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ABSTRACT

In a video-conference the participants usually see the video of the
speaker. However if somebody reacts (e. g. nodding) the system
should switch to his video. Current systems do not support this.
We formulate this camera selection as a pattern recognition prob-
lem. Then we apply HMMs to learn this behaviour. Thus our system
can easily be adapted to different meeting scenarios. Furthermore,
while current systems stay on the speaker, our system will switch if
somebody reacts. In an experimental section we show that – com-
pared to a desired output – a current system shows the wrong camera
more than half of the time (frame error rate 53%), where our system
selects the wrong camera in only a quarter of the time (FER 27%).

1. INTRODUCTION

A lot of people think that most meetings are just a waste of time [1].
On the other hand they are often mandatory for many of us and can
consume a large part of our working days. Projects like the ICSI
meeting project [2], Computers in the Human Interaction Loop [3],
or Augmented Multi-party Interaction [4] therefore investigate how
computers can be used to make meetings and lectures more effec-
tive. In this work we address a problem that occurs in two different
scenarios: Video-conferences [5] and meetings in a smart room [6].

In a video-conference the participants are in different locations.
Each participant is recorded with a camera and a microphone. This
audio-visual data is then transmitted to all other participants. Usually
the audio stream is preprocessed such that only the active speaker is
indeed played. This process is similar to phone conferences (see
e. g. Skype as a non- and Spiderphone as a commercial version). The
video channel is different: Current versions either show the active
speaker and therefore simply reuse the audio information; or they
show a selection or all participants of the meeting at the same time
by scaling down the individual video streams until all persons fit on
the display (see e. g. InterCall’s InView solution, or Visual Nexus).
Neither approach is a good solution: Showing all participants is lim-
ited to a few participants. With an increasing number the individual
videos get to small. The second approach of simply showing the
video of the active speaker is straight-forward and reduces the video
size problem. But by doing that the video has only limited extra in-
formation: Imagine someone gives a presentation. As he is the only
person speaking, he will always be shown. This way you loose the
very important information, that the project manager is shaking his
head constantly, indicating he is not satisfied with the idea.

This work is supported by the European IST Programme Project FP6-0033812.
This paper only reflects the authors’ views and funding agencies are not liable for any
use that may be made of the information contained herein.

Meetings are truly multi-modal in nature [7], thus it can be very
important to show persons who currently do not speak. Professional
directors of talk-shows follow this rule and from time to time show
facial reactions or gestures of the participants. Thus a good video-
conference system should neither show all participants at the same
time, nor simply show the speaker, but choose one of the participants
based on both the audio information, as well as visual information.

In the second scenario all participants are located in the same
room and the meeting is recorded with multiple cameras and micro-
phones. Such smart meeting rooms become increasingly important,
as the recordings allow to analyse the meeting content, as well as
a later comprehension of the decisions [3, 4]. Then the recordings
together with some high level information can be watched in a meet-
ing browser [8]. However it is usually not possible to simply view
all recorded video streams at the same time; thus it is necessary to
select one camera and show this stream to the user. Of course this
view will in general change within the course of the meeting.

Thus, while video-conferences and local meetings are sociolog-
ically quite different; the problem of selection a camera is the same
for both scenarios: for each time instance (generally frames) of the
meeting we need to select one camera or – as we refer them to –
video mode that shows best what happens in the meeting. Gen-
erally a mode is a camera view, but could also be a slide or two
merged videos (see Sec. 3). This mode is then transmitted to the
other participants or stored for browsing. The problem can therefore
be described as an automatic, virtual meeting director. While the
task is commercially very interesting, it has not yet been deeply re-
searched. Previous works suggest video editing rules for the camera
decision [9, 10]. In [11] a controllable camera is used and the view
is automatically learned. [12] proposes a system to extract relevant
meeting regions from wide screen cameras. A user study with expert
camera operators [13] offers suggestions how to design an interface.
For video surveillance, [14] suggests how to select cameras, but the
decision concentrates only on video quality. Thus, the results from
these works can not be directly applied to conference scenarios.

