The fuzzy membership function

a(d̄) =
1

2

ñ
erf

Ç
d̄√
2σ

å
+ 1

ô
(3.18)

assigns the observed pixel value to the foreground, with erf(·) the Gauss error function
and σ governs the sharpness of the assignment. The final classification is obtained by
mixing foreground and background statistics according to

Îid = a
(
d̄
)
ĪFi +

(
1− a

(
d̄
))

ĪBi (3.19)“Σid = a
(
d̄
)
Σ̄F
i +

(
1− a

(
d̄
))

Σ̄B
i . (3.20)

The color residuals are then given with

eid = I(ci + dLni)− Îid (3.21)

and organized in vector form as E. With the corresponding covariance matrix Σ =

blockdiag(“Σid) the likelihood of a correct classification, expressed as a Gaussian, is

ρccd(z|st) ∝ exp

Å
−1

2
E

T
Σ
−1

E

ã
. (3.22)

The likelihood contracts after each pose update of s, since the normal length factor L is
exponentially decayed.

Within a Gauss-Newton loop, the derivatives of E are computed by differentiating
(3.19) and (3.18) with respect to the shaft’s pose parameters s and stacking them into
the global Jacobian J

Jid =
∂Îid
∂s

=
1

L

(
I
F
i − I

B
i

) ∂a
∂d

Å
n

T

i
∂ci
∂s

ã
. (3.23)

The actual state update is then performed according to

s = s + ∆s, (3.24)

with the pseudo-inverse J+ of J and

∆s = J+E. (3.25)

The optimization is stopped for the termination criteria ∆s ≈ 0 or after a fixed number
of iterations.

At this point, we recall that the visual measurement constitutes a local refinement
step and the state space refers always to the space-time corrected estimate of an ex-
ternal sensor source. Hence, the tracking results is transformed back to global image
coordinates.
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Figure 3.4: Determination of the shaft’s end point (tx, ty)
and pose estimation of functional part.
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Full Pose Estimation

Since the geometric model used for sampling color statistics for the CCD modality
does not consider the transition between instrument shaft and functional part, the final
values of the translational components tx and ty of the state vector need to be calculated
in a separate step. Otherwise, movements that are collinear with the instrument’s main
axis are not detected correctly and yield a drift of the contour model along the shaft. We
distinguish shaft and functional part by local intensity edges. Intensity edges can be
observed at the discontinuities between shaft and tip, along a number of N rays. The
rays extend linearly from a starting point pns, located at the distal end of the contour
model, toward the shaft’s orientation n, up to a reasonable search distance L. The
positions pns are chosen to uniformly sample the width of the shaft, taking the current
scaling factor of the model into account. Intensity gradients are sparsely evaluated at
the pixel positions pnl with a sampling rate l, along each of the rays

pnl = pns + dn, (3.26)

with d = L/l. If a intensity gradient exceeds a threshold φn, it is marked as feature
point fn and the algorithm continues with the next ray. If the maximum search length
is reached without finding a feature, the ray is omitted:

fn =

{
pn if ∆p > φn and d ≤ L,
0 otherwise.

(3.27)

Both the maximum search length and the threshold φn are dynamically adjusted de-
pendent on the averaged values of the preceding rays. Image noise is reduced before-
hand by applying a Gaussian filter.

The set of candidate feature points is used to find the transition between shaft and func-
tional part by line fitting. The feature set possibly contains few gross errors. To be ro-
bust against outliers, we apply the iterative RANdom SAmple Consensus (RANSAC)
paradigm [57]. In each iteration, the algorithm randomly chooses a minimum number



34 3 In Situ Knowledge Acquisition

of points to generate an instance of the model to be fitted. Accordingly, a line with the
implicit representation

L : θ1fx + θ2fy + θ3 = 0 (3.28)

requires a subset of two points. The residual points are checked for consistency with
the found parameterization θ, with an absolute fitting error of

eL(θ) =
∑
x

∣∣∣∣∣∣θ1fx + θ2fy + θ3»
θ2

1 + θ2
2

∣∣∣∣∣∣ (3.29)

and split into inliers, which agree with model parameterization within an acceptable
threshold, and outliers. The procedure is performed until the highest number of in-
liers is probably a good fit. In the final step, we vote the intersection of the fitted line
and the skeleton of the shaft as the transition to the functional instrument part. The
translational components tx and ty of the state vector are updated accordingly. Fig. 3.4
illustrates the approach.

Given the final instrument state, we estimate the pose of the articulated instrument
part. Using (3.5) the kinematics of the articulated tool tip is related to the camera view
and projected into image space. The projection is corrected according to the error be-
tween sensor-based prediction and image measurement at the current time step to pro-
vide an adequate alignment between shaft and tip part:

xe = (g ◦ fe)− ee, (3.30)

where ee = [s̃tx−stx , s̃ty−sty ]
T

. Function fe projects the current configuration of the tip
kinematics from the model to xe into image space, with e = (ei+1, · · · , ej) as defined in
(3.1).

Pose Initialization and Coherence Check

Since the utilized measurement modality operates merely on local image regions, the
last remaining aspect to be treated is automatic initialization and reinitialization of the
tracking system, both at the beginning of the tracking and in case of tracking loss.

As we have seen in the previous section, the relationship (3.5) constitutes an initial
guess of the instrument location in image space, associated with space-time corrected
error values. During successful tracking we remember these parameters with respect
to the sensor-based Cartesian prediction. To reduce the computational demands, the
workspace is partition with an octree representation and parameters are assigned to
the corresponding grid nodes according to the tree’s resolution. Values are averaged
in case of multiple grid occupancy. During a tracking loss this spatial indexing is used
to recall suitable parameters that reinitialize the measurement subsystem. If no data
is available for exactly the requested node, the spatial neighborhood is searched up to
a certain distance. If the procedure fails, a global visual search is performed, which
is based on color classification, i.e. the reddish surgical background is segmented.
More specific, identified pixels are combined to connected regions in a binary image



3.2 Tool Localization 35

by means of blob detection. An ensuing elliptic approximation of the connected com-
ponents that exceed a certain size defines the instrument shaft. We then compute the
major axis of the ellipses and vote the one with minimum distance to the projection of
the sensor-based estimate to be the candidate used to reinitialize the system.

After each tracking step, a coherence module constantly checks the quality of the mea-
surements and binds the local tracking with the (re-)initialization module in case of
a tracking loss. We have chosen a histogram-based approach, operating on the hue
and saturation channels of the image portion located within the contour boundaries
of the CCD tracking model under the computed pose. The normalized dissimilarity
between the histograms of the expected model appearanceHM and the current surface
observationHO is calculated using the Bhattacharyya distance

DBHA(HM ,HO) =

√
1− 1

HMHON2

∑
J

»
HM (J) · HO(J), (3.31)

with N being the total number of bins and Hi = 1
N

∑
J Hi(J). The pixels used for

evaluation are sparsely sampled with a uniform distribution over the image region in
question. If the dissimilarity exceeds a threshold φH the system is reinitialized, other-
wise the model histogram is updated according toH∗M = HO.

Evaluation

The proposed method was experimentally evaluated on our telesurgery setup. The
left needle driver of the system was tracked inside of a medical mockup model. Fig.
3.5 shows the scene. The projection of the kinematic prediction in image space is il-
lustrated blue, while the actual tracking result is depicted yellow. The two jaws of the
forceps are not modeled individually, but the center position is shown. The pose of
the functional instrument part is derived from encoder readings and adapted to the
tracked shaft position. Due to mechanical inaccuracies of the Bowden-wire driven for-
ceps, this method can give only an approximate estimate. Introducing an additional

Figure 3.5: Laparoscopic instrument tracking: the kinematic prediction of the instrument pose
is depicted in blue, the tracked position in yellow.

feature matching at the tip can further improve the result. To determine the accuracy
of the approach, about 700 frames were hand-labeled. The results of the correspond-
ing measurements are given in Fig. 3.6. The instrument pose as derived from the
kinematic prediction, the ground truth position, and the actual tracking position are



36 3 In Situ Knowledge Acquisition

 250

 300

 350

 400

 450

 500

 0  100  200  300  400  500  600  700

po
si

tio
n 

[p
x]

# frames

tracked position
ground truth

kinematic

(a)

 200

 250

 300

 350

 400

 450

 500

 0  100  200  300  400  500  600  700

po
si

tio
n 

[p
x]

# frames

tracked position
ground truth

kinematic

(b)

-25

-20

-15

-10

-5

 0

 5

 10

 15

 20

 0  100  200  300  400  500  600  700

er
ro

r 
[p

x]

# frames

(c)

-20

-10

 0

 10

 20

 30

 40

 0  100  200  300  400  500  600  700

er
ro

r 
[p

x]

# frames

(d)

Figure 3.6: (a) shows the tracked instrument position, the manually labeled ground truth posi-
tion, and the kinematic prediction for the x− component, (b) for the y− component. (c) respec-
tively (d) illustrates the corresponding tracking error.

separated for the x− and y− component. Since the instrument used exhibits an over-
all grayish/metallic appearance, the current main difficulties of the method arise in
distinguishing the transition between shaft and functional part. This can yield an er-
roneous offset of the tracked position toward the tip. While the applied Kalman filter
operates well during automated instrument guidance, where the instrument is moved
in a continuous motion, sudden changes in the instrument direction yield a track loss.
A particle filter that evaluates multiple hypothesis might improve this behavior during
manual operation. At the PAL resolution of our endoscope, we achieve a refresh rate
of approximately 23fps.

3.3 Depth Perception with Micro Endoscopes

Besides knowing the instrument’s location, autonomous in situ task planning and ex-
ecution also requires knowledge about the tissue geometry. Depth can be acquired
using many different approaches and at least as many ways exist to classify them. For
an extensive overview we refer to [37, 189, 77, 34] and to [183, 38] for a particular
focus on depth perception in minimally invasive interventions. With respect to our
application of augmenting surgical instruments with miniaturized stereo cameras, we
consider only optical methods that are based on triangulation, that is, stereo match-
ing and structured light (SL). Keep in mind that also direct tactile methods have been
used to recover depth in situ [103, 199]. Also the improved resolution of recent time-
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of-flight (ToF) cameras makes them interesting to enhance conventional laparoscopes
with depth perception capabilities, but results are noise and calibration difficult [84].

3.3.1 Combining Stereo Matching and Structured Light

The challenge of passive stereo is to find matching pixels in the images. This is the
correspondence problem, as introduced in Sec. 2.2. Given a calibrated camera sys-
tem, the search is constraint to the respective epipolar lines. Feature-based approaches
are capable of producing only sparse disparity maps or require elaborated gap inter-
polation, since they assign distinctive feature points. A variety of feature descriptors
are available, such as the Scale-Invariant Feature Transform (SIFT), Speeded Up Ro-
bust Features (SURF), Binary Robust Invariant Scalable Keypoints (BRISK), as well as
edge and line descriptors, to name typical candidates [200, 6]. Dense stereo methods
estimate a set of pixel-wise correspondences based on the correlation of the pixels in-
tensity or color value. The (dis-)similarity of pixels is rated with a metric that computes
a cost value for each match. Following the taxonomy of Scharstein, costs are then ag-
gregated by summing over a support region, and finally the best match is found in
an optimization step [173]. While local stereo approaches simply vote the support
region with the lowest cost, global stereo optimization makes explicit smoothness as-
sumptions. Typically, the problem is formulated in an energy minimization framework
[188]. Semi-global methods mimic global methods in considering only a spatial neigh-
borhood, resulting in a shorter computation time [81].

Regardless of the chosen method, passive stereo is susceptible to illumination changes
and has problems in poorly textured areas, since no correspondences can be found.
Most errors occur on depth discontinuities, where either the corresponding matching
area is not visible in the other image or the ordering constraint is violated. The latter
usually implies that objects in one image have the same spatial order in the second
image. This order might be permuted if objects are partially occluded by other objects.

Structured light can alleviated some of the issues mentioned. SL is an active triangula-
tion method, where one camera is replaced by a light projector that emits an artificial
structure onto the scene. The projection of this well-known pattern improves photo-
consistency and facilitates the correspondence search. Triangulation is then performed
between the deformation of the imaged pattern and the projected pattern. Therefore,
the pattern needs to be unambiguous to avoid misinterpretation. The coding of pat-
terns can refer to different strategies:

• Temporal multiplexing encodes pixel locations by a sequence of patterns. E.g.,
stripe indexing uses binary coding, where each mask consists of a different spa-
tial series of black and white stripes (e.g. a Gray code [86]). Therewith, each scene
point receives a unique illumination order, specifically N masks encode 2N − 1
stripes. Fringe patterns (e.g. sine waves) are used for phase unwrapping and
typically require less pattern sequences than binary encoded masks.

• Spatial multiplexing uses individually recognizable elements, called primitives or
characters of a codeword. A primitiv can e.g. be characterized by shape, color,
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or brightness. The pattern is created by grouping the primitives to globally non-
recurring codewords. Therewith, a specific position can be extracted by consid-
ering the local neighborhood. To enforce the global uniqueness constraint De
Bruijn graphs and M-Arrays are frequently applied [217, 25, 116].

• Frequency multiplexing performs phase unwrapping of fringe patterns in the fre-
quency domain rather than in the spatial domain, e.g. by Fourier transformation
[39].

At this point, we will not consider the multitude of proposed pattern designs more
detailed, but refer to the surveys [171, 146, 61]. Rather, we make some considerations
regarding our particular camera setup. For the miniaturized stereo endoscope, Awaiba
NanEye™ cameras with a resolution of 250×250px are used. The sensor’s package size
measures 1×1×1.5mm. A detailed description of the sensor is provided in Sec. 5.2.2.
The camera is designed for use in close range to the scene, approximately 3–15mm. The
resulting perspective shows only a small detail of the scene, exhibiting a homogeneous
surface. Adding artificial texture is therewith essential.

light-tight painting

saw line filled with painting

CMOS sensor (0.75x0.75mm)

4-wire ribbon cable

fibre optic
lens

chrome target pattern (1.0x1.0mm)

 

Figure 3.7: Proposed endoscopic micro stereo camera setup with additional micro projector
mounted below the two cameras.

In order to enable depth perception with the miniaturized cameras, we developed a
micro projector that enhances the surface with additional structure.chromium mask Our final recon-
struction system, which is illustrated in Fig. 3.7, features two micro cameras and the
projector, resulting in an overall size of approximately 2×2×1.5mm. Clearly, the mask
of the projector needs to be manufactured highly accurate. More precisely, the layout
of the designed pattern structure must be transferred to a mask area of 0.75mm2. To
meet this requirement, the pattern was formed in chromium on a glass substrate. For
the final assembly, the chromium mask is mounted behind the same type of lens as
used for the cameras, therewith featuring the same projection properties. Illumination
is provided with a 1mm fiber optic, which is mounted behind the mask, and a LED
light source. However, the production process of the mask poses restrictions on the
design of the pattern:
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1. The structure of the pattern needs to be binary, since the mask is realized as a
graphical optical blackout mask (GOBO). The chromium blocks light, while light
can pass through the glass substrate for the remaining regions.

2. The system is a fixed-pattern projector, thus the pattern layout is static and cannot
be changed over time.

3. The pattern structure has to be realized by means of a regular pixel grid.

Considering these limitations, we designed a binary one-shot pattern with globally
non-recurring spatial encoding. The pattern is presented more detailed in Sec. 3.3.4.

For now, it remains the question of how much information can be encoded with a bi-
nary one-shot pattern to disambiguate potential matches. The pattern is assembled
from primitives, where the set of all primitives is called the alphabet. Unambiguous
codewords are spatially arranged arrays of primitives. A larger alphabet makes it eas-
ier to assemble larger non-recurring pattern structures, since more primitives allow for
more codeword variations. However, decoding the pattern gets more complex, since
more individual primitives need to be distinguished. Likewise, longer codewords re-
duce the similarity between two words. That is, a higher Hamming distance is re-
quired. In return, recovering longer codewords demands for the correct decoding of
more primitives, which makes them susceptible to noise.

Binary primitives can only be varied by shape. Consequently, the spatial extent of the
primitives define the size of codewords, therewith determining the entropy of the pat-
tern. While larger shapes can be resolved easier in the camera image, they encode only
sparse locations, therewith limiting the resolution of the range image. According to
the Nyquist–Shannon sampling theorem, the aspect ratio of the mask’s grid spacing
and the sensor resolution needs to be at least twice as high to recover the primitives,
when sensors without Bayer patterns are used [140]. For example, see the shapes pro-

Figure 3.8: Primitive shapes proposed by Vuylsteke [206] (first row) and Griffin [64] (second
row) to encode grid positions. The spacing of the mask and the spatial extent of the shapes
with respect to the camera resolution define the number of distinguishable positions.

posed by Vuylsteke and Griffin [206, 64], depicted in Fig. 3.8. They assign only a single
codebit to every location, which is more robust to perspective distortion than using
large shapes. Indexing the grid points is then achieved by distributing the binary in-
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formation in the neighborhood.

To provide dense range maps, we aim to combine stereo matching with structured
light. A binary pattern with an alphabet size of only two primitives, where a pixel is
either set or unset, is used.stereo + SL The codewords are two-dimensional globally unambiguous
sub-windows of the pattern, centered at each pixel position. Being a pseudo-random
noise pattern (PSM), the layout represents also a suitable texture to support the cor-
respondence search using window-based dissimilarity measures in stereo matching.
Clearly, the projected pattern is subject to perspective deformation, which is why the
decoding success of the pattern also depends on the spatial extent of the sub-window.
I.e., smaller codewords are less prone regarding distortions. In our particular setup,
camera and projector have the same lens distortion properties. That is, for a small
baseline the imaged pattern shows relatively little distortion in the camera image that
is caused by the lens and most distortion is caused by the scene.

We treat each decoded position as a ground control point (GCP) that is assigned to
an unambiguous pattern position. The GCPs are integrated as a prior jointly with the
costs of stereo matching into a global energy minimization framework, illustrated in
Fig. 3.9.

left image 

right image 

pattern decoding 

matching 

energy function optimization 

depth map 

post processing 

Figure 3.9: Procedure of depth recovery: stereo matching costs are aggregated with GCP costs,
which result from pattern decoding. The final energy function is minimized in a global opti-
mization framework.

In the proposed approach, the spatial extent of the symbols and the codeword length
suitable to construct the pattern, do ultimately not only depend on the properties re-
quired for structured light. Rather, the requirements of stereo matching, specifically
the properties of the dissimilarity measure used, must be considered. To investigate
both aspect, we first define the arrangement of the stereo cameras and introduce a sim-
ulation environment that helps us to find good parameters. Afterwards, attention is
payed to the actual pattern design.

3.3.2 Sensor Arrangement

The camera arrangement of a stereoscopic setup strongly influences the quality of
depth reconstruction. In particular, two factors play an important role: the depth range
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Figure 3.10: (a) depth error and influence of the baseline on the common field of view; (b) range
resolution with ed = 1 for different baselines.

that is required for the intended application, i.e. znear < z < zfar, and the baseline b.
The depth error can be separated into correspondence error εd and geometric resolu-
tion z2

bf . The correspondence error is caused by mismatches during the disparity search
and increases e.g. with sensor noise. Applied to the general depth expression z = fb

d ,
the reconstruction error can be formulated with the Taylor approximation [59]

εz =
fb

d
− fb

d+ εd
=

z2εd
fb+ zεd

≈ z2

fb
εd. (3.32)

Finding a suitable camera configuration that meets the technical and environmental
conditions of our setting best, means to minimize the geometric error. Given fixed
camera properties, specifically focal length and resolution, the baseline can be chosen
with respect to the expected working distance of the sensor to the scene. In (3.32),
the geometric resolution z2

fb is quadratic in depth. For a fixed focal length f , it can be
reduced only by increasing the baseline. Camera calibration revealed a focal length of
f = 216px for the micro cameras.

Using (3.32) and assuming εd = 1 the range resolution for different baselines was eval-
uated for our setup. Results for the range of b =1.2...3.0mm are given in Fig. 3.10(b).
Note that this theoretical assessment is based on a pinhole model and neglects distor-
tion effects. Within the typical range of operation between 4 – 15mm, the expected
error for a baseline of 1.2mm is about twice as high as the error for a baseline of 3mm.
However, with the increase of the baseline also the disparity search range increases.
To avoid incorrect correspondences and to keep the computational complexity low, the
disparities should not significantly exceed 10 – 15 percent of the image width. Table
3.1 gives reference disparity values when distortion is neglected.

Wider baselines result in a shift of the overlapping image region toward higher depth
values, causing a loss of the near range (cf. Fig. 3.10(a)). Both camera images are



42 3 In Situ Knowledge Acquisition

aligned next to each other for

z =
b

2 tan
Ä
θ
2

ä . (3.33)

One possibility to increase the baseline artificially is to tilt the cameras towards each
other. However, we aim to realize the stereo camera pair directly on wafer level during
the production process. That is, two adjacent sensors are directly cut as one piece from
the silicon. This guarantees an optimal alignment, which is important at the small scale
of the setup, but modification of the sensor orientation becomes impossible.

distance

baseline 2 4 6 8 10 15

1.2 75 38 25 19 15 10
1.5 94 47 31 23 19 13
2.0 125 63 42 31 25 17
3.0 188 94 63 47 38 25

Table 3.1: Baseline over distance: theoretically resulting disparity in pixels. Distance and base-
line in mm.

Based on the above investigations and the expected range resolution, we have chosen
a baseline of 1.2mm for our setup. A 200µm saw line with a depth to the cover glass
of the lenses separates the sensors on silicon.1.2mm baseline The saw line as well as the housing are
painted light-tight to protect the sensors from interfering light.

Now that the geometry of the stereo system is set, we introduce a realistic simula-
tion environment, which mimics the setup. The simulation serves as the basis for our
experiments, since our access to the hardware is limited.

3.3.3 Sensor Simulation by Ray Tracing

Acquiring data sets with known ground truth is a difficult and time-consuming pro-
cess that typically requires an elaborated hardware setup, such as laser-range scanners.
In MIRS, in vivo ground truth can only be obtained through post-operative registration
with high-speed CT volume scans [185], but the approach is limited by the registration
accuracy. Once all data is captured, no changes can be made to the original configura-
tion, i.e. the camera parameters and the baseline are fixed. We introduce a ray tracing
emulation environment to test and optimize the proposed stereo system [11].

Being based on physical principles, ray tracing is capable of producing realistic-looking
images along with corresponding depth data. By GPU-acceleration, interactive real-
time applications can be implemented despite the computational complexity. As we
will see in the next sections, such a simulation environment also allows optimizing
the hardware setup, e.g. by evaluating different projection pattern layout. Our sim-
ulation is based upon the Nvidia OptiX™ ray tracer [150]. The engine abstracts ray
tracing in a general purpose pipeline and is not pre-configured for a specific rendering
method. Instead of capturing light that is emitted from the scene, ray tracing inverts
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the imaging process and traces the path light has taken through the scene backwards.
The simulation process can be divided into three steps: while the SDK handles trac-
ing a ray throughout the scene by traversing a node graph representation of the scene
model, the user has to specify the ray direction and the reflectance of the light by defin-
ing object surface properties and ambient light. To benchmark the quality of our depth
reconstruction approach, we particularly need to implement the characteristics of cam-
era and projector. An arbitrary number of cameras and projectors with corresponding
intrinsic and extrinsic parameters can be defined. The projector emits light through a
user-defined pattern, illuminating scene objects with the projection of the pattern.

To specify the direction of outgoing rays into the scene, the Bouguet lens model is used,
which accounts for tangential and radial distortion effects. The model is widely em-
ployed for camera calibration, thus enabling a simple transfer of real-world parameters
to the simulation. Since ray tracing reverses the light transfer process, the model needs
to be inverted [79]. In a similar manner, the regular (non-inverted) model is used to
describe the geometry of the projector.

point light source pattern texture scene 

l	  

light pattern lens 

(a)

u

v

(b)

Figure 3.11: Simulation process of the pattern projector: (a) pattern projector geometry; (b)
example pattern texture.

