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ABSTRACT

In this work we present a novel two-layer hybrid Graphical model for
combined shot and scene boundary detection in videos. In the first
layer of the model, low-level features are used to detect shot bound-
aries. The shot layer is connected to a higher layer that detects scene
or chapter boundaries from semantic features. With this structure,
the model optimises the alignment for both layers at the same time
and the detection results are interconnected. Experimental results on
real video data show, that both layers highly benefit from this sharing
of information. Compared to a baseline threshold method with the
same features, the F-measure result for the shot detection has been
improved by 12.6% absolute. For the scene boundary detection, the
result has been improved by more than 11% absolute.

1. INTRODUCTION

Nowadays both terabytes of storage capacity and broadband Internet
connections are affordable for the mass market. Todays problem is
no longer the storage and sharing of video archives, but the retrieval
of the right piece of video. As yet this search is mainly performed
through the name of the program, e.g. ”Episode No. 1734 of a se-
ries”. The retrieval could be simplified, if systems would also enable
intuitive queries, like ”the episode, where J. Roberts played a guest
role”. However this requires various content information about the
program, as persons or the story line. It can either be provided as
metadata in the archive, or has to be extracted automatically from the
audio-visual stream. The latter is of course preferable, as it avoids
cost-intensive and error-prone manual work. Yet, it involves various
challenging research topics, like automatic indexing [1, 2, 3], person
identification [4, 5, 6], speech recognition [7], understanding [8], and
summarisation [9]. In this work we address the first step towards the
automatic analysis: finding shot and scene boundaries in videos.

1.1. Video layers and their boundary detection

As shown in Fig. 1, a video can be divided vertically into differ-
ent layers. The lowest layer is the sequence of frames (usually 25
per second). A sequence of frames continously captured from the
same recording source is grouped into shots [1] (several hundreds
per hour). Subsequent shots can be connected either through a hard
cut or a gradual change (e.g. fade, wipe, or dissolve). In the next
layer shots belonging to the same scene are summarised [10] (up to
100 per hour). A scene can be a group of shots at the same place,
with the same persons, or with the same topic. Finally a sequence of
scenes forms a program, like ”Episode 1734 of a series”. Depend-
ing on the desired degree of granularity, a further chapter layer can
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Fig. 1. Video layers with analysis level and possible representations.

be inserted between scenes and program (not shown in Fig. 1), this
layer groups blocks of the story, and is usually limited to a few chap-
ters per hour. Each layer can be represented in different ways. Fig. 1
shows some possibilities. Furthermore each layer requires a differ-
ent analysis level: shots can be detected from low-level features, but
program analysis requires semantic knowledge. In general higher
layers require more semantic knowledge.

In the last years, various works investigated the different lay-
ers. Especially shot segmentation has been deeply researched: An
introduction and a comparison between different threshold methods
gives [2, 11]. Novel methods are e.g. based on SVMs [3]. A stan-
dardised evaluation of the different shot boundary detection meth-
ods is TRECVID [1]. Shots are clearly defined, and can be detected
from the raw visual stream, but they don’t form the best retrieval
unit: while in a news program the topic can change without a shot
boundary, a movie consists of several hundred shots. On the other
hand shot boundaries can be used as input for the boundary detec-
tion in higher layers. Scenes and chapters form larger blocks of the
story, they are much better suited for retrieval tasks. Scene boundary
detection and analysis is therefore an increasing research topic. A
segmentation of news into scenes shows [12]. Events in sport pro-
grams are searched in [13]. The content is structured in [9].

As the different layers require different analysis methods, shots
and scenes have mostly been analysed separately. Previous works
process the layers sequently and don’t include the interaction among
them. Recently [10] performed a first approach towards multi-layer
techniques with promising results. In this work we therefore bridge
the gap between low-level and semantic features: We combine both
into a two-layer Graphical model (GM). This GM is then used for
combined shot- and scene-boundary detection. Thus it automatically
learns and regards the relation between the two layers. Furthermore
the model is designed flexible, it can be extended to further layers.
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2. LOW-LEVEL FEATURES

Low-level features similar to those described in previous works [2,
11] have been derived. First the intensity It(x, y) of each pixel in
each frame t has been calculated from the RGB values. Then the
average intensity difference for subsequent frames has been derived:

It(x, y) = 0.3 · Rt(x, y) + 0.59 · Gt(x, y) + 0.11 · Bt(x, y) (1)

L
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Furthermore the first 15 coefficient u + v ≤ 4 of the discrete cosine
transform (DCT) have been calculated for each frame and then the
average frequency intensity difference for subsequent frames:
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We also used colour difference images and colour histogram dif-
ferences (both described in [2]) as further low-level features. Fur-
thermore we experimented with audio features like MFCCs or frame
energy, but found them not helpful, thus we omitted them.