We suggest to formulate the camera selection as a pattern recog-
nition problem, where each possible video mode is modelled as a
pattern class. The problem can then be reduced to classify each
frame of the meeting to one of the classes (i.e. video modes). This
way we can train machine learning algorithms and use them for the
camera selection. We propose a system based on different Hidden
Markov Model (HMM) techniques. We extract audio-visual features
(Sec. 4) from a data set (Sec. 2) and use them in an early fusion
HMM (Sec. 5.2), as well as in a problem adapted two layer HMM
(Sec. 5.3). Finally the proposed methods are evaluated (Sec. 6) and
compared to the state-of-the-art rule-based approach (Sec. 5.1).
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Fig. 1. Sample shots from the data set: centre (C) view of the room,
shot from the left (L), and a closeup view of a participant (C4).

2. MEETING ROOM AND DATA SET

The data for this work has been collected in the AMI project and is
publicly available [15]. Each meeting has four participants. We use
a subset of 24 five minute videos, each with different participants.

All meetings have been recorded in the IDIAP smart meeting
room [6]. This room is equipped with a table, a whiteboard, and
a projector with a screen. Close-talking audio is recorded with an
omni-directional lapel and a headset with condenser microphone for
each participant. Far-field recordings are performed with two mi-
crophone arrays. Video is recorded with seven static cameras: four
cameras record participants closeup views (C1 −C4). Two cameras
record a left (L), resp. right (R) view of the room; each showing
two participants and the table in front of them. The last camera (C)
captures a total of the room with all four participants, the table, as
well as the whiteboard, and the projector screen. Three sample shots
from these cameras are shown in Fig. 2. The closeup recording cor-
responds to the camera recordings in a video-conference scenario.

3. VIDEO MODES AND ANNOTATION

For each frame of the meeting we have to select one camera or one
view. We will refer to these possible views as video modes Vk. In the
case of a video-conference, each participants camera represents one
mode, furthermore slides could be another mode. Thus in a video-
conference with four persons we would have five modes. For brows-
ing a recorded meeting, we use each camera in the meeting room
as one possible video mode. Thus we have seven modes. However,
the method is not limited to these modes. New ones can easily be
added: If – for example for discussions – one needs a view where
one person is blended into the corner of another person (i. e. corre-
spondent view of news shows), we could define this as a new mode
and simply train a new class without influencing the existing modes.
This way the system can easily be adapted to various needs and ap-
plications without changing the underlying system. For an extensive
discussion on possible video modes in meetings see [10].

To apply our pattern recognition approach we needed training
data for the video mode classes. We therefore set up a limited set of
annotation rules, ensuring some basic guidelines: Mainly preventing
annotators from very fast switches between the cameras (we encour-
aged them to stay for at least 10 seconds on one view). However
we gave the annotators the freedom to select cameras they thought
would best represent the meeting at a given time. Thus the degree
of freedom was rather high. Consequently, first studies showed that
inter-annotator agreement on the data set was rather low (κ < 0.5)
and therefore not consistent enough. Further studies showed, that
persons where very consistent if they annotated the same meeting
more than once. This shows that the annotation and the desired cam-
era view indeed depends on the taste of the annotator, but then rep-
resents a consistent selection. We therefore decided to use only two
annotators, to ensure a consistent training data set.

4. FEATURES

Global Motion Features: As first feature we use global motions
(GM). They are simple, but have been successfully applied to various
meeting tasks [16] and can be calculated in real-time with a latency
of only one frame. We split the room into six locations L. Each of
the four closeup cameras represents one location. From the centre
view camera we extract the projection board and the whiteboard lo-
cation. Then a difference image sequence IL

d (x, y, t) is calculated
for each of these six locations and each frame t by subtracting the
pixel values of two subsequent frames from the video stream. Then
the centre of motion is calculated for the x- and y-direction:

mL
x (t) =

P
(x,y) x · |IL

d
(x, y, t)|

P
(x,y) |I

L
d

(x, y, t)|
, mL

y (t) =

P
(x,y) y · |IL

d
(x, y, t)|

P
(x,y) |I

L
d

(x, y, t)|

(1)
The changes in motion are used to express the dynamics of the move-
ments:
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Furthermore the mean absolute deviation of the pixels relative to the
centre of motion is computed:

σL
x (t) =

P
(x,y) |I

L
d

(x, y, t)| ·
`
x−mL

x (t)
´

P
(x,y) |I

L
d

(x, y, t)|

and

σL
y (t) =

P
(x,y) |I

L
d

(x, y, t)| ·
`
y −mL

y (t)
´

P
(x,y) |I

L
d

(x, y, t)|
(3)

Finally the intensity of motion is calculated from the average abso-
lute value of the motion distribution:
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These seven features are concatenated for frame t in the location
dependent motion vector �xL(t). With this vector the high dimen-
sional video is reduced to a seven dimensional vector, but it preserves
the major characteristics of the motion. Concatenating the vectors of
the six positions L leads to the final GM feature vector �xGM(t) that
describes the motion in the meeting with only 42 features.

Skin Blob Features: A further way to access the participants
activities are hand and head movements. In [17] it was shown how
skin blobs can be used to detect the activity of individual meeting
participants. We therefore add skin blobs (SB) as a visual feature.

We extract the head and hand SBs with a skin colour look up ta-
ble. The RGB-images are transformed into the rg-space. Each pixel
is then compared to a 16 bit rg-look up table, which results in a bi-
nary image, where each possible skin pixel is marked. To fill gaps in
skin areas, a 5x5 dilation filter is applied. The found skin areas are
then analysed for their shape, the relation of their eigenvalues, and
context knowledge about possible positions. Finally subsequent im-
ages are averaged with a recursive approach, that is applied individu-
ally to blobs in the meeting videos �m(t) = 1− 1

T
�m(t−1)+ 1

T
�x(t),

where �x(t) is the current measured value, �m(t) is the resulting aver-
ages vector for the blob position, �m(t−1) the position in the last im-
age, and T a constant that determines the relation between previous
frames and the current measurement. The position and movement
of each participant’s blobs are concatenated in the final SB motion
vector �xSB(t). This approach is simple but can be performed in real-
time; more details can be found in [10].

Acoustic Features: From each participant’s lapel microphone
we extract 12 Mel frequency cepstral coefficients (MFCC) and the
energy, as well as the first and second derivations. This results in a
39 dimensional acoustic feature vector �xMFCC(t) for each participant.
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5. VIDEO MODE SELECTION MODELS

5.1. State-of-the-Art Rule-Based Model

For comparison we summarise the state-of-the-art rule-based ap-
proach (for details see e.g. [10]). In the following let t denote the
current time step, W the window size, P ∈ {P1, P2, P3, P4} one of
the meeting participants, and EP (t) the audio energy for person P

at time t. The windowed output of the feature is denoted as DP (t)
and derived by summing up the energy in the window:

DP (t) =

tX

τ=t−W

EP (τ) (5)

The output DP (t) therefore represents what has recently hap-
pened in the audio channel of person P . For each time step t, the
rule-based systems then chooses the “most active” person with

k(t) = argmax
P

DP (t) (6)

Depending on the desired output, this decision k(t) is now di-
rectly mapped to one of the video modes Vk(t) (e.g. an activity of
person two will of course show the mode corresponding to camera
two). This process does not optimise the features, nor does it model
interactions between the features, it simply uses the energy. Yet, it is
reliable and the behaviour well controlled, thus it is widely applied.

5.2. Hidden Markov Model

We search for a sequence of camera views from the meeting. As we
formulated this video selection as a pattern recognition problem and
provided data with annotated video modes, we can apply the Hidden
Markov Model (HMM) [18]. It can be used for classification of
feature streams. In combination with the Viterbi algorithm [19] it
also segments the stream into a sequence of video modes.