The pattern projector is implemented as a combination of a point light source with
an additional texture plane located in between the light source and the lens. projector

simulation
The in-

tensity of the projector is determined by first sampling the light without considering
the pattern and attenuating the intensity according to the pattern texture afterwards.
Black pixels block a ray of light, as illustrated in Fig.3.11(a). This yields a two-step
approach: first the pattern position that corresponds to a certain scene point is located
in order to calculate the light intensity of a ray. Then, the distortion model is applied
to account for the projector’s lens. Texture coordinates are obtained by normalizing
the direction vector l between the light source and the ray intersection with a scene
object’s z-component [u, v]

T
= [lx/lz, ly/lz]

T
. Due to the inverted light tracing process,

handling the projector’s lens distortion becomes analog to the task of correcting lens
distortions of cameras in the real world. Instead of mapping the coordinates of a dis-
torted image to an undistorted one, when asked to sample the attenuation value of a
distorted projection at coordinates [u, v]

T
, the coordinates are remapped to the equiv-

alent coordinates of an undistorted projection. With the substitution r2 = u2 + v2, we
get the undistorted coordinates ũ and ṽ with the Bouguet terms accounting for radial
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and tangential distortionñ
ũ
ṽ

ô
=
Ä
1 + k1r

2 + k2r
4 + k5r

6
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v

ô
+ dx (3.34)

and the tangential distortion term

dx =

ñ
2k3uv + k4(r2 + 2u2)
k3(r2 + 2v2) + 2k4uv

ô
, (3.35)

where k1, · · · , k5 are the distortion coefficients. Therewith, emulating the projector can
be summarized as follows:

Data: pattern texture T
Result: pixel intensity
foreach 3D scene point s do

//start with the point light model
intensity ← sample_point_light(light, s)
l← s− light.position
x← projectToPlane(l)
x← distort(x, light.instrinsics) //apply distortion
//check for valid coordinates and calculate intensity
if x ∈ sizeof(T) then

return intensity ∗ tex2D(T,x)
else

return 0
end

end

Simulating the camera is treated in a similar fashion, in which the point light is replaced
with a sensor model and as a matter of course the texture pattern is omitted. However,
the ray tracing principle request an inversion of the Bouguet model. The derivation of
the model inversion can be found in appendix A.1. The sensor model specifies how
the image sensor reacts to incoming light. E.g. specific sensor characteristics can be
simulated, such as noise performance. Note, that we also define a standard deviation
of the camera parameters to avoid a “perfect” calibration within the simulation. There-
with, camera parameters are slightly altered before the simulated images are rectified
for stereo reconstruction. Camera images resulting from different simulation steps are
illustrated in Fig. 3.12.

Since ray tracing calculates the intersection of all rays sent into the scene with the
scene’s objects, obtaining ground truth range information can be seen as a co-product,

ground truth where the length of a ray is output. To evaluate the quality of the depth reconstruction,
we use the quality metrics proposed by Scharstein and Szeliski [173]. Specifically the
root-mean-squared error (RMS)

R =

√
1

N

∑
n

|Dn − “Dn|2 (3.36)
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and the percentage bad matching pixels

B =
1

N

∑
n

|Dn − “Dn| > δb (3.37)

are calculated between the computed disparity map D and the ground truth disparity“D, where N is the total number of pixels and δb is a disparity error tolerance.

(a) (b)

(c) (d)

Figure 3.12: Examples of the ray tracing simulation: (a) simulation with Bouquet model; (b)
additional simulation of aperture; (c) projector with same intrinsic parameters as camera. Due
to the small baseline pattern distortion is mainly affected by the scene; (d) projector with same
focal scale and principle point, but zero lens distortion. All images were gamma-adjusted for
better visibility.
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3.3.4 Projection Pattern Design and Optimization

So far, we have derived the hardware-related parameters of the proposed miniaturized
stereoscopic system. Taking this into account, attention is now payed to the actual
layout of the pattern mask. Bear in mind that the design has to support stereo matching
and the encoding of spatial unambiguous grid positions equally. Hence, the following
questions need to be answered:

1. How can we design the pattern to support window-based stereo matching and
structured light alike?

2. How can we maximize the number of encoded grid positions on the pattern?

3. How can we minimize decoding and matching errors, therewith maximizing the
difference between individual codewords?

Pattern Design

Let us first assume a pattern that is solely employed for intensity-based stereo match-
ing. A pattern supports the correspondence search best, if pixels along epipolar lines
differ strongly within the disparity range d. Because of the static binary projection
property of the GOBO mask, we are forced to consider sub-windows to establish unique-
ness of pixel locations. Therewith, a pixel neighborhood defines a codeword with a
block size N = n × n and is matched against the d other blocks in the second image.
The larger the difference between the individual blocks, the better the matching score.
Konolige studied the design of ideal projection patterns used for passive stereo with
respect to the imperfections of camera and projector [99]. Specifically, he compared
different locally unambiguous patterns, i.e. local Hamming patterns and non-recurring
De Bruijn sequences [109]. Further, he investigated the influence of camera/projector
phase, blur, and aspect ratio on the reconstruction quality obtained with specific pat-
terns. However, neither extrinsic nor intrinsic parameters were accounted for. Image
processing was performed directly on artificial pattern images to simulate the effects.
We expand the idea of considering system specific parameters in order to find suitable
patterns. Instead of simply processing the pattern image, we simulate our entire hard-
ware setup within the ray tracing emulation introduced in the last section. Therewith,
real-world lens parameters as well as the geometric arrangement of the stereo camera
pair and the projector can be considered.

Summarized, intensity-based reconstruction requires patterns that vary as much as
possible locally within the disparity search range. In contrast, structured light ap-
proaches require globally unambiguous information to identify pixel coordinates. Our
pattern needs to combine both properties.global Hamming

pattern
Therefore, we propose a pattern design that

has a guaranteed minimum Hamming distance between all codewords, while the code-
words are globally non-recurring. Fig. 3.13 illustrates the difference. The Hamming
distance is defined as

dH(x,y) =
N∑
n=1

xn ⊕ yn, (3.38)



3.3 Depth Perception with Micro Endoscopes 47

local Hamming pattern

global Hamming pattern

disparity search range

encoded pixel position

Figure 3.13: Difference between local and global Hamming patterns: for local Hamming pat-
terns only the blocks within the disparity search range are non-recurring. Global Hamming
patterns guarantee a minimum Hamming distance between all codewords, while each code-
word is unambiguous. It encodes the centered pixel position of each block.

where x and y are two words with length N .

A natural bound on the information content representable with the global Hamming
pattern is its resolution. However, the chosen projector resolution also influences the
quality of window-based stereo matching. To estimate a suitable aspect ratio of the
camera’s and the projector’s pixel size, we employ the ray tracing simulation. The
aspect ratio

α =
projector resolution
camera resolution

(3.39)

is optimized, while the reconstruction quality obtained with a particular pattern resolu-
tion is rated. During the optimization process, random noise patterns were employed.
Local block matching stereo [100] is applied and the dissimilarity between pixels is
measured with the Sum of Absolute Differences (SAD)

ΦSAD(I, J) =
1

N

∑
n∈N
|In − Jn|, (3.40)

where In and Jn are the pixel values of the left and right image respectively and N
defines the window size. The overall reconstruction quality is evaluated according to

E = λ ·B +R, (3.41)

where B is the percentage of bad pixels, R is the root-mean-squared error, and λ is
a gain factor. Both errors are computed with respect to the ground truth disparity “D
obtained from ray tracing. As scene mode, the dental impression depicted in Fig. 3.12
was used. Fifteen different positions within the workspace of the camera are sampled
and the reconstruction quality is evaluated. Afterwards, a new projector resolution is
chosen according to an optimization strategy. The Covariance Matrix Adaption Evo-
lution Strategy (CMAES) [75] is applied to minimize the objective function E and the
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Figure 3.14: (a) pattern resolution optimization; (b) word set over Hamming distance for a word
size of 7×7px (—) and the required number of words for the 125×125px projection pattern (—).

evaluation of all camera poses is repeated until convergence. The resulting errors are
illustrated in Fig. 3.14(a). Based on this theoretical assessment, half the image sensor
resolution was chosen as a starting point for the projector prototype. The specific imag-
ing capabilities are tested on the actual hardware, cf. Sec. 3.3.7.

Next, the codeword size N = n ·n needs to be determined. This final step also answers
the question of the degree of fault tolerance of the pattern. Let us start by considering
the number of codewords that are available for pattern generation for am-ary alphabet
A, where |A| = m. All codewords are designed to provide a guaranteed minimum
Hamming distance d to all other words of the pattern. In AN , the Hamming sphere
with radius d centered at a codeword x is the set of all words where the Hamming
distance to x is at most d [165]:

Sd(x) =
¶
y ∈ AN |dH(x,y) ≤ d

©
. (3.42)

The cardinality of some sphere Sd(x) ⊆ AN iscodewords

|Sd(x)| =
d∑
i=0

Ç
N

i

å
(m− 1)i, (3.43)

where m = |A|. There are |C| spheres, thus

|AN | = mN ≥ |C|
d∑
i=0

Ç
N

i

å
(m− 1)i. (3.44)

Solving for |C| yields to a bound for the number of codewords with minimum Ham-
ming distance d:

|C| ≤ mN∑d
i=0

(N
i

)
(m− 1)i

. (3.45)

Clearly, the set of possible codewords with a greater Hamming distance is exhausted
more quickly for short sequences and increasing |AN |. However, the risk of decoding
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errors also increases with the word length, since noise impedes a correct classification
of pixels. Intensity-based matching shows exactly the opposite behavior. Here, a small
block size is susceptible to noise, but yields sharp depth boundaries. The depth con-
fidence increases for larger blocks, since more information is considered, but tends to
blur depth discontinuity. We have chosen a word size of 7×7 and a pattern size of
125×125px. Fig. 3.14(b) illustrates the progression of the available word set over Ham-
ming distance. For this size, a total number of 118·118 = 13, 924 globally non-recurrent
codewords is required.

Pattern Generation

Unfortunately, the above-introduced globally non-recurrent projection pattern with
guaranteed minimum Hamming distance between all codewords cannot be created in
a descriptive way. This means that there is no known rule, after which the matrix can
be created. A generative generation of the matrix in a trial-and-error manner is com-
putationally expensive. In particular, the set of codewords decreases with increasing
Hamming distance and makes it difficult to fill the matrix (cf. Fig. 3.14(b)). Morano
et al. created a small 45×45 pseudo random structure by checking all existing code-
words for consistence with the constraints after adding a new letter of the alphabet
used [124]. We introduce an accelerated version of this method. The algorithm starts

Figure 3.15: Process of generating a binary globally non-recurring pseudorandom pattern with
word size 3× 3.

by seeding one n×n codeword at the top left corner of the pattern with a random pixel
assignment (cf. Fig. 3.15). The rest of the matrix is filled by iterating between adding
a new codeword and checking it against all existing words. A word is considered to
be valid if and only if the Hamming distance is exactly d and the word appears exactly
once in the entire matrix. If either condition is violated, the word is rejected and the
algorithm proceeds with a new random assignment. For the first row of the pattern,
adding a random column vector of height n generates a new word. Equally, adding a
row vector of size n yields pattern growth at the left margin. For the rest of the matrix,
adding a single pixel generates a new codeword each time.
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Algorithm 1: Validate codeword
def contains(node, word, dist = d)
begin

if (node == null) then
return false . word does not exists

end
if (length(word) == 0) then

return true . word found
end
letter, rest = head(word), tail(word) . split word
if contains(left ? node.left : node.right, rest, dist) then

return true . word found
else if (dist == 0) then

return false
else

return contains(left ? node.right : node.left, rest, dist− 1)
end

end

The bottleneck of this approach is the comparison of new codewords against all others.
A patter of size s × s requires q = (s − n + 1)2 words to fill the matrix. Thus, the
Hamming distance must be computed at least

c =
q−1∑
i=1

i =
q(q − 1)

2
(3.46)

Regarding our pattern of size 125×125px and codewords of 7×7 this yields to q =
14, 161 and c = 100, 259, 880 codeword comparisons.

To efficiently generate larger binary patterns, we boost the codeword comparison us-
ing a binary tree. Two main operations are performed on the tree: insertion of a new
codeword and validation of a codeword. The insertion operation is trivial: while iter-
ating over the positions of the letters of a codeword, we add a new left subtree for the
letter 0 and a right subtree for the letter 1. The contains operation recursively checks if
a codeword is valid, thus it does not exists in the tree and differs in d positions from
all other words (cf. algorithm 1). The method starts at the root node with dist = d. If
the node is unset, the tree does not contain the word. Otherwise, the word length is
checked. If it is zero, the current node represents the word, otherwise we recursively
descent in the left respectively right node. If the word has not been found up to this
point, it must be checked whether it differs dist positions from all other words. This is
the case for dist == 0. Otherwise we validate the rest of the word with the Hamming
distance set to dist = dist− 1.

3.3.5 Energy Formulation

To efficiently combine stereo matching and the decoded pattern information, we for-
mulate the depth reconstruction as an energy minimization problem. A high matching
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confidence is assumed for pixel positions that are recovered from the projected pattern
structure. We treat them as a sparse set of ground control points with known disparity.
The GCPs are used as regularization term to constrain the disparity search in a global
Markov Random Field (MRF) stereo framework. From a Bayesian perspective the pos-
terior probability, including the GCP regularization prior, can be written as [207]

ρ(D|Is, G) ∝ ρ(Is|D)ρ(G|D)ρ(D), (3.47)

where D is the dense disparity map, G are sparsely distributed GCPs, and Is = (I, J)
is the stereo image pair. Taking the negative logarithm

− log ρ(D|Is, G) = − log ρ(Is|D)− log ρ(G|D)− log ρ(D) (3.48)

casts the problem to a Gibbs energy minimization [189] with

E(D) = Ed(D) + λgEg(D) + λsEs(D). (3.49)

The term Ed is the data energy, Es the smoothness prior energy and Eg the GCP en-
ergy. The weights λg and λs control the influence of the regularization terms on the
overall energy. The corresponding graphical model of the MRF is an undirected graph
G = (V,E), where a value dp from the finite label set of disparity values d ∈ L is as-
signed to every node p ∈ V , as illustrated in Fig. 3.16(a). The nodes correspond to the
discrete pixel grid of the image. For the sake of simplicity scalar indices are used to
identify pixel positions instead of a vector notation in the sequel.

The likelihood energy of the data term Ed measures the intensity consistency of pixel
correspondences for a potential disparity dp

Ed(D) =
∑
p∈I

ψp(dp), (3.50)

where
ψp(dp) = min (Φ(Ip, Jp+d),∆d) (3.51)

is a pixel-wise cost between both stereo image pairs for a given disparity dp using
a dissimilarity function Φ(·, ·). The costs are truncated at ∆d. We employ the non-
parametric Census transform [216, 215], since it ideally supports the projected Ham-
ming pattern. The Census transform compares the gray value of the central pixel of a
window with all neighbors in a predefined order, i.e. clockwise:

ξ(Ii, Ij) =

{
1 if Ii > Ij ,

0 if Ii ≤ Ij .
(3.52)

The resulting binary descriptor C represents a mapping of the pixel intensities with
respect to the central pixel calculated for both of the stereo images

C(Ii) =
⊗
n∈N

ξ(Ii, In), (3.53)
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Figure 3.16: (a) graphical model of the stereo Markov random field; and (b) standard 4-
connected neighborhood.

where the operator ⊗ concatenates the result of the single intensity comparisons. The
final dissimilarity is then measured using the Hamming distance (3.38) between the
two bit vectors:

Φτ (Ii, Jj) = dH(C(Ii), C(Jj)). (3.54)

It makes sense to choose the window size of the Census transform equivalent to the
word size of the projection pattern. By design, mismatches between pixel positions
therewith vary by at least the minimum Hamming distance of the pattern codewords.
Since no pixel values are compared directly, the Census transform is also capable of
handling sensor-related brightness variations, which cannot be avoided with the small
cameras despite an illumination sensitivity calibration of the CMOS sensors.

To render the ill-posed stereo matching problem well-posed, regularization is nec-
essary in addition to the likelihood obtained from the dissimilarity measure. Local
smoothness is encoded with a regularization prior using the standard 4-connected
neighborhood (cf. 3.16(b)). The smoothness function penalizes variations between la-
bels of nodes in the neighborhood, assuming piecewise smoothness of the scene depth

Es(D) =
∑

(i,j)∈N4

ψij(di, dj), (3.55)

with
ψij(di, dj) = min (wij · |di − dj |a,∆s) . (3.56)

We employ two widely used models, where penalty costs are either chosen to increase
linearly (a = 1), or quadratically (a = 2). The costs are truncated at a maximum value
∆s. The scalar wij allows pairwise weighting of the costs.

Additional regularization helps to improve reconstruction quality. A priori knowledge
about the scene can be employed as constraint, e.g. obtained from laser-range finders,
image-region segmentation, or reliably matched feature points [60, 207, 35, 187, 211,
219].

In our case, the prior comes from pattern decoding, which allows indexing spatially
unique pixel positions. As with any binary-encoded one-shot structured light method,
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decoding success depends significantly on the perspective distortion of the projected
codewords on the scene’s surface. GCPsThis is also why small codewords are more robust
against distortion. Remember that our projector is equipped with the same type of lens
than the cameras, therewith most of the distortion is caused by the scene itself. For this
reason, successfully decoded words are expected to cluster in spatially connected re-
gions with low surface curvature. In conventional structured light settings, positions
decoded in the camera image need to be related to the projector to infer depth. Hence, it
is necessary to perform projector calibration. To become independent of any additional
calibration other than the cameras, we decode the pattern in both image pairs. After
finding corresponding codewords in both images the disparity can be calculated with
respect to the stereo camera configuration. [93] proposed this advantageous method to
support the correspondence search in stereo matching by projecting a continuous color
pattern. Here, the projector can be positioned freely in space, while we need to keep
the distance to the cameras as small as possible to minimize perspective distortion.

Prior to pattern decoding, the input images are down-sampled with the aspect ratio
α between camera and projector, since only pixels up to the resolution of the pattern
mask can be encoded unambiguously. Dynamic thresholding is applied and decoding
is performed according to algorithm 1, whereat the word input parameter is build from
binary pixel values. Each sub-window of the chosen codeword size is validated in the
images. Thereafter, decoded pixel positions are checked for coherence. The codeword
is rejected, if it was not found in both images or the spatial offset indicates a decod-
ing error. Disparity values for the ground control points are calculated by comparing
matching codewords in the left and right image respectively. The final ground con-
trol point map ‹D is obtained by up-sampling the set of found GCP disparities to the
camera resolution. Assuming piecewise smoothness of the scene depth, gaps resulting
from the aspect ration α are filled in this process with the disparity value of the neigh-
boring GCP.

The resulting disparity values of the ground control points ‹D are propagated within
their spatial neighborhood to interpolate a dense GCP map G(‹D). Decoded GCPs tend
to cluster, since the decoding success depends on factors including the degree of local
pattern distortion. Contour pixels of recovered GCP clusters are organized in a k-d tree
structure. Non-GCP pixel values are predicted based on the distance-weighted values
of the k neighboring GCPs with

G(‹D) =
∑
p∈D̃

(∑
q∈Nknn

w̃pq‹Dq∑
q∈Nknn

w̃pq

)
. (3.57)

The distances are penalized with an inverse quadratic disparity weight

w̃pq =
1

1 + (‖p− q‖22)2
. (3.58)

Further, we impose a confidence value for interpolated pixels of the dense disparity
map of ground control points. We fit a bivariate Gaussian to each of the k GCP clus-
ters. Pixels lying within the range of the Gaussian are scored with a confidence value
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Figure 3.17: (a) calculation of the confidence value cp for pixel p; (b) Student’s-T distribution
and derived energy in log-space.

of cp = 1.0. Non-GCP pixels p receive their confidence value from the neighboring
GCP’s, determined by their corresponding Gaussian. Therefore, we expand the initial
distribution such that the new distribution starts at the boundaries of the old Gaus-
sian. This step is illustrated in Fig. 3.17(a), where the new influence region is depicted
brighter than the initial distribution. We calculate the distance h to the nearest ellipse
point ek of pixel p and follow that direction beginning from ek with the same distance,
resulting in the new pixel position ck. The final confidence score for the non-GCP pixel
p is then evaluated by

cp = min

(∑
k

exp

Å
−1

2
E

T

ckΣkEck

ã
, 1.0

)
. (3.59)

The GCP energy term
Eg(D) =

∑
p∈I

ψgcp(dp, d̃p), (3.60)

with d̃ ∈ ‹D, penalizes diverging disparity assignments according to

ψgcp(dp, d̃p) =

Φs(dp, d̃p, cp) , if cp > γ
Φs(dmin,dmax,1.0)

|L| , otherwise,
(3.61)

if the pixel received a confidence value that exceeds γ. The energy function Φs is de-
rived from a Student’s-T distribution

Φs(dp, d̃p, cp) = log

Ñ
1Ä

1 + |dp − d̃p|2c2
p

ä−1

é
. (3.62)

An example distribution for c = 1.0 is shown in Fig. 3.17(b).
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The finally resulting disparity assignment can be obtained by applying existing energy
minimization techniques. We implemented belief propagation [55] and a graph cut
[96], more precisely the FastPD algorithm [97].

3.3.6 Disparity Refinement

As a last step, we refine the resulting disparities. Occlusion handling is treated by
calculating the disparity map from both left and right images and performing a con-
sistency check to eliminate mismatches. That is, disparity values from one image are
reprojected into the other image. If the difference of the disparity values exceeds an
acceptable tolerance δt, the pixel is invalidated. Otherwise, the final disparity value is
computed by taking the average of both values.

Dp =

{
0, if |Dr,p −Dl,p| > δt,
|Dr,p−Dl,p|

2 , else.
(3.63)

Local speckle peaks are identified to remove spurious pixels that do not represent a
valid structure. Missing disparity values, which result from removing small segments,
are interpolated to obtain a complete disparity map. Finally, the disparity map is pro-
cessed with a bilateral mean filter to smooth depth transitions. The bilateral mean
filter is an edge-preserving filter, which treats the spatial and the color domain with
two separate Gaussian kernels:

Dp =

∑
q∈N Gσs(‖p− q‖) ·Gσc(Dp −Dq) ·Dq∑
q∈N Gσs(‖p− q‖) ·Gσc(Dp −Dq)

, (3.64)

where Gσs and Gσc are spatial Gaussians in the coordinate (s) respectively color (c)
domain.

3.3.7 Experiments

We start by evaluating the decoding performance under different settings in the simu-
lation environment. Camera parameters were transferred from calibration results ob-
tained with the NanEye™ micro cameras. Similar distortion parameters were assumed
for the projector lens. Calibration was performed with a checkerboard pattern, where
each checkerboard is 1mm in length. The pattern was exposed to a printed circuit
board (PCB) to guarantee the required accuracy. To adjust image appearance of both
sensors, a linear illumination scan was performed and lookup calibration tables were

x y z

translation -1.20088 -0.00424 0.01008
rotation 0.00151 -0.00854 -0.00602

Table 3.2: Result of extrinsic camera calibration. Translation in mm, rotation as Rodrigues vec-
tor. Remember that the stereo setup was design with a translation of (−1.2, 0.0, 0.0)

T

and zero
rotation.
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generated. Of particular interest is the result of the extrinsic calibration, since we speci-
fied the sensor arrangement in Sec. 3.3.2. As table 3.2 shows, the baseline of 1.2mm was
met precisely. As expected, manufacturing the stereo setup directly on silicon yields
zero rotation of the two sensors, which allows omitting the rectification step and the
camera images can simply be corrected for lens distortion.

With respect to the proposed pattern design, we investigate the effect of Hamming dis-
tance, sensor noise, viewing angle and projector rotation in a synthetic scene, rendered
with the above-introduced ray tracing framework. As reference, a planar test scene
was used, depicted in Fig. 3.18. The distance between plane and camera is 1cm. Two

Figure 3.18: Left camera view on the simulated planar test scene. Top row: illustration of the
two different illumination settings used during the experiments, each with and without pro-
jected pattern. Moderate white Gaussian noise with a standard deviation of σ = 0.16 was
added to the images with simulated pattern. The projector is positioned according to the pro-
posed setup, thus with a baseline of 0.6mm to each camera and with a y-offset of 0.6mm below
the cameras. Bottom row, from left to right: projector rotation of 3.0◦ with respect to the camera
(first image), and impact of larger baselines between camera and projector with 1.2mm, 2.4mm,
and 3.6mm on pattern distortion.

different brightness settings of the projector, referred to as “level 1” for sufficient illu-
mination and as “level 2” for a significantly reduced brightness, illuminate the scene.
Decoding was performed with and without sensor noise. To simulate moderate sen-
sor noise, additional Gaussian white noise with a standard deviation of σ = 0.16 was
added to the images. Imperfect alignment of the projector against the camera was
simulated by rotating the projector with respect to the camera. At an angle of approxi-
mately 3◦ decoding performance reduces to zero. This fact indicates that the projector
alignment for the final hardware setup needs to be performed with a precise alignment
device, since the rotation cannot be determined and compensated for. Fig. 3.18 also
demonstrates the effect of larger baselines between camera and projector. An increas-
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ing baseline not only significantly reduces the observable projection area, but increases
pattern distortion. Table 3.3 summarizes the results with the number of successfully
decoded pixel positions.

dH noise σ intensity projector rotation decoded %

1 0.0 level 1 0.0 739 4.73
1 0.15 level 1 0.0 618 3.96
1 0.0 level 2 0.0 722 4.62
1 0.15 level 2 0.0 712 4.56
1 0.0 level 1 3.0 340 2.18
1 0.15 level 1 3.0 291 1.86
1 0.0 level 2 3.0 334 2.14
1 0.15 level 2 3.0 131 0.84
4 0.0 level 1 0.0 2722 17.42
4 0.15 level 1 0.0 2399 15.35
4 0.0 level 2 0.0 2693 17.23
4 0.15 level 2 0.0 1859 11.90
4 0.0 level 1 3.0 2016 12.90
4 0.15 level 1 3.0 1875 12.00
4 0.0 level 2 3.0 1935 12.38
4 0.15 level 2 3.0 1292 8.27
8 0.0 level 1 0.0 6412 41.04
8 0.15 level 1 0.0 5971 38.22
8 0.0 level 2 0.0 6453 41.30
8 0.15 level 2 0.0 5051 32.33
8 0.0 level 1 3.0 5724 36.63
8 0.15 level 1 3.0 5415 34.66
8 0.0 level 2 3.0 5792 37.07
8 0.15 level 2 3.0 4423 28.31

Table 3.3: Evaluation of the decoding performance based on the ray tracing emulation environ-
ment. Hamming distance dH ; noise σ of sensor; projector light intensity level; viewing angle
on scene in degree; projector rotation about the viewing axis in degree; number of decoded
pattern pixels; percentage of decoded pattern pixels.