3. SEMANTIC FEATURES

For the scene layer semantic features have been extracted in a semi-
automatic fashion. Spoken text subtitles from the data are recognised
with a commercial tool. This text has then been mapped to freely
available scripts from the Internet. From the scripts the {the cur-
rent speaker, the current place, and all persons in the scene} have
been derived automatically and then summarised into a coded se-
mantic feature vector for each frame. As spoken text in the broad-
casted series is not perfectly aligned to the scripts, the correct person-
and sentence alignment for the data was in average 75%, and there-
fore comparable to automatic recognisers for speech [7], as well as
face [4, 5] and speaker [6] identification.

This approach can be used to derive semantic features for a large
set of data with relatively high confidence. It is therefore helpful as a
first step towards understanding the meaning. On the other hand, the
drawback of this approach is its dependency on scripts, it can’t e.g.
be used for live broadcasts. However, the module can later easily be
exchanged with automatic recognition modules.

Fig. 2 shows the output of the feature extraction and the GM. TV
images are superposed with information. In the top the semantic fea-
tures are displayed. In the bottom, the results of the shot and scene
detection (see Sec. 5) are shown with some timing information.

Fig. 2. Frames from two TV series with superposed information.
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Fig. 3. Two-layer hybrid low-level and semantic feature Graphical
model for combined video shot and scene detection.

4. TWO-LAYER HYBRID GRAPHICAL MODEL

A Graphical model (GM) [14] describes statistical dependencies be-
tween a set of variables. The variables are marked as nodes and the
dependencies between them with edges. Popular statistical models,
like the Hidden Markov Model (HMM) or linear dynamical systems
(LDS) can be described and combined within this framework.

Fig. 3 shows the novel two-layer hybrid GM for combined shot
and scene boundary detection. Hidden variables are printed white,
observed variables shadowed. Squares mark discrete probability dis-
tributions and circles denote continuous Gaussian nodes N (�x, �µ, Σ).
If a variable depends on another, an arrow points towards the con-
ditioned node. A column with the observed feature nodes {St, Lt}
and the hidden discrete state nodes {QSh

t , QSc
t } represents one time

slice of the model. Vertical and angular arrows represent dependen-
cies between the variables within one time slice, i.e. the relations
between scenes, shots, and the observed low-level and semantic fea-
tures. A special characteristic of this model is, that the hidden nodes
in one time slice are not only connected to the features for this par-
ticular frame, but also to the features of the previous frame. Finally,
horizontal arrows represent the dependencies between subsequent
time slices, i.e. the statistical dependencies of subsequent frames.

Let us first consider the shot detection layer of the GM: It is
modelled as a first order Markov chain {QSh

0 , . . . , QSh
t , QSh

t+1, . . .}.
Each node QSh

t represents a discrete state and is connected to the
low-level features Lt−1 and Lt of the previous and the current frame.
This structure is similar to an HMM. However the connection of each
state to two feature nodes is different and especially adapted to the
shot detection. Mathematically, the probability of this shot layer, up
to the current time step τ can then be expressed as:

P
Sh
τ = P (QSh

0 )
τY

t=0

P (Lt|Q
Sh
t )

τY
t=1

[P (QSh
t |QSh

t−1)P (Lt−1|Q
Sh
t )],

(5)
where P (QSh

0 ) represents the probability of a shot in the first frame
(if not embedded into a further system a sequence always starts with
a shot). The low-level inputs, given the current state are modelled as
P (L(·)|Q

Sh
(·) ). The state transition, i.e. the probability of subsequent

shots, is represented by P (QSh
t |QSh

t−1). This shot detection layer can
be used independently of the remaining model. The parameters of
the input nodes and the state transitions can be trained with the EM
algorithm [15] and then applied to shot detection without scenes.
However here it is only used in combination with the scene layer.
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The structure of the scene detection layer is similar to the shot
detection: The discrete states QSc

t for the scene layer are connected
to the semantic features for the current and the previous frame St−1

and St. Yet, the Markov chain {QSc
0 , . . . , QSc

t , QSc
t+1, . . .} is now

not only conditioned on the previous state, but also conditioned on
the current state QSh

t of the shot layer. Thus the results in the shot
detection interact with the scene layer. The scene layer up to the
current time step τ can then be expressed as:

P
Sc
τ = P (QSc

0 |QSh
0 )

τY
t=0

P (St|Q
Sc
t )

τY
t=1

[P (QSc
t |QSc

t−1, Q
Sh
t )P (St−1|Q

Sc
t )],

(6)

where P (QSc
0 |QSh

0 ) is the probability of a new scene in the first
frame, given a new shot (again, if not embedded into a higher sys-
tem a sequence will of course always start with a new scene). The se-
mantic inputs, given the current state of the scene Markov chain are
modelled as P (S(·)|Q

Sc
(·)). Finally, the state transition of the scenes

is now also conditioned on the current state of the shot layer, thus it
is represented by P (QSc

t |QSc
t−1, Q

Sh
t ).

One of the main advantages of GMs are standardised algorithms.
Given the developed, novel structure, the GM can be implemented
with a toolbox, like the Bayes Net Toolbox [16]. We also experi-
mented to include the low-level features directly to the scene layer
(graphically this basically means adding an extra edge between QSc

t

and Lt), but didn’t found it helpful, as the information about the
low-level input is already implicitly modelled in the shot nodes. The
presented GM structure is loosely related to two-layer HMMs. How-
ever the feature connection is significantly different. Furthermore
both decoding and training are performed differently.

4.1. Decoding

With the scene and the shot layer, the probability for the complete
model at the current time step τ becomes P (τ) = P Sh

τ · P Sc
τ . How-

ever, for efficency reasons the probabilities of the different state se-
quences in the model are not calculated directly with Eq. (5) and
(6), but marginalisation and inference is performed with a junction
tree algorithm for Graphical models [17]. The decoding itself is then
performed frame by frame, by marginalisation over the low-level and
semantic input for each frame, and then maximisation in the hidden
nodes: argmax{QSh

t , QSc
t }. Thereby the result for each frame can

take four different values: a shot and a scene boundary; a shot with-
out a scene boundary; a scene without a shot boundary; or neither a
shot nor a scene boundary. An advantage of this strategy is, that it
can be performed online, with a delay of only one frame. Further-
more the decoding jointly optimises the alignment for both layers.

4.2. Training

In principle, two types of training from a training data set are possi-
ble: First the shot layer can be trained independently in a supervised
fashion with the low-level features and known shot boundaries. Then
the scene layer is trained with the semantic features, known scene
boundaries, and the results of the shot layer. This is done with the
EM algorithm [15]. As a second training strategy both layers could
be trained at the same time with unknown shot boundaries. This
however leads to an unsupervised feature decomposition of the shot
layer. Then the shot layer has no direct relation to shots anymore. It
couldn’t be used for shot detection, and only the scene output would
be optimised. We therefore only applied the first strategy.

5. EXPERIMENTS

To evaluate the novel GM, we compared it in both layers to a stan-
dard thresholding method, as e.g. introduced in [2]. As data we used
six episodes of different, broadcasted series from different genres.
Together the data has a length of approximately 4 hours (360’000
frames) and contains nearly 2000 shots and 90 manually annotated
scenes. Both the baseline thresholding method and the GM used the
same set of features, as described in Sec. 2 and 3.

To compare the approaches, we used three information retrieval
measures [18]: Recall, is the proportion of correct retrievals com-
pared to all possible correct retrievals. Precision, is the proportion of
correct retrievals among all retrieval results. The F1-Measure sum-
marises both into one number:

r =
correct

correct + missed
, p =

correct
correct + false

, F1(r, p) =
2rp

r + p
.

A shot boundary can be determined frame exact, but this is not prac-
tical for scene or chapter boundaries. If a scene change is not ac-
companied by a shot, the scene can shift by a couple of seconds. It is
not useful to evaluate scene and chapter boundaries on a frame basis.
For these results we introduced an offset in seconds. If a boundary
is detected within this offset, it is considered a correct retrieval.

Four experiments were performed: shot boundary detection with
two different types of training, scene boundary recognition, and in a
further experiment we replaced the scene layer by a chapter layer.