For the recognition with HMMs, each video mode is modelled
by one HMM. Each HMM k (and thus each video mode) is repre-
sented by a set of parameters λk = (A,B, �π), where A denotes the
transition matrix, �π the initial state distribution, and B is the output
distribution, here modelled with mixtures of Gaussians.

For the HMMS, we can use only audio (�xMFCC), visual (�xGM

and/or �xSB), or all features. The selection of the video-mode should
be based on both the acoustic and the visual information. Thus we
use an early fusion HMM: The frame rates of the streams are ad-
justed and then concatenated into one multi-modal feature stream �x.

Given this multi-modal training data Xk from our data set for
mode k, the parameters λk of the HMM k can be trained with the
well known EM-algorithm [20]. The aim of this training is to max-
imise p(Xk|λk). For the training of this HMM k only representa-
tives of the video mode k are used. The resulting models are there-
fore independent from each other. The HMM corresponding to the
centre view is only trained with representatives of this mode. This
HMM neither takes the number of classes into account, nor does it
know other modes. Thus the system can easily be expanded with
new modes: The other – already trained – HMMs are not influenced.
One simply needs to train a new HMM for each new video mode,
this makes the approach very flexible and easily adaptable.

Once an HMM for each class (i.e. video mode) is trained, the
unknown video feature stream �x is presented to all HMMs λk and
we select the model k with k = argmaxi p(�x|λi) the highest like-
lihood. This is done with an online version of the Viterbi algo-
rithm [19], which can also perform a segmentation of the streamed
input vector �x. This way, the feature stream of the meeting is au-
tomatically segmented into a sequence of video modes: the desired
sequence of camera views from the meeting.

5.3. Two-layer Hidden Markov Model

Compared to the rule-based approach, the early fusion HMM reacts
on both visual and acoustic information and implicitly models the
relation between the streams. However, the virtual director should
react on the individual actions. Mainly it should stay on the speaker,
but if somebody reacts, the system should switch to this person. If
the training data represents this behaviour, we can assume that the
early fusion HMM learns and therefore models this behaviour.

On the other hand we can explicitely model this with a two-
layer HMM: the first layer recognises the individual actions of each
participant. These recognised actions together with group related
features (e.g. the motion in front of the whiteboard) are then used as
input for the second layer that decodes the actual video mode.

For the person HMM layer we defined 14 important individual
actions: e.g. standing up or sitting down, but also more subtle ac-
tions like nodding or shaking of the head. We use the actions of all
four participants in the meeting to train the models, i.e we have a
person independent training. Thus we effectively have four times
the training data available. The second layer is then trained analo-
gous to the early fusion HMM. However we extend the early fusion
feature vector �x with the person actions: we add the action of each
participant in a coded way for each frame of the meeting resulting in
the extended feature vector �xe. This way the video mode HMM ex-
plicitely learns the relation between person actions and desired video
mode output, but preserves the implicit learning of feature relations.
The complete training procedure can then be summarised in

Algorithm 1 Two-Layer HMM Training

Require: Training feature vectors X

for all person actions Aj do
λAj

← train person action HMM, s.t. max P (XAj
|λAj

)
end for
X

e ← extend the features X with the true person actions ai

for all videomodes Vk do
λVk

← train video mode HMM, s.t. max P (Xe
Vk
|λVk

)
end for

In the recognition phase we apply a two-fold decoding: First
the unknown feature stream �x is used to classify the actions of each
person in the meeting. Then the feature vector �x is extended with
the found person actions, resulting in the extended stream �xe. This
feature stream now explicitely comprehends the found individual ac-
tions. Finally �xe is used to segment and classify the video mode in
the second layer. This way the video mode HMM has explicit infor-
mation about the person actions, however they are of course afflicted
with some uncertainty (note the difference to the training, where the
true actions are available). While the process separates the individ-
ual actions from the video mode, it introduces some latency: The
first layer first has to decode the feature streams, and then this output
is fed into the second layer, thus the second layer is always a couple
of frames behind. The overall decoding can be summarised in