We recall that we deal with the special case of using the same lens for both camera and
projector. If camera and projector would share the same origin, the camera captures
the projected pattern distortion-free. Apart from slanted scene objects, the imaged pat-
tern distortion is caused by the offset between camera and projector. Due to the axis
alignment of camera and projector, as well as the small baseline in our setting, this dis-
tortion is comparably low. Therefore, it is also possible to decode the pattern without
prior remapping of the camera image that removes lens distortion. The effect is de-
picted in Fig. 3.19, second and third row. While images in the second row are decoded
as captured by the camera, images in the third row are undistorted beforehand. We use
the color coding depicted in the first row of Fig. 3.19 to visualize the pixel displacement
with respect to the original pattern mask. Pattern displacement ground truth, obtained
from the ray tracing emulation, is provided for some of the scenes. Images in the third
row illustrate the effect on a non-planar dental impression model. As a further test
scene, we use a down-scaled version of the Stanford bunny. In general, the Hamming



58 3 In Situ Knowledge Acquisition

distance chosen for our pattern (dH = 8) provides a satisfactory decoding performance.
However, decoding success significantly decreases on slanted surfaces.



Figure 3.19: Decoded pixel positions after consistency check. First row: color coding scheme.
Second row: the camera image was not undistorted before decoding with Hamming distances
1, 4, and 8. Third row: Same scene, but undistorted camera image. Fourth row: decoding of a
tooth, without and with undistorting the image. Fifth row: Stanford bunny and closeup of the
bunny’s head. The model was down-scaled to fit the camera requirements. Sixth row: ground
truth pattern displacement.
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Next, we investigate the integration of the GCPs into the reconstruction framework.
Window-based dissimilarity measures generally perform well under the idealized con-
ditions of the emulation environment. To better elucidate the influence of the GCP
prior, we decided to use the absolute differences (AD) of pixels as dissimilarity mea-
sure. Since AD does not score an image region but single pixels, it is highly sensitive
to noise. Therewith, regularization is important to avoid mismatches and gaps in the
range map. Strong weighting of the regularization energy Es, which considerers the 4-
connected neighborhood of pixels, might yield to over smoothing of disparity values.
In contrast, the GCP energy Eg integrates scene-dependent knowledge with already
well inferred disparity values from pattern decoding. The information gained from
the encoded pattern mask is too sparse to describe the scene. However, it reduces un-
certainty during correspondence search.

The experiments were conducted on scenes of different difficulty (cf. Fig. 3.20). Again,
noise with a standard deviation of σ = 0.16 was added to the camera images. No
post processing, such as gap interpolation, disparity refinement, or left/right consis-
tency check was performed, expect the removal of speckle. With respect to each test
scene, the first row shows the undistorted left and right camera image as well as the
ground truth range map. The first image of the second row shows the decoded GCPs
after coherence check. Compared to the decoded GCPs of the right camera image,
which are depicted in the third row, the number of found GCPs is reduced after match-
ing the left and right ground control points. This effect can mainly be attributed to
the undistortion process, which destroys the pattern structure in certain image areas.
The finally inferred disparity values of the decoded pattern are shown in the second
row, second image. To calculate the final range map, we employed belief propagation
and stoped the optimization process after four respectively eight iterations to score re-
sults. This allows comparing the influence of the GCP prior with respect to the conven-
tional smoothness prior. While the last two images in the second row show the results
with GCP prior, the optimization of the last two range images of the third row was
performed without ground control points. Clearly, the results obtained with ground
control points after four optimization steps already outperform the results after eight
iterations, when only the smoothness prior is used.





Figure 3.20: With respect to each test scene, the first row shows the undistorted left and right
camera image along with the ground truth range map. The second row shows the decoded
GCPs after coherence check and the corresponding GCP disparities. The last two images of
the second row show the inferred disparities after four respectively eight iterations using be-
lief propagation and the absolute difference dissimilarity measure. The corresponding results
without the use of the GCP prior are illustrated in the last two images of the third row. Finally,
the first two images of the third row show the GCPs that were decoded in the right camera im-
age, and the resulting disparity map of the proposed framework using the Census transform
and the GCP prior.

Figure 3.21: Mismatch of current projector and camera resolution: the GOBO mask cannot
be imaged by the micro camera when mounted co-planar. For the next prototype, a lower
projector resolution is necessary.
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The described setup was actually realized on hardware. The pattern is transferred by
means of chromium to a glass substrate with a size of 0.75×0.75mm. The substrate was
mounted behind the lens using a precise alignment device. A 1mm fiber optic light
guide was bonded to provide illumination. The prototype projector was assembled by
Awaiba GmbH. Fig. 3.22 illustrates the projector and the achieved quality: the first im-
age shows the entire projection area on a plane surface, where the borders are distorted
by the lens. Notice the projector at the upper edge of the image. The last image shows
the projection on a dental impression model, whereas the pattern structure is clearly
visible.

Figure 3.22: The assembled micro projector system (tip dimension 1×1mm) is shown in the
center image: the pattern structure was transferred to a GOBO mask and mounted behind a
lens that is bonded to a 1mm fiber optic light guide. The first image shows the total projection
with border distortion. The last image shows the projection of the pattern on a dental test scene.

Based on the experiments of Sec. 3.3.4, half the camera resolution was used to real-
ize the globally unambiguous Hamming pattern on the GOBO mask. This decision
was based on two aspects. micro

projector
On one hand, we wanted to evaluate the imaging perfor-

mance of the projector with a high resolution. The result can then serve as a reference
for future projector prototypes. On the other hand, we wanted to examine the resolu-
tion capability of the micro cameras. For this, also a grayscale camera without Bayer
pattern was employed, which improves sharpness due to the missing color interpola-
tion. Unfortunately, the manufactured pattern structure is too small to be imaged with
the current version of the micro cameras, as depicted in Fig. 3.21. Based on the gained
experience, further investigations are necessary to find a matching projector resolution.

Therefore, depth perception with the proposed hardware setup is currently performed
without decoding the pattern. However, note that the projection is still essential to
enable dense depth reconstruction. The projector was offset with respect to the micro
cameras so that the pattern was accurately imaged. This yields pattern distortion in
the image and a significant brightness decrease. Hence, different reconstructed objects
were painted with white color to enhance the texture projection. Specifically, we re-
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constructed some wiring on a surgical instrument, a heart symbol, a depression on a
plaster cast model, a tooth from a dental impression model, and a screw head, as illus-
trated in Fig. 3.23. The first two rows show the micro camera view with and without
texture projection respectively. An external light source illuminated the scene for im-
ages captured without pattern projection. The last two rows show the inferred depth
using belief propagation and the FastPD algorithm, as introduced above. Both optimiz-
ers provide similar results. Also note the spatial extent of the reconstructed structures.
The “wiring” shown on the first object has a spatial extent of only 0.1-0.2mm. When
additionally using the GCP prior, we expect depth maps to become smoother.
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Figure 3.23: Reconstruction of different objects with the miniaturized camera setup. Columns:
scene image without pattern projection, captured with micro camera and external illumination;
camera image with pattern projection; disparity map obtained with belief propagation; dispar-
ity map obtained with graph cut. Rows: wires on a surgical instrument (wire diameter approx.
0.1-0.2mm, diameter of instrument shaft is 8mm); heart symbol; recess in dental impression;
tooth of dental impression; screw head.





4 Interactive System Control

The (partial) autonomous execution and assistance of frequently performed, error-prone, and
exhausting tasks has shown enormous potential to speed up procedures and to mentally relieve
surgeons. To allow autonomous behavior, integration of contextual information about the si-
tus is necessary. Further, intuitive user interfaces are required to interact with the surgical
robot. Specifically calling system commands is essential, but has been paid little attention yet.
In this chapter, we tackle these problems by introducing a gesture-based input channel. Like-
wise, we build on the results of the preceding chapter to deduce control methods for corrective
motion planning, taking the acquired situs knowledge into account. We investigate in accu-
rately guiding instruments to target regions and in assisting surgeons during small-scaled fine
manipulation tasks.

4.1 Instrument and System Control

We distinguish between the control strategies that generate motion commands for the
manipulators and the control of system functionality. The two control types differ in
the amount of human interaction required. System control, i.e. calling a specific sys-
tem command, is always activated by the operator. In contrast, instrument control
demands previously acquired situs knowledge, but at the same time might also rely
on additional meaningful input from the operator. For example, endoscope control
uses a defined target position to align the camera. On one hand, this information can
be conveyed while the camera follows a surgical tool, whereas the motion command
is deduced from the position of the tracked tool. On the other hand, the operator can
also manually define a target. Providing intuitive input channels that facilitate the
handling of the growing amount of functionality and at the same time tightly integrat-
ing the possibility of conveying task-relevant information, which is associated with the
triggered function, is challenging. We start by reviewing existing interfaces regarding
these manifold requirements.

Manual control is still the most widespread method for both instrument- and system
control. It comes with the burden of having the surgeon to actuate a clutch that de-
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couples the input devices from the manipulators. After decoupling, the input devices
can be used with another instrument or as a pointing device. To resume telepresence
control, the posture of manipulator and input device needs to be synchronized. The
procedure is time-consuming and inconvenient. Additional foot pedals are typically
provided to activate and deactivate control.

Hands-free control entered the operating theater with the emergence of robot assis-
tants. For instance, voice-activated control allows the surgeon to move the camera
based on a limited number of voice commands (e.g., “left, right, start, stop”), while
still being able to handle the surgical instruments [170]. The surgeon must often wear
a dedicated microphone to ensure an adequate voice quality for speech recognition.
The recognition rate of such short commands, which are not presented in the con-
text of a sentence, still leaves room for improvement. Other systems aim to detect the
motion of body parts. [136] uses head movements: head worn IR-emitting tracking
markers were detected and their movement was interpreted as input command. A
drawback of many hands-free methods is that a given command usually only allows
executing a single manipulator movement at a time (either horizontally, vertically, or
depths), prolonging and complicating the alignment. [63] replace head tracking with
the detection of “mouse-gesture” commands and therewith made the idea applicable
to master-consoles that fix the surgeon’s head. [65] explored alternative input devices
to remotely control the surgical instruments of the daVinci robot. Using a Microsoft
Kinect™ sensor, 3D hand gesture tracking was used for fine manipulation tasks. The
instrument pose is derived from the relative positions of both hands.

Gaze contingent control currently develops to an interesting alternative. Mylonas et al.
utilize the relationship between horizontal disparity of both eyes and depth perception,
which varies with the viewing distance, to deduce depth information at the operator’s
fixation point [204]. The information gained was e.g. used to adaptive motion stabi-
lization during beating heart surgery [128], to interactively prescribe virtual fixtures
[129], and to plan 3D paths in situ during focused energy ablation [184]. Noonon et al.
performed gaze contingent articulated robot control and evaluated strategies for joint
selection [137, 138]. An eye tracker was integrated into the daVinci™ console, which
allows video capturing of the eyes at 50fps. The eyes are illuminated with a fixed in-
frared light source and the corneal reflection is measured in relation to the position of
the pupil. This particular setting comes with the advantage of a fixed head position
and a non-obstructing view on the eyes, but is rather device specific and cannot be ap-
plied to other setups.

Workflow analysis draws the attention of researchers in order to model and analyze
medical procedures [110]. Knowledge about the course of action of a specific type of
intervention can be used to detect its current phase. Weede et al. applied the paradigm
to predict suitable laparoscope positions with a Markov model [209]. To increase the
recognition rate of the individual surgical stages, they extended the approach with an
instrument classification based on the visual bag-of-words approach [210]. With re-
spect to the extend of autonomy, workflow analysis is probably the most “intelligent”
of the suggested methods. However, the complexity of surgical trajectories represents
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a significant obstacle and large data sets are necessary to reliably train the underlying
models. This requirement is not easy to comply, since each single type of intervention
needs to be modeled individually.

Haptic constraints capitalize on the accuracy of robotic systems, enhancing the opera-
tion speed, and reduce mental stress, while permitting the user to retain ultimate con-
trol over the system [151]. Haptic virtual fixtures have been implemented in both med-
ical telepresence [23, 22, 28, 163] as well as in cooperative control systems [202, 31, 115]
to shape the motion of surgical instruments, e.g. to assist the operator during com-
plex tasks, such as knotting or cutting [88, 155]. The former systems usually offer
admittance-type haptic devices. The latter are impedance type robots, therewith main-
taining high stiffness.

The reviewed input interfaces reveal that, so far, the vast majority of effort has been put
on investigations to enhance instrument control. However, no significant alternatives
for user input are available. New input channels need to be naturally integrated into
the working environment, system controloffering a pervasive way to call system commands while
keeping the interaction time at a minimum. Beyond, the inclusion of ancillary instruc-
tions into this process remains a critical factor. To tackle these problems, we introduce
gesture-type input and interpret movements directed at the master’s haptic devices
as a user command [15]. The method facilitates the indication of task-relevant in situ
coordinates associated with the execution.

Following the individual stages of our initially presented task of tissue dissection, we
deduce control laws instrument

control
for corrective motion planning [9, 16]. We aim to automatically

align surgical tools with a specified target in situ. We guide both, the laparoscope
as well as surgical instruments. Visual servo control is well suited for this purpose,
since it operates directly on image data, therewith avoiding many of the system-related
uncertainties and supporting our approach of online surgery.

4.2 Gesture-based Input Interface

Gesture recognition is widely studied as a computer input modality (see e.g., [122, 126])
and increasingly used in the medical field, e.g., [32, 176]. In particular, hand gestures
are very intuitive and expressive, whereat two categories are distinguished: static fin-
ger configurations, also called postures, and dynamic gestures. In [154], for instance,
the authors proposed to instruct a teleoperated manipulator using natural sign lan-
guage. The signs define a spatial-temporal context for the ensuing robot behavior, e.g.
the user points to an object. In a similar fashion, we aim to transfer this easy under-
standable concept to the medical workstation and interpret the movements of the haptic
devices as input command. The following advantages compared to the prevalent menu-
type interfaces are expected:

• the execution time of gestures is constant compared to menu interfaces, where
the interaction time is dependent on the complexity of the menu,
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Figure 4.1: Equidistant resampling the
recorded instrument trajectory introduces
a uniform distribution of sampling points
independent of the execution speed.

• the assignment of gestures and commands is customizable to individuals,

• no time-consuming decoupling/resynchronization of the haptic devices with the
manipulators is necessary,

• due to the spatio-temporal context of the modality, ancillary location-dependent
information, such as the incision points of a suturing task, can be defined after
the command using the instrument as a pointing device .

At the master console, the recognition of a gesture command is activated by pressing a
foot pedal and completed when the pedal is released again.

4.2.1 Recognizing Gestures

Variations in the execution of gestures occur between different instantiations as well
as different users. Due to the close relationship to surgical workflow modeling, we
follow the successful application of discrete Hidden Markov Models (HMM) to classify
gestures [166, 160, 144, 159]. Discrete models have the advantage of requiring less
training and being computationally less expensive during the parameter optimization
over continuous Markov models [66, 139]. From an implementation point of view, it is
irrelevant whether the features used for training the model are obtained from encoder
readings of the haptic device or from the slave manipulators. We opted for the latter.

Markov Modeling

A Hidden Markov Model is a stochastic model with two random processes [156]. A
HMM can be described by the quintuple λ = (A,B,N,M, π), where N is the number
of hidden states {si : 1 ≤ i ≤ N} of the model, M the number of possible observation
symbols, A = {aij} the transition probability matrix between states si and sj , and the
observation symbol probability distribution in state i,B = {bi(k)} for {k : 1 ≤ k ≤M}.
Variable π denotes a probability distribution over the initial states. The first process of
the model is a hidden Markov chain and describes the dependency of the state sn,
reached at time n, from the previous state sn−1. The second stochastic process defines
the emission probability of the observation.
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Figure 4.2: Directional change of
one instrument (α) and directional
change of one instrument wrt. a sec-
ond instrument (β).
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For each of the gestures a model with left-right topology was applied: states are ar-
ranged in a linear progression, whereas each state is entered at least once and no tran-
sitions to past states are allowed. The HMMs were trained with the Baum-Welch al-
gorithm [156]. Experimental results revealed that four to six states are appropriate to
model the gestures. Approximately 25 demonstrations for each gesture were taught
by a person who was not involved in the later evaluation [14]. The Viterbi algorithm
was used to find the path with the highest likelihood ρ (Π|λ) through the topology of λ
that would generate the sequence Π [156]. In order to prevent the underflow problem
during longer time-series, a log-scaling is used.

Data Acquisition and Preprocessing

The trajectories of both instruments were sampled at a frequency of 10Hz and stored
in a data base. The recorded raw data is represented by si,n = (x, y, z, fx, fy, fz, g, t)i,n,
where (x, y, z)i,n =: pi,n is the Cartesian position of the instrument and (fx, fy, fz)i,n
the corresponding force, which occurs at the distal end of the instrument. Index i
indicates the associated instrument, n the number of the data point, g denotes the state
of the gripper (open/closed), and t is a timestamp. The varying execution speed of
gestures yields to an inhomogeneous distribution of sampling points with unequal
spacing and requires resampling the input data. For instance, trajectory segments that
are executed with low velocity, such as tight turns, comprise more sampling points
than fast movements, such as straight lines. To represent the data within a regularly
spaced distribution it is resampled position equidistant [87], that is with a uniform
spatial spacing l between an old position pi,n and the new position p̃i,n+1, as illustrated
in Fig. 4.1. The Euclidean distance dE is used for a linear interpolation, such that

dE(pi,n, p̃i,n+1)
!

= l. (4.1)

In doing so, minor non-meaningful geometrical variations, e.g. caused by human hand
tremor, are also removed. In the sequel, the preprocessed data is denoted with s̃ and
used for feature extraction.
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Features

After preprocessing, trajectories are represented by sampling points with equal dis-
tances along with the recorded instrument forces and the gripper state. To describe the
vector between two adjacent sampling points pi,n and pi,n+1, the substitution ∆pi,n =
pi,n+1−pi,n is applied, where ‖∆pi,n‖ = l after the resampling step. The model feature
vector ft = (f1, · · · , f12)t is derived from the input data as follows:

1. Change in direction of the instrument trajectory f1, f2: The change of the instru-
ment direction, defined by two adjacent points pi,n and pi,n+1 can be described
by the angle αt, enclosed by ∆pi,n−1 and ∆pi,n (cf. Fig. 4.2). To ensure a contin-
uous representation, sin and cosine of the angle are calculated [69]:

f1,t = cosαt =
∆pi,n−1 ×∆pi,n
‖∆pi,n−1‖ · ‖∆pi,n‖

, (4.2)

f2,t = sinαt =
∆pi,n−1∆pi,n

‖∆pi,n−1‖ · ‖∆pi,n‖
. (4.3)

2. Relative motion direction of one instrument wrt. to the second instrument
f3, f4: The feature describes the change of direction of one instrument regarding
the second instrument. E.g., it is indicated if the instruments move towards, or
away, from each other. Similar to (4.2) and (4.3), sin and cosine of the angle β are
calculated between the vectors ∆pi,n and v = pi,npj,n, where i and j denote the
two instruments. Also compare Fig. 4.2.

3. Velocity of an instrument f5, f6: The velocity of the instrument tip is numeri-
cally approximated with the timestamp t of the recorded data. After the linear
resampling of the trajectory, the velocity of each instrument is

f5/6,n =
l

s̃t,n − s̃t,n−1
, (4.4)

where l is the new distance between the two points after resampling. Note that
from the position equidistant resampling follows a resampling of the timestamps
that yields certain inaccuracies.

4. Distance between the two instruments f7: Depending on the gesture, the Eu-
clidean distance between two instruments varies over time or keeps similar (e.g.,
in case of parallel moving instruments). The feature represents the current dis-
tance and is denoted as

f7,n = ‖pi,n − pj,n‖ . (4.5)

5. Distance change between two instruments f8: In contrast to feature f7, the dis-
tance change between two instruments over time indicates the movement direc-
tion of one instrument wrt. the second one:

f8,n = ‖pi,n − pj,n‖ − ‖pi,n−1 − pj,n−1‖ . (4.6)
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6. State of the gripper f9, f10: The state of the grippers can directly be taken from
the recorded dataset and is represented with

f9/10,n = s̃g =

{
1, if the micro gripper is closed,
0 else.

(4.7)

7. Force magnitude f11, f12: The three-dimensional force vector is immediately avail-
able from the sensor reading. To be more robust against noise, only the force
magnitude is used:

f11/12,n =
√

s̃2
fx

+ s̃2
fy

+ s̃2
fz
. (4.8)

All features are normalized over the range of the demonstrations. Discrete observa-
tions are obtained by quantizing the feature vector using the k-means++ algorithm
[27].

4.2.2 Finding Intuitive Gestures

In principle, gesture-based input has the disadvantage that the gestures need to be
remembered and linked mentally to a surgical action, whereas menu entries only need
to be recognized. This requires greater cognitive effort and increases the risk of false
input commands. This disadvantage can be minimized if the gestures that need to be
remembered are intuitive. It is hence necessary to first identify gestures that would
feel intuitive for the user with respect to a certain surgical tasks and can therefore be
easily remembered and executed. For this purpose, an exploratory user experiment
was conducted. A fundamental part of the input method is that the surgeon can freely
combine any personalized gesture with any system function. To train the system with
individual gestures for each subject, however, would be to time-consuming. Thus, a
set of the four most distinct combinations of gestures and actions were used for the
later evaluation.

Materials and Methods

The goal of the study was to identify intuitive hand gestures, which are appropriate
to trigger a corresponding system function. The surgical actions itself were identified
to be recurrent during surgical interventions in advance. The study was conducted
with an opportunity sample of 22 participants, 14 of whom were male and 8 female.
The average age was 36yrs. with σ = 14yrs.. During the experiment subjects were
asked to spontaneously perform two alternative gestures that they would associate
with each of nine pre-selected surgical assistance function. In detail, we had a closer
look at the following automatable tasks: surgical knot tying, surgical suturing, retrac-
tion of the assistant arm, measuring of the distance between two points, alignment of
the endoscopic camera with a predefined position (in our case either “home position”
or “position one”), automated alignment of the camera with a surgical instrument, and
extraction of liquids by suction. The surgical tasks were chosen at random and each
action had to be repeated three times. First, the participants had to present two differ-
ent possibilities in order to elect their preferred gesture in the third repetition. There-
after, subjects were asked to give a reason for their choice. A countertop that limits the
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(a) (b)

(c) (d)

Figure 4.3: Images taken from the video sequence of gesture “measure distance”, showing the
following stages: (a) initial position; (b) instrument 1 moves towards instrument 2; (c) interme-
diate position; (d) end of the gesture reached, once instrument 1 approaches its initial position
again. [original video recorded and analyzed by V. Nitsch and I. Karl]

workspace to 30×30×30cm and a mockup of the original haptic input devices served as
test-bed. Two styli have been complemented with brackets that can be used to indicate
the state of the gripper. The forearm was placed on a slabstock foam, what resembles
the posture people usually take at the master console. All subjects were shown a video
introduction of the system. The experiments have been video taped (see Fig. 4.3) and
each gesture was reviewed according to six different criteria:

1. The handedness describes whether the left or the right hand is predominately used
for the execution.

2. The symmetry of the movement indicates if both hands performed a similar move-
ment (symmetrical), or if one hand contributed more to the gesture than the other.

3. The curvature describes whether the movement was rather straight, curved, or a
combination of both.

4. Analyzing the principal axis of movement gives information on whether the ges-
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(a) (b) (c) (d)

Figure 4.4: Final trajectories of selected gesture instances. Blue lines indicate the left instrument,
red lines indicate the right instrument. The trajectories were linked to the following gestures:
(a) knot tying; (b) suturing; (c) measure distance (rotated by 90◦ for better visualization); (d)
retract assistance arm.

ture has rather been performed in a plane or all 3 dimension have been exploited
in space.

5. The gripper state can be changed during a gesture several times and indicates
whether the gripper at the distal end of the instrument is closed or open.