5.1. Shot boundary detection

For the evaluation of the shot boundary layer, we performed experi-
ments with two different training setups. In the first setup (similar)
we used the first part of each episode for training and the remaining
unknown parts of the episodes for tests. In the second setup we used
only one complete episode for training, and the remaining unknown
series for tests. This is a much more realistic scenario, as the test
data can then be completely different compared to the training data.

Graphical Model (in %) Threshold (in %)
Training r p F1 r p F1

Similar 98.5 91.8 95.0 96.7 87.6 92.0
Realistic 94.8 88.0 91.3 84.8 73.5 78.7

Table 1. Shot boundary recall (r), precision (p), and F-measure (F1)
results for the Graphical model and for a baseline threshold method.

The results are shown in Tab. 1. As expected, the similar sce-
nario has better rates compared to the realistic scenario for both
methods. The GM significantly outperforms the baseline method
for both scenarios in recall, precision, and F1-measure results. It
shall be mentioned, that state of the art approaches for shot detection
reach better results [1]. However, these approaches use much more
advanced low-level features. Here, the GM and the baseline method
use the same set of features, this shows that the shot layer of the GM
benefits highly from the joint optimisation of scenes and shots.

5.2. Scene boundary detection

The results for the scene boundary detection for the baseline method
and the GM are shown in Tab 2. The GM highly outperforms the
threshold approach continously. With increasing allowed offset all
results improve. For an offset of +/- 20 seconds, the threshold ap-
proach reaches an F1-measure of 53.8%, where the GM reaches
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Graphical Model (in %) Threshold (in %)
Offset r p F1 r p F1

+/- 2s 44.3 63.1 52.0 7.7 10.5 8.8
+/- 5s 44.3 63.1 52.0 10.9 14.1 12.3
+/- 10s 49.1 70.2 57.8 23.2 29.2 25.9
+/- 20s 55.8 77.8 65.0 47.8 61.5 53.8

Table 2. Scene boundary recall (r), precision (p), and F1-measure.

65.0%. However an offset of more than 10 seconds doesn’t seem
reasonable for scenes. For a more reasonable offset of 10 seconds,
the GM outperforms the threshold by 31.9% absolute. Yet, the F1

result of 57.8% for an offset of 10 seconds is still too low for a real
application. For a better result, the model requires more advanced
semantic features, like speech understanding. However, compared to
the standard threshold method, the GM is highly preferable. The in-
formation sharing between low-level and semantic features through
the hidden nodes contributes to significant better recognition rates.

5.3. Chapter boundary detection

In the last experiment we used the same GM with the same set of
features, but replaced the scene by a chapter layer, both for training
and decoding. Chapters form a very large group in a video stream. In
an episode, there are significant less chapters than scenes. They are
much harder to find and usually require to understand the meaning.

Graphical Model (in %) Threshold (in %)
Offset r p F1 r p F1

+/- 2s 56.3 27.4 36.8 12.5 5.0 7.2
+/- 5s 62.5 30.2 40.7 12.5 5.0 7.2
+/- 10s 62.5 30.2 40.7 29.2 11.3 16.2
+/- 20s 75.0 37.3 49.8 54.2 21.3 30.6

Table 3. Chapter boundary recall (r), precision (p), and F1-measure.

The results for the chapter detection are shown in Tab. 3. As ex-
pected the F1 results are continously worse compared to the scenes.
However again the GM outperforms the threshold approach clearly.
Furthermore, given the limited set of semantic features, the F1 result
of 49.8% for chapters within a 20 second offset is very promising.

6. CONCLUSION

In this work we proposed a novel Graphical model for combined
shot and scene boundary detection in videos. The model integrates
both low-level and semantic features into one model and optimises
the alignment for shot and scene boundaries jointly. In an exper-
imental section we compared the model to a thresholding method.
The model outperforms the standard single thresholding methods:
For the shot detection, the F-measure has been improved by 12.6%
absolute. For the scenes, the result has been improved by more than
11% absolute. Both layers benefit from the joint optimisation.

The model is designed flexible, we plan to extend it to further
video layers (e.g. combined shot/scene/chapter recognition). A cur-
rent draw-back are the relative simplistic input features. In the future
we plan to extend both low-level and semantic features. Especially
in the semantic domain we like to exchange the current feature ex-
traction by an automatic person- and speaker recognition and fur-
thermore add speech recognition and interpretation parts to further
improve the recognition rates in the scene and chapter layer.
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