Algorithm 2 Two-Layer HMM Decoding

Require: Unknown feature vector stream �x

for all persons Pi in the meeting do
ai ← classify individual person action argmaxj P (�x|λAj

)
end for
�xe ← extend the stream �x with the found person actions ai

V ← classify the video mode argmaxk P (�xe|λVk
)
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6. EXPERIMENTS

To evaluate our proposed system we performed two experiments:
For the first experiment we assumed the true shot boundaries were
known, and the only task was to assign a video mode to each seg-
ment. In the second experiment the shot boundaries were unknown
and the system had to segment and classify the videos, i.e. the second
scenario is the true application. We used the 24 five minute videos
from our data set and performed a six-fold cross-validation. We fur-
ther split the experiments into two scenarios: The first contained
seven video modes (all four persons, left, right, and centre camera);
the second experiment corresponds to a video-conference with five
modes (four persons and the centre camera for presentations).

For the classification we measured the recognition results (RR,
i.e. correct found modes; high numbers are better). For the joint
segmentation and classification, we measured the frame error rate
(FER, i. e. proportion of frames, where a wrong video mode was
selected; low numbers are better). All results are shown in Tab. 1.

In the classification task, the rule based system achieves a RR of
45% for seven, resp. 57% for five modes. The proposed multi-modal
systems are significantly better: the early fusion HMM achieves
51%, resp. 72% RR. The layered HMM does not outperform the
early fusion HMM. A further analysis showed that this is mainly
caused by the first action layer (RR only 43%). Thus we also anal-
ysed the maximum possible performance of the two-layer HMM
by providing the ground truth (GT) individual actions to the sec-
ond layer. Then the two-layer HMM is slightly better than the early
fusion HMM. Of course, this GT is not available in a real system.

The tendency of the classification task is even increased in the
real application of joint segmentation and classification: Here the
rule based approach is highly outperformed by the proposed sys-
tems. For the video-conference scenario (five modes), the rule based
system selects the wrong video mode for over half the frames (53%
FER). Here the early fusion HMM selects the wrong frame in only
a quarter of the meeting (27% FER). Thus by applying standard ma-
chine learning techniques, we get a much better video.

Interestingly, while the absolute FERs seem quite high, the video
output of the system represents a very good view upon the meeting,
and only some actions of the participants are missing.

7. CONCLUSIONS AND FUTURE WORK

In this work we proposed a system for selecting a camera view in
video-conferences and for browsing recorded meetings. We formu-
lated the task as a pattern recognition problem and could therefore
apply Hidden Markov Models for the segmentation of a meeting into
a series of camera views. The proposed system is very flexible and
can easily be adapted to different applications. Whenever a new view
or camera is desired, only one new model has to be trained, without
influencing the existing models, or the underlying system.

In an experimental section we showed that the proposed HMM
highly outperforms the state-of-the-art rule-based method. While
this system always stays on the active speaker, the proposed system
changes to other channels, if somebody reacts. This leads to a video
that represents the meeting much better. Currently most commercial
video-conferencing systems use DSPs, thus the computational time
required for the HMM decoding could easily be performed. Given
the good performance of the system, this seems worth the effort.

In the future we will integrate a higher “grammar-level”, to pre-
vent fast switches between video modes and retrain the models based
on used studies. Furthermore we will evaluate different machine
learning techniques to further improve the system performance.

Modell Classification Segmentation
RR-7 RR-5 FER-7 FER-5

Rule Based 45.4% 56.6% 61.4% 53.3%
Early Fusion HMM 51.4% 71.6% 47.9% 27.0%
Two-layer HMM 51.0% 69.6% 45.9% 27.1%
Two-layer HMM (GT) 51.5% 74.2% 42.5% 22.8%

Table 1. Recognition rates (RR, high better) for classification; frame
error rates (FER, low better) for segmentation and classification.
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