6. The quantity of the movements provides conclusions about how many move-
ments have been performed with one hand.

Results

In the following analysis of the results, the chosen gestures of the first and second
round of the experiments were combined, so we come to a total of 44 runs per sur-
gical action. Both evaluations concerning the gesture-based input were carried out in
cooperation with V. Nitsch and I. Karl, University of Armed Forces, Human Factors
Institute. As part of his MD, J. Haas supported us in medical questions during the sec-
ond evaluation. The analysis of the video material showed that the state of the gripper
was rarely considered by the subjects and can be neglected for all tasks. In all cases,
the gesture that was performed first was preferred by the subjects. Thus, we conclude
that intuitive gestures, which are associated with a certain task, come to mind faster
than others. Subjects have chosen the gestures either because of its close symbolic link
to the related action or perceived the movement of the hand to be unique. Neither the
differentiation of gestures from each other, nor the simplicity of the execution did play
a role for the subjects so far.

In a real-life scenario, it is not only important to use intuitive gestures, but they also
have to be well distinguishable and quickly executable. The following four gestures
that were highly consisted in the manner of its execution were selected for the later
usability evaluation.
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• Surgical knot-tying: The subjects used both hands in 82% of the runs. Typically,
a symmetrical movement (72%) was performed. One, two, or three subsequent
circular movements were performed, which were either curved (32%) or a com-
bination of sinuous and straight movements (59%). In most of the cases, the
movements included all three spatial dimensions (68%).

• Surgical suture: Approximately 50% of the subjects employed either one hand
or both hands (45%). Half of the presented movements were curvilinear (50%).
Distinctive were 4 up to 8 three dimensional movements (59%) with both hands.

• Retraction of the assistant arm: In 68% of the cases the subjects utilized only the
right hand. Most of the time only a single movement was executed (75%). The
gesture was performed with a linear movement in 54% of the cases. All spacial
dimensions were utilized up to 45% while 27% of the subjects utilized only a
single plane.

• Measure the distance between two points: Most of the subjects utilized both hands
(82%) for this gesture, at which 61% symmetrical movements were performed.
In 94% of all cases one hand performed only one movement, while the second
hand either performed one movement (45%) or two movements (54%). In each
case one third of the gestures were carried out by sinuous, straight, or combined
movements.

After minor adaptations of the gesture concerning their handling on the surgical robot,
the system was taught the four gestured shown in Fig. 4.4.

4.2.3 Haptic-Type Input vs Menu-Type Input

The four gestures elected in the preceding study were used to compared the effective-
ness of the proposed input method against traditional menu-based input. Our main
hypothesis, which has been proven correct, was that gesture-based input reduces in-
teraction time during the call of system commands, compared to menu-based input. In
addition to objective measures of performance, another aspect evaluated in this study
was the user experience. User experience is an extension of the concept of usability
and has been defined as “all aspects of the user’s experience when interacting with the
product, service, environment or facility. [...] It includes all aspects of usability and
desirability of a product, system or service from the user’s perspective” [182].

Materials and Methods

Subject of this study were 24 medical students with an average age of 24yrs. (σ =
3yrs.), half of whom had surgical experience. Eleven participants were female and
all but two were right-handed. A 2×4 ((input mode)×(gesture)) within-subject design
was implemented, whereby gesture input was tested against menu input. A plausible
two-tiered menu design was chosen for this experiment, with which participants had
to select two options for each gesture: on the first screen of the menu, a general “sur-
gical action” option had to be activated, which then led to the second screen on which
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the appropriate gesture had to be selected and confirmed.

The menu could be operated with two foot pedals: the next menu item was selected
by pressing the first pedal, the second pedal confirmed the selection. As the end of
the menu was reached, the selection moved back to the first entry. The time that it
took people to activate a surgical action with the respective input mode was measured
in each trial (input time), as well as the success rate in triggering the correct action
(input success). The user experience of both input modes was assessed with the At-
trakDiff2 [78], a well-tested questionnaire measuring four different aspects of user ex-
perience. The four aspects of user experience measured are: pragmatic quality (PQ),
attractiveness (ATT), hedonic quality-stimulation (HQ-S) and hedonic quality-identity
(HQ-I). The construct of pragmatic quality refers to the perceived ability of a product
to accomplish task goals by offering useful and usable functions and requires partici-
pants to rate the system on items such as complicated/simple and unpredictable/pre-
dictable. Attractiveness measures the users’ global positive/negative evaluation of a
product and contains items such as pretty/ugly and attractive/repulsive. Hedonic
quality-stimulation refers to the ability of a product to satisfy the user’s needs for the
development of one’s knowledge and skills and is rated with items such as unimagina-
tive/creative and lame/mesmerizing. Finally, the construct of hedonic quality-identity
measures the extent to which a product promotes one’s self-worth and is comprised of
items such as unstylish/stylish and cheap/valuable.

Gesturing Menu Sort 
Pellets 

Sort 
Pellets 

Start 

Gesturing Menu Sort 
Pellets 

Sort 
Pellets 

4x 

4x 

4x 
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Figure 4.5: Course of evaluation for each subject (without training phases).

Prior to the experiment, participants were trained in the use of both the menu and the
gesture input modes in triggering the four gestures according to a standardized train-
ing procedure. All subjects had sufficient time to familiarize themselves with the gen-
eral handling of the system. On average, participants took 6.75min (σ = 2.66min) to
learn the four gestures, whereas it took on average 2.96min. (σ = 1.12min) to learn how
to navigate the menu efficiently. Upon successful completion of the training phase, par-
ticipants were then asked to either perform a certain gesture or select the appropriate
menu items in order to trigger a particular action. The input modes were trained and
tested in one block, meaning that participants would first be trained, then perform
with one input mode, after which they would be trained and tested with the other in-
put mode (cf. Fig. 4.5). The input mode and the tested gestures were systematically
varied for each person in order to avoid learning or fatigue effects. To embed the initia-
tion of surgical actions in a holistic process, the participants had to sort small polymer
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(b) Comparison of the success rates

Figure 4.6: Statistical plots of the evaluation of haptic-type input vs menu-type input.

pellets of two different colors. First, subjects had to decide, depending on the color
of pellet, which pellet type they wanted to transport with either the left or the right
surgical instrument. Each color had to be stored in its dedicated petri dish.

Results

A factorial one-way analysis of variance (ANOVA) found a large and statistically sig-
nificant effect of input mode on input time (F (1, 22) = 38.44, p < .001, η2 = .64). The
estimated marginal means indicate that, on average, it took significantly less time to
trigger the surgical action via gesture input (µ = 4.45sec, σ = 0.86sec) compared to
activation via menu input (µ = 7.41sec, σ = 2.06sec). The times needed to trigger a
certain action are depicted in Fig. 4.6(a). There was also a significant main effect of
gesture (F (2.04, 44.79) = 23.79, p < .001, η2 = .52), but no significant interaction ef-
fect (F (3, 66) = 2.18, p = .10). Together, these results suggest that while some surgical
actions (e.g. arm retraction) took longer to activate than others (e.g. distance measur-
ing or suturing), input times were consistently shorter with gesture input than with
menu input. A look at the input errors suggest that, while it took less time to input
a command for a surgical action via gesture, this mode is slightly more error prone
with 10.42% of gesture inputs classified as false compared to 5.21% of false inputs via
the menu (out of 96 commands). Fig. 4.6(b) shows the success rates for the individual
actions. Finally, an ANOVA of the AttrakDiff2 scores indicates a significant main ef-
fect of input mode (F (1, 23) = 23.74, p < .001, η2 = .51), whereby significantly higher
mean user experience scores were given for gesture input (µ = 5.40, σ = 0.87) than for
menu input (µ = 4.21, σ = 0.85). Only the scores to pragmatic quality did not differ
significantly between the two input modes (t(23) = 0.17, p = .87), whereas gesture in-
put received significantly higher ratings for hedonic quality-identity (t(23) = 4.67, p <
.001, r = .70), hedonic-quality stimulation (t(23) = 7.97, p < .001, r = .86) and attrac-
tiveness (t(23) = 4.39, p < .001, r = .68). These findings indicate that, while the gesture
input system was not necessarily considered to provide greater functionality than the
menu, it was perceived to be more comfortable and stimulating. In comparison, the
results show that gesture-based input is faster and receives more favorable user expe-
rience ratings compared to the tested menu-mockup, even though this input method
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is still slightly more error prone. Although the effect of learning on input success has
not been explicitly investigated in this study, it seems likely that, despite the rigorous
training protocol implemented in this experiment, participants were more practiced
in menu-based input than in gesture-based input. Hence, one might assume that the
likelihood to commit an error with gesture input would decrease with further practice.
In addition, further studies are required to determine the factors that mitigate the ef-
fectiveness of gesture-based input. For example, obviously, the superior effectiveness
of gesture-based input over the traditional menu input strongly depends on the com-
plexity of the menu, as well as the input mechanisms (e.g. foot pedals vs. mouse-type
interaction). Some subjects also had concerns about the feasibility of gesturing during
a real intervention, since they were in full control of the robots during gesture-type in-
teraction. Spatially limited gestures might therewith be preferable over more complex
ones. The last point we want to highlight is that all gestures were taught the system by
a single person. Demonstrations can therewith be biased in favor of this person and
influence the recognition rate.

4.3 Visual Instrument Control

In the previous section, we proposed a new method to intuitively trigger a system
function, such as our reference task of assisted tissue dissection. In this regard, the
next step is the alignment of the scalpel with the defined target on the tissue surface
[20, 21]. We indicate the incision point on the surface using an instrument-mounted
laser. Next, we discuss how the scalpel can be aligned precisely with this target using
visual guidance.

As introduced in Sec. 1, MIRS systems typically suffers from a multitude of different
error sources, which affect their overall precision. In particular if the laparoscope is
used as a 3D sensor that defines Cartesian task coordinates that are executed by a sec-
ond manipulator, the resulting accuracy is not sufficient for fine manipulation. This
technique is known as position-based visual servoing (PBVS). Although tasks such as
automated scissors [145] and grasping of surgical suture material [133] were demon-
strated with PBVS, the success can mainly be attributed to the relatively large opening
angle of scissors. This fact reduces the demands on the accuracy required to grasp sur-
gical suture material.

Image-based visual servoing (IBVS) overcomes intrinsic system errors, including me-
chanical play and calibration uncertainties. By integrating visual data directly into the
control loop, endoscopic instruments can be accurately aligned with a target position.
[102] for instance, guides a surgical instrument based on orientation marks, which were
projected by a shaft-mounted optical device and allow recovering the relationship to
the tissue surface. Nageotte et al. presented visual three-dimensional path following
[130]. Their overall goal is to define sequences for autonomous image-guided suturing,
at which the motion necessary for tissue punctuation with circular needles is calculated
[131, 132]. [83] manually selected setpoints in stereo images to define trajectories of
surgical tasks. Beyond, visual servo control is applied to synchronize the manipulator
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motion with organ movements, e.g. during beating heart surgery [142].

We distinguish two cases of visual instrument control: autonomous positioning of sur-
gical tools and autonomous camera control. As a general rule, visual servo control aims
to minimize a task function dependent on an time-varying error et between the current
pose of the robot and a reference pose [43, 44]. The error is derived by observing visual
features st and their desired goal configuration sd

et = s(mt,a)− sd, (4.9)

where mt comprises visual measurements that build a feature descriptor. The vector a
incorporates additional knowledge, such as camera parameters, into the process. The
design of s specifies the control law. While image-based control relies on features im-
mediately available in pixel coordinates, position-based control treats the camera as a
3D sensor, thus operates in Cartesian coordinates. Accordingly, depth values need to
be acquired. This error-prone step makes position-based methods usually more sensi-
tive to calibration uncertainties as image-based methods [54, 82].

Assuming a hand-mounted camera, visual servoing links the relationship of observed
features to the velocity ξ = [Cυ,Cω]

T
of the camera frame C, where Cυ is the instan-

taneous linear velocity and Cω is the instantaneous angular velocity. The relationship
between ξ and the image feature velocity ṡ is given by the visual Jacobian, or so-called
interaction matrix Ls(q):

ṡ = Ls(q)ξ. (4.10)

The interaction matrix, for which we simply write Ls, is function of the manipulator
configuration q and the image features s

Ls (q) = Ls =

ï
δs

δq

ò
=


δs1(q)
δq1

· · · δs1(q)
δqm

...
. . .

...
δsn(q)
δq1

· · · δsn(q)
δqm

 , (4.11)

with a feature vector comprising n distinct features and m is the dimension of the
task space. When combining (4.9) and (4.10) we immediately obtain the relationship
between the velocity screw ξ and the time variation of the error

ė =
d

dt
(st − sd) = ṡ = Leξ, (4.12)

where Le = Ls. Using ξ as input to the manipulator (that carries the camera) and
an exponentially decoupled decrease ė = −λe of the task function, the control law is
given by

ξ = −λL+
e e, (4.13)

where λ is a proportional gain and L+
e is the pseudoinverse of Le.

In the sequel, we further adapt this control law to our needs. We derive a servoing
scheme that considers the remote center of motion in MIRS and allows positioning



4.3 Visual Instrument Control 81

surgical tools on the tissue surface. A practical difficulty is, however, that the tool has
to be in the field of view of the laparoscope. instrument

control
Therefore, a switching control scheme

is employed, which first drives the instrument into the field of view using end-point
open loop position control and then continues the alignment based on raw image data.
During position-based control, most of the time only the target can be observed in im-
age space and calibration errors of the camera, the relationship between the involved
manipulators, and the instruments affect the accuracy.

With the instrument being located in the field of view of the laparoscope, image-based
servo control is applied to meet the demanded accuracy. For a single tracked feature
point Wx in world coordinates that projects to image space as Ix = [xx, xy]

T
the related

visual Jacobian is [43]

Lx =

ñ
−1
z 0 xx

z xxxy −(1 + x2
x) xy

0 −1
z

xy
z 1 + x2

y −xxxy −xx

ô
. (4.14)

By stacking the Jacobians of the feature points m = (x1, · · · ,xn), we obtain L =

[Lx1 , · · · ,Lxn ]
T

. Variable a now is the calibration of the stereoscopic laparoscope that
is used to estimate z := Wxz . Note that n ≥ 3 is necessary to control six degrees of free-
dom. In MIRS, the trocar constraint governs two degrees of freedom of the instrument
movement at the incision point P, restricting linear movements at this point to either
insertion or retraction. The velocity Pξ at the trocar and the velocity Eξ at the end of the
instrument’s shaft are related as

Pξ = E
PV

Eξ, (4.15)

or more precisely ñ
Pυ
Pω

ô
=

ñ
E
PR

E
P[t]×

E
PR

0[3×3]
E
PR

ô ñ
Eυ
Eω

ô
, (4.16)

with E
P[t]× the skew-symmetric matrix associated with E

Pt. Assuming a straight instru-
ment shaft (or a calibrated one, cf. Sec. 5.2.3), the rotation matrices of (4.16) are the
identity I3 (or the calibration matrix respectively) and the translation E

Pt = [0, 0, d]
T

governs the insertion depth d of the instrument with respect to the trocar. The trocar
constraints all movements at P to the shaft’s z-axis (that is the direction of the shaft),
thus Pυ = [0, 0, Pυz]

T
. With (4.15) and simple developments we obtain the relationship 0

0
Pυz

 =

Eυx − dEωy
Eυy + dEωx

Eυz

 (4.17)

between the linear and the angular velocity at the distal end of the instrument, which
is finally solved for

Eωx = −
Pυy
d

and Eωy =
Pυx
d
. (4.18)

The Cartesian position of the trocar points is well-known and defined in our system’s
software framework. Thus, the insertion depth of the instrument can be calculated us-
ing the forward kinematics.
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Considering a point-to-point alignment of the surgical tool with a target, the linear ve-
locity Eυ and the angular velocities Eωx and Eωy of the tool need to be calculated. The
latter two are governed by the trocar constraint according to (4.18). The tracked instru-
ment position is given in both cameras of the stereoscopic laparoscope and denoted
as Clx = [Clxx,

Clxy]
T

and Crx = [Crxx,
Crxy]

T
for the left Cl and right Cr camera frame

respectively. Therewith, we control the necessary five degrees of freedom. The corre-
sponding feature vector is s = xs = [Clx, Clx]

T
. After stacking the image feature points,

the interaction matrix develops to

ṡ =

ñ
Clẋ
Crẋ

ô
=

ñ
Ll

Lr
Cl
CrV

ô
Clξ (4.19)

= LE
Clξ, (4.20)

where Cl
CrV is the spatial motion transform between the two camera frames. Since a

single feature point does not allow observing feature rotations, only the left half of LE

is considered. The remaining two angular velocities are governed by the trocar con-
straint, as described above. The resulting velocity screw is expressed in the reference
frame of the camera. To relate the motion to the instrument, a velocity transform ac-
cording to the transformation chain presented in Sec. 5.2.3 is applied.

Next, we derive a control scheme to automatically align the laparoscope with an instru-
ment. This is e.g. used to follow the scalpel during tissue dissection. The alignment
is performed so that the instrument is always located in the image center.camera control We refrain
from an automatic insertion movement of the camera into the patient for safety rea-
sons. Recalling the trocar constraint, linear and angular velocity of the laparoscope
are not independent. Therefore, we partition the interaction matrix in their respective
velocity portions

ṡ = Lυυ + Lωω, (4.21)

where Lυυ gives the velocity component of the translational part and the angular ve-
locity component is given by Lωω. Since all velocities are related to the camera frame
we forgo indexing. With the relationship (4.17) we obtain

ṡ =
î
LυLω

ó ñυ
ω

ô
(4.22)

=

ñ
−1
z 0 xx

z
0 1

z
xy
z

ôυxυy
0

+

ñ
xxxy −(1 + x2

x) xy
1 + x2

y −xxxy −xx

ô−υy
d

υx
d
0

 (4.23)

=

ñ
−1
z −

1
d(1 + x2

x) −1
dxxxy

−1
dxxxy −1

z −
1
d(1 + x2

y)

ô
︸ ︷︷ ︸

LC,υ

ñ
υx
υy

ô
. (4.24)

The final camera interaction matrix is LC,υ. The necessary relationship to transform
the velocities from the camera frame to the manipulator’s wrist is found by hand-eye
calibration.
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Both control laws are subject to an adaptive gain λ, which limits the maximum velocity
to

λ =


λ0
‖L+e‖ for ‖L+e‖ < a,

λ0 otherwise.
(4.25)

The motion is decelerated with an exponential decay for an decreasing error. The
threshold a switches the gain and λ0 defines the maximum velocity. According to
(4.13) the final velocity ξ is relate to the manipulator joints

q̇ = J−1ξ, (4.26)

where J is the robot Jacobian. The different update rates of manipulator and camera
were considered by applying a Kalman filter.

Experimental Verification

Several experiments were conducted to demonstrate the capability of our system to
perform precise alignment tasks with the above-introduced control laws. The accuracy
of position-based control was investigated by means of a planar checkerboard calibra-
tion plate. The plate was placed freely within the workspace. Cartesian coordinates
of about thirty edge points of the checkerboard pattern were reconstructed by means
of the stereoscopic laparoscope. The second manipulator was equipped with a cali-
bration trihedron, which was driven to the reconstructed coordinates. Thus, the entire
calibration chain between the two manipulators, starting at the laparoscopic camera
and ending at the tip of the trihedron was included. Reference values were obtained
by manually positioning the trihedron at the corresponding checkerboard corner. The
measured error ranged between 3mm and 7mm. When a surgical instrument is used
instead if the trihedron, this error further increases due to the flexibility of the shaft.

The image-based control laws were tested in a simulation environment before exper-
iments were conducted on our telesurgery system. The simulation was performed
with Matlab Simulink™ , where the kinematics, the relationship between the two robot
bases, as well as instrument and camera parameters were modeled. Fig. 4.7 illustrates
results of an alignment task of a needle driver (red lines) as well the laparoscope (black
lines). Simulation results are shown with solid lines, while results obtained with the
telepresence system are shown with a dashed line style. Fig. 4.7(a) depicts the result-
ing trajectories in image space. The corresponding development of the error values is
shown in Fig. 4.7(b). Fig. 4.7(c) shows the velocity screw during instrument alignment.
The tracked tip of a straight needle was used as feature input during the experiments
on the telesurgery system. The needle was green-colored and placed in the forceps of
the needle driver. The needle tip was segmented via thresholding, while restricting the
search range to the vicinity of the tracked distal end of the tool. The target position
was chosen manually within the field of view of the camera. The measured alignment
accuracy of the needle tip with the target was about 1mm. Shaft vibrations impede a
minimization of the pixel error to exactly zero. Thus, the alignment was stopped for
small error values. Compliance with the trocar point was checked using a Polhemus
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Figure 4.7: (a) Image trajectories for instrument (red) and camera (black) alignment task. Sim-
ulation results are illustrated with solid line style, while results obtained on our telesurgery
system are shown with dashed line style; (b) Development of the corresponding error values;
(c) velocity screw of the instrument; (d) verification of the remote center of motion.

Liberty™ magnetic tracker. The sensors coils of the tracking system were attached at
the shaft of the instrument, beyond the disturbance area of the robot’s motors. The
chosen sensor arrangement allowed deducing the instrument movement. Fig. 4.7(d)
shows the remote center of motion, while the blue points show the measured sensor
positions.

4.4 Hybrid Instrument Control

Following our initial task description, we continue with the actual tissue dissection
after the instrument is aligned with the incision point. Under the proposed method
of online surgery the task execution is based on visual information obtained from the
micro endoscopes at the instrument. By augmenting the instrument with the above-
mentioned miniaturized camera, instead of relying on the conventional endoscope, the
performed cut becomes independent from calibration uncertainties of the telemanipu-
lation system, other than the micro camera itself [12]. The approach therewith enjoys
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α	  
β	  

camera  

Figure 4.8: Augmentation of a surgical scalpel with the miniaturized camera. The pinpoint of
the blade is visible in the camera image.

similar advantages as traditional image-based visual servoing techniques. Regarding
our reference fine manipulation task of tissue dissection, the micro camera observes
the cut path immediately preceding in order to deduce an optimal trajectory. The cut
path is assumed to be visually identifiable (e.g., a vessel or a unique anatomical struc-
ture). A hybrid control scheme is applied, hybrid controlwhere the surgeon retains ultimate control
over the scalpel position, while the blade orientation is set automatically. To capitalize
on the accuracy of the robotic system, haptic constraints guide the surgeon, reducing
mental stress and enhancing safety.

The miniaturized camera is mounted stationary with respect to the blade, capable of
observing both the cut path and the blade tip from the relevant perspective, as illus-
trated in Fig. 4.8. The camera is aligned with the blade, hence the error between blade
and cut path can be measured in pixel units. Since the camera moves with the blade,
instrument movements are perceived as counter-movements to the observed surface.
Due to the Cartesian control of the telemanipulation system, the reference frame of in-
strument and haptic device is axis aligned. Consequently, haptic virtual constraints can
be derived directly from the measured error and expressed in the frame of the input de-
vice. In this way, we introduce similar precise virtual constraints to telesurgery that are
known from cooperatively controlled handheld devices such as the JHU steady hand
robot [31], where the fixture generation and the haptic device is not spatially separated.

4.4.1 Trajectory Generation

When holding a scalpel directly in hand, as in conventional surgery, a self-alignment
torque of the blade facilitates guidance by damping unwanted angular motions due to
the contact between tissue and the blade sides. In telesurgery, this contact force can
usually not be measured and fed back to the operator, thus limiting blade alignment
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to a visio-motor mapping of the operator. To mimic this behavior, we decompose the
task of tissue dissection into two subtasks:

1. Smooth minimization of the deviation between scalpel and optimal cut path.
That is, the error needs to be driven gradually toward zero during the forward
motion of the blade.

2. Alignment of the blade orientation with the current cut direction to prevent tissue
fissures.

During the cut, we keep the instrument wrist perpendicular to the surface (Fig. 4.8,
angle β), while the steepness α is kept at a constant value.

We restrict ourselves to movements in the xz−plane, which is coplanar to the robot
bases of our setup, and define the cut path as the plane parametric curve

c(r) ≡
Ä
x(r) y(r)

äT
, r ∈ [0, 1] . (4.27)

The tip of the blade on the surface is denoted as q = [qx, qy], as illustrated in Fig. 4.9.
We define c(r̂(q)) =: p as the curve point with minimal distance from the blade as∥∥∥cÄr̂(q)

ä
− q

∥∥∥ = min
r∈[0,1]

‖c(r)− q‖ . (4.28)

As long as the blade follows the optimal trajectory, the direction of the tool tip at that
point is the normalized tangent direction

θc(q) =
t(q)

‖t(q)‖
(4.29)

with

t(q) =
d

dt
c(r)

∣∣∣∣∣∣
r=r̂(q)

. (4.30)

Once the blade differs from the optimal trajectory, we define a Cartesian error vector e
between the blade tip and the optimal path as

e(q) = q− c
Ä
r̂(q)

ä
= q− p (4.31)

and an angular error θ with respect to the current blade orientation θm and the tangen-
tial angle θc as

θ = θm − θc. (4.32)

Minimizing the lateral deviation of the blade with respect to the cut path without
taking the blade’s current orientation into account yields to tissue fissures, since the
blade is moved contrary to its orientation. Likewise, the blade’s orientation should be
adapted only during forward motion. The optimal cut is obtained when the error vec-
tor e is zero and the blade orientation equals θc.
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The development of constraints on the blade motion can be compared to the non-
holonomic constraints of differential-driven mobile robots: the motion is governed by
the forward velocity and the angular velocity, while any lateral movements are to be
avoided. We adapt a solution presented in [180, 121]. The derivation of the kinematic
equations can be found in appendix A.2. The development of constraints on the blade
motion is treated in terms of a Serret-Frenet formulation, where a virtual target frame
F moves tangential along the curve c. Since we follow the cut path in a forward di-

I 
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y 

y1 

s1 

θc 

e 
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q 
cut line c 

blade point 

ϑ 

θ 

θm 

Figure 4.9: Guided cutting: The position of the blade q is expressed in frame I and a Serret-
Frenet frame F rooted in the tangent space of the path. Optimal guidance is achieved by mini-
mizing e and θ.

rection, the directed tangent equals the signed curvilinear abscissa s1 of F. Given the
instantaneous kinematic model of the blade expressed in frame F

Fq̇s1 = υ cos θ − ṡ
Ä
1− κ(s) · Fqy1

ä
, (4.33)

Fq̇y1 = υ sin θ − κ(s)ṡ · Fqs1 , (4.34)
θ̇ = ω − κ(s)ṡ, (4.35)

where κ(·) is the curvature of the path in p, ṡ is the tangential velocity in p, υ the linear
velocity and ω the angular velocity, the blade optimally follows the cut path for

Fq̇s1 = Fq̇y1 = θ̇ = 0. (4.36)

Otherwise, the blade can be directed towards the optimal cut path by driving the three
parameters of the instantaneous kinematic model towards zero. For this purpose, we
investigate a control scheme that constrains the surgeon’s input motion using haptic
virtual fixtures.
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Feedback Generation

A correct scalpel angle is most important for a smooth cut and should always be ori-
entated with the cut direction. Due to the missing self-alignment torque of the blade
in telesurgery, setting the orientation manually is very difficult and sensitive to user
input. In order to facilitate the work of surgeons, we apply hybrid control, where the
blade orientation is always set by the system, while the user is assisted in setting the
position by a haptic virtual fixture. We started with experiments were the user had full
control over the scalpel position. However, the small spatial expansion of the structure
to be cut, which we assume with about 1-2mm in size, required a large down-scaling of
the input motion to avoid lateral movements with respect to the blade. Therefore, we
decided to use only the forward motion of the haptic input device as input command.

virtual fixture The actual position of the blade is then maintained by the control law. A haptic virtual
fixture provides synchronization between the master and the slave. The fixture is im-
plemented to take on a passive role, scaling the user’s input force to drive the operator
back to the desired path.

To couple the instantaneous kinematic model to the motion of the haptic input de-
vice, we recall that the tool tip mounted camera allows evading the error-prone system
uncertainties. Since the reference frames of camera and instrument are aligned, the de-
viation between tool-tip and desired trajectory, measured in image space, can directly
be coupled to the input device. During haptic guidance, we are interested in automat-
ically optimizing the angular velocity ω of the blade. Rearranging (4.35) yields to

ω = θ̇m + κ(s)ṡ. (4.37)

In order to achieve a smooth convergence toward zero, we follow [180, 121] and choose
the error functions

θ̇ = δ̇ − γ · Fqy1 · υ
sin θ − sin δ

θ − δ
− k2(θ − δ), (4.38)

ṡ = υ cos θ + k1 · Fqs1 . (4.39)

Function δ = k3y
2
1 shapes the transition between desired and current trajectory during

the path approach to zero. Variables k1, k2, k3 > 0 are scaling factors that influence the
error minimization rate. The forward velocity υ is manually controlled by the operator
and set according to the motion of the input device.

4.4.2 Feedback Generation

Recalling the last section, we need to update the current blade position q as well as the
angle θ in every time step and receive the corresponding cut direction update ω along
with a forward velocity υ. The input can directly be derived from the motion of the
haptic device. To cancel involuntary jerky input movements to the haptic devices, the
user’s input is tremor filtered [53].
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The generation of the feedback signals can be divided into a general part, limiting
the dynamic behavior of the haptic input device with an artificial non-linear damping
and a task specific part, which generates the actual guiding force. The resistance is
realized as damping of the commanded stylus movement, therewith preventing high
input velocities and facilitating fine-scaled movements during tissue dissection. We
implemented an exponential envelope

sd =
Ä
1− exp

Ä
−al2

ää
· fmax (4.40)

that restricts the maximum speed of the stylus, where a is related to the stiffness of the
system, fmax is the maximum force value, and l the distance between the current and
the previous stylus position l = ‖qt−1 − q‖. The applied force vector is then

fd =
qt−1 − q

‖qt−1 − q‖
· sd. (4.41)

The application of an exponential function ensures a smooth force progression, as sud-
den force changes usually lead to unpredictable vibrations at the end effector, while
being still capable of simulating high stiffness.

The haptic virtual fixture is realized on a proxy-based implementation, where the
proxy represents the calculated optimal position and the master servos to the proxy.
The master is controlled by

fg = kp(p− q) + kd(ṗ− q̇), (4.42)

where kp and kd are the proportional and derivative gains respectively. Haptic ren-
dering has demanding computational requirements, i.e. the haptic device used has an
update rate of 1000Hz, which is considered to be the lower limit to provide realistic
rendering of rigid contacts. The mismatch between camera frame rate and haptic loop
cycle is compensated by means of a Kalman filter. While the position of the blade is
predicted in between the camera frames, the prediction is corrected as soon as vision-
based fixtures can be derived. The final force is composed of

f = fd + fg (4.43)

and applied to the haptic device.

4.4.3 Implementation

An evaluation to prove the feasibility and power of the proposed approach was con-
ducted within the simulation environment of our telesurgery system. In order to obtain
real-world conditions, the simulated micro camera images were artificially delayed to
25 frames per second. The delay introduces a mismatch between haptic loop and im-
age processing which, if not compensated, can result in system oscillations. In order to
calculate the deviation between cut path and blade, the skeleton of the observed curve
is calculated. Currently, we assume to observe a single curve on a uniform background.
After edge detection, the skeleton is fitted by a penalized regression spline [52]. With
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^	  

^	  

Figure 4.10: Simulation environment used during the experiment. From left to right: manipu-
lators with scalp and endoscopic camera; blade orientated on the cut path; cut path from the
perspective of the tool-tip mounted endoscopic micro camera. Visible is the pinpoint of the
blade, the cut path, and the skeleton (green) of the path used to measure the deviation from the
scalpel (red).

the continuous curve representation we can now compute the curve’s derivations as
well as the distance to the position of the blade’s pinpoint in image space. The cut
task was performed in 2D space, hence the user could not alter the height between tool
and surface or change penetration depth. The restriction was implemented as virtual
fixture on both master and slave. A haptic virtual fixture with high stiffness on the
master-side prevented the user from penetrating the plane, while the master neglects
commands perpendicular to the cut plane. The specified cut path was a sinusoidal
curve (cf. Fig. 4.11). We have compared our method with bimanual control.

Manual control. The user has to follow the trajectory without any guidance. The de-
viation from the ideal path needs to be minimized while taking care of the blade
orientation. The orientation can be adjusted by rotating the stylus of the hap-
tic input device. The user input was tremor-filtered and the instrument’s posi-
tion on the cut plane was automatically maintained with the above-mentioned
virtual fixture on master and slave to ensure equal conditions with the second
experiment.

Guided dissection. The user is guided along the trajectory with the proposed method.
The error between current blade position and optimal path is calculated automat-
ically and the new blade orientation is set accordingly. Haptic feedback is used
to synchronize the user’s position at the haptic device with the new instrument
position.

During the experiments, the control computer recorded the movement of the instru-
ment, the deviation between blade tip and the path in pixel units, and the orienta-
tion of the blade. The last parameter can be considered as most meaningful, since it
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Figure 4.11: Instrument trajectory (left), deviation between blade and cut path, as well as blade
orientation (right). The top row shows results for guided tissue dissection, the bottom row for
manual control.

characterizes the smoothness of the cut and indicates tissue fissures. The plots of the
trajectories (Fig. 4.11(a) and Fig. 4.11(c)) and the positioning errors (Fig. 4.11(b) and
Fig. 4.11(d)) show a strong effect of assistance, whereas the amount of jitter is distinc-
tive during manual control. Most important, it is difficult and exhausting to follow
a path while simultaneously coping with manual blade alignment. The angle is con-
stantly adjusted by the user, but the missing self-alignment torque makes it difficult to
maintain the correct value. As mentioned above, a smooth movement is considered
as a key factor for successful cutting. This fact becomes obvious, when comparing the
blade angle with the actual movement direction of the instrument. In the ideal case, the
blade angle follows the trajectory, as it happens during guided tissue dissection. Here,
the lateral error would further decrease for a straight line, but the constant adaption
to the sinusoidal curve prevents this. Note again, that the precise alignment becomes
only possible with the camera-augmented instrument. As the trajectory plot shows,
the curves amplitude is only about 7mm, whereas the width of the curve observed
was 1.5mm. Regarding feedback generation, a more advanced haptic device, which
provides torque force feedback, would support the angular orientation during manual
control by actuating the stylus’ self rotation. The calculated angular velocity therewith
becomes a virtual self-alignment torque that can be fed back to the operator.
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Although we have already introduced the concept of minimally invasive surgery at the begin-
ning of this treatise, we have not yet considered the technical aspects. After discussing existing
telesurgery systems, we proceed with the description of our own setup, which served as a testbed
for the conducted experiments. Finally, we have tested our telemanipulator in an animal exper-
iment.

5.1 Telesurgery

At this point it is important to highlight some of the successful laparoscopic robotic
systems. Historically, so called robot assistants are the precursors of today’s complex
telesurgery setups. The use of these devices is rather task-specific. As the name im-
plies, the manipulators mainly assist surgeons in holding and positioning laparoscopic
instruments, such as the famous AESOP active camera holder [170], which was the first
FDA approved system, LARS [190], Lapman [153], or LER (Light Endoscope Robot)
[30]. The latter does not require an extended support frame, but fixes the camera di-
rectly on the abdominal wall of the patient. Based on these systems began development
of telesurgery. Commercially speaking, there were two competitors on the market for
surgical tele-manipulators. The Zeus™ system [158], developed by Computer Mo-
tion Inc. (CMI), and the daVinci™ robot [68], marketed by Intuitive Surgical Inc. The
Zeus™ consists of modified 5 DoF arms of the aforementioned AESOP, which is also
part of the system. When CMI was acquired by Intuitive the CMI products were dis-
continued and the daVinci™ started a remarkable success story. Today, the system can
be seen as state of the art. After the initial use in cardiac surgery, it is now entering the
application domains of urology and gynecology.

Beyond, the scientific community is contributing to this area with own systems. The
MiroSurge™ , developed at the German Aerospace Center (DLR), is often cited as one
of the most sophisticated research systems. MIRO lightweight robots [71] carry the pro-
prietary MICA instruments that come with a 7 DoF force/torque sensor, providing dex-
terous manipulation and haptic feedback from the operation site [193]. The impedance
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Figure 5.1: The ARAMIS research system for minimally invasive surgery: the slave-side of our
telesurgery robot comprises four industrial manipulators that carry either surgical instruments
or a stereoscopic laparoscope.

control mode of the robots permits gravity compensation, facilitating direct and safe
interaction with humans according to the soft robotics paradigm. Keeping in mind the
high cost factor in clinical practice, the design of the system was targeted to a versa-
tile use. E.g., the replacement of pedicle screws was investigated [141]. The ARTEMIS

project [175] of the University of Karlsruhe, Germany, started in 1991 and discontin-
ued in the meanwhile, was one of the first research systems for minimally invasive
telesurgery. Apart from a lack of force feedback, many aspects of today’s systems,
such as instruments with flexible tails, different input modalities and the integration
of scene knowledge, have already been taken into account. Evaluations were carried
out on animals. Madhani et al. introduced the Falcon manipulator [114]. The kine-
matics of the Raven telesurgical system [112], University of Washington Bionics Lab,
was deduced from preliminary experiments, conducted with the “Red Dragon” [169].
This spherical mechanism allows measuring and recording the movements of surgi-
cal tools during an intervention. The devices were also used for training, to model
the process of surgical interventions, and for surgical performance assessment [166].
The promise of short medical response time has attracted the military early, with the
objective to perform remote surgery on the battlefield with physicians located safely
distant [167]. Teleoperational capabilities were tested in transatlantic long-distance
scenario, through communication via airborne wireless links of an unmanned aircraft
[76] and during a NASA underwater operation. The Department of Engineering Syn-
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thesis, University of Tokyo, tested their system in several realistic scenarios. After first
experiments over a distance of 700km, a second experiment was conducted between
Japan and Bankok [26]. The newly designed successor of their first system comprises
three SCARA-type slave manipulators, holding forceps with force measuring capabil-
ities, including grasping forces [123]. The “Second Generation Robotic Telesurgery
Workstation” is a joint project between UC Berkeley and UC San Francisco, provid-
ing two pairs of modified “Millirobots” at the slave [42]. The microsurgical telerobot
system [107], developed until 1999 at KAIST, Korea, made use of customized Steward-
type parallel robots and was used for training purposes. A conventional laparoscopic
tool can be included as handle at the force-reflecting master controller. The slave unit
of the system comprises an industrial robot, with an additional wrist-mounted paral-
lel kinematic. Beyond MIRS, an overview of other successful medical applications of
robots is given in [74]. The general trend of miniaturization does not stop at medical
technology and thus came the desire to advance the existing methods for even less in-
vasive procedures. Currently, this progress is reflected by two techniques, both at an
experimental stage, known as “single port access surgery” and “natural orifice translu-
minal endoscopic surgery” (NOTES) [157, 196]. Single port surgery is performed exclu-
sively through a single access site to the patient, further reducing trauma and scarring.
NOTES aims to realize scarless operations, which are performed though a natural ori-
fice, such as mouth, anus or urethra. The access to the actual surgical site is reached
by an inner body incision. These techniques are exacerbating the existing problems of
MIRS and pose new technological challenges, in particular to the instrument design
and control, which has to be flexible in order to accommodate the requirements of the
complex access paths. As a logical continuation of our robotic platform, we participate
in this development [4, 5].

5.2 The ARAMIS Research Platform

The testbed used and evolved throughout this treatise is based on the ARAMIS tele-
surgery system (Autonomous Robot Assisted Minimally Invasive Surgery System),
originally presented to the research community in [118, 18]. Based on the experiences
gained in several experiments, it has been constantly improved with respect to both
software and hardware.

5.2.1 Telemanipulation System

The current design is a bimanual system with four 6 DoF industrial Mitsubishi MELFA
6SL™ robots. Each slave-manipulator weighs about 60kg and is ceiling-mounted on
aluminum profiles to ensure good access to the operating table, as illustrated in Fig. 5.1.
Each manipulator can either carry a surgical instrument or an endoscopic camera. The
employed EndoWrist™ instruments are marketed as original equipment parts with the
daVinci™ robot. The individual joints, dependent on the instrument type either three
or four, are driven by bowden wires that connect to servo motors. The instruments
have been augmented with strain-gauge force sensors. By means of haptic devices,
depicted in Fig. 5.3, the operator can experience forces that occur at the instrument
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Figure 5.2: Master console with 3D screen and haptic input devices. Five infrared emitters
(red) are attached to the screen for the eye-tracking system. The used eye tracker requires the
transformation between the frontal plane (green) and the actual image plane (red).

shaft. A endoscopic stereo camera provides two separated optics, connected to two
CCD sensors. Due to the design of the camera, only a circular section of the PAL reso-
lution can be used. All tools are coupled via a magnetic mechanism to the robot flange
to allow quick interchangeability. A hot-plug coupling made of spring contacts bridges
the electrical signals as the instrument connects to the carrier system, illustrated in Fig.
5.4(a). In addition to the servo- and the strain-gauges signals,instrument

identification
four pins are reserved

for video transmission of our endoscopic micro camera. The adapter also comprises
an automatic instrument identification. It reports a unique signature, which is realized
by means of a resistor, to the system when voltage is applied. The kinematic structure,
i.e. required during the proposed instrument localization approach and the associated
calibration (cf. Sec. 5.2.3) is then retrieved from a data base, and applied to the system’s
configuration.

With the master console, depicted in Fig. 5.2, the goal is to restore manipulation and
sensation capabilities of the surgeon. Immersion into the remote workspace is sup-
ported by visual and haptic feedback [2, 3]. Visual feedback is given by a monitor with
3D capabilities, taking images from the endoscopic stereo camera. The display is as-
sembled of two orthogonally polarized screens, merging the left and the right camera
image using a semi-transparent mirror. Stereopsis is created for the user by wearing
polarized glasses, which assign the corresponding image to each eye. IR emitters are
attached to the display housing to support gaze tracking using the approach presented
in appendix A.3, specifically the bottom row consists of three markers and the top
row of two markers. The surgical instruments are under direct control of the surgeon
through teleoperation. As the operator acts with the two “Sensable Phantom Premium
1.5A™” haptic input devices, each providing six degrees of freedom, the slave ma-
nipulators follow that motion. The devices are configured overhead to ease handling
and avoid singularities, i.e. gimbal lock positions. The three translational DoF of the
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devices can be actuated actively to feed back the forces derived at the instrument tip.
During previous evaluations [118], a shortcoming most subjects complained about was
the digital closing of the gripper, where no intermediate steps were possible. With re-
gard to the animal experiments planned at the German Heart Center Munich (cf. Sec.
5.3), we upgraded the devices with a custom handle design, which introduces a sev-

Figure 5.3: Continuos input handle (left) and mounted handle on Phantom™ device (right).

enth DoF. 7 DoF
Phantom™
extension

While interchangeable handles, such as snap-on thumb-pads or scissors, are
commercially available for the more recent versions of the device family, the end ef-
fectors offered are not compatible with our employed device version. Moreover, these
merely passive encoders come at a high price tag, but without force-feedback capa-
bilities. Therefore, we designed a new handle that is similar in the handling and feel
of a pair of tweezers. A secure grip is provided by two size-adjustable straps, kept by
thumb and index finger (cf. Fig. 5.3). The movement of the forefinger actuates a rocker,
which is connected to a small DC motor with integrated position encoder, specifically
a Faulhaber™ 1724 with a resolution of 512 pulses per revolution. The corresponding

(a) (b)

Figure 5.4: (a) Magnetic hot-plug coupling with spring contacts that bridge electrical signals
and instrument identification system; (b) Single NanEye™ sensor with base station.

motion controller offers a CAN-bus interface to send commands to the motor and to
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read its state. We incorporated the controller into our existing CAN-network. Position
signals are processed to obtain the actual opening angle of the rocker that is integrated
into the kinematic calculation of the simulation software. Counterweights have been
attached to the Phantoms™ to keep them in balance. The handle now also allows
feeding back gripping and clamping forces, as suggested in [104]. Beyond, the medical
workstation also offers four switches, which are places on the foot well of the console.
They can be assigned their individual functionality.

5.2.2 Endoscopic Micro Camera

Our surgical instruments can be equipped with an innovative endoscopic micro stereo
camera. The prototypic sensors were provided by our industrial partner, Awaiba GmbH,
Nürnberg, Germany. According to the manufacturer, the NanEye™ is currently the
world-smallest CMOS camera available. We provide a brief summary of the hardware,
which is based on the original hardware specification [208]. The sensor features a total
chip area of 0.34mm2. The surface houses a pixel matrix of 62.500 pixels, yielding to a
resolution of 250×250 pixels. The sensor is available as monochrome version or a RGB
Bayer pattern reconstructs the color information. The integrated AD conversion and
data transition are controlled by an on-chip ring oscillator and a readout machine, al-
lowing the sensor to operate fully autonomous at a frame rate of approximately 40fps.
A small lens with an opening angle of 90◦ is assembled together with a cover glass on
the chip, resulting in a total package size of 1×1×1.5mm. Two different apertures are
available with f/4.0 and f/2.7. According to the specifications1, the former has its best
focus at 5mm, while the depth of focus is 3.5− 30mm. Images from the prototypic sen-
sor available to us, are already becoming blurry at a distance of approximately 10mm.
The specification of the latter lens is given with a best focus at 15mm and a depth of
focus ranging between 8mm−∞. A four wire flat ribbon cable realizes the communi-
cation with an USB control circuit and power supply, shown in Fig. 5.4(b).

The driver software of the camera was written in C# at the time of the conducted exper-
iments. An wrapper interface was created to integrate the managed C# code into our
existing C++ software framework. More details are given in appendix A.4. Further, the
driver software was extended to manage two cameras for the stereo setup.

5.2.3 System Calibration

We already mentioned the relatively poor absolute accuracy of the system, which pri-
marily affects Cartesian control. We therefore introduced image-based control to im-
prove results for delicate tasks. Although this closed-loop control method is less de-
pendent on the quality of the system calibration, we need to determine the transfor-
mations between the various components involved, i.e. the individual robot bases and
the mounted surgical tools. To replicate the global coordinate system of our simula-
tion environment at the actual setup, the world reference frame is centered around a
certain robot base, e.g. R1. We assume perfect congruence of the underlying model

1www.awaiba.com
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Figure 5.5: Calibration of individual system components: (a) overall transformation chain be-
tween surgical instrument and laparoscope; (b) hand-eye calibration of laparoscope.

and perform the calibration of all other manipulators R2, · · · ,R4 with respect to this
robot base, as exemplified in Fig. 5.5(a). A common reference frame in global coordi-
nates is established by positioning the tip of a hand-mounted trihedron on a number
of calibration points. Now, the relationship between all manipulators can be described,
since the location and orientation of the calibration frame is known in each of the local
robot frames. The eccentricity of the EndoWrist’s™ carbon fiber shaft is compensated
following the method proposed in [118]. For the laparoscope we obtain the extrin-
sic parameter

R1,6
C T, with C being the camera frame by means of a hand-eye calibra-

tion. Therefore, a homogeneous matrix equation of the form AX = XB is solved
[179], i.e. X =

R1,6
C T the transform from the tool center position to the camera frame,

A = A
−1

1 A2 =
R1,0
R1,6

T
−1 R1,0

R1,6
T̃, and B = B1B

−1

2 . Now, camera coordinates can be ex-
pressed in the base frame of the robot, i.e. to map sensor related measurements into
the robot’s workspace.

5.2.4 Software Architecture

The original software of the ARAMIS system has undergone a thoroughly refactoring
[13]. The main focus was to replace the previous hierarchical structure [118], which
was based on the model-view-controller paradigm, in favor of a more flexible and dis-
tributed architecture. In particular, common access to internal data, such as robot joint
angles and calibration settings, should be given for external software components. In-
stead of a centralized framework, we now organize the software in small modules, each
responsible for a certain task. A module is a software component of the system that
can be deployed and run as a separate process on any machine, while sharing data
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as well as functionality with other modules over the network. We utilize the open
source cross-platform cisst libraries, developed by the Johns Hopkins University, Bal-
timore, USA. In appearance, modules are like individual applications, where they are
coordinating by means of inter-process communication, as the interface connections in
Fig. 5.6 suggest.cisst libraries Modules are realized using the cisstMultiTask library and therewith
adopt a task-based framework. Specifically, each module is composed of one or more
mtsTasks, each of which running on its own thread. Each task has a series of provided
interfaces and required interfaces. The task exports its functions to its provided interfaces
as commands to make them available to other tasks, and adds to its required interface
functions that are needed from other tasks. Event handling can be implemented in a
similar fashion to invoke remote functions based on occurring events. During its ini-
tialization, a module establishes run-time bindings between provided interfaces and
required interfaces, independent of the involved modules are running locally or on dif-
ferent machines. For inter-process calls the Internet Communication Engine (ICE) serves
as middleware, thereby hiding the complexity of network communication from tasks.
The only difference is that, when setting up the bindings, process names must be spec-
ified in the latter case, together with the hostname or IP address of the computer where
the GlobalComponentManager is running. This instance establishes connections be-
tween the modules, which are running on different computers without knowing each
other’s locations.

The system’s modules can be classified into three categories: the Blackboard mod-
ule, the MainModule, and optional modules. The first two categories are mandatory,
the latter are pluggable, meaning that they can be temporarily terminated when their
functionality is not required by the current usage scenario of the system, and can be
restarted at a later time. The Blackboard is at the center of the system architecture.
It merely serves as a common place for data storage and exchange, where all the other
modules can read from and write to, thus resembling a blackboard. Each of its tasks
keeps some data in its internal storage, and offers getter and setter functions for those
data via its provided interfaces. The provided interfaces can be connected to required
interfaces of another module, thereby enabling that module to access the data. For ex-
ample, it is usually desirable to create a task for each robot in order to share its joint
angles. Each of the robot controller tasks in the MainModule can then call the setter
function to keep the joint values up-to-date, whereas the getter function can be used
by e.g., the visualization module to update the display of robot postures, or the instru-
ment tracking module.

The MainModule implements several tasks. It provides a graphical user interface to
alter the robot joints and implements key functionality of the system, includes kine-
matic control and communication with the robots as well as advanced application of
the robotic system in various scenarios.distributed

architecture
The latter is realized by means of “surgical

programs”, each of which represents a certain system configuration or experiment. All
these classes derive from an abstract SurgicalProgram class. The abstract class spec-
ifies common functions like start() and stop(). Every subclass needs to implement
a state machine that dictates the workflow of the surgical program and holds calibra-
tion data, such as port locations, for the current scenario. The transition between the
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states is typically invoked by an event, e.g. the robots reaching their target positions,
autonomous actions, a foot pedal being pressed, or other user triggered input com-
mands.

Optional modules include device modules and application modules. A device module
enables the integration of a new hardware device (e.g. an eye-tracker) into the sys-
tem. Typically it wraps up the device driver and writes some device-specific data (e.g.
the tracked position) to the Blackboard. Application modules are software compo-
nents that supplement the functionality present in the MainModule and are usually
employed in a specific SurgicalProgram. Many of them consume device specific
data for further processing. Without enumerating all system components individually
at this point, it is worth to mention the 3D visualization module, rendering of the en-
doscopic video stream with additional overlay information, the integration of sensor
data, or the instrument tracking as representative examples.

Main Module

Blackboard Module
Additional Task 1

+ getJoints()

+ jointsChangedHandler()

- joints

Application Module 1

...

Eye Tracker
Robot Controller [1..4]

Main Console

+ startSurgicalProgram()

+ stopSurgicalProgram()

...

- currentSurgicalProgram

Robot Data [1..4]

+ getJoints()

+ setJoitns()

- joints
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+ setData()

- data

Fixture Information

+ getData()

+ setData()

- data
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module

task

Figure 5.6: Illustration of the components and interfaces of the distributed architecture.

Beyond the previously mentioned libraries, which form the basis for distributed con-
current data processing, the Robotics Library [164] completes the core functionality of
the system in terms of scene representation, based on the OpenInventor visualization
software, and kinematic modeling. It is also noteworthy that currently a cisst pack-
age is under development that allows for a seamless integration into the popular ROS
(Robot Operating System).
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(a) (b)

(c) (d)

Figure 5.7: Preparation of the animal experiment: (a) pig during the CT scan; (b) segmentation
of tissue types; (c) port planning in the simulation environment; (d) actual animal experiment

5.3 Animal Experiments

Although some studies on bovine and pig hearts were conducted in the past to inves-
tigate the effect of force feedback [119], no experiment regarding the actual application
domain − minimally invasive surgery − has been performed with our system so far.

animal
experiment

Consequently, the next step was to stress the system in an animal experiment with
closed torso. A pig carcass was selected, because of the similarity of the anatomical
structures to the human body. To guarantee proper handling and to provide the essen-
tial medical equipment, the experiment was carried out at the German Heart Center
Munich.

Materials and Methods

Before starting the experiment itself, the port location for inserting the surgical tools
and the laparoscope needed to be specified. In conventional minimally invasive in-
terventions, ports are selected according to anatomical landmarks. Acromastium and
sternum, for instance, allow surgeons to assess the internal surgical sites, based on the
patient’s torso size. In robotic surgery, however, port selection also affects accessibility
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and dexterity of the robots.

To minimize the risk of manipulator collisions, port locations were deduced from a
preoperative CT scan (see Fig. 5.7). The scan provides data in Hounsfield units, rep-
resented as a gray image. It is derived from the radiation attenuation in tissue. Based
on this linear scale, different tissue types can be differentiate and the bone structure
was reconstructed geometrically for further processing in our simulation environment.
Here, the reconstructed model allows to assess suitable port locations and an appro-
priate insertion depths of the instruments. Once all ports were selected, the resulting
workspace of the manipulators was verified experimentally.

With the conductance of an animal experiment two major goals were pursued. First,
the capability of the system in a realistic, minimally invasive scenario should be tested.
Specifically, the handling of the surgical tools under trocar kinematics within a limited
workspace and the handling of the newly designed continuously controllable input de-
vice were assessed. The second objective was to investigate the influence of the trocars
on the force measurement and the haptic feedback. During previous experiments, the
forces obtained were unbiased, because no interferences acted at the instrument shaft.

Results

The experiments conducted lasted about 4 hours. A significant amount of time had to
be devoted for transferring the planned ports to the pig. Although the port positions
could be approximated by means of anatomy, i.e. the rib structure of the thorax, the
relative position of the animal to the system was unknown. Accordingly, the pig had

Figure 5.8: Suturing during the animal experiment from the laparoscopic camera perspective.

to be relocated several times. In particular, the size of the superstructural system parts
restricted the available workspace. A laser registration system, as presented in [98],
would reduce the setup time significantly. After successful positioning, various surgi-
cal tasks were accomplished. Tissue was penetrated and sutured repeatedly, as shown
in Fig. 5.8, and stitches were secured with surgical knots.

The tasks mentioned involve complex movement sequences. Their execution was con-
siderably facilitated by the depth information provided by the stereoscopic camera. In
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comparison to the old digital stylus switch, the continuous input handle greatly im-
proved the control of the forceps during grasping of suture material and tissue. The
experiment also revealed that the trocars partially disturb force measurements. If in-
strument movements violated the remote center of motion, e.g. due to carcass move-
ment, strong friction between instrument and tissue caused interfering forces. A direct
integration of the force sensors into the functional part of the instrument could reduce
this problem, but is technically challenging. Associated with this, also new questions
about sterilization of the instruments would arise.



6 Conclusion

In this thesis, we have addressed challenges associated with robotic assistance and autonomy
in minimally invasive robotic surgery. This last chapter summarizes the proposed solutions
and contributions. While the individual methods have already been evaluated in the respective
sections, we now draw conclusions with an overall assessment. Finally, perspectives for further
improvements and future development of the topics discussed are provided.

6.1 Contributions

The current trend to trauma reduction changes surgical practice. To manage the in-
creasing complexity of interventions, it is inevitable to automate (sub-) tasks and to
provide technical assistance by the robotic system. Our concept of online surgery con-
tributes to the development by acquiring task relevant data during the execution and
therewith avoiding many error prone calibration steps.

Online Surgery

The proposed method of online surgery, which acquires all information necessary for
autonomous and assisted task execution during the intervention itself, constitutes a
promising approach to transit from the traditional “data acquisition → planning →
execution” paradigm toward a more flexible and adaptive behavior. To dynamically
generate task-related robot movements, environmental perception plays the major role,
in which visual information is the driving force. A key concept in online surgery is to
enhance the limited view of the conventional laparoscope with a task-specific view
that provides sensor data always from the relevant perspective. To realize this concept,
we have developed a camera-augmented instrument, which comprises a stereoscopic
micro endoscope at the distal end. Therewith, knowledge required for trajectory gener-
ation can be acquired directly in situ. Since camera and instrument share one common
coordinate frame, inherent calibration issues of the system, which usually impede the
accurate alignment of preoperatively generated execution plans with the patient, are
avoided and tasks are executed with machine precision. Since the camera-augmented
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instrument can be placed freely, exploration of the surgical field from any viewing
angle is possible. The procedure of online surgery was conceptually explored by the
reference task of tissue dissection.

Localization of Surgical Instruments

We proposed a method to localize and track the position of the tip of a surgical tool in
minimally invasive surgery. Without major modifications, the approach is applicable
to a broad variety of instrument types typically used in MIRS. This is true for both, the
appearance of the instrument’s shaft as well as the shape of the functional part of the
tool. Neither fiducial markers nor prolonged training of a model is required. Sensor
readings, e.g. derived from joint readings or from external tracking modalities, provide
a first estimate of the instrument’s position in Euclidean space. The pose is then related
to the camera image of the laparoscope. This projection is used as initial estimate and
further refined by a local visual tracking step. The applied CCD tracking modality
maximizes the difference of color statistics in the vicinity of the tool’s shape with re-
spect to the background, therewith being independent of the actual shaft coloration.
The visually recovered position was used to compensate errors in the sensor predic-
tion, which typically arise from system calibration uncertainties. The localized end of
the shaft was complemented with the pose of the functional part of the instrument.
The pose was deduced from the kinematics of the instrument connected, which can be
identified by means of the newly introduced identification module. This component
of our telesurgery system automatically detects instrument changes and reports the
corresponding calibration data.

Simulation of Depth Perception by GPU-accelerated Ray Tracing

We devised a ray tracing emulation environment that is capable of simulating arbitrary
scenarios of visual depth perception. We employed the Bouquet model to describe
lens distortion, that is, intrinsic and extrinsic camera parameters can be set according
to real-world calibration results. To mimic realistic settings, sensor noise, calibration
uncertainties, and the camera’s depth of focus were considered. A projector was imple-
mented to enable the simulation of structured light reconstruction. Every permutation
of a pattern mask can be projected. The GPU-acceleration of the framework allows
real-time interaction with the scene, while offering realistic-looking images. Due to
the working principle of ray tracing, zero-error ground truth depth can be obtained.
In conjunction with the 3D reconstruction module of our framework, the generated
range maps can be evaluated. Beyond, a closed loop assessment between a (simulated)
camera setup and a specific reconstruction algorithm was used to optimize parameter
settings.

Depth Reconstruction with Miniaturized Endoscopes supplemented with a
Micro Projector

To reconstruct the surface of the surgical field from the task-relevant perspective, we
proposed to augment surgical instruments with stereoscopic micro endoscopes. We
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first paid attention to the arrangement of the two micro cameras used, each with a
size of 1×1×1.5mm, to design a suitable stereo setup. The aligned camera chips were
cut directly from silicon to precisely obtain a baseline of 1.2mm. The individual de-
velopment steps, from simulation to the final camera system, are illustrated again in
Fig. 6.1. Due to the close range between sensor and surface, the environment to be
reconstructed appears poorly textured. To enhance texture, the stereo system was sup-
plemented with a binary pattern projector. The projection mask was designed to be a
globally unambiguous structure that encodes each pixel position, where a code word
has a guaranteed minimum Hamming distance to all other code words. Decoding the
indices allows reconstruction in the sense of structured light. The design of the pattern
likewise supports window-based dissimilarity measures. Therefore, the ray tracing
simulation was employed to rate the reconstruction quality while optimizing the pat-
tern resolution. The final pattern design was transferred to an optical blackout mask
and mounted behind the same type of lens that was already used for the micro cameras.
Illumination was supplied via a fiber optic light guide, which is connected to a LED
source. Assembled at the stereo camera pair, the final setup measures approximately
2×2×1.5mm. For depth perception, stereo was treated as a global energy minimization
problem, formulated as Markov Random Field. The energy term integrates decoded
pattern positions as a prior. To avoid the need for calibrating the projector with respect
to the cameras, pattern decoding was performed in both stereo images, resulting in a
sparse disparity map. The disparity value of decoded positions was then propagated
in the neighborhood to interpolate a dense disparity map, while each pixel received a
confidence measure. Pairwise costs are calculated during the correspondence search
on the camera images by means of the Census transform. The framework currently
supports energy minimization with graph cuts and belief propagation.

Gesture-Type Input Interface

The control of the range of different functionalities offered by surgical robots will likely
get more complex with the increase of autonomy. A gesture-based user interface was
implemented and evaluated as a time saving alternative to traditional menu input to
trigger frequently demanded, automated or semi-automated surgical actions. The ap-
proach interprets movements of the haptic devices at the master console as a user com-
mand. The method allows for fast interaction times, customizable assignment of ges-
tures and commands, and facilitates the indication of task-relevant in situ coordinates
associated with the command. Surgeons can freely combine any personalized gesture
with any system function. The most intuitive gestures have been identified during an
explorative user study. Another experiment has been conducted to evaluate the effi-
ciency, accuracy, and user experience of this input method compared to a traditional
menu-type interface. The results could confirm the potential of gesture-type input,
particularly in terms of time savings and enhanced user experience.

Instrument Control and Task Guidance

Based on the situs knowledge gained, we derived image-based control laws to assist
the surgeon during instrument positioning and fine-manipulation tasks. Visually ser-
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Figure 6.1: Development of miniaturized camera setup, from left to right: simulated camera
image, NanEye™ micro camera [image courtesy of Awaiba GmbH], dental scene captured
with micro camera, developed micro projector, pattern projected on dental scene, and final
setup.

voed instruments are a promising approach in robot-assisted surgery to introduce au-
tonomy and to overcome intrinsic system limitations, caused by calibration inaccura-
cies. We derived control laws to position both the laparoscopic camera and surgical
instruments under the trocar constraint. Further, we introduced a method for remote
surgical cutting by providing haptic guidance. The approach becomes independent
from calibration uncertainties of typical telesurgery robots by augmenting surgical
tools with the micro camera described above. A smooth cut path with correspond-
ing scalpel orientation to guide the user toward the optimal trajectory was calculated
and fed back to the operator using virtual fixtures.

Telesurgery Platform

To investigate the potential of the proposed methods, evaluations have been performed
on a realistic setup for telesurgery. For the first time, the surgical capabilities of our sys-
tem were stressed during an animal experiment. The original telemanipulation system
has been constantly enhanced: on the hardware side, e.g. automatic instrument identi-
fication was introduced and the haptic devices were retrofitted to allow for gestures in
seven degrees of freedom. A completely new distributed system software was devised,
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which abstracts from the old monolithic structure and now organizes system tasks in
separate software modules. Each module can be deployed over network and shares
data as well as functionality with other modules.

6.2 Perspectives and Challenges

The step from simply replaying preplanned trajectories toward context-aware and situ-
ated behavior of surgical robots is challenging. The ultimate vision of task automation
in cognitive surgery, which we outlined in [8], requires the interaction of many dif-
ferent technological aspects. The work of surgeons is facilitated by intuitive context-
adaptive user interfaces and optimized visualization. Autonomy particularly requires
comprehensive online data acquisition, analysis, and interpretation to associate knowl-
edge about surgical tasks with the conditions found in situ and to provide the neces-
sary adaptivity. In its current state, our approach complements data acquisition in
traditional skill-transfer methodology (cf. Sec. 1.1.2). The information necessary to
successfully generalize learned skills in new environments can be divided into two
classes: low-level scene context and abstract task descriptions. We mainly focused on
the former aspect by capturing the scene from the task-relevant perspective. The ac-
tion of tissue dissection was performed without prior task knowledge and solely relied
on sensor input. More complex actions, which might be defined by several cohesive
subtasks, can probably only be inferred by using external knowledge or scaffolds. A
future challenge will be to link the acquired dynamic scene knowledge in an appro-
priate manner with a priori knowledge about the surgical procedure to enable (near)
complete autonomous operation. For this, interpretation of sensor data is necessary,
which drives decisions that trigger the robot behavior. In our current scenario, we
have assumed the cut path to be clearly identifiable in the camera images, therewith
neglecting potentially interfering structures. In practice, the sensor information could
be cross-checked with a surgical plan. The plan would then outline the approximate
sequence, while the actual motion generation is performed online based on in situ data.
While we restricted ourselves to cutting a plane surface, future work includes the ex-
tension of the task to the third dimension. Therefore, basic motion commands could
be deduced from stereo reconstruction with the micro endoscope. The limited sam-
pling rate of cameras might however be unsatisfactory for stable motion generation or
virtual fixtures. Hence, the manipulator motions could additionally be constrained by
combining visual information with force, measured at the instrument tip (see e.g. [91]).

A crucial factor of online surgery is adaptive user interaction. In the majority of cases
the proposed automatic camera alignment according to the situational position of the
instruments leads to the desired result. However, in some cases it might be necessary
to manually affect the system’s decision. Therefore, we also investigated gaze contin-
gent camera control as an alternative input modality. Results for our particular setting
are provided in appendix A.3. Comparing the gaze position on screen with the current
instrument position allows to verify autonomous decisions. In case of inconsistency,
manual control can be maintained. Also the pragmatic qualities of gesture-based input,
such as its ability to integrate into the surgical workflow, need to be tested in long-term
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user studies, particularly the possibility to intervene in the execution in case of misin-
terpreted commands.

The major limitation of the proposed miniaturized stereo setup is the above-mentioned
resolution mismatch between camera and the prototypic projector, which currently im-
pedes pattern decoding. Modifying the distance between projector and camera is not
an option, since it yields distortions of the pattern imaged by the camera, therewith
negating the advantage of using the same lens for both devices. Increasing the dis-
tance between camera and projector, as done for the stereo matching experiments, sig-
nificantly reduces the light intensity of the projector. To provide better illumination,
the currently used f/4.0 aperture should be replaced by a f/2.8 lens for the next gener-
ation of the micro projector. Further investigations are also necessary to find a suitable
resolution that matches the employed camera. To meet the required alignment pre-
cision, camera and projector have to be assembled using an alignment device, which
introduces similar precision to the transformation between camera and projector as
demonstrated with the alignment of both cameras. A possibility worth looking at, is to
learn parameter sets of the reconstruction algorithm within the ray tracing framework
[147, 198, 172]. Since the micro cameras are designed for single use only, a simplified
projector design would be advantageous. Specifically, placing the pattern mask at the
light source instead of mounting it at the end of the fiber optic would strengthen a
disposable design. Clearly, this goal is not achievable with the current binary mask,
but concentric color patterns, which are placed at the light source, can be projected
when a suitable optical fiber is selected. Beyond, interesting application scenarios of
the miniaturized cameras are capsule robots [195], NOTES, and otolaryngology. Due
to the small size of the cameras, a many-camera system that realizes panoramic views
could be implemented.



Appendix

A.1 Inversion of the Bouguet Camera Model

A suitable model to describe the projective geometry of a lens is the Bouguet model
[80]. Its wide use in camera calibration and the support in many open source vision
libraries allows transferring real-world camera parameters to the ray tracing simula-
tion framework introduced in Sec. 3.3.3. In contrast to the original Bouguet model,
where all camera parameters are expressed in pixel units, we specify the parameters as
a ratio with respect to the sensor size. This is necessary since measurements given in
pixels correspond to a fixed sensor resolution, the simulation however supports user
specified sensor resolutions.

In the sequel, we describe the inversion of the camera model, which is employed for
raytracing. Instead of removing the distortion of an image as in image calibration, the
Bouguet model is used to generate a distorted version of the image during ray trac-
ing [79]. Due to the model’s approximation of tangential and radial distortion with
higher-order polynomials, the inversion is not straight forward. Starting from the im-
age coordinates xn = [xnx , xny ]

T
, given by a regular pinhole camera model with camera

matrix K, the distorted coordinates xd = [xdx , xdy ]
T

of xn are

xd =
Ä
1 + k1r

2 + k2r
4 + k5r

6
ä

xn + dx, (A.1)

with dx being the tangential distortion

dx =

ñ
2k3xnxxny + k4(r2 + 2x2

nx
)

k3(r2 + 2x2
ny

) + 2k4xnxxny

ô
. (A.2)

The scalars k1, · · · , k5 are the distortion coefficients, and r2 = x2
nx

+ x2
ny

. The final
projection is then expressed by

xp =

xy
1

 = K

xdxxdy
1

 . (A.3)
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To invert the model, first the effect of the linear camera calibration matrix is reverted by
solving (A.3) for xd. The second step, the inversion of the terms expressing the radial
and tangential distortion is more challenging. Since radial distortion is described by a
polynomial of 6th grade, there is no analytical solution. First (A.1) is solved for xn

xn =
xd − dx

1 + k1r2 + k2r4 + k5r6
. (A.4)

In the next step, an optimization is started with an initial guess xp of xn on the left side
of the equation. On the right-hand term xn is injected into the expression of dx and r.
Evaluating (A.4) yields to a new x̂n which can then be used in the next iteration. The
resulting ray direction is given as xnx ·u+xny · v+w, where (u, v, w) are homogeneous
image plane coordinates.

A.2 Derivation of the Serret-Frenet Formulation

The instantaneous kinematics of the blade tip, used during hybrid control (cf. Sec. 4.4),
is based on a solution presented in [180, 121]. The problem of approaching the optimal
cut path while avoiding any lateral movement is treated in terms of a Serret-Frenet
formulation, where the virtual target frame F moves tangential along c. We consider a
blade position q that deviates by e from the optimal curve point, as described in (4.31).
The blade tip, expressed with respect to the inertial reference frame I is

Iq =
î
Iqx

Iqy 0
óT

(A.5)

and
Fq = e =

î
Fqs1

Fqy1 0
óT

(A.6)

with respect to F. Equivalently, p is given in I as

Ip =
î
Ipx

Ipy 0
óT

(A.7)

and in F always as
Fp = 0[3×1]. (A.8)

Further, I
FR(θc) is the rotation matrix from the reference frame I to frame F, parame-

terized by angle θc, and F
I R = I

FR
−1 the reverse rotation respectively. The tangential

velocity is denoted as ṡ and the angular velocity of θc is defined by

ωc = θ̇c = κ
Ä
c(r̂(Fq))

ä
ṡ (A.9)

= κ(Fp)ṡ, (A.10)

where κ(·) is the signed curvature [94] of path c at Fp, defined as

κ(p) =
p
′′
y

(1 + p′y
2
)3/2

. (A.11)

The problem of minimizing the angular error θ (cf. Fig. 4.9) is treated with respect
to the Serret-Frenet frame F. The above introduced definitions allow expressing the
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velocities of both the blade point q and the target q in both frames. The target point
velocity with respect to frame F is

Fṗ = I
FR

Iṗ (A.12)

=
î
ṡ 0 0

óT
. (A.13)

The velocity of the blade tip with respect to frame I can be expressed as

Iq̇ =
î
Iq̇x

Iq̇y 0
óT

(A.14)
= Iṗ + F

I Rė + F
I R(ωc × e), (A.15)

where e is the error vector between the blade and the target point on the trajectory.
Multiplication of (A.15) with I

FR yields to an expression of q̇ in F as

Iṗ = I
FR

Fq̇ (A.16)
= Fṗ + ė + (ωc × e). (A.17)

Taking the cross product (ωc × e) yields to 0
0

κ(s)ṡ

×
Fqs1

Fqy1
0

 =

−κ(s)ṡ ·F qy1
κ(s)ṡ ·F qs1

0

 , (A.18)

which is substituted in (A.17) and finally gives the blade velocity with respect to the
target frame as

Fq̇ =

ṡ
Ä
1− κ(s)Fqy1

ä
+F q̇s1

Fqy1 + κ(s)ṡ ·F qs1
0

 . (A.19)

After simple transformations, we obtain the axis velocity components Fq̇s1 and Fq̇y1 :

Fq̇s1 =
î
cos θc sin θc

ó ñIq̇x
Iq̇y

ô
− ṡ
Ä
1− κ(s) ·F qy1

ä
, (A.20)

Fq̇y1 =
î
− sin θc cos θc

ó ñIq̇x
Iq̇y

ô
− κ(s)ṡFqs1 . (A.21)

Considering the current blade orientation θm, its forward velocity is given withñ
Iq̇x
Iq̇y

ô
= υ

ñ
cos θm
sin θm

ô
. (A.22)

Without loss of generality, υ is derived from the velocity applied by the user at the
haptic device. Injecting (A.22) in (A.20) and (A.21) and applying the trigonometric
difference formulae for θ = θm − θc

sin θ = sin θm cos θc + cos θm sin θc (A.23)
cos θ = cos θm cos θc + sin θm sin θc (A.24)
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yields to the final instantaneous kinematic model of the blade tip, expressed in frame
F, with

Fq̇s1 = υ cos θ − ṡ
Ä
1− κ(s) · Fqy1

ä
(A.25)

Fq̇y1 = υ sin θ − κ(s)ṡ · Fqs1 (A.26)
θ̇ = ω − κ(s)ṡ, (A.27)

where ω = ωm = θ̇m.

A.3 Gaze Contingent Control

In addition to the automated laparoscope control presented in Sec. 4.3, we also provide
manual camera control by means of gaze contingent input [10]. The user can explicitly
choose a target with which the camera is to be aligned by placing his gaze on screen.
The polarized goggles required to perceive a depth impression with our 3D screen
prevents however the use of remote eye trackers. The proposed solution combines po-
larized goggles with a head-worn eye tracker. The polarization foil sits between the
viewer and the monitor, enabling a free field of view of the camera to the eye. Such
kind of eye tracker yields the gaze direction in head coordinates, hence head tracking is
required to determine the intersection of the line of sight with the display plane, while
allowing the user a certain degree of mobility. In collaboration with the EyeSeeCam
project we could adapt their monocular tracking glasses.

For a description of the tracking technique, we refer to [174, 95]. However, note that
infrared markers are attached on the 3D screen to perform head tracking (cf. Fig. 5.2).
Since the actual image plane of the monitor is offset to the rear by design (because of
the semi-transparent mirror), the resulting transformation between the marker plane
and the image plane must be considered.

Data Processing and Experimental Evaluation

The eye tracker samples 220 fixation positions each second, providing two-dimensional
screen coordinates. The values are smoothed by means of a recursive exponential filter
[186]. Therefore, the observation period may be chosen arbitrarily long without the
need of storing previous data. A smoothed value xn+1 of observation n + 1 can be
written as linear combination of the filtered value xn of observation n and the new
data value zn+1 obtained in observation n+ 1:

xn+1 = xn + kn+1 (zn+1 − xn) , (A.28)

with gain factor k

kn+1 =
kn

kn + exp
Ä
−
Ä
tn+1 − tn

ä
/τ
ä , (A.29)

where τ governs the filter’s time scale and t is a timestamp. When choosing a shorter
time scale the filter adapts faster to new values, but attributes to high-frequency noise.
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A longer time scales averages the gaze position in favor of past values.

The filter output is visualized on the stereoscopic screen and used to control the ma-
nipulator that holds the laparoscope, at what the error vector between the image center
and the gaze point is minimized. Two different control modes were implemented: (1)
continuous alignment of the camera with the situs area that is considered to be impor-
tant, since it is observed by the surgeon over a longer time period, and (2) onetime
alignment with the current gaze point. The first behavior is achieved by setting τ to
large values. The endoscope then only adapts gradually to new positions, if the po-
sition is long enough in the user’s focus of attention. The second behavior must be
triggered explicitly by the surgeon. As long as a foot pedal is pressed, the endoscope
follows the current gaze point. The filter’s time scale is chosen small, therewith the
alignment is performed rather quick. The influence of the time scale is illustrated in
Fig. A.1(b).
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Figure A.1: (a) subject evaluation grid; (b) influence of the parameter τ on the trajectory gener-
ation.

We give details on the accuracy of the eye tracking system in our particular setup. For
the conducted evaluation, 10 untrained subjects were instructed to fixate 9 regularly
spaced points on a grid. The distance between a subject and the image plane was about
40cm, respectively 30cm to the frame of the screen. Note that the distance between
user and image plane varies from the upper to the lower image area, since the image
plane of the stereoscopic monitor is tilted by design. The stimulus points (×) were
arranged using a screen resolution of 800×600px (cf. Fig. A.1(a)). The intersections
between the image plane and the right eye’s line of sight are indicated with the plus
sign (+). The subjects looked straight at the monitor. The average accuracy was 22.5px,
which is sufficient for the employed closed-loop endoscope control. The error range is
indicated by the circles with a radius of 40px. The better performance of the tracker
in conjunction with conventional monitors [95] can be attributed to the additionally
required transformation between LED markers and actual image plane of the stereo
display in our setting.
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A.4 Micro Camera Interface

The original NanEye™ driver required two major modifications in order to allow its
integration into the existing framework. First, the driver could only handle one cam-
era at a time. The issue could be solved by enumerating the connected devices and
adapting the initialization routine of the USB communication board. Second, the cam-
era’s software is a managed C# .NET library, which usually can only be called from
managed code. The driver had to be wrapped to be usable in combination with the
existing (unmanaged) C++ code. While calling unmanaged code from managed code
can be easily performed with ”P/Invoke“, the other way around is more complex. Of-
ten, using ”COM Interop Assemblies“ (Component Object Model) is a possible solu-
tion, but more difficult if third party libraries are involved. Making libraries accessible
via COM requires them to be signed with a strong name. Strong naming is a con-
cept in .NET similar to GUID’s in traditional VS/C++ and is necessary to share the
assembly in the global assembly cache that can be accessed by different applications.

managed C#.NET library 
(exports C#) 

mixed C++/CLR library 
(exports native C++) 

native C++ application 

Figure A.2: Wrapper scheme

The Microsoft Visual Studio™(VS) devel-
opment environment offers a tool chain
that supports the process, including the ap-
plications tlbexp.exe, which exports a
.NET assembly into a COM type-library:
The tool regasm.exe then registers the
assembly. Unfortunately, the driver com-
prises third-party code that could not be
signed with strong names, and therefore
the tool chain can not be used. In this
case, a mixed-code wrapper library, con-
sisting of managed and unmanaged code,
is the only solution. The mixed native/-
CLI module acts as a broker between na-

tive C++ and .NET and makes the conjunction with both worlds (cf. Fig. A.2).
On one hand, it has the ability to call managed .NET code, on the other hand,
it exports native interfaces via NATIVEDLL_API __declspec(dllexport) that
can be loaded into the unmanaged process. However, it is not possible to store
managed data types in unmanaged code. Fortunately, the C++ Support Library,
includable via <vcclr.h>, provides a way to access managed types via the
System::Runtime::InteropServices::GCHandle class, which is wrapped for
convenience as the template gcroot<T> and allows to store reference pointers on
managed classes. The “^” operator indicates a reference pointer to a managed object.
Instantiating the class with gcnew means that we are allocating on the garbage col-
lector protected environment. Having now access to the managed code, the last thing
we need to take care about is data conversion of complex types, also known as mar-
shalling. While simple data types don’t need to be converted, the C++ Support Library
offers methods to marshal e.g., arrays or strings via InteropServices::Copy(...)
and InteropServices::StringToHGlobalAuto(...).
In our case, the driver interface provides methods to access the image width and height
as well as the image data, stored in a 4-channel byte array. First, the wrapper creates a
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reference to the driver interface in the constructor:

NanEyeI^ fcns = gcnew NanEyeI();
gcroot<NanEyeI^> *interfacePtr = new gcroot<NanEyeI^>(fcns)
this->_pNanEyeFcnsClr = (void*)interfacePtr

Access to functions with non-complex return types, e.g., requesting the image width,
is possible via:

gcroot<NanEyeInterface^> *pp =
reinterpret_cast<gcroot<nanEyeI^>*>(_pNanEyeFcnsClr);

return ((nanEyeI^)*pp)->getImageWidth();

The image data itself can then either entirely be marshaled as introduced above, or, as
required for our scenario, converted to a 3-channel char array by regular type-casting:

cli::array<Byte>^ imgData = ((NanEyeI^)*pp)->getImageData();
int width = this->getImageWidth();
int height = this->getImageHeight();
for (int i = 0; i < width * height; i++) {

buffer[i*3] = (char)imgData[i*4];
buffer[i*3+1] = (char)imgData[i*4+1];
buffer[i*3+2] = (char)imgData[i*4+2];

}
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[42] M. Çavaşoǧlu, W. Williams, F. Tendick, and S. Sastry, “Robotics for telesurgery: Second genera-
tion Berkeley/UCSF laparoscopic telesurgical workstation and looking towards the future applica-
tions,” Industrial Robot, Special Issues on Medical Robotics, vol. 30, no. 1, pp. 22–29, 2003.

[43] F. Chaumette and S. Hutchinson, “Visual servo control. basic approaches.” Robotics & Automation
Magazine, IEEE, vol. 13, no. 4, pp. 82–90, dec. 2006.

[44] ——, “Visual servo control. advanced approaches.” IEEE Robotics & Automation Magazine, vol. 14,
no. 1, pp. 109–118, mar. 2007.

[45] J. Climent and P. Mares, “Automatic instrument localization in laparoscopic surgery,” Electronic
Letters on Computer Vision and Image Analysis, vol. 4, no. 1, pp. 21–31, nov. 2004.

[46] J. J. Craig, Introduction to Robotics: Mechanics and Control, 2nd ed. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1989.

[47] P. Dario, E. Guglielmelli, B. Allotta, and M. Carrozza, “Robotics for medical applications,” IEEE
Robotics Automation Magazine, vol. 3, no. 3, pp. 44 –56, sep. 1996.

[48] J. P. Desai and N. Ayache, “Special issue on medical robotics,” The International Journal of Robotics
Research, vol. 28, no. 9, jul. 2009.

[49] ——, “Special issue on medical robotics,” The International Journal of Robotics Research, vol. 28, no. 10,
oct. 2009.

[50] C. Doignon, P. Graebling, and M. de Mathelin, “Real-time segmentation of surgical instruments
inside the abdominal cavity using a joint hue saturation color feature,” Real-Time Imaging, vol. 11,
no. 5-6, pp. 429–442, oct. 2005.

[51] P. Dutkiewicz, M. Kielczewski, and M. Kowalski, “Visual tracking of surgical tools for laparo-
scopic surgery,” in Proceedings of the Fourth International Workshop on Robot Motion and Control,
Puszczykowo, Poland, jun. 2004, pp. 23 – 28.

[52] P. H. C. Eilers and B. D. Marx, “Flexible smoothing with b-splines and penalties,” Statistical Science,
vol. 11, no. 2, pp. 89–102, 1996.

[53] R. Elble and W. Koller, Tremor. Baltimore, USA: John Hopkins University Press, 1990.

[54] B. Espiau, “Effect of camera calibration errors on visual servoing in robotics,” in Proceedings of the
International Symposium on Experimental Robotics, 1994, pp. 182–192.

[55] P. Felzenszwalb and D. Huttenlocher, “Efficient belief propagation for early vision,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, Washington, DC, USA,
jun./jul. 2004, pp. 261–268.



123

[56] G. Fichtinger, P. Kazanzides, A. Okamura, G. Hager, L. Whitcomb, and R. Taylor, “Surgical and
interventional robotics,” IEEE Robotics Automation Magazine, vol. 15, no. 3, pp. 94 –102, sep. 2008.

[57] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography,” Communications of the ACM, vol. 24,
no. 6, pp. 381–395, jun. 1981.

[58] F. A. Fröhlich, G. Passig, A. Vazquez, and G. Hirzinger*, “Robot assisted internal mammary artery
detection for coronary revascularisation surgery,” in Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, Taipei, Taiwan, oct. 2010, pp. 1849 –1855.

[59] D. Gallup, J.-M. Frahm, P. Mordohai, and M. Pollefeys, “Variable baseline/resolution stereo,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, Alaska,
USA, jun. 2008, pp. 1 –8.

[60] A. Geiger, M. Roser, and R. Urtasun, “Efficient large-scale stereo matching,” in Proceedings of the
IEEE Asian Conference on Computer Vision, Queenstown, New Zealand, nov. 2011, pp. 25–38.

[61] J. Geng, “Structured-light 3d surface imaging: a tutorial,” Adv. Opt. Photon., vol. 3, no. 2, pp. 128–
160, jun. 2011.

[62] T. L. Gibo, L. N. Verner, D. D. Yuh, and A. M. Okamura, “Design considerations and human-
machine performance of moving virtual fixtures,” in Proceedings of the IEEE International Conference
on Robotics and Automation, Kobe, Japan, may 2009, pp. 671–676.

[63] J.-B. Gómez, A. Ceballos, F. Prieto, and T. Redarce, “Mouth gesture and voice command based robot
command interface,” in Proceedings of the IEEE International Conference on Robotics and Automation,
Kobe, Japan, may 2009, pp. 333–338.

[64] P. M. Griffin, L. S. Narasimhan, and S. R. Yee, “Generation of uniquely encoded light patterns for
range data acquisition,” Pattern Recognition, vol. 25, no. 6, pp. 609 – 616, jun. 1992.

[65] K. Guerin, B. Vagvolgyi, A. Deguet, C. Chen, D. Yuh, and R. Kumar, “Reachin: A modular vision
based interface for teleoperation,” in Workshop on Systems and Architectures for Computer Assisted
Interventions, aug. 2010.

[66] S. Günter and H. Bunkey, “Hmm-based handwritten word recognition: on the optimization of the
number of states, training iterations and gaussian components,” Pattern Recognition, vol. 37, no. 10,
pp. 2069–2079, jan. 2004.

[67] W. Guo-Qing, K. Arbter, and G. Hirzinger, “Real-time visual servoing for laparoscopic surgery.
controlling robot motion with color image segmentation,” IEEE Engineering in Medicine and Biology
Magazine, vol. 16, no. 1, pp. 40–45, jan./feb. 1997.

[68] G. Guthart and J. Salisbury, “The intuitive™ telesurgery system: overview and application,” in
Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, San Francisco,
California, USA, apr. 2000, pp. 618–621.

[69] I. Guyon, P. Albrecht, Y. L. Cun, J. Denker, and W. Hubbard, “Design of a neural network character
recognizer for a touch terminal,” Pattern Recognition, vol. 24, no. 2, pp. 105 – 119, 1991.

[70] G. Hager, A. Okamura, P. Kazanzides, L. Whitcomb, G. Fichtinger, and R. Taylor, “Surgical and
interventional robotics,” IEEE Robotics Automation Magazine, vol. 15, no. 4, pp. 84 –93, dec. 2008.

[71] U. Hagn, M. Nickl, S. Jörg, G. Passig, T. Bahls, A. Nothhelfer, F. Hacker, L. Le-Tien, A. Albu-Schäffer,
R. Konietschke, M. Grebenstein, R. Warpup, R. Haslinger, M. Frommberger, and G. Hirzinger, “Dlr
miro: A versatile lightweight robot for surgical applications,” Industrial Robot, vol. 35, no. 4, pp.
324–336, 2008.



124

[72] R. Hanek, T. Schmitt, S. Buck, and M. Beetz, “Fast image-based object localization in natural
scenes,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1,
Lausanne, Switzerland, sep. 2002, pp. 116–122.

[73] R. Hanek and M. Beetz, “The contracting curve density algorithm: Fitting parametric curve mod-
els to images using local self-adapting separation criteria,” International Journal of Computer Vision,
vol. 59, no. 3, pp. 233–258, 2004.

[74] B. Hannaford, Surgical Robotics: Systems Applications and Visions, J. Rosen and R. Satava, Eds.
Springer, Berlin Heidelberg, 2011.

[75] N. Hansen, “The cma evolution strategy: A comparing review,” Advances on estimation of distribution
algorithms, pp. 1769–1776, 2006.

[76] B. M. Harnett, C. R. Doarn, J. Rosen, B. Hannaford, and T. J. Broderick, “Evaluation of unmanned
airborne vehicles and mobile robotic telesurgery in an extreme environment,” Telemedicine and e-
Health, vol. 14, no. 6, pp. 534–544, jul./aug. 2008.

[77] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed. New York, NY,
USA: Cambridge University Press, 2003.

[78] M. Hassenzahl, M. Burmester, and F. Koller, “Attrakdiff: Ein fragebogen zur messung
wahrgenommener hedonischer und pragmatischer qualität,” in Mensch & Computer 2003: Inter-
aktion in Bewegung, G. Szwillus and J. Ziegler, Eds., Stuttgart, Germany, 2003, pp. 187–196.

[79] A. Heider, “Simulation of pmd sensors using ray tracing,” Bachelor Thesis, Technische Universität
München, 2011.

[80] J. Heikkila, “Accurate camera calibration and feature based 3-d reconstruction,” 1997.

[81] H. Hirschmuller, “Stereo processing by semiglobal matching and mutual information,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 30, no. 2, pp. 328 –341, feb. 2008.

[82] S. Hutchinson, G. Hager, and P. Corke, “A tutorial on visual servo control,” IEEE Transactions on
Robotics and Automation, vol. 12, no. 5, pp. 651–670, oct. 1996.

[83] P. Hynes, G. Dodds, and A. Wilkinson, “Uncalibrated visual-servoing of a dual-arm robot for surgi-
cal tasks,” in IEEE International Symposium on Computational Intelligence in Robotics and Automation,
Espoo, Finland, jun. 2005, pp. 151 – 156.

[84] K. Höller, “Novel techniques for spatial orientation in natural orifice translumenal endoscopic
surgery (notes),” Ph.D. dissertation, Friedrich-Alexander-University Erlangen-Nürnberg, 2010.

[85] M. Isard and A. Blake, “Condensation - conditional density propagation for visual tracking,” Inter-
national Journal of Computer Vision, vol. 29, no. 1, pp. 5–28, 1998.

[86] I. Ishii, K. Yamamoto, K. Doi, and T. Tsuji, “High-speed 3d image acquisition using coded struc-
tured light projection,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, San Diego, California, USA, oct. 2007, pp. 925–930.

[87] S. Jäger, S. Manke, J. Reichert, and A. Waibel, “Online handwriting recognition: the npen++ recog-
nizer,” International Journal on Document Analysis and Recognition, vol. 3, no. 3, pp. 169–180, 2001.

[88] A. Kapoor and R. Taylor, “A constrained optimization approach to virtual fixtures for multi-handed
tasks,” in Proceedings of the IEEE International Conference on Robotics and Automation, Pasadena, Cali-
fornia, USA, may 2008, pp. 3401–3406.

[89] J. Kast, J. Neuhaus, F. Nickel, H. Kenngott, M. Engel, E. Short, M. Reiter, H.-P. Meinzer, and L. Maier-
Hein, “Der telemanipulator davinci als mechanisches trackingsystem,” in Bildverarbeitung für die
Medizin, ser. Informatik aktuell, H.-P. Meinzer, T. M. Deserno, H. Handels, and T. Tolxdorff, Eds.
Springer Berlin Heidelberg, 2009, pp. 92–96.



125

[90] P. Kazanzides, G. Fichtinger, G. Hager, A. Okamura, L. Whitcomb, and R. Taylor, “Surgical and
interventional robotics - core concepts, technology, and design,” IEEE Robotics Automation Magazine,
vol. 15, no. 2, pp. 122 –130, jun. 2008.

[91] O. Khatib, “A unified approach for motion and force control of robot manipulators: The operational
space formulation,” IEEE Journal Robotics and Automation, vol. 3, no. 1, pp. 43–53, feb. 1987.

[92] M.-S. Kim, J.-S. Heo, and J.-J. Lee, “Visual tracking algorithm for laparoscopic robot surgery,” in
Fuzzy Systems and Knowledge Discovery, ser. Lecture Notes in Computer Science, L. Wang and Y. Jin,
Eds. Springer Berlin Heidelberg, 2005, vol. 3614, pp. 491–491.

[93] A. Knoll and R. Sasse, “An active stereometric triangulation technique using a continuous colour
pattern,” in Graphics and Robotics. Springer, 1995, pp. 191–206.

[94] S. Kobayashi and K. Nomizu, Foundations of differential geometry, 2nd ed. John Wiley & Sons Aus-
tralia, 1969.

[95] S. Kohlbecher, K. Bartl, S. Bardins, and E. Schneider, “Low-latency combined eye and head tracking
system for teleoperating a robotic head in real-time,” in ACM Symposium on Eye Tracking Research
and Applications, Austin, Texas, USA, mar. 2010, pp. 117–120.

[96] V. Kolmogorov and R. Zabih, “What energy functions can be minimized via graph cuts,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 26, pp. 65–81, feb. 2004.

[97] N. Komodakis and G. Tziritas, “Approximate labeling via graph cuts based on linear program-
ming,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 8, pp. 1436–1453,
aug. 2007.

[98] R. Konietschke, A. Busam, T. Bodenmüller, T. Ortmaier, M. Suppa, J. Wiechnik, T. Welzel, G. Eggers,
G. Hirzinger, and R. Marmulla, “Accuracy identification of markerless registration with the dlr
handheld 3d-modeller in medical applications,” in Tagsungsband der 6. Jahrestagung der Deutschen
Gesellschaft für Computergestüte Chirurgie, Karlsruhe, Germany, oct. 2007.

[99] K. Konolige, “Small vision systems: Hardware and implementation,” in Robotics Research, Y. Shirai
and S. Hirose, Eds. Springer London, 1998, pp. 203–212.

[100] ——, “Projected texture stereo,” in Proceedings of the IEEE International Conference on Robotics and
Automation, Anchorage, Alaska, USA, may 2010, pp. 148–155.

[101] A. Krupa, C. Doignon, J. Gangloff, and M. de Mathelin, “Combined image-based and depth vi-
sual servoing applied to robotized laparoscopic surgery,” in Proceedings of the IEEE/RSJ International
Conference Intelligent Robots and System, vol. 1, Lausanne, Switzerland, oct. 2002, pp. 323–329.

[102] A. Krupa, J. Gangloff, C. Doignon, M. de Mathelin, G. Morel, J. Leroy, L. Soler, and J. Marescaux,
“Autonomous 3-d positioning of surgical instruments in robotized laparoscopic surgery using vi-
sual servoing,” IEEE Transactions on Robotics and Automation, vol. 19, no. 5, pp. 842–853, oct. 2003.

[103] B. Kübler, “A new approach to establish tactility in minimally invasive robotic surgery - devel-
opment, design, and first evaluation of a haptic-tactile feedback system for improved localization
of arteries during surgery such as closed-chest revascularization,” Ph.D. dissertation, Universität
Stuttgart, 2010.

[104] B. Kuebler, R. Gruber, C. Joppek, J. Port, G. Passig, J. H. Nagel, and G. Hirzinger, “Tactile feedback
for artery detection in minimally invasive robotic surgery: Preliminary results of a new approach,”
in Proceedings of the World Congress on Medical Physics and Biomedical Engineering, vol. 25/6, Munich,
Germany, sep. 2009, pp. 299–302.

[105] D. Kwartowitz, S. Herrell, and R. Galloway, “Toward image-guided robotic surgery: determining
intrinsic accuracy of the da vinci robot,” International Journal of Computer Assisted Radiology and
Surgery, vol. 1, no. 3, pp. 157–165, 2006.



126

[106] D. Kwartowitz, M. Miga, S. Herrell, and R. Galloway, “Towards image guided robotic surgery:
multi-arm tracking through hybrid localization,” International Journal of Computer Assisted Radiology
and Surgery, vol. 4, no. 3, pp. 281–286, 2009.

[107] D.-S. Kwon, K. Y. Woo, S. K. Song, W. S. Kim, and H. S. Cho, “Microsurgical telerobot system,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, Victoria,
Canada, oct. 1998, pp. 945 –950.

[108] M. Li, M. Ishii, and R. Taylor, “Spatial motion constraints using virtual fixtures generated by
anatomy,” IEEE Transactions on Robotics, vol. 23, no. 1, pp. 4–19, feb. 2004.

[109] J. Lim, “Optimized projection pattern supplementing stereo systems,” in Proceedings of the IEEE
International Conference on Robotics and Automation, Kobe, Japan, may 2009, pp. 2823 –2829.

[110] H. C. Lin, I. Shafran, D. Yuh, and G. D. Hager, “Towards automatic skill evaluation: Detection
and segmentation of robot-assisted surgical motions,” Computer Aided Surgery, vol. 11, no. 5, pp.
220–230, sep. 2006.

[111] B. Lo, A. Darzi, and G.-Z. Yang, “Episode classification for the analysis of tissue/instrument in-
teraction with multiple visual cues,” in Proceedings of the International Conference on Medical Image
Computing and Computer-Assisted Intervention, Montréal, Canada, nov. 2003, pp. 230–237.

[112] M. J. H. Lum, D. C. W. Friedman, G. Sankaranarayanan, H. King, K. Fodero, R. Leuschke, B. Han-
naford, J. Rosen, and M. N. Sinanan, “The raven: Design and validation of a telesurgery system,”
International Journal of Robotics Research, vol. 28, no. 9, pp. 1183–1197, sep. 2009.

[113] T. Lüth and G. Stauß, “Diskussion unterschiedlicher assistenzmethoden für die endoskopie aus
technischer sicht,” Endo heute, vol. 23, no. 1, pp. 53–58, 2010.

[114] A. Madhani, G. Niemeyer, and J. Salisbury, “The black falcon: a teleoperated surgical instrument
for minimally invasive surgery,” in Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, vol. 2, Victoria, Canada, oct. 1998, pp. 936–944.

[115] P. Marayong, M. Li, A. Okamura, and G. Hager, “Spatial motion constraints: theory and demon-
strations for robot guidance using virtual fixtures,” in Proceedings of the IEEE International Conference
on Robotics and Automation, vol. 2, Taipei, Taiwan, sep. 2003, pp. 1954–1959.

[116] X. Maurice, C. Albitar, C. Doignon, and M. de Mathelin, “A structured light-based laparoscope with
real-time organs’ surface reconstruction for minimally invasive surgery,” in Proceedings of the IEEE
International Conference on Engineering in Medicine and Biology Society, San Diego, California, USA,
sep. 2012, pp. 5769 –5772.

[117] H. Mayer, I. Nagy, A. Knoll, E. Braun, R. Lange, and R. Bauernschmitt, “Adaptive control for
human-robot skilltransfer: Trajectory planning based on fluid dynamics,” in Proceedings of the IEEE
International Conference on Robotics and Automation, Roma, Italy, apr. 2007, pp. 1800–1807.

[118] H. Mayer, “Human-machine skill transfer in robot assisted, minimally invasive surgery,” Ph.D.
dissertation, Technische Universität München, München, Germany, 2008.

[119] H. Mayer, I. Nagy, A. Knoll, E. U. Braun, R. Bauernschmitt, and R. Lange, “Haptic feedback in a
telepresence system for endoscopic heart surgery,” Presence: Teleoper. Virtual Environ., vol. 16, no. 5,
pp. 459–470, oct. 2007.

[120] S. J. McKenna, C. H. Nait, and T. Frank, “Towards video understanding of laparoscopic surgery:
Instrument tracking,” in Proceedings of the International Conference on Image and Vision Computing,
Dunedin, New Zealand, nov. 2005.

[121] A. Micaelli, A. Micaelli, C. Samson, C. Samson, and P. Icare, “Trajectory tracking for unicycle-type
and two-steering-wheels mobile robots,” INRIA, Research Report RR-2097, 1993.



127

[122] S. Mitra and T. Acharya, “Gesture recognition: A survey,” IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, vol. 37, no. 3, pp. 311 –324, may. 2007.

[123] M. Mitsuishi, J. Arata, K. Tanaka, M. Miyamoto, T. Yoshidome, S. Iwata, M. Hashizume, and
S. Warisawa, “Development of a remote minimally-invasive surgical system with operational envi-
ronment transmission capability,” in Proceedings of the IEEE International Conference on Robotics and
Automation, vol. 2, Taipei, Taiwan, sep. 2003, pp. 2663 – 2670.

[124] R. Morano, C. Ozturk, R. Conn, S. Dubin, S. Zietz, and J. Nissano, “Structured light using pseudo-
random codes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 3, pp. 322
–327, mar. 1998.

[125] J. A. Morgan, J. C. Peacock, T. Kohmoto, M. J. Garrido, B. M. Schanzer, A. R. Kherani, D. W. Vig-
ilance, F. H. Cheema, S. Kaplan, C. R. Smith, M. C. Oz, and M. Argenziano, “Robotic techniques
improve quality of life in patients undergoing atrial septal defect repair,” The Annals of Thoracic
Surgery, vol. 77, no. 4, pp. 1328 – 1333, apr. 2004.

[126] P. Morguet, “Stochastische modellierung von bildsequenzen zur segmentierung und erkennung
dynamischer gesten,” Ph.D. dissertation, Technische Universität München, München, Germany,
2000.

[127] G. P. Moustris, S. C. Hiridis, K. M. Deliparaschos, and K. M. Konstantinidis, “Evolution of au-
tonomous and semi-autonomous robotic surgical systems: a review of the literature,” International
Journal of Medical Robotics and Computer Assisted Surgery, vol. 7, no. 4, pp. 375–392, aug. 2011.

[128] G. Mylonas, A. Darzi, and G.-Z. Yang, “Gaze contingent depth recovery and motion stabilisation for
minimally invasive robotic surgery,” in Proceedings of the International Workshop on Medical Imaging
and Augmented Reality, Beijing, China, aug. 2004, pp. 311–319.

[129] G. Mylonas, K.-W. Kwok, A. Darzi, and G.-Z. Yang, “Gaze contingent motor channelling and haptic
constraints for minimally invasive robotic surgery,” in Proceedings of the International Conference on
Medical Image Computing and Computer-Assisted Intervention, New York, New York, USA, sep. 2008,
pp. 676–683.

[130] F. Nageotte, P. Zanne, C. Doignon, and M. de Mathelin, “Visual servoing-based endoscopic path
following for robot-assisted laparoscopic surgery,” in Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, Beijing, China, oct. 2006, pp. 2364–2369.

[131] F. Nageotte, C. Doignon, M. de Mathelin, P. Zanne, and L. Soler, “Circular needle and needle-
holder localization for computer-aided suturing in laparoscopic surgery,” Medical Imaging 2005:
Visualization, Image-Guided Procedures, and Display, vol. 5744, no. 1, pp. 87–98, apr. 2005.

[132] F. Nageotte, P. Zanne, C. Doignon, and M. de Mathelin, “Stitching planning in laparoscopic surgery
: Towards robot-assisted suturing,” International Journal of Robotics Research, vol. 28, no. 10, pp. 1303–
1321, oct. 2009.

[133] I. Nagy, “3d situs reconstruction in minimally invasive surgery.” Ph.D. dissertation, Technische
Universität München, München, Germany, 2009.

[134] T. Neumuth, P. Jannin, G. Strauß, J. Meixensberger, and O. Burgert, “Validation of knowledge ac-
quisition for surgical process models,” Journal of the American Medical Informatics Association, vol. 16,
no. 1, pp. 72–80, jan.–feb. 2009.

[135] F. Nickel, I. Wegner, H. Kenngott, J. Neuhaus, B. P. Müller-Stich, H.-P. Meinzer, and C. N. Gutt,
“Magnetisches tracking für die navigation mit dem da vinci surgical system,” in Bildverarbeitung
für die Medizin, ser. Informatik aktuell, T. Tolxdorff, J. Braun, T. M. Deserno, A. Horsch, H. Handels,
and H.-P. Meinzer, Eds. Springer Berlin Heidelberg, 2008, pp. 148–152.



128

[136] A. Nishikawa, T. Hosoi, K. Koara, D. Negoro, A. Hikita, S. Asano, H. Kakutani, F. Miyazaki, M. Seki-
moto, M. Yasui, Y. Miyake, S. Takiguchi, and M. Monden, “Face mouse: A novel human-machine
interface for controlling the position of a laparoscope,” IEEE Transactions on Robotics and Automation,
vol. 19, no. 5, pp. 825 – 841, oct. 2003.

[137] D. Noonan, G. Mylonas, A. Darzi, and G.-Z. Yang, “Gaze contingent articulated robot control for
robot assisted minimally invasive surgery,” in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, Nice, France, sep. 2008, pp. 1186 –1191.

[138] D. Noonan, G. Mylonas, J. Shang, C. Payne, A. Darzi, and Y. G., “Gaze contingent control for
an articulated mechatronic laparoscope,” in Proceedings of the IEEE/RAS International Conference on
Biomedical Robotics and Biomechatronics, Tokyo, Japan, sep. 2010, pp. 759–764.

[139] Y. Normandin, “Optimal splitting of hmm gaussian mixture components with mmie training,” in
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 1, De-
troit, Michigan, USA, may 1995, pp. 449 –452.

[140] H. Nyquist, “Certain topics in telegraph transmission theory,” American Institute of Electrical Engi-
neers, Transactions of the, vol. 47, no. 2, pp. 617–644, 1928.

[141] T. Ortmaier, H. Weiss, U. Hagn, M. Grebenstein, M. Nickl, A. Albu-Schaffer, C. Ott, S. Jorg, R. Koni-
etschke, L. Le-Tien, and G. Hirzinger, “A hands-on-robot for accurate placement of pedicle screws,”
in Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, Florida, USA,
may 2006, pp. 4179 –4186.

[142] T. Ortmaier, “Motion compensation in minimally invasive robotic surgery,” Ph.D. dissertation,
Technische Universität München, München, Germany, 2002.

[143] N. Padoy and G. Hager, “Human-machine collaborative surgery using learned models,” in Proceed-
ings of the IEEE International Conference on Robotics and Automation, Shanghai, China, may 2011, pp.
5285 –5292.

[144] N. Padoy, T. Blum, S.-A. Ahmadi, H. Feussner, M.-O. Berger, and N. Navab, “Statistical modeling
and recognition of surgical workflow.” Medical Image Analysis, vol. 16, no. 3, pp. 632–641, april 2012.

[145] N. Padoy and G. D. Hager, “3d thread tracking for robotic assistance in tele-surgery,” in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, California,
USA, sep. 2011, pp. 2102 –2107.

[146] J. Pages, J. Salvi, R. Garcia, and C. Matabosch, “Overview of coded light projection techniques for
automatic 3d profiling,” in Proceedings of the IEEE International Conference on Robotics and Automation,
vol. 1, Taipei, Taiwan, sep. 2003, pp. 133 – 138.

[147] C. Pal, J. Weinman, L. Tran, and D. Scharstein, “On learning conditional random fields for stereo,”
International Journal of Computer Vision, vol. 99, pp. 319–337, 2012.

[148] G. Panin, Model-based Visual Tracking: The OpenTL Framework. Wiley, 2011.

[149] S. Park, R. D. Howe, and D. F. Torchiana, “Virtual fixtures for robotic cardiac surgery,” in Proceedings
of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Utrecht,
The Netherlands, oct. 2001, pp. 1419–1420.

[150] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Luebke, D. McAllister, M. McGuire,
K. Morley, A. Robison, and M. Stich, “Optix: a general purpose ray tracing engine,” ACM Trans.
Graph., vol. 29, no. 4, pp. 66:1–66:13, jul. 2010.

[151] C. Passenberg, R. Groten, A. Peer, and M. Buss, “Towards real-time haptic assistance adaptation
optimizing task performance and human effort,” in Proceedings of the IEEE World Haptics Conference,
Istanbul, Turkey, jun. 2011, pp. 155–160.



129

[152] Z. Pezzementi, S. Voros, and G. D. Hager, “Articulated object tracking by rendering consistent
appearance parts,” in Proceedings of the IEEE international Conference on Robotics and Automation,
Kobe, Japan, may 2009, pp. 1225–1232.

[153] R. Polet and J. Donnez, “Using a laparoscope manipulator (lapman),” Laparoscopic Gynecological
Surgery, vol. 17, pp. 187–191, 2008.

[154] P. Pook and D. Ballard, “Deictic teleassistance,” in Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, vol. 1, Munich, Germany, sep. 1994, pp. 245 –252.

[155] R. Prada and S. Payandeh, “A study on design and analysis of virtual fixtures for cutting in training
environments,” in Proceedings of the Joint Eurohaptics Conference and Symposium on Haptic Interfaces
for Virtual Environment and Teleoperator Systems, Pisa, Italy, mar. 2005, pp. 375–380.

[156] L. R. Rabiner, Readings in speech recognition, A. Waibel and K.-F. Lee, Eds. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1990.

[157] D. Rattner and A. Kalloo, “Asge/sages working group on natural orifice translumenal endoscopic
surgery,” Surgical Endoscopy, vol. 20, no. 2, pp. 329–333, feb. 2006.

[158] H. Reichenspurner, R. Damiano, M. Mack, D. Boehm, H. Gulbins, C. Detter, B. Meiser, R. Ellgass,
and B. Reichart, “Use of the voice-controlled and computer-assisted surgical system zeus for endo-
scopic coronary artery bypass grafting.” J Thorac Cardiovasc Surg, vol. 118, no. 1, pp. 11–6, 1999.

[159] C. E. Reiley and G. D. Hager, “Task versus subtask surgical skill evaluation of robotic minimally
invasive surgery,” in Proceedings of the International Conference on Medical Image Computing and
Computer-Assisted Intervention, London, UK, sep. 2009, pp. 435–442.

[160] C. Reiley, H. Lin, D. Yuh, and G. Hager, “Review of methods for objective surgical skill evaluation,”
Surgical Endoscopy, vol. 25, no. 2, pp. 356–366, jul. 2011.

[161] A. Reiter and P. Allen, “Marker-less articulated surgical tool detection,” in Proceedings of the Inter-
national Conference on Computer Assisted Radiology and Surgery, Pisa, Italy, jun. 2012.

[162] A. Reiter, P. Allen, and T. Zhao, “Learning features on robotic surgical tools,” in IEEE Workshop on
Computer Vision and Pattern Recognition, Providence, Rhode Island, USA, jun. 2012, pp. 38–43.

[163] J. Ren, R. Patel, K. McIsaac, G. Guiraudon, and T. Peters, “Dynamic 3-d virtual fixtures for mini-
mally invasive beating heart procedures,” IEEE Transactions on Medical Imaging, vol. 27, no. 8, pp.
1061 –1070, aug. 2008.

[164] M. Rickert, “Efficient motion planning for intuitive task execution in modular manipulation sys-
tems,” Ph.D. dissertation, Technische Universität München, München, Germany, 2011.

[165] S. Roman, Coding and Information Theory. Springer, 1992.

[166] J. Rosen, J. Brown, L. Chang, M. Sinanan, and B. Hannaford, “Generalized approach for modeling
minimally invasive surgery as a stochastic process using a discrete markov model,” IEEE Transac-
tions on Biomedical Engineering, vol. 53, no. 3, pp. 399 –413, mar. 2006.

[167] J. Rosen and B. Hannaford, “Doc at a distance,” IEEE Spectrum, pp. 34–39, oct. 2006.

[168] L. Rosenberg, “Virtual fixtures: Perceptual tools for telerobotic manipulation,” in IEEE Virtual Real-
ity Annual International Symposium, Seattle, Washington, USA, sep. 1993, pp. 76–82.

[169] G. S., J. Rosen, B. Hannaford, and M. Sinanan, “The red dragon: A multi-modality system for
simulation and training in minimally invasive surgery,” in Proceedings of Medicine Meets Virtual
Reality, Long Beach, Californa, USA, feb. 2007, pp. 149–154.



130

[170] J. Sackier and Y. Wang, “Robotically assisted laparoscopic surgery,” Surgical Endoscopy, vol. 8, pp.
63–66, 1994.

[171] J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for
surface profilometry,” Pattern Recognition, vol. 43, no. 8, pp. 2666 – 2680, aug. 2010.

[172] A. Saxena, S. H. Chung, and A. Y. Ng, “3-d depth reconstruction from a single still image,” Interna-
tional Journal of Computer Vision, vol. 76, no. 1, pp. 53–69, jan. 2008.

[173] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspon-
dence algorithms,” International Journal of Computer Vision, vol. 47, no. 1-3, pp. 7–42, apr. 2001.

[174] E. Schneider, T. Villgrattner, J. Vockeroth, K. Bartl, S. Kohlbecher, S. Bardins, H. Ulbrich, and
T. Brandt, “Eyeseecam: An eye movement–driven head camera for the examination of natural vi-
sual exploration,” Annals of the New York Academy of Sciences, vol. 1164, no. 1, pp. 461–467, may
2009.

[175] M. O. Schurr, G. Buess, B. Neisius, and U. Voges, “Robotics and telemanipulation technologies for
endoscopic surgery,” Surgical Endoscopy, vol. 14, no. 4, pp. 375–381, apr. 2000.

[176] L. Schwarz, A. Bigdelou, and N. Navab, “Learning gestures for customizable human-computer
interaction in the operating room,” in Proceedings of the International Conference on Medical Image
Computing and Computer-Assisted Intervention, Toronto, Canada, sep. 2011.

[177] T. Seisen, S. J. Drouin, V. Phé, J. Parra, P. Mozer, M.-O. Bitker, O. Cussenot, and M. Rouprêt, “Cur-
rent role of image-guided robotic radiosurgery (cyberknife®) for prostate cancer treatment,” BJU
International, pp. n/a–n/a, 2013.

[178] K. Seong-Young and K. Dong-Soo, “A surgical knowledge based interaction method for a laparo-
scopic assistant robot,” in Proceedings of the IEEE International Workshop on Robot and Human Interac-
tive Communication, sep. 2004, pp. 313 – 318.

[179] Y. Shiu and S. Ahmad, “Calibration of wrist-mounted robotic sensors by solving homogeneous
transform equations of the form ax=xb,” Robotics and Automation, IEEE Transactions on, vol. 5, no. 1,
pp. 16 –29, feb. 1989.

[180] D. Soetanto, L. Lapierre, and A. Pascoal, “Adaptive, non-singular path-following control of dy-
namic wheeled robots,” in Proceedings of the IEEE Conference on Decision and Control, vol. 2, Maui,
Hawaii, USA, dec. 2003, pp. 1765–1770.

[181] S. Speidel, M. Delles, C. Gutt, and R. Dillmann, “Tracking of instruments in minimally invasive
surgery for surgical skill analysis,” in Medical Imaging and Augmented Reality, ser. Lecture Notes
in Computer Science, G.-Z. Yang, T. Jiang, D. Shen, L. Gu, and J. Yang, Eds. Springer Berlin /
Heidelberg, 2006, vol. 4091, pp. 148–155.

[182] T. Stewart, “Usability or user experience - what’s the difference?” in System Concepts, 2008.

[183] D. Stoyanov, “Surgical vision,” Annals of Biomedical Engineering, vol. 40, no. 2, pp. 332–345, jan. 2012.

[184] D. Stoyanov, G. Mylonas, and G.-Z. Yang, “Gaze contingent 3d control for focused energy abla-
tion in robotic assisted surgery,” in Medical Image Computing and Computer-Assisted Intervention,
D. Metaxas, L. Axel, G. Fichtinger, and G. Székely, Eds. Springer Berlin / Heidelberg, 2008, pp.
347–355.

[185] D. Stoyanov, M. Scarzanella, P. Pratt, and G.-Z. Yang, “Real-time stereo reconstruction in robotically
assisted minimally invasive surgery,” in Proceedings of the International Conference on Medical Image
Computing and Computer-Assisted Intervention, Beijing, China, sep. 2010, pp. 275–282.

[186] P. D. Stroud, “A recursive exponential filter for time-sensitive data,” Los Alamos National Labora-
tory, Tech. Rep. LAUR-99-5573, oct. 1999.



131

[187] X. Sun, X. Mei, S. Jiao, M. Zhou, and H. Wang, “Stereo matching with reliable disparity propaga-
tion,” in Proceedings of the IEEE International Conference on 3D Imaging, Modeling, Processing, Visual-
ization and Transmission, Washington, DC, USA, may 2011, pp. 132–139.

[188] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala, M. Tappen, and
C. Rother, “A comparative study of energy minimization methods for markov random fields with
smoothness-based priors,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30,
no. 6, pp. 1068 –1080, jun. 2008.

[189] R. Szeliski, Computer Vision: Algorithms and Applications, 1st ed. New York, NY, USA: Springer-
Verlag New York, Inc., 2010.

[190] R. Taylor, J. Funda, B. Eldridge, S. Gomory, K. Gruben, D. LaRose, M. Talamini, L. Kavoussi, and
J. Anderson, “A telerobotic assistant for laparoscopic surgery,” IEEE Engineering in Medicine and
Biology Magazine, vol. 14, no. 3, pp. 279 –288, may/jun. 1995.

[191] R. Taylor, B. Mittelstadt, H. Paul, W. Hanson, P. Kazanzides, J. Zuhars, B. Williamson, B. Musits,
E. Glassman, and W. Bargar, “An image-directed robotic system for precise orthopaedic surgery,”
IEEE Transactions on Robotics and Automation, vol. 10, no. 3, pp. 261 –275, jun. 1994.

[192] R. Taylor and D. Stoianovici, “Medical robotics in computer-integrated surgery,” IEEE Transactions
on Robotics and Automation, vol. 19, no. 5, pp. 765 – 781, oct. 2003.

[193] S. Thielmann, U. Seibold, R. Haslinger, G. Passig, T. Bahls, S. Jörg, M. Nickl, A. Nothhelfer, U. Hagn,
and G. Hirzinger, “Mica - a new generation of versatile instruments in robotic surgery,” in Proceed-
ings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, oct.
2010, pp. 871 –878.

[194] A. Tobergte, G. Passig, B. Kuebler, U. Seibold, U. A. Hagn, F. A. Fröhlich, R. Konietschke, S. Jörg,
M. Nickl, S. Thielmann, R. Haslinger, M. Groeger, A. Nothhelfer, L. Le-Tien, R. Gruber, A. Albu-
Schäffer, and G. Hirzinger, “Mirosurge-advanced user interaction modalities in minimally invasive
robotic surgery,” Presence: Teleoperators and Virtual Environments, vol. 19, no. 5, pp. 400–414, oct.
2010.

[195] S. Tognarelli, V. Castelli, G. Ciuti, C. Natali, E. Sinibaldi, P. Dario, and A. Menciassi, “Magnetic
propulsion and ultrasound tracking of endovascular devices,” Journal of Robotic Surgery, vol. 6,
no. 1, pp. 5–12, mar. 2012.

[196] M. Tomikawa, H. Xu, and M. Hashizume, “Current status and prerequisites for natural orifice
translumenal endoscopic surgery (notes),” Surgery Today, vol. 40, no. 10, pp. 909–916, oct. 2010.

[197] O. Tonet, R. U. Thoranaghatte, G. Megali, and P. Dario, “Tracking endoscopic instruments without
a localizer: A shape-analysis-based approach,” Computer Aided Surgery, vol. 12, no. 1, pp. 35–42, jan.
2007.

[198] I. Tosic, B. A. Olshausen, and B. J. Culpepper, “Learning sparse representations of depth,” Journal
of Selected Topics in Signal Processing, vol. 5, no. 5, pp. 941–952, 2010.

[199] S. Tully, A. Bajo, G. Kantor, H. Choset, and N. Simaan, “Constrained filtering with contact detection
data for the localization and registration of continuum robots in flexible environments,” in Proceed-
ings of the IEEE International Conference on Robotics and Automation, St. Paul, Minnesota, USA, may
2012, pp. 3388 –3394.

[200] T. Tuytelaars and K. Mikolajczyk, Local Invariant Feature Detectors: A Survey. Hanover, MA, USA:
Now Publishers Inc., 2008.

[201] D. R. Uecker, C. Lee, Y. F. Wang, and Y. Wang, “Automated instrument tracking in robotically-
assisted laparoscopic surgery,” Journal of Image Guided Surgery, vol. 1, no. 6, pp. 308–325, 1998.



132

[202] A. Uneri, M. A. Balicki, J. Handa, P. Gehlbach, R. H. Taylor, and I. Iordachita, “New steady-hand
eye robot with micro-force sensing for vitreoretinal surgery,” in Proceedings of the IEEE RAS & EMBS
International Conference on Biomedical Robotics and Biomechatronics, Tokyo, Japan, sep. 2010, pp. 814–
819.

[203] J. van den Berg, S. Miller, D. Duckworth, H. Hu, A. Wan, X.-Y. Fu, K. Goldberg, and P. Abbeel,
“Superhuman performance of surgical tasks by robots using iterative learning from human-guided
demonstrations,” in Proceedings of the IEEE International Conference on Robotics and Automation, An-
chorage, Alaska, USA, may 2010, pp. 2074 –2081.

[204] M. Visentini-Scarzanella, G. Mylonas, D. Stoyanov, and G.-Z. Yang, “i-brush: A gaze-contingent
virtual paintbrush for dense 3d reconstruction in robotic assisted surgery,” in Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention, London, UK,
sep. 2009, pp. 353–360.

[205] S. Voros, J.-A. Long, and P. Cinquin, “Automatic detection of instruments in laparoscopic images:
A first step towards high-level command of robotic endoscopic holders,” The International Journal of
Robotics Research, vol. 26, no. 11-12, pp. 1173–1190, nov. 2007.

[206] P. Vuylsteke and A. Oosterlinck, “Range image acquisition with a single binary-encoded light pat-
tern,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 2, pp. 148 –164, feb.
1990.

[207] L. Wang and R. Yang, “Global stereo matching leveraged by sparse ground control points,” in
Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Colorado
Springs, Colorado, USA, jun. 2011, pp. 3033–3040.

[208] M. Wäny, S. Voltz, F. Gaspar, and L. Chen, “Minimal form factor digital-image sensor for endo-
scopic applications,” in Proceedings of the SPIE: Sensors, Cameras, and Systems for Industrial/Scientific
Applications, vol. 7249, San Jose, USA, 2009.

[209] O. Weede, H. Monnich, B. Muller, and H. Worn, “An intelligent and autonomous endoscopic guid-
ance system for minimally invasive surgery,” in Proceedings of the IEEE International Conference on
Robotics and Automation, Shanghai, China, may 2011, pp. 5762 –5768.

[210] O. Weede, F. Dittrich, H. Wörn, B. Jensen, A. Knoll, D. Wilhelm, M. Kranzfelder, A. Schneider, and
H. Feussner, “Workflow analysis and surgical phase recognition in minimally invasive surgery,” in
Proceedings of the IEEE International Conference on Robotics and Biomimetics, Guangzhou, China, dec.
2012.

[211] Y. Wei and L. Quan, “Region-based progressive stereo matching,” in Proceedings of the IEEE Interna-
tional Conference on Computer Vision and Pattern Recognition, vol. 1, Washington, DC, USA, jun. 2004,
pp. 106–113.

[212] G. Welch and G. Bishop, “An introduction to the kalman filter,” Department of Computer Science,
University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, Tech. Rep., 1995.

[213] L. Windisch, F. Cheriet, and G. Grimard, “Bayesian differentiation of multi-scale line-structures for
model-free instrument segmentation in thoracoscopic images,” in Image Analysis and Recognition,
ser. Lecture Notes in Computer Science, M. Kamel and A. Campilho, Eds. Springer Berlin /
Heidelberg, 2005, vol. 3656, pp. 938–948.

[214] Z. Yaniv and K. Cleary, “Image-guided procedures: A review,” Georgetown University, Imaging
Science and Information Systems Center, Washington, DC, Technical Report CAIMR TR-2006-3,
apr. 2006.

[215] R. Zabih and J. Woodfill, “A non-parametric approach to visual correspondence,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 1994.



133

[216] ——, “Non-parametric local transforms for computing visual correspondence,” in Proceedings of the
European Conference on Computer Vision, J.-O. Eklundh, Ed., vol. 801. Stockholm, Sweden: Springer
Berlin Heidelberg, may 1994, pp. 151–158.

[217] L. Zhang, B. Curless, and S. M. Seitz, “Rapid shape acquisition using color structured light and
multi-pass dynamic programming,” in The 1st IEEE International Symposium on 3D Data Processing,
Visualization, and Transmission, Chapel Hill, North Carolina, USA, jun. 2002, pp. 24–36.

[218] X. Zhang and S. Payandeh, “Application of visual tracking for robot-assisted laparoscopic surgery,”
Journal of Robotic Systems, vol. 19, no. 7, pp. 315–328, apr. 2002.

[219] J. Zhu, L. Wang, R. Yang, J. Davis, and Z. Pan, “Reliability fusion of time-of-flight depth and stereo
geometry for high quality depth maps,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 33, no. 7, pp. 1400–1414, jul. 2011.




